CONVERGENCE OF SOME STOCHASTIC MATRICES

Ъy

CHESTER CLINTON WILCOX

B. S., Kansas State University, 1961

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY Manhattan, Kansas

1963

Approved by:

Oshan L. Claddlo

Major Professor

LD 2605 T4 1963 W66 C-2 Document

TABLE OF CONTENTS

INTRODUCTION	1
REGULAR MARKOV CHAINS AND STOCHASTIC MATRICES	4
M-POLICY	9
METHOD FOR FINDING CHARACTERISTIC ROOTS	13
STATIONARY DISTRIBUTIONS	17
SECOND LARGEST ROOT OF THE M-POLICY MATRIX	21
METHOD TO APPROXIMATE THE RATE OF STATIONARITY	34
APPLICATIONS	42
CONCLUSIONS	47
ACKNOWLEDGMENT	48
APPENDIX	49
REFERENCES	91

ii

INTRODUCTION

In recent years, considerable use has been made of the theory involving steady-state Markov chains. Procedures have been developed to determine if a given stochastic process is of the type that will reach a steady-state i.e., the state which is independent of the initial condition. At the present time there is a definite lack of methods which give the rate at which a stochastic process approaches its steady-state.

Consider a finite Markov chain with states E_i (i=1,2,..., n) and the transition probability matrix $A = \begin{bmatrix} p_{ij} \end{bmatrix}$ i, j=1,2,...., n. Let the probability vector at time t be,

$$P(t) = (P_{t}(t)) \tag{1}$$

so that $P_i(t)$ is the probability that the process, defined by the above Markov chain, is in state E_i at time t. The matrix A and the vector (1) are related by.

$$P'(t+1) = P'(t) A_{t}$$
 (2)

We note that from (2)

۷

$$P'(t) = P'(o)A^{t}.$$
(3)

Let us assume that the matrix A is such that the process reaches a stationary state so that.

$$\lim_{\substack{t \to \infty \\ \text{there π denotes the vector of stationary probabilities}}} (4)$$

Regular, finite Markov chains arise in theory of storage problems. Moran (1954) developed the stochastic matrix which characterizes a finite dam and found the stationary distribution for several cases. Gani defined the analogous problem for an inventory system (1955) and a queue system (1957). He recommended numerical methods for finding stationary probabilities. Prabhu (1958) contributed stationary probabilities for Moran's dam problem when capacity, X, is an integer multiple of output, M, and input is (i) geometric, (ii) negative binomial, (iii) Poisson. Chaddha (1960) generalized on previous work and defined M-policy as follows; a quanity M is added to an inventory of capacity X at regular time intervals, t, t+1,...., except when the content is greater than X-M, in which case the inventory is filled to capacity.

In previous work, the problem of determining rates of convergence to stationarity is not considered. Gani (1955) suggests that a method of escaping this problem is to "let the system run for awhile to overcome the initial effects." Chaddha (1960) points out that the rate of convergence is dependent on the characteristic roots (excluding unity) of the stochastic matrix.

In this thesis, numerical techniques will be used to find the stationary distributions of stochastic matrices for an Mpolicy where X and M take various different values. The demand distributions considered will be geometric and Poisson. The second largest characteristic root will be found. A method to predict the number of time periods the system must pass through

to give a reliable estimate of stationarity using the second largest root will be presented. Finally application of the technique will be illustrated by numerical examples.

REGULAR MARKOV CHAINS AND STOCHASTIC MATRICES

Many of the results in the following sections depend upon the basic properties of Markov chains and stochastic matrices. Some results in the theory of Markov chains which will be of later interest are stated now, while keeping in mind that an exhaustive discussion is not intended. Feller (1950), Gantmachr (1959), and Kemeny and Snell (1960) treat the subject in greater detail.

A regular Markov chain has a transition matrix which is identifiable by the following property: A transition matrix, A, is regular if, and only if, for some t, A^{t} has no zero entries. (Kemeny and Snell 1960) The system of stochastic matrices which will be dealt with in the later sections of this thesis, will be seen to be of this regular type. This property also implies that it is possible for any state, E_{j} , to be reached from any other state, E_{1} , in t, time intervals.

The following theorem from Kemeny and Snell (1960) will be of interest in later sections.

THEOREM I. If A is a regular transition matrix then:

- (i) The powers A^t approach a stochastic matrix A*.
- (ii) Each row of A* is the same probability vector π^{*} .
- (iii) The components of π ' are positive.
- (iv) For any initial probability vector P(o)', P(o)'.A^t approaches the vector π' as t tends to infinity.
- (v) The vector $\pi^{\,\prime}$ is the unique probability vector such that $A^{\,\prime}\pi$ = $\pi_{\,\cdot}$

(vi) A $A \approx = A \approx A = A \approx$.

The matrix A^{\pm} and the vector π , of equation (4), are referred to as the limiting matrix and the stationary probability vector for the Markov chain determined by A. Now, the equation (3) states that if the process is started in such a way that the initial states have a probability distribution P(o), then the probability distribution for the states after time t, is given by $P'(t) = P'(o)A^{t}$. Since the above theorem states that $\lim_{t \to \infty} P'(o)A^{t} = \pi'$ exists, and since π is dependent $\frac{t}{t \to \infty}$ only on A we see that P(t) is approximately independent of the initial distribution, P(o), for a sufficiently large t.

A matrix with non-negative elements is defined as primitive if its largest characteristic root, λ_1 , is real and positive, such that the inequality, $\lambda_1 > |\lambda_1|$, (i=2,3,....,n) holds. Gantmacher (1959), p. 80, 81 proves:

THEOREM II. A matrix with non-negitive elements is primitive if, and only if, some power of the matrix has no zero elements.

It is at once apparent that this condition is fulfilled by any given regular transition matrix $A = \begin{bmatrix} p_{ij} \end{bmatrix}$, since $p_{ij} \ge 0$ for all i, j. In fact, the very property ($A^{t} \ge 0$; finite t) that insures the matrix A is regular, also insures that A is primitive, implying that the largest characteristic root of a regular transition matrix is positive and simple.

Grantmacher 1959, p. 63 states that for a primitive matrix with largest characteristic root λ_1 , the following

inequality holds

$$s \leq \lambda_{1} \leq S$$
, (5)

where

$$s = \min(\sum_{j=1}^{n} p_{ij})$$

$$S = \max(\sum_{j=1}^{n} p_{ij})(j=1,2,...,n).$$
(6)

But since we are dealing with a stochastic matrix which has every row sum equal to unity, the value of the largest characteristic root, λ_γ , is unity.

Now, having shown that the value of λ_1 is unity, this fact may be used to determine the characteristic vector, V_1 , corresponding to λ_1 . Note that the vector equation

$$A V_{i} = \lambda_{i} V_{i} , \qquad (7)$$

for i = 1 reduces to

$$A V_1 = V_1$$
(8)

and since

$$\sum_{j=1}^{n} p_{jj} = 1 , \qquad (9)$$

 $V_1 = [1, 1,, 1]$ ' is obviously a solution. Also, for A', it is seen that

$$A^{\dagger}U_{1} = \lambda_{1} U_{1}$$
(10)

which is

$$A'U_1 = U_1 \tag{11}$$

But, this is seen to be the set of linear equations that define π , which implies that π is the characteristic vector of A' corresponding to $(\lambda_1 = 1)$. This is a quite useful property in that the numerical methods used to find characteristic vectors may be applied to the problem of determining the stationary distribution.

Now, it has been pointed out that a regular stochastic matrix, A, has a largest characteristic root that is simple, equal to unity, and corresponds to the characteristic vector $V_1 = (1, 1, \ldots, 1)'$. Also, the characteristic vector of A' corresponding to the characteristic root unity, was seen to be π and it was stated that $\lim_{t \to \infty} A^t = A^*$, where all rows of A^* are equal to π' . These properties can be illustrated by means of a numerical example. Consider the matrix

$$A = \begin{bmatrix} .9 & .1 & 0\\ .81 & .09 & .1\\ .729 & .081 & .19 \end{bmatrix}$$
(12)

Since,

 $\sum_{j=1}^{3} P_{ij} = 1; P_{ij} \ge 0 (i, j = 1, 2, 3)$

holds for this example A is seen to be stochastic. For t = 2 we have

$$A^{t} = A^{2} = \begin{bmatrix} .8910 & .0990 & .0100 \\ .8748 & .0972 & .0280 \\ .8602 & .0956 & .0442 \end{bmatrix}$$
(13)

which has all elements greater than zero, thus insuring that A is regular. (Note that A^2 is also stochastic.) The matrix equation,

 $\begin{bmatrix} .9 & .1 & 0 \\ .81 & .09 & .1 \\ .729 & .081 & .19 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad (14)$ shows that $\lambda_1 = 1$ is a characteristic root of A and that $V_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ ' is a characteristic vector of A. (Note that for a constant c, cV_1 is a characteristic vector.) Next, by solving the set of linear equations,

$$\begin{bmatrix} .9 & .81 & .729 \\ .1 & .09 & .081 \\ 0 & .1 & .19 \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{bmatrix} = \begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{bmatrix}$$
(15)

we see that the stationary distribution,

$$\begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{bmatrix} = \begin{bmatrix} .889 \\ .099 \\ .012 \end{bmatrix} ,$$
 (16)

is the characteristic vector of A' corresponding to $\lambda_1 = 1$. To examine A^t as t increases, we point out that the case for t = 1 and t = 2 has been given and that for t = 3 we have,

$$A^{3} = \begin{bmatrix} .889 & .099 & .012 \\ .886 & .098 & .015 \\ .884 & .098 & .018 \end{bmatrix} ,$$
 (17)

and when t = 5,

$$\mathbf{A}^{5} = \begin{bmatrix} .889 & .099 & .012 \\ .889 & .099 & .012 \\ .889 & .099 & .012 \end{bmatrix} ,$$
(18)

which shows that $A^{5} \sim A^{*}$. Also, using A^{5} it is seen that an arbitrary probability vector, P(o), is transformed by A* into π . For,

$$P(o) = \begin{bmatrix} .66\\ .13\\ .21 \end{bmatrix}$$
(19)

we see that, $P(o)'A^{5} = \begin{bmatrix} .66 .13 .21 \end{bmatrix} \cdot \begin{bmatrix} .889 .099 .012 \\ .889 .099 .012 \\ .889 .099 .012 \end{bmatrix} = \begin{bmatrix} .889 .099 .012 \\ .20 \end{bmatrix}$

We see that for this example A^5 gives a good approximation to A*, which shows that the initial conditions of the Markov chain have little effect on the distribution after 5 time intervals. In general, the t required to insure a reasonable estimate of A* is not known. A discussion of this problem is presented in later sections.

M-POLICY

The random variable of the M-policy inventory process which we will consider is Z_t , the number of items in the inventory after replenishment at the end of the time interval t. Z_t is an integer having M as lower bound and X as upper bound such that (Chaddha, 1960),

 $M \leq Z_t \leq X$

It is seen that Z_t can be in any one of a + 1 = X - M + 1 content states.

The demand distribution placed on the items in the inventory is defined as,

$$P = \left\{ P_{i} \right\}$$
(22)

where

$$P_i = Pr$$
 (number of items demanded during a
unit time interval, I_{\pm}) = i . (23)

(21)

We see that the elements p_{ij} , (i, j, = o,1,...,a), of the stochastic matrix may be written as:

or in matrix form (Chaddha 1960);

	× ^Z t	+ı= M	M+1	2M	2M+:	1X-2	MX-1	X
. /	×1	= 0	1	M	M+1	a-M	a-l	a
zt	i							-1
М	0		P _{M-1}		0	0	0	0
M+l	1	2° P ₁ 1=M+1	P _M	··· ^P l	Po	0	0	0
		•	•	•	•	•	•	•
		•	•	•	•	•	•	•
*	•	•	•	•	•	•	•	•
X-2M	a-M	ΣP _i i=a	P _{a-1}	···P _{a-M}	Pa-l	M-l ^{.,P} M	•••• ^P 1	Po
X-2M+	la-M+l	Σ P ₁	P _a	··· ^P a-M+1	Pa-	MP _{M+}	1 ^p 2	ΣP _i i=0 ¹
		1-0.1	•		•	•	•	•
•		•	•	•	•	•	•	•
x	8	ΣP _i i=a+M	P _{a+M-1}	Pa.	P _{a-}	1P 2M	P _{M+1}	Σ _{Pi} i=0
		(Z _t i	s conte	nt at time	, t;	Z _{t+l} is	content a	at t+l)

By observing the matrix we note that the main diagonal and the two adjacent off diagonals are positive if P_{M+1} , P_M , and P_{M-1} are positive. This implies that for some t, A^t is positive which in turn implies A is regular.

In this thesis, two types of demend distributions will be considered in detail;

(i) geometric,

$$P_{k} = pq^{k} \quad (k = 0, 1, 2, ...)$$

$$(p+q) = 1, 0 \le p \le 1 \qquad (24)$$

(ii) Poisson,

$$P_{k} = e^{-m} \frac{m^{k}}{k!} \quad (k = 0, 1, 2,)$$
(25)

The mean $\mu_{\rm G}$ and variance Var (G) of the geometric distribution are

$$\mu_{G} = \frac{q}{p} \quad \text{and } Var(G) = \frac{q}{p^{2}} \quad . \quad (26)$$

Since 0<p<1, we note from (26) that

$$\mu_{\rm G} \angle V_{\rm ar}$$
 (G) . (27)

For the Poisson distribution we have

 $\mu_{\rm p} = Var(P) = m$. (28)

It is pointed out that, for this type of inventory process, u is interpreted as the average demand on the system, i.e., the average number of items demanded during a unit time interval, I_t. For geometric demand distribution it is seen that.

$$P_0 = pq^{0} = p = Pr(No \text{ items are sold during} a unit interval})$$
 (29)

and that the average demand, μ_G , increases as p decreases. For Poisson distribution average demand increases as m increases. A is obviously regular for geometric and Poisson demand distributions.

It is apparent by comparing the variances of the two demand distributions that for the case when $\mu_{\rm G} = \mu_{\rm P}$, the geometric distribution will always have greater variance than the Poisson distribution. The variance of the geometric distribution gets quite large for small values of p.

The characteristic roots of the M-policy stochastic matrix can be extracted from the characteristic equation of the matrix. Since the characteristic roots will be of much interest in following sections, a particular example will be studied and its roots found directly from the characteristic equation. Consider the case where maximum content, X, equals four, order size, M, equals one, and the demand distribution is geometric. We have.

$$A = \begin{bmatrix} q & p & 0 & 0 \\ q^2 & pq & p & 0 \\ q^3 & pq^2 & pq & p \\ q^4 & pq^3 & pq^2 & pq+p \end{bmatrix}$$
(30)

The characteristic equation for this matrix is

which after much algebra reduces to,

$$C(\lambda) = \lambda^{\frac{1}{4}} - (1+3pq)\lambda^{3} + pq(3+pq)\lambda^{2} - (pq)\lambda = 0$$

= $\lambda(\lambda-1) (\lambda^{2}-3pq\lambda+(pq)^{2}) = 0$ (32)

therefore,

$$\lambda_1 = 1, \ \lambda_2 = \frac{3+5}{2} \ pq, \ \lambda_3 = \frac{3-5}{2} \ pq, \ \lambda_4 = 0$$

For large matrices this method of obtaining characteristic roots has disadvantages which make it impractical for the present purposes. First, the involved algebra is quite time consuming and is of a nature that is not readily applicable to electronic computers; second, the characteristic vectors are not obtained without further work; and third, roots other than λ_2 will be of little interest for the present purpose. It becomes apparent that a more suitable method is needed to compute w and λ_2 .

Before considering methods for finding π and λ_2 , it should be pointed out that, although the M-policy, stochastic matrix is referred to in the present context as defining an inventory process; the same matrix defines a queueing process and defines a storage process for finite dams (Gani 1957). This, of course, means that any results obtained in inventory control can be applied to these other areas.

METHOD FOR FINDING CHARACTERISTIC ROOTS

In this thesis we are interested in finding the characteristic roots of A which determine its rate of convergence to A*. Since $\lambda_1 = 1$, λ_2 has the most important effect on the rate of convergence. This means that a method that would determine π , λ_2 , and possibly λ_3 , is in order. Methods of handling the problem of finding characteristic roots and vectors fall into two classes, analytical and numerical. The analytical methods, in general, give ways of obtaining the characteristic equation of the matrix which then must be solved. Analytical methods have the advantage of giving the exact value of all roots. Most analytical methods also lead to ways of determining the characteristic vectors after the roots have been found. However, when the characteristic equation is of high degree, as indicated in the last section, analytical methods become very cumbersome and time consuming and we are forced to use numerical methods to find the solution of the equation.

Numerical iterative methods are, in general, simple to apply and will give the largest characteristic root and its corresponding characteristic vector. The iteration may be carried out to any degree of accuracy and having obtained λ_1 and V_1 , A can be modified so that an iterative solution for λ_2 and V_2 is found. Iterative methods have the disadvantage of being less accurate for each succeeding root and, if two neighboring roots are almost the same size the convergence of the method is slow for the larger of the two roots. Let us assume that the roots of A are simple and distinct. When this is not the case, a modification is necessary. One very distinct advantage of iterative methods is that in most cases they are well adapted for use on an electronic computer.

For the present purpose, an iterative method is the most suitable and will be used for finding π and $\lambda_2.$

Faddeeva (1959) relates an iterative method which was used to handle the characteristic value problems encountered in this thesis. In order to have a better understanding of the way in which the results in later sections were obtained, this method is introduced now.

First, consider λ_1 , $\lambda_2, \ldots, \lambda_n$, to be ordered with regard to absolute magnitude and for simplicity, consider each root to be real and distinct. Now, an arbitrary vector, Y_0 , can be written as a linear function of the n characteristic vectors which determine the n dimensional space. Then

$$Y_0 = b_1 V_1 + b_2 V_2 + \dots + b_n V_n$$
 (33)

Next form the vector sequence $\{Y_i\}$ (i=1,2,...,k) where

$$Y_{1}^{i} = Y_{0}^{i}A = b_{1}\lambda_{1}V_{1}^{i} + b_{2}\lambda_{2}V_{2}^{i} + \dots + b_{n}\lambda_{n}V_{n}^{i}$$
(34)

and

$$Y_{k}^{i} = Y_{0}^{i} A^{k} = b_{1} \lambda_{1}^{k} V_{1}^{i} + b_{2} \lambda_{2}^{k} V_{2}^{i} + \dots + b_{n} \lambda_{n}^{k} V_{n}^{i}$$
(35)

Now, let Y_k be any component of the vector, Y_k , such that

$$V_{\mathbf{k}} = C_1 \lambda_1^{\mathbf{k}} + C_2 \lambda_2^{\mathbf{k}} + \dots + C_n \lambda_n^{\mathbf{k}}$$
(36)

Now, it is seen that

$$\frac{y_{k+1}}{y_{k}} = \frac{c_{1}\lambda_{1}^{k+1} + c_{2}\lambda_{2}^{k+1} + \dots + c_{n}\lambda_{n}^{k+1}}{c_{1}\lambda_{1}^{k} + c_{2}\lambda_{2}^{k} + \dots + c_{n}\lambda_{n}^{k}}$$
(37)

$$= \frac{\lambda_{1}^{k+1}}{\lambda_{1}^{k}} \cdot \frac{1 + \frac{c_{2}}{c_{1}} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k+1} + \frac{c_{3}}{c_{1}} \left(\frac{\lambda_{3}}{\lambda_{1}} \right)^{k+1} + \dots + \frac{c_{n}}{c_{1}} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k+1}}{1 + \frac{c_{2}}{c_{1}} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} + \frac{c_{3}}{c_{1}} \left(\frac{\lambda_{3}}{\lambda_{1}} \right)^{k} + \dots + \frac{c_{n}}{c_{1}} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k}}$$
(38)

From this it is evident that

$$\lim_{k \to \infty} \left(\frac{y_{k+1}}{y_k} \right) = \lambda_1 \qquad , \qquad (39)$$

and for large k

$$\lambda_{l} \approx \frac{y_{k+l}}{y_{k}}$$

Also, for sufficently large k

$$\mathbf{Y}_{\mathbf{k}}^{\dagger}\mathbf{A} = \lambda_{\mathbf{l}}\mathbf{Y}_{\mathbf{k}}^{\dagger} , \qquad (40)$$

so that $Y_{\bf k} is$ the characteristic vector corresponding to $\lambda_{\mbox{\scriptsize l}}.$

Now, given λ_1 and $V_1 = \begin{bmatrix} V_1, & V_{12}, \dots, & V_{1n} \end{bmatrix}$ ', to find λ_2 , we form the matrix

$$P = \begin{pmatrix} v_{11} & 0 & \dots & 0 \\ v_{12} & 1 & \dots & 0 \\ v_{13} & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ v_{1n} & 0 & \dots & 1 \\ & & & & \\ \end{pmatrix}, \qquad (41)$$

and note that,

$$P^{-1} = \begin{bmatrix} \frac{1}{V_{11}} & 0 & \dots & 0 \\ - \frac{V_{12}}{V_{11}} & 1 & 0 & \dots & 0 \\ - \frac{V_{13}}{V_{11}} & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \\ - \frac{V_{1n}}{V_{11}} & 0 & \dots & \dots & 1 \end{bmatrix}$$

(42)

The matrix, $P^{-1}AP$, is similar to A, and both matrices have identical characteristic roots. Also,

$$P^{-1}AP = \begin{bmatrix} \lambda_{1} & b_{12} \dots & b_{1n} \\ 0 & & \\ 0 & & \\ \vdots & B & \\ 0 & & \\ 0$$

so that.

$$\left|P^{-1}AP - \lambda I\right| = (\lambda_1 - \lambda) \left|B - \lambda I\right|.$$
 (44)

From this we see that the matrix B, of order n-1, has as its characteristic roots λ_2 , λ_3 ,..., λ_n . The root, λ_2 , may now be determined by the iterative method for finding the dominant root.

The assumptions that were made above may not always hold but if $|\lambda_1| > |\lambda_2| > |\lambda_3|$ is true, the method should give the solutions for π and λ_2 . The most undesirable property of this technique os the slow convergence to λ_1 , when the ratio λ_1/λ_2 is near unity. In general, this iterative method has wide applicability to practical problems.

STATIONARY DISTRIBUTIONS

As stated previously, the stationary distribution, π , which satisfies the conditions, $A'\pi = \pi$, $\Sigma \pi_1 = 1$, exists for any regular stochastic matrix, A. Also, for regular A, each element of π is non-zero. (Gantmacher, 1959).

The iterative method for finding π and λ_2 was used to obtain the stationary distributions for the M-policy matrix, A, for

various different values of X and M. The cases when, X = 2(1)14, M= 1(1)13, p= .1(.1).9, are considered for geometric demand and X = 2(1)13, M = 1(1)12, m = 1(1)9 are considered for Poisson demand. The resulting stationary distributions are given in table 4 and table 5.

In discussing the stationary distributions it is helpful if we define,

$$D_{c} = (M - \mu_{G})$$
 (45)

and

$$D_{p} = (M - \mu_{p}).$$
 (46)

Each M-policy matrix will have a D which is equal to the order size minus the average demand. It is seen that when D>0, the order size is greater than the demand, and when D<0, the converse is true.

In general, it was found that π was most evenly distributed and had its greatest variance when D = 0. As D increases in value, it is seen that the probability elements, π_i , corresponding to large Z_t increases in size and that the elements corresponding to small Z_t decrease in size. The inverse of this relationship is seen to hold, in that as D decreases in value, the probability elements, π_i , corresponding to small Z_t increase in size and elements corresponding to large Z_t decrease in size. This may be illustrated by taking an example from M-policy with geometric demand.

		X = 5	M = 1	
		p=.8	p=.5	p=.2
Content	π _z	D _G =3/4	$D_G = 0$	$D_G = -3$
Z _t = 1	π ₁ =	.001	.167	.750
2	π ₂ =	.003	.167	.188
3	$\pi_3 =$.012	.167	.047
4	π_4 =	.047	.167	.012
5	^π 5 =	.938	.333	.004

This is the expected result in that the probability of an inventory system being full or near full should be greater when the demand during a time interval is less than the order size. Conversely when the order size is less than the demand an interal t, the inventory system is expected to be empty or near empty.

It may be seen by comparing table 4 to table 5, that, in general, when considering the stationary distribution of a given M-policy matrix, A, with Poisson demand and geometric demand, and with $D_G = D_p$; the variance of the random variable Z_t is greater for geometric demand. This implies π is more evenly distributed for geometric than for Poisson, for extreme values of D. It was mentioned previously that the variance of the geometric distribution is always greater than the variance of the Poisson distribution for $u_G = u_p$. It is believed that this fact is transferred from the demand distribution to the stationary distribution. For example when, M = 2, X = 7, $D_G = D_p = -2$, we have $Var \left[Z_t (geometric) \right] = 1.8084$

 $Var \left[Z_{t}^{2}(Poisson) \right] = .2295$

(47)

Also,

$$\begin{split} \mathbb{E}\left[\mathbb{Z}_{t}(\texttt{geometric})\right] &= 3.2424\\ \mathbb{E}\left[\mathbb{Z}_{t}(\texttt{Poisson})\right]^{-} &= 2.1571 \qquad . \end{split}$$

The stationary distributions given in tables 4 and 5 are used to compute many parameters of M-policy inventory processes. In a later section these stationary distributions will be used to compute the average content of the system, the probability of placing an order at the end of an interval, the average demand not met during the interval, and an average cost function, thus illustrating the value of π in an applied situation.

SECOND LARGEST ROOT OF THE M-POLICY MATRIX

Before discussing the general properties of the second largest root of the M-policy matrix, a special property of the characteristic roots of the geometric M-policy matrix is pointed out.

THEOREM III. The M-policy stochastic matrix with geometric demand has,

(i) M characteristic roots equal to zero when

$$M \leq \frac{X}{2} - 1 \tag{49}$$

(ii) and has exactly two non-zero characteristic roots when

$$M > \frac{X}{2} - 1$$
 (50)

Proof. When (i) holds it is seen that the geometric M-policy matrix is

pc р pc po² p pq3 pq α =A (51)pai 1=0 .pqX-M+1 pq^{X-M} ^MΣ pq¹ poX-M-1 1=0

It is seen that a linear dependence exists in A, such that

olumn 2 =
$$\frac{p}{q}$$
 . (column 1)

Since the first M+l columns are linearly dependent it follows that there will be M characteristic roots equal to zero and Theorem III is established when (i) holds. When (ii) holds the M-policy matrix is

$$A = \begin{bmatrix} q^{M} & pq^{M-1} \dots pq^{2M-X+1} & \frac{2M-X}{2} & pq^{1} \\ & 1=0 \\ q^{M+1} & pq^{M} \dots pq^{2M-X+2} & \frac{2M-X+1}{1=0} & pq^{1} \\ & 1=0 \\ q^{M+2} & pq^{M+1} \dots pq^{2M-X+3} & \frac{2M-X+2}{2} & pq^{1} \\ & & 1=0 \\ & & 1=0 \\ & & & & \\ q^{X} & pq^{X-1} \dots pq^{M+1} & \sum_{1=0}^{M} & pq^{1} \\ & & & & 1=0 \end{bmatrix} .$$
(53)

Now, it is seen that the first and last columns of A are linearly independent and all the interior columns are linear combinations of the first column. It follows that in this case the matrix A will have two non-zero characteristic roots and Theorem III is established when (ii) holds.

The characteristic equation of the geometric M-policy matrix when (50) holds, has been solved by Chaddha (unpublished result) and it was found that,

$$\lambda_{2} = (X-M) pq^{M} \qquad (54)$$

These properties of the characteristic roots of A for geometric demand are of interest since they affect the rate of convergence of A to A*.

The second largest characteristic roots for various Mpolicy matrices are given in table 6 (geometric demand) and in table 7 (Poisson demand). The iterative method discussed earlier was used to obtain these results.

When considering a given matrix, A, for both demands, λ_2 -takes its largest value when D = 0 and decreases in value as

|D| increases. (See Fig. 1.). When M and μ are held constant and X is increased (which results in a larger matrix), λ_2 is also increased. (Fig. 2.).

When X and μ are held constant and M is increased, the situation is somewhat different, since D changes as M changes. If |D| increases the, root, λ_2 decreases (Fig. 3.), but if |D| decreases toward zero, then λ_2 increases and reaches a maximum at D = 0 (Fig. 3.) or in some cases, λ_2 reaches a maximum before |D| reaches zero. (Fig. 4.). This last effect is due to the decreasing size of the matrix. A, as M increases,

In general, by inspecting table 6 and table 7, it is seen that for a given X, M, and D = 0; λ_2 is larger for Poisson than for geometric (Fig. 5.,6.). As |D| increases, λ_2 for Poisson seems to decrease at a faster rate than λ_2 for geometric (Fig. 7.).

For a given X, M, and geometric demand,

$$\lambda_2 \ll C_{X,M,G} \operatorname{pq}^M = C_{X,M,G} \operatorname{p}_M \qquad M \leq \frac{X}{2} -1 \tag{55}$$

= $(X-M)P_M$ $M > \frac{X}{2} - 1$ (56)

The formula (56) is an exact result, and the formula (55) is seen to give a very satisfactory approximation of λ_2 . Finite difference methods were applied to the data in table 6 to obtain this formula. In general the values given λ_2 by this formula should be accurate to three decimal places. The constant, $C_{X,M,G}$ is listed in table 1. To illustrate the use of table 1 consider the case when X = 4, M = 1. We have

$$C_{\mu,1,G} = 2.618$$
 (57)

and

$$\lambda_2 \approx (2.618) \text{ pq}^1$$
 (58)

which agrees with the previous answer for λ_2 , (32).

For a given X, M, and Poisson demand, the formula

$$\lambda_2 = C_{X,M,P} e^{-m} \quad \underline{\underline{m}}_{M_1}^M = C_{X,M,P} P_M$$
(59)

approximates λ_2 very well. This formula for λ_2 was obtained by observing that for a given X and M the ratio λ_2/P_M was a constant quantity. The constant quantity tabulated was obtained by using the largest of the λ_2 values. The values of the constant $C_{X,M,P}$, are given in table 2. Now consider an example for Poisson demand distribution with m = 4 and let M = 3, X = 9. We see that

$$C_{9,3,P} = 3.562$$
 (60)

and

$$e^{-m} \frac{m^{M}}{M!} = .1954$$
 (61)

so that

$$\lambda_2 \approx (3.562) (.1954) = .6960$$
 (62)

which compares with the computed value, .6959.

The usefulness of being able to compute λ_2 directly from the demand distribution and the significance of the method used fall into several areas. First, by inspecting the approximating formules it is seen that they have a form similar to the form of the demand distribution. This indicates that possibly for other demand distributions a similar relationship with λ_2 exists. Second, given the values for $C_{X,M}$, estimates of the rate of convergence may be obtained without going through the time consuming process of computing λ_2 . Third, this is a step toward the optimum solution of the problem which would be the ability to determine the rate of convergence using only the information given in the stochastic matrix.

The third largest characteristic root of A, λ_3 , was computed in a few cases, but, in general, it was found that λ_3 could not be computed in a usable form. In some cases λ_3 was so close to zero that rounding errors destroyed its usefulness and, as shown, in numerous cases $\lambda_3 = 0$ (geometric, $M - \frac{X}{2}$ -1). The iterative method used for computing the roots has much less accuracy for the third root than for the second root. Since λ_2 is the most important root in determining rates of convergence the absence of λ_3 is not critical.

	Tab	le l.	с _{х,м,с}	g (con for	stants geome	used : tric d:	in comp istribu	puting ution.	^λ 2)	
	1	2	3	4	5	6	7	8	9	10
3450	2.618	$\begin{array}{c} 1, 000\\ 2, 000\\ 3, 732\\ 4, 303\\ 4, 732\\ 4, 732\\ 5, 064\\ 5, 323\\ 5, 694\\ 5, 939\\ 5, 939\\ \end{array}$	1.000 2.000 3.000 4.799 6.009 6.823 7.136 7.398	1.000 2.000 3.000 4.000 5.000 5.828 6.541 7.162 7.162 8.162	1.000 2.000 3.000 4.000 5.000 6.000 6.854 7.606 8.275	1.000 2.000 3.000 5.000 5.000 7.000 7.873	1.000 2.000 3.000 4.000 5.000 6.000 7.000	1.000 2.000 3.000 4.000 5.000 6.000	1.000 2.000 3.000 4.000 5.000	1.000 2.000 2.000 5.000
Ы	11	12	13							
13		1.000 2.000								
	Tab.	le 2.	с _{х,м,1}	r (con for	stants Poiss	used : on dis	in com tribut:	puting ion.	^λ 2)	
	l	2	3	4	5	6	7	8	9	10
3454	1.000 1.707 2.075 2.278 2.400 2.478 2.530 2.573 2.595 2.595 2.615 2.633 2.647	7 076	1.000 1.866 2.530 3.328 3.562 3.562 3.733 3.861 3.958 3.958 4.039	1.000 1.894 2.620 3.574 4.095 4.266 4.398	1.000 1.913 2.681 3.290 3.756 4.110 4.380 4.591	1.000 1.926 2.726 3.380 3.896 4.298 4.612	1.000 1.935 2.759 3.449 4.007 4.452	1.000 1.943 2.785 3.504 4.241	1.000 1.949 2.806 3.549	1.953

M 11 12 12 1.000 13 1.957 1.000

Fig. 3. Values of second largest root, λ_2 , for order size M, Poisson demand with parameter m, and inventory size X = 13.

ig. 4. Values of second largest root, λ_2 , for order size M, Poisson demand with parameter m, and inventory size X = 13.

METHOD TO APPROXIMATE THE RATE OF STATIONARITY

According to its bilinear resolution the matrix A^{t} maybe written (Faddeeva, 1959) as,

$$A^{t} = \lambda_{1}^{t} V_{1} U_{1}' + \lambda_{2}^{t} V_{2} U_{2}' + \dots + \lambda_{n}^{t} V_{n} U_{n}'$$
(63)

$$= A * + \lambda_2^{\dagger} V_2 U_2' + \dots + \lambda_n^{\dagger} V_n U_n'$$
(64)

=
$$A \approx + f(\lambda_{i}^{t})$$
 (i = 2,3,....n) (65)

where V_i and U_i are characteristic vectors of A and A' respectively and $\lim_{t \to \infty} f(\lambda_1^t) = 0$. The equation (63) assumes the characteristic roots to be distinct but in (65) the only necessary assumption is that λ_1 is distinct (Faddeeva, 1959). In the present case, where A is a regular stochastic matrix, this last assumption holds since, $|\lambda_1| < 1$ (1=2,3,...,n). It is apparent that λ_2 is the most important root in determining the rate of convergence to A*.

The problem is to find a value of t such that

$$\left|A^{t} - A^{*}\right| \leq N, \tag{66}$$

where N is a matrix of the same dimension as A and with every element equal to some small given value d > 0.

It is noted that if the roots $\{\lambda_i\}$ are known then there is a value of t such that $|\lambda_i|^{t}$ is very small so that $f(\lambda_i^{t})$ is very small and this value of t will suffice to satisfy (66). By considering only the effect of λ_2 on the rate of convergence, a value of t_1 needs to be found, so that

$$|\lambda_2|^{t_1} \leq \epsilon$$
 (67)

where $\in (> \circ)$ is some small given constant. From the inequality,

$$\sum_{l} \frac{\log \epsilon}{\log |\lambda_2|} = \frac{\log \epsilon}{\log C_{X,M} + \log P_M}$$
(68)

it should be noted that, by using t_1 as an estimate of the number of trials needed for convergence, the minimum number of trials needed will be obtained since in the calculation of t_1 we do not take into consideration the values of λ_3 , λ_1 ,..., λ_n .

In the extreme case when $\lambda_2 = \lambda_3 = \lambda_{|\downarrow} = \lambda_n$, an estimate of the maximum number of trials needed can be obtained in much the same manner.

The inequality for this situation is given by,

$$\binom{(n-1)}{\lambda_2} \stackrel{t_2}{=} < \epsilon$$
 (69)

which reduces to

$$t_{2} > \frac{\log \epsilon}{\log |\lambda_{2}|} - \frac{\log (n-1)}{\log \lambda_{2}}$$
(70)

$$t_2 > t_1 + \frac{\log (n-1)}{\log \frac{1}{C_{X,M}^*} + \log \frac{1}{P_M}}$$
 (71)

Figures 8 and 9 illustrate the curve t_1 and figure 10 gives the graph of $t_2 - t_1$ for different n. Figure 8 is used to obtain a lower bound on the number of trials, and the number of non-zero roots (excluding unity) of the matrix determines which curve on figure 10 to use to obtain t_2 .

It was determined that t should be such that,

$$|A^{t} - A^{*}| \qquad (72)$$

in order for A^t to give a reliable estimate of A*. Knowing this,

 ε = .0005 was chosen in order to offset any rounding errors and to have t_1 and t_2 slightly conservative.

To illustrate the use of t₁, t₂ and $\text{C}_{\text{X},\text{M}}$ consider the M-policy with Poisson demand and X=6, M=2, m=1. We have

$$\lambda_2 = c_{6,2,P} \cdot P_2 = (2.737) (.1839) = .5033$$
 (73)

From figure 8 it is seen that for $\lambda_2 = .5033$, $t_1 = 12$ (rounded up to iteger). Figure 10 shows in this case that $t_2 = 14$. To check on this estimate, it is known from table 5 that

 $\pi' = \begin{bmatrix} .0027 & .0081 & .0276 & .0822 & .879 l_ \end{bmatrix}$ and computing $A^{1l_4},$ it is seen that

A ¹ 4= .0027 .0027 .0027	.0082 .0277 .0082 .0276 .0082 .0276 .0081 .0276 .0081 .0276	.0823 .879 .0822 .879 .0822 .879 .0822 .879 .0822 .879 .0822 .879	2 (74)
---	---	--	--------

From this, it seen that $A^{\frac{1}{14}}$ is a correct estimate of A* to three decimal places and is off by only 3 in the fourth decimal place. This degree of accuracy shows, in this case, that t₂ is, as stated, a good estimate of rate of convergence.

To better understand the behavior of t_1 and t_2 , table 3 lists various M-policies and gives λ_2 and the estimates t_1 , t_2 based on λ_2 . For comparison a quantity t* is given to show the rate at which A^t approaches A*. t* is the smallest value of t such that

 $|A^{t} - A^{t-1}| < .001 \quad t = (2, 3,).$ (75)

geome	tric d	lemand				
x 14 14 14 14 14 14 13 8	M8725331	p .11 .22 .36	× 258 25355 33448 5560 7348 848	tı 6 7 10 13 18 25 47	t2 79 13 16 23 31 59	t* 6 7014 18 24 50
Poiss	son de	mand				
X 9 8 11 9 9 11	M 7536523	m 4964412	λ ₂ .115 .200 .297 .406 .514 .597 .702	t1 4 7 9 12 15 21	t2 4 78 10 14 26	t* 578 104 204

Table 3. Comparsion of t1, t2 with t*.

If the value of λ_3 was known, the estimate t_1 could be improved upon. If λ_3 is to be considered, the problem is to find the smallest value of t_{11} such that,

$$\left|\lambda_{2}\right|^{t_{11}} + \left|\lambda_{3}\right|^{t_{11}} < \varepsilon$$
(76)

which reduces to

$$\begin{aligned} t_{11} &> \frac{\log}{\log |\lambda_2|} + \frac{\log [1 + |\lambda_3/\lambda_2| t_{11}]}{-\log |\lambda_2|} , \\ t_{11} &> t_1 + \frac{\log [1 + |\lambda_3/\lambda_2| t_{11}]}{-\log |\lambda_2|} . \end{aligned}$$

$$(77)$$

If the extreme case $\lambda_3=\lambda_{j_1},\ldots,\lambda_n$ is considered, it is seen that

$$\left|\lambda_{2}\right|^{t} = (n-2) \left|\lambda_{3}\right|^{t} = < \epsilon$$
(78)

t ta ol

reduces to,

$$t_{12} > \frac{\log \epsilon}{\log |\lambda_2|} + \frac{\log \left[1 + (n-2) \left|\frac{\lambda_3}{\lambda_2}\right|^{-12}\right]}{-\log \lambda_2} \cdot t_{12} + \frac{\log \left[1 + (n-2) \left|\frac{\lambda_3}{\lambda_2}\right|^{-12}\right]}{-\log |\lambda_2|} \cdot (79)$$

Several facts become apparent by inspecting the equations which give t_{11} and t_{12} . First, the computation involved in finding t_{11} and t_{12} is greater than for t_1 and t_2 . Second, when the ratio $\left|\lambda_3/\lambda_2\right|$ is small, t_{11} will be very close t_1 and the added effort of computing t_{11} is unnecessary. Third, when the ratio $\left|\lambda_3/\lambda_2\right|$ is near unity, t_{12} is very near t_2 in value, and it is doubtful that the improvement would be worth the added computation. The utility of λ_3 for estimating convergence seems to lie in its ability to lower the upper estimate when $\left|\lambda_3/\lambda_2\right|$ is large. It is noted that when $\lambda_3 = 0$, $t_{12} = t_{11} = t_1$, and when $\lambda_3 = \lambda_2 =$, $t_{11} = t_2$ (with n = 3) and $t_{12} = t_2$.

In the example considered with Poisson demand, X = 6, M = 2, and m = 2, it was found that $\lambda_3 = .1963$. It is seen that in this case the ratio $\frac{\lambda_3}{\lambda_2}$ ^t ($\approx |.4|$ ¹²) is very small and that $t_{12} \approx t_1$.

In view of the above discussion it appears that λ_3 would be of value and would shorten the interval $(t_2 - t_1)$ when λ_2 is large (>.85) but, otherwise the gain in accuracy does not justify the added computation.

.

of intervals needed to reach the "near" steadystate. λ_2 is the second largest characteristic root and n is the number of non-zero characteristic roots of the stochastic matrix.

APPLICATIONS

To illustrate application of t_1 and t_2 consider an inventory process that follows M-policy. For geometric demand with X = 5, M = 1, P = .5 and starting with full inventory content (=5), consider estimates of stationarity after, say, five trials and consider estimates of stationarity after at least t_1 trials.

$$A = \begin{bmatrix} .5 & .5 & 0 & 0 & 0 \\ .5 & .25 & .5 & 0 & 0 \\ .125 & .125 & .25 & .5 & 0 \\ .0525 & .0625 & .125 & .25 & .5 \\ .03125 & .03125 & .0625 & .125 & .75 \\ \end{bmatrix} .$$

In this case it is seen that $C_{5,1,.5} = 3.00$ and pq = .25.

The value of λ_2 is computed

$$\lambda_2 = (3.00) \cdot 25 = .750$$
 . (81)

From this it is seen that $t_1 = 27$ and $t_2 = 32$ (Fig. 8,10). The starting distribution is

$$P'(0) = 00001$$
 (82)

and from this

$$P(5) = \begin{bmatrix} .1222 \\ .1222 \\ .1370 \\ .1655 \\ .4521 \end{bmatrix} P(30) = \begin{bmatrix} .1666 \\ .1666 \\ .1666 \\ .1666 \\ .1667 \\ .3334 \end{bmatrix} .$$

Also, (table 4)

 $\pi^{*} = \begin{bmatrix} .1667 & .1667 & .1667 & .3333 \end{bmatrix}$ which shows that P(30) is a very close estimate of π .

The average number of items in the inventory can be computed when the probabilities for each state are known. We see the average content is

The average demand not met can also be computed if the probabilities are given. Average demand not met is the sum

 $\sum_{\substack{i=1\\ j=1}}^{\infty} i(P_{M}(t) \cdot P_{M+1} + P_{M+1}(t) P_{M+1+1} + P_{M+2}(t) P_{M+2+1} + \dots + P_{X}(t) P_{X+1}).$ (86) In our case it is seen that this reduces to

- (i) based on P(5) $\frac{q}{p} = \sum_{i=1}^{5} P_i(5) q^i = .2666$ (87)
- (ii) based on $\pi = \frac{q}{p} = \sum_{i=1}^{5} \pi_i q^i = .1667$. (88)

The probability that an order is placed is,

(i) base on P(5)

$$1 - p_0 P_5(5) = .7740$$
 (89)

(ii) based on T

$$1 - p_0 \pi_{c} = .8333$$
 . (90)

To set up a hypothetical problem, assume that a government supplier, who is contracted to supply rockets at a test site, keeps five rockets on site ready to fire. Assume this inventory can be replenished with at most, one rocket per week, and five is the maximum number that can be kept on site. The rocket firings follow the geometric (p=,5) distribution and the contracter must pay a penalty cost, C_3 , of \$50,000 each time

the demand for a rocket is not met. Consider the weekly cost, C_1 , of maintaining a rocket on site to be \$4,000 and the cost, C_2 , of shipping a rocket to the test site to be \$4,000 also. This is clearly an example of an M-policy inventory system.

Total cost per week is found by using the equation:

Total cost per week = Average content x C1

+ Pr [order is placed] x C2+ Average demand

not met x C3.

It is seen that for the example

```
(1) based on P(5)
```

Total weekly cost = $(3.8263)C_1+(.7740)C_2+(.2666)C_3$ (91) = \$31,731

(ii) based on T

Total weekly cost = $(3.3333)C_1+(.8333)C_2+(.1666)C_3$ (92) = \$25,000

The difference between these two results points out the danger involved in making estimates by using P(t) s, before a steady state is reached, and shows the utility of the estimators, t_1 and t_2 .

For an example of the M-policy stochastic matrix with application in the field of queue theory, consider the following situation. Suppose that a clinic, with M staff physicians, has a waiting room with capacity X - M (=a). Assume that the service time for each patient is the same, I_t , and that patients are admitted from the waiting room only at the termination of the interval I_t . Also, assume the number of patients that arrive

in the waiting room, during I_t , is a Poisson variable, and that any patient that arrives when the waiting room is full goes elsewhere for medical attention.

This queue system, with queue length the random variable, is seen to be analogous to the M-policy inventory system. The stochastic matrix for M = 2 and $a = \frac{1}{4}$ is

No. of patients at time t+1

		4	3	2	l	0
	4	Σp _i i=2	pl	p _o	0	0]
No. of patients in wait-	3	Σpi i=3	°2	pl	°,	0
ing room at time t	2	∑p i=4 i	°3	^р 2	pl	p o
	l	Σp i=5 ⁱ	р _Ц	p ₃	^р 2	p _i +p _o
	0	∑pi i=6	p5	P4	p3	žpi i=0

It is now apparent that table 5 and table 7 could be employed to determine the stationary distribution and rate of convergence for the problem. Knowing this, information concerning the clinic may be computed, i.e., average number of patients in the waiting room, average waiting time, average number of patients turned away, average idle time per physician, etc. From this. optimal levels could be obtained for M and a.

The stochastic matrix for M-policy can also be used to characterize the behavior of a finite dam under certain conditions. Suppose that a dam of capacity X, receives a random amount of water each year during the wet season. This amount is added to the water already in storage and the content of the dam will be less than X, or in the case of overflow will equal X. Say a quantity of water, M, is released each year, during the dry season, for irrigation and in the case when the dam does not contain, M, the entire amount in storage is released. If we consider the discrete analogue, where input is assumed to be discrete quantities of water, the stochastic matrix which describes the operation of the dam is the Mpolicy matrix. Thus, for a given rainfall distribution, the techniques developed in this thesis could be applied to determine the properties of the dam, i.e., average content, average ammount available for irrigation, etc.

From the variety of these examples it is evident that the M-policy is quite versatile in its applications. For this reason it is felt that the techniques developed, and similar extentions of these techniques, will find application in many areas concerned with Markov process theory.

CONCLUSIONS

From this thesis it becomes evident that the technique developed may be applied to any regular Markov chain for which the transition probability matrix is known. The M-policy model was followed to illustrate the technique with the hope that researchers and industrialists faced with similar problems, will find it useful.

The mathematics involved in determining π and λ_2 has been made feasible with the arrival of the high speed computer. With judicious programming, tables such as found in the Appendix can be readily obtained.

It is felt that the most significant development of this thesis is the technique developed to characterize the rate of convergence of an entire inventory process. It is hoped that the present effort will serve as a guide for future development of the technique to more complicated and more realistic systems. It is felt that the technique will have particular utility in queueing and storage theory where stochastic processes have extensive applicability.

ACKNOWLEDGMENT

This writer would like to express his gratitude to Dr. Roslan L. Chaddha, Kansas State University, for his untiring and encouraging attention during the preparation of this thesis and to the Computing Center, Kansas State University, for making available their I.B.M. 1620 computing facilities for the necessary numerical computation. This work was initiated during the summer of 1961 with the help of the National Science Foundation Undergraduate Research Participation Program. APPENDIX

EXPLANATION OF TABLES

<u>Table 4.</u> (page 51) lists the stationary probability distribution, $\pi = \pi_{*}$

 $i = number of items in the inventory, M \leq i \leq X$

 π_i = probability of having i items in the inventory for the M-policy stochastic matrix with geometric demand when X = 2(1)14, M = 1(1)13, and p = .1(.1).9. <u>Table 5.</u> (page 70) is similar to Table 4. and lists the π_i for Poisson demand when X = 2(1)13, M = 1(1)12, and m = 1(1)9. <u>Table 6.</u> (page 85) lists the second largest characteristic root, λ_2 , of the M-policy stochastic matrix with geometric demand when X = 2(1)14, M = 1(1)13, and p = .1(.1).9. <u>Table 7.</u> (page 88) lists λ_2 for Poisson demand when X = 2(1)13, M = 1(1)12, and m = 1(1)9.

Table 4.

i	p= .1	.2	.3	.4	.5	. 6	.7	.8	.9
	M=1, X ² 2								
1 2	.8901 .1099	.7619 .2381	.6203 .3797	.4737 .5263	.3333 .6667	.2105 .7895	.1139 .8861	.0476	.0110 .9890
	M=1, X=3								
1 2 3	.8890 .0988 .0122	.7529 .1882 .0588	.5914 .2534 .1552	.4154 .2769 .3077	.2500 .2500 .5000	.1231 .1846 .6923	.0466 .1086 .8448	.0118 .0471 .9411	.0012 .0110 .9878
	M=1, X=4								
1 2 3 4	.8889 .0988 .0108 .0014	.7507 .1876 .0469 .0147	.5798 .2485 .1065 .0652	.3839 .2559 .1706 .1896	2000 2000 2000 4000	.0758 .1137 .1706 .6398	.0196 .0456 .1065 .8283	.0029 .0117 .0469 .9384	.0001 .0012 .0110 .9877
	M=1, X=5								
1 2 3 4 5	.8889 .0988 .0110 .0012 .0001	.7502 .1875 .0469 .0117 .0037	.5750 .2464 .1056 .0453 .0277	.3654 .2436 .1624 .1083 .1203	.1667 .1667 .1667 .1667 .3333	.0481 .0722 .1083 .1624 .6090	.0083 .0194 .1453 .1056 .8214	.0007 .0029 .0117 .0469 .9377	.0001 .0012 .0110 .9877
	M=1, X=6								
123456	.8889 .0988 .0110 .0012 .0001	.7500 .1875 .0469 .0117 .0029 .0009	.5729 .2455 .1052 .0451 .0193 .0118	.3541 .2360 .1574 .1049 .0699 .0777	.1429 .1429 .1429 .1429 .1429 .1429 .2857	.0311 .0466 .0699 .1049 .1574 .5901	.0036 .0082 .0193 .D451 .1052 .8185	.0002 .0007 .0029 .0117 .0469 .9376	.0001 .0012 .0110 .9877
	M=1, X=7								
1 2 3	.8889 .0988 .0110	.7500 .1875 .0469	.5721 .2452 .1051	.3469 .2312 .1542	.1250 .1250 .1250	.0203 .0305 .0457	.0015 .0035 .0082	.0002	
54 56 7	.0012	0117 0029 0007 0002	.0450 .0193 .0082 .0051	1042 1028 0685 0457 0508	1250 1250 1250 1250	.0685 .1028 .1542 .5781	.0193 .0450 .1051 .8173	.0029 .0117 .0469 .9375	.0001 .0012 .0110 .9877

	Table 4. (cont.)									
i	p=	.1	.2	.3	.4	.5	6	.7	.8	.9
	M=]	, X=8								
12345678		.8889 .0988 .0110 .0012 .0001	.7500 1875 .0469 .0117 .0029 .0007 .0002 .0001	.5717 2450 1050 .0450 .0193 .0083 .0035 .0022	.3422 2281 1521 1014 .0676 .0451 .0301 .0334	.1111 .1111 .1111 .1111 .1111 .1111 .1111 .2222	0134 0201 0301 0451 0676 1014 1521 5704	.0007 .0015 .0035 .0083 .0193 .0450 .1050 .8167	0002 0007 0029 0117 0469 9375	.0001 .0012 .0110 .9877
	M=]	L, X=9								
1 2 3 4 5 6 7 8 9		.8889 .0988 .0110 .0012 .0001	.7500 .1875 .0469 .0117 .0029 .0007 .0002	.5715 .2449 .1050 .0450 .0193 .0083 .0035 .0015 .0009	.3392 .2261 .1508 .1005 .0670 .0447 .0298 .0199 .0221	.1000 .1000 .1000 .1000 .1000 .1000 .1000 .2000	.0088 .0132 .0199 .0298 .0441 .0670 .1005 .1508 .5654	.0003 .0007 .0015 .0035 .0083 .0193 .0450 .1050 .8165	.0002 .0007 .0029 .0117 .0469 .9375	.0001 .0012 .0110 .9877
	M=]	, X=10	C							
1 2 3 4 5 6 7 8 9 10		.8889 .0988 .0110 .0012 .0001	.7500 .1875 .0469 .0117 .0029 .0007 .0002	5715 2449 1050 0450 0193 0083 0035 0015 0007	.3372 .2248 .1499 .0999 .0666 .0444 .0296 .0197 .0132 .0146	0909 0909 0909 0909 0909 0909 0909 090	.0058 .0088 .0132 .0197 .0296 .0444 .0666 .0999 .1499 .5621	.0001 .0003 .0007 .0015 .0035 .0083 .0193 .0450 .1050 .8164	.0002 .0007 .0029 .0117 .0469 .9375	.0001 .0012 .0110 .9878
	M=	L, X=13	1							
1 2 3 4 5 6 7 8 9 10 11		.8889 .0988 .0110 .0012 .0001	.7500 .1875 .0469 .0117 .0029 .0007 .0002	5714 2449 1050 0450 0193 0083 0035 0015 0007 0003 0002	.3359 .2239 .1493 .0995 .0664 .0442 .0295 .0197 .0131 .0087 .0097	0833 0833 0833 0833 0833 0833 0833 0833	0039 0058 0087 0131 0197 0295 0442 0664 0995 1493 5599	.0001 .0003 .0007 .0015 .0035 .0083 .0193 .0450 .1050 .8164	.0002 .0007 .0029 .0117 .0469 .9375	.0001 .0012 .0110 .9877

Table 4. (cont.) .5 i **D**= .1 .2 .3 . 4 .6 .7 .8 .9 M=1, X=12 .3350 .0026 1 .8889 .7500 .5714 .0769 2 .0001 .1875 .2449 .2237 .0769 .0039 3 .0001 .0110 .0469 .1050 .1489 .0769 .0058 .0117 .0769 456 .0012 .0450 .0993 .0087 .0003 .0029 .0193 .0662 .0769 .0131 .0007 .0001 .0007 .0083 .0769 .0196 .0015 .0441 7 .0035 .0294 .0002 .0769 0294 .0035 .0002 8 .0769 .0015 .0196 0441 .0083 .0007 9 0007 .0131 0769 0662 .0193 .0029 .0001 10 11 .0087 .0769 .0117 .0003 .0993 .0450 .0012 .0001 .0769 ,1489 ,1050 .0469 .0110 12 .1538 .0001 .0064 .5584 8163 .9375 9877 M=1. X=13 1 .8889 .7500 .5714 .3345 .0714 .0017 .0988 1875 .0714 234 .2449 .2230 .0026 .0714 .0714 .0714 .0110 .0469 .1050 .1487 .0039 .0001 .0012 .0117 .0450 .0991 .0058 .0001 5 .0029 0001 .0193 .0661 .0087 .0003 .0007 .0083 .0714 .0131 ,0440 .0007 78 0714 0714 0714 0714 .0035 .0295 .0196 .0015 .0015 .0196 0294 .0035 g .0007 .0131 .0007 .0440 .0083 .0003 .0087 ,0661 .0193 .0029 .0001 .0714 11 .0058 .0001 .0991 .0450 0117 .0012 12 .0039 .0714 1487 ,1050 0469 .0110 .1428 13 .0043 .5575 .8163 9375 .9877 M=1, X=14 .8889 .7500 .5714 .3340 .0667 .0011 .2227 2345678 .0988 .1875 .2449 .0667 .0017 .0469 .0110 .1050 ,1485 .0667 .0026 .0012 .0117 .0450 .0990 .0667 .0039 .0001 .0001 .0029 .0193 .0660 .0058 .0667 .0001 .0007 .0083 .0440 .0667 .0087 .0003 .0001 .0293 .0035 .0667 .0130 .0007 .0015 .0196 .0667 .0015 ĝ .0130 .0035 .0007 .0667 .0293 .0002 ĭo .0003 .0087 .0667 .0440 .0083 11 .0001 .0058 .0667 .0660 .0193 .0029 .0001 12 13 14 .0039 .0001 .0667 .0990 .0450 .0117 .0012 .0026 .0667 .1485 .1050 .0469 .0110 .0029 .1333 .5568 .8163 .9375 9877

				Table (cont					
i	p= "l	.2	.3	.4	.5	.6	. 7	. 8	.9
	M=2, X=3								
2 3	.7932 .2067	.5872 .4128		.2523 .7477	.1429 .8571	.0708 .9292	.0288 .9712	.0083 .9917	.0010 .9989
	M=2, X=4								
2 3 4	.7829 .0870 .1301	.5505 .1376 .3118	.3401 .1458 .5142	.1820 .2113 .6966	.0833 .0833 .8333	.0317 .0475 .9208	.0093 .0216 .9691	.0017 .0068 .9914	.0001 .0009 .9990
	M=2, X=5								
2 3 4 5	.7800 .0867 .0963 .0370	.5319 .1330 .1662 .1688	.3007 .1289 .1841 .3864	.1369 .9127 .1521 .6197	.0500 .0500 .1000 .8000	.0144 .0216 .0539 .9101	.0030 .0070 .0233 .9667	.0004 .0014 .0071 .9912	.0001 .0010 .9989
	M=2, X=6								
23456	.7786 .0865 .0916 .0203 .0185	.5197 .1299 .1624 .0731 .1148	.2713 .1163 .1661 .1210 .3252	.1049 .0699 .1166 .1243 .5843	.0303 .0303 .0606 .0909 .7879	.0066 .0098 .0246 .0516 .9075	.0010 .0023 .0075 .0229 .9664	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990
	M=2, X=7								
2 3 4 5 6 7	.7781 .0865 .0961 .0203 .0129 .0062	.5126 .1281 .1602 .0721 .0581 .0690	.2497 .1070 .1529 .1114 .1132 .2658	0818 0545 0909 0970 1252 5506	.0185 .0185 .0370 .0555 .0926 .7778	0030 0045 0112 0236 0522 9056	0003 0007 0024 0074 0230 9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9989
	M=2, X=8								
2345678	.7779 .0864 .0960 .0203 .0129 .0037 .0027	.5079 1270 1587 0714 0575 0322 0451	2328 0998 1425 1038 1056 0897 2258	.0645 .0430 .0717 .0764 .0987 .1168 .5289	.0114 .0114 .0227 .0341 .0568 .0909 .7727	.0014 .0021 .0051 .0108 .0238 .0519 .9049	.0001 .0002 .0008 .0024 .0074 .0229 .9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990

	Table4. (cont.)									
i	pa	.1	.2	.3	.4	.5	.6	.7	.8	.9
	M=	2, X=9								
23456789		.7778 .0864 .0960 .0203 .0129 .0037 .0018 .0010	.1263 .1578 .0710 .0572 .0321 .0223		.0513 .0342 .0570 .0608 .0786 .0929 .1143 .5108	.0070 .0070 .0140 .0210 .0350 .0560 .0909 .7692	.0006 .0023 .0049 .0109 .0237 .0520 .9046	.0001 .0003 .0008 .0024 .0074 .0229 .9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990
	M=	2, X=1	0							
2 3 4 5 6 7 8 9 10		.7778 .0864 .0960 .0203 .0129 .0037 .0018 .0006 .0004	.1258 .1573 .0708 .0570 .0319 .0222 .0135	2086 0894 1277 0930 0946 0804 0750 0666 1647	.0411 .0274 .0457 .0487 .0629 .0744 .0916 .1107 .4975	.0043 .0043 .0086 .0129 .0216 .0345 .0560 .0905 .7672	.0003 .0004 .0010 .0023 .0050 .0109 .0238 .0519 .9044	.0001 .0003 .0008 .0024 .0074 .0229 .9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990
	M=	2, X=1	1							
2 3 4 5 6 7 8 9 10 11		.7778 .0864 .0960 .0203 .0129 .0037 .0018 .0006 .0003 .0002	.5021 .1255 .1569 .0706 .0569 .0319 .0222 .0135 .0089 .0116	1997 .0856 .1223 .0891 .0906 .0770 .0718 .0638 .0581 .1422	.3310 .0221 .0368 .0392 .0507 .0599 .0737 .0891 .1086 .4867	0027 0027 0053 0080 0133 0213 0346 0559 0904 7660	.0001 .0002 .0005 .0010 .0023 .0050 .0109 .0238 .0519 .9043	.0001 .0003 .0008 .0024 .0074 .0229 .9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990
	M=2	2, X=12	2							
2 3 4 5 6 7 8 9 10 11 12		7778 0864 0960 0203 0129 0037 0018 0006 0003 0001 0001	5013 1253 1567 0705 0570 0318 0222 0135 0089 0056 0074	1923 0824 1177 0858 0872 0741 0691 0614 0559 0503 1237	0268 0178 0297 0317 0410 0485 0596 0721 0878 1066 4784	0016 0033 0049 0082 0131 0213 0345 0558 0903 7652	.0001 .0002 .0005 .0010 .0023 .0050 .0109 .0238 .0519 .9043	.0001 .0003 .0008 .0024 .0074 .0229 .9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990

				Table (cont					
i	p= .1	.2	.3	• 4	.5	.6	.7	. 8	.9
	M=2, X	=13							
2 3 4 5 6 7 8 9 10 12 12	L .001	54 .125 50 .1565 03 .070 29 .0567 37 .0318 18 .0221 06 .0135 03 .0085	2 .0797 1139 4 .0830 7 .0844 3 .0717 1 .0669 5 .0594 9 .0541 6 .0487 5 .0441	0217 0145 0241 0257 0332 0393 0484 0585 0712 0865 1051 4717	0010 0020 0030 0051 0081 0132 0213 0345 0345 0558 0903 7647	.0001 .0002 .0005 .0010 .0023 .0050 .0109 .0238 .0519 .9043	0001 0003 0008 0024 0074 0229 9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990
	M=2, X:	=14							
2 3 4 5 6 7 8 9 10 12 13 14	.000	54 1251 50 1564 03 0704 29 0567 37 0318 18 0221 06 0135 03 0089	L 0775 1106 0806 0820 0697 0650 0577 0526 0526 0526 0428 0386	0177 0118 0196 0209 02270 0320 0394 0476 0579 0703 0855 1039 4663	.0006 .0013 .0019 .0031 .0050 .0081 .0132 .0213 .0345 .0558 .0902 .7644	.0001 .0002 .0005 .0010 .0023 .0050 .0109 .0238 .0519 .9043	.0001 .0003 .0008 .0024 .0074 .0229 .9661	.0001 .0003 .0015 .0070 .9911	.0001 .0009 .9990
	M=3, X=	: <u>4</u>							
3 4	.707 .292		.2676 .7324	.1419 .8581	.0667 .9333	.0266 .9734	.0083 .9917	.0016 .9984	.0001
	M=3, X=	5							
3 4 5	.691 .076 .231	8 .1030		.0940 .0627 .8433	.0357 .0357 .9286	.0111 .0166 .9723	.0025 .0059 .9916	.0003 .0013 .9984	.0001
	M=3, X=	6							
3 4 5 6	.680 .075 .084 .160	6 .0946 0 .1182	.0729 .1042	.0630 .0420 .0700 .8250	.0192 .0192 .0385 .9231	.0046 .0069 .0174 .9711	.0008 .0018 .0060 .9914	.0001 .0003 .0013 .9984	.0001

m

	Table 4. (cont.)										
i	p= .1	2	.3	. 4	.5	.6	.7	.8	.9		
	M=3, X=7										
34567	6752 0750 0834 0926 0738	.0888 .1110 .1388	.0600 .0857 .1224	0428 0285 0475 0792 8020	.0104 .0104 .0208 .0417 .9167	.0019 .0029 .0073 .0181 .9698	.0002 .0006 .0018 .0061 .9912	.0001 .0003 .0013 .9984	.0001		
	M=3, X=8										
345678	6718 0746 0829 0921 0277 0508	.0841 1052 1315 .0802	.0498 .0711 .1016 .0954	.0292 .0195 .0324 .0541 .0706 .7942	.0056 .0056 .0113 .0226 .0395 .9152	.0008 .0012 .0030 .0076 .0178 .9696	.0001 .0002 .0006 .0019 .0061 .9912	.0001 .0003 .0013 .9984	.0001 .9999		
	M=3, X=9										
345 6789	.6696 .0744 .0827 .0919 .0277 .0225 .0313	.0805 .1006 .1257 .0767 .0757	0974 0417 0596 0852 0799 0963 5398	.0200 .0133 .0222 .0370 .0484 .0718 .7873	.0031 .0031 .0061 .0123 .0215 .0399 .9141	0003 0005 0013 0032 0074 0178 9694	.0001 .0002 .0006 .0019 .0061 .9912	.0001 .0003 .0013 .9984	.0001 .9999		
	M=3, X=1	0									
3 4 5 6 7 8 9 10	.6685 .0743 .0825 .0917 .0276 .0224 .0157 .0172	.3102 .0776 .0969 .1213 .0739 .0730 .0670 .1801	.0823 .0353 .0504 .0720 .0676 .0814 .0947 .5164	0137 0092 0153 0254 0333 0493 0720 7818	.0017 .0017 .0033 .0067 .0117 .0217 .0400 .9133	.0001 .0002 .0005 .0013 .0031 .0075 .0178 .9694	0001 0002 0006 0019 0061 9912	.0001 .0003 .0013 .9984	.0001		

(cont.) .2 .3 . 4 .5 .6 .7 .8 .9 i p= .1 M=3, X=11 .6678 .3007 .0699 .0095 .0009 .0001 4 .0742 .0752 .0300 .0009 .0001 5 .0018 .0940 .0428 .0105 .0002 .0824 6 7 .0175 .0036 .0006 .0916 .1175 .0612 .0717 .0063 .0276 .0229 .0013 .0002 .0574 8 .0708 .0118 .0224 .0692 .0340 .0031 .0006 .0001 9 .0157 .0650 .0805 .0496 .0217 .0075 .0019 .0003 .0399 .0073 .0518 .0709 0178 .0061 10 .0887 .0013 .7788 11 .0110 .1534 .5002 .9130 .9694 .9912 .9984 .9999 M=3, X=12 .6673 .2929 .0598 .0065 .0005 4 .0741 .0732 .0256 .0005 .0043 5 .0824 .0915 .0366 .0072 .0010 6 .1144 .0523 .0020 .0002 .0121 78 .0698 .0158 .0276 .0034 .0491 .0005 .0001 .0224 .0689 .0591 .0234 .0064 .0013 .0002 .0118 9 .0157 .0633 .0687 .0342 .0031 .0006 10 .0073 .0489 .0505 .0758 .0217 .0019 .0003 11 .0050 .0457 .0873 .0710 .0398 .0178 .0061 .0013 .0001 .0066 .1297 .4858 .7765 .9123 .9694 .9912 9984 .99999 M=3, X=13 .6671 .2865 .0513 .0003 4 .0741 .0716 .0220 .0030 .0003 5 .0824 .0895 .0314 .0050 .0005 .1119 .0915 .0448 .0083 .0011 7 .0276 .0683 .0421 .0019 .0109 .0002 8 .0224 .0674 .0507 .0162 .0035 .0005 .0001 .0590 .0157 .0619 9 .0236 .0064 .0013 .0002 .0494 .0650 10 .0073 .0338 .0118 .0031 .0006 11 .0050 .0447 .0749 .0217 .0075 .0019 .0490 .0003 12 .0031 .0390 .0852 .0709 .0399 .0178 .0061 .0013

7749

9127

.9694

.9912

.9984

.99999

13

.0039 .1098 .4736

Table 4.

Table 4. (cont.) .5 .6 .7 .8 i p: .1 .2 .3 .4 .9 M=3, X=14 .6669 .2811 .0441 45 0741 0703 0189 .0021 .0001 .0823 .0878 .0270 ,0035 .0003 6 .0915 .1098 .0386 .0058 .0006 7 .0275 .0670 .0362 .0075 .0010 .0001 8 .0224 .0662 .0436 .0112 .0019 .0002 9 .0157 .0607 .0508 .0163 .0035 .0005 .0001 .0560 .0073 .0485 10 .0233 .0064 .0013 .0002 11 .0050 .0438 .0645 .0338 .0118 .0031 12 .0031 .0383 .0734 .0489 .0217 .0075 .0019 13 .0017 .0326 .0831 .0707 .0399 .0178 .0061 .0013 .0001 14 .0024 .0939 .4638 .7739 .9127 .9694 .9912 -9984 .9999 M=4, X=5 4 .6320 .3569 .1811 .0820 .0323 .0104 .0024 .0003 .3638 .6431 .8189 .9180 9677 9896 .9976 .9997 1. M=4, X=6 4 .6117 .3135 .1375 .0521 .0167 .0042 .0007 .0001 .0680 .0784 .0589 .0347 .0167 .0063 .0017 .0003 .3203 .6081 .8036 .9132 9667 .9894 .9975 .9997 1. M=4, X=7 4 .5955 .2780 .1051 .0331 5 .0662 .0695 .0450 .0086 .0026 .0221 .0005 .0001 6 .0735 .0869 .0643 .0368 .0172 .0064 .0003 .0017 7 .2648 .5655 .7856 .9079 .9655 .9893 9975 .9997 1. M=4, X=8 .5836 .2495 .0810 4 .0212 .0045 .0007 .0001 5 .0648 .0624 .0347 .0141 .0045 .0010 .0002 6 .0089 .0721 .0780 .0496 .0235 .0026 .0005 .0001 7 .0801 .0975 .0708 .0392 .0179 .0065 .0017 .0003 8 .1994 .5126 .7639 .9019 .9643 .9891 .9975 .9997 1.

Table 4. (cont.)										
i	p≘	.1	.2	.3	• 4	.5	.6	. 7	.8	.9
	M=4	1, X=9								
456789		.5766 .0641 .0712 .0791 .0879 .1212	.0568 .0710 .0888 .1110	.0270 .0386 .0552 .0788	.0136 .0091 .0151 .0252 .0420 .8950	0023 0023 0046 0093 0185 9630	.0003 .0004 .0011 .0027 .0067 .9889	.0002 .0005 .0017 .9975	.0001 .0003 .9997	1.
]M=4	ł, X=1	0							
4 5 7 8 9 10		5710 0634 0705 0783 0870 0332 0965	2084 0521 0651 0814 1018 0751 4161	.0211 .0302 .0431 .0616 .0669	0087 0058 0097 0162 0270 0391 8934	0012 0024 0048 0096 0180 9628	.0001 .0002 .0004 .0011 .0027 .0066 .9889	.0002 .0005 .0017 .9975	.0001 .0003 .9997	1.
	M=4	, X=1	1							
4 5 6 7 8 9 10 11		5668 0630 0700 0778 0864 0330 0297 0734	.1923 .0481 .0601 .0751 .0939 .0693 .0746 .3866	.0166 .0237 .0338 .0483 .0524 .0678	0056 0037 0062 0104 0174 0252 0395 8920	0006 0012 0025 0050 0093 0181 9626	0001 0002 0004 0011 0027 0066 9889	0002 0005 0017 9975	.0001 .0003 .9997	1.
	M=4	, X=12	2							
4 5 7 8 9 10 11 12		5638 0626 0696 0773 0859 0328 0295 0251 0533	1785 0446 0558 0697 0872 0643 0693 0726 3579	0304 0130 0186 0266 0380 0413 0534 0683 7104	0036 0024 0040 0067 0112 0162 0254 0397 8908	.0003 .0003 .0013 .0026 .0048 .0094 .0181 .9625	.0001 .0002 .0004 .0011 .0027 .0066 .9889	0002 0005 0017 9975	.0001 .0003 .9996	1.

Table 4. (cont.) .4 i p= .l .2 .3 .5 .6 .7 .8 .9 M=4, X=13 .5617 .1667 .0240 .0624 .0417 .0103 .0002 .0023 5 ,0016 6 .0693 .0521 .0147 ,0026 .0003 7 .0770 .0651 .0210 .0043 .0007 ,0072 8 .0856 .0814 .0300 .0013 ,0002 9 .0327 .0601 .0326 .0104 ,0025 ,0004 10 .0294 .0647 .0421 .0164 .0049 .0011 ,0001 11 .0250 .0678 .0539 .0255 .0027 .0094 .0005 .0001 12 .0192 .0685 .0679 .0397 .0181 .0066 .0017 ,0002 13 .0376 .3321 .7036 .8900 .9625 .9889 .9975 9997 1 M=4, X=14 .0015 .5601 .1563 .0190 ,0001 5 .0622 .0391 .0081 .0010 .0001 6 .0691 .0488 .0116 .0017 .0002 7 .0768 .0610 .0166 .0028 .0003 8 .0854 .0763 .0237 .0046 .0007 .0001 9 .0326 .0563 .0257 .0067 .0013 .0002 10 .0293 .0606 .0333 ,0105 .0025 0004 11 .0249 .0636 .0426 .0164 .0049 .0002 12 .0193 .0642 .0537 .0256 .0094 ,0027 .0005 .0001 13 .0118 .0612 .0665 .0395 .0181 .0066 .0017 14 .0286 .3127 .6992 .8896 .9624 .9881 .9975 .9997 1. M=5. X=6 .5648 .2805 .1239 .0482 .0159 .0041 .0007 4352 7195 8761 9518 9841 9959 9993 6 .9999 1. M=5, X=7 .5423 .2413 .0916 .0299 .0806 .0017 6 .0603 .0603 .0393 .0199 0806 .0025 .0005 .0001 7 3974 6983 8692 9502 .9839 .9959 .9993 .9999 1. M=5, X=8 .5231 .2088 .0679 5 .0185 .0007 .0041 .0001 6 .0581 .0522 .0291 .0123 .0041 .0010 ,0002 7 .0206 .0646 .0653 .0416 .0082 .0025 .0005 8 .3541 .6737 .8614 .9485 .9836 .9958 .9992 .9999 1.

	Table 4. (cont.)										
i	p₌	.1	.2	.3	<u>4</u>	.5	.6	" 7	.8	.9	
	M=5	5, X=9									
5 6 7 8 9		.0564 .0626 .0696	.0568	0505 0217 0309 0442 8526	.0115 .0077 .0128 .0213 .9467	.0021 .0021 .0042 .0083 .9833	0003 0004 0010 0025 9958	.0002 .0005 .9993	.0001 .9999	1.	
	M=5	5, X=10	C								
5 6 7 8 9 10		.0550 .0611 .0679 .0754	.0624	.0378 .0162 .0231 .0330 .0472 .8427	0072 0048 0080 0133 0221 9448	.0011 .0011 .0021 .0042 .0085 .9831	0001 0002 0004 0010 0025 9958	.0002 .0005 .9993	.0001 .9999	1.	
	M=5	5, X=1:	L								
5 6 7 8 9 10 11		.0540 .0600 .0667	.1416 .0354 .0442 .0553 .0691 .0864 .5680	.0283 .0121 .0174 .0248 .0354 .0506 .8313	0045 0030 0050 0083 0138 0229 9426	0005 0005 0011 0022 0043 0086 9828	.0001 .0002 .0004 .0010 .0026 .9957	0002 0005 9993	.0001 .9999		
	M=5	, X=12	2								
5 6 7 8 9 10 11 12		4786 0532 0591 0656 0729 0810 0369 1526	1260 0315 0394 0492 0615 0769 0646 5510	.0213 .0091 .0130 .0186 .0266 .0380 .0452 .8280	.0028 .0019 .0031 .0051 .0086 .0143 .0220 .9423	.0003 .0003 .0005 .0011 .0022 .0044 .0085 .9827	.0001 .0002 .0004 .0010 .0025 .9957	•0002 •0005 •9993	.0001	1.	

Table 4. (cont.) ip= 1 .2 .3 .4 .5 .6 .7 .8 .9 M=5, X=13 .4724 .1125 .0160 .0001 5 .0017 6 .0069 .0013 .0001 .0525 .0281 7 .0583 .0352 .0098 .0019 .0003 8 .0032 .0648 .0440 ,0140 ,0001 9 .0720 .0549 0200 ,0053 .0011 .0002 10 .0800 .0687 .0286 .0089 .0022 .0004 11 .0364 .0577 .0340 .0137 0043 .0010 .0002 12 .0346 .0651 .0456 .0221 ,0085 .0025 .0005 .1290 .5338 .8249 9420 9827 13 -9957 .9993 .9999 1. M=5. X=14 .0011 .0001 .4674 .1009 .0121 6 .0519 .0252 .0052 .0007 .0001 7 .0012 .0001 .0577 .0315 .0074 .0020 .0003 8 .0641 .0394 .0106 .0033 9 .0712 .0493 .0151 0006 10 .0056 .0791 .0616 .0216 .0011 11 .0360 .0517 .0256 .0085 .0022 .0004 0342 0584 0344 .0137 .0043 .0010 .0002 13 .0316 .0651 .0460 .0221 .0085 0025 .0005 14 .1066 .5169 .8222 9417 9827 .9957 .9993 .9999 1. M=6, X=7 5051 2213 0854 0285 0079 0016 ,0002 7 4949 7787 9146 9715 9921 9984 9998 1. 1. M=6, X=8 6 4817 1874 0620 .0174 7 0535 0469 0266 0116 0040 .0010 .0002 8 .4648 .7657 .9114 .9709 .9921 .9984 .9998 1. 1. M=6, X=9 .4609 .1593 .0451 6 .0020 .0003 7 .0512 0398 0193 .0071 .0020 ,0004 8 .0569 .0498 .0276 .0119 .0040 .0010 .0002 9 .4310 .7511 .9079 .9703 .9920 .9998 1. .9983 1.

	Table 4 . (cont.)									
i	v <u>-</u> .1	.2	.3	, Ä	_5	. 6	.7	.8	.9	
	M=6, X=1	0								
6 7 8 9 10	.0547 .0607	0340 0425	0329 0141 0201 0288 9041	0065 0044 0073 0121 9697	.0010 .0010 .0020 .0040 .9919	.0001 .0002 .0004 .0010 .9983	.0002 .9998	1.	l.	
	M=6, X=1	1								
6 7 9 10 11	.0475 .0528 .0586 .0651		0103 0147 0210 0300	0040 0027 0044 0074 0123 9691	0005 0005 0010 0020 0040 9919	0001 0002 0004 0010 9983	.0002 .9998	1.	1.	
	M=6, X=1	2								
6 7 9 10 11	.0461 .0512 .0569 .0632 .0702	1003 0251 0313 0392 0490 0612 6940		0025 0016 0027 0045 0076 0126 9685	0003 0003 0005 0010 0020 0041 9918	.0001 .0002 .0004 .0010 .9983	.0002 .9998	1.	1.	
	M=6, X=1;	3								
6 7 9 10 11 12 13	4048 0450 0500 0555 0617 0685 0762 2384	0217 0271 0339 0424	0129 0055 0079 0113 0161 0230 0328 8906	.0015 .0010 .0017 .0028 .0046 .0077 .0129 .9678	.0001 .0003 .0005 .0010 .0021 .0041 .9917	.0001 .0002 .0004 .0010 .9983	•0002 •9998	1.	1.	

Table 4. (cont.)										
i	pz	.1	.2	.3	.4	5	.0	.7	.8	.9
	M=6, X=14									
6 7 9 10 11 12 13 14		3960 0440 0489 0543 0604 0671 0745 0388 2160	.0460 .0575	0094 0040 0058 0083 0118 0168 0241 0303 8895	.0009 .0006 .0010 .0017 .0028 .0047 .0079 .0125 .9677	.0001 .0001 .0003 .0005 .0010 .0021 .0041 .9917	.0001 .0002 .0004 .0010 .9983	.0002 .9998	l.	1.
	M=1	7, X=8								
7 8		.4521 .5479	.1715 .8249	.0591 .9409	.0170 .9830	.0039 .9961	.0007 .9993	.0001 .9999	1.	1.
	M=	7, X=9								
7 8 9		0476	.1465 .0366 .8169	.0182	.0103 .0069 .9828	.0020 .0020 .9961	.0003 .0004 .9993	.9999	1.	1.
	M=1	7, X=10	C							
7 8 9 10		.0452 .0503	.1228 .0307 .0384 .8081	.0131 .0187	0063 0042 0070 9826	.0010 .0010 .0020 .9960	.0001 .0002 .0004 .9993	.9999	1.	1.
	M=1	7, X=13	L							
7 8 9 10 11		.0431 .0479 .0532	.1032 .0258 .0323 .0403 .7984	.0094 .0134 .0192	0038 0025 0042 0070 9824	0005 0005 0010 0020 9960	0001 0002 0004 9993	l.	1.	1.
	M=1	7, X=1:	2							
7 9 10 11 12		.3712 .0412 .0458 .0509 .0566 .4342	0870 0217 0272 0400 0425 7877	0158 0068 0097 0138 0197 9342	.0023 .0015 .0026 .0043 .0071 .9822	.0002 .0002 .0005 .0010 .0020 .9960	0001 0002 0004 9993	1.	1.	1.

						Table (
i	p=	.1	.2	" 3	• 4	.5	.6	.7	.8	.9
	M=7	, X=1:	3							
7 9 10 11 12 13		0396 0440 0489 0543 0604	.0735 .0184 .0230 .0287 .0359 .0448 .7758	0049 0070 0099 0142 0203	0014 0009 0016 0026 0043 0072 9820	.0001 .0001 .0002 .0005 .0010 .0020 .9960	.0001 .0002 .0004 .9993	l.	1.	1.
	M=7	, X=1	4							
7 9 10 11 12 13 14		0425 0472 0524 0582 0647	.0623 .0156 .0195 .0243 .0304 .0380 .0475 .7625	0035 0050 0072 0102 0146 0209	0009 0006 0016 0026 0044 0073 9818	.0001 .0001 .0003 .0005 .0010 .0020 .9960	.0001 .0002 .0004 .9993	. 9999	1.	1.
	M=8	, X=9								
8 9				.0411 .9589	.0101 .9899		.0003 .999 7	1.	1.	1.
	M=8	, X=10)							
8 9 10		0424	.1151 .0288 .8561	0125	.0061 .0041 .9898	.0010 .0010 .9980	.0001 .0002 .9997	1.	1.	l.
	M=8	, X=13	L							
8 9 10 11		.0400	0955 0239 0298 8508	.0089 .0128	0037 0025 0041 9897	0005 0005 0010 9980	.0001 .0002 .9997	1.	1.	1.
	M=8	, X=12	2							
8 9 10 11 12		0379 0421 0468	.0794 .0198 .0248 .0310 .8450	0064 0091 0130	0022 0015 0025 0041 9896	0002 0002 0005 0010 9980	.0001 .0002 .9997	1.	1.	1.

Table 4. (cont.)										
i	p= "l	.2	.3	e 4	.5	.6	.7	.8	.9	
	M=8, X=1	3								
8 9 10 11 12 13	0360 0400 0444 0494	.0661 .0165 .0206 .0258 .0323 .8387	.0045	.0014 .0009 .0015 .0025 .0042 .9896	.0001 .0001 .0002 .0005 .0010 .9980		1.	1.	1.	
	M=8, X=1	4								
8 9 10 11 12 13 14	0343 0381 0423 0470 0522	.0551 .0138 .0172 .0215 .0269 .0336 .8319		.0008 .0005 .0009 .0015 .0025 .0042 .9895	.0001 .0001 .0002 .0005 .0010 .9980	.0001 .0002 .9997	1.	1.	l.	
	M=9, X=1	0								
9 10			.0286 .9714		.0010 .9990	1.	1.	l.	1.	
	M=9, X=13	1								
9 10 11	.0378	.0908 .0227 .8865	.0087	.0037 .0024 .9939	.0005 .0005 .9990	.0001 .9999	1.	l.	1.	
	M=9, X=12	2								
9 10 11 12	.0355 .0395	.0747 .0187 .0234 .8832	.0062 .0088	0022 0015 0024 9939	.0002 .0002 .0005 .9990		1.	1.	1.	
	M=9, X=13	3								
9 10 11 12 13	.0334 .0371 .0413	.0616 .0154 .0192 .0241 .8797	.0044 .0062 .0089	.0013 .0009 .0015 .0025 .9939	.0001 .0001 .0002 .0005 .9990	.0001	1.	1.	1.	

Table 4. (cont.)										
i	p=	.1	.2	.3	• 4	.5	" 6	.7	, 8	.9
	M=9	, X=14	4							
9 10 11 12 13 14		.0315 .0350 .0389 .0432		.0072 .0031 .0044 .0063 .0090 .9699	.0008 .0005 .0009 .0015 .0025 .9938	.0001 .0001 .0002 .0002 .0005 .9990	.0001	1.	1.	l.
	M=]	.0, X=3	11							
10 11			.0878 .9122	.0199 .9801	.0036 .9964	.0005 9995	1.	1.	1.	l.
	M=]	0, X=	12							
10 11 12		.0337	.0718 .0180 .9102	.0060	.0022 .0015 .9964	0002 0002 9995	l.	1.	1.	1.
	M=]	0, X=1	13							
10 11 12 13		.0315	.0588 .0147 .0184 .9082	.0043 .0061	0013 0009 0015 9963	.0001 .0001 .0002 .9995	1.	1.	1.	1.
	M=]	.0, X=1	14							
10 11 12 13 14		.0295 .0328 .0365	.0481 .0120 .0150 .0188 .9060	.0013 .0043 .0061	0008 0005 0009 0015 9963	.0001 .0001 .0001 .0002 .9995	1.	1.	l.	l.
	M=]	1, X=1	12							
$\frac{11}{12}$.0022 .9978	.0002 .9998	1.	1.	1.	1.
	M=J	1, X=1	L3							
11 12 13		.0301	.0569 .0142 .9288	.0042	.0013 .0009 .9978	.0001 .0001 .9998	1.	1.	l.	1.

Table 4. (concl.)											
i	p=	.1	.2	.3	• Ţ	.5	.6	.7	.8	.9	
	M=11, X=14										
11 12 13 14		.0281	.0464 .0116 .0145 .9275	.0030 .0042	0008 0005 0009 9978	.0001 .0001 .0001 .9998		1.	l.	1.	
	M=]	2, X=	13								
				.0097 .9903	.0013 .9987	.0001 .9999	l.	1.	1.	1.	
	M=]	12, X=	14								
12 13 14		.0290		0068 0029 9902	.0008 .0005 .9987	.0001 .0001 .9999		1.	1.	1.	
	M=1	L3, X=	14								
				.0068 .9932	.0008 .9992	.0001 .9999		1.	l.	1.	

Table 5.

i	m=	l	2	3	4	5	6	7	8	9
	M=1,	X=2								
1 2		4180 5820	.8144 .1856	.9415 .0585	.9802 .0198	.9930 .0070	.9975 .0025	.9991 .0009		.9999 .0001
	Mel,	X= 3								
1 2 3		2994 2929 4 077	.8007 .1623 .0370	.9406 .0560 .0035	.9802 .0194 .0004	.993 0 .0069	.9975 .0025	.9991 .0009	.9997 .0003	
	M=1,	X=4								
1 2 3 4	0 4 0 4 0 4	2308 2303 2253 3136	.7976 .1620 .0328 .0075	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009		
	M=1,	X=5								
1 2 3 4 5		1875 1875 1871 1830 2548	.7970 .1619 .0329 .0067 .0015	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009	.9997 .0003	
	M=1,	X=6								
1 2 3 4 5 6	•	1579 1579 1579 1576 1541 2146	.7968 .1619 .0329 .0067 .0014 .0003	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009	.9997 .0003	
	M=1,	X=7								
1 2 3 4 5 6 7		1364 1364 1364 1361 1331 1853	.7968 .1619 .0329 .0067 .0014 .0003 .0001	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009		.9999 .0001

	(cont.)										
i	m≓	1	2	3	4	5	6	7	8	9	
	M=]	1, X=8									
1 2 3 4 5 6 7 8		.1200 .1200 .1200 .1200 .1200 .1200 .1197 .1171 .1631	.7968 .1619 .0329 .0067 .0014 .0003 .0001	9405 0560 0033 0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009	.9997 .0003		
	M=]	L, X=9									
1 2 3 4 5 6 7 8 9		1100 1098 1093 1087 1077 1066 1052 1019 1406	.7968 .1619 .0329 .0067 .0014 .0003 .0001	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009	.9997		
	M=]	L, X=10									
1 2 3 4 5 6 7 8 9 10		.0968 .0968 .0968 .0968 .0968 .0968 .0968 .0968 .0968 .0945 .1315	.7968 .1619 .0329 .0067 .0014 .0003 .0001	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009	.9997 .0003		
	M=1	, X=11									
1 2 3 4 5 6 7 8 9 10 11		0882 0882 0882 0882 0882 0882 0882 0882	.7968 .1619 .0329 .0067 .0014 .0003 .0001	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975 .0025	.9991 .0009	.9997 .0003		

Table 5.

Table 5. (cont.)												
i	m=	1	2	3	4	5	6	7	8	9		
	M=]	L, X=12										
1 2 3 4 5 6 7 8 9 10 11 2		0827 0827 0825 0823 0820 0816 0811 0806 0801 0795 0774 1074	.7968 .1619 .0329 .0067 .0014 .0003 .0001	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069	.9975	.9991	.9997			
	M=1	L, X=13										
1 2 3 4 5 6 7 8 9 10 11 12 13		0769 0769 0769 0769 0769 0769 0769 0769	.7968 .1619 .0329 .0067 .0014 .0003 .0001	.9405 .0560 .0033 .0002	.9802 .0194 .0004	.9930 .0069 .0001	.9975	.9991 .0009	.9997 .0003	.9999 .0001		
	M≓2	2, X=3										
2 3		.0984 .9016	.4433 .5567	.7434 .2566	.8927 .1073	.9559 .0441	.9818 .0182	.9925 .0075	.9969 .0031	.9988 .0012		
	M=2	2, X=4										
2 3 4		.0317 .0810 .8873	.3365 .2317 .4318	.7086 .1711 .1202	.8855 .0832 .0313	.9545 .0365 .0090	.9816 .0156 .0029	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001		
	M=2	2, X=5										
2 3 4 5		.0095 .0270 .0826 .8809	2680 1916 2041 3364	.6941 .1696 .0904 .0459	8840 0834 0273 0053	9543 0365 0085 0007	.9816 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001		

Table 5. (cont.)											
i	m=	l	2	3	4	5	6	7	8	9	
	M=2	, X=6									
23456		0027 0081 0276 0822 8793	.2216 .1598 .1755 .1639 .2792	.6877 .1684 .0905 .0339 .0195	.8836 .0834 .0274 .0044 .0012	.9543 .0365 .0085 .0006 .0001	.9116 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001	
	M=2	, X=7									
2 3 4 5 6 7		0007 0023 0083 0275 0822 8789	1889 1363 1508 1455 1408 2377	.6851 .1678 .0903 .0341 .0147 .0080	8836 0833 0274 0044 0010 0002	.9543 .0365 .0085 .0006 .0001	.9816 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001	
	M=2	, X≈8									
2 3 4 5 6 7 8		.0002 .0007 .0024 .0083 .0275 .0822 .8788	.1646 .1187 .1315 .1278 .1277 .1224 .2072	.6840 .1675 .0902 .0341 .0148 .0060 .0034	8806 0833 0274 0044 0010 0002	.9543 .0365 .0085 .0006 .0001	.9816 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001	
	M=2	, X=9									
2 3 4 5 6 7 8 9		.0001 .0002 .0007 .0024 .0083 .0275 .0822 .8787	.1458 .1052 .1165 .1134 .1141 .1129 .1085 .1835	.6836 .1674 .0901 .0341 .0148 .0061 .0025 .0014	.8836 .0833 .0274 .0044 .0010 .0002	.9543 .0365 .0085 .0006 .0001	.9816 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001	
	M=2	, X=10									
2 3 4 5 6 7 8 9 10		0001 0002 0007 0024 0083 0275 0822 8787	.1309 .0944 .1046 .1017 .1026 .1022 .1014 .0974 .1647	.6834 .1673 .0901 .0341 .0148 .0061 .0026 .0010 .0006	.8836 .0833 .0274 .0044 .0010 .0002	9543 0365 0085 0006	.9816 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001	

(cont.)											
im= 1 2 3 4 5 6 7 8 9											
]]=;	2, X=11									
2 3 4 5 6 7 8 9 10 11		.0001 .0002 .0007 .0024 .0083 .0275 .0822 .8787	.1187 .0857 .0949 .0923 .0930 .0928 .0928 .0920 .0883 .1494	.6833 .1673 .0901 .0341 .0148 .0061 .0026 .0011 .0004 .0002	.8836 .0833 .0274 .0044 .0010 .0002	.9543 .0365 .0085 .0006 .0001	.9816 .0156 .0028 .0001	.0065	.9969 .0027 .0003	.9988 .0011 .0001	
	M=;	2, X=12									
2 3 4 5 6 7 8 9 10 11		0001 0002 0007 0024 0083 0275 0827 8787	.1086 0784 0868 0845 0851 0849 0850 0849 0849 0842 0842 0808 .1367	.6883 .1673 .0901 .0341 .0148 .0061 .0026 .0011 .0004 .0002 .0001	.8836 .0833 .0274 .0044 .0010 .0002	.9543 .0365 .0085 .0006 .0001	.9816 .0156 .0028 .0001	.9925 .0065 .0010	.9969 .0027 .0003	.9988 .0011 .0001	
]M = 2	2, X=13									
2 3 4 5 6 7 8 9 10 12 13		0001 0002 0007 0024 0083 0275 0822 8787	1001 0722 0800 0778 0783 0783 0783 0783 0783 0783	.6832 .1673 .0901 .0341 .0148 .0061 .0026 .0011 .0004 .0002 .0001	.8836 .0833 .0274 .0044 .0010 .0002	.9543 .0365 .0085 .0006 .0001	.9816 .0156 .0028 .0001	.0065	.9969 .0027 .0003	.9988 .0011 .0001	
	M=3	3, X=4									
3 4		.0202 .9798	.1743 .8257	.4546 .5454	.7041 .2959	.8550 .1450	.9320 .0680	.9687 .0313	.9858 .0142	.9937 .0063	

Table 5.

(cont.) m= 1 2 3 4 5 6 7 8 9 i M=3. X=5 .0866 .3590 .6615 .8422 .9286 .9679 .9856 .9936 .0042 Ā .0168 .1163 .1993 1631 0953 0488 .0236 .0111 .0051 1755 .0225 .0085 .0033 .0013 .9789 .7971 .4417 .0625 M=3, X=6 .2918 .8370 .9677 .9856 .9936 3 .0008 .0412 .6369 .9276 4 .0036 .0610 .1670 .1606 .0957 .0490 .0237 .0111 .0051 .0072 .0029 .0012 5 .0170 . .1195 .1823 .1097 .0464 .0183 6 .9786 .7783 .3559 .0927 .0208 .0050 .0014 .0004 .0001 M=3, X=7 3 4 ,0001 .0193 .2447 .6239 .8353 .9274 .9677 .9856 .9936 .0007 .0298 .1447 .1582 .0957 .0490 .0237 .0111 .0051 5 .0037 .0631 .1607 .1096 .0467 .0183 .0072 .0029 .0012 .1186 .1540 .0161 6 .0170 .0602 .0043 .0013 .0004 .0001 7 .9785 7692 .2959 .0062 .0481 -0008 .0001 M=3, X=8 .0090 .2103 .6167 .8347 .9677 .9856 .9936 .9274 .0490 4 .0001 .0141 .1248 .1565 .0957 .0237 .0111 .0051 5 .0310 .1402 .0072 .0029 .0012 .0007 1088 .0467 .0183 6 .0037 .0630 1394 .0607 .0162 .0044 .0013 .0004 .0001 7 .1176 .0170 .1304 .0309 .0046 .0007 .0001 8 .9785 .7654 .2549 .0263 .0021 .0002 M=3, X=9 .6129 .8345 345 6 .0042 .1844 .9274 .9677 .9856 .9936 .1094 .1555 .0956 .0490 .0066 .0237 .0111 .0051 .0146 .1233 .0467 .0183 .0001 .1082 .0072 .0029 .0012 .0007 .0310 .1240 .0606 .0163 .0044 .0013 .0004 .0001 7 .1205 .0037 .0627 .0314 .0046 .0007 8 .0170 .1174 .1150 0171 .0016 .0002 9 .7636 9785 2234 .0142 .0007

Table 5.

(cont.) 2 3 4 5 6 7 8 9 i m≓ 1 M=3, X=10 34567 .0019 .1642 .6109 .8344 .9274 .9677 .9856 .9936 .1550 .0237 .0031 .0490 .0111 .0051 0068 .1099 .1108 0467 .0072 .0029 .0012 .0001 .0147 .0604 .0162 0004 0001 .0044 .1089 .0007 .0309 .0046 .0007 .0314 .0001 8 .0037 ,0627 .1078 .0174 .0016 .0001 .0170 .1173 0093 .0005 9 .1023 .9785 ,7627 1989 .0002 M=3, X=11 34156 .0009 .1479 .6098 .8344 .9274 .9677 .9856 .9936 .1547 .0014 .0878 .0956 .0490 .0237 .0111 .0051 .0032 .0989 .0467 .0183 .0072 .0029 .0012 0068 .0998 .0163 .0044 .0013 .0004 .0001 78 .0984 .0046 .0007 .0001 .0309 .0986 .0175 .0016 .0002 ğ .0626 .0005 .0037 .0971 .0095 10 .0170 ,1172 .0002 ,9785 .7623 .1793 M=3, X=12 34567 .0004 .1346 .6091 .8344 .9274 .9677 .9856 .9936 .0007 .0799 .1545 .0956 0490 .0237 .0111 .0051 .0015 ,0900 .1075 .0467 .0183 .0072 .0029 .0012 .0032 .0908 0603 .0163 .0044 .0013 .0004 .0001 .0068 0896 .0313 .0046 .0007 .0001 ŝ .0001 .0146 .0175 .0016 .0002 9 .0007 .0897 .0095 .0005 10 11 .0037 .0626 .0833 .0051 .1172 .0839 .0170 .0028 .0001

12

.9785

.7621

.1631

.0023

Table 5.

Table 5. (cont.)

i	m= l	2	3	4	5	6	7	8	9
	M=3, X=13								
3 4 5 6 7 8 9 10 11 12 13	.0170	.0002 .0003 .0007 .0015 .0032 .0068 .0146 .0308 .0626 .1172 .7620	.1248 .0740 .0833 .0839 .0826 .0827 .0824 .0819 .0804 .0762 .1478	.6088 .1545 .1075 .0602 .0313 .0175 .0095 .0052 .0028 .0015 .0013	.8344 0956 0467 0163 0046 0016 .0005 .0002 .0001	9274 0490 0183 0044 0007 0002	.9677 .0237 .0072 .0013 .0001	.9856 .0111 .0029 .0004	.9936 .0051 .0012 .0001
	M=4, $X=5$								
4 5	.0037 .9963	.0579 .9421	.2220 .7780	.4613 .5387	.6786 .3214	.8254 .1746	.9100 .0900	.9550 .0450	
	M=4, X=6								
4 5 6	.0006 .0031 .9967	.0207 .0413 .9380	.1321 .1255 .7424	.3743 .1779 .4478	.6331 .1532 .2136	.8085 .1002 .0913	.9047 .0572 .0381	.9535 .0305 .0160	9776 0156 0068
	M=4, X=7								
4 5 6 7	0001 0005 0032 9962	.0067 .0154 .0422 .9357	.0764 .0795 .1289 .7154	.3094 .1552 .1658 .3693	.6027 .1505 .1152 .1316	.7994 .1009 .0591 .0406	.9023 .0577 .0273 .0127	.9529 .0307 .0123 .0042	.9774 .0156 .0054 .0015
	M=4, X=8								
4 5 6 7 8	.0001 .0005 .0032 .9962	.0020 .0051 .0157 .0423 .9349	.0437 .0476 .0824 .1275 .6987	.2621 .1342 .1486 .1447 .1304	.5841 .1472 .1147 .0752 .0788	.7954 .1008 .0596 .0280 .0163	.9016 .0577 .0274 .0098 .0036	.9528 .0307 .0122 .0035 .0008	.9774 .0157 .0054 .0013 .0002
	M=4, X=9								
456789	.0001 .0005 .0032 .9962	.0006 .0016 .0052 .0157 .0423 .9346	.0250 .0277 .0497 .0823 .1256 .6897	.2269 .1169 .1314 .1327 .1240 .2681	.5727 .1446 .1334 .0757 .0453 .0483	.7937 .1006 .0596 .0283 .0112 .0066	.9013 .0577 .0274 .0099 .0027 .0027	.9527 .0307 .0122 .0035 .0007 .0001	.9774 .0157 .0054 .0013 .0002

	Table 5. (cont.)											
i	m=	1	2	3	4	5	6	7	8	9		
	M=4	1, X=10										
4 5 6 7 8 9		.0001 .0005 .0032 .9962	.0002 .0005 .0016 .0052 .0157 .0423 .9346	.0143 .0159 .0290 .0499 .0816 .1245 .6847	.1999 .1031 .1164 .1193 .1159 .1088 .2365	.5657 .1429 .1122 .0753 .0460 .0277 .0302	.7929 .1006 .0596 .0283 .0113 .0045 .0028	.9013 .0577 .0275 .0099 .0027 .0007 .0003	.9527 .0307 .0112 .0035 .0007 .0001	.9774 .0157 .0054 .0013 .0002		
	M=4	4, X=11										
4 5 7 8 9 10		.0001 .0005 .0032 .9962	.0001 .0005 .0016 .0052 .0157 .0423 .9345	.0082 .0091 .0167 .0292 .0496 .0811 .1241 .6819	.1787 .0921 .1042 .1073 .1058 .1031 .0975 .2114	.5614 .1418 .1114 .0749 .0460 .0282 .0175 .0188	7926 1005 0596 0283 0114 0045 0019 0012	.9013 .0577 .0246 .0099 .0027 .0007 .0002 .0001	.9527 .0307 .0122 .0035 .0007 .0001	.9774 .0157 .0054 .0013 .0002		
	M=	4, X=12										
4 5 7 8 9 10 11 12		.0001 .0005 .0032 .9962	.0001 .0005 .0016 .0052 .0157 .0423 .9345	.0047 .0053 .0096 .0169 .0291 .0494 .0810 .1238 .6802	.1615 .0833 .0941 .0962 .0952 .0952 .0881 .1911	.5588 .1411 .1108 .0745 .0459 .0283 .0179 .0109 .0118	.7925 .1005 .0596 .0283 .0114 .0045 .0019 .0008 .0005	9013 0577 0274 0099 0027 0007 0002 0002	.9527 .0307 .0122 .0035 .0007 .0001	.9774 .0157 .0054 .0013 .0002		
	M=-	4, X=13										
4 5 7 8 9 10 11 12		.0001 .0005 .0032 .9962	.0001 .0005 .0016 .0052 .0157 .0423 .9345	.0027 .0030 .0055 .0097 .0168 .0290 .0494 .0809 .1236 .6793	.1474 .0760 .0859 .0878 .0873 .0871 .0852 .0804 .1743	.5571 .1407 .1105 .0743 .0457 .0283 .0180 .0112 .0068 .0074	.7924 .1005 .0596 .0283 .0114 .0045 .0020 .0008 .0003 .0002	.9013 .0577 .0274 .0099 .0027 .0007 .0002 .0002	.9527 .0307 .0122 .0035 .0007 .0001	.9774 .0157 .0054 .0013 .0002		

Table 5. (cont.)

i	m= 1 M=5, X=6	2	3	4	5	6	7	8	9
5 6	.0006 .9994	.0172 .9828	.0933 .9067	.2547 .7453	.4658 .5342	.6604 .3396	.8017 .1983	.8903 .1097	.9415 .0585
	M=5, X=7								
5 6 7	.0001 .0005 .9994	.0049 .0127 .9824	.0429 .0584 .8986	.1674 .1260 .7066	.3856 .1622 .4522	.6141 .1442 .2417	.7818 .1017 .1166	.8831 .0629 .0540	.9391 .0361 .0248
	M=5, X=8								
5 6 7 8	.0001 .0005 .9994	.0013 .0038 .0128 .9821	.0184 .0283 .0600 .8934	.1079 .0885 .1288 .6749	.3232 .1440 .1530 .3798	.5804 .1413 .1154 .1628	.7693 .1024 .0671 .0612	.8791 .0635 .0347 .0226	.9379 .0364 .0171 .0085
	M=5, X=9					1			
5 6 7 8 9	.0001 .0005 .9994	.0003 .0010 .0038 .0129 .9820	.0075 .0125 .0290 .0603 .8907	.0689 .0593 .0915 .1275 .6528	.2761 .1262 .1390 .1364 .3223	.5579 .1377 .1147 .0830 .1068	.7627 .1022 .0678 .0378 .0296	.8775 .0637 .0350 .0157 .0081	.9375 .0365 .0172 .0064 .0024
	M=5, X=10								
5 6 7 9 10	.0001 .0005 .9994	.0001 .0002 .0010 .0038 .0129 .9820	.0030 .0052 .0128 .0292 .0603 .8895	.0441 .0387 .0618 .0915 .1246 .6390	.2405 .1109 .1241 .1263 .1187 .2795	.5430 .1345 .1129 .0834 .0556 .0706	.7594 .1019 .0678 .0382 .0186 .0104	.8769 .0637 .0351 .0158 .0058 .0027	9374 0365 0172 0064 0018 0006
	M=5, X=11								
5 6 7 8 9 10 11	.0001 .0005 .9994	.0001 .0002 .0010 .0038 .0129 .9820	.0012 .0021 .0053 .0130 .0292 .0602 .8892	.0283 .0250 .0406 .0622 .0903 .1230 .6306	.2128 .0983 .1108 .1147 .1118 .1043 .2474	.5332 .1322 .1113 .0728 .0563 .0367 .0476	.7578 .1018 .0678 .0383 .0189 .0087 .0068	.8767 .0637 .0351 .0158 .0059 .0019 .0010	.9374 .0365 .0172 .0064 .0019 .0004 .0001

Table 5. (cont.) i m= l 2 3 4 5 6 7 8 9 M=5, X=12 .7570 .8766 .9374 .0182 5 .0004 .1908 .1305 .1017 .0637 .0365 .0008 ,0161 .0881 6 7 .0021 .0264 .0995 ,1100 .0677 .0351 .0172 .0383 .0158 .0064 .1037 .0820 8 .0002 .0053 .0617 .1029 .0189 .0059 .0019 9 .0010 .0129 .0563 .0038 .0292 .0893 .0996 .0375 .0088 .0019 .0004 10 .0001 .0602 .1220 .0934 .0248 .0042 .0007 .0001 11 .0005 .0129 .6253 .2219 .0323 .0034 .0004 12 9994 .9820 .8890 M=5. X=13 .0118 5 .0002 .1729 .5222 .7566 .8766 .9374 6 .0799 .1016 .0637 .0365 .0003 .0104 .1294 7 .0008 .0170 .0902 .1090 .0677 .0351 .0172 8 .0001 .0021 .0267 .0942 .0814 .0383 .0158 .0064 .0940 9 .0053 .0408 .0559 .0189 .0059 .0019 .0002 .0010 .0129 .0612 .0926 .0376 .0089 .0019 .0004 .0038 11 .0292 .0888 .0902 .0254 .0043 .0007 .0001 .0001 .0848 12 .0005 .0129 .0602 .1213 .0170 .0021 .0002 13 .9994 .9820 .8889 .6218 -2011 .0220 .0016 .0001 M=6, X=7 .0001 .0046 .0353 .1235 .2785 .4690 .6466 .7822 .8727 6 .9999 .9954 .9647 .8765 .7215 .5310 .3534 .2178 .1273 7 M=6, X=8 .0011 .6006 .7601 .8638 6 .0134 .0661 .1952 .3943 7 .0035 .0233 .0690 .1235 .1502 .1362 .1013 .0667 .0001 .4555 .2632 .1385 .0696 8 ,9999 .9954 .9633 .8649 .6813 M=6, X=9 .0002 .0046 .0334 .1345 .3343 .5651 .7450 .8583 .1335 .1021 .0675 7 .0009 .0092 .0390 .0925 .1351 .1135 .0721 .0607 8 .0035 .0237 .0710 .1258 .1428 .0001 .9999 9624 .8565 .6472 .3878 .1880 .0809 .0336 9 .9953 M=6, X=10 .0015 .0163 .0922 .5397 .7359 .8555 6 .2878 .1297 .1018 .0676 7 .0002 .0033 .0205 ,0665 .1197 8 .0009 .0094 .0402 .0954 .1309 .1126 .0728 .0411 9 .0001 .0035 .0238 .0716 .1245 .1292 .0868 .0453 .0212 10 .9999 .9953 .9620 .8515 .6214 .3324 .1312 .0442 .0145

	Table 5. (cont.)										
i	m=	l	2	3	4	5	6	7	8	9	
	M=6	, X=11									
6 7 9 10 11		.0001 .9999	.0002 .0009 .0035 .9953	.0005 .0011 .0033 .0094 .0238 .9619	0077 0102 0211 0405 0716 8489	.0633 .0467 .0692 .0953 .1216 .6039	.2519 .1060 .1170 .1206 .1140 .2895	.5221 .1261 .1106 .0871 .0624 .0916	.7308 .1014 .0729 .0458 .0255 .0235	.8543 .0676 .0412 .0214 .0095 .0058	
	M=6	, X=12									
6 7 9 10 11 12		.0001	.0002 .0009 .0035 .9953	.0001 .0003 .0011 .0034 .0094 .0238 .9618	.0036 .0049 .0105 .0213 .0406 .0714 .8478	.0436 .0325 .0490 .0397 .0939 .1191 .5923	2237 0945 1060 1103 1080 1006 2568	5099 1234 1086 0863 0632 0438 0649	.7280 .1011 .0728 .0460 .0259 .0135 .0126	.8538 .0676 .0412 .0215 .0096 .0038 .0024	
	M=6	, X=13									
6 7 9 10 11 12 13		.0001	.0002 .0009 .0035 .9953	.0001 .0003 .0011 .0034 .0094 .0238 .9618	.0016 .0023 .0050 .0106 .0213 .0405 .0714 .8472	0302 0226 0342 0496 0690 0925 1174 5846	2012 0850 0957 1003 1001 0966 0902 2310	.5013 .1213 .1069 .0852 .0630 .0447 .0319 .0466	.7625 .1009 .0727 .0460 .0260 .0138 .0072 .0069	.8536 .0676 .0412 .0215 .0096 .0039 .0015 .0010	
	M=7	, X=8									
7 8	1	•	.0011 .9989	.0122 .9878	.0544 .9456	.1489 .8511	.2969 .7031	.4715 .5285	.6358 .3642		
	M=7	, X=9									
7 8 9	1	•	.0002 .0009 .9989	.0040 .0084 .9876	.0245 .0326 .9429	.0879 .0753 .8367	.2176 .1199 .6626	.4014 .1405 .4582	.5903 .1293 .2804	.7423 .1001 .1576	
	M=7	, X=10									
7 8 9 10	1		0002 0009 9989	.0012 .0029 .0084 .9875	.0103 .0154 .0332 .9411	.0497 .0472 .0776 .8255	.1572 .0939 .1219 .6271	.3436 .1277 .1343 .3944	.5539 .1267 .1108 .2086	.7250 .1008 .0751 .0991	

					Table (cont.					
i	m=	1	2	3	4	5	6	7	8	9
	M=7,	X=11								
7 8 9 10 11	l.		.0002 .0009 .9989	0003 0009 0029 0085 9874	.0041 .0067 .0157 .0335 .9401	.0272 .0277 .0487 .0783 .8181	.1131 .0709 .0965 .1205 .5990	.2978 .1142 .1242 .1230 .3408	.5267 .1229 .1098 .0884 .1522	.7137 .1005 .0759 .0508 .0591
	M=7,	X=12								
7 9 10 11 12	1.		.0002 .0009 .9989	.0001 .0002 .0009 .0029 .0085 .9874	.0015 .0027 .0068 .0158 .0335 .9396	.0146 .0155 .0286 .0492 .0783 .8138	.0815 .0524 .0736 .0964 .1175 .5787	.2618 .1019 .1128 .1155 .1098 .2983	.5070 .1192 .1077 .0885 .0668 .1108	.7069 .0999 .0759 .0515 .0315 .0343
	M=7,	X=13								
7 9 10 11 12 13	1.		.0002 .0009 .9989	.0001 .0003 .0009 .0029 .0085 .9874	0006 0010 0028 0069 0158 0335 9394	.0077 .0084 .0170 .0290 .0493 .0781 .8115	.0589 .0384 .0548 .0740 .0948 .1146 .5645	.2333 .0912 .1019 .1063 .1045 .0975 .2652	.4928 .1161 .1054 .0876 .0675 .0492 .0815	.7028 .0995 .0757 .0517 .0320 .0184 .0199
	M=8,	X=9								
8 9	l.		.0002 .9998	.0038 .9962	.0220 .9780	.0728 .9272	.1704 .8296	.3115 .6885	.4736 .5264	
	M=8,	X=10								
8 9 10	1.		.0002 .9998	.0011 .0027 .9961	.0087 .0139 .9774	.0370 .0399 .9230	.1079 .0790 .8131	.2360 .1160 .6480	.4072 .1324 .4604	.1232
	M=8,	X=11								
8 9 10 11	1.		.0002 .9998	.0003 .0008 .0027 .9961	.0032 .0057 .0140 .9771	.0177 .0214 .0409 .9200	.0659 .0532 .0813 .7996	.1765 .0939 .1177 .6119	.3514 .1215 .1273 .3998	.5454 .1208 .1078 .2260

Table 5. (cont.)											
i	m=	1	2	3	4	5	6	7	8	9	
	M=8,	X=12									
8 9 10 11 12	l.		.0002 .9998	.0001 .0002 .0008 .0027 .9961	.0011 .0022 .0058 .0141 .9769	.0081 .0106 .0219 .0412 .9182	.0392 .0339 .0549 .0821 .7899	.1315 .0735 .0962 .1163 .5824	.3064 .1095 .1184 .1176 .3481	.5170 .1171 .1068 .0887 .1704	
	M=8,	X=13									
8 9 10 11 12 13			.0002 .9998	.0001 .0002 .0008 .0028 .9961	.0003 .0008 .0022 .0058 .0141 .9768	.0035 .0050 .0109 .0221 .0413 .9172	0229 0207 0350 0556 0821 7838	.0982 .0564 .0760 .0960 .1134 .5560	.2705 .0983 .1082 .1109 .1060 .3061	.4957 .1136 .1046 .0887 .0696 .1281	
	M=9,	X=10)								
9 10	1.		1.	.0011 .9989	.0082 .9918	.0330 .9670	.0901 .9099		.3235 .6765		
	M=9,	X=11									
9 10 11			1.	.0003 .0008 .9989	.0029 .0054 .9917	.0149 .0192 .9660	.0500 .0466 .9043	.1260 .0809 .7931	.2514 .1122 .6364	.1257	
	M=9,	X=12	1								
9 10 11 12	1.	1.		.0001 .0002 .0008 .9989	.0010 .0020 .0054 .9916	.0062 .0090 .0195 .9653	.0264 .0268 .0468 .9001	.0815 .0575 .0833 .7777	.1932 .0931 .1136 .6001	.3582 .1161 .1212 .4045	
	M=9,	X=13									
9 10 11 12 13	1.		1.	.0001 .0002 .0008 .9989	.0003 .0007 .0020 .0055 .9916	.0025 .0039 .0092 .0196 .9648	.0133 .0147 .0274 .0473 .8973	.0516 .0389 .0593 .0841 .7661	.1479 .0749 .0952 .1123 .5697	.3140 .1054 .1134 .1128 .3544	

				Table (concl					
i	m= 2	1	2 3	4	5	6	7	8	9
	M=10,	X=11							
10 11	1.	1.	.0003 .9997	.0029 .9971	.0139 .9861	.0445 9555	.1060 .8940	.2044 .7956	
	M=10,	X=12							
10 11 12	1.	l.	.0002 .9997	.0009 .0019 .9971	.0057 .0085 .9858	.0220 .0240 .9540	.0500	1422 0818 7760	
	M=10,	X=13							
10 11 12 13	1.	l.	.0001 .0002 .9997	.0003 .0007 .0019 .9971	.0022 .0036 .0086 .9857	.0103 .0125 .0244 .9528	.0357 .0314 .0515 .8816	.0963 .0606 .0841 .7591	.2077 .0919 .1098 .5906
	M=11,	X=12							
$\frac{11}{12}$	1.	1.	.0001 .9999	.0009 .9991	0055 9945	.0206 .9794	.0559 .9441	.1206 .8794	
	M=11,	X=13							
11 12 13	1.	1.	.0001 ,9999	.0003 .0006 .9991	.0021 .0035 .9945	.0093 .0117 .9791	.0299 .0282 .9419	0754 0533 8713	
	M=12,	X=13							
12 13	1.	1.	1.	.0003 .9997	.0020 .9980	.0089 .9911	.0277 .9723	.0670 .9330	.1340 .8660

Table 6.

Х	p=	.1	.2	. 3	• 4	.5	. 6	.7	.8	.9
	M=]									
2 3 4 5 6 7 8 9 10 11 12 13 14		.0900 .1800 .2356 .2700 .2922 .3073 .3179 .3256 .3314 .3359 .3394 .3422 .3444	.1600 .3200 .4189 .4800 .5195 .5463 .5651 .5789 .5892 .5971 .6033 .6083 .6123	2100 4200 5498 6300 6819 7170 7417 7598 7733 7837 7919 7984 8037	2400 4800 6283 7200 7793 8194 8477 8683 8838 8838 8957 9050 9125 9185	2500 5000 6545 7500 8117 8536 8830 9045 9206 9300 9427 9505 9568	2400 4800 6283 7200 7793 8194 8477 8683 8838 8838 8957 9050 9125 9185	2100 4200 5498 6300 6819 7170 7417 7598 7733 7837 7919 7984 8037	1600 3200 4189 4800 5195 5463 5651 5789 5892 5971 6033 6083 6123	.0900 .1800 .2356 .2700 .2922 .3073 .3179 .3256 .3314 .3359 .3394 .3422 .3444
	M=2	;								
3 4 5 6 7 8 9 10 12 13 14		0810 1620 2430 3023 3485 3833 4102 4312 4478 4478 4612 4721 4811	1280 2560 3840 4777 5508 6057 6482 6814 7077 7288 7460 7602	1470 2940 4410 5486 6325 6956 7445 7825 8127 8370 8568 8731	1440 2880 4320 5374 6196 6814 7293 7666 7962 8199 8393 8552	1250 2500 3750 4665 5378 6331 6654 6911 7117 7286 7424	.0960 .1920 .2880 .3583 .4131 .4543 .4862 .5110 .5308 .5466 .5595 .5702	.0630 .1260 .1890 .2351 .2711 .2981 .3194 .3354 .3483 .3587 .3672 .3742	.0320 .0640 .0960 .1194 .1377 .1514 .1621 .1703 .1769 .1822 .1865 .1900	.0090 .0180 .0270 .0336 .0387 .0426 .0456 .0479 .0498 .0512 .0525 .0535
	M=3	3								
4 5 6 7 8 9 10 11 12 13		0729 1458 2187 2916 3493 3973 4374 4702 4974 5202 5393	1024 2048 3072 4096 4906 5580 6144 6604 6987 7307 7575	1029 2058 3087 4116 4930 5608 6174 6637 7021 7342 7612	0864 1728 2592 3456 4140 4708 5184 5572 5895 6165 6392	0625 1250 1875 2500 2995 3406 3750 4031 4264 4460 4624	0384 0768 1152 1536 1840 2093 2304 2477 2620 2740 2841	.0189 .0378 .0567 .0756 .0906 .1030 .1134 .1219 .1290 .1349 .1398	0064 0128 0192 0256 0307 0349 0384 0413 0439 0457 0473	0009 0018 0027 0036 0043 0049 0054 0058 0061 0064 0067

Table 6. (cont.) .7 .8 .9 x p= .1 .2 .3 - 4 .5 .6 M=4 ,0001 .0720 .0518 .0312 .0154 .0057 .0656 .0828 5 .0625 .0307 .0113 .0026 6 .1312 .1638 .1440 ,1037 .1555 ,0461 .0170 .0038 .0003 7 .1968 .2458 ,2161 .0938 .2074 .2881 .0125 .0614 .0227 .0051 .0004 .2624 8 .3277 .0004 3602 .2592 ,1562 .0768 .0283 .0064 9 .3281 ,4096 4198 .3021 ,1821 .0895 .0330 .0075 .0005 io .3824 .4775 .3391 2044 .1005 .0371 .0084 .0006 4292 .5359 .4712 11 .5159 .3713 .2238 .1100 .0406 .0092 .0006 12 4699 5867 .2407 .0099 .0007 13 .5053 .6309 .5547 .3992 .1183 .0437 .0007 .4231 .2551 .1254 0463 -0104 14 .5355 .6687 .5879 M=5.0591 .0655 .0504 .0311 .0156 .0061 .0017 6 .1181 .1311 .1008 .0034 7 .0622 .0313 .0123 .0933 .0469 .0184 ,0051 .0008 8 .1771 .1966 .1513 .2621 2017 .1244 .0625 .0246 ,0068 .0010 9 .2362 .0013 .3277 .2521 .1555 .0781 .0307 ,0085 .2952 3543 3932 .3025 ,1866 .0937 0369 0102 .0015 .0001 11 .2132 .1071 .0421 .0117 .0018 .0001 12 .4047 .4492 .3456 .2366 .0001 13 .4491 .4984 .3835 1188 .0467 .0129 .0019 4886 5423 4172 2574 1293 .0508 .0141 .0021 .0001 14 M=6.0025 .0005 .0531 .0524 .0353 .0187 .0078 7 .1063 .1049 .0706 .0373 .0156 ,0049 .0010 8 .0074 .0002 9 .1594 .1573 .1059 .0560 .0234 .0015 .0312 .7465 .0098 .0020 .0002 10 .2126 .2097 .1412 1765 .0933 .0391 .0123 .0026 .0003 11 2657 2621 ,0147 .0031 12 .3189 .3146 .2118 ,1120 .0469 .3720 .3670 .2471 1306 .0547 .0172 ,0036 .0004 13 14 4184 4128 2779 1469 .0615 .0193 0040 -0004 M=7 8 .0478 .0419 .0247 .0112 .0039 ,0010 .0002 .0020 9 .0957 .0839 .0494 0224 0078 .0003 10 .1435 .1258 .0741 .0336 .0117 ,0029 .0005 11 .1913 1678 .0988 .0448 .0156 .0039 .0006 12 .2391 2097 .1235 .0560 .0195 .0049 .0008 .0672 13 .2870 2517 .1482 .0234 .0059 .0009 14 .3348 .2936 .1729 .0784 .0273 .0069 .0010

(concl.) .7 .8 .5 .6 x p= .1 .2 .3 .4 M=8 .0067 .0020 .0004 .0431 .0356 .0173 9 .0001 .0861 .0671 .0346 .0134 .0040 .0008 10 .0202 .0059 .0001 .1291 .1007 .0519 .0012 11 1722 1342 0692 .0269 .0078 12 .0016 .0002 13 2152 1678 0865 .0336 .0098 .0020 .0002 .0403 .0117 .0024 0003 14 2583 2013 1038 M=9.0040 ,0010 .0002 10 .0387 .0269 .0121 .0081 .0020 11 .0775 .0537 .0242 .0003 .1162 .0805 .0363 .0121 .0029 .0005 12 .1550 .1074 .0484 .0161 .0039 .0006 .0001 13 1937 1342 0605 0202 0049 .0008 .0001 14 M=10 .0024 .0349 .0215 .0085 .0005 11 .0001 12 0697 0429 0169 0048 0010 .0001 1046 0644 0254 0073 0015 0002 13 1395 0859 0339 0096 0020 14 .0003 M=11 12 .0314 .0172 .0059 .0015 .0002 13 .0628 .0344 .0119 .0029 .0005 .0001 14 0941 0515 0178 0044 0007 .0001 M=12 13 .0282 .0137 .0042 .0009 .0001 0564 0274 0083 0017 0002 14 M=13 14 .0254 .0110 .0029 .0005 .0001

Table 6.

87

.9

Table 7.

X	m=	1	2	3	4	5	6	7	8	9
	Mel									
2 3 4 5 6 7 8 9 10 11 12 13		3679 6280 7633 8380 8828 9115 9309 9461 9546 9621 9686 9737	2707 4621 5616 6166 6495 6706 6849 6950 7024 7079 7122 7156	1494 2550 3099 3402 3584 3701 3780 3835 3876 3907 3931 3949	0733 1251 1520 1669 1758 1815 1854 1881 1902 1919 1936 1957	0337 0575 0699 0767 0808 0835 0853 0866 0880 0892 0929 0960	0149 0254 0309 0339 0356 0369 0378 0403 0427 0429 0496	0064 0109 0132 0145 0153 0158 0163 0169 0179 0195 0215 0237	0027 0046 0056 0061 0064 0067 0068 0069 0072 0076 0088 0097	.0011 .0019 .0023 .0025 .0027 .0028 .0030 .0033 .0038 .0044 .0052 .0061
	M=2									
3 4 5 6 7 8 9 10 11 12 13		1839 3341 4377 5035 5469 5764 5973 6125 6239 6327 6396	2707 4917 6440 7409 8047 8482 8789 9013 9181 9310 9411	6240 4070 5331 6133 6661 7021 7275 7460 7599 7706 7790	1465 2662 3486 4011 4356 4592 4758 4879 4970 5040 5095	.0842 1530 2004 2306 2504 2639 2735 2805 2857 2897 2897	.0446 .0810 .1062 .1221 .1327 .1398 .1449 .1486 .1514 .1535 .1552	0224 0406 0532 0612 0664 0700 0725 0744 0758 0769 0778	0107 0195 0255 0294 0319 0336 0349 0358 0365 0371 0378	.0050 .0091 .0119 .0137 .0149 .0157 .0162 .0167 .0167 .0170 .0174 .0179
	M=3	3								
4 5 7 8 9 10 11 12 13		.0613 .1144 .1551 .1839 .2040 .2184 .2289 .2367 .2425 .2474	1804 3367 4564 5413 6005 6428 6736 6966 7143 7280	2240 4181 5667 6721 7456 7980 8363 8650 8868 9049	1954 3646 4942 5861 6502 6959 7293 7542 7733 7882	1404 2620 3551 4211 4672 5000 5240 5419 5556 5563	0892 1665 2257 2680 2970 3179 3331 3445 3572 3600	.0521 .0973 .1319 .1564 .1735 .1857 .1946 .2013 .2063 .2103	0286 0534 0724 0859 0953 1020 1069 1105 1133 1155	0150 0280 0379 0450 0499 0534 0560 0579 0594 0605

Table 7. (cont.) 8 q 4 5 6 7 3 1 2 х m= M=4.0573 .0337 .1755 .1339 .0902 .1680 ,1954 5 .0153 .0639 .2536 .1728 .1085 .1709 .3183 .3701 .3324 6 .2390 .1500 .0884 .5119 4598 ,3507 7 2364 4403 -0402 6194 .5563 4243 .2892 .1815 .5327 8 .0486 .2860 2046 .1206 9 .0548 .3225 .6006 6983 .6972 4784 .3261 .7565 .2217 6794 .5183 .3532 .1306 .0594 .3494 -6507 10 .7186 .6882 .8001 .5482 .3736 .2345 1382 .0628 .3695 11 .7485 ,5710 .3892 2442 .1439 12 .0654 .3849 .7168 .8334 0674 3968 7390 5887 .2518 .1484 .8592 .7717 .4012 13 M=5 .1563 .1755 .1606 .1277 .0916 .0607 .0031 .0361 .1008 6 .3356 .3073 .2443 ,1752 .1162 .2990 7 .0059 .0690 .1929 ,1628 .2703 .4191 .4705 4307 .3425 .2456 8 .0082 .0968 .5142 .0101 ,1187 .3317 .5773 .5285 .4202 .3014 -1998 9 .4797 .3441 2281 .5871 6591 .6033 10 .0115 .1356 .3787 .5249 .2496 .1483 .4143 .6423 7211 .6601 .3765 11 .0126 7686 .7036 .4013 .2660 .0134 .1581 .4416 -6846 ,5595 12 8055 .7374 -5863 .4205 .2788 .0141 .1657 .4628 .7175 13 M=6 .0005 .0120 .0504 .1042 .1462 .1606 .1490 .1221 .0911 7 .2007 .2870 2352 .1754 8 .0232 .0971 .2816 ,3093 .0010 .2840 .3985 4378 .3329 ,2483 .1374 -4061 9 .0014 .0328 .3078 10 .0017 .0407 .1704 .3521 .4942 .5428 .5036 .4128 .3549 .1964 .5697 ,6258 ,5805 4759 11 .0020 .0469 .4060 ,6904 .6405 .5250 .3915 .2167 .4479 -6285 12 .0022 .0517 .6744 .7408 13 0024 0555 2325 .4806 .6872 .5633 .4201 M=7 .1045 .0595 .1396 .1171 ,1377 .1490 8 .0001 .0034 .0236 .0418 .1152 .2021 .2665 .2884 .2702 2267 9 .0001 .0067 .2881 .3851 3231 10 ,0002 .0095 .0596 .1643 .3798 .4110 .0745 .2053 .4738 .5139 .4814 .4039 .0003 .0119 .3602 11 ,5517 .5971 .5594 .4693 12 .0003 .0138 .0866 .2386 .4185 .0003 .0153 .0962 .2651 4650 .6129 .6634 .6214 .5214 13

Table 7. (concl.)										
Х	m=	1	2	3	4	5	6	7	8	9
	M=8									
9 10 11 12 13			.0009 .0017 .0024 .0030 .0035	.0081 .0157 .0226 .0284 .0332	0298 0578 0829 1043 1220	.0653 .1268 .1818 .2287 .2675	1032 2006 2876 3618 4231	1304 2533 3631 4568 5343	1395 2712 3887 4891 5720	1318 2560 3669 4617 5399
	M=9									
10 11 12 13			0002 0004 0005 0007	0027 0053 0076 0096	.0133 .0258 .0371 .0470	.0363 .0707 .1018 .1287	.0689 .1341 .1931 .2443	1014 1976 2845 3599	.1124 .2418 .3481 .4403	.1132 .2568 .3697 .4676
	M=10									
11 12 13			.0001	.0008 .0016 .0023	.0053 .0103 .0149	.0181 .0354 .0512	.0413 .0807 .1166	.0710 .1387 .2004	.0993 .1939 .2802	.1186 .2316 .3348
	M=11									
12 13				.0002 .0004	.0019 .0038	.0083 .0161	.0225 .0441	.0452 .0884	.0722 .1413	.0970 .1899
	M=12									
13				.0001	.0006	.0034	.0113	0 264	.0481	.0728

REFERENCES

Bodewig, E. Matrix calculus. Amsterdam: North Holland, 1956. Chaddha, R. L. An inventory control problem with regular and emergency demands. Blacksburg, Virginia: Office of Naval Research. Statistics Branch. 1960. Chung, K. L. Markov chains with stationary transition probabilities. Berlin, Gottingen, Heidelberg: Springer-Verlag, 1960. Faddeeva. V. N. Computational methods of linear algebra. New York: Dover, 1959. Feller, William. An introduction to probability theory and its applications. New York: John Wiley and Sons, 1950. Foster, F. G. On the stochastic matrices associated with certain queueing processes. Ann. Math. Stat. 24:335-360. 1953. Gani, J. Some problems in the theory of provisioning and of dams. Biometrika, 42:179-200, 1955. Gani, J. Problems on the theory of storage systems. J. R. Statist. Soc., B, 19:181-206. 1957. Gani, J., and N. V. Prabhu. Stationary distributions of the negative exponential type for the infinite dam. J. R. Statist. Soc. B. 19:295-304. 1957. Gantmacher, F. R. The theory of matrices. New York: Chelsea, 1959. Hadley, G. Linear algebra. Reading, Mass: Addison-Westley, 1961. Kemeny, J. G., and J. L. Snell. Finite markov chains. Princeton: D. Van Nostrand, 1960.

REFERENCES (concl.)

Kemperman, J. H. B. The passage problem for a stationary markov chain. Chicago: University of Chicago Press, 1961. Moran, P. A. P. Theory of dams and storage systems. Aust. J. Appl. Sci. 5:116-124. 1954. Moran, P. A. P. Theory of dams and storage systems: modifications of the release rules. Aust. J. Appl. Sci. 6:117-130. 1955. Moran, P. A. P. The theory of storage. London: Methuen, 1959. Moran, P. A. P., and J. Gani. The solution of dam equation by Monte Carlo methods. Aust. J. Appl. Sci. 6:267-273. 1955. Perlis, S. Theory of matrices. Reading. Mass.: Addison-Westley, 1952. Prabhu. N. U. Some exact results for finite dams. Ann. Math. Statis. 29:1234-1243, 1958.

CONVERGENCE OF SOME STOCHASTIC MATRICES

by

CHESTER CLINTON WILCOX

B. S., Kansas State University, 1961

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY Manhattan, Kansas

This thesis provides an introduction to the problem of determining the rate at which a regular finite Markov process approaches it's steady-state. Methods of determining the convergence of a stochastic process to a steady-state are in existence. A procedure to determine the length of time which must elapse before the process can be said to have reached the "near" steady-state is a logical extension. For a regular Markov process, a method utilizing the characteristic roots of the involved stochastic matrix is developed to predict the number of time intervals the process must pass through in order to insure that a "near" steady-state has been reached.

Regular Markov chains and stochastic matrices are discussed. The numerical method to find the dominant characteristic root and the corresponding characteristic vector is introduced. The utility of applying characteristic root methods to Markov processes is pointed out.

The particular Markov process dealt with is an inventory process (M-policy) considered with two types of consumer demand (geometric & Poisson). The M-policy stochastic matrix is given and it's properties for these types of demand is noted. The stationary distributions and the second largest characteristic roots are tabled for the M-policy with various different sizes of inventory, replenishment, and average demand.

The second largest characteristic root is used to develop a method to predict the time required for the process to reach the "near" steady-state. Finally, examples of the application of the method in inventory theory, queue theory and dam theory are given.