-/éELF—ﬂREANIZINE SEQUENTIAL SEARCH PROCEDURES

by
NANCY KAY SUNDHEIM

B.S., Kansas State University, 1980
B.5., Kansas State University, 1982

A MASTER'S REPORT

submitted in partial fulfillment of the

requiresents for the degree

MASTER OF SCIENCE
Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

o ) Mo

Jnr ProfessorV



Chapter 1.

Chapter 2.

Chapter 3.

References .
Appendix A.
Appendix B.

Appendix C.

b 202 bbh748
O . ALl
TABLE OF CONTENTS

Introduction and Literature Review . . . . . .
Introeduction &« = . & & & & =2 &2 & & 5 s @« &2 & =
Permutation Rules . . . . &« & ¢« ¢ & = =« & = =

Measures of Comparison . I
Counter Rules . . « &« « &« s & & = ¢ = = « = =

Change of Assumptions . . . . &« =« « & & « =« =

The Mathematical Model and Asymptotic Results
Notation ¢« = « &« & & =« =2 = = 2 a = = = = » = =
Mathematical Maodel . - . « « ¢« ¢« « o =« = s « «
Theorem 1 . &« &« 2o & ¢ o o = 2 s = a = = s « =

Th Eorem 2 - - - - LJ - - - - - - - - - - - - -

Small Sample Case . . « & =« ¢« s & 5 5 = = =« =
Measures of Closeness . ¢« ¢ &« = = = = =« = = &=

The Si lm.ll ati on . - - - - - - - - L] - - - - - L]

A Listing of the Simulation Program . . . . .
Tests of the Random Number Generator . . . .

Graphs of the Average Cost and the S-point
Moving Average for Cost Versus Request Number

Page

11

22

25
25
26
28

38

40
40

42

47
49

55

59



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

A file 1is a set of records arranged sequentially. Suppose a

particular record is requested. If each record in a file, starting

with the +irst one, is searched until the requested record is

reached, the file is called a sequential search file. There are many

applications in computer software which deal with this type of file.

For example, 5SA5 consists of many different procedures such as

ANOVA, G6LM, FUNCAT, PRINT, etc. When a program calling ANOVA is

submitted, the computer must first find this procedure. It does so

by searching each procedure, starting with the first, until it finds

ANOVA. Another example is the PASCAL language. The only type of file

available in PASCAL is the sequential file. Some people, who view

this as a shortcoming of the language, have devised nonstandard

extensions to the compiler which add direct access files. Since

sequential search files occur in so many contexts, researchers in

computer science have shown strong interest in them. This chapter

first describes the problem in more detail, including assumptions,

and then reviews the literature.



For convenience it shall be assumed that it takes one unit of
time to search one record. Thus, it takes i units of time to locate
the record in the ith position. The praobability that a record Ri is
requested from a file containing N records shall be denoted P; - It
will be assumed that the requests are independent and that the
praobabilities P i=1,2,...,N do not change over time. It can be
assumed without loss of generality that plz-pzz-... EIPN} 0 and p1+
=1.

The expected search time of an arrangement is defined as

is the probability that the ith record,

N
E P k where Pi(k)

k=1 ilk)?
which is in the kth position, will be requested. Different
arrangements of the records will have different expected search
times. The cost of a certain arrangement is defined as the
expected search time of that arrangement. It measures the average
cost of searching, assuming that the cost of searching a record
is proportional to the search time. Ideally, the file will be
arranged so that the most requested record is first; next most

requested is second, etc. In this way, the cost of searching the

file will be minimum. However, the probabilities p; are rarely,



if ever, known beforehand. Fifteen methods are described below
that do not make use of a priori knowledge of the values of P i
= 1,2,...,4N.

The first method, one which easily comes to mind, is called
the frequency counter scheme. Just keep track of the number of times
each record is requested. Then, after many requests have been made,
arrange the file so that the record most requested is in front, the
second most requested record is next and so on. By the Law of Large
Numbers, this method will eventually givé the optimal ordering.
However, there are two major problems with this scheme. The first
is that it may take too much time to accumulate the data. The second
problem is that it may regquire too much storage when implemented on
the computer. Since computers store numbers in binary code, even a
relatively low number requires many bits of storage. For example,
100 is represented in a computer by 1100100. So the 3—digit number
100 requires B bits of storage, not 3 (7 to identify the number and
1 +for the sign.) If very many requests are toc be made of a system
then even a large amount of storage is quickly over—flowed.

To deal with the problems above, several self-organizing,



sequential search schemes have been developed. A self-organizing
scheme reorders the file after each request according to a specified
algorithm, or rule. The sequential search schemes can be grouped
into two categories: Permutation Rules and Counter Rules. Counter
Rules perform better than Permutation Rules. The appeal of the

Permutation Rules is that they require the least storage capacity.

Permutation Rules have been studied by Bentley and McGeoch [31,
Bitner [41, Burville and Kingman [5]1, Hendricks [8]3,[%1,L10], Knuth
111, Letac [£1531, McCabe [161, Nelson [17]1, Rivest [1B1, Savchenko
[192]1, Takamnami and Fujii [20] and Tenenbaum [21]1. The two most
popular Permutation Rules are Move to Front (MTF) and Transposition
{TR). Both of these rules begin with a random ordering of the file.
In the MTF rule, when a record is requested it is searched for and
then moved to the front of the file. All records previously in front
of this record are moved one position back. (If the requested record
is in the first position then nothing is done.) For example, suppose
the current arrangement of a file of S records is {RI'RZ'R3’R4'R5}'

If R4 is requested then the arrangement becomes {R4,R1,R2,R3,R5}.



Intuitively this should improve the cost of the file because records
that are requested most often tend to stay up front while those
reguested less often tend to drift towards the back.

The TR rule simply transposes the reguested record with the
record immediately in front of it. All other records are not
moved. (Again, nothing need be done if the requested record is in
the first position.) For example, suppose a file with a current

arrangement of {RI’R ,Rq,R Y. I¥ R4 is requested the arrange-

2Rz 5

ment becomes {RI'RZ’R4’R3'R5}' Thus, the most requested records
drift toward the front of the file. Rivest [18] noted that the TR
scheme was a better approximation to the frequency counter rule
than any other permutation rule. A record is moved up more than
one position in the freguency counter rule only when two or more
of the preceding records have counters that are equal. This 1is
very unlikely to occur often if all the pi‘s are distinct. When
this does not happen then the frequency counter rule either does
a simple transposition or nothing. So one should expect the TR
rule to perform, at least in the long run, similar to the counter

rule.



There is also an intermediate scheme called the Move Up k rule.
This rule moves a requested record up k places. (If k>i then the
record is simply moved to the front of the file.) When k=1 then this
is just the TR rule. If k=N then this becomes the MTF rule.

There are two important characteristics of these rules which
are used to compare them. The first measure is the asymptotic cost.
McCabe [1&] showed that (for the MTF and TR rules) the probabilities
of occurrence of the N! different arrangements will become stable
after the scheme has been invoked for a long time. (Details can be
found in the next section of this paper.) These steady state proba-

bilities will be denoted by “i' i=1,2,...4.N! and the costs of the

arrangments by Cio i=1,2,...4N!'. Thus, the expected cost at steady
state is c1“1 + 52“é+"' + cC N!“N!' This cost 1is called the
asymptotic cost of the scheme. It is generally compared to the cost

of the optimal ordering of the file (called the optimal cost.) The

N
optimal cost is defined as I ipi.
i =1

The second characteristic is how quickly the scheme attains

steady state. This is called its rate of convergence.

Firet, consider the asymptotic costs of the MTF and the TR



rules. Rivest [1B]1 has shown that the asymptotic costs of the MTF
and the TR rules are both lower than the expected cost of a random
ordering of the file. Rivest [181 has also shown that the
asymptotic cost of the TR rule is lower than that of the MTF for any
probability distribution. Furthermore, he showed that the TR scheme
has lower asymptotic cost than the intermediate scheme for any k.
However, Bitner [41 demonstrated, by considering two different
probability distributions, that it 1is possible for the MIF to
converge to its asymptotic cost much quicker than the TR. These two
distributions are as follows:
(1) p =1 and p.=0 . 28igN

1 i

(2) p =0 and p =1/(N-1) , 2$1i¢N
1 i
Bitner [4] defined a measure of convergence called the overwork. It
is denoted 0OV and is defined to be the area between the cost curve
and its asymptote (see Figure 1.) Note that the "steeper" the cost
curve is, the smaller the overwork will be. Bitner [41 derived the

general form of the overwork for the MTF scheme, but not for the TR

scheme. However, he showed that UVMTF is lower than DVTR for the two



distributions above. He alsoc derived DVHTF for the <following

distribution:
N ,
p =1/(iH ), 1£igN, H=% (1/1) (Zipf ‘s Law)
i N N i=1

A simulation run using the formula derived for BVH and an approxi-

TF

mation of DVTR showed, again, that DVHTF is much smaller than DVT

R-
From this Bitner [4]1 concluded that the MTF rule converges much more

guickly than the TR rule.

Cost

Y

Number of Requests

FIG. 1. The overwork is the area between the cost curve

and its asymptote (shaded above.)

Although the above work was not complete, Bitner’'s conclusion

is generally accepted as fact. Intuitively it seems reasonable. In

the initial random ordering, many high probability records may be



far down in the file. When one of these records is requested it is

immediately moved to the front. The TR scheme, by comparison, will

move these records only one position at a time. It will take much

longer +for these high probability records to make it to the front.

So the MTF is a better scheme if there are few requests that will be

made.

Since both of these are desirable properties it seems natural

to consider a hybrid method. Use the MTF rule for the first so many

requests and the TR rule from then on. This will combine the

properties of both rules. The difficulty of this hybrid method is

deciding just when the switch should be made. It has not been

considered very seriously because of this difficulty.

All the methods and results described above assume an 1initial

random ordering of the files. Rivest (18] suggested that the methods

would converge guicker if the initial ordering were obtained by the

following procedure: start with an empty file and add to the end of

the file those records which are searched for (requested), but not

found. This is equivalent to what Bitner [4]1 calls the First Reguest



10
(FR) rule. In this rule, the first time a record is requested it is
moved wup the file until it comes to the top or to a previously
requested record. After that it is not moved. For example, Ssuppose

the initial ordering of a file is {Rq,Rz,R3,R5,R1}. Suppose the

first request is Ffor R2. The Ffile becomes {RZ'R4'R3’R5’R1}’
Suppose the second request is for Rl' The file is now
{RZ'RI'R4'R3'R5}' Now suppose that the third request is also for Ri'

This record has previously been requested so it i1s not moved. Thus,

R_¥. After each record has been

the +Ffile remains {RZ'RI'R4'R3’ =

requested once, then subsequent requests will not change the file.
Rivest £1B8] investigated the use of this procedure to
initialize the file before using the MTF or TR rule. He showed that
after the procedure is finished (after all the records have been
requested at least once), the system is at steady state relative to
the MTF rule, so further use of the MTF rule will not improve the
expected cost (see chapter 2, theorem 2.) However, the TR rule will
improve the expected cost from this point because it is not yet at
steady state. Rivest [181 claims that using the TR rule after the

file has been initialized with this procedure 1s the most efficient



11

method. It converges quickly but still has the low asymptotic cost
of the TR scheme.

Bitner [4] proposed a slight modification. Use the initializing
procedure (FR rule) the first time a record is requested. Then use
the TR rule D? all subsequent requests (rather than waiting until
all records have been requested at least once.) Since this starts
imprnvi?g the cost before the initializing procedure is finished,
Bitner [4] claims this method is most efficient.

It should be noted, though, that Rivest [18] and Bitner's [4]
hybrid methods require a slightly more complex algorithm. These
methods should be used only when the overhead of the more complex
algorithm is offset by the more desirable characteristics.

Counter rules have been studied by Bitner (431, Gonnet, Munro
and Suwanda [7] and Lam, Siu and Yu [141. Baer [2]1 was the first to
look at the i1idea of counting requests for the closely related
problem of binary searches. (Only sequential searches are considered
in this paper. Allen and Munro 1] have some discussion of the

similarities and differences between binary and - sequential

searche=.) Bitner [43 then adapted the idea to sequential searches.



12

The Permutation rules presented above attempt to reorder the
file without counting the number of requests for each record. (For
this reason they are sometimes referred to as memoryless or memory-—
free rules.) The counter rules, as the name implies, keep track of
(count) the number of times each record is requested. To do this
reguires “eétra“ storage. This extra information is stored in what
are called fields. A field is simply a storage location.

The frequency counter rule discussed above is, of course, the
most basic counter rule. Each record has an associated field which
contains the number of times that record has been requested. How-
ever, as the number of requests for a record increases, the storage
space, or field, is overflowed. The problems with this rule moti-
vated the development of all other methods discussed in this paper.

Bitner [4] suggested two modifications to the Frequency Counter
Rule which attempt to overcome the problem of storage. The first
modification reduces the counts by dividing each field by a constant
(generally 2) or subtracting a constant when one of the fields
becomes full. For example, suppose the size of the field is é bits.

This would be 1 bit for the sign and 5 bits to identify the number.



This would be 1

13

bit for the sign and S bits to identify the number.

The 1largest binary number that could be stored in this field would

be +11,111. This converts to 31 in décimal form. When the first

record reaches

31 requests then the number of requests in every

field is divided by 2. If the fields are small then it does not take

very long to fill the fields. In this case, the reduction must be

done fairly frequently and the cost becomes prohibitive.

The second

modification is referred to as the Difference Rule.

This scheme stores with the ith record (in the ith field)

difference between the counts of the (i-1)th record and the

record. For example, suppose the current number of requests for

(i-2)th to the (i+1)th records are those shown below in Table

The numbers contained in their respective fields are also shown

Table 1a. These are the differences in the number of requests.

instance, 21-13=8 is kept in the (i-1)th field.

Table 1a. Counts and differences for certain records.
{(Before the 9th request for the ith record.)

record 1—-2 i-1 i i+1

# of requests 21 13 B8 7

# stored in field - 8 S 1

the

ith

the

in

For



14

Now suppose the ith record is requested. This changes the

number of requests and the differences as shown in Table 1b, below.

Table 1b. Counts and differenceslfor certain records.
(After the 9th request for the ith record.)

record i-2 i—-1 i i+l
# of requests 21 13 9 7
# stored in field - 2] 4 2

The cost is relatively cheap because only two fields are altered

with each request. The disadvantage is that even though the rate of

growth of the +fields is smaller than with the Frequency Counter

Rule, it still reqguires an unbounded amount of storage.

The Limited Difference Rule is nearly the same as this second

modification. It simply imposes an upper bound. Subsequent requests

will not increase a field after this upper bound has been reached.

The Limited Difference Rule is not optimal. That is, the asymptotic

cost of the rule is not the optimum cost. However, Bitner [4]

showed that the asymptotic cost of this rule does approach the

optimal cost as the upper bound on the difference is increased.

Bitner [4] also showed that the rule converges quite rapidly. Until

this maximum difference is reached, the rule behaves exactly like



15
the second modification of the Frequency Counter Rule. Thus, for
this initial period, the Limited Difference Rule converges gquite
quickly to its asymptotic cost. This is, therefore, a nearly optimal
rule.

There 1s a class of schemes called the Wait C, Move and
Clear rules. All fields are initially set to zero. When a r;curd
is requested, its field is incrémented. When a record has been
requested c+i times then.that recard is moved according to some
permutation rule. Then all the fields are reset toc zero and the
procedure is repeated. The cost of resetting all the fields to
zero can be gquite significant. However, if all the counters are
in one area, rather than with the records they are associated
with, then this cost becomes very reasonable. This scheme has
only been analyzed with the MTF and the TR permutation rules.
Bitner [4] showed that the asymptotic cost of the Wait C, MTF and
Clear scheme is less than that of the MTF. He also showed that
for any c and for any probability distribution, the asymptotic
cost of Wait C, TR and Clear is less than the asymptotic cost of

Wait C, MTIF and Clear. As with the Limited Difference Rule, the



asymptotic cost of Wait C, Move and Clear is not optimum (for any
permutation rule). However, Bitner [4] demonstrated that as ¢
approaches infinity this asymﬁtntic cost approaches optimum. The
drawback of this scheme is its convergence. The best case occurs
when the same record is requested c+1 times in a row and.a move
will be made every c+l requests. So the convergence is decreased
by at least a factor of c+i. Thus, the Wait €, Move and Clear
schemes are outperformed by the Limited Difference Rule.

A similar class of schemes is the Wait € and Move Rules. All
fields are initially set to zero. When a record is requested, its
field is incremented. When a field reaches c + 1, then that
record is moved according to a permutation rule. Rather than
reset all the fields to zero, this class of schemes only resets
the field of that record tec zero and then repeats. Bitner [41]
showed that the Wait C and MTF has a lower asymptotic cost than
the MTF. However, he also showed that not only is the asymptotic
cost of Wait C and MTF not the optimum cost, but the asymptotic
cost does not even approach optimum as ©¢ approaches infinity.

Bitner [4] ran a simulation of the Wait € and TR rule but the

16



17

rule has not as yet been completely analyzed. The Wait C and Move
rules make a move, on the average, every c+l1l requests. This means
they converge faster than the Wait C, move and Clear rules but
slower than the Limited Difference rule. Once again, then, the
Limited Difference rule is superior in asymptotic cost and
convergence.

Lam, Siu, and Yu [14] suggest another approach. First use the
TR rule. After reaching steady state, further reordering of the file
will not improve the performance of the TR rule. Optimum cost will
never be achieved by the TR rule. 5o Lamy, Siu and Yu [14]1 suggest
switching at this point to a modification of the frequency counter
rule. In other words, begin counting the number of requests for each
record once steady state has been achieved. The frequency counter

r

rule reorders the records in decreasing order of the {i s (fi is the
number of requests for record i.) This ignores the fact that the
file is at steady state when counting begins. Lam, Siu, and Yu [14]

therefore propose to reorder the records in decreasing order of

(fi+N—i). This treats the record at position i as if it has received



i8
an additional count of (N-i). They show that this modification, when
started at steady state, is optimal for any finite number of
requests. This means that even a small amount of "extra" storage can
give the optimal cost. They claim this is better than any other
counter method, and they show that it is better in terms of
asymptotic cost. However, the obvious drawback is.its rate of
convergence. The scheme depends on the file first reaching steady
state wunder the TR rule. The TR rule is known to have relatively
slow convergence. The other problem with this scheme is determining
just when steady state has been achieved.

Gonnet, Munroc and Suwanda [7] proposed a class of schemes
called the Simple k-in—a-row schemes (Simple k). As the name
implies, a record is not moved until it is requested k times in a
row. It is then moved according to the MTF, TR or some other permu-
tation rule. This requires some extra storage; more than for the
permutation rules, but 1less than for the counter rules described
above. Gonnet, Munro and Suwanda [7] showed that for fixed k this
scheme requires only (logN+logk) extra bits of storage. For example,

suppose N=50 and k=4. A record will be moved only if it is



19

requested 4 times in a row. The scheme requires logS0+log4 = 2.301
or 3 extra bits of storage. The counter rules require much more.
Each of the 50 records have an associated field to store the number
of requests. Suppose the size of a field is &6 bits (a very small
field); then the amount of extra storage is S0Oxé6 = 309 bits. This is
very large compared to 3 bits for the k-in—a-row scheme.

Gonnet, Munro and Suwanda [7] looked at the Simple k, MTF rule
and the Simple k, TR rule. They showed that the Simple k, MTF has
lower asymptotic cost than the MTF and the Simple k, TR has lawer
asymptotic cost than the TR. In both cases they showed that the
asymptotic cost is not optimal. The asymptotic costs of both schemes
do, however, decrease as k increases. They alsoc showed that the
Simple k, TR has lower asymptotic cost than Simple k, MTF.

Gonnet, Munro and Suwanda [7] considered a modification to the
Simple k-in-a-row schemes called the Batched k—-in—-a-row (Batched k).
This views the requests as being batched inte groups of k consecu-
tive requests. A reordering of the file occurs only if all k
requests in a batch are for the same record. At first this appears

to be equivalent to the Simple k. However, it is not. Consider the



20

following example. Let k=3 and N=20. Suppose the following requests

were made of a file:

18, 7, 1, 1, 1, 3, 2, 7y 7y 7, 2, 1, 4, 4, 4, 4, 3, 12, B, 9, 19

In the Simple k, when a record is requested 3 times in a row it is

moved. So, in the above example, First record 1°'is moved, then

record 7 and then record 4. In the Batched k the requests are viewed

as batches of 3 requests. The requests above would be grouped as

follows:

batch 1 = [18,7,11 batch S : [4,4,41]
batch 2 = [1,1,3] batch 6 = [4,3,12]
bateh 3 = [2,7,7] batch 7 = [B,%9,1%2]
batch 4 : [7,2,11]

Only batch S has all the requests for the same record. So record 4

is the first (and only) record to be moved.

Gonnet, Munro and Suwanda [7] showed that the asymptotic cost

of the Batched k, MTF and the Batched k, TR are not optimal. How-

ever, they decrease as k increases. The Batched k, MTF has not been

compared to the Batched k, TR. Gonnet, Munro and Suwanda [7] state

that intuitively the Batched approach should perform better than the

Simple k. Roughly, the effect of the Batched k is to raise the



21

probability of request of each record to the power k. This makes
(after normalization) the large probabilities larger and the small
probabilities even smaller. They show that for the MTF rule the
Batched approach does give lower asymptotic cost than the Simple
approach.

The two k—-in-a-row schemes are better than the permutation
rules alone because they give lower asymptotic costs. They are
better than the counter rules above in the sense that they require
much less storage. However, the asymptotic costs of the k-in-a-row
schemes have not been compared to the asymptotic costs of the
counter rules above. Furthermore, the rates of caonvergence of the k-
in—a-row schemes have not been considered at all. Thus, it is diffi-
cult to effectively compare these rules with the ones described
above.

Many researchers feel that if extra storage is going to be used
then a non—-sequential search procedure should be employed. Therefore
it appears that none of the counter rules are very practical. The

frequency counter rule should never be used unless the counts are



22

already needed for other purposes. Thus, researchers mostly consider

this a dead end and are directing their efforts towards the permuta-

tion rules.

Many feel that non—sequential searching is also generally more

efficient than the permutation rules, but that there are some

instances in which the permutation rules are useful. These instances

are when a low overhead is desired. Although the TR has a lower

asymptotic cost, the MTF has other advantages such as quick

convergence. Also, the additional overhead necessary for the hybrid

method does not usually justify its use over the use of the MTF.

1t should be noted that there has been some work on the problem

when the assumptions have been changed. Rivest [18] indicates that

if there is correlation between successive requests, then it can be

shown that the MTF scheme will perform more efficiently. Konneker

and Varol [12] expanding on this idea, presented some modified

search schemes and concluded that the improvement in the search time

may not be worth the extra work involved. Nelson [17] proposed a

scheme in which the searching is started where the record is thought

to be. He derived a prediction interval for the position of the



23

requested record.

Bentley and McBGeoch [{3] studied the frequency counter rule,
MTF and TR schemes from a different viewpoint — that of their
worst—-case performance rather than their expected performance.
They concluded that even though the pr?vious probabilistic
analyses showed that the TR rule is superior to the MTF rule,
their worst case analysis showed the opposite to be true. They
also felt that the MTF would be better than the frequency counter
rule.

Bentley and McGeoch [3]1 ran several simulations on both Pascal
files and text files. Their results indicated that the MTF was
always better than the TR and usually better than the frequency
request rule. Their explanation for this in the Pascal files is the
presence of what they call the high locality. In other words,
infrequently wused words such as INTEGER, VAR and END appear 1in
groups rather than being uniformly distributed throughout the file.
This alse occurred in the text files, although not to as great a
degree as in the Pascal files. The idea of locality is the same as

assuming there is a dependency among the requests.



24

The small amount of work done in this area seems to indicate

that whenever any dependency exists between the requests then the

MTF is a much better scheme. Since it seems to be very realistic for

these correlations to exist, much more work is needed in this area.

The idea of a worst case analysis could also be greatly expanded. A

question overlooked by researchers is the small sample behavior of

sequential search schemes. That i1s, there have been no studies of

the case 1in which records have been requested a small number of

times. Investigations of this question would shed light on the

"start-up" behavior of search schemes.



25

CHAFTER 2. THE MATHEMATICAL MODEL AND ASYMPTOTIC RESULTS

In this chapter the mathematical model is developed. Then the

proofs are shown of two of the asymptotic results presented in

chapter 1. These particular results were chosen for three reasons.

First, they are the most interesting; second, they are important

results; and third, they give a good overall example of the type of

mathematics used in the study of sequential search files.

First, however, some quantities which are useful in developing

the model and in praoving the three theorems are defined below. For

easy reference and for the sake of completeness the notation pre-

viously introduced is repeated here.

N = the number of records in a file
R = the ith record, i=1,2,...,N
i
R = the ith record, R , is in the kth position
i (k) i
p = the probability that R will be requested, i=1,2,...,N
i i
where p 2p 2...3:p
1 2 N
P =the probability of the ith record, which is in the kth
i (k)

position

¥+ = the number of times record i is requested, i=1,2,...4N
i



26

N
F ==X ¥ = the total number of requests made to a file
i=1 i
N
OC = optimal cost of a file = £ ip
i=1 i
N! = the number of possible orderings of the file
W = the steady state probability that arrangement j will
J
N!
occur, J=142,....N! (z n =1)
j=1 3
c = the cost of arrangement j, j=1,2,...,N!
3
N!
AC = the asymptotic cost of scheme S =X W
=] =t 3 ]
gi{m,n) = the probability of occurrence of the nth ordering

aftter the next request if the present ordering is
known to be the mth (a transition probability)

8 =the N!#N!' transition matrix consisting of elements gq{m,n)

b{i,ji}) = the asymptotic probability that R 1is before R in

1 J
the file (for 1Li<igN )

Now the mathematical model will be developed. The present
ordering of the file is dependent solely on the last request, the
previous ordering and the scheme employed. I+ the present ordering
is known then the next ordering will be completely determined by the
next request. So the probability of occurrence of any ordering after

the next request can be predicted if the present ordering and the



27

scheme are known. For a file of N records there are N! possible
orderings. Suppose these N! orderings are listed and indexed by
1,2,...4,N!. The probability of occurrence of the nth ordering after
the next request if the present ordering is known to be the mth is
called a transition probability and is denoted by q(m,n). Naturally
this transition matrix depends an P i=1,2,...,N and the scheme
used.

This situation can be described by a Markov chain with N!
states. The transition matrix of the chain will be denoted Q.
Obviously this chain is finite and, since it is possible with the
right set of requests to obtain any other ordering from the present
ordering, it is irreducible. For the MTF and the TR schemes it is
easily seen that their Markov chains are also aperiodic. The
literature considers only schemes which have aperiodic chains. If a
Markov chain is finite, irreducible and aperiodic then there exists
a limiting distribution. That is, lim @ = where @ is the Fth

F-o
power of the matrix @. Since the 1limiting probabilities are
independent of starting values, the rows of T are identical. The
elements of any row are denoted T

] These stationary

1'! 2!"'|“N!'



28

probabilities, “j' j=1,24... 4N}, are given by the following set of
equations: W = W B. (Proofs of these last two statements can be
found in Feller [5]1.)
Next are the two theorems and their proofs.
JHEOREM 1: The asymptotic cost of the TR rule is lower than that of
the MTF for any probability distribution. They are equal only when
N=2 or when all the pi (i=1,2,...,N) are equal.
Proof: Several intermediate results are necessary before this
theorem can be proved. (The proot of this theorem is attributed to
Rivest ([18B]. However, the intermediate steps below were shown by
Hendricks in [B8]1 and [10]3. The following version of this proof can
be found in Lam L[133.)
Theorem la. Let b1 (j,1) and b2 (d.1) denocte the
asymptotic probability that Rj 1is before
Ri in the file +for schemes 1 and 2,

respectively. Let AC1 and ACz denote

the asymptotic costs ot schemes 1 and 2. If

bl(j,i)gbz(j,i) whenever i<j, then AC1£AC2.



29

N!
The asymptotic cost, AC, is defined as AC= %X Wc ,
=1 3 j

It is desirable now to express AC in another {form.

First define M to denote the expected position of R .
i i

N
So AC=E £ p M.
i=1 i i

(It can be shown that these two definitions are equal.)

(1)
Define X = position of R and
i

(i)
X =1 if R is before R in the file
3 3 i
0 otherwise

(i) N (i)
Now M =ELX J=E [1+ £ X 3
i i=1 ]
N (i)
=1+ T ELCX ]
j=1 3
N (i)
=1+ I PLX =11
=3 i
N
=1+ T b(j,i)
j=1

Now AC can be expressed by



30

N N

=¥ p [1+% b(j,i)]
i=1 i =1
N N N

=% p+E £ P b(j,i)
i=1 i i=1 j=1 i

N N
=1 + E Z p btij,i)
i=1 j=1 i

1 N

N i-
=1+ £ { = p (1-b¢i,j)) + 0 + X p b(j,i)3}
i=1 j=1 i j=i+1 1
N N N i-1
= p + £ {(i-1)p - = E p bii,i)
i=1 i i=1 i i=2 j=1 i
N-1 N
+ Z z p b(j,i)
i=1 j=i+1 i
N N-1 N
=X ip + Z b p b{(j,i)
i=1 i i=1 j=i+i i
N—-1 N
- = z p b(i,t)
i=1 j=i+1 j
N N-1 N
= X 1ip + X = (p —p Yb(jai)
i=1 i 1=1 j=1+1 i 3

This is the asymptotic cost for any scheme.

Thus the difference between the costs of two schemes is

N N-1 N
AC -AC = £ ip + T £  (p —p )b (§,i) -
2 1i=1 i i=1 j=i+1 i 3 2



N-1 N
ip - T £ (p —p )b (j,i)
1 i i=1 j=i+1 i j 1

L1 ¢ 4

i

N-1 N
=x £ (p -p MIb (,i)=b (j,i)]
i=1 j=i+1 i j 2 1

Since p > , 1f b (j,i)¢b (j,i) then AC £AC

i J 1 2 1 2
p
3
Theorem 1b. b(j,i) for the MTF scheme is equal to ————- 4
P +p
3 1
FProof
(F)
Define b (i,i) to be the probability that R 1is

J

before R (i¥3j) in the file after F requests have been
i

made. This event will occur if either
(i) R has been requested more recently than R .
3 1

This 1s actually a set of mutually exclusive

events. These are illustrated below.

F-1
p (1-p —-p ) = probability that R was the first request
3 Jj i 3
and none of the following requests were for
for R or R .
i 3
F-2
p (1-p —-p ) = probability that R was last requested on
J Jj 1 J

the second request. (It could also have been

31



the first request.) None of the remaining

(F-2) requests were for R or R .
i B ]

[Note: This is also a set of mutually
exclusive events. Any of the N records could
have been requested first. This probability

then becomes

F-2 F-2
pp (1-p —p ) +p p (1-p —p )
13 j i 2 3 j i
F-2
+...+p p (1-p —p )
N j j i

F-2 F-2
=(p +p +...+p )p (1-p =-p ) =p (1-p —p ) ]
1 2 N 3 Jj 1 i j i

0
p (1-p —p ) = probability that R was last requested on the

J J 1 J
Fth reguest.

(ii) both R and R are not requested throughout,

3 i
in which case the probability that R is placed
3
before R is 1/2.
i
Hence
(F) F-1 k F
b (isid)=p 2 (1-p —p ) + (L/2)(1—p —-p )}
Jj k=0 J i J 1
{(F)

As F gets very large b (j,1) approaches b(j,i), the

second term approaches zero and the summation in the



33

first term becomes the geometric series. Thus,

P
3
b {jyi)se————————
MTF P +p
j i
Theorem 1c. The stationary distribution of the TR rule is

given by:

N N-k
P={ Wop 3I/L, L= T &
i k=1 i(K)j o

N—3
1] 1l +for i=1,...,N!
1 ofi,k,3)

"=z

where the summation ranges over all possible orderings and

=] denotes the probability of the ith record which is in
idk)j

the kth position in the jth arrangement. 0(i,k,3j) is the set

of all possible orderings so p in the

oti,i,k) ' Piwrj
oth ordering.
Note: L is a normalizing factor. Dividing the values by

L produces a set of N! probabilities that sum to 1.

For ease, consider the case when the file is arranged

as (R ,R R ,...,R ). By the TR rule, this state can
1 2z 3 N

only be reached from:



(R R ,R 4...,R )} when R is requested
i 2 3 N 1
(R 4R 4R 4...,4,R ) when R 1s requested
2 1 3 N 1
(R R 4R 4...,R )} when R 1is requested
1 3 2 N 2
(R ,R ,...,R 4R ) when R is requested
1 2 N N-1 N—-1

The stationary probabilities of these states will be

denoted W W , W ,...,TW and they, of course, must
1 2 3 N

satisfy the set of equations n =1 @. It 1s

sufficient to show that the following equation holds

"=p B +p0W+p N +...+ p m

1 11 12 23 N-1 N

n is assumed to be the value given in the theorem.
1

So,

N-1 N-2 N-1 N-2

(p p R o Y/L=p (p p «-ap ) /L
1 2 N-1 1 1 2 N—-1
N-1 N2
+p (p P «s P ) /L
1 2 1 N—-1



Theorem 1d. Let G be any arrangement of records in which R
i

precedes R with k records between them. Let G’ be the new
3

arrangement of records obtained by interchanging the

positions of R and R in G. Then

1 J
k+1
p
P(B) i
P(G") k+1
P
3

where P(G), F(G’) are the probabilities of occurrence of G,

G’ respectively under the stationary distribution of the TR

scheme.



Let 6 be the arrangement (R «=2:R ...R ...R )
i(1) i 3 1{N)

where R is the ith record that is in the xth
ii{x)

position, R is in the ath position and R 1is in the

i J
{a+k+1)th position. So G’ is the arrangement
(R eaaR .. R ...R ). Using theorem 1c
ic1) 3 i i(N)
N—-1 N-a N-a—-k—1
(p P «aap - 3L
P(G) i(1) 1 3 1(N-1)
FIG") N-1 N—a N-a—k-1
(p - R en=p ) /L
i(1) 3 i i(N-1)
k+1
1]
i
k+1
p
3

Now the main theorem can be proved.

Let G be the event that Rj precedes Ri in the +file so

P(G)=bTR(j,i). If Al,...,AS are all those arrangements for which

Rj precedes Ri, then E={Rl,...,ﬂs}. Hence,

bTRtj’i)=P(g1)+"'+P(AB) where P(ﬁi) is the probability of

occurrence of the arrangement Ai in the stationary distribution



37
of the TR scheme. Let A'k dencte the new arrangement obtained by
interchanging the positions of Ri and Rj in Ak' So 6’ is the set
of all arrangements in which Ri precedes Rj in the +Ffile.

Obviously P(G)=1-FP(G’). By Theorem 1d,

t
P(A ) p
k 3 :
————— I it for some t3i1 (k=1,2,...,5)
t
P N P
K i
Fa ) P
k J
P & ———- since p_}p.
PA Y p i 3
k i

This is true for all arrangements A so this can be expanded to
k

PA d+...+P (A ) p
P(G) 1 s 3
= = < or
P(G’) F(A DH+...+F (A ) p
1 s i

p P(B)<p [1-F(G)]
i J

Solving for F(G)=b (j,1? gives
TR

Sa by Theorem 1b,

b (j,i) ¢ b (3,1)
TR MTF



38

and by Theorem 1la,

AC AC

TR MTF

7,

The cases of equality when N=2 or when all the p, are equal are
quite easily done and are left to the reader.

THEOREM 2: After the FR {(First Reguest rule) initializing procedure
(after each record has been requested at least once) the system 1is
at steady state relative to the MTF scheme.

FProof: Rivest [18] proved the following theorem. From this the main

assertion above follows directly.

Theprem 2a. For any probability distribution the probability
of obtaining a given final ordering of the file after any
number of reqguests is the same for the MTF and the FR rules.

For any segquence of requests fl,...,f to the MTF rule,

k
the sequence of requests fk,...,fl to the FR rule

produces the same final ordering of the file. Let

5={+1,...,fk} be the sequence of requests to the MTF



39

rule, and S'={fp,...,f } the sequence of requests to the

1
FR rule. P(S) and P(5’) are their respective

probabilities.

P(S)=p p ...p and F(S)=p p v P so P(S)=P(S")
1 2 k k k—1 1

Since the probability of obtaining a given final ordering of the
file is the same for both schemes then their stationary probability
distributions are the same. After every record has been requested at
least once the FR rule is at steady state. {No records are maoved
again once this point is reached.) Thus, the MTF rule is also at

steady state.



40

CHAFTER 3. SMALL SAMPLE CASE

There are no analytical results for the small sample case.
Before 1looking at the small sample case, there is a need +for a
measure o©Of how close the current ordering of the file is to the

optimal ordering. There are three ways of approaching this.

N 2 N 2
The first approach is to maximize W= X d p = X (i—R ) p
i=1 1 i i=1 i i

Then a measure of closeness could be defined as

N 2
X d p
i=1 i i
D=1-1L ——=1
N 2
max{ £ d p 3}
i=1 i i

When the +File is in the worst ordering possible then W is at its

maximum and D=0. When the file is in the best ordering possible,

2

then W = (i—1) P, = 0 and D=1. So this is a normalized

i

[ o

1

measure between O and 1. This would seem to be a good measure,
however, maximizing W 1s not so easy. This depends on the
probabilities, Pi-

In general, Ffinding the maximum requires looking at all
possible orderings to find the one which gives the largest value of

W. Even with a +file of 10 records this requires 1loocking at



41
10!=3462,880 orderings.

The second approach is to look at the correlation between the
ordering of the file and the optimal ordering. The probability that
record Ri is in the kth position is not known. So the distribution
Pi is used instead. In this way, recaords with the greater chance of
being selected will contribute more to the value of the correlation

coefficient. This produces the empirical correlation below.

N N N
EiRp - ( Tip J(ER p )
i=1 i i i=1 i i=1 i i
EC = ————— - -—
N 2 N 2 N 2 N 2
LZ i p -(Xip?)» IL T R p - (X Rp) 1
i=1 i i=t i i=1 i i i=1 ii

It 1s easy to see that when the file is in the optimal ordering,
then i=Ri for all 1 and the empirical correlation is equal to 1. For
the case when the file is in the reverse ordering it is easy to show
that the empirical correlation is equal toc -1.

The +third approach is to use Spearman’'s Rank correlation since
the wvalues of i and Ri are, 1indeed, ranks. Spearman’'s Rank carrela-

tion is

BRE m I = [ eememcce ]



42

A simulation was run to investigate some of the properties of

the MTF and the TR rules for small samples. (A listing of the
program is in Appendix A.) The simulation was run for N=20 and N=100

with a linear decrease in the probabilities. These probabilies were:

N
N/S, (N-1) /5, (N-2)/5,...,1/85 where G= Z i
i=1
Two cases were considered. The worst case is the one that starts

with all the records in reverse order. The other case is one that
starts with the correlations at about zero, hereafter referred to as
the Zero case. The records were initially ordered as
Ryt 'Ra2) R o - Rone2) *Reen-1) "Ray + Where R; (., denotes R,
is in the kth position.

Three measures were calculated:

(1) Empirical Correlation, EC
(2) Spearman’'s Rank Correlation, SRC

(3) Cost, Cost=the position of the requested record.
Table 2 shows the number of requests made to the file and the number
of replications for the four simulation runs. The zero case had the
3 measures calculated for the first 25 requests and then for every
25th request thereafter. The different number of replications for

all the cases is because of computer difficulties. These programs



43

took a lot of computer time, particularly when N=100. For example,
15 replications for the worst case when N=100 reguired 3 minutes of
execution time. Since funds were limited, the number of replications
was kept to a minimum.

Table 2. Number of requests and number of replications for
the simulation runs.

i N | Case | No. of Reg. | No. of Rep. |
i 20 | Worst | 200 : 20 :
{ 100 | Worst | 200 : 15 :
i 20 { Zero | &00 : S0 H
! 100 | Zero | 600 : 27 4

In all cases the conclusions are clear. The TR scheme very
steadily but very, very slowly moves toward the optimum. This result
was expected. When N=100, worst case, after 200 requests both corre—
lations for the TR are only about —-0.996. The MTF in this case has
the correlations at about 0.42. Even when N=20, =zero case, the MTF
reaches 0.35 after about 15 requests. The TR takes about 75 reguests
for the correlations to reach 0.35.

The MTF, however, jumps around a lot more than the TR. The EC
for the MTF when N=20 seems to oscillate about 0.35. The SRC seems
to oscillate around 0.50. For N=100 these values are the same, 1it

just takes longer to reach these points. The EC and the SRC for the



44

TR when N=20 and when N=100 seems to be still steadily increasing.
When N=20, zero case, after 600 requests the EC=0.796 and the
SRC=0.854. The standard deviation in the correlations for the MTF is
larger than the standard deviation in for the TR by roughly a factor
of 10. So, as expected, the TR is better in the long run even though
the MTF is initially the best scheme.

Appendix C contains graphs of the average cost (averaged over
replications) versus request number for the four simulation runs.
It also contains graphs of the S—point moving average for cost
versus request number for the four runs.

The asymptotic cost, AC, can be calculated for the MTF. Table 3
shows these values for the simulation cases. Four other quantities
are given in Table 3. These are defined below:

1) 05 = The approximate request number at which the cost of

the MTF begins to oscillate around its AC. (So the

MTF is at steady state after this number of
requests.)

2) L(C) = The approximate number of requests required before

the cost of the TR rule is consistently lower than

that of the MTF rule. Since the cost jumps around

so much this is based on a 5 point moving average.



45

3) L{(EC)Y = The approximate number of requests required
before EC of the TR is consistently higher than
that of the MTF.

4) L(SRC) = The approximate number of requests required

before the SRC of the TR is consistently higher

than that of the MTF.

Table 3. Results of the simulation.

i N | Case | ACMTF) ¢ 0S8 | L(C) | L(EC) | L(SRC) !
i 20 1 Worst | 8.876 I 30 | * | * * :
i 100 | Worst 1| 41.616 | * | * * * :
i 20 | Zero | B.876 1+ 21 1 250 i 75 1 200 1
i 100 | Zero 1 41.616 1 125 1 500 i *% ] * % :

# Number of requests is greater than 200.
## Number of reguests is greater than &600.

The results shown in Table 3 indicate that when the MTF is at

steady state, the TR is not as good as the MTF. Furthermore, the MTF

continues to perform better than the TR for quite some time. All

three measures in every case show that the number of requests until

the TR performs better than the MTF is quite a bit larger than the

number of requests required for the MTF to achieve steady state.

This indicates that the MTF should always be considered when the

number of requests to the file are relatively low. Even when the

file consists of only 20 records the MTF performs better than the TR

for a relatively large amount of time. In the zeroc case the TR takes



44

more than triple the number of requests for its EC to become 1larger
than the EC of the MTF. The number of requests required for the
other measures to indicate that the TR is performing better is even
larger. These results also indicate that the hybrid method which
starts with the MTF and then switchs to the TR is a pntentiallg good
method.

In summary, the TR is better than the MTF in the 1long run.
However, the MTF is much better for an initial period. Based an this
simulation, this 1initial period 1s relatively long. The MTF
continues to perform better than the TR for quite some time after
the MTF has achieved steady state. This enforces the suggestion of
several authors that the MTF should be very seriously considered
when the file is small. When the file is large, then a non-

sequential search technique should probably be employed.



10.

11.

12.

13.

14,

47

REFERENCES :

ALLEN,B. and MUNRO,I. Self-organizing binary search trees.
Jd. ACM,Vol.25,Nc.4,0ct.1978,pp.526-535

BAER,J.L. Weight-balanced trees. Proc. AFFIS 1975 NCC,
Pp.4467-472
BENTLEY,J.L. and McGEOCH,C.C. Amortized Analyses of Self-

Organizing Sequential Search Heuristics. J. ACM, to appear
Fall 1984

BITNER,J.R. Heuristics that dynamically organize data
structures. SIAM J. COMFUT. ,Vol.8,No.1,Feb.197%9,pp.82-110

BURVILLE,P.J. and KINGMAN,J.F.C. On a model for storage and
search. J. Appl. Prob.,Vol.10,1973,pp.&697-701

FELLER,W. An Introduction to Probability Theory and Its
Applications, Vol.1 John Wiley and Sons, New York 1957

GONNET ,G.H. ,MUNRO,J.1. and SUWANDA,H. Exegesis on self-
organizing linear search. SIAM J. COMPUT., Vol.10, No.3,
Aug. 1981, pp.613-637

HENDRICKS,W.J. The stationary distribution of an interesting
Markov chain. J. Appl. Prob. ,Vol.?,1972,pp.231-233

HENDRICKS ,W.J. An extension of a theorem concerning an
interesting Markov chain. J. Appl. Frob., WVol.10,1973,
pp.886-8%0

HENDRICKS,W.J. An account of self-organizing files. SIAM J.
COMPUT., Vol.5,No.4,1976,pp.-715-723

KNUTH,D.E. The Art of Computer Programming, Vol.3 : Sorting
and Searching Addison-Wesley, Reading Mass. 1973,pp.389-402

EKONNEKER,L.K. and VAROL,Y.L. A note on heuristics for dynamic
organization of data structures. INFO. PROC. LETTERS Vol.12,
No.5, 1981 pp.213-2164

LAM,E. GSelf-Organizing Files. UMAF,VDl.4,N0Q.1,1983,pp.53-84

LAM, K. ,SIU,M. K. and YU,C.T. A generalized counter scheme.
Theo. Comp. S5ci., Vol.16,1981,pp.271-278

LETAC,G. Transience and recurrence of an interesting Markov
chain. J. Appl. Prob., Vol.11,1974,pp.B81B-B24

McCABE,J. 0n serial files with relocatable records.
Operations Res., Vo0l.12,1945,pp.&609-618



17.

18.

19,

20.

21.

NELSON,F.R. A prediction interval search scheme for the
move—to-the—front replacement algorithm. J. Inst. Maths Appl.
Vol. 24 ,No.2,5ept. 1979,pp.231-236

RIVEST ,R. On self-organizing sequential search heuristics.
Comm. ACM, Vol.192,No.2,Feb.1976,pp.63-67

SAVCHENEO,L.A. General self-organizing sequential search
procedure. Prog. Comp. Software, Vol.7,No.5, 1981,pp.282-285

TAKANAMI ,I. and FUJII,M. On heuristic construction of self-
organizing +Ffiles for sequential searches. TRANS. IECE of
Japan, Vol.E&60,N0.2,1977,p-112

TENENBAUM, A. Simulations of dynamic sequential search
algorithms. Comm. ACM, Vol.2i,N0.%,1978,pp.790-771

48



APPENDIX A.

A LISTING OF THE SIMULATION PROGRAM

49



//%++ PRINT S[CRVICE UNATTEND LINES 9 TIME 3,0 VMMSG
/*REGIDON TO0K

// LXEC PASCLG

//5YSIN DD =

PROGRAM SIM(INPUT,OUTPUT):

(*
{» THIS PROGRAM SIMULATES THE MOVEC TO FRONT
(* ARD THE TRANSPUSITION SCHEMES FOR A
(* SEQUENTIAL SEARCH FILE.
{*
CCNST
N=203
NUMBER _REQ=600;
REP=50;

OPTION='pPe;
DECREASE="L"';
ORDER=*2%;
TYPE
KEY = ARRAY({.l..N.) OF INTEGER;

PROBABILITY = ARRAY(.l..Na) OF REAL;

DESCRIPTIVE = ARRAY{ .0..NUMBER_REQ.) OF REAL;
VAR

RMTF 4RTR : KEYS

P+ CUMMP : PROBABILITY;

CORRMIF+CORRTRy RNUM : REAL;

SPEARMTF,SPEARTR,DDD : REAL;

COSTMTF.COSTTR : INTEGER:3:

JeJdyLoeMeCoDy HeXo RANDOMSEED+sREQ ¢ Z s Y s U Ve T« MULT = INTEGER:

COERRSMTFCCRRSQMTF,CORRSTR,CORRSQTR 3 DESCRIPTIVE:;
SPEARSMTFs SPEARSQHTF SPEARSTR, SPEARSQTR : DESCRIPTIVE;
COSTSMTF.CCSTSQMTF.CCSTSTR,COSTS QTR 2 DESCRIPTIVE;
AVE_CR_MTF4AVE_CR_TR JAVE_S_MTF,AVE_S_TR 3 DESCRIPTIVE:
AVE_CS_MTFsAVE_CS_TRSD_CR_MTFSD_CR_TR : DESCRIPTIVE;
SD_S_MTF+SC_S_TRsSD_CS_MTF+SD_CS_TR ¢ DESCRIPTIVE:

(%

{* THIS FUNCTION GENERATES RANDOM NUMBERS

{* .

FUNCTION RANDOMIVAR SEED:INTEGERJ:REAL:

BEGIN
RANDOM:=SEED/65535;
SEED:=(251 T3*SEED+13849) MOD 65536

END; :

(%

(% THIS FUNCTION CONVERYS THE RANDCM

{ * NUMBER INTO A REQUEST

(%

FUNCTION RECUEST(CUMMPRDB:PROBABILITYSRN:REAL)::INTEGER:
VAR
K ¢ INTEGER;
BEGIN
IF RN<=CUMMPROB({«1l.} THEN
REQUEST:=
ELSE
FCR K:=2 TC N DC
IF (KN>CUMMPROB{ «K—1e)) AND (RN<=CUMMPROB(.K.)) THEN
- REQUEST:=
END3

50

*)
¥)
¥)
¥)
%)

%)
¥)
¥)

*)
%)
x)
¥)



{*
(= THIS FUNCTION CALCULATES THE MODIFIED CORRELATION
{%
FUNCTION CORFELATIONI{REC :KEY;PROB: PROBABILITY;N:INTEGER):REAL:
VAR
K 3 INTEGEF;
MEANXy MEANY s MEANXY s SQX#SQY»STD X STDY = REAL;
BEGIN
MEANX:=0.0; MEANY:=0.0: MEANXY:=0.0;
SQX:i=0.0: SQY:=0.0;
FCR K:=1 TUO N DO
BEGIN
MLANX:= MEANX +K#*PROBl.K.):
MEANY:= MEANY + REC(.K.)*PROB{.K.):
"MLANXY := MEANXY + K#¥REC({.K.)*PROB{.Ke)i
SQX:i= SQX + K*xK*=PROBl.K.);
SQY== SQY + REC('Kcl*REC'-K.]*PRﬂB(.K.,;
END;
STDX:= SQX = MEANX®*MEANX;
STDY:= SQ0Y - MEANY#MEANY;
CGRRELATIUK:= ( MEANXY —-MEANX®MEANY)/SQRT{STOX*5TDYI}
END;
{ ®
(= THIS FUNCTION CALCULATES SPEARMANS RANK CGRRELATION
[ *
FUNCTION SPEARMAN(REC:KEY;N: INTEGER):REAL
VAR
K : INTEGER;
DIFF : REAL;
BEGIN
DIFF:=0.0;
FOR K:=1 TC N DC
DIFF:=DIFF + SQR(K-REC(.K<))3;
SPEARMANI= 1.0 = (6%DIFF)/(N=(NxN-1))

END3

[*

{* THIS PROCEDURE SETS THE PROBABILITIES
{* { BUTH LINEAR AND EXPONENTIAL)

{*

PROCEDURE SLTPRCOBI(DEC:CHARIVAR PROB:PROBABILITY)
VAR
E+FsGeK 2 INTEGER;
SUMP : REAL:
BEGIN
IF DEC='L"' THEN
BEGIN
SUMP:=0;
FOR K:=1 TG N DU
SUMP :=SUMP+K;
PRGBl.N.):=(1/5UMP);
FGR G:=(N-1) DOWNTO 1 DO
PP.UB(.G.) ==(N-G+1)$PRDB(.N-’=

END;
IF DEC='E' THEN
BEGIN
SUMP:=1; R

FOR E:=1 TC N DO

51

%)
%)
)

x)
¥)
%)

¥)
*)
*¥)
%)



52

SUPs= SUMP+LXP(-E);
PROBl.1le)3=(1/5UMP )}
FOR F:=2 TL Kk DU

PROB(«Fa) :=EXP(—=(F-1))%PROB(.1.):

END3;
END;
(# *x)
( * THIS PROCEDURE REORDERS THE FILE ACCOURDING *)

(* TO THE MOVE TO FRONT RULE %)
{* : *)
PRULEDURE MCVETUFRUNT (RECREQ,N: INTEGER; VAR REC:KEY;VAR COST:INTEGER):
VAR

KeB 2 INTEGERS
BEGIN
FOR K:=1 TG N DO

IF REC(<K.)=RECREC THEN

BEGIN
COST :=K;
IF K<>1 THEN
BEGIN
FOR B:=K DOWNTO 2 DG
REC{«B.) :=REC{.B-1.);
REC(.1.):=RECREQ
END
END
END;
(% *)
(% THI S PROCEDURE REOURDERS THE FILE ACCORDING *)
(# TC THE TRANSPOSITION PULE *)
{# *)

PROCEDURE TRANSPOSITION(RECREQs+N:INTEGER;VAR REC:KEY; VAR COST:INTEGER);
VAR
K : INTEGER;
B EGIN
FOR K:=1 TC N DG
IF REC{«Ks }=RECREQ THEN

BEGIN
COST:=K3
1F K<>1 THEN
BEGIN
RECleKa):=REC({ aK=14)
END
END
END3
(* ¥)
{* : %)
{* THE MAIN PRCGRAM BEGINS HERE %)
{* *)
[ * *)
BEGIN
RANDOMSEED:=8191:
{ % ¥}
(* INITIALIZE ARRAYS *)
(* *)

FCR D:=0 TC NUMBER_REQ DO
BEGIN



53

CORRSMTF (D& ):=0.03
CDRRSQHTF t- D-’:=0-0:
CORRSTR(+Ds ) 2=0.0;
CURRSOTR {eDed:2=0 «03
SPEARSMTF(.De):=0.03:
SPEARSUMTF({ e De)2=0403
SPEARSTR{4D<):=0.03
SPEARSQTR{(,D.):=0.0;
COSTSMTF (eDe):=0.0:
COSTSOMTF(.De)t=0.03
COSTSTR(2De)2=0.0:
CUSTSQTR‘&D. }:=0D 00;

END3
{*
(% SET INITIAL PROBABILITIES
{* - COMPUTE CUMMULATIVE PRUBABILITIES
{ *

SLTPRUB{DECREASE,PI;
CUMMPl.1.)3=P(esla)s
FOR L:=2 TC N DO

CUMMF{.L«) 3=CUMMP{ oL-1.) + PlalL.)s

(*
(= SET INITIAL ORDERINGy CALCULATE INITIAL
{* CORRELATIONS AND COST
{*
FOR H:=1 TCU REP DO
BEGIN

CASE CRDER OF
'W': FOR Vi=1 TO N DO
RMTF(sVae) i={N=-V+1l):
'*BY: FOR V:=1 TO N DO
RMTF{.Va):=V;
*Zv: BEGIN

RMTFlelaed =13
RMTFle24) 2=N3
RMTF(.3.)32=N-1;
FOR T:=1 T0 (N DIV 4 - 1) DO
BEGIN
MULT:=4%T;

RMTF{MULT)2=MULT DIV 23

RMTF( . MULT+1.):=RMTF( . MULT.)+1;

PMTF(«MULT+2« J:=N+MULT DIV 2 - MULT;

RMTF( .MULT"‘3. :=RMTF( - HULT*’Z. )1-1

END;
PMTFl.lHs}3=N D1V 2
END
END3
FGR U:=1 TO N DU
RTR{U.}:=RMTIF(.U. )3

CORRTR:=CORRELAT IONIRTRsP+N);
SPEARTE:=SPEARMAN(RTR,N);
CORRSTE( 0. ) :=CORKSTR{.0.)+CORRTR:
CUFRSHMTF{.0.1:=CORRSTR{.0.1};
CCPRSQTR{.0.):=CCRRSQATR{+0.) +CCRRTR*CORRTR;
CORRSOMTF(.0.):=CORRSQTR(.0.);
SPEARSTR(.0.):=SPEARSTR{.0.) +SPEARTR;
SPEARSMTr(eCe):=SPEARSTR{.0.):

¥)
%)
¥)
*)

*)
¥)
*)
¥}



(%
(*
(%

(*
(#
{*

(*

(=

54

SPLARSGTR{.04):=SPEARSQTR( .0.)+SPEARTR®*SPEARTR;
SPEARSQMTF(.a04):=SPEARSQTR(+04)
. *)
WRITE HEADINGS *)
*)
IF UPTIUN='P* THEN
BEGIN
WRITE (°1°);
WRITELN (' ':241,"REPLICATION'sH:4};
WRITELN;
WRITE (' *:5,'REQUEST REQUEST CORRELATION CORRELATION');
WRITELN (° SPEARMANS ~ SPEARMANS cosT CCST*);
WRITE (' 927,'NDo,? *3T7,9FUR'," 129, vMTF', " 1:11,°TR?,¢ v:12);
WRITELN ("MTF's" *:10,°TR'y" '29,'MTF®,? ":7,'TR");
WRITE (' ':5,,'————— — —-—-t)3
WRITELN (Y.  ———mmeee  cmmeeeo — ——t);
WRITELN;
WRITELN:
WRITE (" %:8,'0%,* *:17,CORRTR28:5,% ':6,CORRTRz8:5);
WRITELN {* ":6,SPEARTR:8:5,% *:5,SPEARTR:8:5);
END:

*)
MAIN SIMULATION *)
%)
FOR M:=]1] TO NUMBER_REQ DO
BEGIN
PhNUM:=RANDCM (RANDOMSEELD) ;
REQ:=REQUEST(CUMMP RNUM) ;
MOVETOF RONT{ REQs Ny RMTF ,COSTMTF ) ;
TRANSPOSITION{REQsNyRTRy COSTTR) ;
IF (M<=25) DR (M MOD 25 =0) THEN
BEGIN
CORRMTF:=CORRELATION(RMTF+PsN);
SPEARMTF:=SPEARMANIRMTF,N):
CORRTR:=CORRELATION({RTRyP,N);
SPEARTR:=SPEARMANIRTRsN):
*)
CORASMTHl « Mo ) s=CORRSMTF(M.) +CORRMTF
CORRSQMTFI( «Mo)2=CORRSQMTF{ .M. )+CORRMTF=CURRMTF;
SPEARSMTF{ oM. ) :=SPEARSMTIF( .M. ) +SPEARMTF;
SPEARSOQMTF (o Me ) :=SPEARSQOMTF(.M.)+SPEARMTFE=SPEARMTF;
COSTSMTF{aMe ):=COSTSMIF(M.)+COSTMTF
COSTSCMTFI (Mo ) s=COSTSUMTF({ M )+COSTMTF*COSTMTF;
CORRSTR(aMa) :=CORRSTR{ «M )+ CORPTR;
CORRSQTR{oMe J2=CORRSQTK{ M) +LORRTR*#CORKTR
SPEARSTR{eaM. ) :=SPEARSTR{ M) +SPEARTR;
SPEARSQTR{ .M.) 2=SPEARSQTR{ .M. ) +SPEAKTR*SPEARTR;
COSTSTR(.M,.) e=COSTSTRI( .M. )+LOSTTR;
CUSTSOQTR (e Me )3=COSTSQTR{ «Ma)+COSTTR%=COSTTR;
x)
IF OPTION='P' THEN
BECGIN
WRITE (" 236,M23," *:T3REQ:4+? ':6,CORRMTF:8:5," ':6];
WRITE [CORRTR:2B:53" '":6,SPEARMTF:8:5," ':5);
WRITELN (SPEARTR :8:5:% ":6,CO05TMTF:4," *:5,C0STTR:4):
END
END



55

END
END;
{ % *)
{= WRITE HEADINGS FOR MEANS AND STANDARD DEVIATIONS *)
(* *}
WRITELN {("1%);
WRITE (" *:19,"MEANS AND STANDARD DEVIATIONS (AVERAGED OVER'):
WRITELN {* REPLICATIONS)'}:
WRITELN;
WRITELN (* *:233,*ND. OF RECORDS IN A FILE ='4N:5);
WRITELN (" *:236,'NDO. OF REPLICATIONS =',REP:4);
WEITELN:
WRITELN;
WRITE {*' *:5,"REQULST CORRELATICN CORRELATION L
WRITELN (*SPEARMANS SPEARMANS Y ?:9,7COST®,* 2:12,'COSTY);
WRITE (* ':274'K0."s" "2109 "MTF"s" ":13,'TR", " ':14);
WRITELK (*MTF'y % ":13,"TR"," ?"214,"MTF'," 7:]14,°TR");
WRITE (' 9:5yt-—m——e— - L
WRITL (° - —————— L -
WRITELN (? -=1}3
WR ITELN;
HWHRITELN;
(* ¥)
(* CALCULATE MEANS AND STANDARD DEVIATIONS *)
(= *)
DDD:=REP*={REP-1);
FCOR X:=0 TC NUMBER_REQ DO
1F (X<=25) CR (X MOD 25 =0) THEN
BEGIN
AVE_CR_MTF( 4 X.):=CORRSMTF{ «X<})/REP;
AVE_CR_TR[«X.):=CORRSTR(.X.) /REP;
AVE_S_MTFl.Xa):=5PEARSMTFl oX <) /REP;
AVE_S_TR{<X.):=SPEARSTRl.X.)/REP;
AVE_CS_MTF( o X} 2=COSTSMTF{.X.)/REP;
A\’F_LS_TR(.X-J:=CCSTSTRI-X-1/REP5
SU_CR_MTF(eXo):=(REP*CORRSOMTF{ e Xe )= SQRI{CORRSMTF(.X.)})/DDD;
SD_CR_TR(aXa):=( REP*CORRSQTR{.X.) = SGRICORRSTR{.X.2))/DDD;
SD_S_MTF{aXa)2=[{REP*SPEARSQMTF{aXs) — SQR({SPEARSMTF{.X.)))/DDD:
SC_S_TR{«Xe)}:=(REP*SPEARSQTR(.X. )} — SQRISPEARETR(.X<2)})/DDD;
SO_CS_MTF{eXs):={REP*COSTSOMTF{eXe) = SOR(COSTSMTF{ .X41)))/DDD;
SU_CS_TRU«Xa):=(REP®COSTSQTR (e Xs) — SQR{COSTSTR{.X.12))/DDD:
(* *)
(# WRITLE MEANS AND STANDARD DEVIATIONS *)
{ *
WRITE {" ":64X:s34" "26,AVE_CR_MTFlX.)z2B25," ':8);
WRITE (AVE_CR_TP (eXe)38:254" "3:B,AVE_S_MTF(.X.):B:z5," ':8);
WRITE (AVE_S_TR{.X.)28:5);
WEITELN {9 *20,AVE_CS_MTIF(Xo)2824,4% Y:B,AVE_CS_TR{.X.):Bz4),;
WRITE (' ":20,3D0_CR_MTF{.X.)28z24," ":8);
WRITE (SD_CP_TR{<Xa)3B34s" *:8);
WRITE (SD_S_MTF{ uXe) 2B244" T :B,SD_S_TRleXe)2B24," *:8B);
WRITELN {(SO_CS_MTF{eXe)2B82:4," 928,S5D_CS_TR{.X.)28:24)
ELD
END.

//GL.SYSIN DD =
/%



AFFENDIX EB. TESTS OF THE RANDOM NUMBER GENERATOR



A subroutine in Fascal was used to generate random numbers for

the simulation. Three tests were used to examine the 7500 wvalues

generated. These were:
I. Runs Test - tests for randomness

II. kKolgomorov-Smirnov Test — tests for uniformity

between Q¢ and 1

ITII. Autocorrelations — tests for independence

The tests were replicated with three different seed values: 8191,

27249 and 6£5521.

I. Runs Test

A run is a group of consecutive numbers that are either all

above or all below 0.5. This test is based on the statistic

R - M
7 = ___Er__Em_ where
= R
R = the number of runs
2n1 n,.
He, = —;——:;— + 1
1z
2 —n, —n.)
o - a1 Mol T~ S W
(n1 +n2) (nl +r|2 -1

and 2 1is normally distributed.

A Fascal program was written to perform the test. The results



were:
seed value | z
8191 i —l.6374
I7249 i 0.4798
65521 ; 1.6209
For a significance level of 0.10 we find that Z = 1.645, so 1n

qﬁ

all cases there is not enough evidence to conclude there 1z a

pattern 1in the data.

I1I. Kolmogorov—-8Smirnaov Test

This is a test for goodness of fit. This test is performed by

the WHITETEST option in FROC SFPECTRA (SAS5). The results were:

seed g d
H191 P00, 0113
27249 1 00,0121
65521 P 0.0124
1.36
For a significance level of G.10 and N=7500, daf* = im——m——— = 0.0157.
T N

So in all cases there is not enough evidence to conclude the data is

not uniformly distributed between O and 1.

III. Autocorrelations

fAutocorrelations for a lag of 100 were obtained by FROC AUTOREG

(8A5). These autocorrelations were guite small. A t-ratio for the

first 99 autoregrescive parameters were also calculated . Using the



same significance level of 0.10, the t-ratio is compared to

t(uf7)=1.645 (d.f.=N—-1). The results were:
seed ! No. of significant ratios
________ : o e S e S gy i S G e Bt
8121 : &
37249 H g
65521 i 4

With a lag of 100 a few significant correlations are expected. Thus,

the random numbers appear to be independent.



AFFENDIX C.

GRAFHS OF THE AVERAGE COST AND THE
S-FOINT MOVING AVERAGE FOR COST
VERSUS REGQUEST NUMEBER



61

§Z ¥Z2 €€ 22 & 02 6l

dlk *dN3931

438WNN 153N03Y
SL ¥t €L 2L 1L 0ot 6 8 L 9 § ¢ £ ¢

| BN P | Nl TS U AU ErEre B e i I e | IFEFEPY IPEPOPEPE EPEPEPY BPIPIF PSS EEPIPEN PO PP | EPIPEE BT PP
It
i
]
’
'
[
L}
b4 '
1 1
-‘- ‘ 1 .—
PR n i . h
N m h p¥
’ 1 e T W L
/ 1 [ 1 u ' =
¢ \ [ ' 1 ]
! ' [ i ‘ [
g [} [ 1 ' [
4 ' [ F ' r N
- [ [ ' [} 1] 1
- ] \ 1 [
v [ ' i ) ’ A
] ) N : A ! A "
' 1 ' L] 1; ) J ' v o
] [} : L] [ ’ ' \ M)
1 [ ' . [ ] i i ' Y
] ' ] ' t ] .. i ' H
] [} 1 1 ] ] 3 .. ' é
) ' ' ] [ ' .t . ' b
] [} / | ' ] “r 3 ] i i
’ [l ¢ ' ' ] ® i ! r y
[ ] ' ) i X i ' ’
i [ ! [ [ ] " i i !
] [ | ] ] 1 H @ I
] ] ) ] 1 ] \ ! '
i \ ] ] [} ] 1y ' ] J
1 \ ] ' [} ¥ v ! [ !
1 ' 1 [ ] ] s \ f
N i ] [} Py / s, ' [
i ' 1 i 1 b ] (B [} H
' ' ] "\ ) \ . 1 ! [}
N ' ' v ] ' g ] % [ ..
' ’ 1 ' ' ) ]
] & ' \ N H .__ . ] é _. !
i LY 4 LY M 3 J . Fi p ]
N * ' ] ) [} ’ .._ [} 4
1 % H M ] \ : ] \ |
¢ - / Vo (] ’ [} --
e : 1 [ \ N
L \ ! (I ' :
L) ] 1 \]
v b) i '
v ) 1) I
° é i
é W
"
]
-

0S5=d3y
3ASvI 0¥3z
0Z2=N

YAARAN LSANDAY "SA LSOO ADVYIAY

08

$°8

0'6

S'6

o-ol

S:0lt

Sl

C>UWUErcouw OoOowr



62

EFL :AN3931

H38WNN 153N03Y
009 0ss 00S 0S¥ oor 0se 00g ose ooz oSt 001 0s 0]

| B P P U WP Ml BT TTTETTTE PP TET PO T el P e e PP EPr AT A A e | bbb 11 NPT PO |

* 579

0S=d3y
JSvI 0d3z
0Z=N

AGNRNN 1SANDAY 'SA 1S0D ADVHIAY

<LCSWECOW OOoOWw—



63

.......... ¥l 41N :ON393Y
43dWNN 1S3IN0D3N
£e ce 1e ne 61 g1 ra 9l Gl ki ol | el 1 01 6 8 L 9 S £
L 1 ] 1 O] PUTTTTUTPY PUOoT 1 e | ™ PETrr e ey PO 1 PPN FOOUT 1 1 Y FOTPROTT | 1 aaaalasy ol sasaaaal
_.Iom '8
.
S48
006
526

05=d3d
ISVD 043z
0Z=N

JOVHIAY INLAOW
JAHAN 1SANDAY "SA LS00 AIVUIAY

_IN10d-S

C2UFr<Oou OOWr



64

s s WL JIW 1N3937

Y38WNN 1S3N03Y

0SS G625 DOS S.i¥ OSF SZF OOF GUE O0SE S2Zf 00f S42 062 SE2 o002 &Lt 0Sst sZL 00! S4 0s
S FUVITITTI FVITPITTL FPVTEUTITI PPPRITITTL ITTEUTTITI FROVEIVITH FITEVITITI PYTTTUPTIT FVPTTTTTEN FIVTPPUPR FUVTTUTEI ICVIVTTTI FTPVETTOUL FUVIVTETL SUTITTTIT PRVVURTITY POPUUUTIN FUTTTTTTI FVUTTTTVY FUUTTITI §

|
~N
M~

.
e

#

K

R

" (=] N~ w bt @ w
N o [+ ] @ - <] [ M~

L[e)
=]

SRR WAL LA WAL L S S L NN LB B B

x
o

0S=d3y
dS¥D 0M3Z
0Z=N JIYYIAY INLAOW IN1Od-S
YAANNN L1SINDTY "SA 1S0D ADVUIAY

<C>UWEC<OW OOoWK-



65

.............. ¥l Ik :gN3937
¥3GWAN 153IN0TY
<z 7 €z 2z 12 0Z ol 8L Z1 91 Sl #! €L 2L 1L Ol & 8 . 9 S ¥ € 2 L 0O
Laaaadl . o | PP (PO SPUPUPEPE [P EPPUPT AP RPer | A IS Braiers e s Wiy e i Sl Wl arilf i a7 Erll It IR Tl KPRr ) W i e il e i - O e | ..._...._.....u
_ -0
-o¢

42=d3Y

ISYIO 0¥3z

00Ll=N

YAANAN 1SENDAY 'SA 1SO0D TOYHIAY

o
2

<>uloe<ow OO+

44

- — @® wn
w v - -

L AL AL R T B L B (R L A e I R M e

~
w

T



66

............. ¥i dil T ERER

¥3EWNN 153n03Y
009 0SS 005 oSk 0ok 0s¢ 0o¢ 0s2 002 0s1 ool 0s 0
1 PP S aaaal sl RPN VIO, SRENEI.] [P S RIS PETTNEENEPHRIPE (ST (PN [N B, e T |

4Z=d3Y
3S¥J Cd3z
001 =N

JAGNAN LSANDAA "SA LSO AOVHIAY

w o ) o w o
w w - h 3 ™ ]

Q
w

L L B e B
I i 1 | | I 1 I

w
o

C>uErCow Cowe-



67

£e Ze

{2=d3Y
dS¥D 0437
00!l=N

¥4

414

61

Y3gUNN 1S3N03Y
St ¥ £l Zl Lt ol 6

JOVYIAY ONIAOH
YAANON LSANDAA "SA LSOO ADVUIAY

d1W :gN3937

8

IN10d-S

fad
-

Lt
C>WECOWL OOV

@
h s

-



68

J1M :N3O3T

¥3EAWNN 1S3n03Y
0SS S2S 005 GS.F OSk SZ¥r OOF SIE OGE S2F% 00f G.Z 0S¢ S2¢ 002 G4t OSst set ool SZ

| NI P R PETTUTITT FRPPTTUTIN FRTTTITTT PFRTPITTTPL FRTTTTTTT TVTTVPRPI FYVITETTR FTVPTTITL FPTTTTTTY IVUTTURTTL IPTTTIVIT] ITVTUTTTTI FITTTTTTTL FETVRTUTTY IVTUTETTT] FUVPTUITY INTUTTVETY FUTTT

0s

4

.
B W

i2=d3Y

ASvd 0H3zZ

00 (=N JIVHIAY ONIAOW INIOd-S
YAANAN 1SIANDAY ‘SA 1SOD FAIVIHAY

-6 LE

0-0F

Tal
M~
-

Tal
o
w

LI i B e B LD
1 | | I | I 1

C>LECOW OOV



AVERQGE COST VS. REQUEST NUMBER

N=100

WORST CASE

REP=15

B L TR R B LI S I WL LI T L L B SRR R ISR L

o o o (=] (=] (=] o o
o © ~ w n - " o~

C>UEC<ow OO

190 200

20 30 40 50 60 70 BO 90 100 110 120 130 140 150 160 170 18O
REQUEST NUMBER

10

69

TR

MTF

LEGEND:



70

00Z 06! 08!

04l

sasalissases

091

ost

ort 0l o2l

T FPPTTTTOVL TR ETET L FETy

438WNN 1S3N03Y
oLt 00l

M FETUTTTETE FOTUTTTUNY |

41KW

*gN3937

Sl=ddy
45V 1SHOM
00!l=N

4

e

39YY3IAY ONIAOW INIOQd-S
YAGNON LSANDIAA 'SA 1S0) JDDUTAY

C>UXCOW OOV



AVERAGE COST VS. REQUEST NUMBER

N=20

WORST CASE
REP=20

L e e e o K Rl e i

&

P

JP
e e

190 200

180

Y YTTTT

,,.
140

”[. .,,,
40 60

30

RESREESESSoa Sy e
~ O W <

- —_—

T

|
M

LI L LB T A LN N TN I B N L LA LR |

I
~N - o =2} @ ~ w0 n

—_— —

C>WECOWL OO

160 170

150

100 110 120 130
REQUEST NUMBER

90

50 70 80

20

10

71

TR —====--=m==-

MTF

LEGEND:



72

41k :(dN3931
Y438WNN 153n03Y ‘

00Z O6l O08L 0! 09L O0StL Okl O0OEL 02L OLL OOl - 06 08 04 09 0§ (0] 4 og (014 ot 0
[ TYUTTTRTN TTTTTIN FINTITIITE PUVEIUTTTT INTTTIVITI NTTTTTTT FETTOUUTT| FTTTTTRITL FATTTTVET FYUVIUTIVE FEVIVRTIVI IVVTTTEUT FFTTIUTUTI FVPURVETTY FUVEVRVITI FFUTETETT FUVONURUI FUUTINTTIL FUUTTTTITE FUIVINTL §

0Z=d3d
3SYJ LSHOM
0Z=N JOVYY3AY ONIAOW LNIOd-S
YAGRNN 1STNOTAY "SA IS0 TDVHIAY

IARAAS EARREAEAAS REREAREES LR AR LR LR RS ALS R A SRS R

[

@®

()]

o

-
-

N

™
-

-

<>WEC<OW Oowe



SELF-ORGANIZING SERQUENTIAL SEARCH PROCEDURES

by

NANCY KAY SUNDHEIM

B.S., Kansas State University, 1980
B.5., Kansas State University, 1982

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984



1

A file is a set of records arranged sequentially. If each
record in a file, starting with the first one, is searched
until the requested record is reached, the file is called a
sequential search file.

This paper reviews the literature on self—-organizing
sequential search procedures. First the permutation schemes and
their results are described. Permutation schemes are often
desirable because they require no extra storage space. The most
popular ones are the Move to Front (MTF) and the Transposition
(TR). Analytical results indicate that the TR has a lower
asymptotic searching cost, but that the MTF converges to its
asymptotic searching cost much quicker. The counter schemes and
their results are then described. Many researchers feel that if
any extra storage is used then a non—sequential searching
technique should be employed. So the counter schemes suggested
in the literature are considered by many to be impractical. All
analytical results deal with the asymptotic case. The
mathematical model and the proofs of two of the major results
are presented.

There are no analytical results for the small sample
case. Before looking at this case there is a need for a measure
of how close the ordering of the records in a file is to the
optimal ordering. Three different approaches to measuring this
closeness are discussed. A simulation was run using the MTF and
the TR schemes. The results indicated that the TR performs

better in the long run. However, the MTF is initially a much



2

better scheme. The results also suggest that this initial

period is relatively long. This enforces the belief of several

researchers that the MTF should be very seriously considered

when a sequential search procedure is desired.



