THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

#
/ STERLING: A PEDAGOGICAL IMPLEMENTATION
OF THE

IS0 MODEL FOR OPEN SYSTEM INTERCONNECTION ~
- /

by
Ronald Curtis %bury

B.S. Rochester Institute of Technology 1976

A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

EANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

Approved by:

hj% Professor

22 g || Allzo2 2yusry

R
(985 TABLE OF CONTENTS

A G2
c.2

P!‘eface L] L] . . L] - . L] - . - - . L] . L]

Chapter 0
0.0 Motivations for Networks . « « »
0.1 An Approach to the Study of Networ

Chapter 1
1.0 Concurrent Fascal « « « o« o ¢« o o
Te1 MailboXes .« o« ¢ o ¢ ¢ o ¢« o o = o
1.2 The Desigh of Sterling . . « . .

Chapter 2
2.0 NETO: Interprocess Communication
2.0 NET1: Communication With A Remote
2.2 NET2: Presentaticn Layer
2.3 NET3: Session Layer . « « » ¢ « o«
2.4 NET4: Transport Layer . . « « « «

m‘ ther HWk L] L L] - . L d . - . . . L L] L]

References L] - . L . . . L] - - L] - L . a

Appendix A
Include mdules L 3 - . L] - . L] - L - []

Appendix B
Sterling'!s Protocols .« « o ¢« » o & o

L - »

ks .

-

Site

*® o o 2 @

- [) L] L] L]

iv

- 00 -~

14
19
27

45

58

60

a1

B1

-~

LIST OF FIGURES

1. The ISO Network Model .
2. Mailbox Communication .
3. 7 Layer Access Diagram
4, NETO Access Diagram . .
5. NET!1 Access Diagram . .
6. Logical View of Blackbox
7. KET2 Access Diagram . .
8. Vigenere Cipher . . . »
9. NET3 Access Diagram . .

10. NET3 Session Protocol .

11. Session Layer Finite State Automaton
12 NETH Access Diagram . « « ¢« « o s o« s

13-HETHT°W1°§U....O‘..CDI

14, NETY4 Connection Protocol

-

15. Transport Layer Finite State Automaton

10
12
16
23
24
30
31
38
39
40
49
50
51
52

—ii=

ACENOWLEDGEMENTS

This report is dedicated to my father, in fulfillment of a
| birthday pledge I made to him over twenty years ago. I would
like to thank my wife Suzette and my son Sterling for their
support during this project, my brother Randy for being such a
good role model, and my advisor Dr, Wallentine for refusing to

let me do anything less than my best.

-iii-

PREFACE

In the spring of 1982 I completed course CS-T25, Computer
Networks, with the assigned text 'COMPUTER NETWORKS' by Andrew
Tanenbaum. I found the text to be clear and easily understood,
but suffering from several problems.

The Tanenbaum text dis built around a discussion of the IS0
(International Standards Organization) Reference Model for
computer networks. ' While I agree with the idea of using a
central reference when discussing the design of the various
networks currently in use, a problem arises because there are no
networks that truly follow the ISO model. The author does give
segments of Pascal code to illustrate portions of the model, but
no comprehensive overview is given.

Another problem is the order in which the layers of the ISO
model are presented. It is now generaly considered good style to
aproach problem analysis and program design in a 'top down'
menner. Tanenbaum chose, however, to start with the bottom
layers of the model and work his way to the top. This results in
students having to cope with such problems as error correcting
protocols before they even have an understanding of the essential
aspects of a computer network and the functions it is to
provide.

I believe that Per Brinch Hansen has shown us an excellent way
to teach a complex computer system with his SOLO operating system
[solo]. He wrote a simplified but operational version of a

single user operating system in a concurrent superset of Pascal,

-iye—

He used a highly structured design to separate the various
functions of the operating system and provided sufficient
docmentation to allow the students to modify the various
components of the program.

I intend to correct those problems mentioned above by
following Brinch Hansen's example and implementing & simple
pedagogical network (STERLING) based on the ISO model. I will
discuss the functions of the top four layers, design processes
that perform simple subsets of those functions, and implement the
designs in a language available at KSU. The report will not be
an in-depth study of the ISO model, networking in general, or the
13;1guage chosen ft-:r the implementation. Rather it should simply
be viewed as a general workbook and source of assigmments for a

course in computer networks.,

The goals of this project are as follows, to:

1. Provide a reference for teaching the ISO network reference
model by implementing a simple version in a language
available at KSU;

2. Provide 2 minimal subset of functions for the top four
layers of the IS0 model;

3. Design the layers for easy expansion and modification by
students;

4, Allow for the function of each layer to be examined
separately from other layers; and

5. Design for simplicity and clarity rather than efficiency

and robustness.

-V

CHAPTER 0

0.0: Motivations For Networks

Computers were originally expensive, monolithic machines of
limited capabilities. They were the nucleus of a small cluster
of terminals, printers, and other peripheral devices. Because of
the expense of the equipment, it was practical to devise methods
for remote facilities to communicate with a central computer
rather than purchasing additional equipment. This trend
continued with the linking together of large facilities, making
it easier to share both hardware and software resources. If one
location's facilities beca#e overloaded, part of the burden could
be shifted to a remote site. Users could also access proprietary
software developed at another location.

As the cost of equipment decreased it became cost effective to
install small computers at those remote sites that had none.
Data could be partially processed, and its volume greatly
reduced, before transmission to a central location for final
disposition. As computers became more specialized, small
computers were introduced which served as 'front end machines!',
freeing the large machines from trivial duties and allowing them
to concentrate their resources on those problems that they could
best solve. Some modern applications of computer networks follow

[1].

Systems for corporate operations of many different types,
€eBey order entry systenms, centralized purchasing,
distributed inventory control, insurance underwriting.

A

® Corporate information networks, marketing information,
customer information, product information.

% pAirline reservations, car rental, hotel booking,

% Electronic mail and message sending, two-way interchange of
messages.

% Electronic transfer of financial transactions between banks
and via checking clearing houses.

£ Consumer check and credit verification in stores and
restaurants, and 3in some cases consumer electronic fund
transfer; bank cash dispensers and customer terminals,

% Intercorporate networks. For example, a computer in one
firm transmits orders or invoices to another. Insurance
agents have insurance company terminals, possibly via a
shared network. Travel agents have terminals from airlines,
shipping lines, hotel chains, etec.

¥ Stock market information systems which permit searches for
stocks that meet & certain criteris, performance
comparisons, moving averages, and various forecasting
techniques, all using dialogues which employ graphiecs.

* Terminal systems for investment advice and management, tax
preparation, tax minimization [siec].

%* Home information services (Such as Prestel [British Post
Office], or any which use the home TV set)

0.1: An Approach To The Study Of Networks

Modern software engineering techniques stress the Top Down
approach to understanding and solving problems. This paper's
pmethod of understanding computer networks will follow this
approach of 'decomposing the problem into smaller modules, or
layers. Starting with an application program, it will be
determined what services are necessary for the layer to
communicate with processes on other machines. A module will be
added providing these services, then this module itself will be

decomposed. This process will continue until we have reached the

underlying network itself. Each layer will be formalized and
tested before continuing, in order to insure the robustness of
the solution,

A basic principle of layering is to ensure independence of
each layer by defining the services provided by the layer,
regardless of how these services are performed. This layering
permits changes to be made in the way a layer or a set of layers
operates, provided that they still offer the same service to the
next higher layer [2].

This is the approach used by the International Standards
Organization (ISO) Subcommittee 97/16 in formulating the ISO
Reference Model of Open‘ Systems Interconnection [2] [3] [15].
The members of this organization approached the layering of the

model using the following guidelines [3] :

P1: do not create so many layers as to make difficult the
system engineering task describing and integrating these
layers,

P2: create a boundary at a point where the services
description can be small and the number of interactions
across the boundary are minimized [sicl,

P3: create separate layers to handle functions which are
manifestly different in the process performed or the
technology involved,

P4: collect similar functions into the same layer,

P5: select boundaries at a point which past experience has
demonstrated to be sucessful,

P6: Create a layer of easily localized functions so that the
layer could be totaly redesigned and its protocols
changed in a major way to take advantage of new advances
in architectural, hardware or software technology without
changing the services and interfaces with adjacent
layers,

PT: create a boundary where it may be useful at some point in
time to have the corresponding interface standardized,

P8: create a layer when there is a need for a different level
of abstraction in the handling of data, e.g. morphology,
syntax, semanties,

P9: Enable changes of functions or protocols within a layer
without affecting the other layers,

P10: create for each layer interfaces with its upper and lower
layer only,

P11: create further subgrouping and organization of functions
to form sublayers within a layer in cases where distinect
communication services need it [sic],

P12: create, where needed, two or more sublayers with a
common, and therefore minimum, funectionally [sie] to
allow interface operation with adjacent layers,

P13: Allow by=-passing of sublayers,

Figure-1 depicts the IS0 model with its seven layers, This
model provides the framework for this study. Layers one, two,
and three comprise a network over which data can be routéd to
another computer. Standards for the lower three layers are the
most clearly defined because CCITT and the ISO and ANSI Data
Communication Technical Committees have been working on these
standards for Qany years [11]. Layers four, five, and six are
the means by which a host machine can access the network, and are
the primary emphases of this work.

STERLING is a series of five programs that demonstrates the
functions of the top layers of the ISO medel. A minimal subset
of the layer under study is implemented at each stage of the
top-down decomposition. The programs are strictly pedagogical,
with the emphasis on underlying principles rather than clever

code. They are fully documented, and their modular design lends

-

itself to easy modification by students. Network services can be

added, deleted, and modified with a minimum of difficulty.

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

I1.5.0. NETWORK MODEL

Figure 1

—_—
!4;_'- ————————————————————— >
\
It et~ »
i >
(e e e
€ — — € — —» € — —>»
€ — = € — —D» HE — =
L U
_].

CHAPTER 1

1.0: Concurrent Pascal

Sterling is implemented in Concurrent Pascal (C-Pascal), a2
superset of standard Pascal developed by Per Brinch Hansen at the
California Institute of Technology. C-Pascal is a highly
structured language designed to allow the user to specify exsectly
what concurrent processes can do to shared variables, and to
dépend on the compiler to check that the programs satisfy these
assumptions [5].

C=Pascal has several additional advantages which led to its
choice as the implementation language. The original compiler,
written in 1974 by Al Hartman, has been fully documented and
published [16]. Also, C-Pascal is widely available in academia
and is implemented at KSU on the Interdata 8/32 computer. It is
a simple extemsion to standard Pascal, and can be understood
easily by anyone with a working knowledge of structured
programming languages. Additionally, it has proved successful in
other pedagogical implementations of operating systems [5] and
networks [4].

4 major benefit of Concurrent Pascal is the ability of the
programmer to divide the shared data structures of an operating
system into small parts and define allowable operations on each
of them. Processes perform concurrent operations using monitors
to synchronize themselves and exchange data, and access private
data structures by means of classes [5].

A Class is a2 privately owned procedure, It is initislized

e

once by its parent (a process or monitor), and after
initialization its private data structures exist until the
termination of its parent. Access rights to the class are owned
by its parent. These rights can be passed to other classes owned
kY the same parent, but not to other processes or monité:rs.

Monitors, independently introduced by Hoare [6] and Brinch
Hansen [T], refer to a shared procedure and its permanent data
structures within a zone of mutual exclusion. Mutual exclusion
is the mechanism which allows processes to acquire exclusive
controi of a resource for a finite period of time. Processes
competing for the monitors thus gain access to, or control of,
them in some sequential order [9]. Synchronization through
monitors is enhanced by the two primitives DELAY and CONTINUE.,

A process can be delayed in a monitor for any length of time
by the process executing a DELAY. When a2 calling process is
delayed in a monitor it loses its exclusive access to the
monitor's variables until another process calls the same monitor
and executes a CONTINUE. The process issuing the CONTINUE is
then removed from the monitor, and the delayed process regains

its exclusive access and resumes execution.

1.1: Mailboxes

In STERLING the C-Pascal primitives are uses to implement
another method of interprocess communication and synchronization:
the Mailbox or Message Buffer. A mailbox can be viewed as a
restricted monitor, where the only operations allowed on the

shared data structure are the storage and retrival of messages.

-8~

Mailboxes were chosen for several reasons. The primitives for
the creation, use, and deletion of mailboxes already exist on
many operating systems (Data General A0S, Digital VMS, Unix,
ete). By strictly limiting the monitor's capabilities to
communicate and synchronize, the entire function of a network
layer can be viewed within a single process. The two entry
points to a mailbox are analgous to performing 'reads' and
‘writes' , thus making them easy to understand. Finally the user
processes are only loosely coupled to each other and therefore
need not share common memory, making this method easily adaptable
to distributed systems. (see figure 2)

Communication through a mailbox is subject to two resource
constraints [7]:

1) the sender cannot exceed the finite capacity of the storage

buffer; and

2) the receiver cannot consume messages faster than they are

produced.
The messages should also be delivered in the same order that they
are sent, without loss or modification of their content.

STﬁRLING satisfies these constraints. If a sender tries to
deposit a message in a full buffer, it is delayed until the
receiver removes a message from the buffer. If a receiver tries
to take a message from an empty buffer, the receiver is delayed
until a sender has deposited a message into the buffer. Finally,
the buffer is controlled on a strictly First-In-First-Out -basis,

with no operations performed on it but depositing and removing

messages.

MAILBOX COMMUNICATION

4
GE

Figure 2

-1“-

1.2: Design Of STERLING

Each of STERLING's five programs is designed as a group of
independent processes communicating through mailboxes. Each
process has a private mailbox through which it receives messages
from one or more other processes. The processes may receive mail
only through their private mailbox. As each layer of the ISO
model is introduced a new process is added to each site of the
simulated network representing the funection of that 1layer,
Figure 3 contains an illustration of how the communication paths
for one node of the network would look with all seven layers of
the model implemented.

A node of a network may have several application processes
residing on it which access the network at the same time. While
the code necessary to multi-thread STERLING's nodes would not be
very co:_nplicated, the network was implemented with single-user
nodes, with multi-threading left as a programming activity for
the student.

As the messages are passed through the various layers on the
way to the network, new information is added to allow the peer
layers to communicate. It is also typical for some layers to
break long messages into smaller packets before transmission.
This breaking into packets conflicts somewhat with C-Pascal's
rigid enforcement of compile-time strong typing. Experiments
with variant records made the mailbox mechanism clumsy, and were
abandoned in favor of a single fixed-length record (with some
fields ignored) for all communication.

C-Pascal, as implemented at KSU, has extremely limited I/0

= &

7 LAYER ACCESS DIAGRAM

APPLICATION

PRESENTATION

N
L
N
o%
ok
A
N
L

DATA LINK

_12-

capabilities. In order to provide STERLING with the file access
it required, it was necessary to perform all input and output via
supervisory calls to the operating system. Because of the
limited capabilities of the programs, very little was reguired of
these calls., and they were implemented in an easily understood
Class procedure. The flag setting necessary for supervisory
calls closely parallels the flag setting STERLING uses in
communicating with the network, and should help the student to
understand the principle of the hiding of low level interfaces
within a high level language.

It becomes necessary at the Transport layer of this model for
a process to be able to ‘'time out' if it réﬁeives no measages.
This facility is not provided by the language, and had to be
simuiated by adding an additional process and monitor at each
node of the netwcrk. A minor modification had to be made to the
C-Pascal Kernel [10] to allow a process to call the 'Wait!'
primitive even ifrall other processes are in z delayed state.

Adother problem that became most apparent during the
implementation of the Transport layer was the inability of
C-Pascal to allocate buffer space dynamically at run-time,
Several solutions were examined and rejected because their
complexity distracted from the general goals of the layer. The
fipnal implementation uses a simplified Transport protocol that

does not require buffer management.

13-

CHAPTER 2

2.0: NETO

In the simplest view, a network can be thought of as just the
means for two or more processes to communicate. The processes
must be sure that any messages sent are delivered to the correct
destination in 2 timely manner, in the correct order, and with no
loss of data integrity. These constraints hold no matter if the
processes are on the same host computer or are on opposite sides
of the earth. It is appropriate, therefore, that the study of
networks begins by looking at a simple example of two processes
exchanging messages without the use of any formal network
structures.

A typical situation calling for interprocess communication is
the management of a data base. In this situation it is the duty
of one process to control all access to the information stored in
the data base. This 'Server' process 1is the only process with
access rights to the information., Any query from a 'Worker!
process must be made by sending a request message to the Server.
The Server can respond either by accessing the data base and
transfering the requested information to the Worker, or by
sending back a rejection message.

NETO (see listing 0) is a simple demonstration of this type of
interprocess communication. The Server process controls access
to four files (FILE_A to FILE D). The Worker process receives a
request for a file from the terminal, then sends the request to

the Server. If the Server is able to fill the regquest, it

-14-

transfers the file to the worker, which displays it on the
terminal. If the request cannot be filled (i.e. the file does
not exist), the server sends a rejection message to the worker.
This sequence cycles until the program is terminated by issuing a

break at the terminal.

=15=

O

NETO ACCESS DIAGRAM

Figure 4

(*# ®*Cpascal Prefix®)
INCLUDE NETPFX

(R R RN R R R R R R R T RN RN E R N R F RN NN RN R RN

#
PROGRAM NETO

4
& Interprocess communication.
®
*

EEREREE]
8 -0

¥ Programmer: Ronald C., Albury
& Date Written: June 1982
¥ Computer: Interdata 8/32

& Copyright 1982 by Ronald C. Albury

EEEE R EE NSO R E R RN R IR ER NN R AR RN NN RGN ENRNRENE N EREECERREER

(% ®%#pgcket descriptiont®)
TYPE _
PACKET_TYPE = RECORD
TEXT: MESSAGE_TYPE
END;

(® ®%Constants for Mail box_monitor#)
CONST
MAX_MAIL = 4;
MAY_SENDERS = 1;

(®* ##Constants for Resource#)
CONST
MAX_RESOURCE_USERS = 1;

(# ®#Types and constants for Message_io_class¥)
INCLUDE SVC1PFX

(* %Class to provide fixed record I/0%)
INCLUDE MSGIO

(# ®Modified Brinch Hansen FIFO#)
INCLUDE FIFO

(®# ®#Standard Brinch Hansen Resource#)
INCLUDE RESQURCE

(®* #Interprocess communication mailbox#)
INCLUDE MAILBOX

(®# ®Jorker application process¥)
INCLUDE WORKERO

(¥ #Server application process®)
INCLUDE SERVERO

(%% LISTING 0 ¥%)

(217 ®)

VAR
CONSOLE: RESOURCE_MONITOR;
WORKER_EVT, SERVER_EVT: MATL_BOX_MONITOR;
WORKER: WORKER_PROCESS;
SERVER: SERVER_PROCESS;

BEGIN
INIT
CONSOLE,
WORKER_EVT, SERVER_EVT,
WORKER(CONSOLE, WORKER_EVT, SERVER_EVT),
SERVER(SERVER_EVT, WORKER_EVT)
ENDI

(#* LISTING 0 ##)

(® 18 #)

2.1: NET

A number of considerations must be introduced to the
demonstration of interprocess communication if the Worker and
Server processes are allowed to reside on different computers.
Both machines must agree on certain protocols to insure the
integrety of their communication. These protocecls are analogous
to the hierarchy of people necessary for executives of two

companies to communicate.

The Application layer is the executive himself, It is the
ultimate source and sink for all data trangmitted across the
network, and it is also the entry point for the application
programs to interface with the rest of the network. In STERLING,
these interfaces are provided through access rights which are
doled out by the initial process. The following come under the
domain of the application layer:

1) Identification of intended communication partners

2) Transfer of information

3) Synchronization of cooperating application processes,

The Presentation layer assumes the role of the assistant to
the executive, who makes sure that all messages are in a form
that the boss can understand. The following problems must be
considered:

1) The machines may use different formats to store files (e.g.

80 byte fixed length records vs. 512 byte blocked variable

length records),

2)

3

)

The machines may use different character codes (e.g. ASCII
vs. EBCDIC).

They may be exchanging secret information which should be
encrypted before it is transmitted over a non=secure
medium.

If large amounts of data are being transfered, it may be
cost effective to use a compression algorithm to reduce the

transmission costs.

The Session layer assumes the role of the executive's

secretary, who makes the appointments, places the cutgoing phone

calls, screens the incoming calls, and takes messages. The

following problems must be considered:

1)

2)

3)

h)

5)

A process may need to 'log on' to a remote machine before
it can communicate with any processes on that machine.

A process may have restricted access and require a password
or some other form of authorization before it will agree to
exchange messages.

The two processes must agree on such options as who can
terminate the session and whether the communication will be
half-duplex or full=duplex,

A process may be running, but not expecting messages, or
already busy, and unable to receive new messages.

If a break in the network connection during mid=-
transaction would prove to be disasterous, it may be
necessary to 'bracket'! or 'chain' together several messages

into a single large message at the destination. This is

-20=-

also known as "quarantining messages" [3].

The Transport layer assumes the role of the company
switchboard operator, who manages all telephone connections
comming into the business. The following problems must be
considered:

1) The host must be able to establish and keep track of all of

its connections across the network.

2) The host must be sure that the destination has sufficient

buffer space to hold the messages that will be sent.

3) The host must be sﬁre that all of the messages sent were

received by the destination in the correct order.

Local Area Network: To complete the analogy there must be a
telephone company to handle the actual transmission of the
nessages from one company to the other. The problems encountered
in implementing a local area network [12] [13] [14], however, are

beyond the scope of this report.

NET1 (see 1listing 1) assumes that the Worker and Server
processes (the Application layers) are on separate hosts. A new
process, the 'Black Box', is added to each host to simulate the
protocols being in place to satisfy all of the previously

mentioned problems.

-21=

The Worker and Server continue to aet as if they are
communicating directly with each other, while in fact there is
another layer of processes that handles the details of the
communication. In future chapters the Black Box will be
subdivided into further layers, each addressing a specific type
of protocol. Currently, the Black Box's only duty is to
determine if a message 1is going into the host or coming out of

it.

-p -

W. BLACKBOX K

NET1 ACCESS DIAGRAM

Figure 5

S. BLACKBOX

300N A01dd HO¥d —— >

0823818 40 M3In HIAI90T

1328d
INIWOINI

.......mﬂmuomm xomv_@

13X3ud
INIWOINI

———=> 300N LX3N 0L

Boes o
13364 13426d
ONTWOONT ON1091N0

/—\ ¥IAHT .—H Houd

YIAYT ddU OL

Figure &

(* #Cpascal prefix®)
INCLUDE NETPFX

(SRS E RN S E R N E R E N E RN RN R E SR R R RN EEEEE R EEE RS E R RN EERRNEEEEEE

] E
& PROGRAM NET1 &
Interprocess communication between remote sites. .
[s
B st N I SRS LSRRI RI TR 0 s n s ®
Programmer: Ronald C. Albury &
& Date Written: July 1982 bl
® Computer: Interdata 8/32 &
& Copyright 1982 by Ronald C. Albury &
RN RN R RN SRR R R RS RN AN R RN R RN SRR R R)

(®NOTE: modifications to previous program are indicated &)
(® by (u=se) ®)

(% &%¥packet descriptiont®)
TYPE
DIRECTION_TYPE = (INCOMING, OUTGOING); (®&s#)
PACKET_TYPE = RECORD
DIRECTION: DIRECTION_TYPE; (%®%a%)
TEXT: MESSAGE_TYPE

END;
(% s#Constants for Mail_ box_monitor®)
CONST
MAX_MAIL = &4;

MAX_SENDERS = 2; (®&s)

(® ##Constants for Rescurce®)
CONST .
MAX_RESOURCE_USERS = 1;

(* ®%Types and constants for Message_io_class#)
INCLUDE SVC1PFX

(® ®Class to provide fixed record I/0%)
INCLUDE MSGIO

(* ®Modified Brinch Hansen FIFO#)
INCLUDE FIFO

(®* ®Standard Brinch Hansen RESOURCE®)
INCLUDE RESOURCE

(®# #Interprocess communication mailbox®)
INCLUDE MAILBOX

(® ®Undefined layers of the network®) (#%&#)
INCLUDE BLACEKBOX

(#% LISTING 1 #%) (% 25 &)

(¥ "Jorker application process®#) (%&¥%)
INCLUDE WORKER1

(® #Server application process®) (%##%)
INCLUDE SERVER1

TYPE
NODE_W = RECORD (##=%)
APP: WORKER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
BLACKBOX: BLACKBOX_PROCESS;
BB_EVT: MAIL_BOX_MONITOR
END;

RECORD {I'Ill}
APP: SERVER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
BLACKBOX: BLACKBOX_PROCESS;
BB_EVT: MAIL_BOX_MONITOR
END;

NODE_S

VAR
CONSOLE: RESQURCE_MONITOR;
WORKER: NODE_W;
SERVER: NODE_S;

BEGIN
INIT

CONSOLE,
SERVER.BB_EVT, WORKER.BE_EVT,
SERVER. APP_EVT, WORKER.APP_EVT,
SERVER.BLACKBOX (SERVER.APP_EVT, SERVER.BB_EVT,
WORKER. BB_EVT),
WORKER.BLACKBOX (WORKER. APP_EVT, WORKER.BB _EVT,
SERVER.BB_EVT), _
SERVER. APP(SERVER, APP_EVT, SERVER.BB_EVT),
WORKER. APP(CONSOLE, WORKER,APP_EVT,
WORKER. BB_EVT)

END.

(#= LISTING 1 #*)

(* 26 ®)

2.2: NET2

The first category of protocol - addressed is the Presentation
Protocol. The presentation layer performs f{unctions that are
requested sufficiently often to warrant finding a general
solution for them, rather than letting each user solve them
[15]. These functions could be explicitly invoked by the user in
the form of language enhancements or library routines called by
the user, or be transparently invoked by the operating
system/network interface.

When computers communicate over a network, they are vulnerable
to unauthorized use of their transmissions, Sensitive
infomat.ién may be copied or altered on the way to its
destination. In many applications (e.g. electronic funds
transfer) it ':l:s imperative that this be prevented. Data
encryption is the means used to assure the security of messages.

Another service which may be provided in the Presentation layer
is text compression. Processing costs are currently decreasing
much more rapidly than transmission costs, It will become
increasingly economical to edit or compress the data so that a
smaller number of bits is transmitted over the network. 1In
addition to saving money, compression can reduce response times
when the data components are long enough to take many seconds to
transmit.

When incompatible machines are connected on a network, problems
are introduced which must be corrected before those machines can

communicate., The machines may use different character sets,

==

requiring only simple translation., When a program moves between
machines with different instruction sets, the program will have
to be recompiled. Some machines store their files as fixed
length records and some as variable length records terminated by
some combination of control characters,

Even on identical machines there may be incompatible
terminals., The computer which a person wishes to access may not
know the appropriate control codes to use with his terminal. The
Preaentatipn layer may serve as a hidden translator, allowing all
application programs on the network to assume that they are
communicating with a standard virtual terminal.

-NET2 (see listing 2) provides only two presentation Qervices:
data enenyption and the modification of record delimiters. The
data encryption is accomplished through the Vignere cipher, a
simple substitution cipher [15]. The encoded message is created
by using the original text and the key as the row and column
eoord;néteg of a two dimensional array of characters. All nodes
on the siﬁhlated network are currently initialized with the same
key, with no provisions for modifying the key at run-time, The
encrypt{on routine is not transparent to the user and must be
invokéd by the Application Layer setting a flag in the network
packet.

The record delimiter routine, on the other hand, is transparent
to the user. On this simulated network there are only two kinds
of machines: those whose record delimiter is a Carriage Return,
and those who use a New Line, All packets automaticaly have a

flag set before transmission indicating the delimiter used. The

-28-

destination presentation layer automaticaly converts any

incompatible message to the format required by its host.

~29-

MAIL

H.PRESENTRTION S.PRESENTRTION

2oV
ORORO

MRIL S. BLACKBOX

DVENYS

;
:

L. BLACKBOX MAIL

NET2 ACCESS DIAGRAM

Figure ? -30-

E Y

K
HBLIOEFU®GEGB= =

Lt
[R A e e
oOC - DM X — & C
- DL = "IN = B
O OODC - ")X
0O 0 OL - X
OO0 0 OOC - ™)
0O 00 04 OLoc -
0O 00T 04 O

CMmoAWL WOWT

— X

DEARD

TEXT:
KEY:

FEED

| i eg

CODE:

Uigenere Cipher

-31_

Figure 8

(® E¥Cpascal prefix#®)

IN NETPFX
(R RSN RSN SR SRR SRR R RN R RN R R RN RS
S &
% PROGRAM NET2 %
& Application, Presentation, and Blackbox. ¥
= &
Widigneasvaiadbayibpaiininuueeisissduvidsndainicaisiiins®
¥ Programmer: Ronald C. Albur &
& Date Written: July 1982 L]
& Computer: Interdata 8/32 ¥
&]

Copyright 1982 by Ronald C. Albury
I e T L L PR T T LR T)

(®*NOTE: modifications to previous program are indicated &)
(® by (eses) %)

(® ®2packet description®)
TYPE
DIRECTION_TYPE = (INCOMING, OUTGOING);
SECURITY_TYPE = (SECRET, PUBLIC); (®#&E)
FILE_FORMAT _TYPE = (CR_DELIM, NI _DELIM); (%&###)
PACKET_TYPE = RECORD
SECURITY: SECURITY_TYPE; (%#&#)
FILE FORMAT: FILE FORMAT_TYPE; (&®®®)
DIRECTION: DIRECTION_TIFPE;
TEXT: MESSAGE_TYPE
END; .

(% ®#¥Constants for Mail_box_monitor®)
CONST
MAX_MATIL = i4;
MAX_SENDERS = 2;

(& ##Constants for Resource®)
CONST
MAX_RESOURCE_USERS =

(® ¥%#Types and constants for Message_io_class¥#)
INCLUDE SVC1PFX

(# %Class to provide fixed record I/0%)
INCLUDE MSGIO

(® #Modified Brinch Hansen FIFO#%)
INCLUDE FIFO

(® #Standard Brinch Hansen RESOURCE¥)
INCLUDE RESQURCE

(% ®Interprocess communication mailbox¥)
INCLUDE MAILBOX

(#® LISTING 2 ##) (% 32 %)

(% #Presentation layer record delimiter conversion®) (E#84&)

INCLUDE CR2HNL

(® ®Presentation layer datz encryption®) (%®##s)
INCLUDE CRIPTV

(* ®Process to simulate the Presentation layer®) (®&#&&)
INCLUDE PRESENT

(* ®*Undefined layers of the network#®)
INCLUDE BLACKBOX

(® Worker application process®) (&%)
INCLUDE WORKERZ2

(% ®Server application process#) (#Es#)
INCLUDE SERVER2

TYPE
NODE_K = RECORD
APP: WORKER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
PRES: PRESENT _PROCESS; (##%)
PRES_EVT: MAIL_BOX _MONITOR; (®&&#)
BLACKBOX: BLACKBOX_PROCESS;

BB_EVT: MAIL_BOX_MONITOR

END;

RECORD
APP: SERVER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
PRES: PRESENT_PROCESS; (#e&#)
_PRES_EVT: MAIL_BOX MONITOR; (##&%)
BLACKBOX: BLACKBOX_PROCESS;
BB_EVT: MAIL_BOX_MONITOR

END;

NODE_S

VAR
CONSOLE: RESOURCE_MONITOR;
SERVER: NODE_S;

WORKER: NODE_W;

BEGIN
INIT

CONSOLE,
SERVER, BB_EVT, WORKER.BB_EVT,
SERVER. PRES_EVT, WORKER,PRES_EVT,
SERVER.APP_EVT, WORKER.APP_EVT,
SERVER, BLACKBOX(SERVER. PRES_EVT, SERVER.BB_EVT,
WORKER. BB_EVT),
WORKER. BLACKBOX (WORKER, PRES_EVT, WORKER.BB EVT,
SERVER, BE_EVT),
SERVER. PRES(SERVER. APP_EVT, SERVER, PRES_EVT,

(%% LISTING 2 **)

(¢ 33 %)

SERVER.BB_EVT, CR_DELIM),
WORKER. PRES(WORKER, APP_EVT, WORKER, PRES_EVT,
WORKER.BB_EVT, CR_DELIM),
SERVER. APP(SERVER. APP_EVT, SERVER.PRES_EVT),
WORKER. APP(CONSOLE, WORKER.APP_EVT,
WORKER. PRES_EVT)
m *

(#® LISTING 2 **)

(% 34 ¥)

2.3: NET3

The session protocols of the IS0 model are scattered
throughout adjacent layers in most currently implemented
networks, The purpose of the Session layer is to assist the
higher layers in two ways. First, it controls the establishment
of 2 communication session by having the two processes decide on
"ground rules®™ for the session. This session administration
service is also known as "binding the processes®™, Second, it
controls the delimiting and synchronization of data operations
through a session dialogue service.

2 list of session functions could include the following:

1. Establish communications with the node which owns or
controls the requested function or data.

2. Check that the communicating nodes have the software
necessary for communication.

3. Exchange information about the protocols to be used in the
communication.

4, Convert the high-level statme.nts or requests of the user
programs into the protocols of the lower layers.

5. Interpret end-of-record and end-of-file indicators in
messages.

6. Perform end-to-end acknowledgement and sequence-number
checking, if it is felt necessary to have additional checks
on the lower layers.

7. Recover from a temporary break in the network without

-

breaking the session.

8. Divide long messages into segments and use an
acknowledgement protocol so that if a crash occurs, at most
one segment has to be retransmitted.

9. Secreen incoming calls, permitting only those from
authorized users.

10. Issue or check passwords,

NET3 (see 1listing 3) has a Session layer which provides

orderly creation and termination of sessions without data loss,
full duplex communication paths, access control, and message
cheining.
' There are three notable additions to NET3. The Mailbox
comnunication mechanism bhas been altered to allow the network
packets to be assigned a priority. One possible priority scheme
would segregate the packets into [1]:

1

Control messages

2 = Real-time or fast interactive
3 = Slow interactive

4 = Batech-processing traffic

5 = Traffic which can be deferred

4 new class has been added to provide standard entry points to
the network. NETIO allows the application program to access the
network just as MSGI0 provides it with I/0 fo the disk and
terminal.

A new class has been added to interpret any error messages
sent to the application layer from the network and display them

on the terminal.

-36-

Every host on the simulated network is initialized with a
password. Anyone attempting to establish a session must include
the appropriate password with the reguest or the reguest will be
refused.

The message~chaining facility allows a source process to send
multiple messages to a destination and have the messages
assembled into a single large message at the destination. This
chaining continues until the source process either explicitly
releases the message or sends a regquest that all data currently
quarantined be discarded. The destination process receives no
information that the data being received has be_en quarantined or

if some data has been discarded.

W.PRESENTATION S.PRESENTRTION

O\

L. BLACKBOX S. BLACKEBOX

(G
et

NET3 RCCESS DIAGRAM

&

Figure 9 =

NET3 SESSION PROTOCOL

WORKER

e et e ———————
-
~
e o e e e e e 2 e = e = e Y
-

-
S - e o vt e e e 2 —— ——
-

W.SESSION

15
23
3>
4>
SO
6>
22
8>
=

LISTEN
ESTABLISH
REQUEST
STRRT/BRERK
STRRT/BRERK
STRRT

BRERK

BRERK

BRERK

Figure 10

SERUVER

-
e o e e e e e e e ot e e e 2
.

- S.SESSION

BRERK

REQUESTING '| NO_SESS1ON

ESTRBLISH

LISTENING

REQUEST

IMMEDIATE REGUEST
CHAIN (END/RBORT)
REQUEST

SESSION LAYER

FINITE STRTE ARUTOMATON

Figure 11 -40-

(®# ®Cpascal Prefix®)
INCLUDE NETPFX

(R R SRR RS R R R R R R R E R RN R RN R R R R G RN EERRREEER RS

% H
® PROGRAM NET3 &
& Application, Presentation, Session, and Blackbox., &
5 5

282 F PSSR ITRIBERROTITERGSTIERD S8 S8 S LANESSEIRTIVRNEIEEREE
---------------- D....ll..nlnl..nl...---..'i...o.ll.oll.ll

& Programmer: Ronald C. Albury &
® Date Written: July 1982 b
¥ Computer: Interdata 8/32 &
®
)

& Copyright 1982 by Ronald C. Albury
EEE RN R SRR RN R R RN R R R R R R RN R R E RN RGN R RN

(*NOTE: modifications to previous program are indicated &)
(® by (%#Es) ®)

(® ®®packet description¥)

PRIORITY_TYPE = (LOW_PRI, MED PRI, HIGH PRI); (%&E&)

SESSION_COMMANDS = (LISTEN, ESTABLISH, REQUEST, (W#&##)
START, IMMEDIATE, CHAIN, END_CHAIN, ABORT_CHAIN,
BREAK) ;

CHAIN_TYPE = IMMEDIATE,.ABORT_CHAIN; ('“.),

STATUS _TYPE = (NO_LOCAL_SESSION, (®#z#)
NO_REMOTE_SESSION, LOCAL_IN_SESSION, REMOTE_IN_ SESSION,
BAD_PASSWORD, SESSION_ENDING,- BUSY);

PRT_STATUS_TYPE = SET OF STATUS TYPE; (®u&w)

DIRECTION_TYPE = (INCOMING, OUTGOING);

SECURITY_TYPE = (SECRET, PUBLIC);

FILE_FORMAT_TYPE = (CR_DELIM, NI_DELIM);

PACKET_TYPE = RECORD -

PRIORITY: PRIGRITI_TYPE')

SESSION_CMD: SESSION_COMMANDS;
STATUS: PKT_STATUS TYPE;
SECURITY: SECURITY_TYPE;
FILE_FORMAT: FILE_FORMAT TYPE;
DIRECTION: DIRECTIDN_TIPE
TEXT: MESSAGE TYPE

END;

(® ®*Constants for packet status messages®) - (EE&R)
CONST ,
FIRST_ERROR = NO_LOCAL_SESSION;
LAST_ERROR = BUSY; .
ERROR_MSG = ('NO LOCAL SESSION
'NO REMOTE SESSION
'LOCAL IN SESSION
tREMOTE IN SESSION.
tBAD PASSWORD
tSESSION ENDING
*REMOTE SESSION BUSY

w e e = W =W =

L3
?
?
?
;

(%® LISTING 3 #*) (% 11 ®)

ARRAY [STATUS_TYPE] OF MESSAGE _TYPE;

(# ®%Constants for password check®#) (#&&#)
TYPE
HOST_ID TYPE = (HOST_S, HOST_W);
CONST
PASSWORD = ('HOST S PASSWORD '
HOST W PASSWORD *):
ARRAY [BOST_ID TYPE] OF MESSAGE TYPE;

(% &%#Constants for Mail box monitor#®)
CONST
MAX_MAIL = 6;
MAX_SENDERS = 2;

(# #%Constants for Resourcef®)
CONST
MAX_RESOURCE_USERS = 1;

(% ®%Constants for Session layer#)

CONST
MAX_SESSION_WAIT = 2;
MAX_CHAIN = T3

(* $Types and constants for Message_io_class#)
INCLUDE SVC1PFX

(® ®Class to provide fixed record I/0%)
INCLUDE MSGIO

(% #Modified Brinch Hansen FIFO®)
IN FIFO

(® #Standard Brinch Hansen Resource®)
INCLUDE RESOURCE

(* ®Prioritized communication mailbox®) (®#=s)
INCLUDE MAILBOX3

(# #Standard entries to the network®) (%###)
INCLUDE NETIO

(®* %Class for reporting network errors®) (E&ss)
INCLUDE ERROR

(® #Undefined layers of the network®)
INCLUDE BLACKBOX

(# #Presentation layer record delimiter conversion®)
INCLUDE CR2NL

(® *Presentation layer data encryption®)
INCLUDE CRIpIV

{¥® LISTING 3 &) (® 42 %)

(® ®*Process to simulate Presentation layer#®#)
INCLUDE PRESENT

(®* ®Process to simulate Session layer#) (#E#%)
INCLUDE SESSION

(# ®orker application process®) (#¥&8)
INCLUDE WORKER3

(® #Server application process®) (#&#)
INCLUDE SERVER3

TYPE
NODE_W = RECORD
APP: WORKER_PROCESS;
APP_EVT: MAIL_BOX MONITOR;
PRES: PRESENT_PROCESS;
PRES_EVT: MAIL_BOX_MONITOR;
SESS: SESSION_PROCESS;
SESS_EVT: MAIL_BOX MONITOR;
BLACKBOX: BLACKBOX_PROCESS;
BB_EVT: MAIL_BOX_MONITOR
END;

HODE_S = RECORD
APP: SERVER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
PRES: PRESENT_PROCESS;
PRES_EVT: MAIL_BOX_MONITOR;
SESS: SESSION_PROCESS;
SESS_EVT: MAIL_BOX_MONITOR;
BLACKBOX: BLACKBOX_PROCESS;
_BB_EVT: MAIL_BOX_MONITOR

END;

VAR
CONSOLE: RESOURCE_MONITOR;
SERVER: NODE_S;
WORKER: NODE_W;

BEGIN
INIT

CONSOLE,
SERVER.BB_EVT, WORKER.BB EVT,
SERVER, SESS_EVT, WORKER.SESS_EVT,
SERVER. PRES_EVT, WORKER.PRES_EVT,
SERVER. APP_EVT, WORKER.APP_EVT, ,
SERVER. BLACKBOX(SERVER. SESS_EVT, SERVER.BB EVT,
WORKER.BB_EVT),
WORKER. BLACKBOX (WORKER. SESS_EVT, WORKER.BB_EVT,
SERVER.BB_EVT),
SERVER. SESS(SERVER, PRES_EVT, SERVER.SESS EVT,
SERVER.BB_EVT, HOST_S),

(%® LISTING 3 %)

(% 43)

END.

WORKER, SESS(WORKER. PRES_EVT, WORKER.SESS EVT,
WORKER.BE_EVT, HOST_W),

SERVER. PRES(SERVER, APP_EVT, SERVER, PRES_EVT,
SERVER.SESS_EVT, CR_DELIM),

WORKER, PRES{WORKER, APP_EVT, WORKER. PRES_EVT,
WORKER. SESS_EVT, CR_DELIM),

SERVER. APP(CONSOLE, SERVER.APP_EVT,

SERVER. PRES_EVT),

WORKER. APP(CONSOLE, WORKER.APP_EVT,

WORKER, PRES_EVT)

(®#® LISTING 3 ¥¥)

(® 43 #)

2.4: NET4

The transport layer is potentialy the most complex protocol of
the model. It is the bridge between the services offered to the
user and what the network actualy offers. It insulates the upper
layers from changes in the network. It provides the upper layers
with a transparent connection to the network no matter to what
kind of network the host is connected.

If the host is connected to a perfect network that guarantees
correct delivery of the messages, then the transport layer is
primarily concerned with the efficient use of the netu&k. if,
however, the network occasionally loses or scrambles a message,
the Transport layer must also provide an end-to-end error
correcting protocol to ensure that all messages sent were
correctly received at the proper destination.

The ISC Model [3] defines the role of the Transport layer as
follows:

1) Mapping transport address onto network address

2) End-to-end multiplexing of transport connections onto

. netwerk connections

3) Establishing and terminating transport connections

4) Controling the end-to-end sequencing of individual

connections

5) Detecting end-to-end errors, and monitoring the quality of

the service

6) Recovering from end-to-end errors

-ii5-

7) End=-to-end segmenting and blocking of messages
8) Controling the end-to-end flow on individual connections
9) Providing supervisory functions.

10) Transfering expedited transport-service-data-units

One way that the Transport layer assures efficient use of the
network is by multiplexing several sessions onto a single network
connection. The average transmission rate during an interactive
session is usually less than 20 bits per second for both
directions of transmission combined [1]. This grossly
underutilizes even a voice grade transmission 1line. Yet low
bandwidth lines cannot be used because of the potential need for
delivering large quantities of data quiclkly. An economical
solution to the underutilization of transmission 1lines is to
allow several sessions on one host to use the same high speed
transmission facility. The transport protocol rotates between
the sessions, sending messages in successive high speed bursts.

The Transport layer must also be sure that its peer has enough
buffer space to receive. all of the messages it is being sent.
One solution to the buffer allocation problem is to send only an
agreed-upon quantity of data, then wait for the destination to
send a request for more. This solution can be expanded to the
general principle of using tokens to indicate the buffer space
available at the destination. The sender decrements its number
of tokens for each message sent, and the destination replenishes
them as its buffers become available. 4 continuous two-way

dialogue can be supported in this way, with messages going in one

16

direction and tokems simultaneously returning in the other.

A two-way dialogue is also necessary to provide the sessions
with an error-free data transfer over an imperfect network. The
sender does not assume that the messages reached their
destination in good condition unles it receives an acknowlegment,
and keeps a copy of all outstanding messages in case they must be
re-transmitted. If an acknowlegment is not received in a
reasonable period of time, the Transport layer sends the lost
message again., This protocol is complicated by the fact that an
acknowlegment may itself be 1lost in transmission, and bgcause
messages/acknowlegments may actually only be delayed rather than
lost;

Finally, the Transport 1layer provides connection management
for the sessions on the host. It allows a transport user to be
identified by a transport address without regard to its location
in the network. It controls the connections to the network. And
it allows either session-entity to terminate the connection and
have its peer session-entity informed of the termination, -

NETY4 (see listing 4) is the final program of STERLING. Three
new nodes have been added to the network, and a Transport layer
has been added to the Worker and Server nodes. The Blackbox has
been slightly modified and is now assumed to be a Local Area
Network. The Worker now has two Servers from which it can
request files. One Server oversees files A and B; the qther
oversees files C and D. A new node is added to the network to
simulate transmission loss; this new node fails to forward

packets at pre-set intervals, Also, a new process and monitor

-47-

have been added to the worker and server nodes to detect lost
messages and notify the Transport layer when it should
re-transmit a lost packet.

The Transport layer was patterned very loosely on the National
Bureau of Standards' Draft Report on Transport Protocols [8]. It
uses a simple =alternating-bit protocel to insure that all
. messages sent were received in -‘the correct order. Its primary
concerns are with connection management and end-to-end error

correction.

=48~

APPLICATION

PRESENTATION

TRANSPORT

EEIDL:

NETHWORK

NET4 ACCESS DIAGRAM

Figure 12

-49-

NET4 TOPOLOGY

Figure 13

NET4 CONNECTION PROTOCOL

WORKER SERVER
] n !)
i T i
12 1t i1 17
J, ! gl !
v v]
SESS10ON SESSION
|)) T
T T
i3 110 16 18
b Lo,
¥ ! I v
Bttt S — >
TRRNSPORT (€-=-ms—e—-—c—-—- g TRANSPORT
o e e e e e g ------------
1) LISTEN
2) ESTABLISH
3) REQUEST - CONNECT
4) REQUEST - INGUIRE
5 RCCEPT
&) REQUEST
7) START
8) START - DATA_XFER
9) START - DATA_XFER
10) START
11> START

Figure 14 =B1=

DRATA_XFER

CONNECTING

CONNECT

TRANSPORT LAYER

FINITE STATE AUTOMATON

Figure 15

(#C~pascal Prefix®)
INCLUDE NETPFX

(FE R R R R RN R E RN R RN R R R RO R RN R R RN EREEREREREERGER R RN ORES
|

.
PROGRAM NETY 1
® Application, Presentation, Session, Transport, &
and Network layers. b

=s s [EEER] [RN
te s P Ssseeea o.'o.o.'..ll..olll #S5ssassesBReESD I EEEE R R E R]

Programer- Ronald C. Albury L
® Date Written: 10/11/82 #
& Computer: Interdata 8/32 &
&
)

® Copyright 1982 by Ronald C. Albury
SRR R RN R R R RN RN R RN R NN RS EE R R AR R AN RN

(*NOTE: modifications to previous program are indicated &)
(® by (#ses) %)

{® ®%Packet description®)
TYPE
TRANSPORT_COMMANDS = (CONNECT, DISCONNECT, INQUIRE, (®#&%)
T_O _ACCEPT, T_O DATA _ACK, ACCEPT, DATA_XFER, DATA_ACK);
DATA WINDOW TYPE = Q..1; (#%e#)
HOST _ID_TYPE = (HOST_W, HOST_S 1, HOST_ S 2); (®ses)
PRIORITY_TYPE = (LOW_PRI, MED PRI, HIGH PRI);
SESSION_COMMANDS = (LISTEN, ESTABLISH, REQUEST,
START, IMMEDIATE, CHAIN, END_CHAIN, ABORT CHAIN,
. BRBAK);
CHAIN_TYPE = mmnnm..mn:r_cmm,
STATUS_TYPE = (NO_LOCAL_SESSION,
NO_REMOTE_SESSION, LOCAL IN_SESSION, REMOTE_IN_SESSION,
BAD_PASSWORD, SESSION_ENDING, BUSY, NO_LOCAL_CONNECTION,
NO_REMOTE_CONNECTION, NO_SUCH_HOST, DESTINATION_NODE_DOWN,
CONNECTION_BROKEN); (eEes)
PKT_STATUS_TYPE = SET OF STATUS_TYPE:
DIRECTION_TYPE = (INCOMING, OUTGOING);
SECURITY_TYPE = (SECRET, PUBLIC);
FILE_FORMAT_TYPE = (CR_DELIM, NL_DELIM);
PACKET_TYPE = RECORD
TRANS_CMD: TRANSPORT_COMMANDS;
NAME: MESSAGE_TYPE;
DESTINATION: BOST_ID_TYPE;
SOURCE: HOST_ID_TYPE;
S _CONNUM: INTEGER;
; INTEGER;
DATA_SEQ: DATA WINDOW_TYPE;
: PRIORITY_TYPE;
SESSION_CMD: SESSION_COMMANDS;
STATUS: PKT_STATUS TYPE;
SECURITY: SECURITY_TYPE;
FILE_FORMAT: FILE_FORMAT TYPE;
DIRECTION: DIRECTION_TYPE;

(% LISTING 4 ®) (# 53 &)

(&

(&

(#

(®

(%

(®

(&

TEXT: MESSAGE_TYPE
END;

##Constants for packet status messages®)
CONST
FIRST_ERROR = NO _LOCAL_SESSION;
LAST_ERROR = CONNECTION_BROKEN;
ERROR_MSG = ('NO LOCAL SESSION '
'NO REMOTE SESSION t
TLOCAL IK SESSION '
'REMOTE IN SESSION '
'*BAD PASSWORD '
'SESSION ENDING !
'REMOTE SESSION BUSY !
*NO LOCAL CONRECTION *
*NO REMOTE CONNECTION',
YNO SUCH SERVER L
'DEST, NODE OFF LINE ',
'CONNECTION BROKEN '):
ARRAY [STATUS TYPE] OF MESSAGE_TYPE;

?
?
L
¥
?
L4
L
L

(mEER)

8%#Constants for password check¥)
CONST
PASSWORD = ('HOST W PASSWORD ',
'HOST S 1 PASSWORD ', (E#Es)
THOST S 2 PASSWORD '):
ARRAY [HOST_ID TYPE] OF MESSAGE_TYPE;

#sConstants for transport address look-up#¥)
CONST (#euw)
DIRECTORY = ("HOST_W v,
*HOST_S_1 LI
tHOST_S 2 *):

ARRAY [HOST_ID TYPE] OF MESSAGE_TYPE;

#%#Constants for Mail_ box monitor®)
CONST

MAX_MAIL = 63

MAX_SENDERS = 3; (%#®%)

®®Constants for Resource®)
CONST
MAX_RESOURCE_USERS = 1;

#2Constants for Session layer®)
CONST
MAX_SESSION_WAIT = 2;
MAX_CHAIN = T;

#Types and constants for Message_io_class¥)

INCLUDE SVC1PFX

(%

#Class to provide fixed record I/O%)

(®# LISTING 4 %)

(% 54 %)

INCLUDE MSGIO

(® ®Modified Brinch Hansen FIFQO#)
INCLUDE FIFO

(* ®Standard Brinch Hansen RESCURCE®)
INCLUDE RESOURCE

(* ®*Prioritized communication mailbox®)
INCLUDE MAILBOX3

(*# ®Revised network entries*) (neuw)
INCLUDE NETIO4

(*® #Class for reporting network errors®)
INCLUDE ERROR

(® ®#Process to simulate a local area network®) (EE&#)
INCLUDE LOCNETY

(® ¥preserntation layer record delimiter conversion¥®)
INCLUDE CR2NL

(® ®Presentation layer data encryption®*)
INCLUDE CRIPTV

(* ®Process to simulate Presentation layer#®)
INCLUDE PRESENT '

(*# #Process to simulate Session layer®) (%Es%)
INCLUDE SESSIONY

(* *Monitor for controlling time-outs®) (#&ss)
INCLUDE CLOCK

(% #Time-out simulator®) (®&ss)
INCLUDE TIMER

(¥ ®Process to simulate Transport layer®) (¥&###)
INCLUDE TRANS

(% ¥Process to simulate data loss in the network®) (E&EE)
INCLUDE BADNODE

(¥ ®Jorker application process#) (#¥E#)
INCLUDE WOREKERY

(% %Server application process®) (¥EE#)
INCLUDE SERVER4

(¥ LISTING 4 ®) (® 55 &)

TYPFE
NODE_W = RECORD
APP: WORKER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
PRES: PRESENT_PROCESS;
PRES_EVT: MAIL_BOX_MONITOR;
SESS: SESSION_PROCESS;
SESS_EVT: MAIL_BOX _MONITOR;
TRANS: TRANSPORT_PROCESS;
TRANS EVT: MAIL_BOX _MONITOR;
CLOCK: CLOCK_MONITOR;
TIMER: TIMEOUT_PROCESS;
NET: NETWORE_PROCESS:
NET_EVT: MAIL_BOX_MONITOR
END;

NODE_S = RECORD
APP: SERVER_PROCESS;
APP_EVT: MAIL_BOX_MONITOR;
PRES: PRESENT_PROCESS;
PRES_EVT: MAIL_BOX_MONITOR;
SESS: SESSION_PROCESS;
SESS_EVT: MATL_BOX_MONITOR;
TRANS: TRANSPORT_PROCESS;
TRANS_EVT: MAIL_BOX MONITOR;
CLOCK: CLOCK_MONITOR;
TIMER: TIMEOUT_PROCESS;
NET: NETWORK_PROCESS;
NET_EVT: MAIL_BOX_MONITOR

END;

NODE_GLITCH = RECORD (%#%&%)
NET: BAD_NODE_PROCESS;
NET_EVT: MAIL_BOX_MONITOR
END;

VAR
CONSOLE: RESOURCE_MONITOR;
SERVER1: NODE_S; (%&&&)
SERVER2: NODE_S; (%&ss)
WORKER: NODE_W;
GLITCH: NODE_GLITCH; (®&&%)

BEGIN
INIT

CONSOLE,
SERVER1.NET_EVT, SERVER2.NET_EVT,
WORKER, NET_EVT, GLITCH.NET_EVT,
SERVER1. TRANS_EVT, SERVER2.TRANS_EVT,
WORKER, TRANS_EVT,
SERVER1.CLOCK, SERVER2.CLOCK,
WORKER. CL OCK,
SERVER1,SESS_EVT, SERVER2.SESS _EVT,

(% LISTING 4 ®) (% 56 ®)

WORKER. SESS_EVT,
SERVER1.PRES_EVT, SERVER2,PRES EVT,
WORKER, PRES_EVT,
SERVER1.APP_EVT, SERVER2,APP_EVT,
WORKER. APP_EVT,
GLITCH.NET (GLITCH.NET_EVT, SERVER1.NET_EVT),
SERVER1.NET(SERVER1,.TRANS EVT, SERVER1.NET_EVT,
SERVER2,NET _EVT, HOST_S_ 1),
SERVER2 .NET(SERVER2 . TRANS_EVT, SERVER2.NET_EVT,
WORKER.NET_EVT, HOST_S 2),
WORKER. NET(WORKER. TRANS_EVT, WORKER.NET_EVT,
GLITCH.NET_EVT, HOST W),
SERVER1.TIMER (SERVER1.CLOCK, SERVER1.TRANS EVT),
SERVER2.TIMER (SERVER2,.CLOCK, SERVER2,.TRANS EVT),
WORKER. TIMER (WORKER,CLOCK, WORKER.TRANS EVT),
SERVER1. TRANS (SERVER1.SESS_EVT, SERVER1.TRANS_EVT,
SERVER1.NET_EVT, SERVER1.CLOCK, HOST S 1),
SERVER2. TRANS (SERVER2,SESS _EVT, SERVER2.TRANS EVT,
SERVER2 .NET_EVT, SERVER2.CLOCK, HOST S 2),
WORKER, TRANS (WORKER.SESS_EVT, WORKER.TRANS_EVT,
WORKER. NET_EVT, WORKER.CLOCK, HOST_W),
SERVER1.SESS(SERVER1. PRES_EVT, SERVER1.SESS_EVT,
SERVER1.TRANS EVT, HOST_S 1),
SERVER2.SESS(SERVER2, PRES_EVT, SERVER2.SESS_EVT,
SERVER2.TRANS_EVT, HOST_S 2),
WORKER. SESS(WORKER. PRES_EVT, WORKER,.SESS_EVT,
WORKER. TRANS_EVT, HOST_W),
SERVER1. PRES(SERVER1.APP_EVT,SERVER1. PRES_EVT,
SERVER1.SESS_EVT, CR_DELIM),
SERVER2. PRES(SERVER2.APP_EVT, SERVER2.PRES_EVT,
SERVER2,SESS_EVT, NL_DELIM),
WORKER. PRES(WORKER. APP_EVT,WORKER, PRES_EVT,
WORKER. SESS_EVT, CR_DELIM),
SERVER1. APP(CONSOLE, SERVER1.APP_EVT,
SERVER?.PRES_EVT, ‘'A%, 'B'),
SERVER2. APP(CONSOLE, SERVER2.APP_EVT,
SERVER2.PRES_EVT, 'C', 'D'),
WORKER. APP(CONSOLE, WORKER,APP_EVT,
WORKER. PRES_EVT)

m.

(® LISTING 4 #) (N BF %j

FURTHER WORK

Sterling is indended as a source of assigmments for a course
in computer networks. It is designed to be easily understood and
easily modified., Once the students have familiarized themselves
with the programming style and the functions of the four layers
introduced, they can be expected to make major revisions to the
programs.

One type of assigmment would be to add the bottom layers of
the ISO Model to Sterling (see figure 3). The Physical Layer
could either be left as a Blackbox, or modified to more closely
resemble a bit-oriented data stream. Pascal-like algorithms for
several Data Link protocols can be found in Tanenbaum's book
[15]. The Network Layer could either be left as a simple ring
network, or expanded to a point-to-point network concerned with
routing and congestion control.

A second type of assigmment would be to expand and modify the
services provided by the existing layers. The layers' functions
listed in this report are only a small subset of possible
functions, and only a small subset of these are implemented.
Students could also multi-thread the 1layers, allowing more than
one application program to reside on a node.

A third type of assigmment would be to attempt to make
Sterling more flexible and robust. The Session and Transport
protocols are currently unable to recover gracefully from
erronecus commands and would be wunusable in a production

envirommnet. Students could be refered to the National Bureau of

-58-

Standards! Draft Report on Transport Protocols [8] as an example
of a "real-world" protocol and instructed to modify Sterling to

withstand minor errors.

1.

2.

3.

.

5.

6.

Te

8.

9.

10.

1.

12.

13.

14.

15.

REFERENCES

Martin, J. "Computer Networks and Distributed Processing".
Prentice-Hill, Englewood Cliffs, N.J., 1981.

Zimmerman, H. "OSI Reference Model - The ISO Model of
Architecture for Open Systems Interconnection", IEEE
Transactions on Communications, Vol. COM-28, No. 4, April
1980.

IS0/TC97/S8C16 "Open System Interconnection - Basic Reference
Model, (IS0 Draft Proposal T498)". ACM Computer
Communication Review, Vol. 11, No. 2, April 1981.

Brinch Hansen, P. "Network: A Multiprocessor Program", IEEE
Computer Software and Applications Conference. Chicago,
Illinois, November 1977.

Brinch Hansen, p. "The Architecture of Concurrent
Programs®. Prentice-Hall, Englewood Cliffs, N.J., 1977

Flynn et al. "Operating Systems, An Extended Course”.
Springer-Verlag, New York, N.Y., 1978.

Brinch Hansen, P. "Operating System Principles™,
Prentice-Hall, Englewood Cliffs, N.J., 1973.

National Bureau of Standards "Report No. ICST/HLNP-81-12°7,
September 1981.

Franta, W. "The Process View of Simulation". North-Holland,
New York, Hoxog 19??.

Robert Young, Personal communication.

CCITT Recomendations X.1, X.2, X.25, X.92 and X.96 "Public
Data Networks™, CCITT Orange Book, Vol. VIII.2. Geneva,
Switzerland: ITU, 1977.

Clark et al. "An Introduction to Local Area Networks", Proc.
IEEE, Vol. 66, November 1978.

Yerox Corporation "The Ethernet - A Local Area Network",
Version 1.0, September 1980.

Digital Corporation "Introduction to Local Area Networks",
Pub. No. FB-22714-18, 1982.

Tanenbaum, A. "Computer Networks", Prentice-Hall, Englewood
Ccliffs, N.J., 1981.

-60-

16. Hartman, A, na Concurrent Pasecal Compiler For
Minicomputers™, PhD Thesis, California Institute of
Technology, Pasadena, California, 1976.

-61=

Appendix A

INCLUDE MODULES

(%3 NETPFX $$¢%)
(®#$$$ C-Pascal Kernel for 8-32 $$3$%)

(SRR R R R R R R R A R R R R R R RN E R R R R R G R R R R RS
& #
* MODIFIED KSU CPASCAL PREFIX
* modified for STERLING

.
[]
.
.
.
.
.
.
.
.
(1]
e

P
* MODIFIED BY: RON ALBURY
® COMPUTER: P.E. 8/32
SREEETERRREEE NN R R E R EE RN EE R R E RN EERE SN EREEERERERERAEEERERE
KERNEL
TYPE KERN_SVC1_BLOCK = ARRAY [1..24] OF BYTE;
TYPE ATTRINDEX = (CALLER, HEAPTOP, PROGLINE, PROGRESULT,
RUNTIME);
FUNCTION ATTRIBUTE (A: ATTRINDEX): INTEGER;
PROCEDURE SETHEAP (A: INTEGER);
PROCEDURE START (A: INTEGER);
PROCEDURE STOP (A, B: INTEGER);
PROCEDURE WAIT;
FUNCTION REALTIME: INTEGER;
PROCEDURE SVC1 (VAR PARAM: UNIV KERN_SVC1_BLOCK);
PROCEDURE SVC2;
PROCEDURE SVCT;
PROCEDURE GETMEM;
PROCEDURE BREAKPNT (LN: INTEGER);
END (®KERNEL®);

®
'
]
¥
s
*
&
)

(®#66Added for network®)
(®*Disk file id's and logical units®)
CONST
TRACE_OUTPUT = 9;
TERMINAL = 10;

FILE A LU = 11;
FILE B LU = 12;
FILE_C_LU = 13;
FILE D LU = 14;

FIRST FILE_ID = 'A';
LAST_FILE ID = 'D';
TYPE
FILE_RANGE = FIRST_FILE ID .. LAST FILE ID;
CONST
FILE_LU = (11, 12, 13, 14): ARRAY [FILE_RANGE] OF INTEGER;

{®*Constants and types for fixed length I/0%)
CONST
MESSAGE_LERGTH = 20;
TYPE
MESSAGE_TYPE = ARRAY [1.. MESSAGE _LENGTH] OF CHAR;

(% A-1 ¥)

(#$$$ SVCIPFX $3$$%)
(%#4 Types and constants for Message_io_class $$$¥)

(®#666€svC1 PREFIX@e@eeéw)
(¥*Record structure of the SVC1 parameter#)

TYPE
ERROR_SVC1_TYPE = RECORD
DI: BYTE;
DD: BYTE
END;
SVC1_BLOCK_TYPE =
PACKED RECORD
FUNC : BYTE;
LOG_UNIT : BYIE;
D_I_ERROR : BYTE;
D_D_ERROR : BYTE;
BUFFER_START : INTEGER;
BUFFER_END : INTEGER;
RANDOM_ADRS : INTEGER;
LENGTH_XFER : INTEGER;
RESERVED : INTEGER
END;
(®Function flags for communicating with SVC1#)
CONST
FUN_READ_SVC1 = #40;
FUN_WRITE_SVC1 = #20;
FUN_BINARY_SVC1 = #10;
FUN_ASCII_SVC1 = #00;
FUN_WAIT_SVC1 = #08;
FUN_RANDOM_SVC1 = #04;
FUN_SEQUEN_SVC1 = #00;
FUN_PROCED_SVC1 = #02;
FUN_FORMAT_SVC1 = #00;
FUN_IMAGE_SVC1 = #01;
FUN_REWIND_SVC1 = #C0;
FUN_BKSPAC_SVC1 = #A0;
FUN_FSPAC_SVC1 = #90;
FUN_WRITE_FM_SVC1 = #88;
FUN_SKIP_TO_FM_SVC1 = #84;
FUN_BKSPAC_TO_FM_SVC1 = #82;

(#=%%END SVC1 PREFIX#E#%)

(% p-2 ®)

(#$$$ MSGIO $$¢*)
(*$$$ Class to provide fixed record I/0 $$$%)

TYPE MESSAGE_JO_CLASS= CLASS;
(F R RN SRR RN R R R E R RN RN R E NN R RN R R R RN RSN
& MESSAGE_JO_CLASS provides standard entry points for &
% interfacing with the SVC1 supervisory call. Allows
® fixed record I/0 and rewind capabilities to specified
& logical units.

Broevsvsssnassns ces
‘....-.l-...‘..-.

® Programmer: Ronald C. Albury
® Date Written: 3/25/82

Computer: Interdata 8/32
Copyright 1982 by Ronald
B::::02 fidpaansanmesasiaiy
& EXTERNAL

bod CONST

L FON =:=_SVC1: Bit flags used to communicate with
& the supervisory call,

& TYPE

& SVC1_BLOCK_TYPE: Record structure used to pass
& parameters to the supevisory I/0 calls.

b ERROR_SVC1_TYPE: Record structure of the status
& bytes from the supervisory call.
L

I

.

]

#

#

[]

L1
(1]
L1
e

!ESSAGE_T!PE- Array of characters

.
- e
R

PARAM: The parameter block for the supervisory

calls.
EREEECEEE RN R AR RN R RN RN AN R RN R R RN

VAR
PARAM: SVC1_BLOCE_TYPE;

S B W M W W o oW W W e R ok W ok W W W W W W

(®*SEPROCEDURE ENTRY READW#SRERscReasmnssassaEansnrsnsnunsaes

® TINTERNAL ¥
VAR , ®
PAD: Loop variable to pad the text buffer with &
blanks if less then Message_length bytes are ®
read in.]
: sedaid o
PARAMETERS .
&
I0O_DEVICE: Logical unit for the input request. &
ouT E
TEXT: Buffer to store the input characters. &
ERROR: The status bytes of the I/0 call. b
NN R R R R RN R RN RN E N RS E R ERE R EREE)
PROCEDURE ENTRY READ (IO_DEVICE: BYTE;
VAR TEXT: UNIV MESSAGE_TYPFE;
VAR ERROR: ERROR_SVC1_TYPE);

VAR
PAD: 0..MESSAGE_LENGTH;
(*Begin entry Read®)
BEGIN

(* A-3 %)

(#$$$ MSGIO $$4%)
(#$$$ Class to provide fixed record I/0 $$$%)

(#Set the SVC1 parameters for a sequential ASCII read¥®)
PARAM.FUNC := FUN_ASCII_SVC1 + FUN_SEQUEN_SVC1
+ FUN_READ_SVC1;

{#Set the logical unit to read from®)

PARAM.LOG_UNIT := IQO_DEVICE;

(%#Set the address to store the read data®)
PARAM.BUFFER_START := ADDRESS (TEXT):
PARAM.BUFFER_END := ADDRESS (TEXT) + SIZE(TEXT) -1;

(®Execute an SVC1#%)

SVC1 (PARAM);
(#Pad out the buffer with blanks#®)
FOR PAD := PARAM.LENGTH XFER TO MESSAGE_LENGTH DO
TEXT [PAD] 12 X b
{Endfor}
(*Set the status bytes#®)
ERROR.DI := PARAM.D _I_ERROR;
ERROR.DD := PARAM.D_D_ERROR
(*End entry Read®)

END;

(®®®PROCEDURE ENTRY WRITEFEES RS SEERuusEssureRuansssnnnasnsy
% INTERNAL ¥
[] VAR]
bd MESSAGE: A local variable, necessary to make bd
& ADDRESS function work correctly. &
Rogeaunessssusausssgppenmanmuneodissyssns samanvasreasssiisyell
PARAMETERS &
z IN . .
& IO_DEVICE: Logical unit for the output request. #
b TEXT: Buffer of characters to output. b
& oUT &
L ERROR: The status bytes of the I/0 call. ®
RN R R R RPN RN E RN RN R REREE)

PROCEDURE ENTRY WRITE (IO_DEVICE: BYTE;
TEXT: UNIV MESSAGE_TYPE;
VAR ERROR: ERROR_SVC1_TYPE);
VAR
MESSAGE; MESSAGE_TYPE;
{#¥Begin entry Write#)
BEGIN
(®Set the SVC1 parameters for a sequential ASCII write#)
PARAM,FUNC := FUN_ASCII_SVC1 + FUN_SEQUEN_SVC1
+ FUN_WRITE_SVC1;
(#Set the logical unit to write to#%)
PARAM.LOG_UNIT := IO_DEVICE;
(#Set the address of the data to be transfered®)
MESSAGE := TEXT; (®must be local variable for ADDRESS#)
PARAM.BUFFER_START := ADDRESS (MESSAGE);
PARAM.BUFFER_END := ADDRESS (MESSAGE) + SIZE(MESSAGE) -1;
(®Execute the SVC1¥)
SVC1 (PARAM);
(#Set the status bytes#)

(® A-4 ®)

(%$$$ MSGIO $84%)
(#$$$ Class to provide fixed record 1/0 $$$%)

ERROR.DD := PARAM.D_I_ ERROR;
. ERROR.DI := PARAM.D_D_ ERROR
(#End entry Write®)
END;

(##2PROCEDURE ENTRY REWINDSEZSSESstsssiissssesnstissssasnasss

PARAMETERS
IN

ouT
ERROR: The status bytes of the rewind call.

R R RN R R R R R R N C R R RN R R RN R RN R R RN R RN

PROCEDURE ENTRY REWIND (IO_DEVICE: BYTE;

VAR ERROR: ERROR_SVCI_TYFE);

#
&
IO _DEVICE: Logical unit for the rewind request. b
[
]
)

VAR
PARAM: SVC1_BLOCK_TYPE;
(*Begin entry Rewind#)
BEGIN
(#Set the SVC1 parameters for rewind#)
PARAM.FUNC := FUN_REWIND_SVC1;
(#Set the logical unit to be rewound®)
PARAM.LOG_URIT := IO_DEVICE;
(8Execute the SVC1¥)
SVC1 (PARAM);
(®#Set the status bytes®)
ERROR.DI := PARAM.D_I_ERROR;
ERROR.DD := PARAM,D_D ERROR
(®End entry Rewind®)
END;

BEGIN
END;

(% A-5 ¥)

(®$$$ FIFO $$¢%)
(#$$$ Modified Brinch Hansen FIFO $$$*)

TYPE FIFO = CLASS (LIMIT: INTEGER);
(B R R RN R R R R R R R N R R R R R RN R R RN R RO R

] &
& MODIFIED PBH FIFO CLASS s
] ®
Boiasissasonsesenyerises s tssosnesssessrererssisisaavaneo®
PRCERAHHEB- PER BRIBCH BANSEN &
MODIFIED BY: RONALD C. ALBURY ¥
& DATE WRITTEN:]
® COMPUTER: P.E. 8/32 ®
Bories 3 8 NNl § T 1IN IINSIIe TS 1 1 A E
¥ INTERNAL =
& VAR]
b HEAD: Position of the oldest entry in the queue, ¥
b TAIL: Position of the newest entry in the queue. #
b LENGTH: Length of the queue. 8
Wigessribivananiiais st isnassemenits saivsdittainian
PARAMETERS E
IN B
& LIMIT: Number of positions available in the queue ¥

R R R R R N R N R R R R R R NN R R R RN R RN R R R RN EERE)

VAR
HEAD, TAIL, LENGTH: INTEGER;

FUNCTION ENTRY ARRIVAL: INTEGER;
BEGIN
ARRIVAL := TAIL;
TAIL := TAIL MOD LIMIT + 1;
LENGTH := LENGTH + 1
END;

FUNCTION ENTRY DEPARTURE: INTEGER;
BEGIN
DEPARTURE := HEAD;
HEAD := HEAD MOD LIMIT + 1;
LENGTH := LENGTH - 1
END;

(#%%¥New function entry EXAMINE®®#)
FUNCTION ENTRY EXAMINE: INTEGER;
BEGIN
(%Set to FIFO head without changing the FIFO#)
EXAMINE := HEAD
END;

(®®%New function entry SIZE®#%)
FUNCTION ENTRY SIZE: INTEGER;

BEGIN
(#Set to the number of entries in the FIFO#)

SIZE := LENGTH
END;

(® A-6 ®)

(®$¢$ FIFO $$4%)
(#$$$ Modified Brinch Hansen FIFO $$$%)

FUNCTION ENTRY EMPTY: BOOLEAN;
BEGIN

EMPTY := (LENGTH = 0)
END;

(®#%8New function entry OCCUPIED®##%)
FUNCTION ENTRY OCCUPIED: BOOLEAN;
BEGIN
(#Set true if FIFO is occupied¥®)
OCCUPIED := (LENGTH <> 0)
END;

(%%%New function entry FULL##8)
FUNCTION ENTRY FULL: BOOLEAN;
BEGIN
(%#Set true if FIFO is full®¥)
FULL := (LENGTH = LIMIT)
END;

BEGIN (®FIFO INITIALIZATION®)

(* AT %)

(#$$$ RESOURCE $$$%)
(#$$¢$ Standard Brinch Hansen Resource $$$%)

(R R N RN N N R R R R R N R R R R RS S N R RN R R RN E RN ERN S A

2 &
% Standard BRINCH HANSEN RESOURCE &
[] &
CRE R RNy R A SRR RS S R R T
PROGRAMMER: PER BRINCH HANSEN &
& DATE WRITTEN: &
& COMPUTER: P.E. 8/32 #
L R R R R e RS TR]
EXTERNAL) *
& CONST &
& MAX_RESOURCE_USERS = Maximum number of processes ¥
& that will attempt to access the resource. &
& TYPE #
& FIFO = A P.B.H. CLASS for nanag:l.ng a FIFO buffer &
I L I R I I
& TNTERNAL L
] VAR &
b FREE: A boolean variable that indicates if the b
& resource is available. b
b Q: An array of Queue variables used as a fifo &
L buffer for delaying processes. &
& NEXT: An instance of a P.B.H. FIFO class &
SRR R R R R R RN RN RS E R R RN RN RN RN R RN RN ES)

TYPE RESOURCE_MONITOR = MONITOR;

VAR
FREE: BOOLEAN;
Q: ARRAY [1..MAX_RESOURCE_USERS] OF QUEUE;
NEXT: FIFO;

PROCEDURE ENTRY REQUEST;
BEGIN _
IF (FREE) THEN
FREE := FALSE
ELSE
(#@E@ECAUTIONEEER)
(®*6IF MAX_RESOURCE_USERS IS TOO SMALL WE
6LOOSE A PROCESS HERE OR GET A DELAY QUEUE ERROR®)
DELAY (Q [NEXT.ARRIVAL]);

{ENDIF}
END;
PROCEDURE ENTRY RELEASE;
BEGIN
IF (NEXT.EMPTY) THEN
FREE := TRUE
ELSE
CONTINUE (Q [NEXT.DEPARTURE])
{ENDIF}
END;

BEGIN (*®MAIN BODY OF MONITOR®)

(® 2-8 *)

- (®*$$$ RESOURCE $4$$%)
(®#$$$ Standard Brinch Hansen Resource $$$%¥)

FREE := TRUE;
INIT NEXT (MAX_RESOURCE_USERS)
END;

(® 4-9 *)

(#$$$ MAILBOX $54%)
(#$$$ Interprocess communication mailbox $$$%)

TYPE MAIL_BOX _MONITOR = MONITOR;

(SR R R R SRR R R RS E R R R E S C R R RN R RN RN R RN RS
& MAIL_BOX_MONITOR is simply a means for one process to #
& receive messages from up to MAX_ SENDER other processes. #
¥ It can store up to MAX MAIL messages in it's FIFO ®
% controlled MAIL_BUFFER. b
& TIf the receiver process attempts to pick up mail when &
& the buffer is empty. it is delayed until a sender process®
deposits mail. &
& If a sender process attempts to deposit mail when the ¥
® puffer is full, it is delayed until the receiver process #

ed B BN BN BN BN BE BE BE BE BE BN B BN B BN BN BN BN BE BN BN BN BN B BN O N

PROGRAMMER: RON ALBURY
® DATE WRITTEN: 3/25/82
LANGUAGE: CONCURRENT PASCAL (BRINCH HANSEN [K.S.U])
® COMPUTER: INTERDATA 8/32
& Copyright 1982 by Romld c

Al bur

oo g

& CONST
MAX_SENDERS = Maximum number of processes that
will send messages to the receiver.
MAX _MAIL = Maximum number of messages the monitor
can hold in it's buffer.
TYPE
FIFC = Modified Brinch Hansen FIFOQ class to
handle a FIFO buffer.
PACKET_'I'!PE g 'L’ne record structure of the mail.

RECEIVER: Queue variable to delay the receiver.
SENDER: Array of Queue variables used as a fifo
buffer for delaying senders.

DELAYED SENDERS: Fifo to control SENDER buffer.
MAIL_BUFFER: Array of packets used as a fifo
buffer for storing mail.

NEXT_MAIL: Fifo to control MAIIL_BUFFER.
RSN R R R RN R RN RN R RN R R R RN R R RN SRR R R R RN R R R R
VAR

DELAYED SENDERS, NEXT_MAIL: FIFO;

MAIL_BUFFER: ARRAY [1..MAX MAIL] OF PACKET _TYPE;
RECEIVER: QUEUE;

SENDER: ARRAY [1..MAX_SENDERS] OF QUEUE;

=
b o
2
B

(% A-10 ®)

(®$$$ MAILBOX $$3%)
(#$$$ Interprocess communication mailbox $$$%)

(**#PROCEDURE ENTRY GET#S# eSS Essssasunenerisssaunssnunsnssss

PARAMETERS b
ouT]
b OUTGOING_MAIL: Receives the oldest entry ¥
bd from the MAIL_BUFFER. bd

RS R R R RN RO R RN N R R RN RN C R RN NN NN ENEREREEEE)

PROCEDURE ENTRY GET (VAR OUTGOING_MAIL: PACKET_TYPE);
(*Begin entry GET®)
BEGIN
(#If [there is no mail in the FIF0 queue] thent)
IF (NEXT_MAIL.EMPTY) THEN
(%*Put the receiver to sleep¥®)
DELAY (RECEIVER);
(®Endif®)
(#Set outgoing mail to the oldest packet in the queue®)
OUTGOING_MAIL:= MAIL_BUFFER [NEXT_ MAIL.DEPARTURE];
(#*If [there are senders sleeping] then®)
IF (DELAYED_ SENDERS.OCCUPIED) THEN
(®*Wake up the oldest sleeper®)
CONTINUE (SENDER [DELAYED_SENDERS.DEPARTURE])

(®*Endif#) .
(*End entry GET®)
END;

(IlIPROCEDURE EHTRI DEPOSITI!!!.'!!!Il!lli'!illll!lllllIIIIII
& PARAMETERS *
& IN M
& INCOMING_MAIL: A packet being deposited into the ¥
& MAIL,_BUFFER by a sender process. &

R EE R R R R RN R N R RN RS RN R R R E R R R RN R RN RN EEERR)

PROCEDURE ENTRY DEPOSIT (INCOMING_MAIL: PACKET_TYPE);
(*Begin entry DEPOSITH®)
BEGIN
(#If [all known senders are delayed] then#)
IF (DELAYED_SENDERS.FULL) THEN
(##SHOULD NEVER HAPPEN UNLESS MAX_SENDER IS WRONG##)
(®#*YE LOOSE THE MAJIL ®###%)
(*Else®)
ELSE
BEGIN
(#I1f [mail queue is full] then#¥)
IF (NEXT_MAIL.FULL) THEN
(%Put the sender to sleep#)
DELAY (SENDER [DELAYED SENDERS,ARRIVAL]);
(¥Endif#)
(®Store the mail in a FIFO queue®)
MAIL_BUFFER [NEXT_MAIL.ARRIVAL] := INCOMING_MAIL;
(#If [the receiver is sleeping] wake him up#*)
CONTINUE (RECEIVER)
END
(®Endif#)
(¥End entry DEPOSITH)

(® A-11)

(®*$$$ MAILBOX $$$%)
(#$$$ Interprocess communication mailbox $$$%)

END;

BEGIN (®MONITOR INITIALIZATION®)
INIT
NEXT_MAIL (MAX_MAIL),
DELAYED_SENDERS (MAX_SENDERS)
END; (®MAIL_BOX_MONITOR®)

(% A=12 ®)

(*$$$ WORKERO $$$%)
(#$$$ Worker application process $$$%)

TYPE WORKER_PROCESS = PROCESS(CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX_MONITOR);

LTI T T e i e T e e e P T T T T e e r e ey 1
% The WORKER_PROCESS is an application layer process that &

& transfers remote files to the operator console. b
Beocsrrssssrssssisssssanensrsesaonasnnsesnssnnessasggssssh
® PROGRAMMER: RON ALBURY ®
¥ DATE WRITTEN: 6/28/82 bd
COMPUTER: INTERDATA 8/32 b
% Copyright 1982 by Ronald C. Albury ®
TR R e PR RS
& EXTERNAL b
F TYFE H
& MESSAGE_JIO_CLASS = A class that uses supervisory @®
® calls to handle fixed record I/0 to specified &
® logical units, &
& PACKET_TYPE = Record structure of the network #
L packets. ' &
b MESSAGE_TYPE = Arrey of characters. &
& ERROR_SVC1_TYPE = Record structure of the status ¥
bytes from the supervisory call. ; L
bd MAIL_BOX_MONITOR = A monitor used for passing bd
& packets between processes, bod
® RESOURCE_MONITOR = Allows only one process to &
b access a resource at a time. ¥
Syresmeses 2y s opppnetnnedesdy s idinsiasisiednasssiizinint®
®# INTERNAL T ®
* VAR #
b OP: Used to write lines of the transfered file &
L to the operator. &
L PACKET: A network packet this process uses to &
& communicate with the network. . &
€ TEXT: Array of characters used to communicate b
] the operator, o
3 OP_STATUS: Recieves the status bytes from the b
L MESSAGE_IO_CLASS. Not used here, but necessary &
s for the calls to 0P, &
L :::.:::::::::'::*
% PARAMETERS E
& CONSOLE: The RESOURCE_MONITOR used to reserve the "
§ console for exclusive I/0. .
E FROM_KET: The monitor used to recieve packets from #
& the network, ¥
& TO_NET: The monitor used to send packets to the net #
:ulnnt"nulu“cuuuunnnuu“lnnnunniun)

VAR
OP: MESSAGE_IO_CLASS;
PACKET: PACKET_TYPE;
TEXT: MESSAGE_TYPE;
OP_STATUS: ERROR_SVC1_TYPE;

(* A-13 8)

(®$$$ WORKERD $$3%)
(*$$$¢ Worker application process 35%)

(¥Begin Worker process®)
BEGIR
(#Initialize the interface to the operator®#)
INIT OP;
(¥Cycle forever#®)
CYCLE

(®Get the id for the file to be transfered®)
CONSOLE.REQUEST;
TEXT := 'ENTER FILE ID, -1
TEXT [18] := FIRST _FILE_ID;
TEXT [20] := LAST FILE_ID;
OP.WRITE (TERMINAL, TEXT, OP_STATUS);
OP.READ (TERMINAL, TEXT, OP_STATUS);
CONSOLE.RELEASE;

(*Send the request to the server#®)
PACKET, TEXT := TEXT;
TO_NET.DEPOSIT (PACKET);

(®*%Transfer the file to the console®)
CONSOLE. REQUEST;

(#Repeat until end of file®)
REPEAT .

(*Get a line from the network®)
FROM_NET.GET (PACKET);

(®*Output it to the console#)

OP.WRITE (TERMINAL, PACKET.TEXT, OP_STATUS);

(*End repeat®)
UNTIL (PACKET.TEXT [1] = /')
& (PACKET.TEXT [2] = '#');
CONSOLE,. RELEASE
(*End cycle#)
ERD
(*End Worker process#)
END; '

(% 214)

(%$$$ SERVER0 $$$%)
(#$$$ Server application process $$$%)

TYPE SERVER_PROCESS = PROCESS (FROM_NET: MAIL_BOX MONITOR;

TO_NET: MAIL_BOX _MONITOR);
LI T T e D At L e L T I T R T Rttt L
The server process is an application layer process that
does the disk I/0 for a remote worker process.

oo o0 0000000000080 00000ssTNRETTIBEtRERERERERESN
R R R R R R R R I AR R R)

PROGRAMMER: RON ALBURY
& DATE WRITTEN: 6/28/82

COMPUTER: INTERDATA 8/32
% Copyright 1982 by Ronald

I EE RN
I EEERERREREE]

TN
e e

.a m
-
e
(1]
e

TYPE
MESSAGE IO CLASS = A class that uses supervisory
calls to handle fixed record I/0 to specified

logical units,

PACEET_TYPE = Record structure of the network
packets.

MESSAGE_TYPE = Array of characters.
ERROR_SVC1_TYPE = Record structure of the status
bytes from the supervisory call.

MAIL_BOX MONITOR = A monitor used for passing
packets between processes.

ssse s an
seees s

(1]
L]
.
L1
L]
s
(1]

[EN]
IR RN

(1]
(1]
(1]
LT
as
L]
(L]
El]
e
1]

. sseessse
. sssesa

e
(1}
as
e
L1}
(1]
(1]
.8

INTERNAL
VAR

DISK: Used to input lines of a disk file.

PACKET: A network packet used to communicate with
the network.

TEXT: Array of characters used for the disk I/0.

FILE_ID: The id of the file the worker process is
requesting.

VALID_FILE_IDS: A set of the valid id's this
process can access.

FILE_LU: An array of logical units that are
subscripted with file id's. Used to look up the
logical unit of a file.

NEXT_LU: Used in initializing FILE_LU.

INDEX: Used in initializing FILE LU.

OP_STATUS: Recieves the status bytes form the

MESSAGE_IO_CLASS.
PARAMETERS
FROM_NET: The monitor used to recieve packets from &
the network. &

TO_NET: The monitor used to send packets to the net. #
RN RN R R R R R RN RN RN N E R RN F R R R G R R RN AR NEREE)
VAR

DISK: MESSAGE_TO_CLASS;

PACKET: PACKET_TYPE;

TEXT: MESSAGE_TYPE;

FILE ID: CHAR;

(% A-15)

(*$$$ SERVERO $$3%)
(¥$$$ Server application process $$$%)

VALID_FILE_IDS: SET OF CHAR;
FILE_LU: ARRAY [FILE_RANGE] OF BYTE;
NEXT_LU: BYIE;

INDEX: FILE_RANGE;

OP_STATUS: ERROR_SVC1_TYPE;

(®*Begin Server process®)
BEGIN
(®Initialize the interface to the disk files¥)
INIT DISK;
(##Set up an array to reference logical unit numbers#)
(*#pby the character id's of the files#®)
NEXT_LU := TERMINAL + 1;
(*For all file id's do*%)
FOR INDEX := FIRST_FILE _ID TO LAST_FILE_ID DO
BEGIN
(*Remember that it is a valid id#®)
VALID_FILE IDS := VALID_FILE IDS + [INDEX];
(%Set it's logical unit number®)
FILE_LU [INDEX] := NEXT LU;
NEXT_LU := NEXT_LU + 1
END;
(®Endfor#)
(¥*Cycle forever®)
CYICLE
(#Get the request from the net#)
FROM_NET,GET (PACKET);
FILE_ID := PACKET.TEXT [1];
(#If [it is 2 valid file id] then®)
IF (FILE_ID IN VALID_FILE IDS) TEEN
(*®Transfer the file#)
BEGIN
(*Read in a line from the disk¥)
DISK.READ (FILE_LU [FILE_ID], TEXT, OP_STATUS);
(*While not [end of file] do®)

WHILE (OP_STATUS.DI = 0) AND (OP_STATUS.DD = 0) DO

BEGIN

(#Send it out on the network#®)
PACKET,TEXT := TEXT;
TO_NET.DEPOSIT (PACKET);

(¥Read in a new line from the disk file®)

DISK.READ (FILE_LU [FILE_ID], TEXT, OP_STATUS)

END;
(®*Endwhile®)
(®Rewind the disk file®)

DISK.REWIND (FILE LU [FILE_ID], OP_STATUS);
(®*Send an EOF packet out on the network#®)
PACKET, TEXT := '/% L]

TO_NET.DEPOSIT (PACKET)
END
(#Else (an invalid file id)*)
ELSE

(® 2-16)

(®#$$$ SERVERO $$$%)

(®#$$$ Server application process $$$*%)

(%Send an error message®)
BEGIN
PACKET,TEXT := '/# BAD FILE ID -
PACKET.TEXT [19] := FILE_ID;
TQ_NET.DEPOSIT (PACKET)
END
(®*Endif#®)
(*End cycle®)
END
(#End Server#)
END;

(% A-17 ¥)

(#$$$ BLACKBOX $3$4%)
(#$$$ Undefined layers of the network $$$%)

TYPE BLACKBOX_PROCESS =
PROCESS (TO_APP: MAIL_BOX_MONITOR;
EVENT: MAIL_BOX_MONITOR;
NEXT_NODE: MAIL_BOX_MONITOR);
(SRR R SR RN R R R R R R R RN R R R R R R R RO RN R E SRR R EER NN
¥ The BLACKBOX layer represents the hardware and software #
% necessary for two processes to communiacte on a network

W MO W W R W o W e W R R e M R R R W R W R

[E R 3
s ee st Ed e lllloc.llol-..oll.-

PROGRAMMER: RON ALBURY
& DATE WRITTEN: 6/28/82

¥ COMPUTER: INTERDATA 8/32
& Copyright 1982 by Romald

Rosguoamangnansssgpasansas

EXTERNAL

bd TYPE

PACKET_TYPE = Record structure of the network
packets, |

MAIL._BOX_MONITOR = A monitor used for passing
packets between processes,

I E R RN
sSsesssesa

c.

[EE X RN]
s s esss

PACKET

A network packet that the layer processes

LI

.
(1]
e
.
(1]
(1]
s
L1
an
e

TO_APP: The monitor used to send packets up toward
the application layer,
EVENT: The monitor this layer uses to recieve
packets.
NEXT_NODE: The monitor used to send packets to
the next node in the network.
EEEE RN R R SRR R R RN NN E RN R R PR R SRR R E NS
VAR) .
PACKET: PACKET_TYPE;
BEGIN
(¥Cycle forever®)
CYCLE
(®Wait for a packet®)
EVENT.GET (PACKET);
(*If [an outgoing packet] then%¥)
IF (PACKET.DIRECTION = OUTGOING) THEN
BEGIN
(#*Set it as an incomming packet®)
PACKET.DIRECTION := INCOMING;
(®Pass it on to the next nodet)
NEXT_NODE.DEPOSIT (PACKET)
END
(®Else (an incomming packet)¥®)
ELSE.
(¥Pass it up to the. application layer®)
TO_APP.DEPOSIT (PACKET)
(¥Endif#)

(% A-18 ®)

(#$$$ BLACKBOX $$$%)
(¥$$$ Undefined layers of the network $$$%)

(*End cycle¥®)
END
(*End Blackbox*®)
END;

(% A=19 ¥)

(%$$$ WORKER1 $$$*®)
(#$$$ Net1 Worker application process $$$*)

TYPE WORKER_PROCESS = PROCESS(CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX_MONITOR);
(EE R SR R R R R R RN R RN R E R R RS R E R E RN E R RRR RN
®# The WORKER_PROCESS is an application layer process that #
transfers remote files to the operator console.

L R N N N N N N NN
* ISP SRS RREROESTREDRSRRERIERN

PROGRAMMER: RON ALBURY
DATE WRITTEN: 6/28/82
COMPUTER: INTERDATA 8/32

ek I BN B BN O BE BN B BE BN BN B BN BE BN NN BN O B BN OB OB NE B N BB BN RN RN AR N OB OB BN OB CEE NI

- s s s seseBEasSs
- ¢S ra S BOBR S

[R]
"o

Copyright 1982 by Ronald C. Albury
EXTERNAL
TYPE

MESSAGE_IQ _CLASS = A class that uses supervisory
calls to handle fixed record I/0 to specified
logical units.

PACKET_TYPE = Record structure of the network
packets.

MESSAGE_TYPE = Array of characters.

ERROR_SVC1_TYPE = Record structure of the status
bytes from the supervisory call.

MAIL_BOX_MONITOR = A monitor used for passing
packets between processes.

RESQURCE_MONITOR = Allows only one process to

access a resource at a time

L
[-5
.8 e

[T}
as
L]
.
(1}
(1]
(1]
L]
-
(1]
e
(1]

OP: Used to write lines of the transfered file
to the operator.
PACKET: A network packet this process uses to
communicate with the network,
TEXT: Array of characters used to communicate
the operator.
OP_STATUS: Recleves the status bytes from the
MESSAGE_IO_CLASS. Not used here, but necessary
for the calls to OP.

PARAMETERS

CONSOLE: The RESOURCE_MONITOR used to reserve the

console for exclusive I/0.

FROM_NET: The monitor used to recieve packets from

the network.

TO_NET: The monitor used to send packets to the net
SRR RN N R E R R R AR R E R EE RS RN RN R R R R R RN EE R R RN
VAR
OP: MESSAGE_IO_CLASS;

PACKET: PACKET _TYPE;
TEXT: MESSAGE_TYPE;
OP_STATUS: ERROR_SVC1_TYPE;

. [2R EE - -
. sssns e . s

. (B R E RN .o
L] LR e

ol W Wk W W R W e e R MR W e o M o sl e o ol e MR o ok R ol W W W o R W Wk R W W W

(* A-20 ®)

(®$$$ WORKER1 $$3%)
(®$$$ Net1 Worker application process $$$%)

{®Begin Worker processt)
BEGIN
(¥Initialize the interface to the operator®)
INIT OP;
(®Cycle forevert)
CYCLE

(®*Get the id for the file to be transfered®)

CONSOLE. REQUEST;

TEXT := 'ENTER FILE ID. -1

TEXT [18] := FIRST FILE_ID;

TEXT [20] := LAST_FILE ID;

OP.WRITE (TERMINAL, TEXT, OP_STATUS);
OP.READ (TERMINAL, TEXT, OP_STATUS);
CONSOLE. RELEASE;

(#Send the request to the server®)
PACKET.DIRECTION := OUTGOING; (E®%&)
PACKET,TEXT := TEXT;

TO_NET.DEPOSIT (PACKET);

(®*®Transfer the file to the console#)
CONSOLE. REQUEST;

(*Repeat until end of file#®)

REPEAT
(%Get a line from the network#)
FROM_NET.GET (PACKET);
(®#Output it to the console®)
OP.WRITE (TERMINAL, PACKET.TEXT, OP_STATUS);
(*End repeat®)
UNTIL (PACKET.TEXT [1] = /')
& (PACKET,.TEXT [2] = '#1);
CONSOLE. RELEASE
(*End cycle®)
END
(*End Worker process®)
END;

(* 2-21 #)

, (#$$$ SERVER1 $$$¢)
(*#$$$ Net1 Server application process $$$*)

TYPE SERVER_PROCESS = PROCESS (FROM_NET: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX_MONITOR);

(SRR SR RN R R R RN SRR REE RSN RO RN R ER NN

® The server process is an application layer process that ¥

¥ does the disk I/0 for a remote worker process.
#

"
$s33sisssssssssssssssssesssasssassanaasL: &
& PROGRAMMER: RON ALBURY "
* DATE WRITTEN: 6/28/82 "
COMPUTER: INTERDATA 8/32 ®
Copyright 1982 by Ronald C b

Al bury

Boosoesevsscscesns
aeaa .

.
ss e aN e .

& EXTERNAL
TYPE
MESSAGE_IO_CLASS = A class that uses supervisory
calls to handle fixed record 1/0 to specified
logical units.
PACKET_TYPE = Record structure of the network
packets.
MESSAGE_TYPE = Array of characters.
ERROR_SVC1_TYPE = Record structure of the status
bytes from the supervisory call.
MAIL_BOX_MONITOR = A monitor used for passing
packets between processes.

R N N O R N N N N N N N N I N N]
L A I R R A A A R]

(EEEER] .
sssne .

S~ W W W R MR W sk MR e R e M MR ok o o o R e W o R W o R W W e 3R Rk S W R

sE s e eSO
S8 s ess0ansne

DISK: Used to input lines of a disk file.

PACKET: A network packet used to communicate -with
the network.

TEXT: Array of characters used for the disk I/0.

FILE ID: The id of the file the worker process is
requesting.

VALID FILE IDS: A set of the valid id's this
process can access,

FILE LU: An array of logical units that are
subscripted with file id's, Used to look up the
logical unit of a file.

NEXT_LU: Used in initializing FILE LU.

INDEX: Used in initializing FILE_LU.

OP_STATUS: Recieves the status bytes form the
MESSAGE_IO_CLASS.

FROM_NET: The monitor used to recieve packets from
the network. ’

TO_NET: The monitor used to send packets to the net,
RN R R RN RN RN RN RN R R R RN R RN R R R RN
VAR

DISK: MESSAGE_IO_CLASS;

PACKET: PACKET_TYPE;

TEXT: MESSAGE _TYPE;

FILE ID: CHAR;

(* A-22)

(*$$$ SERVER1 $$3%)
(®#$$$ Net1 Server application process $$$¥%)

VALID _FILE IDS: SET OF CHAR;
FILE_LU: ARRAY [FILE _RANGE] OF BYTE;
NEXT_LU: BYTE;

INDEX: FILE_RANGE;

OP_STATUS: ERROR_SVC1_TYPE;

(¥Begin Server process#)
BEGIN
(#Initialize the interface to the disk files#®)
INIT DISK;
(#%Set up an array to reference logical unit numbers¥)
(%#%by the character id's of the files#)
NEXT_LU := TERMINAL + 1;
(®For all file id's dot%)
FOR INDEX := FIRST_FILE ID TO LAST_FILE ID DO
BEGIN
(*Remember that it is a valid id®)
VALID FILE_IDS := VALID FILE IDS + [INDEX];
(#Set it's logical unit number®)
FILE LU [INDEX] := NEXT_LU;
NEXT_LU := NEXT_LU + 1-
END;
(*Endfor#®)
(#*Cycle forever#)
CICLE
(%Get the request from the net#)
FROM_NET.GET (PACKET);
FILE_ID := PACKET.TEXT [1];
(®If [it is a valid file id] then®)
IF (FILE_ID IN VALID FILE_IDS) THEN
(®#®Transfer the file®)
BEGIN
(#*Read in a line from the disk¥)

DISK.READ (FILE_LU [FILE_ID], TEXT, OP_STATUS);
(*While not [end of file] do®%)

WHILE (OP_STATUS.DI = 0) AND (OP_STATUS.DD = 0) DO
BEGIN

(#Send it out on the network®)

PACKET.DIRECTION := OUTGOING; (®®#)
PACKET,.TEXT := TEXT;
TO_NET.DEPOSIT (PACKET);

(®*Read in a new line from the disk file#)
DISK.READ (FILE LU [FILE_ID], TEXT, OP_STATUS)
END;

(*Endwhile¥)
(*Rewind the disk file®)
DISK.REWIND (FILE_LU [FILE_ID], OP_STATUS);
(*Send an EOF packet out on the network®)
PACKET.DIRECTION := OUTGOING; (®#®&)

PACKET,TEXT := '/% ',
TO_NET.DEPOSIT (PACKET)
END

(% A-23 %)

(®#$$$ SERVER1 $$$%)
(#$$$ Net1 Server application process $$$%)

(%Else (an invalid file id)#)
ELSE
(#Send an error message®)
BEGIN
PACKET,DIRECTION := OUTGOING; (®E®#)
PACKET.TEXT := '/® BAD FILE ID - ';
PACKET. TEXT [19] := FILE_ID;
TO_NET.DEPOSIT (PACKET)
END
(®Endif#)
(®*End cycle®)
END
(*End Servert®)
END;

(® A-2Y4 %)

(#$$$ CR2NL $$¢*)
(#8 Presentation layer record delimiter conversion $$$¥)

TYPE CR_ML_CLASS = CLASS;
(.Illllllllliiiﬂlllll!l“llIII‘Iilillllll!li'lll!llill&!lllll

% CR_NL_CLASS substitutes ecarrage return and new line b
% characters in a message. ®
Bisvussssssssgnnuinspdisdsusssisssis s ynanyssssstssis®
% PROGRAMMER: RON ALBURY *
DATE WRITTEN: &/5/82 *
® Copyright 1982 by Ronald C. Albury ¥
Syreesmsezesstzasidesdetsdsissaas et danatiasstsodiisgnet
& EXTERNAL #
b CONST *
L MESSAGE_LENGTH = Number of characters in the bl
& packet text. &
& TYPE &
b MESSAGE_TYPE = ARRAY [1..MESSAGE_LENGTH] &
b OF CHAR b
Wevsrsssagrossonostot st ssesesssis s aitasidaassisny
& INTERNAL &
¥ CONST &
bl NL = ASCII representation of a "new line'. &
& CR = ASCII representation of a 'carrage return'. *®
R RN RS R R RN PR RN S RN E R R RN E)
CONST
CR = '(:13:)';
NL = "(:10:)";

(##%PROCEDURE ENTRY CHAHGElIIIIllIlllllllllll!illliilllillil!
® VARIABLES ¥
b INDEX: Used to increment through the message. &
b OLD_DELIM: The delimiter we wish to change. b
& NEW_DELIM: The delimiter to change to. &
Boprasasssassss sy ndssins s us st ey rnect
PARAMETERS b
] IN &
b HOST_FILE_FORMAT: The format the file needs to b
* be converted to.]
5 oUT »
b TEXT: The array of characters to be converted. b
RN RN R RN EE R R R RN R RN R R RN

PROCEDURE ENTRY CHANGE (VAR TEXT: MESSAGE _TYPE;
HOST_FORM: FILE FORMAT_TYPE);
VAR
INDEX: 1..MESSAGE_LENGTH;
OLD_DELIM, NEW_DELIM: CHAR;
(#Begin entry Change®)
BEGIN
(*¥Decide which characters need to be changed®)
IF (HOST_FORM = CR_DELIM) THEN
BEGIN
OLD_DELIM := NL;
NEW_DELIM :=
END

(* A-25 &)

(#$$$ CR2NL $$¢%)
(®$$$ Presentation layer record delimiter conversion $$$%)

ELSE
BEGIN
OLD_DELIM := CR;
NEW_DELIM := NL
END;

{ENDIF}

(®%Change all incorrect characterst®)
FOR INDEX := 1 TO MESSAGE_LENGTH DO
IF (TEXT [INDEX] = OLD_DELIM) THEN
TEXT [INDEX] := NEW_DELIM
{ENDIF}
{ENDFOR}
(*End entry Change#)
END;

BEGIN (®CLASS INITIALIZATION®)
END;

(® A-26 ¥)

(#$$$ CRIPTV ss}-)
(#$$$ Presentation layer data encryption $$$%)

TYPE CRIPI_CLASS = CLASS;
{#&% VIGENERE SUBSTITUTION CIPHER #&%#}
(SRR R R RN E RS N RSN R R R R RS R RN R NN RN R RN RN RN RN RN

CRIPT_CLASS uses cryptographic methods to provide

#
security in data transfer. .
Bynwriornpsaenesstsssasssssssasresssssss e nsnaenss sl
® PROGRAMMER: RON ALBURY bl
DATE WRITTEN: 4/2/82 &
% Copyright 1982 by Ronald C. Albury &
Besssssna eyl st aastaTTIc R IRt sz ”
® EXTERNAL
& CONST
MESSAGE_LENGTH = The length of the message array.
TYPE
HESSAGE_TYPE = Array of characters,
INTERNAL
CONST

FIRST_CHAR = The first character in the ASCII
character set (null).

- LAST_CHAR = The last character in the ASCII
character set.

TYPE

MSG_SYMBOLS = Subrange of acceptable symbols in
a message.

CRIPT_TABLE = A two dimensional array for all
acceptable symbols in a message.

VAR

ROW_ORD, COL_ORD: Integers used to calculate the
characters in the CRIPT_TABLEs during
initialization.

ROW_INDEX, COL_INDEX: MSG_SYMBOLS to increment
through the CRIPI_TABLEs at initialization.

ENCRPT, DECRPT: CRIPT_TABLES used to look up
character substitutions for encription and
decription.

SPAN: Used with a MOD function to 'fold' the
MSG_SYMBOLS around during initialization of the
CRIPT_TABLEs.

ORD_FIRST_CHAR, ORD_LAST CHAR: Used to set SPAN.

MSG_SYM _SET: Set of acceptable symbols in a

L mes .
BN E RN N RN R R R R R R R R NG RN RN TR R EF R RS
CONST

FIRST_CHAR = '(:0:)';

LAST_CHAR = '(:127:)";

TYPE

MSG_SYMBOLS = FIRST_CHAR..LAST_CHAR;
CRIPT_TABLE = ARRAY [MSG_SYMBOLS, MSG_SYMBOLS]
OF CHAR;

o o N ok W W W R W R ok N R o e e ok R e il R W R W R W
.
as
Bl W W Wk W R R ok W R ok W R R W R R R W ok W e R W R W

VAR
ROW_ORD, COL_ORD: INTEGER;

(* A-27 ¥)

(®#$$$ CRIPTV $$3¢*)
(®#$$$ Presentation layer data encryption $$$%)

ROW_INDEX, COL_INDEX: MSG_SYMBOLS;

ENCRPT, DECRPT: CRIPT _TABLE;
ORD_FIRST_CHAR, ORD_LAST_CHAR, SPAN: 0..128;
MSG_SYM_SET: SET OF MSG_SYMBOLS;

(###PROCEDURE ENTRY ENCODESS&S8Eanssesastisstasetssnsssensss

VARIABLES
MSG_INDEX: Index to increment through the message.
KEY_INDEX: Index to increment through the key.
PARAMETERS
IN
KEY: The array of characters used as the key for
encripting the message.
ouT
MESSAGE: The array of characters to be encripted. #
RS R R R R R R R NN R R RN RN E S RN R RN RN G RN EE)
PROCEDURE ENTRY ENCODE (VAR MESSAGE: MESSAGE_TYPE;
KEY: MESSAGE_TYPE);

VAR
MSG_INDEX: 1..MESSAGE_LENGTH;
KEY_INDEX: 1..MESSAGE_LENGTH;
(*Begin entry Encode¥)
BEGIN -
(*For all the characters in a message do®%)
FOR MSG_INDEX := 1 TO MESSAGE_LENGTH DO
BEGIN
(®*Calculate which letter in the key to.uset)
(#6In case the key isn't the same length as a message®)
KEY_INDEX := ((MSG_INDEX-1) MOD MESSAGE_LENGTH)
+ 13
(#1f [unable to translate this character] thent)
IF NOT (.HESSAGE [MSG_INDEX] IN MSG_SYM_SET) THEN
(®Arbitrarily encode it as Last_char#)
MESSAGE [MSG_INDEX] := LAST_CHAR
(%Else (a good character)®)
ELSE
(*Look up the new value in the Encript table#®)
MESSAGE [MSG_INDEX] :=
ENCRPT [KEY [KEY_INDEX], MESSAGE [MSG_INDEX]]
(®Endifr#)
END
(*¥Endfor#®)
(#*End entry Encode#®)
END;

(®###PROCEDURE ENTRY DECODE®##RSSSsstusssussansssnasenassnssss

& VARIABLES
b MSG_INDEX: Index to increment through the message.

bl KEY_INDEX: index to increment through the key.
% PARAMETERS

d IN

E]

KEY: The array of characters used as the key for

(® A-28 &)

(®8 CRIPTV $$$%)
(#$$$ Presentation layer data encryption $$$%)

L decripting the message. bl
L ouT - b
b MESSAGE: The array of characters to be decripted. *®

RN R R R R RN N RN R E R R R R R R RN R R R E RN RO EREERERERRRERER)

PROCEDURE ENTRY DECODE (VAR MESSAGE: MESSAGE TYPE;
KEY: MESSAGE_TYFE);
VAR
MSG_INDEX: 1..MESSAGE_LENGTH;
KEY_INDEX: 1..MESSAGE _LEHNGTH;
(#*Begin entry Decode#)
BEGIN
(®*For all the characters in a message do#)
FOR MSG_INDEX := 1 TO MESSAGE_LENGTH DO
BEGIN
(%#Calculate which letter in the key to use (in case®)
(®*the key isn't the same length as the message)®)
KEY_INDEX := ((MSG_INDEX-1) MOD MESSAGE_LENGTH)
+ 1;
(*If [unable to translate this character] then®)
IF NOT (MESSAGE [MSG_INDEX] IN MSG_SYM _SET) THEN
(®Arbitrarily-decode it as Last_char#®)
MESSAGE [MSG_INDEX] := LAST_CHAR
(®*Else (a good character)#)
ELSE
(*Look up the new value in the Decript table®)
MESSAGE [MSG_INDEX] :=
DECRPT [KEY [KEY_INDEX], MESSAGE [MSG_INDEX]]
(*Endif¥)
END
(#*Endfor®)
(*End entry Decode®)
END; .

(*€The method of initializing the Encript and Decript®)
(*6tables allows for maximum flexibility if¥#)
(*éyou decide to change the set of acceptable message symbols#)
(#6A section of the initialized encript table contains:¥)
(®e tryricreais®) .
(‘e .toABCDEFi-..)
(®e +++BCDEFG,. .. %)
('e D.-mﬂﬂll.)
('e --.QEFGHI_---')
(%6 rresspiesss:®) :
(*Begin Cript_class initialization®)
BEGIN :
MSG_SYM_SET := []; 3
ORD_FIRST_CHAR := ORD(FIRST_CHAR);
ORD_LAST_CHAR := ORD(LAST_CHAR);
SPAN := ORD_LAST CHAR - ORD_FIRST_CHAR + 1;
FOR ROW_INDEX := FIRST_CHAR TO LAST_CHAR DO
BEGIN
ROW_ORD := ORD(ROW_INDEX);

(% A-29 ®)

(¥$$$ CRIPTV $$$%)
(#$$$ Presentation layer data encryption $$$%)

MSG_SYM SET := MSG_SYM SET + [ROW_INDEX];
FOR COL_INDEX := FIRST CHAR TO LAST_CHAR DO
BEGIN
COL_ORD := ORD{COL_INDEX);
ENCRPT [COL_INDEX, ROW_INDEX] :=
CHR (((ROW_ORD+COL_ORD) MOD SPAN)
+ ORD_FIRST_CHAR);
DECRPT [COL_INDEX, ROW_INDEX] :=
CHR (((ROW_ORD+SPAN-COL_ORD) MOD SPAN)
+ ORD_FIRST CHAR);
END;
{ENDFOR EACH COLUMN}
END
{ENDFOR EACH ROW}
(#*End Cript_class initialization®#)
END;

(* A-30 ®)

(#$$$ PRESENT $$3%)
(#*$$$ Process to simulate the Presentation layer $$$%)

TYPE PRESENT_PROCESS = PROCESS (TO_APP: MAIL_BOX_MONITOR;
EVENT: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX_MONITOR;
HOST_FORM: FILE FORMAT_TYPE);
(RO RN R RN SRR N R R RN RN RN RN NN
The PRESENTATION layer handles such tasks as encription ¥
and file format modification, before the packets are &

packets.
TO_NET: The monitor used to send packets down to the ¥
network. b
HOST_FORM: The file format this host uses. &
IllI"lillllIIIEI.llllllllllllllllllllil!illl!!illllllllllll!)
VAR
CIPHER: CRIPT_CLASS;
FORMAT: CR_NL_CLASS;
PACKET: PACKET_TYPE;
KEY: MESSAGE_TYPE;

&

® presented to the application layer. bl
TN R e e R R R R R
PROGRAMMER: RON ALBURY &
® DATE WRITTEN: 6/29/82 ®
® Copyright 1982 by Ronald C. Albury &
Spasrssssspasesnpnsseners srssasnsssmssennnssses s snsinylh
EXTERNAL ®
[] TYPE [
& PACKET_TYPE: Record structure of the network &
L packets. #
® MAIL_BOX MONITOR: A monitor used for passing &
L packets between processes. ®
& FILE_FORMAT TYPE: If the file uses carriage return®
& or new line as a delimiter. b
& CRIPT_CLASS: A class which translates messages L
b into or out of a cipher. ®
& CR_NL_CLASS: A class which changes the format of #
& messages between carrage return and new line &
& delimiters. .
bl HESSAGE_T!PE: Array of characters. &
LES SR gaserseryraryss s srsossas et nresess sonns ey gyl
INTERNAL &
£ VAR .
] CIPHER: Handles encription for the layer. b
* FORMAT: Handles changing the format of messages ¥
L for the layer. &
& PACKET: A network packet that the layer processes,#®
b KEY: The cipher key used by CIPHM. &
Bernany serstassasssres st L asss sty
&% PARAMETERS . ®
d TO_APP: The monitor used to send packets to the b
& application layer. ®
EVENT: The monitor this layer uses to recieve &
H 2
®

=

[

(* 2=31 ®)

(#$$$ PRESENT $$4%)
(#$$$ Process to simulate the Presentation layer $$$%)

(¥*Begin Present_process¥)
BEGIN
(¥Initialize the encription and format routines#)
INIT CIPHER, FORMAT;
(#Set the encription key®)
KEY := 'TEMPORARY KEY &!1)$ ';
(%Cycle forever®)
CYCLE
{®*Wait for a packet®)
EVENT.GET (PACKET);
(#If [packet is heading out] thent#)
IF (PACKET.DIRECTION = OUTGOING) THEN
BEGIN
(®*If [the security level is secret] then#)
IF (PACKET.SECURITY = SECRET) THEN
(®*Encode the text¥)
CIPHER.ENCODE (PACKET,.TEXT,KEY);
(Endif®)
(*Identify the file format of the text®)
PACKET.FILE FORMAT := HOST_FORM;
(¥#Send the packet out on the network®)
TO_NET.DEPOSIT (PACKET)
END
(¥Else (packet on it's way to application)¥®)
ELSE
BEGIN
(#1f [the packet is encripted] then®)
IF (PACKET.SECURITY = SECRET) THEW
BEGIN
(®Decode it#)
CIPHER.DECODE (PACKET.TEXT,KEY);
PACKET, SECURITY := PUBLIC
END;
(®Endif#®)
(%¥If [wrong record delimiter] then#)
IF (PACKET.FILE FORMAT <> HOST_FORM) THEN
BEGIN
(¥*Modify the format to match the host#®)
FORMAT,CHANGE (PACKET.TEXT, HOST_FORM);
PACKET.FILE_FORMAT := HOST_FORM
END;
(®*Endif#)
(#Pass the packet up to the application layer®)
TO_APP.DEPOSIT (PACKET)
END
(®Endif#)
(*End cycle#)
END
(®*End Present_process#)
END;

(® A-32 ¥)

(#$$$ WORKER2 $$4%)
(®*$$$ Net2 Worker application process $$$%)

TYPE WORKER_PROCESS = PROCESS(CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX _MONITOR;
TO_NET: MAIL_BOX_MONITOR);

(B R RS R S R RS SRR R RN SN R R SRR RN RO RO

®# The WORKER_PROCESS is an application layer process that ®

®# transfers remote files to the operator console. b
Bsssressstyssrr s snssr sty
® PROGRAMMER: RON ALBURY &
& DATE WRITTEN: 6/28/82 bl
COMPUTER: INTERDATA 8/32 &
Copyright 1982 by Ronald C. Albury ¥
Besessnsssstersrsegtinssrssosrsorsnsrrssesnresssssnssesnsot®
& EXTERNAL bod
TYPE &
bl MESSAGE_IO_CLASS = A class that uses supervisory #
calls to handle fixed record I/0 to specified b
b logical units. _»
L PACKET_TYPE = Record structure of the network L
* packets. o
& MESSAGE_TYPE = Array of characters. &
& ERROR_SVC1_TYPE = Record structure of the status ¥
& bytes from the supervisory call. &
L MAII, BOX_MONITOR = A monitor used for passing &
b packets between processes, &
& RESOURCE_MONITOR = Allows only one process to b
® access a resource at a time. b
Bygsoogosssesasatesteassntnsangiissntiensssznnasrise®
& INTERNAL &
L VAR L
& CP: Used to write lines of the transfered file &
® to the operator. b
& PACKET: A network packet this process uses to b
¥ communicate with the network. ®
& TEXT: Array of characters used to communicate b
& the operator. ®
b OP_STATUS: Recieves the status bytes from the &
& MESSAGE_IO_CLASS. Not used here, but necessary #
b for the calls to OP. b
N Y i O
PARAMETERS b
® CONSOLE: The RESOURCE_MONITOR used to reserve the L
E console for exclusive 1I/0. *
& FROM_NET: The monitor used to recieve packets rm b
& the network. &
¥ TO_NET: The monitor used to send packets to the net &
RN R R R RN R RN R R RN RN RN RN R R RN

VAR
OP: MESSAGE_IO _CLASS;
PACKET: PACKET_TYPE;
TEXT: MESSAGE_TYPE;
OP_STATUS: ERROR_SVCI1_TYPE;

(®* 2-33 ®)

(*$$$ WORKER2 $8é%)
(®#$$$ Net2 Worker application process $$$%)

(¥Begin Worker process¥®)
BEGIN .
(®*Initialize the interface to the operator®)
INIT OP;
(®Cycle forever#®)
CYICLE

(#Cet the id for the file to be transfered#)

CONSOLE. REQUEST;

TEXT := 'ENTER FILE ID. - '

TEXT [18] := FIRST FILE_ID;

TEXT [20] := LAST FILE_ID;

OP.WRITE (TERMINAL, TEXT, OP_STATUS);
OP.READ (TERMINAL, TEXT, OP_STATUS);
CONSOLE.RELEASE;

(#Send the request to the server#)
PACKET.DIRECTION := OQUTGOING;
PACKET.SECURITY := PUBLIC; (®#es®)
PACKET,.TEXT := TEXT;

TO_NET.DEPOSIT (PACKET);

(®®%Transfer the file to the console#)
CONSOLE. REQUEST; -

(¥Repeat until end of file®)

REPEAT
(*Get a line from the network®)
FROM_NET.GET (PACKET);
(#Qutput it to the console#)
OP.WRITE (TERMINAL, PACKET.TEXT, OP_STATUS);
(*End repeat®)
UNTIL (PACEET.TEXT [1] = /')
& (PACKET.TEXT [2] = t¥#!);
CONSOLE. RELEASE
(*End cycle®)
END
(*End Worker process#)
END;

(® A-34 ®)

(®$$$ SERVER2 $$¢%)
(%$$$ Net2 Server application process $$$%)

TYPE SERVER_PROCESS = PROCESS (FROM_NET: MAIL_BOX MONITOR;
TO_NET: MAIL_BOX MONITOR);

UL L T L L e T e e e e e L
& The server process is an application layer process that *#

% does the disk I/0 for a remote worker process. b
Srsassssncsreseonssennssrssr sty osssssse sy
% PROGRAMMER: RON ALBURY &
DATE WRITTEN: 6/28/82 ®
COMPUTER: INTERDATA 8/32 8
& Copyright 1982 by Ronald C. Albury &
NI I s
& EXTERNAL L
& TYPE) *
& MESSAGE_IOQ CLASS = A class that uses supervisory *#%
& calls to handle fixed record I/0 to specified &
& logical units. &
& PACKET_TYPE = Record structure of the network &
® packets. &
& MESSAGE_TYPE = Array of characters. bd
& ERROR_SVC1_TYPE = Record structure of the status &
L bytes from the supervisory call. b
& MAIL BOX MONITOR = A monitor used for passing #
b packets between processes. b
I L R R s R s R
& TNTERNAL &
#* VAR []
& DISK: Used to input lines of a disk file, &
L PACKET: A network packet used to communicate with #
bod the network. i
b TEXT: Array of characters used for the disk I/0., %
& FILE_ID: The id of the file the worker process is ¥
& requesting. .
& VALID FILE IDS: A set of the valid id's this &
b process can access. ®
FILE_LU: An array of logical units that are ®
& subseripted with file id's. Used to look up the #
& logical unit of a file, *
& NEXT LU: Used in initializing FILE_LU. b
& INDEX: Used in initializing FILE LU. b
b OP_STATUS: Recieves the status bytes form the &
b MESSAGE_IO_CLASS. bad
@yzesssssanzossnssstsassassessassessnssssaasssazsasszassch
PARAMETERS .
& FROM_NET: The monitor used to recieve packets from ®
& the network. &
g &

TO_NET: The monitor used to send packets to the net.
R EEE AR RN IR R EE R R R R RN R AN RN R R EREER)
VAR

DISK: MESSAGE_IO_CLASS;

PACKET: PACKET _TYPE;

TEXT: MESSAGE_TYFE;

FILE ID: CHAR;

(® A=35 ®)

(®#$$$ SERVER2 $$¢%)
(¥4 Net2 Server application process $$$¥)

VALID FILE IDS: SET OF CHAR;
FILE_LU: ARRAY [FILE_RANGE] OF BYTE;
NEXT_LU: BYIE;

INDEX: FILE_RANGE;

OF_STATUS: ERROR_SVC1_TYPE;

(¥Begin Server processé#)
BEGIN
(®*Initialize the interface to the disk files#®)
INIT DISK;
(#%Set up an array to reference logical unit numbers#¥)
(%%¥by the character id's of the files®)
NEXT_LU := TERMINAL + 1;
(®*For all file id's do%)
FOR INDEX := FIRST_FILE ID TO LAST _FILE_ ID DO
BEGIN
(*Remember that it is a valid id¥®)
VALID FILE_IDS := VALID_FILE _IDS + [INDEX];
(®Set it's logical unit number#)
FILE LU [INDEX] := NEXT_LU;
NEXT_LU := NEXT_LU + 1
END;
(®*Endfor#®)
(*Cycle forever#)
CYCLE
(®*Get the request from the net®)
FROM_NET.GET (PACKET);
FILE_ID := PACKET.TEXT [1];
(#1f [it is a valid file id] thent®)
IF (FILE_ID IN VALID _FILE IDS) THEN
(¥2Transfer the file#®)
BEGIN
(®*Read in a line from the disk®)
DISK.READ (FILE LU [FILE ID], TEXT, OP_STATUS);
(*While not [end of file] do#%)
WHILE (OP_STATUS.DI = 0) AND (OP_STATUS.DD = 0) DO
BEGIN
(®Send it out on the network#)
PACKET,.DIRECTION := OUTGOING;
PACKET.SECURITY := SECRET; (®®&&)
PACKET,TEXT := TEXT;
TO_NET.DEPOSIT (PACKET);
(®*Read in a new line from the disk file®)
DISK.READ (FILE_LU [FILE ID], TEXT, OP_STATUS)
END;
(*Endwhile®)
(®Rewind the disk file¥®)
DISK.REWIND (FILE LU [FILE_ID], OP_STATUS);
(®*Send an EOF packet out on the network®)
PACKET.DIRECTION := OUTGOING;
PACEKET.SECURITY := SECRET; (®&®%)
PACEKET.TEXT := ‘'/% s

(® A-36 %)

(#$$$ SERVER2 $$¢%) _
(®#$$$ Net2 Server application process $$$¥)

TO_NET.DEPOSIT (PACKET)
END
(*Else (an invalid file id)#)
ELSE
(%#Send an error message®)
BEGIN
PACKET.DIRECTION := OUTGOING;
PACKET,SECURITY := PUBLIC; (®#&#)
PACKET.TEXT := '/%# BAD FILE ID - ';
PACKET, TEXT [19] := FILE_ID;
TO_NET.DEPOSIT (PACKET)
ERD
(®*Endif#¥)
(®End cycle®)
END
(*End Server#)
END;

(® A-37 ®)

(¥$$$ MAILBOX3 $5¢%)
(#$$$ Prioritized communication mailbox $$$%)

TYPE MAIL_BOX_MOKITOR = MONITOR;
(FER SRR R R R R RN F R R R R RN R SR R R AR N R R RN E SRR RN R
& MAIL_BOX _MONITOR is simply a means for one process to &
¢ receive prioritized messages from up to MAX_SENDER other #
f#processes.

It can store up to MAX _MAIL messages in each of it's
FIFO controlled MAIL_BUFFERs.

If the receiver process attempts to pick up mail when
the buffers are empty, it is delayed until a sender
process deposits mail.

If a sender process attempts to deposit mail when
that priority's buffer is full, it is delayed until the
receiver process picks up mail,

8 8 8 445 AFBEESSB RSSO EDESSSE RSN
S S USSP EBBEEESEBNSEESBNEEEEYE

® PROGRAMMER: RONALD C. ALBURY
& DATE WRITTEN: 3/25/82

& COMPUTER: INTERDATA 8/32

COPYRIGHT 1982 BY RONALD

.
(1]
(1Y
L]
(1]

-
s
LL]

CORST
MAX_SENDERS = Maximum number of processes that
will send messages to the receiver.
MAX MAIL = Maximum number of messages the monitor
can hold in one priority's buffer.
TYPE
FIFO = Modified Brinch Hansen FIFO class to
handle a FIFO buffer.
PACKET_TYPE = The record structure of the mail,
PRIORITY_TYPE = Enumerations of the various
priorities a packet can have

TERNAL
CONST - NONE
TYPE _ NOKE
VAR
RECEIVER: Queue variable to delay the receiver.
SENDER: Array of Queue variables used as a fifo
buffer for delaying senders.
DELAYED_SENDERS: Fifos to control SENDER buffers.
MAIL_BUFFER: Array of packets used as a
. fifo / priority buffer for storing mail.
NEXT_MAIL: Fifos to control MAIL_BUFFER,

INDEX: Used to initialize FIFO's.
RIS RN R R N R E R R SRR RN R EE NN N R R RN R NG E SRR G

[E LB EEEEEEE
BE eSS RS TSRS FS

Sr W e W M sk W M W W W MR R o N 3 o e e W R W R Rk W

=

DELAYED_SENDERS: ARRAY [PRIORITY_TYPE] OF FIFO;
NEXT_MAIL: ARRAY [PRIORITY_TYPE] OF FIFO;

MAIL_BUFFER: ARRAY [1..MAX MAIL, PRIORITY_TYFPE]

OF PACKET_TYPE;

RECEIVER: QUEUE;

SENDER: ARRAY [1..MAX_SENDERS, PRIORITY_TYPE] OF QUEUE;

(®* A-38)

(#$$$ MAILBOX3 $$$%)
(%#$$$ Prioritized communication mailbox $$$*)

INDEX: PRIORITY_TIPE;

(##SPROCEDURE ENTRY GETSSSSS3ssssasssassssssssnaseanusssnssss

& INTERNAL L
VAR
& NEXT: Used to simplify code. Receives the index ®
b of the next entry in the MAIL_BUFFER to go. .
\ ALL_EMPTY: Boolean variable to show if all b
¥ of the various priorities buffers' are empty. b
& PRI: Loop variable used to set ALL_EMPTY and &
& NEXT. bl
Speezsezyssssensstisistsioastos gty ynitasnitsnesiize
§ PARAMETERS ®
& oUT ¥
& OUTGOING _MAIL: Receives the oldest/highest &
* priority entry in the MAIL_BUFFER. &
RS RN E NN RN R R R R R RN RN EENE)

PROCEDURE ENTRY GET (VAR OUTGOING_MAIL: PACKET_TYPE);
VAR
NEXT: 1..MAX MAIL;
ALL_EMPTY: BOOLEAN;
PRI: PRIORITY_TYPE;
(*Begin entry GETH)
BEGIN
(#Check if we have mail®)
ALL_EMPTY := TRUE; (euEx)
FOR PRI := LOW_PRI TO HIGH PRI DO
ALL_EMPTY := ALL_EMPTY AND NEXT MAIL [PRI].EMPTY;
{Endfor}
(®If [there is no mail] then#)
IF (ALL_EMPTY) THEN
(®Put the receiver to sleept®)
DELAY (RECEIVER);
(®Endir®)
(¥Set outgoing mail to the oldest packet in the queue®)
(*with the highest priority®)
(*6éWe are guaranteed to have mail at this point.®)
PRI := HIGH_PRI; (neaw)
WHILE (NEXT_MAIL [PRI].EMPTY) DO
PRI := PRED (PRI);
{Endwhile}
NEXT := NEXT_MAIL [PRI].DEPARTURE;
OUTGOING_MAIL := MAIL_BUFFER [NEXT, PRI];
(*If [there are senders sleeping] then#®)
IF (DELAYED SENDERS [PRI].OCCUPIED) THEN
(*Wake up the oldest sleepert®)
CONTINUE (SENDER [DELAYED SENDERS [PRI].DEPARTURE, PRI])
(#*Endif'#®)
(*End entry GET#)
END;

(# a-39 ¥)

(®#$$$ MAILBOX3 $$4%)
(#$$$ Prioritized communication mailbox $$$*)

(#%8PROCEDURE ENTRY DEPOSITH S SRR saeEnssEnnasurnuessnsssnsnes

& TINTERNAL &
& VAR #
PRI: Used to simplify code. Receives the L
b priority of the incomming mail. #
L R e R R R e e s R R
PARAHETERS s
& IN #
& INCOMING_MAIL: A packet being deposited into the #
bd MATIL_BUFFER by a sender process. &
FE R R RN SRR RG RN SRR S RN

PROCEDURE ENTRY DEPOSIT (INCOMING_MAIL: PACKET_TYPE);
VAR
PRI: PRIORITY _TYFE;
(*Begin entry DEPOSIT®)
BEGIN
PRI := INCOMING_MAIL.PRIORITY;
(#1f [all known senders are delayed] then¥)
IF (DELAYED_SENDERS [PRI].FULL) THEN
(®#6€SHOULD NEVER HAPPEN UNLESS MAX_SENDER IS WRONGE&¥)
(#%¥JE LOOSE THE MAIL ®u%%)
(®Else®)
ELSE
BEGIN
(#If [mail queue is full] then®)
IF (NEXT MAIL [PRI].FULL) THEN
(#Put the sender to sleept®)
DELAY (SENDER [DELAYED SENDERS [PRI].ARRIVAL, PRI]);
(#Endif®)
(®#Store the mail in a FIFO queue#)
MATI, BUFFER [NEXT_MAIL [PRI].ARRIVAL, PRI]
:= INCOMING_MAIL;
(#If [the receiver is sleeping] wake him up®)
CONTINUE (RECEIVER)
END
(¥*Endif#)
(*End entry DEPOSITH®)
END;

. BEGIN (®*MONITOR INITIALIZATION®)
FOR INDEX := LOW_PRI TO HIGH PRI DO
INIT NEXT MAIL [INDEX] (MAX_MAIL),
DELAYED_SENDERS [INDEX] (MAX_SENDERS)
{#Endfor}
END; (*MAIL_BOX_MONITOR®)

(% A-%0 ¥)

(®#$$$ NETIO $$4%)
(¥$$$ Standard entries to the network $$$¥%)

TYPE NET_IO_CLASS = CLASS (FROM_NET: MAIL_BOX MONITOR;
TO_NET: MAIL_BOX_MONITOR);

(EE R R R R R R R R R N E RN R R R R RN R R R R B RN R R R R SRR R RN R RN R E O

bd NET_IO_CLASS provides standard entry points for &
& jnterfacing with the network layers., Allows creation &
% and distruction of sessions, and data transferal. ®
Bocsrpsnts st i it itanpsnasd st ndns s sttt E
& Programmer: Ronald C. Albury s
Date Written: 10/08/82 &
& Computer: Interdata 8/32 #
§ Copyright 1982 by Ronald C. Albury &
Broisesbasasaaspstroanisiiinddssnsigsasoteysssosnnnssiays®
EXTERNAL b
TYPE £
& MAIL_BOX MONITOR: Interprocess communication &
¥ mailbox. &
& PACKET_TYPE: Record structure of the network &
& packets., ®
L MESSAGE_TYPE: Array of characters. ®
& PKT_STATUS TYPE: A field of the Packet_ type %
L] record, for error flags. &
L CHAIN_TYPE: The subrange of session commands b
& dealing with chaining messages. &
e R R P R E X R A R R RS RN RN S R SR R
& INTERNAL &
& VAR ®
] PACKET: The network packet that is assembled &
& and passed to the lower layers. #
RN RN R RN R E RN R E RN SRR NN R R RN

VAR
PACKET: PACKET_TYPE;

(##%PROCEDURE ENTRY NET_LISTEN®S &S Snsseisrau s u s e unusnssns

& PARAMETERS &
& ouT .
bd STATUS: Error flags indicating the status of the &
& listen. = .

R R R R R R R R R R R R R R R R R R R E RN R R RN NN N R R EREREE)

PROCEDURE ENTRY NET_LISTEN (VAR STATUS: PKT_STATUS TYPE);
(*Begin entry Net_listen®)

BEGIN
(#Set the network parameters for a listen®)
PACKET.TEXT := ! s

PACKET.SECURITY := PUBLIC;
PACEET.DIRECTION := OUTGOING;
PACKET.PRIORITY := HIGH_PRI;
PACKET.SESSION_CMD := LISTEN;
(®#Issue the listen to the network and wait for#®)
(®*a response®)
TO_NET.DEPOSIT (PACKET);
FROM_NET.GET (PACKET);
(#Set the status flags®)

(# A-41 %)

(®$$$ NETIO $$$%)
(*$$$ Standard entries to the network $$$%)

STATUS := PACKET.STATUS
(®*End entry Net_listen®#)
END;

(lI!PROCEDﬂRE ENTRY MSESIQHIIII!III!'I!!II'IIlllllllllll
& PARAMETERS
IN
PASSWORD: Array of characters containing the
the password to be sent to the destination
process when the session request is issued.
ouT
STATUS: Error flags indicating the status of the
session regquest.
RSN EE RN NN E R R EESERRR)
PROCEDURE ENTRY MAKE_SESSION (PASSWORD: MESSAGE_TYPE;
VAR STATUS: PKT_STATUS TYPE);

(*Begin entry Make_session#)
BEGIN
(#Set the network parameters for a session request®)
PACKET.TEXT := PASSWORD;
PACKET. SECURITY := PUBLIC;
PACEKET.DIRECTION := OUTGOING;
PACKET.STATUS := [I1;
PACKET.SESSION_CMD := ESTABLISH;
PACKET.PRIORITY := HIGH_PRI;
(#Issue the session request to the network and wait®)
(¥for a response®)
TO_NET.DEPOSIT (PACKET);
FROM_NET.GET (PACKET);
(#Set the status flags®)
STATUS := PACKET.STATUS
(*End entry Make_session#®#)

END;

(##EPROCEDURE ENTRY CLEAR_SESSIONSEREENSEREREEEERRERERSERERES
® PARAMETERS L
= ouT : ¥
STATUS: Error flags indicating the status of the &
. clear. »

R R RN R R SRR R R RN R R R R R R RN RN RN R RN R R R R RN RN A NEREE)

PROCEDURE ENTRY CLEAR_SESSICN (VAR STATUS: PKT_STATUS_TYPE);
(*Begin entry Clear_session#®)

BEGIN
(%#Set the network parameters for a clear#)
PACKET, TEXT := ! 's

PACKET.SECURITY := PUBLIC;
PACKET.DIRECTION := OUTGOING;
PACKET.STATUS := [1;
PACKET.SESSION_CMD := BREAK;
(#Make sure it arrives after outstanding messages®)
PACKET. PRIORITY := LOW_PRI;
(#Issue the clear to the network and wait for a#)

(*® A-42 %)

(%#$$$ NETIO $$3*%)
(*#$$$ Standard entries to the network $$$*)

{*response¥)
TO_NET.DEPOSIT (PACKET);
FROM_NET.GET (PACKET);

(%#Set the status flags®)
STATUS := PACKET.STATUS

{*End entry Clear_session®)
END; .

(##$PROCEDURE ENTRY NET _READ® SRS ssssassussssarsssssssussns

& PARAMETERS ®
] ouT #
& TEXT: Array of characters to recieve the message #
* from the network. ®
& STATUS: Error flags indicating the status of the #
b read. &
RN RN RN N R R RN SRR R R RN ER RN R ER RN NRR)

PROCEDURE ENTRY NET_READ (VAR TEXT: MESSAGE TYPE;
VAR STATUS: PKT_STATUS TYPE);
(®*Begin entry Net_read?)
BEGIN
(®*Get the packet from the network®)
FROM_NET.GET (PACKET);
(*Extract the Text and Status flags from the packet®)
TEXT := PACKET.TEXT;
STATUS := PACKET.STATUS
(¥*End entry Net_read¥®)

END;

(=*=PROCEDURE ENTRY NET WRITE®ES S S s ismueuusnersunssrunes
& PARAMETERS L
. IN =
* TEXT: Array of characters to send on the network. #
bl XFER: The session layer chain command for this b
& data transfer. ¥
& SECURITY: The security level desired for this &
¥ data item, &
L 0uT b
® STATUS: Error flags indicating the status of the #
* write. #
SRR RN R PR RN R E R R RN R R R R R RN

PROCEDURE ENTRY NET_WRITE (TEXT: MESSAGE_TYPE;
XFER: CHAIN_TYPE;
SECURITY: SECURITY_TYPE;
VAR STATUS: PKT_STATUS TYPE);
(*Begin entry Net_write#)
BEGIN
(#Set the network parameters for a write.¥®)
PACKET.TEXT := TEXT;
PACKET.SECURITY := SECURITY;
PACKET.DIRECTION := OUTGOING;
PACKET.STATUS := [];
PACKET.SESSION_CMD := XFER;

(% A-43 ¥)

(®$$$ NETIO $$$%)
(#$$$ Standard entries to the network $$$%)

PACKET.PRIORITY := MED_PRI;

(*Issue the write to the net and wait for a response#)
TO_NET.DEPOSIT (PACKET);
FRCGM_NET.GET (PACKET);

(#Set the status flags®)
STATUS := PACKET,STATUS

(*End entry Net_writet®)
END;

BEGIN
END;

(& A-4y ®)

(*$$$ ERROR $$¢%)
(#$$$ Class for reporting network errors $$$%)

TYPE ERROR_CLASS = CLASS (CONSOLE: RESOURCE_MONITOR);
(R R RN RN RS R R R R RS R R R RN NN RN SRR R RN R

% Error_class interprets and displays network errors to #
% the terminal.

esassswas
eeFEBIOESIETRGEERSD

[1]
=a

T2 EBETEED T
asssssdsPes s

Tseew »w
. - - L

programmer: Ronald C. Albury
% Date Written: 10/02/82
Copyright 1982 by Ropald C. Albury
EXTERNAL
CONST

First_Error: The network error with the lowest
ordinal value.

Last_Error: The network error with the highest
ordinal value.

TYPE

Resource_Monitor: Standard Brinch Hansen Resource
to control access to the terminal.

Message I0_Class: A class that provides fixed
record I/0 to specified logical units.

Message_Type: Array of characters.

Pkt_Status Type: Set of possible errors that can
be encountered in the network.

Status_Type: Enumerations of network errors.
Error_Svel_Type: Record structiure of the status
bytes returned by Message_ IO _Class.

INTERNAL
VAR

Op: An instance of Message _IQ _Class to handle

I/O to the te!‘minal

[K
sswe

- am - * e [E R R NN ..
. e . . e Tsss e LR

(L]

Lodn BN IR BN BE BN B BN B BN NE BN BN BN BN BN BN BN BN BE BN BN BN O BE OB O BE O BE BN B BE BN BN A |

- 9 [EE R} [R R} - LE R] - .o 8 * 8 es
- LR R R LR N LR se s e

(1]
(1]
L1}
(L]
(1]
.y
L1

Console: A resource monitor to assure no other

other process is using the terminal while the

error messages are being displayed.

RN R R R R R R R RN RN N R RN R SRR EC R E RN RN RN RS
VAR

OP: MESSAGE_IO CLASS;

(#28Procedure Entry Report®#Sssirstessssssssinsseusstaannsss

& INTERNAL &
5 VAR 8
& STATUS INDEX: Loop variable for testing which &
= errors are in the status word. b
L OP_STATUS: Recieves the status bytes from the b
bad terminal 1/0. L
Begmewmnuusi b g s ppppssmpaansnrysea 1 28 ssa s srs s L s ¢ 28
® PARAMETERS b
& IN]
& LOCATION: A string of characters indicating where #
L the class is being called from. &

(® A-U45 &)

(®#$$$ ERROR 3%)
(®$$$ Class for reporting network errors $$$*)

& STATUS: The status word to be checked for error &
® flags, ¥
RSN RSN R RS R E RN NN R R R RN RN RNNERE)
PROCEDURE ENTRY REPORT (LOCATION: MESSAGE TYPE;
STATUS: PKT_STATUS_TYPE);
VAR
STATUS_INDEX: STATUS TYIPE;
OP_STATUS: ERROR_SVCI_TYPE;
(*Begin entry Report#)
BEGIN
(SIf [there are error flags in the status word] thent)
IF (STATUS <> []) THEN
BEGIN
(®*Request the console and display Location®)
CONSOLE, REQUEST;
OP.WRITE (TERMINAL, LOCATION, OP_STATUS);
(*®*Display all errors in the status word#)
FOR STATUS_INDEX := FIRST_ERROR TO LAST_ERROR DO
IF (STATUS INDEX IN STATUS) THEN
OP.WRITE (TERMINAL, ERROR_MSG [STATUS_INDEX],
OP_STATUS);
{Endif'}
{Endfor}
CONSOLE.RELEASE
END
(#=ENDIFE®)
(*End entry Report®)
END;

BEGIN

INIT OF
END;

(% A-U46 ®)

(#$$$ SESSION $$$%)
(¥$$$ Process to simulate Session layer $$$%)

TYPE SESSION_PROCESS = PROCESS (TO_APP: MAIL_BOX_MONITOR;
EVENT: MAIL_BOX MONITOR;
TO_NET: MAIL_BOX MONITOR;
HOST_ID: HOST_ID_TYPE);

(FEERE SRR NS I N R RS R E R R R RN RN R R R E RN RN

The session layer handles the initial set up of a

& gession between two hosts., It also is capable of

® chaining a group of related messages together to

& make sure that, in the event of network failure,

& the reciever is not 111 the middle of a transmission

.;ﬁml L) : L BB
DATE WRITTEN: 4/2/82
& COMPUTER: INTERDATA 8/32

% Copyright 1982 by Ronald

LE=]
se e

-
L 1]
L 1]
[1]

secesynusERS . e
R R R E T

EXTERNAL
CONST
PASSWORD: A structured constant containing the
passwords of the hosts on the network.
MAX_SESSION_WAIT: The maximum number of pending
requests the host is allowed to queue up.
MAX_CHAIN: The maximum number of packets the
layer can chain before delivering them to the
application layer.
TYPE
PACKET_TYPE: Record structure of the network
packet.
MATL_BOX _MONITOR: A monitor used for passing
packets between processes.
HOST_ID TYPE: Enumeration of hosts in network.
MESSAGE_TYPE: Array of characters.
FIFO: 'Hodified Brinch Hansen FIFO class to

L1l
o
(1]
L1}
"
L1}

[FEE R EREE N NN
eSS B e OPE DO

(17
(1]
e
as
.8
L1l
L1}
(1]
(1]
(1]
[1]
(1]
L1]
(1]
(1]
(1]
[T}
l

e
aw
L]
as
a8

TYPE ‘
SESSION_STATE_TYPE: Enumeration of the states
a session layer can be in.
VAR
PASS_WORD: Contains this host's password. Used
to check if incoming requests have access
rights to this host.
PACKET: The network packet this process uses to
communicate with.
WAIT _BUFF: A fifo controlled buffer used to
store walting request packets.

WAITING_REQ: A FIFO class to control WAIT_BUFF.
CHAIN_BUFF: An array of packets used to store
chained packets so they can be delivered to

application layer as a group.
CHAIN_PTR: Integer used to control CHAIN BUFF.

oo W O W R W W M W W W R W W ok e ok R W W e e R o o W W W N R W e e W W

(% A-UT ®)

(*$$$ SESSION $$¢%)
(#4$$ Process to simulate Session layer $$$%)

CHAIN_INDEX: Integer used to increment through
the CHAIN_BUFF when delivering the packets .
STATE: 'n:e current atate of the session layer.

ssmeaaan
*s s ens

TO_APP: The monitor used to send packets to the
application layer.

EVENT: The monitor this layer uses to recieve
packets.

TO_NET: The monitor used to send packets to the
network,

HOST_ID: The id given to this host when the network ®

is brought up. b
NSRS R E R RN R R RN RN RN RE)

TYPE
SESSION_STATE _TYPE = (NO_SESSION, LISTENING, REQUESTING,
IN_SESSION);
VAR
PASS_WORD: MESSAGE_TIPE;
PACKET: PACKET _TYPE;
CHAIN_INDEX: INTEGER;
CHAIN_PTR: INTEGER;
CHAIN_BUFF: ARRAY [1..MAX_CHAIN] OF PACKET_TYPE;
STATE: SESSION_STATE TYPE;

(¥Begin Session_process®)
BEGIN
(#Initialize the host's password®)
PASS_WORD := PASSWORD [ROST_ID];
(®Initialize the state to No_session®)
STATE := NO_SESSION;
(%Cycle forevert)
CYCLE
EVENT.GET (PACKET):
(®*Process the packet based on current state®)
CASE STATE OF
(*When [State = No_session]®)
NO_SESSION:
(*If [packet is from application layer] then%#)
IF (PACKET.DIRECTION = OUTGOING) THEN
CASE PACKET.SESSION_CMD OF
(*When [Cmd = Listen]®)
LISTEN:
(%*Go into Listening state®)
STATE := LISTENING;
(*When [Cmd = Establish]®)
ESTABLISH:
BEGIN
(#Go into Requesting state®)
STATE := REQUESTING;
{#Issue the request¥)

(® A-48 #)

' (¥$$$ SESSION $$4%)
(#$$$ Process to simulate Session layer $$$%)

PACKET,SESSION_CMD := REQUEST;
TO_NET.DEPOSIT (PACKET)
END;
(#0therwise¥®)
ELSE:
BEGIN
(#Notify application layer of illegal®)
(®command®)
PACKET,STATUS := PACKET.STATUS
+ [NO_LOCAL_SESSION];
PACKET.DIRECTION := INCOMING;
TQ_APP.DEPOSIT (PACKET)
END
END(#*CASE®)
(*Else (packet from the net)®)
ELSE
CASE PACKET,SESSION_CMD OF
(*When [Cmd = Break]®)
BREAK:
(*Do nothing#)
STATE := NO_SESSION;
(®#0therwise®)
(#6Such as a request when not listening,¥®)
(%@or data transfer when not in session#)
(®Should be prevented by protocol#®)

END; (#*CASE®)
(®Endifr®)
(*When [State = requestingl®)
REQUESTING:

(%If [Packet is from Application layer] then®)
IF (PACKET.DIRECTION = OUTGOING) THEN
BEGIN

(#@éApplication process should be blocked,®)

(®8so this can not happen.®)

(®*Notify Application layer of error®)
PACKET.DIRECTION := INCOMING;
PACKET.STATUS := PACKET,STATUS

+ [NO_LOCAL_SESSIONI;
TO_APP.DEPOSIT (PACKET)
END
(®Else (packet from the net)®)
ELSE
CASE PACKET.SESSION_CMD OF
(*When [Cmd = Start]®)
START:
BEGIN
(#Go into In Session state®)
STATE := IN_SESSION;
(*Send up any piggy backed data®)
TO_APP.DEPOSIT (PACKET)
END;
(*When [Cmd = Break]®)

(® A-49 %)

(#$$$ SESSION $$3%)
(¥$$$ Process to simulate Session layer $$$t¢)

BREAK:
BEGIN
(%Go into No_Session state#®)
STATE := NO_SESSION;
PACEKET.STATUS :=z PACEKET.STATUS
+ [SESSION_ENDING];
(¥Send up any piggy backed data®)
TO_APP,DEPOSIT (PACKET)
END;
(®*0therwise®)
(#€Should be prevented by protocol#)
END(®*Case®);
(®Endif#)
(*When [State = Listening]®)
LISTENING:
(#If [packet from application layer] then#)
IF (PACKET.DIRECTION = QUTGOING) THEN
BEGIN
(#*@Application layer should be blocked so¥)
(®#€this can not happent®)
(*Notify application layer of error#)
PACKET,.STATUS := PACKET.STATUS +
[NO_LOCAL_SESSION];
PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)
END
(®Else (packet from network)#)
ELSE
CASE PACKET.SESSION CMD OF
(*When [Cmd = Request]®)
REQUEST:
BEGIN
(*If [it has the right password] then%)
IF (PACKET.TEXT = PASS WORD) THEN
BEGIN
(®*Set up packet for a favorable reply®)
PACKET.SESSION CMD := START;
(¥Go to In _Session state®)
STATE := IN_SESSION
TO_APP.DEPOSIT (PACKET)
END
(®*Else (bad password)®)
ELSE
BEGIN
PACKET.SESSION_CMD := BREAK;
(#Set up packet for a refusal¥#)
PACKET.STATUS := PACKET.STATUS
+ [BAD_PASSWORD]
END;
(®ENDIF®)
(*Send a return packet®)
PACKET,DIRECTION := OUTGOING;

(# A-50 #)

(#$$$ SESSION $$4%)
(¥*$$$ Process to simulate Session layer $$$%)

TO_NET.DEPOSIT (PACKET)
END;
(®*Otherwise®)
ELSE:

BEG

{®#@8Should be prevented by protocol¥)

(®*Notify source of error®)
PACKET.STATUS := PACKET.STATUS
+ [NO_REMOTE_SESSION];
PACKET.SESSION_CMD := BREAK;
PACKET.DIRECTION := OUTGOING;
TO_NET.DEPOSIT (PACKET)

END

END; (®CASE®)

(®Endif®)

(*When [State = In_sessionl#)
IN_SESSION:
(%If [packet is from application layer] then#)
IF (PACKET.DIRECTION = OUTGOING) THEN
CASE PACKET.SESSION_CMD OF
(*When [Cmd is a data transfer typel®)
CHAIN, END_CHAIN, ABORT CHAIN, IMMEDIATE:

BEGIN

(#Send data®)

TO_NET.DEPOSIT (PACKET)
PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)

END;

{*When [Cmd = Break]¥®)
BREAK:

BEGIN

(%Go to No_Session statef®)

STATE := NO_SESSION;

(#Send a Break to partnert)
TO_NET.DEPOSIT (PACKET);
PACKET.STATUS := PACKET.STATUS

(¥Notify Application layer of status#)

(%of Break®)

+ [SESSION_ENDING];
PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)

END;

(®*0therwise®)
ELSE:

BEGIN

(#*Notify Application layer it has made a%#)

(®mistake¥®)

PACKET.STATUS := PACKET.STATUS
+ [LOCAL_IN_SESSION];

PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)

END

(®* A-51 ®)

(%644 SESSION $34%)
(#$$$ Process to simulate Session layer $$$%)

END (#CASE®)
(¥Else (packet from the network)®)
ELSE
CASE PACKET.SESSION_CMD OF
(*When [Cmd = Break]®)
BREAK:
BEGIN
(*Go to NHo_Session state®)
STATE := NO_SESSION;
(®*Send up any messages left in the chain®¥)
(®#buffer®)
FOR CHAIN_INDEX := 1 TO CHAIN_PTR DO
TO_APP.DEPOSIT
(CHAIN_BUFF [CEBAIN_INDEX]);
{ ENDFOR}
CHAIN_PIR := 0;
PACKET.STATUS := PACKET.STATUS
+ [SESSION_ENDING];
(®Notify Application of session ending®)
TO_APP.DEPOSIT (PACKET)
END;
(*When [Cmd = Request]®)
REQUEST:
BEGIN
(#Send back a busy signal¥#)
PACKET.STATUS := PACEET.STATUS
+ [BUSY];
PACKET.SESSION_CMD := BREAK;
PACKET.DIRECTION := OUTGOING;
TO_NET.DEPOSIT (PACKET)
END;
(*When [Cmd = Immediate]¥®)
| IMMEDIATE:
(*Immediately pass it to Application¥)
TO_APP.DEPOSIT (PACKET);
(*When [Cmd = Chain]®)
CHAIN:
BEGIN
(*Store the message in the Chain buffer®)
CHAIN_PTR := CHAIN_PIR + 1;
(#*@NOTE-possible Chain Index range errort)
CHAIN_BUFF [CHAIN_PTR] := PACEKET
ERD;
(*When [Cmd = End_Chain]®)
END_CHAIN:
BEGIN
(®Pass up all messages stored in the®)
(#Chain buffer#)
FOR CHAIN _INDEX := 1 TO CHAIN_PIR DO
TO_APP,DEPOSIT
(CHAIN_BUFF [CHAIN_INDEX]);
{ENDFOR} B

(® A-52 #)

(#$$$ SESSION $$$®)
(*#$$$ Process to simulate Session layer $$$%)

CHAIN_PTR := 0;
TO_APP.DEPOSIT (PACKET)
END;
(*When [Cmd = Abort Chain]#)
ABORT_CHAIN:
(®Empty the Chain buffer#®)
CHAIN_PTR := 03
(#0therwiset®)
ELSE:
(#68Should be prevented by protocol#®)
BEGIN
(#Disconnect everyone and start overt#)
PACKET.STATUS := PACKET.STATUS +
[REMOTE_IN_SESSION];
PACKET,SESSION_CMD := BREAK;
PACKET.DIRECTION := OUTGOING;
TO_NET.DEPOSIT (PACEET)
END(®CASE®);
(¥*Endifr#)
END({ ®#CASE#®)
(®*End cyclef®)
END
(*End Session_process#)
END;

(® a-53 &)

(¥$$$ WORKER3 $$¢%)
(®#$$$ Net3 Worker application process $5§%)

TYPE WORKER_PROCESS = PROCESS(CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX MONITOR;
TO_NET: MAIL_BOX_MONITOR);

(EREEEEEEEREREAFEREURRR RO EREENRERE NN RAEEREGNNRNECRRRREERE

& The WORKER_PROCESS is an application layer process that ¥
transfers remote files to the operator console.

DATE WRITTEN: 6/2B/82
¥ COMPUTER: INTERDATA 8/32
& Copyright 1982 by Ronald C

Byosenmsses st BISANILINSINS
& EXTERNAL
CONST
ERROR_MSG = Structured constant containing text
explainations of possible packet errors.
TYPE
MESSAGE _I0 CLASS = A class that uses supervisory
calls to handle fixed record I/0 to specified
logical units.
PACKET_TYPE = Record structure of the network
packets,
MESSAGE_TYPE = Array of characters.
ERROR_SVC1_TYPE = Record structure of the status
bytes from the supervisory call.
MAIL_BOX MONITOR = A monitor used for passing
packets between processes.
RESOURCE_MORITOR = Allows only one process to
access a resource at a time '

L
I B AR RN
I E R R E R

EEEEER] [-
R R . .

STATUS INDEX: Used to repert packet errors.
OP: Used to write lines of the transfered file
to the operator.
PACEET: A network packet this process uses to
compunicate with the network.
TEXT: Arrey of characters used to communicate
the operator.
OP_STATUS: Recieves the status bytes from the
MESSAGE_JI0 CLASS. Not used here, but necessary
for the calls to OP
PABAHETERS
CONSCOLE: The RESOURCE_MONITOR used to reserve the
console for exclusive I1/0,.
FROM_NET: The monitor used to recieve packets from
the network. L]
TO_NET: The monitor used to send packets to the net *#
R EE R R R R R A R RN RN PR R E R RS R N R RN RN EREES)
VAR
OP: MESSAGE_IO_CLASS;

e
]

L]
= e an LER-3-1 L] - " *e s e sES
L LR] LR [e CRE RN R EERER]

. » sasnese - 88 a
- . a6 4888 - RO

(® A-54 #)

(*$$$ WORKER3 $$¢%)
(*#$$$ Net3 Worker application process $$$%)

ERROR: ERROR_CLASS;

0S: NET_IO_CLASS;

NET_STATUS: PKT_STATUS TYPE;

TEXT: MESSAGE_TYPE;

OP_STATUS: ERROR_SVC1_TIPE; (®#&#)

(*Begin Worker process#)
BEGIN
(®Initialize the interface to the operator®)
INIT OP;
INIT ERROR (CONSOLE);
INIT O0S (FROM_NET, TO_NET);
(#Cycle forever#)
CICLE
CONSOLE. REQUEST;
OP.WRITE (TERMINAL, 'ENTER SERVE PASSWORD', OP_STATUS);
OP.READ (TERMINAL, TEXT, OP_STATUS);
CONSOLE.RELEASE;
(®*%Request a session¥#) (##EE)
0S.MAKE,_SESSION (TEXT, NET_STATUS);
ERROR. REPORT ('WORKER 10 t, NET_STATUS);
(%If [we connect] then®#)
IF (NET_STATUS = []) THEN (%®#&%)
BEGIN
REPEAT
TEXT := 'ENTER FILE ID. -t
TEXT [18] := FIRST_FILE ID;
TEXT [20] := LAST _FILE_ID;
CONSOLE. REQUEST;
OP.WRITE (TERMINAL, TEXT, OP_STATUS);
OP.READ (TERMINAL, TEXT, OP_STATUS);
CONSOLE.RELEASE;

(#Send the request to the server®)
0S.NET_WRITE (TEXT,IMMEDIATE,PUBLIC,NET_STATUS);
ERROR.REPORT (' WORKER 20 ', NET_STATUS);

(#%#Transfer the file to the console®)

CONSOLE. REQUEST;
(¥Repeat until end of file#)
REPEAT
(®*Get a line from the network®)
0S.NET_READ (TEXT, NET_STATUS);
(*®*Output it to the consolef®)
OP.WRITE (TERMINAL, TEXT, OP_STATUS);

(*End repeatt®)

DNTIL ((TEXT[1] = '/') AND (TEXT[2] = '¥7))

OR (SESSION_ENDING IN NET_STATUS);

CONSOLE. RELEASE;

ERROR.REPORT ('WORKER 30 ', NET_STATUS);
CONSOLE. REQUEST;

OP.WRITE (TERMINAL, 'MORE FILES Y/N ',
OP_STATUS);

OP.READ (TERMINAL, TEXT, OP_STATUS);

(® A-55 %)

(#$$$ ' WORKER3 $$4%)
(¥$$$ Net3 Worker application process $$$%)

CONSOLE.RELEASE
UNTIL (TEXT [1] = 'N'};
0S.CLEAR_SESSION (NET_STATUS);
ERROR. REPORT ('WOREER 40 ', NET_STATUS)
END
(®Endif#)
(¥*End cycle®)
END
(®*End Worker process#)
END;

(% A-56 %)

(#$$$ SERVER3 $$¢%)
{#$$$ Net3 Server application process $$3%)

TYPE SERVER_PROCESS = PROCESS (CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOY_MONITOR);

(SRR R SRR R RN SR R R R R R RN RN R RN R EE R R SRR ERRRREREESE

The server process is an application layer process that

& does the disk I/0 for a remote worker proeess. b
Brposwnaesssssarsnynpasenresssrssssfonsaanissrnssysests sl
& PROGRAMMER: RON ALBURY *
® DATE WRITTEN: 6/28/82 b
® COMPUTER: INTERDATA 8/32 .
Copyright 1982 by Ronmald C. Albury b
BEsssissistiaiiangianisesi st ssgndtnaniaginitisinanw
& EXTERNAL #
& TYPE [
* MESSAGE_IO CLASS = A class that uses supervisory ¢
bl calls to handle fixed record I/0 to specified &
& logical units. b
b PACKET_TYPE = Record structure of the network b
L packets., .
b MESSAGE_TYPE = Array of characters. b
& ERROR_SVC1_TYPE = Record structure of the status #
b bytes from the supervisory call. &
E MAIL_BOX_MONITOR = A monitor used for passing &
E packets between processes. L
Russauussdsssoaenaeeasnssineesesss ionesyananpyaesss sy syl
INTERNAL &
& VAR . &
& DISK: Used to input-lines of a disk file. &
® PACEET: A network packet used to communicate with #
b the network. b
b TEXT: Array of characters used for the disk I/0. #
L FILE ID: The id of the file the worker process is #
requesting. L
b VALID FILE IDS: A set of the valid id's this &
¥ process can access, .
¥ FILE_LU: An array of logical units that are &
b subscripted with file id's. Used to look up the ¥
¥ logical unit of a file. .
& NEXT_LU: Used in initializing FILE LU. b
b INDEX: Used in initielizing FILE LU. #
d OP_STATUS: Recieves the status bytes form the ®
b MESSAGE_IO_CLASS, &
Wrisgspssgssasrpamninpnnanans s pia s ey rszsts it
& PARAMETERS b
& FROM_KET: The monitor used to recieve packets from #
& the network. ¥
&

TO_NET: The monitor used to send packets to the net. ¥
SRR R R R SRR RN R R E R AR RN RN FREREE)
VAR

DISK: MESSAGE_IQ _CLASS;

0S: NET_IO_CLASS;

NET_STATUS: PKT_STATUS TYPE;

(® 4-5T7 ®)

(®$$$ SERVER3 $§$%)
(#$$$ Net3 Server application process $§$#)

ERROR: ERROR_CLASS;

TEXT: MESSAGE_TYPE;

FILE_ID: CHAR;

VALID_FILE _IDS: SET OF CHAR;

FILE LU: ARRAY [FILE_RANGE] OF BYTE;
NEXT_LU: BYTE;

INDEX: FILE_RANGE;

OP_STATUS: ERROR_SVC1_TYPE;

(*Begin Server process#)
BEGIN
(€Initialize the interface to the disk files#)
INIT DI3K;
INIT OS (FROM_NET, TO_NET);
INIT ERROR (CONSOLE);
(£#%#Set up an array to reference logical unit numbers#)
(®#®#by the character id's of the files®)
NEXT_LU := TERMINAL + 1;
(¥For all file id's do¥)
FOR INDEX := FIRST FILE ID TO LAST FILE ID DO
BEGIN
{®*Remember that it is a valid id#®)
VALID FILE_IDS := VALID FILE IDS + [INDEX];
{®Set it's logical unit number®)
FILE_LU [INDEX] := KEXT_LU;
NEXT_LU := NEXT_ LU + 1
END;
{*Endfor#)
(®#Cycle forevert®)
CYCLE
(%¥Put your ears up®®) (##&E)
0S.NET_LISTEN (NET_STATUS);
ERROR.REPORT ('SERVER 10 ", NET_STATUS);
(*Get the request from the net®)
0S.NET_READ (TEXT, NET_STATUS);
ERROR.REPORT ('SERVER 15 - v, NET_STATUS);
FILE_ID := TEXT [1];
WHILE NOT{SESSION_ENDING IN NET_STATUS) DO
BEGIN -
(%If [it is a valid file id] then®)
IF (FILE_ID IN VALID FILE IDS) THEN
(*#Transfer the file®)
BEGIN
(®*Read in a line from the disk#)
DISK.READ (FILE LU [FILE_ID], TEXT, OP_STATUS);
(*While not [end of file] do#®)
WHILE (OP_STATUS.DI = 0) AND (OP_STATUS.DD = 0) DO
BEGIN
(*Send it out on the network®)
0S.NET_WRITE (TEXT, IMMEDIATE, SECRET,
NET_STATUS);
ERROR,REPORT ('SERVER 20 L

(® 4-58 ¥)

(*$$$ SERVER3 3%)
(#$$$ Net3 Server application process $$$¥)

NET_STATUS);
(®Read in a new line from the disk file#)

DISK.READ (FILE LU [FILE ID], TEXT, OP_STATUS)
END;
(®*Endwhile®)
(®*Rewind the disk file®)
DISK.REWIND (FILE LU [FILE_ID], OP_STATUS);
(®*Send an EOF packet out on the network®)
0S.NET_WRITE ('/#% LI
IMMEDIATE, PUBLIC, NET_STATUS);
ERROR.REPORT ('SERVER 30 ' ,NET_STATUS);
END
(¥Else (an invalid file id)®)
ELSE -
(®*Send an error messaget®)
BEGIN
TEXT := '/% BAD FILE ID - ';
TEXT [19] := FILE_ID;
0S.NET_WRITE (TEXT,IMMEDIATE, PUBLIC,NET_STATUS);
ERROR. REPORT ('SERVER 40 ' ,NET_STATUS);
END;
(®*Endif#)
0S.NET_READ (TEXT, NET_STATUS);
FILE_ID := TEXT [1];
ERROR.REPORT ('SERVER 50 ', NET_STATUS)
END
(®*Endwhile#®)
(®End cycle®)
END
(*End Server#¥)
END;

(* a-59 ¥)

(#$$$ LOCNET $$$%)
(#$$$ Process to simulate a Local Area Network $$4%)

TYPE NETWORK_PROCESS =
PROCESS (TO_APP: MAIL_BOX MONITOR;
EVENT: MAIL_BOX _MONITOR;
NEXT_NODE: MAIL_BOX_MONITOR;
NODE_ID: HOST_ID TYPE);

(EREEEE SRR R RS RS R R RN RN E RN RE RN RN NN EERE RGN E RN RN RN

¥ The network layer represents the hardware and software @
£ pecessary to transmit packets across a local area &
® network.]
Biss s vesgin@snamasedey g s s deemme e ey ese s g e s sinssn el
& PROGRAMMER: RON ALBURY b
€ DATE WRITTEN: 6/28/82 *
COPYRIGHT 1982 by Ronald C. Albury L
Beeospyzezsnagesssntdssdisdsnrasssnsssenisississsasssns
EXTERNAL b
L] TYPE #
& PACKET_TYPE = Record structure of the network &
* packets. L]
b MAIL,_BOX_MONITOR = A monitor used for passing &
& packets between processes,.¥®)

Boregr s st et istttgnise s
®# JINTERNAL L
2 VAR ¥
& PACKET: A network packet that the layer processes #
Wigssseeiuiisesnsagre s e papnraprs sy st ras s st nnan el
® PARAMETERS b
* TO_APP: The monitor used to send packets up toward #
& the application layer. b
b EVENT: The monitor this layer uses to recieve L
E packets. &
bd NEXT_NODE: The monitor used to send packets to b
& the next node in the network. b
]

NODE_ID: Tells the process which node it is serving. ¥
RN RSN R R RN SRS R R R SRR R RN R R RN RN
VAR

PACKET: PACKET_TYPE;

BEGIN
(#Cycle forever®)
CICLE
(*Wait for a packet®)
EVENT.GET (PACKET);
(*If [an outgoing packet] then%®)
IF (PACKET.DIRECTION = OUTGOING) THEN
BEGIN
(#Set it as an incoming packet#)
PACKET.DIRECTION := INCOMING;
(*Pass it on to the next node#)
NEXT_NODE,DEPOSIT (PACKET)
END
(#Else (an incoming packet)®)
ELSE

(% A-60 %)

(*$$$ LOCNET $3$3%)
(#$$$ Process to simulate a Local Area Network $$$%)

(®If [this is the packets destination] then#)
IF (PACKET.DESTINATION = NODE_ID) THEN
{®#Pass it up to the application layer¥)
TO_APP,DEPOSIT (PACEET)
(®*Else it is bound for another node#)
ELSE
(®*If [it hasn't made it around the ring] then®#)
IF (PACKET.SOURCE <> NODE_ID) THEN
(®Send it ont)
NEXT_NODE.DEPOSIT (PACKET)
(#Else destination node must be down®)
ELSE
BEGIN
(*Notify host®)
PACKET.DIRECTION := INCOMING;
PACKET.STATUS := PACKET.STATUS
+ [DESTINATION_NODE_DOWN];
PACKET, TRANS CMD := DISCONNECT;
TO_APP.DEPOSIT (PACKET)
END
(*Endif made it around ring®)
(*Endif belongs at this node#)
(®Endif packet direction®)
(*End cyclet®)
(®*End Network process#)
END;

(* 4-61 %)

(®$$$ NETION $$3%)
(®$$$ Revised Network Entries $$4%)

TYPE NET_IO_CLASS = CLASS (FROM_NET: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX MONITOR);

i it i i i i i i
& -NET_IC_CLASS provides standard entry points for &

® interfacing with the network layers. Allows creation &

® and distruction of sessions, and data transferal. b
L S R R R R R RN R R R R S S S R R RS R R F R L
& Programmer: Ronald C. Albury &
®# Date Written: 10/08/82 ¥
Computer: Interdata 8/32 &
& Copyright 1982 by Ronald C. ubury L]
Sesnissaieseaegr s assenas s senrsynisssengsnes eyl
EXTERNAL b
" TYPE 3
* MAIL_BOX MONITOR: Interprocess communication &
& mailbox. .
& PACEET_TYPE: Record structure of the network &
L] packets. L
& MESSAGE_TYPE: Array of characters. &
& PKT_STATUS TYPE: A field of the Packet_type ®
& record, for error flags. ®
& CHAIN_TYPE: The subrange of session commands #®
¥ dealing with chaining messagea. ®
Beosginpiiinaiiadotsininotonoesudisstistoniuncionaciiiiim
& TINTERNAL ¥
¥ VAR ®
¥ PACKET: The network packet that is assembled ¥
§ and passed to the lower layers. &
lill!lillﬁlIi.llllII.II-I!IHI!illlll!li“ll““l'llillllll-ll)

VAR
PACKET: PACKET_TYFE;

(#%#PROCEDURE ENTRY NET LISTENSERSSe£aastossstnssssstsansasss

® PARAMETERS '
oUT ®
® STATUS: Error flags indicating the status of the #
® listen. .

SER R R R R R R R RN R RGN R RN R R ERE R R E RN R RERRERERE)

PROCEDURE ENTRY NET_LISTEN (VAR STATUS: PKT_STATUS TYPE);
{*Begin entry Net_listen®)

BEGIN
(%Set the network parameters for a listen¥)
PACKET.TEXT := ! 13

PACKET.SECURITY := PUBLIC;

PACKET.DIRECTION := OUTGOING;

PACKET.PRIORITY := MED_PRI;

PACKET,SESSION_CMD := LISTEN;

PACKET.NAME := 'APPLI CMD LISTEN 1, (ERER)
(#Issue the listen to the network and wait for#®)
(®a responsef®)

TO_NET.DEPOSIT (PACKET);

FROM_NET.GET (PACKET);

(* A-62 ¥)

(®$$$ NETION $3$4%)
(#$$$ Revised Network Entries $$$%)

(#Set the status flags®)
. STATUS := PACKET.STATUS
(®End entry Net_listen®)
END;

(#=#PROCEDURE ENTRY MAKE_SESSIONS##SSssERisssnusanresssansns
PARAMETERS
IN
PASSWORD: Array of characters containing the
the password to be sent to the destination
process when the session request is issued.
NAME: Array of characters containing the common
name of the destinmation process,
ouT
STATUS: Error flags indicating the status of the
session request.
I T RIS R i fi e e eseqtiqettsiqteqttatststizttsssy
PROCEDURE ENTRY MAKE SESSION (PASSWORD: MESSAGE_TYPE;
NAME: MESSAGE_TYPE;
VAR STATUS: PKT_STATUS _TYPE);

(#Begin entry Make_session®) -
BEGIN
(®#Set the network parameters for a session request®)
PACKET.NAME := NAME; (®&ss)
PACKET.TEXT := PASSWORD;
PACKET.SECURITY := PUBLIC;
PACKET,.DIRECTION := OUTGOING;
PACKET,STATUS := [];
PACKET, SESSION_CMD := ESTABLISH;
PACKET, PRIORITY := LOW_PRI;
(¥Issue the session request to the network and wait#®)
(*for a responset®)
TO_NET.DEPOSIT (PACKET);
FROM_NET.GET (PACKET);
(®#Set the status flags¥)
STATUS := PACKET.STATUS
(*End entry Make_sessiont)

END;

(##2PROCEDURE ENTRY CLEAR_SESSIONESSSssZisssesissunusessnsess
® PARAMETERS b
bl ouT]
STATUS: Error flags indicating the status of the
& clear. .

EEEEE RN E R RN R RN RN R R R RN EE R R R R AR RN RERNNEY)

PROCEDURE ENTRY CLEAR_SESSION (VAR STATUS: PKT_STATUS TYPE);
(*Begin entry Clear_session®)

BEGIN
(¥Set the network parameters for a clear#®)
PACKET.TEXT := ! 1

PACKET.SECURITY := PUBLIC;
PACKET,.DIRECTION := OUTGOING;

(® 4-63 ¥)

(®$$$ NETION $$$¢)
(#$$$ Revised Network Entries $$$%)

PACKET.STATUS := [];

PACKET.SESSION_CMD := BREAK;

PACKET. PRIORITY := MED_PRI;

PACKET.NAME := 'APPLI CMD CLEAR SESS'; (E##x)
(®Issue the clear to the network and wait for a®)
{®response®)

TO_NET.DEPOSIT (PACKET);

FROM_NET.GET (PACKET);

(#Set the status flags®)

STATUS := PACKET,.STATUS

(#*End entry Clear_session®)
END;

(#%EPROCEDURE ENTRY NET READS#S€SEucsssasnesneunasnssasses

® PARAMETERS &
g ouT]
¥ TEXT: Array of characters to recieve the message &
hd from the network. .
b STATUS: Error flags indicating the status of the #
read. &
R RN R NN R R R R R R R R RN SRR R E R RN R R R R RSN

PROCEDURE ENTRY NET_READ (VAR TEXT: MESSAGE_TYPE;
VAR STATUS: PKT_STATUS TYPE);
{%Begin entry Net_read®)
BEGIN
(®#Get the packet from the network¥)
FROM_NET.GET (PACKET);
(®Extract the Text and Status flags from the packet®)
TEXT := PACKET,TEXT;
STATUS := PACKET.STATUS
(¥*End entry Net_read%#)

END;

(®%#PROCEDURE ENTRY NET WRITESERESESESiuussiesssunsstienassie
& PARAMETERS L
& IN ®
& TEXT: Array of characters to send on the network. *
E XFER: The session layer chain command for this L
¥ data transfer. &
SECURITY: The security level desired for this €
& data item. &
& ouT]
L STATUS: Error flags indicating the status of the #
® write. &

)

B EEREENE RS EEE RN R R R R NSRRGSR RN E NN C RN RN R R R R RS
PROCEDURE ENTRY NET_WRITE (TEXT: MESSAGE TYPE;
XFER: CHAIN_TYPE;
SECURITY: SECURITY_TYFE;
VAR STATUS: PKT_STATUS TYPE);
(*Begin entry Net_write®)
BEGIN
(¥Set the network parameters for a write.¥)

(® A-64 ®)

(%#3$$ NETION $$$%)
(¥$$$ Revised Network Entries $$$%)

PACKET, TEXT := TEXT;
PACKET, SECURITY := SECURITY;
PACKET.DIRECTION := OUTGOING;
PACKET. STATUS := [];
PACKET.SESSION CMD := XFER;
PACKET,.PRICRITY := MED_PRI;
PACKET,.NAME := 'APPLI CMD WRITE t; (EEEE)

(#Issue the write to the net and walt for a response®)
TO_NET.DEPOSIT (PACKET);
FROM_NET.GET (PACKET);

(%Set the status flags®)
STATUS := PACKET.STATUS

(*End entry Net_write®)
END;

BEGIN
END;

(% A-65 ®)

(¥$$$ SESSION4 $$$%)
(*$$$ Revised Session layer $$$%)

TYPE SESSION_PROCESS = PROCESS (TO_APP: MAIL_BOX_MONITOR;
EVENT: MAIL_BOX MONITCR;
T0_NET: MAIL_BOX_MONITOR;
HOST_ID: HOST_ID_TYPE);

QLTI D T L L L M et T e i L e

® The session layer handles the initial set up of a

€ session between two hosts. It slso is capable of

chaining a group of related messages together to

¥ pmake sure that, in the event of network failure,

the reciever is not in the middle of a tranmission

#essssvassas
sesc s v dsBEN

& PROGRAMMER: RON ALBURY
DATE WRITTEN: u/2/82

% COMPUTER: INTERDATA 8/32
Copyright 1982 by Ronald

Feossssvsvsscevessssannasa
e s st EBAdaotuaw S

EXTERNAL
CONST
PASSWORD: A structured constant containing the
passwords of the hosts on the network,
MAX_SESSICN_WAIT: The maximum number of pending
requests the host is allowed to queue up.
MAX_CEAIN: The maximum number of packets the
layer can chain before delivering them to the
application layer.
TYFE
PACKET_TYPE: Record structure of the network
packet.
MAII, BOX MONITOR: A monitor used for passing
packets between processes.
HOST_ID TYPE: Enumeration of hosts in network.
MESSAGE_TYPE: Array of characters.
FIFO: Modified Brinch Hansen FIFO class to
handle a fifo buffer

(1]
(1]
..
(1]

SESSION_STATE _TYPE: Enumeration of the states
a session layer can be in.

PASS WORD: Contains this host's password. Used
to check if incoming requests have access
rights to this host.

PACKET: The network packet this process uses to
communicate with.

WAIT_BUFF: A fifo controclled buffer used to
store waiting request packets.

WAITING_REQ: A FIF0 class to control WAIT_BUFF.
CHAIN_BUFF: An array of packets used to store
chained packets so they can be delivered to

application layer as a group.

CHAIN_PIR: Integer used to control CHAIN BUFF.

(® 4-66 ®)

' (®$$$ SESSIONY $$$%)
(*$$$ Revised Session layer $$$%)

CHAIN_INDEX: Integer used to increment through
the CHAIN_BUFF when delivering the packets .
STATE: The current state of the session 1ayer

TO_APP: The monitor used to send packets to the
application layer.

EVENT: The monitor this layer uses to recieve
packets.

TO_NET: The monitor used to send packets to the
network.

HOST_ID: The id given to this host when the network #
is brought up. bl

RN R RN RSN N R R R R R R R RN R R R R R R E RN R RN ERAE)

TYPE
SESSION_STATE _TYPE = (NO_SESSION, LISTENING, REQUESTING,
IN_SESSION);
VAR
PASS_WORD: MESSAGE_TYPE;
PACKET: PACKET_TYPE;
CHAIN_INDEX: INTEGER;
CHAIN_PTR: INTEGER;
CHAIN BUFF: ARRAY [1..MAX CHAIN] OF PACKET TYPE;
STATE: SESSION_STATE_TYPE;

(*Begin Session_process®)
BEGIN -
(®*Initialize the host's password®)
PASS_WORD := PASSWORD [HOST_ID]:
(¥Initialize the state to No_session®)
STATE := NO_SESSION; -
(%#Cycle forever#)
CYCLE
EVENT.GET (PACKET);
(#*Process the packet based on current state®)
CASE STATE OF
{*When [State = No_session]#®)
NO_SESSION:
(#If [packet is from application layer] then®)
IF (PACKET.DIRECTION = OUTGOING) THEN
CASE PACKET.SESSION_CMD OF
(*when [Cmd = Listen]®)
LISTEN:
(*Go into Listening state®)
STATE := LISTENING;
(#*When [Cmd = Establish]®)
ESTABLISH:
BEGIN
(#Go into Requesting state®)
STATE := REQUESTING;
(®Piggy back a session request on a¥®)

(% A-6T ¥)

(#$$$ SESSIONN $$$%)
(#$$$ Revised Session layer $$$*)

(®*Transport Connect command®¥)
PACKET.TRANS CMD := CONNECT; (W®&EE)
PACKET.SESSION_CMD := REQUEST;
TO_NET.DEPOSIT (PACKET)

END;
(#0therwise®)
ELSE:
BEGIN

(*Notify application layer of illegal®)

(®command#®)

PACKET.STATUS := PACKET.STATUS
+ [NO_LOCAL_SESSION];
PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)
END

END(#CASE®)

(®*Else (packet from the net)®)
ELSE
CASE PACKET.SESSION_CMD OF
(*When [Cmd = Break]®)
BREAK:

(*Do nothing#®)

STATE := NO_SESSION;
(*0therwiset®)

(%#@such as a request when not listening,¥)

(®#@or data transfer when not in session®)

(#Should be prevented by protocol®)

; (FCASE®)
(®*Endif®)
(*When [State = requestingl®)
REQUESTING:

(#1f [Packet is from Application layer] Ththent®)
IF (PACKET.DIRECTION = OUTGOING) THEN
BEGIN

(®eApplication process should be blocked,¥#)

(%#@so this can not happen.#)

(®Notify Application layer of errcr#)
PACKET.DIRECTION := INCOMING;
PACEET.STATUS := PACKET,STATUS

+ [NO_LOCAL_SESSION];
TO_APP.DEPOSIT (PACKET)
END
(#*Else (packet from the net)#®)
ELSE
CASE PACKET,SESSION_CMD OF
(*When [Cmd = Start]®)
START:
BEGIN
(#€Assume it came from Transport layer®)
(®8on a Data_xfer.%®)
(®#Go into In _Session state®)
STATE := IN_SESSION;

(* r-68 ®)

(%$$$ SESSIONY $$3%)
(®#$$$ Revised Session layer $$$*)

(#Send up any piggy backed data®)
TO_APP.DEPOSIT (PACKET)
END;
(®*When [Cmd = Break]®)
BREAK:
BEGIN
(®#@Assume it came from Transport layer on%)
(®#€a Disconnect#®)
(%Go into No_Session state®)
STATE := NO_SESSION;
PACKET.STATUS := PACKET.STATUS
+ [SESSION_ENDING];
(®Send up any piggy backed data®)
TO_APP.DEPOSIT (PACKET)
END;
(®*Otherwise®)
(%#68Should be prevented by protocol#®)
END(®Caset);
(#*Endif#®)
(*When [State = Listening]¥®)
LISTENING: .
(®*If [packet from application layer] then#)
IF (PACKET.DIRECTICN = OUTGOING) THEN
BEGIN
(®@Application layer should be blocked so¥)
(#8this can not happent)
(®Notify application layer of error¥®)
PACKET.STATUS := PACKET.STATUS +
[NO_LOCAL_SESSION];
PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)
END
(#Else (packet from network)#)
ELSE
CASE PACKET.SESSION_CMD OF
(*When [Cmd = Request]®)
REQUEST:
BEGIN
(#If [it has the right password] then¥)
IF (PACKET.TEXT = PASS_WORD) THEN
BEGIN
(#Set up packet for a favorable reply®)
PACKET,.SESSION_CMD := START;
PACKET.TRANS CMD := DATA XFER; (®#s#)
PACKET.NAME := 'SESSION STARTS s
(®#Go to In_Session state®)
STATE := IN_SESSION
(*€Do not unblock Application process#®)
(#fLet the Transport Ack do that#)
END
(%#Else (bad password)®)
ELSE

(% A-69 ®)

(#$$$ SESSIONM $$4%)
(#$$$ Revised Session layer $$$%)

BEGIN
PACKET.SESSION_CMD := BREAK;

(®#Set up packet for a refusal#)
PACKET.TRANS_CMD := DISCONNECT; (%&&%)
PACKET.NAME := 'BAD PASSWORD v
PACKET.STATUS := PACKET.STATUS
+ [BAD PASSWORD]

END;

(®ENDIF#®)

(#Send a return packet®)
PACKET.DIRECTION := OUTGOING;
TO_NET.DEPOSIT (PACKET)

END;
(*0therwise®)
ELSE:
BEGIN

(*éShould be prevented by protocol¥®)

(*Notify source of errort)
PACKET.STATUS := PACKET.STATUS

+ [NO_REMOTE_SESSION];
PACKET,.SESSION_CMD := BREAK;
PACKET.TRANS_CMD := DISCONNECT; (®&#&)
PACKET.DIRECTION := OUTGOING;
TO_NET.DEPOSIT (PACKET)

END
END; (®CASE®)
(®Endif#)
(*When [State = In_session]#)
IN_SESSION:
(#If [packet is from application layer] then%¥)
IF (PACEET.DIRECTION = OUTGOING) THEN
CASE PACKET.SESSION_CMD OF
" (*When [Cmd is a data transfer typel®)
CHAIN, END_CHAIN, ABORT_CHAIN, IMMEDIATE:
BEGIN
{#Set packet as a data transfer#)
PACKET.TRANS CMD := DATA XFER; (E®%#)
(*Send datat®)
TO_NET.DEPOSIT (PACKET)
(%*6This is taken over PACKET.DIRECTION := INCOMING;¥®)
(#6by transport layer TO_APP.DEPOSIT (PACKET)®#)
END;
(¥When [Cmd = Break]®)
BREAK:
BEGIN
(%Go to No_Session state®)
STATE := NO_SESSION;
(¥Piggy back break on disconnect®)
PACKET.TRANS CMD := DISCONNECT; (E®&#)
PACKET.NAME := 'SESSION ENDING s
(#Send a Break to partner#®)
TO_NET.DEPOSIT (PACKET);

(* A-TO ¥)

(®$$$ SESSIONS $$4%)
(¥#$$$ Revised Session layer $$$%)

PACKET.STATUS := PACKET.STATUS
(*Notify Application layer of status#)
(®of Break®)

+ [SESSIOR_ENDING];
PACKET.DIRECTION := INCOMING;
TO_APP,DEPOSIT (PACKET)

END;

(*#0therwise®)
ELSE:
BEGIN
(®Notify Application layer it has made a®)
(*mistake#®)
PACKET.STATUS := PACKET,STATUS
+ [LOCAL_IN_SESSION];
PACKET.DIRECTION := INCOMING;
TO_APP.DEPOSIT (PACKET)
END
ERD(ECASE®)
(*Eise {packet from the network)®)
ELSE

CASE PACEET.SESSICN_CMD OF

(*When [Cmd = Break]¥)

BREAK:
{®eAssume transport connection brokent#)
BEGIN
(*Go to No_Session state®)
STATE := NO_SESSION;
(#Send up any messages left in the chain®)
(®#buffert®)
FOR CHAIN_INDEX := 1 TO CHAIN_PTIR DO
TO_AFPP.DEPOSIT
(CHAIN_BUFF [CHAIN_INDEX]);
{ ENDFOR}
CHAIN_PTR := 0;
PACKET.STATUS := PACKET.STATUS
+ [SESSION_ENDING];
(®Notify Application of session ending®)
TO_APP,DEPOSIT (PACKET)
END;
(*When [Cmd = Request]®)
REQUEST:
BEGIN
(#8Should be prevented by Trarnsport layer®)
(¥Send back a busy signalt®)
PACKET,STATUS := PACKET.STATUS
+ [BUSY];
PACEET.SESSION_CMD := BREAK;
PACKET.DIRECTION := QUTIGOING;
TO_NET.DEPOSIT (PACKET)
END;
(*When [Cmd = Immediate]®)
IMMEDIATE:

(* 2-71 ¥)

(#$$$ SESSION $$4%)
(®#$$$ Revised Session layer $$$%)

(®*Immediately pass it to Application®#)
TO_APP.DEPOSIT (PACKET);
(*When [Cmd = Chain]¥)
CHAIN:
BEGIN
(®*Store the message in the Chain buffer®)
CHAIN_PTR := CHAIN_PTR + 1;
(®#6NOTE-possible Chain _Index range error¥#)
CHAIN_BUFF [CHAIN_PTR] := PACKET
END;
(*When [Cmd = End_Chain]¥®)
END_CHAIN:
BEGIN
(¥Pass up all messages stored in the#)
(#Chain buffer#)
FOR CHAIN_INDEX := 1 TO CBAIN_PTR DO
TO_APP.DEPOSIT
(CHAIN_BUFF [CHAIN_INDEX]);
{ENDFOR}
CHAIN_PTR := 0;
TO_APP.DEPOSIT (PACKET)
END;
(*When [Cmd = Abort_Chainl®)
ABORT_CHAIN:
(*Empty the Chain buffer#)
CHAIN_PTR := 0;
(®*0therwise®)
ELSE:
(%#6Should be prevented by Transport layer#)
BEGIN
(#Disconnect everyone and start over#)
PACKET,STATUS := PACKET.STATUS +
[REMOTE_IN_SESSION];
PACKET.SESSION CMD := BREAK;
PACKET.DIRECTION := OUTGOING;
TO_NET.DEPOSIT (PACKET)
END
END(#CASE®);
(%Endif#%)
END(#CASE®)
(®*End cycle®)
END
(#*End Session_process®)
END;

(® A=T2 ®)

(#$$$ CLOCK $$$%)
(#$$$ Monitaor for controling time-outs $$$¢)

TYPE CLOCK_MONITOR = MONITOR;

(SO R R R R RS R R R R R R RN N R R RN R RO RN E G R R RN RERRRERRR
® The CLOCK_MONITOR is the interface between the 'nranaport'
layer and the Timeout_Process.

Beosmprsensressssessss ::::::::::::::::::::.::::-:::::::::::'
& Programmer: Ronald C. Albury *
®# Date Writtem: 10/10/82 &
& Copyright 1982 by Romald C. Albury L
i R R R R e R e
EXTERNAL b
|] TYPE %
) TRANSPORT_COMMANDS: Enumerations of all possible #®
& commands the Transport layer will respond to. &
Wz spptnne st nepdiad pes st arannatnntl § 50 s Sttt
& INTERNAL &
£ VAR)]
& LIMIT: Stores the number of seconds the L
& Timeout process should wait before sending a &
& packet to the Transport process. &
¥ ELAPSED: The number of seconds that have elapsed #
. since the Transport process has initiated the b
& timer. &
& TIMER: Queue variable to delay the Timeout #
& process when it is not being used. L
* STOP_TIMER: A boolean flag indicating if the ®
& Transport process wants the Timeout process €
& turned off. &
& TRANS_EVT: Stores the transport event to be &
® delivered in the event of a time out. *
ll!!illlIIIIII'llllllIlIlllllII'Il-lllIII!II!II'!I!GI‘II!II!II‘)
VAR
LIMIT, ELAPSED: INTEGER;
TIMER: QUEUE;

STOP_TIMER: BOOLEAN;
TRANS_EVENT: TRANSPORT_COMMANDS;

(#%%Procedure Entry Start®SEtsesstsssestsnsstesenssteeanenss

& PARAMETERS L
] IN £
& MAXTICK: The number of seconds before a time out #
® is delivered. &
* T_EVT: The transport event to be delivered if b
& there is a time out. L

RN R R SR NN E R R R R R R R R N RN R R R R E RN F RN RN ERNER)

PROCEDURE ENTRY START (MAX_TICK: INTEGER;
T_EVT: TRANSPORT_COMMANDS);
(#Begin entry Start#®)
BEGIN
(®*Reset the clock to OF)
ELAPSED := 03
(*Remenber the time limit and transport event®)
TRANS _EVENT := T_EVT;

(* A-73 &)

(#8848 CLOCK $$4%)
(¥$$$ Monitor for controling time-outs $$$*¥)

LIMIT := MAX_TICK;
(¥Turn the timer on#)
STOP_TIMER := FALSE;
CONTINUE (TIMER)
(#End entry Start#)
END;

(AL Aa bl dd it i d Ll it ad il it dddid il et b it it adddaddiiitilisliil)

PROCEDURE ENTRY STOP;
(*Begin entry Stop#¥)
BEGIN
{¥Set the STOP_TIMER flagt®)
STOP_TIMER := TRUE
(*End entry Stop¥)

END;

(#%3Procedure Entry Tick R sssasit s eenEite sEsenEREsnss
& PARAMETERS]
& ouT [
§ TICK_HNUMBER: Recieves the current number of ticks &
b since the time-out timer was started. &
L] MAX _TICK: Recieves the current time limit for the ®
b time-out, L
& T _EVT: Recieves the transport event to be sent b
& if the time-cut occurs. &
BN R RN N RN SRR R R RN N R E R SRR RN RREREN)

PROCEDURE ENTRY TICK (VAR TICK _NUMBER: INTEGER;
VAR MAX_TICK: INTEGER:
VAR T_EVT: TRANSPORT_COMMANDS);
(*Begin entry Tick#)
BEGIN
(*#If [the STOP_TIMER flag is set] thent#)
IF (STOP_TIMER) THEN
(¥Delay the timer®)
DELAY (TIMER);
(®Endif®)
(#Increment the number of ticks since the time-out started®)
ELAPSED := ELAPSED + 1
(#Set the output parameters#®)
TICE_NUMBER := ELAPSED;
T_EVT := TRANS EVENT;
MAY_TICK := LIMIT
(®*End entry Tick®)
END;

BEGIN

STOP_TIMER := TRUE
END;

(® A-TH &)

(*$$$ TIMER $$$%)
(#$$$ Time-out simulator $$$%)

TYPE TIMEOUT_PROCESS = PROCESS (CLOCK: CLOCK_MONITOR;

TRANSPORT: MAIL_BOX_MONITOR);
(SN R R R R R EC N RN E RN RS E N R R RS R R R RS R RN RAE

The Timeout_Process delivers a high priority network &
® packet to the Transport layer if it is not turned off o
%# yithin a specified time., The Transport layer, through ¥
® the clock monitor, is able to set both the transport &
& control message to be delivered in the packet, and the %
lenght of time the timer will run, b
R e s R e R Rt S R R R e i
& PROGRAMMER: Ronald C. Albury *
DATE WRITTEN: 10/7/82.
% Copyright 1982 by Ronald C. Albury '
Wrrrassaommppaaanspart s gl s pesdsanitrearstetss s tsnpantan®
& EXTERNAL &
& TYPE]
" CLOCK_MONITOR: The interface monitor between the #
L Timeout_Process and the Transport_Process. &
& MATIL_BOX _MONITOR: A monitor used for passing &
& network packets between processes. &
& PACKET_TYPE: Record structure of the network ¥
L packets, &
AR e T RN R s o e R et
®# TNTERNAL ¥
L VAR #
o TICK_NUMBER: The number the Clock Monitor has &
® been entered since the time-out has started. &
L MAX TICK: The number of ticks to wait before &
® sending the time-out packet. &
TIME_PKT: The packet used for delivering the *
& time-out to the transport layer. &
Wie s s s commmmuemngamssy ¥ ' g s ISTEs AN s e s aan s 2 e s s s rnea
® PARAMETERS 2
b CLOCK: The monitor to get the time-out commands from.¥®
& TRANSPORT: The monitor to deliver the time-out ¥
* packets to. &
R R R RN SRR R R R RN NN R R R R R R R R R E R RN R R R RN EER)

VAR :
TICK_NUMBER, MAX_TICK: INTEGER;
TIME_PKT: PACKET_TYPE;

(*Begin Timeout_Process#)

BEGIN

(#Initialize the Time-out packet®)
TIME_PKT.PRIORITY := HIGH_PRI;
TIME_PKT.DIRECTION := INCOMING;
TIME_PKT.NAME :=z 'THIS IS A TIME OUT ';
TIME_PKT.STATUS := [];

(#Cycle forever¥)
CICLE

(®Go into a wait state for 1 second®)
WAIT;

(* A-T5 ®)

(%$$$ TIMER $$$%)
(®#$$$ Time-out simulator $$$*)

(#Enter the Clock Monitor for an update from the®)
(®#*Transport layer.¥)
CLOCK.TICK (TICK_NUMBER, MAX TICK, TIME_PKT.TRANS CMD);
(#IF [TIME IS UP EXACTLY] THEN®)
(%#8To avoid synchronization problems, allow Tick _number#)
(%#6to exceed Max_tick¥®)
IF (TICK_NUMBER = MAX _TICK) THEN
BEGIN
(#Send the time-out packet®)
TRANSPORT.DEPOSIT (TIME_PKT)
END
(#®Endif#)
END (%Cycle®)
({*End Timeout_Process®)
END;

(® A-T6 %)

(*$$$ TRANS $$¢%)
(#$$$ Process to simulate Transport layer $$$t)

TYPE TRANSPORT_PROCESS = PROCESS (TO_APP: MAIL_BOX MONITOR;
EVENT: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX MONITOR;
TIMER: CLOCE_MONITOR;
TEIS NODE: BOST_ID TYPE);
(SRR R R R R R R RS E R E R R RO R RN R RN R RS
&% The transport layer handles the node's communication #
with the network, It maps it' hosts requests onto 2
% network addresses, and manages all connections. It also ®
pust assure the delivery of the messages to it's host ®
® in the order they were sent, despite possible losses in #
& the network.

Becsasssneccssssnnnesssns
ssssessanestveseBEenS

PROGRAMMER: Ronald C
DATE WRITTEN: 10/7/8
®# COPYRIGHT 1982 by Ronald C
& . .
& EXTERNAL
TYPE
PACEET_TYPE: Record structure of the network
packet. .
MAIL_BOX MONITOR: A monitor used for passing
packets between processes,
HOST _ID _TYPE: Enumerations of hosts in network.
CLOCK_MONITOR: Communication interface with the
Timeout_Process.

E R R N eassmesesns .
es s s as s ePEsBOREeSSEBREE LR R

TYPE
TRANS _STATE _TYPE: Enumerations of the states the
transport layer can be in.
IPC_TABLE TYPE: Record structure used for
connection management.
VAR '
PACKET: The network packet this process uses to
communicate with.
STATE: The current state of the transport layer.
IPC: Table and buffer used for connection
management,
R EEEE RN RN R R R R SR RN R R E R RS RN R R R R R E R RN A
TYPE
TRANS STATE _TYPE = (NOT_CONNECTED, CONNECTING,
IN_CONNECTION);
IPC_TABLE_TYPE = RECORD
LOCAL_ADDRS: HOST_ID TYPE;
REMOTE_ADDRS: HOST_ID_TYPE;
LOCAL_CONNUM: INTEGER;
REMOTE_CONNUM: INTEGER;
DATA_SEQ: DATA WINDOW_TYPE;
ACK_SEQ: DATA_WINDOW_TYPE;
WAITING_FOR_ACK: BOOLEAN;
BUFFER: PACKET_TYPE

L N B BN BN BN BN BN BN BN OB BN

(* A-TT ®)

(%$$$ TRANS $$¢%)
(#$$$ Process to simulate Transport layer $$$%)

END;
VAR
PACKET: PACKET_TYPE;
STATE: TRANS _STATE_TYPE;
IPC: IPC_TABLE_TYPE;
WAITING_FOR_ACK: BOOLEAN;

(IllInternal Procedure Sgnd_“gtlll!'illll.illlilllllillllill)
PROCEDURE SEND_NET (VAR PACKET: PACKET TYPE);
(¥Begin Send_Net#)
BEGIN
(#Set the packet direction, connection numbers,¥)
(®*and addressest)
PACKET.DIRECTION := OUTGOING;
PACKET.S_CONNUM := IPC,.LOCAL_CONNUM;
PACKET.D_CONNUM := IPC.REMOTE_CONNUM;
PACKET.SOURCE := IPC.LOCAL_ADDRS;
PACKET.DESTINATION := IPC.REMOTE ADDRS;
TO_NET.DEPOSIT (PACKET)
(*End internal procedure Send_Net#)
END;

(®*Begin Transport_Process¥)
BEGIN
(#Initialize the state to NOT_CONNECTED¥®)
STATE := NOT_CONNECTED;
(#Initialize IPC table#®)
IPC.DATA_SEQ := 0;
IPC.ACK_SEQ := 0;
IPC.LOCAL_CONNUM := 0O
IPC.WAITING_FOR_ACK :
(%#Cycle forever®)
CYCLE
(%Get a packet®)
EVENT.GET (PACKET);
(*Process the packet based on current statet®)
“CASE STATE OF
(*When [state = Not_Connected]¥®)
NOT_CONNECTED:
(#If [packet is from application layer] thent#)
IF (PACKET.DIRECTION = OUTGOING) THEN
CASE PACKET.TRANS CMD OF
(*Wwhen [Cmd = Connect]®)
CONNECT:
BEGIN
(*€In an open system, the address of the#)
(®*éremote process would have to be looked¥)
(*6up in a directory. It would consist¥®)
(¥€of a node id, and a process id.¥%)
(®Get address of destination host#)

IF (PACKET.NAME = DIRECTORY [HOST_S 1])
THEN

= FALSE;

(® A-T78 ¥)

(®#$$$ TRANS $$3%)
(#$$$ Process to simulate Transport layer $$$%)

IPC.REMOTE_ADDRS := HOST._S_1
ELSE IF (PACKET.NAME = DIRECTORY
[HOST_S_2]) THEN
IPC.REMOTE _ADDRS := HOST S 2
(%#If [no record of that host] then#)
ELSE
BEGIN
(*Send an error message to the®)
(*application progrem®)
PACKET.DIRECTION := INCOMMING;
PACEET.STATUS := PACKET.STATUS
+ [NO_SUCH_HOST];
PACKET.SESSION_CMD := BREAK;
PACKET.NAME := 'ERROR MSG NO HOST L
TO_APP.DEPOSIT (PACKET)
EKD;
(®Endif®)
(*If [we got the address] then®)
IF NOT (NC_SUCH_HOST IN P&CET.STATUS)
THEN
BEGIN
(®#Go to Connecting state®)
STATE := CONNECTING;
(*Set up the IPC table®)
IPC.BUFFER := PACKET;
IPC.LOCAL_ADDRS : 'ﬂlIS_HDDE H
IPC.LOCAL_CONNUM :
IPC. LOCAL,_CONNUM + 13
IPC.REMOTE_CONNUM := 03
(¥ Send a connection inquiry to the#®)
{®destination®)
PACKET, TRANS _CMD := INQUIRE; }
PACKET.NAME := '"TRANS INQUIRE Ve’
SEND_NET (PACKET);
(%¥Set the time-out timer in case the#)
(®inquiry is lost on the net®)
TIMER.START (4, T O ACCEPT)
END
(*Endif¥)
END;
(*When [Cmd = Disconnect]#®)
DISCONNECT:
{ ®*Disregard it®)
(®#8Should be prevented by session layer')
BEGIN
STATE := NOT_CONNECTED
END; '
(#0therwise®)

ELSE: .
(#éShould be prevented by session#)
{¥Resync on a disconnect®)

BEGIN

(* =79 ®)

(¥$$$ = TRANS $$¢%)
(*¥$$$ Process to simulate Transport layer $$$%)

(¥Send an error message to the session®)
(®*and application processes®)
PACKET.DIRECTION := INCOMMING;
PACKET.SESSION_CMD := BREAK;
PACKET.STATUS := PACKET.STATUS
+ [NO_LOCAL_CONNECTION];
PACKET.NAME := 'DISASTER L
TO_APP.DEPOSIT (PACKET)

END
END (#CASE®)
(®*Else from net®)
ELSE
CASE PACKET.TRANS CMD OF
(¥When [Cmd = Inquire]¥)
INQUIRE:
BEGIN
(®Go into In Connection state#)
STATE := IN_CONNECTION;
(#Set up the IPC tablef®)
IPC.REMOTE_ADDRS := PACKET.SOURCE;
IPC.LOCAL_ADDRS := THIS_NODE;
IPC.LOCAL_CONNUM := IPC.LOCAL_CONNUM + 1;
IPC,REMOTE _CONNUM := PACKET,.S _CONNUM;
(®#Pass up piggy-backed messages®)
PACKET.NAME := 'GOT AN INQUIRE i
TO_APP.DEPOSIT (PACKET);
(#Send an acceptance to the source of the¥)
(*inquiry®*)
PACKET.TRANS CMD := ACCEPT;
PACKET.NAME := 'ACCEPTANCE s
SEND_NET (PACKET)
END;
" (*When [Cmd = Disconnect]®)
DISCONKECT:
(*Disregard it¥)
(*&Should be prevented by session layer®)
BEGIN
STATE := NOT_CONNECTED
END;
{*When [Cmd = Time out]®)
T _O_ACCEPT, T_0O _DATA_ACK:
(*Disregard it®)
(#68May be caused by possible delays in¥)
(¥éreceiving the time-outs®)
BEGIN '
STATE := NOT_CONRECTED
END;
(®*0therwise®)
ELSE:
BEGIN
(¥Send an error message and a disconnect¥®)
(*to the source of the problem®)

(* 4-80 ®)

(¥$$$ TRANS 3%)
(#$$$ Process to simulate Transport layer $$$%)

(*6€Should be prevented by protocol®)
PACKET.DIRECTION := OUTGOING;
PACKET.TRANS CMD := DISCONNECT;
PACKET, STATUS := PACKET.STATUS
+ [NO_REMDOTE_CONNECTION];
PACKET.DESTINATION := PACKET.SOURCE;
PACKET.SOURCE := THIS NODE;
PACKET.NAME := 'DISASTER L
TO_NET.DEPOSIT (PACKET)

END
END(®CASE®) ;
(®Endif#)
(¥When [State = Connectingl®)
CONNECTING:
(#If [packet is from the application layer] then#)
IF (PACKET.DIRECTION = OUTGOING) THEN
(#@Should be prevented by session®)
{%Resync on a disconnect®)
BEGIN
PACKET.DIRECTION := INCOMMING;
PACKET.SESSION_CMD := BREAK;
PACKET.STATUS := PACKET.STATUS
+ [HO_LOCAL_CG&HECIIOH];
PACKET.NAME := 'DISASTER b
TO_APP.DEPOSIT (PACKET)
END
(®Else from net®)
ELSE
CASE PACKET,.TRANS CMD OF
(*When [Cmd = Accept]®)
ACCEPT:
BEGIN
(¥*If [accept matches our regquest] then¥)
IF (PACKET.SOURCE = IPC.REMOTE ADDRS)
& (PACKET.D_CONNUM = IPC.LOCAL_CONNUM)
THEN
BEGIN

(#Turn off the time-out#®)
TIMER.STOP;

(®*Go to In_Connection statet)
STATE := IN_CONNECTION;

(®*Complete the IPC table®)
IPC.REMOTE_CONNUM := PACKET.S_CONNUM
END

{(®*Else a bad accept®)
ELSE

(#68Should be prevented by session®)

(¥6unless a node crashes®)

(®#Resync on disconnect®)
BEGIN
PACKET.DIRECTION := OUTGOING;
PACKET.SESSION_CMD := BREAK;

(% A-81 ¥)

('$$¥ TRANS $$¢%)

(®*$$$ Process to simulate Transport layer $$$%)

PACKET.TRANS_CMD := DISCONNECT;
PACEET.STATUS := PACKET.STATUS
+ [NO_REMOTE_CONNECTION];
PACKET.S_CONNUM := IPC.LOCAL_ CONNUM;
PACEET.DESTINATION := PACKET.SCURCE;
PACKET.SOURCE := THIS NODE;
PACKET.NAME := 'DISASTER 13
TO_NET.DEPOSIT (PACKET)
END
(¥*Endif®)
END;
(*When [Cmd = Disconnect]#)
DISCONNECT:
BEGIN
(®€It only needs to be from the right#)
(#€address too be taken seriously®)
(®If [packet is from right address] then%*)
IF (PACKET.SOURCE = IPC.HREMOTE_ADDRS)
THEN
BEGIN
(#Turn off the time-out®)
TIMER.STOP;
(®*Notify the session and application¥)
(®layers®)
PACEKET,.NAME := 'RECEIVED DISCONNECT °!;
PACKET.SESSION_CMD := BREAK;
TQ_APP.DEPOSIT (PACKET);
(%Go to Not_Connected state®)
STATE := NOT_CONHNECTED
END
(#Else®)
ELSE
(*Disregard it#®)
BEGIN
STATE := CONNECTING
END
(®Endif®)
END;
(¥When [Cmd = Time-out Accept]®)
T O ACCEPT:
BEGIN
(#Send another inquiry%)
PACKET := IPC.BUFFER;
PACKET.TRANS CMD := INQUIRE;
PACKET.NAME := "ANOTHER INQUIRY ts
SEND_NET (PACKET);
(®Start the timer again®)
TIMER.START (4, T_O_ACCEPT)
END;
(*When [Cmd = Time-out Data Ack]¥®)
T_O DATA_ACK:
(*Disregard it%)

(*# A-82 ®)

(%8¢ TRANS $$¢%)
(*#$$$ Process to simulate Transport layer $$$%)

BEGIN

STATE := CONNECTING

END;

(#0therwise®)
ELSE:
(¥*Resync on disconnect¥)

BEGIN

PACEET.DIRECTION := QUTGOING;

PACKET.TRANS CMD := DISCONKRECT;

PACKET, SESSION_CMD := BREAK;

PACKET.STATUS := PACEET.STATUS

+ [NO_REMOTE CONNECTION];

PACKET.S_CONNUM := IPC.LOCAL_CONNUM;

PACKET.DESTINATION := PACKET.SOURCE;

PACEET.SOURCE := THIS NODE;

PACKET.NAME := 'DISASTER '

TO_NET.DEPOSIT (PACKET)

END

END(®#CASE®);
(*Endif#®)
(*When [State = In_Connection]®)
IN_CONNECTION:
(®*If [packet is from the application layer] then#)
IF (PACEKET.DIRECTION = CUTGOING) THEN
CASE PACKET,TRANS CMD OF
(*When [Cmd = Disconnect]®)
DISCONNECT:

BEGIN -

{(%Go to Not_Connected state®)

STATE := NOT_CONNECTED;
(*Turn off the time-out®)

TIMER. STOP;

(®*Re-set the IPC table®)
- IPC.DATA_SEQ := 03

IPC.ACK_SEQ := 0;

IPC.WAITING_FOR_ACK := FALSE;
(#@There is currently nothing in this¥®)
(*€éprotocol to insure the disconnect#®)
(®#8command reaches the destinationt®)
(®Send the disconnect®)

PACKET.NAME := 'DISCONNECTING YOU '

SEND_NET (PACKET)

END;

(*When [Cmd = Data transfer]®)
DATA_XFER;:

BEGIN
(#Set the sequence number of the packet¥)
(*éfor end to end protocol®)

PACKET.DATA_SEQ := IPC.DATA SEQ;

IPC.WAITIRG_FOR_Af := TRUE;

(#Send the packet and start a time-out®)

PACKET.NAME := 'DATA TRANSFER '

(* A-83 ®)

(¥$$$ TRANS $$¢%)
(®#$$¢$ Process to simulate Transport layer $$$%)

IPC.BUFFER := PACKET;
SEND_NET (PACKET); .
TIMER.START (4, T_O_DATA_ACK)
END;
(%0therwise®)
ELSE:
{(®Resync on disconnect®)
BEGIN
TIMER. STOP;
PACKET.SESSION_CMD := BREAK;
PACEET.STATUS := PACKET.STATUS
+ [CONNECTION_BROKEN];
PACKET.DIRECTION := INCOMMING;
PACEET.NAME := *'DISASTER 13
TO_APP.DEPOSIT (PACKET):;
PACKET.TRANS CMD := DISCONNECT;
SEND_NET (PACKET);
STATE := ROT_CONNECTED
, END
END{ #CASE®)
(¥Else from net®)
ELSE
CASE PACKET.TRANS CMD OF
(*When [Cmd = Disconnect]#)
DISCONNECT:
(#@It need only come from the right#®)
(#6address®)
BEGIN
(#*If [packet is from right address] then®)
IF (PACKET.SOURCE = IPC.REMOTE ADDRS)
THEN
' BEGIN
_ (®#Turn off the time-out®)
TIMER,.STQP;
(*Go to Not_Connected state#®)
STATE := NOT_CONNECTED;
(¥Re-set the IPC table®)
IPC.DATA SEQ := 0;
IPC.ACE_SEQ := 0;
IPC.WAITING_FOR_ACK := FALSE;
(®#Pass up piggy-backed messages®)
PACKET.NAME := 'WAS DISCONNECTED L
TO_APP.DEPOSIT (PACKET)
END
(*Else®)
ELSE
(®*Disregard it#®)
BEGIN
STATE := IN_CONHECTION
.
(¥Endif®)
END;

(* 4-84 *)

(®$$$ TRANS $$¢%)
(#$$$ Process to simulate Transport layer $$$%)

(%When [Cmd = Inquire]®)
INQUIRE:
(®#@This protocol can currently handle#)
(*6only one connection at a time®)
BEGIN
(®If [not re-transmission from peer]¥)
(thent®)
IF (PACKET.S_CONNUM <> IPC.REMOTE_CONNUM)
OR (PACKET.SOURCE <> IPC.REMOTE_ADDRS)

THEN
BEGIN
(®*Disconnect them®)
PACKET.DIRECTION := OUTGOING;
PACKET.TRANS _CMD := DISCONNECT;

PACKET.DESTINATION := PACKET.SOURCE;
PACKET,.SOURCE := THIS_NODE;
PACKET.NAME := *'CAN NOT TALK TO IQU ';
PACKET.STATUS := PACKET.STATUS
+ [BUSY];
TO_NET,DEPOSIT (PACKET)
END
(®*Else®)
ELSE
BEGIN
(*@Assumes the last thing sent#)
(%éwas an Accept®)
PACKET,. TRANS CMD := ACCEPT;
(*Re=-transmit the last packet sent#)
PACKET.NAME := 'ANOTHER ACCEPT 4
SEND_NET (PACKET)
END
(*Endif#)
END;
(*When [Cmd = Data _Xfer]®)
DATA_XFER:
BEGIN
(®#1If [Packet is from partner] then¥)
IF (PACKET.SOURCE = IPC.REMOTE_ADDRS)
& (PACKET.S _CONNUM = IPC.REMOTE_CONNUM)
& (PACKET.D_CONNUM = IPC.LOCAL_CONNUM)
THEN
BEGIN
(*If [Packet has correct sequence]then#®)
IF (PACEET.DATA SEQ = IPC,ACE_SEQ) AND
{NOT IPC,WAITING_FOR_ACK) THEN
BEGIN
(*Increment the Ack sequence num¥)
IPC.ACK _SEQ := (IPC,ACE_SEQ+1)
MOD 2;
(*Send the packet up®)
PACEET.NAME :=
*DATA RECEIVED ';

(* A-85 ®)

(#$$¢ TRANS $$8%)
(#$$$ Process to simulate Transport layer $$$%)

TO_APP.DEPOSIT (PACKET)
END;
(®Endif#)

IF (NOT IPC.WAITING_FOR_ACK) OR

(PACKET.DATA_SEQ <> IPC.ACK_SEQ) THEN
BEGIN

(#Send back an acknowlegment®)
PACKET.TRANS _CMD := DATA_ACK;
PACKET.STATUS := [];
PACKET.TEXT :=
]

PACKET.NAME :=
'DATA ACK L
PACKET. PRIORITY := HIGH_PRI;
PACKET.SECURITY := PUBLIC;
SEND_NET (PACKET)
END
(®ENDIF%®)
END
(#*Else an illegal packet®)
ELSE
(*Wipe out connection that is sendingt®)
(®data illegaly so it won't keep®)
(*timing out#®)
BEGIN
PACKET.DIRECTION := OUTGOING;
PACKET.TRANS CMD := DISCONNECT;
PACEKET.DESTINATION := PACEET.SOURCE;
PACKET.SOURCE := THIS_NODE;
PACEET.NAME := 'CANT TALK TO YOU ts
TQ_NET.DEPOSIT (PACEET)
END
(¥Endif®)
END;
(#When [Cmd = Data Acknolegment]®)
DATA_ACK:
BEGIN)
(%If [packet is from partner] then®)
IF (PACKET.SOURCE = IPC.REMOTE_ADDRS)
& (PACKET.S CONRUM = IPC.REMOTE_CONNUM)
& (PACKET.D_CONNUM = IPC.LOCAL_CONNUM)
& (PACKET.DATA SEQ = IPC.DATA_SEQ) THEN
BEGIN
(#Turn off time-out®)
TIMER, STOP;
(®*Increment the IPC data sequence no.%®)
IPC.DATA SEQ := (IPC.DATA SEQ+1)
MOD 2; .
IPC.WAITING_FOR_ACK := FALSE;
(®*Unblock the application processt®)
PACKET.SESSION_CMD := IMMEDIATE;
PACKET.NAME := 'RECEIVED AN ACK s

(% A-86 *)

(®$$$ TRANS $353%)
(®$$$ Process to simulate Transport layer $$$¢)

TO_APP.DEPOSIT (PACKET)
ERD
(®Endif¥)
END;
{*¥hen [Cmd = Time out data ack]®)
T_O DATA_ACK:
BEGIN
(#Retransmit the last packet®)
PACKET := IPC.BUFFER;
PACKET.NAME := 'DIDNT GET ACE REXMIT';
SEND_NET (PACKET);
(®*Re-start the time-out®)
TIMER.START (4, T_O DATA ACK)
END;
(®#*0therwise#)
ELSE:
BEGIN
{®DISREGARD IT#)
STATE := IN_CONNECTION
END
END(®CASE®)
(*Endif#)
END(#CASE#®)
(®End cycle#®)
END
(*End Transport Process¥®)
END;

(* 2-87 ¥)

(%$$$ BADNODE $$$%)
(#$$$ Process to simulate data loss in the network $$$‘)

TYPE BAD_NODE_PROCESS = PROCESS (EVENT: MAIL_BOX_MONITOR;

, NEXT_NODE: MAIL_BOX_MONITOR);
(SRR R RS RNEER ERE E RN F R RN RSN R RN EE R R R E RN E R B
& - BAD NODE_PROCESS simulates a faulty node in a local E
% area network, resulting in network packets being lost.

Bosrosscesnssae . SssEEB eI EEOEOEPOEEROEOBRN
...l....I..l......'.“"..."....III..-.

& Programmer: Ronald C. Albury
* Date Written: 10/11/82
¢ Copyright 1982 by Ronald C

[E R RN NN] [ERE R R R
HE- -0 -

Albury

L]
I EEEE R NEEE R
enscsesssnssee

(1]
ae
1]
L 1]
L 1]

s d s EBDASIENEEBEBE SRS
. essas e

EXTERNAL
TYPE
MAIL_BOX MONITOR: A monitor used for passing
network packets between processes,
PACKET _TYPE: Record structure of the network
packet.

(1]
(1]
(1]
*e
(1]
(1]
(1]
(1]
(1]

-

.

L

-
ae
L]

|

LOSS_FREQ: The frequency with which this node
looses packets.
VAR
PACKET: The network used by this process to
communicate
SKIP: An integer used to determine when a packet
should ba lost

PABMTEBS
EVENT: The monitor used by this process to recieve
packets from other nodes.
NEXT_NODE: The monitor used by this process to send
packets to other nodes.
R R RN R FEE F R R RN R R R R R R N R R E R RN E R RN R FE R RN NG R RN
CONST
LOSS_FREQ =
VAR
PACKET: PACKET TYFE;
SKIP: INTEGER;

st oot v o W d ook Bk M e o e o o o W 3 W MR R o MR W

]
®
#
#
®
.
*
s
]
*
®
.
. 8
'
CONST *
&
"
]
%
'
%
s
.8
“a
&
.
%
&
)

(*Begin Bad_Node process¥)
BEGIN
SKIP := 03
(®Cycle forever®)
CYCLE
(®Get a packet®)
EVENT.GET (PACKET);
SKIP := (SKIP+1) MOD LOSS_FREQ;
(%1If [this one is not lost] then#)
IF (SKIP <> 0) THEN
BEGIN
(#Send it to the next node¥)
NEXT_NODE.DEPOSIT (PACKET)

(® A-88 #)

(*$$$ BADNODE §$4%)
(#$$$ Process to simulate data loss in the network $$4%)

END
(ELSE BREAEPNT (80)€¥)
(®*Endif#®)
(#*End cycle®)
END
(#*End Bad_Node process#®)
END;

(% A-89 ¥)

(*$$$ WORKER4 $$$%)
(#$$$ Netld Worker application process $$$%)

TYPE WOREER_PROCESS = PROCESS(CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX MONITOR;
: MAIL_BOX MONITOR);
(BRSNS E R AR R RN R RN R R EE RO RN R R R R R RN
® The WOREKER_PROCESS is an applicaticn layer process that #

& transfers remote files to the operator abnsole. &

'::::::::::::::............:::
% PROGRAMMER: RON ALBURY

& DATE WRITTEN: 6/28/82

& COMPUTER: INTERDATA 8/32

* Copyright 1982 by Ronald

asseessnwos (B RN
* e

L L]
..
L]
.
.
.
.
.
.
.
(13

e s s BB RESEEES
Sl s e e aBEEESANS HHES

Becsesgsyyrasusase:
€ EXTERNAL
CONST
ERROR_MSG = Structured constant containing text
explainations of possible packet errors.
TYPE
MESSAGE_IO_CLASS = A clasa that uses supervisory
calls to handle fixed record 1/0 to specified
logical units.
PACKET_TYPE = Record structure of the network
packets.
MESSAGE_TYPE = Array of characters.,
ERROR_SVC1_TYPE = Record structure of the status
bytes from the supervisory call.
MATIL_BOX_MONITOR = A monitor used for passing
packets between processes,
RESOURCE_MONITOR = Allows only one process to
access a resource at a time,

(B EE R R B KRN N I EEE XN RN N
I EERER] R EERE R EEEREERETR]

o
(1]

assae (XX R R ERERENNE) e s . .
areae (A E R EERE R RN ce e . .

(1]
*e

=
<t b o
-]
&

STATUS _INDEX: Used to report packet errors.
OP: Used to write lines of the transfered file
to the operator.
PACEET: A network packet this process uses to
communicate with the network.
TEXT: Arrey of characters used to communicate
the operator,
OP_STATUS: Recieves the status bytes from the
MESSAGE_IOQ CLASS. Not used here, but necessary
for the calls to OP.

TP S B ARG N IRV EHAASSEESE -
l....ll.'ll.....lll.ll.l

PARAMETERS
CONSOLE: The RESOURCE_MONITOR used to reserve the
console for exclusive 1/0.
FROM_NET: The monitor used to recieve packets from
the network, bt
TO_NET: The monitor used to send packets to the net *#*
R RN R R RS R R R R AR R RN R AN RN RN RN EEEEE)
VAR

OP: MESSAGE_IO_CLASS;

LL]
s

(* 4-90 *)

(*$$$ WORKERL $84¢%)
(#$$$ Netl Worker application process $$3%)

ERROR: ERROR_CLASS;

0S: NET_IQ _CLASS;
NET_STATUS: PKT_STATUS_TYPE;
TEXT: MESSAGE_TYPE;

NAME: MESSAGE_TYFE;
OP_STATUS: ERROR_SVC1_TYPE;

(#Begin Worker process#)
BEGIN
(¥Initialize the interface to the operator®)
INIT OP;
(#Initialize network interfaces®)
INIT ERROR (CONSOLE);
INIT 0S (FROM_NET, TO_NET);
(®Cycle forever#)
CYCLE .
(®Read in session regquest®)
CONSOLE. REQUEST;
OP.WRITE (TERMINAL, 'ENTER SERVER HOST ', OP_STATUS);
OP.READ (TERMINAL, NAME, OP_STATUS);
OP.WRITE (TERMINAL, 'ENTER SERVE PASSWORD', OP_STATUS);
OP.READ (TERMINAL, TEXT, OP_STATUS);
CONSOLE.RELEASE;

(#®Request a session from the network#)
0S.MAKE_SESSION (TEXT, NAME, NET _STATUS); (&#&#)
ERROR.REPORT ('WORKER 10 *, NET_STATUS);

(%If [we connect] then#)

IF (NET_STATUS = [1) THEN
BEGIN
(%Repeat for all files desired®)
REPEAT
(®Read in the file request®)
TEXT := 'ENTER FILE ID. = ';
TEXT [18] := FIRST_FILE_ID;
TEXT [20] := LAST FILE ID;
CONSOLE. REQUEST;
OP.WRITE (TERMINAL, TEXT, OP_STATUS) ;'
OP.READ (TERMINAL, TEXT, OP_STATUS);
CORSOLE.RELEASE;

(¥Send the regquest to the servert)
0S.NET_WRITE (TEXT,IMMEDIATE, PUBLIC,NET_STATUS);
ERROR, REPORT (' WORKER 20 ' ,NET_STATUS);

(*#Transfer the file to the console®)
CONSOLE. REQUEST;

(¥*Repeat until end of file®)

REPEAT
(%Get a2 line from the network®)
0S.NET_READ (TEXT, NET_STATUS);
{®*Qutput it to the console#®)
OP.WRITE (TERMINAL, TEXT, OP_STATUS);

(*End repeat®)

UNTIL ((TEXT[1] = '/') AND (TEXT[2] = '¥'))

(% A-91 ®)

(®$$$ WORKERM $$$%)
(2$$$ Netd Worker application process 5%)

OR (SESSION_ENDING IN NET_STATUS);
CONSOLE.RELEASE;
ERROR. REPORT ("WORKER 30 ', NET_STATUS);
(*Determine if more files are desired®)
CONSOLE. REQUEST;
OP.WRITE (TERMINAL, 'MORE FILES I/N ',
OP_STATUS);
OP.READ (Mﬂ, TEXT, OP_STATUS);
CONSCLE, RELEASE
(*End repeat?®)
ONTIL (TEXT [1] = 'N');
(®*End that session®)
0S.CLEAR_SESSION (NET_STATUS);
ERROR.REPCRT ('WORKER 40 ', NET_STATUS)
END
(®Endirs®)
(*End cycle®)
(*End Worker process#)
END;

(% 292 #)

(258 SERVERY $5$3%)
(®#$$$ Netld Server application process $$4%¥)

TYPE SERVER_PROCESS = PROCESS (CONSOLE: RESOURCE_MONITOR;
FROM_NET: MAIL_BOX_MONITOR;
TO_NET: MAIL_BOX _MONITOR;
FIRST_NODE_FILE: CHAR;
LAST_NODE_FILE: CHAR);
(SRR RS RN SRR RN RN RN E R R R RN R R EER R R R SRR RRRNR RS
& The server process is an application layer process that ¥
does the disk I/0 for a remote worker process.

[R N R N N N N L Nl
E P PR NN OAN TSR eS

PROGRAMMER: RON ALBURY
DATE WRITTEN: 6/28/82
COMPUTER: IHTERDATA 8/32

S8 EAFREESESESESRTRES
4SS PF RO ADREERERS

[EEE RN N N N [KX}
R EEEEE [

E
[3

#

]

&

&

& EXTERNAL

b CONST

b FILE LU: An array of logical units that are
& subseripted with file id's, Used to look up
& logical unit of 2 requested file.

¥ TYFE

& MESSAGE_YO_CLASS = A class that uses supervisory
& calls to handle fixed record I/0 to specified
& logical units.

& PACEET_TYPE = Record structure of the network
E packets.

¥ MESSAGE _TYPE = Array of characters.

L ERROR_SVC1_TYPE = Record structure of the status
L bytes from the supervisory call.

b MAIL_BOX MONITOR = A monitor used for passing
packets between processes.

&

]

&

|

&

&

£

[]

E

]

g

&

s

2

&

£

]

[

®

[

TR R NN NN Nl IR BBl
esesoDBEES asee

DISK: Used to input lines of a disk file,

PACKET: A network packet used to communicate with
the network.

TEXT: Array of characters used for the disk 1/0.
FILE ID: The id of the file the worker process is
requesting,

VALID FILE IDS: A set of the valid id's this
process can access.

INDEX: Used in initializing Valid File_Id's
OP_STATUS: Recieves the status bytes form the
HESSAGE_IQ_CL&SS.

oW W oW e W W e W ol ol ol o sk R sk ook ol ot o ol o ok M o dR ool O o ok ok ok O OF B A av e

FROM_NET: The monitor used to recieve packets from
the network. &
TO_NET: The monitor used to send packets to the net. #
R R R RN RN NSRRI RSN R NN R R R R R R R RN RN R ER NIRRT)
VAR
DISK: MESSAGE_IC _CLASS;
0S: NET_IO_CLASS;

(® A-93 ®)

(%$$$ SERVERN $$3$%)
(#$$$ Netld Server application process $$$%)

NET_STATUS: PKT_STATUS_TYPE;
ERROR: ERROR_CLASS;

TEXT: MESSAGE_TYFE;

FILE_ID: CHAR;

VALID_FILE IDS: SET OF CHAR;
INDEX: FILE RANGE;
OP_STATUS: ERROR_SVC1_TYPE;

(*Begin Server process#®)
BEGIN
(¥Initialize the interface to the disk files#®)
INIT DISK;
INIT OS (FROM_NET, TO_NET);
INIT ERROR (CONSOLE);
{*#¥Build the set of all valid file id's at this node,.¥#)
(*For (all files at this node) do#)
FOR INDEX := FIRST NODE FILE TO LAST NODE _FILE DO (%®&#)
BEGIN
(*Remember that it is a valid id¥®)
VALID_FILE IDS := VALID_FILE IDS + [INDEX]
END;
(#Endfor#)
{#Cycle forever®#) -
CYCLE
(##Put your ears uph)
0S.NET_LISTEN (NET_STATUS);
ERROR.REPORT ('SERVER 10 t, NET_STATUS):
(®*Get the request from the net®)
OS.NET_READ (TEXT, NET_STATUS);
ERROR. REPORT ('SERVER 15 ', NET_STATUS);
FILE_ID := TEXT [1];
(*While (we still have a session) do¥)
WHILE NOT(SESSION _ENDING IN NET_STATUS) DO
BEGIN
(#If [it is a valid file id] thent¥)
IF (FILE ID IN VALID_FILE IDS) THEN
{#%Transfer the file®)
BEGIN
(®Read in a line from the disk®)
DISK.READ (FILE_LU [FILE ID], TEXT, OP_STATUS);
(*While not [end of file] do%)
WHILE (OP_STATUS.DI = 0) AND (OP_STATUS.DD = 0) DO
BEGIN
(®Send it out on the network®)
OS.NET_WRITE (TEXT, IMMEDIATE, SECRET,
NET_STATUS);
ERROR,REPORT ('SERVER 20 Yy
NET_STATUS);
(#Read in a new line from the disk file®)
DISK.READ (FILE LU [FILE ID], TEXT, OP_STATUS)
END;
(*Endwhile®)

(* =94 ®)

(®*$$$ SERVER4 $$s$®)
(%#$$$ Neth Server application process $$3$%)

(¥Rewind the disk file®)
DISK.REWIND (FILE_LU [FILE_ID], OP_STATUS);
(®*Send an EOF packet out on the network®)
OS.NET_WRITE (‘'/® ',
IMMEDIATE, PUBLIC, NET_STATUS);
ERROR.REPORT ('SERVER 30 ' NET_STATUS);
END .
(®Else (an invalid file id)%)
ELSE
(#*Send an error message¥®)
BEGIN
TEXT := '/% BAD FILEID - ';
TEXT [19] := FILE_ID;
0S.NET_WRITE (TEXT,IMMEDIATE, PUBLIC,NET_STATUS);
ERROR. REPORT ('SERVER 40 ' . NET_STATUS);
END;
(*Endif#®)
(%*Get the next request from the net¥)
0S.NET_READ (TEXT, NET_STATUS);
FILE ID := TEXT [1];
ERROR. REPORT ('SERVER 50 ', NET_STATUS)
END
(#*Endwhile®)
{¥End cycle®)
END
(*End Server®#)
END;

(® 4-95 ®)

Appendix B

STERLING'®'S

PROTOCOLS

Introduction

This appendix presents the protocol specifications of the
various layers of STERLING, describing them as finite state
automata with variables. The behaviors of these automata,
interacting with identical machines representing the peer
layers, specifies the layers' protocols.

To aid the student with de-bugging modifications to
STERLING, packet fields not essential to the automation are
included in the specifications. It must be noted, however,
that the inclusicn of these (fields defeats some of the

advantages of layering, in regards to the documentation.

B-1

-NET1 -
laver: EBLACKBOX
Initial State: BLOCKED
Packet Received (from host):
Direction: OQUTGOING
Text: <any message>
Packet Delivered (to next node):
Direction: INCOMING
Text: <{unchanged>
Resulting State: BLOCKED
Explanation:
The Blackbox receives a packet from the host, changes its

direction flag, then sends it to the next node of the

network,

B-2

-RET1 -
Laver: ELACKEBOX
Initisl State: BLOCKED
Packet Received (from prior node):
Direction: INCOMING
Text: <any message>
Packet Delivered (to host):
Direction: <unchanged>
Text: <unchanged>
Resulting State: BLOCKED
Ezplanation:

The Blackbox receives a packet from the network and

passes it up to its host.

B-3

~-NET2 =~

lLayer: PRESENTATION

Initial State: BLOCKED

Packet Received (from host):
Direction: OUTGOING
Securdity: SECRET
Text: <message with host delimiter>

Packet Delivered (to network):
Direction: <unchanged>
Security: <unchanged>
File_Format: CR_DELIM or NL_DELIM (host delimiter)

Text: <{encrypted message with host delimiter)
Resulting State: BLOCKED

Explanation:

The Presentation layer receives a packet from the
Application layer with a request for encrypted transmission.
It enorypts the message, sets the file format field to
indicate which record delimiter is used, and sends the
packet to the net. The file_format field does not have a
valid value until the field is set by the Presentation

layer.

-NET2 =~

Initial State: EBLOCKED

Packet Received (from host):
Direction: OUTGOING
sSecurdty: PUBLIC
Text: <message with host delimiter>

Packet Delivered (to network):
Direction: <{unchanged>
Security: <unchanged>
File_Format: CR_DELIM or NL_DELIM (host delimiter)

Text: <unchanged>

Resulting State: BLOCKED

Explanation:

The Presentation 1layer receives a transmission packet
from the Application layer. It sets the file format field
to indicate which record delimiter is used, and sends the
packet to the network. The file_format field does not have
a valid value until the field is set by the Presentation

layer.

B-5

-NET2-
Laver: PRESENTATION
Initial State: BLOCKED

Packet Received (from network):
Direction: INCOMING
Security: SECRET
Eile Format: CR DELIM or KL DELIM (source delimiter)
Text: <{encrypted message with source delimiter>

Packet Delivered (to host):
Direction: <unchanged>
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimimiter)
Text: <{message with host delimiter>

Resulting State: BLOCKED

Explanation:

The Presentation layer receives a packet that is 1labeled
secret from the mnetwork. It decrypts the message, makes
sure the record delimiter is compatible with its host, and

sends the message to the Application layer.

B-6

-NET2a-
Laver: PRESENTATION
Ipnitial State: BLOCKED

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
Eile Format: CR DELIM or NL DELIM (source delimiter)
Text: <message with source delimiter>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File Format: CR_DELIM or NL_DELIM (host delimiter)

Text: <message with host delimiter>
Resulting State: BLOCKED

Explanation:
The Presentation layer receives a packet from the
network, It makes sure the record delimiter is compatible

with its host, and sends the message to the Application

layer.

B-7

-NETS3 -

doitial State: ACTIVE

Betwork Call: MNET LISTEN

Packet Delivered (to network):
Direction: OUTGOING
Security: PUBLIC
Priority: BIGH_PRI
Session Cmd: LISTEN

Text: '
Resulting State BLOCKED
Explanation:
The Application layer issues a packet commanding the

Session layer to 1listen for a session request from the

network,

B-8

«-NET3~

Joitial State: ACTIVE

Network Call: MAEE SESSION

Packet Delivered (to network):
Direction: OUTGOING
Security: PUBLIC
Priority: HIGH_ PRI
Session Cmd: ESTABLISH
Status: []

Text: <{destination password>

Resulting State: BLOCKED

Explanation:

The Application layer issues a packet commanding the

Session layer to request a session on the network.

B-%

-NET3 -

Laver: APPLICATION

dnitial State: ACTIVE

Network Call: CLEAR SESSION

Packet Delivered (to network):
Direction: OUTGOING
Security: PUBLIC
Priority: LOW_PRI
Session Cmd: BREAK
Status: []

Text: ' !

Resulting State: BLOCKED

Explanation:

The Application layer issues a packet commanding the

Session layer to terminate its session.

B=-10

-«-NET3 =~
Laver: APPLICATION
dnitial State: ACIIVE
Network Call: HNET READ
Resulting State: BLOCKED
Explanation:

The Application layer is attempting to receive a packet

from its session.

B-11

-NET3 -
laver: APPLICATION
Anitial State: ACTIVE
Hetwork Call: HNEI WRITE

Packet Delivered (to network):
Direction: OUTGOING
Sécur:lty: SECRET or PUBLIC (application program's option)
Priority: MED_PRI
Session Cmd: IMMEDIATE, CHAIN, END_CHAIN, or ABORT_CHAIN
(application program's option)
Status: []

Text: <message with host delimiter>
. Resulting State: BLOCKED
Explanation:

The Application layer is attempting to send a message on

the network.

B=-12

-NET3 -
Laver; SESSION
Initial State; NO SESSION

Packet Received (from host):
Direction: OUTGOING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH PRI
Session Cmd: LISTEN
Status: []

Text: ! t
Resulting State: LISTENING

Explanation:

The Session lay.er receives a packet from the Application
layer esking it to 1listen for & session request., The
Session layer goes into a listening state and waits for a

request to arrive.

B-13

-NET3 -

Laver: SESSION

Anitial State: NO SESSION

Packet Received (from host):
Direction: OUTGOING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH_ PRI
Session Cmd: ESTABLISH
Status: []

Text: <{destination password>

Packet Delivered (to network):
Direction: <unchanged>
Security: <uncl;anged)
File_Format: <unchanged>
Priority: <unchanged>
Session _Cmd: REQUEST
Status: <unchanged>
Text: <unchanged>

Resulting State: REQUESTING

Explanation:

The Session layer recelves a packet from the Application

B-14

-NET3 -

layer asking it to establish a session with a remote site.

The Session layer goes into the requesting state and sends a

request onto the network,

B-15

-NETS3 -
Laver: SESSION
AInitial State: REQUESTING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH_PRI
Session Cmd: START
Status: []

Text: <{source password>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unc}:_xanged>
File_Format: <{unchanged>
Priority: <unchanged>
Session _Cmd: <unchanged>
Status: <unchanged>

Text: <unchanged>
Resulting State: IN_SESSION

Explanation:

The Session layer receives a start signal from its peer

B-16

-NET3 -

session., The Session layer sends this packet to its -
Application layer, unblocking it, and goes to an in-session
state. The file _format and text have these values because

the packet was echoed by the source's Session layer.

B=-17

-NET3~

Laver: SESSION

dnitisl State: REQUESTING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH PRI
Session Cmd: BREAK
Status: + [BAD PASSWORD]

Text: <{incorrect password>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: <unchanged>
Status: + [BAD _PASSWORD, SESSION_ENDING]

Text: <incorrect password>

Resulting State: NO_SESSION

Explanation:

The Session layer receives a packet from its peer

B-18

-NETS3=-

rejecting its request .for a session. It resumes a
no-session state and sends the rejection packet to its
Application layer to unblock it. The file format and text
have these values because the packet was echoed by the

source's Session layer.

B-19

-NETS3 -

Initial State: LISTENING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH_PRI
Session Cmd: REQUEST
Status: []

Iext: <host password>

Packet Delivered (to host):
Direction: <{unchanged>
Security: <unchanged>
File_Format: <unchanged>
Priority: <unchanged>
Session Cmd: START
Status: <unchanged>
Text: <{unchanged>

Packet Delivered (to network):
Direction: QOUTGOING
Security: <unchanged>

File_Format: <{unchanged>

B-20

-NET3 -

Priority: <unchanged>
Session Cmd: START
Status: <unchanged>

Text: <unchanged>
Resulting State: IN_SESSION

Explanation:

The Session layer, while waiting for a session request,
receives one with a valid password. It sends back a session
start packet to its peer session, and a _eopy of the packet
to its Application layer to unblock it. The Session layer

is now in-session.

B=21

-NETS3 -

Laver: SESSION

Anitial State: LISTENING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: EIGH_ PRI
Sesslon Cmd: REQUEST
Status: []
Iext: <incorrect password>

Packet Delivered (to network):
Direction: OUTGOING
Security: <unchanged>
File_Format: <unchanged>
Priority: <unchanged>
Session Cmd: BREAK
Status: + [BAD_PASSWORD]

Text: <unchanged>

Resulting State: LISTENING

Explanation:

The Session layer, while waiting for a session request,

B-22

-NET3 =

receives cne with an invalid password. It sends back a

rejection packet to the originator of the request and

remains in a listening state.

B-23

-NET3 -

dnitial State: 1IN SESSION

Packet Received (from host):
Direction: OUTGOING
Security: SECRET or PUBLIC (application program's option)
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: MED_PRI
Session Cmd: IMMEDIATE, CHAIN, END CHAIN, or ABORT CHAIN
Status: []

Text: <any message>

Packet Deiivered (to network):
Direction: <unchanged>
Security: <unchanged>
File_Format: <unchanged>
Priority: <unchanged>
Session _Cmd: <unchanged>
Status: <unchanged>

Text: <unchanged>

Packet Delivered (to host):
Direction: INCOMING
Security: <unchanged>
File Formmt: <unchanged>

B-24

-NET3=-

Priority: <unchanged>

Session_Cmd: <unchanged>

Status: <unchanged>

Text: <unchanged>
Resulting State: IN_SESSION

Explanation:

The Session layer receives a data packet from the
Application layer. It transparently passes thé packet to
e ‘vabunric Knd. BepsE copy back to the Application layer

indicating a sucessful transfer.

B=-25

-NET3 -

dnitial State: IN SESSION

Packet Received (from host):
Direction: QUTGOING
Security: SECRET or PUBLIC (application program's option)
File Format: CR_DELIM or NI_DELIM (host delﬁite:')
Priority: LOW_PRI
Session Cmd: BREAK
Status: []

Text: ! '

Packet Delivered (to network):
Direction: <unchanged>
Security: <unchanged)
File_Format: <unchanged>
Priority: <unchanged>
Session _Cmd: <unchanged>
Status: <unchanged>

Text: <unchanged>

Packet Delivered (to host):
Direction: INCOMING
Security: <unchanged>

File Format: <unchanged>

B=-26

-NETS3 -

Priority: <unchanged>
Session_Cmd: <unchanged>
Status: + [SESSION_ENDING]

Text: <unchanged>

Resulting State: NO_SESSION

Explanation:

The Session layer receives a command from the Application
layer to terminate the session. It sends the termination
command on the network to its peer session and sends a copy
of the packet to the Application layer to indicate a

sucessful termination.

B-27

-NETS3 -
Laver: SESSION
Jnitial State: IN SESSION

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: LOW_PRI
Session Cmd: BREAK
Status: []

Text: ! }

Packets Delivered (to host from chain buffer):
Direction: INCOMING
Security: SECRET or PUBLIC (sender's option)
File Format: Cﬁ_DELIH or NL_DELIM (source delimiter) A
Priority: MED_PRI |
Session _Cmd: CHAIN
Status: []

Text: <any message>

Packet Delivered (to host):
Direction: <unchanged)
Security: <unchanged>
File Format: <unchanged>

B-28

-NETS3 -

Priority: <unchanged>
Status: + [SESSION_ENDING}

Text: <unchanged>

Explanation:

The Session layer receives a packet from the network
commanding it to terminate the session. It sends all
messages it had stored in the chain buffer to the
Application layer, then follows them with the termination

packet.

B=-29

-NETS3=-
Laver: SESSION
Initial State: IN SESSION

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: BIGH PRI
Sessiopn Cmd: REQUEST
Status: []

Text: <host password>

Packet Delivered (to network):
Direction: CUTGOING

" Security: <unchanged>
Pile_f‘omat: <unchanged>
Priority: <unchanged>
Session _Cmd: BREAK
Status: + [BUSY]

Text: <unchanged>
Resulting State: IN_SESSION

Explanation:

The Session layer is already involved in a session when

B-30

-NET3 -

it receives a request for a session from another process.

It refuses the request and remains in its original session,

B=31

-NET3 -

Laver: SESSION

Initial State: IN SESSION

Packet Received (from network):
Direction: INCOMING
Security: SECRET or PUBLIC (sender's option)
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: MED_PRI
Session Cmd: IMMEDIATE
Status: []

Text: <any message>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File_Format: <unchanged>
Priority: <unchanged>
Session Cmd: <unchanged>
Status: <unchanged>

Text: <unchanged>

Resulting State: IN_SESSION

Explanation:

The layer receives a data transfer packet from the

B-32

-NETS3 -

network with an IMMEDIATE command and transparently forwards

it to the Application layer.

B-33

-NET3 -

Anitdal State: IN SESSION

Packet Received (from network):
Direction: INCOMING
Security: SECRET or PUBLIC (=sender's option)
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: MED_PRI
sSession Cmd: CHAIN
Status: []

Text: <{any message>
Resulting State: IN_SESSICN
Explanation:

The layer receives a data packet with a command that it

be chained, and it quarantines the packet in a buffer,

B-34

-NET3=-
laver: SESSION
dnitial State: IN SESSION

Packet Received (from network):
Direction: INCOMING
Security: SECRET or PUBLIC (sender's option)
File Format: CR_DE.;IH or NL_DELIM (source delimiter)
Priority: MED_PRI
Session Cmd: END CHAIN
Status: []

Text: <any message>

Packets Delivered (to host from chain buffer):
Direction: INCOMING
Security: SECRET or PUBLIC (sender's option)
File_Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: MED_PRI
Session_Cmd: CHAIN
Status: []

Text: <any message>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File Format: <unchanged>

B-35

-NETS3 -

Priority: <unchanged>
Status: <unchanged>

Text: <unchanged>

Resulting State: IN_SESSION

Explanation:
The layer receives a data transfer packet with an
END_CHAIN command. It sends all messages in the chain

buffer to the Application layer and follows them with the

new packet.

B-36

-NET3 -

Initial State: IN SESSION

Packet Received (from network):
Direction: INCOMING
Security: SECRET or PUBLIC (sender's option)
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: MED PRI
Session Cmd: ABORT CHAIN
Status: []

Text: <any message>
Resulting State: IN_SESSION
Explanation:
The layer receives a packet from the network with an

ABORT_CHAIN command. It emptys the chain buffer and

discards the packet.

B=-37

-NETY4 -

laver: APPLICATION (revised)

Anitizl State: ACTIVE

Hetwork Call: MAKE SESSION

Packet Delivered (to network):
Direction: OUTGOING
Security: PUBLIC
Priority: HIGH PRI
Session Cmd: ESTABLISH
Name: <destination name>
Status: []

Text: <{destination password>

Resulting State: BLOCKED

Explanation:

The Application layer issues a packet commanding the
Session layer to request a session on the network. The name
of the destination is included to allow the Transport layer

to look up the destination address.

B-38

-NETY4 -

Laver: SESSION (revised)

Initial State: NO SESSION

Packet Received (from host):
Direction: OUTGOING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH PRI
Session Cmd: ESTABLISH
Name: <destination name)>
Status: []

Text: {destination password>

Packet Delivered (to network):
Direction: <un9hanged>
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: REQUEST
Name: <unchanged>
Trans_Cmd: CONNECT
Status: <unchanged>

Text: <unchanged>

Resulting State: REQUESTING

B-39

-NETYH -

Explanation:

The Session layer receives a packet from the Application
layer asking it to establish a session with a remote site.
The Session layer goes into the requesting state and
commands the 7Transport layer to make a connection and
deliver the request across the network. The trans cmd field
does not have a valid value until it is set by the Session

layer.

B-40

-NETY -

Layver: SESSION (revised)

Initial State: LISTENING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH_FRI
Session Cmd: REQUEST
Name: 'GOT AN INQUIRE '
Status: []

Text: <host password>

Packet Delivered (to network):
Direction: OUTGOING
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: START
Name: 'SESSION STARTS L
Trans_Cmd: DATA_XFER
Status: <unchanged>

Text: <unchanged>

Resulting State: IN_SESSION

B~11

-NETY -

Explanation:

The Session layer, while waiting for a session request,
receives one with a valid password. It commands the
Transport layer to deliver a session start packet to its
peer session. The Application layer will be unblocked by
the Transport layer's ACK. The Session layer is now
in-session. The trans cmd field does not have a valid value

until it is set by the Session layer.

B-42

-NETY -
Laver: SESSION (revised)
Initial State: LISIENING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH_PRI |
Seasion Cnd: REQUEST
Name: 'GOT AN INQUIRE £
Status: []

Jext: <incorrect password>

Packet Delivered (to network):
Direction: wmm
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: BREAK
Name: 'BAD PASSWORD '
Trans_Cnd: DISCONNECT ‘
Status: + [BAD_PASSWORD]

Text: <unchanged>
Resulting State: LISTENING

B-43

-NETY -

Explanation:

The Session layer, while waiting for a session request,
receives one with =a invalid password. It commands the
Transport layer to deliver a rejection packet to its peer

session and remains in a listening state.

B~

-NETSY -

Laver: SESSION (revised)

dnitial State: IN SESSION

Packet Received (from host):
Direction: OUTGOING
Security: SECRET or PUBLIC (application program's option)
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: MED_FRI
Session Cnd: IMMEDIATE, CHAIN, END CHAIN, or ABORT CHAIN
Name: 'APFLI CMD WRITE 4
Status: []

Text: <any message>

Packet Delivered (to network):
Direction: <un¢_zha.nged>
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session Cmd: <unchanged>
Name: <unchanged>
Trans_Cmd: DATA_XFER
Status: <unchanged>

Text: <unchanged>

Resulting State: IN_SESSION

B-45

-NETHY -

Explanation:

The Session layer receives a data packet from the
Application layer. It transparently passes the packet to
the Transport layer as a data transfer. The Transport

layer's ACK will unblock the Application layer.

B-46

-NETY4 -
Laver: SESSION (revised)
Initial State: IN SESSION

Packet Received (from host):
Direction: OUTGOING
Security: SECRET or PUBLIC (application program's option)
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: LOW_PRI
Session Cmd: BREAK
Name: 'APPLI CMD CLEAR SESS!
Status: []

Text: ? '

Packet Delivered (to network):
Direction: <unchanged>
Security: <unchanged)>
File Format: <unchanged>
Priority: <unchanged>
Name: 'SESSION ENDING 1
Session Cmd: BREAK
Trans_Cmd: DISCONNECT
Status: <unchanged>

Text: <unchanged>
Packet Delivered (to host):

B-47

-NETHY -

Direction: INCOMIKG
Security: <unchanged>
File_Format: <unchanged>
Priority: <unchanged>

Name: 'SESSION ENDING '

Status: + [SESSION_ENDING]

Text: <unchanged>
Resulting State: NO_SESSION

Explanation:

The Session layer receives a command from the Application
layer to terminate the session. It sends the termination
command on the network to its peer session piggy-backed on a
Transport disconnect and sends a copy of the packet to the

. Application layer to indicate a sucessful termination.

-NETHY -

Laver: IRANSPORT

Anitial State: NOT CONNECTED

Packet Received (from host):
Direction: OUTGOING
.Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH PRI
Session Cmd: REQUEST
HName: <destipation name>
Irans Cmd: CONNECT
Status: []

Text: <{destination password>

Packet Delivered (t.o network):
Direction: <unchaged>
_Seeurity: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: <unchanged>
Name: 'TRANS INQUIRE $
Trans_Cmd: INQUIRE
S _Connum: <local connection number>
D_Connum: O

Source: <host address>

B-49

-NETY -

Destination: <remote address>
Status: <unchanged>

Text: <unchanged>

Resulting State: CONNECTING

Explanation:

The Transport layer receives a command to establish a
connection with a remote site. It sets up a connection
management data structure and issues the inquiry to the
remote site. The destination's connection number is not yet

known, so the d_connum field has no meaning.

B-50

-NETHY4 -

dnitial State: NOT CONNECTED

Packet Received (from host):
Direction: OUTGOING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH_PRI
Session Cmd: REQUEST
HName: <illegal name>
Irans Cmd: CONNECT
Status: []

Text: <{destination password>

Packet Delivered (_to host):
Direction: INCOMING
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session Cmd: BREAK
Name: 'ERROR MSG NO HOST !
Status: + [NO_SUCH_HOST]

Text: <unchanged>
Resulting State: NOT_CONNECTED

B-51

-NETY4 -

Explanation:

The Transport layer receives a command to establish a
connection with a remote site. It is unable to find an
address for the destination, so it sends back an error

packet.

B=52

-NETH4 -

Initial State: NOT CONNECTED

Packet Received (from network):
Direction: INCOMING

Security: PUBLIC

File Format: CR_DELIM or NL_DELIM (source delimiter)

Priority: HIGH PRI
Session _Cmd: REQUEST
Neme: 'TRANS INQUIRE '
or 'ANOTHER INQUIRY L
Irans Cmd: INQUIRE
S_Connum: <source connection number>
D_Connum: 0
Source: <remote address>
Destination: <host address>
Status: []

Text: <host password>

Packet Delivered (to network):
Direction: OUTGOING
Security: <unchanged>
File_Format: <unchanged)>
Priority: <unchanged>

Session Cmd: <unchanged>

B-53

-NETH -

Name: "ACCEPTANCE !
Trans_Cmd: ACCEPT

S_Connum: <local connection number>
D_Connum: <remote connection number>
Source: <host address>

Destination: <remote address>
Status: <unchanged>

Text: <unchanged>

Packet Delivered (to host):
Direction: INCOMING
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: <unchanged>
Name: 'GOT AN INQUIRE '
Status: <unchanged>

Text: <unchanged>

Resulting State: IN_CONNECTION

Explanation:
The Transport layer receives a connection inquiry. It

agrees to the connection and sends packets to the host and

to the source of the inquiry.

B-54

-NETY4 -

Laver: IRANSPORT

doitial State: CONNECTING

Packet Received (from net):
Direction: INCOMING
Security: PUBLIC
File Format: <host delimiter>
Priority: HIGH PRI
Session _Cmd: REQUEST
Name: 'ACCEPTANCE '
Irans Cmd: ACCEPT
S_Connum: <remote connection number>
D_Connum: <host connection number>
Source: <{remote address)>
Destination: <b_ost address>
Status: []

Text: <{source password>

Resulting State: IN_CONNECTION

Explanation:

The Transport layer receives a packet accepting its
connection inquiry. It completes the connection management
data structure and goes to the in-connection state. The

file format, session_cmd, and text fields have these values

B=55

-NETH -

because the packet was echoed by the source's Transport

layer.

B-56

-NETHY -

Znitial State: CONNECTING

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH PRI
Session _Cmd: REQUEST
Name: 'CAN NOT TALK TO YOU !
Irans Cmd: DISCORNECT
S _Connum: <remote connection number>
D_Connum: <host connection number>
Source: <{remote address>
Destination: <host address>
Status: []

Text: <{source password)>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session _Cmd: BREAK
Name: 'RECEIVED DISCONNECT !

B-57

-NETH -

Status: <unchanged>

Text: <unchanged>

Resulting State: NOT_CONNECTED

Explanation:

The Transport layer attempts to make a connection with a
peer layer that is already connected. It passes the
rejection packet to the host and resumes a not-connected
state. The file format and text have these values because

the packet was echoed by the source's Transport layer.

B-58

-NETH4Y -

Laver: IRANSPORT

Initial State: CONNECTING

Packet Received (from time-out):
Direction: INCOMING
Priority: HIGH PRI
Name: 'THIS IS A TIME OUT °*
Trans_Cmd: T_O_ACCEPT

Status: []

Packet Delivered (to net):
Direction: OUTGOING
Security: PUBLIC
File_Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: <unchanged>
Session _Cmd: REQUEST
Name: 'ANOTHER INQUIRY '
Trans_Cmd: INQUIRE
S_Cox;nm: <host connection number>
D_Connum: 0
Source: <host address>
Destination: <remote address>
Status: <unchanged>

Text: <{destination password>

B-59

-NETH -

Resulting State: CONNECTING

Explanation:
The Transport layer is timed out while waiting for a

response from its peer layer, so it sends another connection

inquiry.

-NETH -

dnitial State: IN CONNECTION

Packet Received (from host):
Direction: OUTGOING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: LOW_PRI |

Session _Cmd: BREAK

Name: 'SESSION ENDING L
Irans Cmd: DISCONNECT
Status: []

Text: ! +

Packet Delivered (to network):
Direction: <unchanged>
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged>
Session Cmd: <unchanged>
Neme: 'DISCONNECTING YOU
Trans_Cmd: DISCONNECT
S Connum: <host eoﬁneot:l.on number>
D_Connum: <remote connection number>

Source: <host address>

B=61

-NETY4 -

Destination: <{remote address>

Status: <{unchanged>

Text: <{unchanged>

Resulting State: Not_Connected

Explanation:

The Transport layer receives a disconnect packet from its

host and breaks the connection.

B-62

-NET) -

dnitial State: IN CONNECTION

Packet Received (from host):

Direction: OUTGOING

Security: SECRET or PUBLIC (application program's option)

File _Format: CR_DELIM or NL_DELIM (host delimiter)

Priority: HIGH PRI or MED_PRI

Session _Cmd: START, IMMEDIATE, CHAIN, END_CHAIN, or

ABORT_CHAIN

Name: 'APPLI CMD WRITE ! or "SESSION STARTS

Irans Cmd: DATA XFER
Status: []

Text: <{any message>

Packet Delivered (to net):
Direction: <unchanged>
Security: <unchanged>
File_Format: <unchanged)>
Priority: <unchanged>
Session _Cmd: <unchanged>
Name: 'DATA TRANSFER .
Trans_Cmd: <unchanged>

S_Connum: <host connection number>

D _Connum: <remote connection number)

B-63

-NETS4 -

Source: <host address>
Destination: <remote address>
Data_Seq: <current sequence number>

Status: <unchanged>
Text: <unchanged>

Resulting State: IN_CONNECTION

Explanation:
The Transport layer receives a data transfer packet from

its host and sends it on the network connection.

-NETY -

Laver: IRANSPORT

Jnitial State: IN CONNECTION

Packet Received (from network):
Direction: INCOMING
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: LOW_PRI
Session _Cmd: BREAK
Name: *DISCONNECTING YOU !
Trans_Cmd: DISCONNECT
-s_conmm: <{remote connection number>
D_Connum: <host connection number>
Soureek: <{remote address>
Destination: <host address>
Status: []

Text: !]

Packet Delivered (to host):
Direction: <unchanged>
File Format: <unchanged>
Priority: <unchanged.
Session Cmd: <unchanged>
Name: 'WAS DISCONNECTED '
Status: <unchanged>
Text: <unchanged>

-NETYS -

Resulting State: NOT_CONNECTED

Explanation:
The Transport layer is disconnected by its peer layer.
It passes the disconnect packet to the host and goes to a

not=-connected state.

-NETY) -

Laver: IRANSPORT

Znitial State: IN CONNECTION

Packet Received (from network):

Direction: INCOMING
. Security: PUBLIC

File _Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH_ PRI

Session Cmd: REQUEST

Name: 'TRANS INQUIRE ' or 'ANOTHER INQUIRY '
Irans Cmd: INQUIRE

S Conpum: <incorrect remote copnection number>

D Connum: 0

Source: <incorrect remote addressd

Destination: <host address>

Status: []

.'l‘ext: <host password>

Packet Delivered (to network):
Direction: OUTGOING
Security: <unchanged>
File_Format: <unchanged>

- Priority: <unchanged>
Session _Cmd: <unchanged>

Name: *CAN NOT TALK TO YOU *

B=-6T

-NETH4 -

Trans Cmd: DISCONNECT

S _Connum: <unchanged>

D _Connum: <unchanged>

Source: <host address>
Destination: <originating address>
Status: + [BUSY]

Text: <unchanged>

Resulting State: IN_CONNECTION

Explanation:

The Transport layer receives an inquiry while it is

already connected to a different process and sends back a

busy signal.

B-68

-NETY -
Laver: IRANSPORT
dnitial State: IN CONNECTION

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH PRI
Session _Cmd: REQUEST
Name: 'ANOTHER INQUIRY L
drans Cmd: INOQUIRE
& Connum: <current remote connection pumberd>
D_Connum: 0
Source: Lcurrent remote address>
Destination: -G;aost address>
Status: []

Text: <host password>

Packet Delivered (to network):
Direction: OUTGOING
Security: <unchanged>
File Format: <unchanged>
Priority: <unchanged)>
Session Cmd: <unchanged>
Name: 'ANOTHER Accsé'r 1

-NETY -

Trans_Cmd: ACCEPT

S_Connum: <host connection number>
D_Connum: <remote connection number>
Source: <host address>

Destination: <remote address>
Status: <unchanged>

Text: <unchanged)
Resulting State: IN_CONNECTION
Explanation:
The Transport layer's peer process timed out waiting for

an accept and issued another inguiry. The Transport layer

returns another accept and remains in-connection.

B-T0

-NETY -
Laver: IRANSPORT
Initial State: IN CONNECTION (waiting-for-azck)

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC or SECRET (sender's option)
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH PRI or MED_PRI
Session Cmd: START, IMMEDIATE, CHAIN, END _CHAIN, or
' ABORT_CHAIN
Name: ‘DATA TRANSFER * or 'DIDNT GET ACK REXMIT!
Irans Cmd: DATA XFER
S_Connum: <remote conrection number>
D Connum: <host connection number)
Source: <remote address>
Destination: <host address>
Data Seq: <any>
Status: []

Text: <any message>

Explanation:

The Transport layer is waiting for an scknowlegment of
its last data transfer but, instead, receives a data
transfer from its peer layer. The Transport layer cannot

pass the incoming data to its host, because the Application

B-T1

-NETH -

layer is blocked waiting for the acknowlegment, so it
discards the new packet. NOTE: Waiting for the
acknowlegment of a data transmission could be implemented as
another state for the Transport 1layer, but for historiecal

reasons it was implemented with a Boolean variable.

B=T2

-NETY -

Laver: JIRANSPORT

Anitial State: IN CONNECTION (Not waiting-for-ack)

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC or SECRET (sender's option)
File Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH PRI or MED_PRI
Session Cmd: START, IMMEDIATE, CHAIN, END_CHAIN, or
ABORT_CHAIN
Name: 'DATA TRANSFER ' or 'DIDNT GET ACK REXMIT!?
Jrans Cpd: DATA XFER
S _Connum: <remote connection number>
D_Connum: <host connection number>
Source: <remote address)
Destination: <host address>
Data Seg: <correctd>
Status: []

Text: <{any message>

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File Format: <unchanged>

Priority: <unchanged> =

B=T3

-NETH -

Session _Cmd: <unchanged>
Name: 'DATA RECEIVED '

Status: <unchanged>

Text: <{unchanged>

Packet Delivered (to net):
Direction: OUTGOING
Security: PUBLIC
File Format: <{unchanged>
Priority: HIGE_PRI
Session Cmd: <unchanged>
Name: 'DATA ACK e
Trans_Cmd: DATA_ACK
S_Connum: <host connection numberd>
D Connum: <destination connection number>
Source: <host address>
Destination: <remote address>
Data_Seq: <unchanged>
Status: []

Text: * s
Resulting State: IN_CONNECTION
Explanation:
The Transport layer receives a data packet from the

network, passes the packet to its host, =and returns an

B-TH

-NETY -

acknowlegment.

B-75

-NETH -

Laver: IRANSPORT

dnitlal State: IN CONNECTION

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC or SECRET (sender's option)
File_Format: CR_DELIM or NL_DELIM (source delimiter)
Priority: HIGH_PRI or MED_PRI
Session _Cmd: START, IMMEDIATE, CHAIN, END_CHAIN, or
ABORT_CHAIN
Name: 'DIDNT GET ACK REXMIT!'
Irans Cmd: DATA XFER
S _Connum: <remote connection number>
D_Connum: <host connection number>
Source: <remote address>
Destination: <host address>
Data Seq: <incorrectd
Status: []

Text: <any message>

Packet Delivered (to net):
Direction: OUTGOING
Security: PUBLIC
File Format: <unchanged>
Priority: HIGH_PRI

B-T6

-NETY -

Session _Cmd: <unchanged>

Name: 'DATA ACK '

Trans_Cmd: DATA_ACK

S_Connum: <host connection number>

D Connum: <destination connection number>
Source: <host address>

Destination: <remote address>

Data_Seq: <unchanged>

Status: []

Text: ¢ '

Explanation:

The Transport layer's peer process timed out waiting 7 for
an at;imoulement of a data transfer and sent the packet
again. The Transport layer had already received the
original data pach;et and had recognized the new packet as =a
duplicate because of the incorrect sequence number, so it

re-transmitted an acknowlegment of the packet.

B=TT

-NETY -
Laver: IRANSPORT
Initial State: JIN CONNECTION

Packet Received (from network):
Direction: INCOMING
Security: PUBLIC
File Format: CR_DELIM or NL_DELIM (host delimiter)
Priority: HIGH PRI
Session Cmd: START, IIBEDIATE, CEAIN, END CHAIN, or
ABORT_CHAIN (echo of data-xfer)
Name: '"DATA ACK ! 7
Irans Cmd: DATA ACK
S _Connum: <remote connection number>
D_Connum: <host connection number>
Source: <remote address>
Destination: <host address>
Data Seq: <correctd>
Status: []

Text: ! i

Packet Delivered (to host):
Direction: <unchanged>
Security: <unchanged>
File_Format: <unchanged>
Priority: <unchanged>

B-T8

-RETY -

Session _Cmd: IMMEDIATE
Name: "RECEIVED AN ACK \
Status: <unchanged>

Text: <unchanged>
Resulting State: IN_CONNECTION

Explanation:
The Transport layer receives an acknowlegment of its last

data transfer and passes it to its host to unblock the

application layer.

B-79

-NETH4 -

dnitial State: IN CONNECTION

Packet Received (from time-out):
Direction: INCOMING
Priority: HIGH PRI
Name: 'THIS IS A TIME OUT !
Irans Cmd: T O DATA ACK
Status: []

Packet Delivered (to net):
Direction: OUTGOING
Security: <repeat of last x-mit_>
File_Format: <repeat of last x-mit>
Priority: <rep§at of last x-mit>
Session _Cmd: <repeat of last x-mit)>
Name: *DIDNT GET ACK REXMIT'
Trans_Cmd: <repeat of last x-mit)>
S_Connum: <host connection number)
D_Connum: <remote connection number>
Source: <host address)r
Destination: <remote address>
Data_Seq: <current sequence number>
Status: <{repeat of last x-mit)>

Text: <repeat of last x-mit)>

B-80

-NETY -

Resulting State: IN_CONNECTION

Explanation:

The Transport layer times out without receiving an

acknowlegment of its last data transfer, so it re-transmits

the packet.

B-81

STERLING: A PEDAGOGICAL IMPLEMENTATION
OF THE
ISO MODEL FOR OPEN SYSTEM INTERCONNECTION

by

Ronald Curtis Albury

B.S. Rochester Institute of Technology 1976

-AN ABSTRACT OF A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

This report describes the design and implementation of
ve programs8 which demonstrate some of the functions of a
mputer network. The programs are patterned on the
tarnational Standards Organization's (ISO) model for
mputer interconnection and are intended to be used as an
d in teaching that model to graduate level students. The
ograms are fully documented and designed to be easily
derstood and portable between machines. The report
scusses the principles the ISO used in deriving its model
id how those prineciples relate to the implementation's -
8ign. The report restricts itself to the uppér layers of
e ISO model and concludes with the discussion of the

ansport layer.,

