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Abstract

Social media platforms such as Twitter provide valuable information for aiding first re-

sponse during emergency events. Machine learning could be used to build automatic tools

for filtering and categorizing useful information from the flood of information posted by eye-

witnesses during a disaster. However, supervised learning algorithms rely on labeled data,

which is not readily available for an emerging target disaster. While labeled data might be

available for a prior source disaster (or a set of prior source disasters), supervised classifiers

learned only from the source disaster(s) may not perform well on the target disaster, as

each event has unique characteristics (e.g., type, location, culture), and may cause different

social media responses. Therefore, domain adaptation approaches, which address the above

limitation by learning classifiers from unlabeled target data in addition to source labeled

data, represent a promising direction for social media crisis data classification tasks.

This thesis focuses on disaster tweet classification tasks, including classification of tweets

as relevant to a disaster or not relevant, and classification of tweets as informative to disaster

response teams or not informative. In the single-source setting, we propose several domain

adaptation approaches for such tasks. More precisely, we first propose approaches based on

Expectation Maximization and Self-training, performed on top of supervised Naive Bayes

classifiers to classify tweets in categories of interest. We also employ a feature adaptation

method (called Correlation Alignment) and combine it with Self-training to train weighted

Naive Bayes classifiers. Experimental results on the task of identifying tweets relevant to a

disaster of interest show that the domain adaptation classifiers are better as compared to

the supervised baselines learned only from labeled source data.



In addition to the single-source setting, we also consider a multi-source setting, where

several source disasters are used to transfer knowledge to a target disaster. Under the multi-

source domain adaptation setting, we evaluate how different representations based on pre-

trained word embeddings and sentence encoding models perform when used with supervised

classifiers. The word-embeddings are pre-trained on very large unlabeled corpora, and can

thus capture semantic information (e.g., similar words are close in the embedding space).

We use the pre-trained word embeddings and sentence encoding models to design simple

but effective representation-based adaptation approaches for disaster tweet classification.

We further apply the Self-training approach on top of these models, and obtain domain

adaptation models that are shown experimentally to perform better than the supervised

models on the task of identifying relevant versus irrelevant tweets. We also train crisis specific

word embeddings with our own crisis tweet corpora. The resulting embeddings can be used

for a variety crisis tweet classification tasks. Finally, we design domain adaptation models

on top of state-of-the-art pre-trained language models (e.g., BERT) for social media crisis

data classification, and show the effectiveness of such model for disaster tweet classification.

This thesis contributes to the crisis informatics research by introducing domain adapta-

tion approaches for social media crisis data classification. The proposed approaches have

the potential to be used in practice and help with the information overload problem that

disaster response teams face currently.
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Chapter 1

Introduction

1.1 Motivation

Text classification is one of the fundamental tasks in machine learning (ML) and Natural

Language Processing (NLP). It has many real-life applications, including spam email filter-

ing, news topic categorization and sentiment analysis, as well as recent applications in social

media crisis data analysis. Usually, text classification is treated as a supervised machine

learning problem, where we provide labeled training examples (e.g., positive or negative

texts in sentiment analysis) as input, and use the examples to learn a model that maps

inputs to labels, and can be used to label future unseen data. In order to train a supervised

machine learning model that generalizes well to future unseen test data, the model should

be trained on a large training dataset, and the test data should have the same distribution

as the training data. But these conditions do not always hold true in real world due to two

main challenges. The first challenge comes from the fact that labeled data is too expen-

sive and time-consuming to obtain. For example, annotating a large amount of data for an

on-going event may be prohibitive because time is critical during emergencies. The second

challenge comes from the fact that data distribution may shift over time. For example, in

the context of disasters, things like damage or affected areas evolve quickly and result in

changes in the distribution. Similarly, in sentiment analysis of reviews, product features
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change over time, and even the word polarity may change in different time periods (Blitzer

et al., 2007; Hamilton et al., 2016; Yin et al., 2018). In computer vision problems, e.g., object

detection, domain shifts happen due to locations and pose changes (Hoffman et al., 2013).

This distribution discrepancy between training data and test data gives rise to a need for

domain adaptation approaches.

Domain adaptation is a type of transfer knowledge approach that can be used to address

the lack of labeled data for a target domain by using labeled data from one or more related

source domains. The domain shift between source and target data is generally addressed by

using unlabeled data from the target domain. Thus, a domain adaptation approach aims to

build a good model for a target domain through utilizing available labeled data from one or

more related, but different, source domains, and also a large amount of unlabeled data from

target domain. Just like labeling reviews for all types of products in sentiment analysis is

prohibitive, for social media crisis data classification, labeling every type of disaster or crisis

event is also prohibitive, especially when many variations of disasters or crisis event can

happen given climate change and environmental challenges. Therefore, domain adaptation

approaches that make use of labeled source data and target unlabeled data represent a

promising direction for social media crisis data classifications as compared to traditional

supervised machine learning approaches. However, domain adaption approaches have not

been studied much in the context of emergency management. Thus, this research aims to

contribute to this area and focuses on developing and applying domain adaptation approaches

to classify and filter social media crisis data to help disaster management.

1.2 Social media crisis data classification

1.2.1 Value and challenges

Social media platforms have significantly changed the way people communicate, especially

during emergencies. Due to social media’s ubiquitous presence, rapid and easily accessible

nature, people often go to social media to make sense of various events (Landwehr and Carley,
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2014; Stefan et al., 2018), especially those in areas affected by a disaster. Therefore, social

media data from platforms like Twitter are seen to have intrinsic value for both emergency

response organizations and victims of disasters, due to their growing ubiquity, communi-

cations rapidity, and cross-platform accessibility (Vieweg et al., 2010). Governments that

aim to improve situational awareness during emergencies are also starting to value such on-

the-ground information offered by eyewitnesses or average citizens on social media during

emergency events (Hom, 2014; Hughes et al., 2014; Palen et al., 2009; Reuter et al., 2015).

For example, the Federal Emergency Management Agency (FEMA) launched an app as its

own social media platform in June 2016, which not only lets users receive information but

also lets them submit disaster-related images (Transportation Research Board and National

Academies of Sciences, Engineering, and Medicine, 2017). In a workshop on the role of social

media in disaster response back in 2012 (National Research Council, 2013)1, different emer-

gency departments shared their experience with social media. Los Angeles Fire Department

(LAFD) was able to identify an explosion in the airport as a minor incident, by engaging

the public through the location-based social media platform Foursquare, as well as Twit-

ter. The National Earthquake Information Center (NEIC) also used Twitter to disseminate

alerts and detect earthquakes through a tool watching for a sharp increase in the rate at

which keywords associated with earthquakes were used. Although limited, this tool could

extend coverage in areas with little instrumentation, and could also provide a backup should

instruments fail or be offline. Centers for Disease Control and Prevention (CDC) used social

media both to help detect emerging threats and to educate the public about how to respond.

According to Reuter et al. (2012), the usage of social media during emergency situations

can be categorized according to four patterns. Considering citizens (C) and authorities (A),

such as emergency services, these four patterns are: 1) A2A: communications between or-

ganizations of response teams; 2) C2C: communications between the affected public (i.e.,

citizens) and volunteers via social media; 3) C2A: citizens report or post information on so-

cial media, and response organizations monitor and analyze such citizen generated content;

1Convened by National Research Council (NRC) Computer Science and Telecommunications Board under
request of Department of Homeland Security’s (DHS’s) Science and Technology Directorate
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4) A2C: disseminating warnings, alerts and other information from the emergency organi-

zations to the public. Another study about social media usage during the November 2015

Paris Terrorist Attacks showed that authorities gained situational awareness via social media

(C2A), and that citizens used social media to help one another (C2C) 2.

However, there are still many challenges that prevent emergency organizations from ex-

tensively adopting social media in practice. Besides management barriers such as limited staff

and budget challenges, lack of policies and guides, there are also many technical challenges,

including emergency responders’ limited knowledge regarding the collection of information,

the obvious information overload, the reliability or trustworthiness of the information sources

(National Research Council, 2013; Plotnick et al., 2015; Reuter et al., 2015), and also issues

of quantification of performance, focus of attention, and translation of reported observations

into a form that can be used to combine with other information (Mendoza et al., 2010;

Starbird et al., 2010; Tapia et al., 2011, 2013).

Information can accumulate very quickly on social media during emergency situations.

The information from eyewitnesses or victims of the disaster, can be easily buried deep

under the torrent of news reports of the emergency situation, and also of other unrelated

or even untrusted information. This makes it hard for the public to resort to the social

media for help, and for the emergency organizations, such as volunteer organizations and

first responders, to gain situational awareness through social media. Therefore, automated

filtering tools are expected to be key in solving this problem (National Research Council,

2013). This is where machine learning and natural language processing (NLP) techniques

can help.

In recent years, researchers have been optimistic about the potential value of social media

data in helping emergency teams to improve situational awareness and emergency response,

provided that accurate information can be automatically identified (Castillo, 2016; Meier,

2015; Palen and Anderson, 2016; Qadir et al., 2016; Reuter et al., 2015; Watson et al.,

2017). Many researchers have worked on applying these techniques to separate relevant

and irrelevant information, categorize sources and information types, to recognize rumors,

2https://whova.com/embedded/subsession/iscra 201805/348169/348170/
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etc. (Castillo, 2016; Imran et al., 2015). However, to train a good model, many machine

learning algorithms, especially the data-hungry deep learning methods, need large amounts

of labeled data, which will not be available in a short time for a new event that is just

happening. One solution for this problem is to use historical labeled data from previous

events. But as each event is unique in terms of type, location, culture, people involved, etc.,

and different events may cause different social media responses (Palen and Anderson, 2016;

Palen and Hughes, 2018), supervised classifiers trained on a previous emergency event may

not generalize well on a current event in practice (Imran et al., 2013a, 2015). On the other

hand, as information about the on-going event spreads, unlabeled data for the event can be

quickly accumulated and extracted without much effort. Such unlabeled data can help to

align the previous labeled data to the event of interest using domain adaptation approaches.

Therefore, domain adaptation approaches could be more effective than supervised methods

in building automated filtering tools for disaster management (Imran et al., 2015; Li et al.,

2015, 2017a, 2018a).

1.2.2 Research goals

This research focuses on the analysis of user-generated data and aims to build automated

filtering and classification tools for emergency responders and other humanitarian and disas-

ter relief organizations (e.g., volunteer organizations), or even for citizens who want to know

more about the events. Concretely, the user-generated data in this research is Twitter text

data, i.e., tweets, but the approaches can be adapted to analyze short text from other social

media platforms as well.

Social media is a general concept identifiable in many different platforms through the

Internet, web pages like Wikipedia pages, video sharing platforms like YouTube, and also

well-known social networks like Facebook, and micro-blogging platforms like Twitter, Insta-

gram, etc. While both text (conversations), and images/videos can be useful for emergency

responders, this research is focused on text classification of Twitter data, i.e., tweet classi-

fication. Reasons for focusing on classification of text in Twitter as opposed to other social
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media platforms include: 1) Twitter is one of the most popular social media platforms world

wide; 2) Twitter data is more readily available as compared to data from other social media

platforms such as Facebook; 3) there are more prior works focused on Twitter data, therefore,

more public datasets are available for this platform, which enable training and evaluation of

approaches. Specifically, this research aims to addresses the following problems using domain

adaptation approaches:

• Identify tweets relevant to an emergency event. Given a new emergency event, the first

information filtering step is to separate relevant information from irrelevant informa-

tion.

• Identify informative tweets among the relevant tweets. Given a new emergency event,

some relevant tweets may not be informative to the responders, if they don’t contain

some specific information. Therefore, the relevant tweets need to be filtered further to

select the informative ones.

The informative tweets can be further classified into different categories useful for different

response teams, such as medical, infrastructure damage or donation. The ultimate goal

for each of the above categorization problems is to build classifiers through training on the

available labeled and unlabeled data using domain adaptation approaches and other NLP

techniques, so that when there is a crisis, these classifiers can be deployed as filtering tools

in practice.

1.3 Contributions and outline

The contributes of this thesis can be summarised as follows:

• We contribute to the crisis informatics researches by being the first to bring in domain

adaptation approaches for social media crisis data classification.

• In the single-source setting, we propose iterative domain adaptation approaches based

on Naive Bayes and Self-Training or EM strategies, which are simple but perform
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better than supervised Naive Bayes classifiers, and can be potentially used in practice.

• Also in the single-source setting, we propose a hybrid domain adaptation approach

which combines Correlation Alignment and Self-Training. Like the other proposed

domain adaptation approaches, this approach is simple and computationally efficient,

with potential for being used in practice.

• In the multi-source domain adaptation setting, we evaluate how different represen-

tations using word embeddings and sentence encoding models perform with different

supervised learning models, including traditional models and deep neural network mod-

els, and provide insights for potential practical usage.

• We train crisis specific word embeddings with a crisis tweet corpus crawled locally.

The resulting embeddings can be used for other crisis tweet classification tasks.

• We propose to build domain adaptation models on top of state-of-the-art pre-trained

language models (BERT) for social media crisis data classification.

The outline of this thesis is as follows:

• Chapter 2: Background and literature review

In this chapter, we present an overview of machine learning basics and some supervised

learning algorithms used in this thesis. We define the concept of domain adaptation

and provide a thorough literature review of domain adaptation approaches, as well as

a literature review of related research on social media crisis tweets.

• Chapter 3: Datasets

In this chapter, we introduce the datasets used in this thesis, including datasets of

tweets labeled as relevant or non-relevant from several disasters, and similarly datasets

of tweets labeled as informative or non-informative. We also describe the process we

used to collect a large amount of tweets during the 2017 Hurricane season (which

included Hurricane Irma, Hurricane Harvey and Hurricane Maris) and during the 2017
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Mexico Earthquake. The collection of tweets crawled locally is used as unlabeled data

to train crisis specific word embeddings.

• Chapter 4: Self-labeling and Correlation Alignment approaches with Naive Bayes

In this chapter, we propose domain adaptation approaches based on Naive Bayes with

Expectation Maximization (EM) and self-training strategy (these two strategies are

also being referred as self-labeling methods). We also perform a hyper-parameter

analysis to provide guidance for potential practical application. We further compare

the self-training approach with a feature representation based approach, Correlation

Alignment (CORAL), used on top of supervised Naive Bayes classifiers, and propose a

hybrid model combining self-training and CORAL on top of Naive Bayes models. We

experiment with different source and target disaster pairs on predicting the disaster

related tweets.

This chapter is based on four published works (Li et al., 2015, 2017a, 2018a,c),

• Chapter 5: Domain adaptation using embedding-based approaches

To apply the approaches in the previous chapter, we need to build a classifier for each

target disaster. Ideally, we would like to have a classifier that is ready-to-use whenever

a disaster strikes. Therefore, in this chapter, we experiment with embedding-based

approaches that use pre-existing embedding models to transfer knowledge. Concretely,

we experiment with embeddings at word-level, sentence-level, and also pre-trained lan-

guage model based contextual-level embeddings under the multi-source domain adapta-

tion setting. We first experiment with simple adaptation approaches with pre-trained

word embeddings and sentence encoding models. We evaluate how different repre-

sentations using pre-trained word embeddings and sentence encoding models perform

with supervised learning models. We evaluate pre-trained word embedding with deep

learning models, including Neural Networks, Convolutional Neural Networks and Long

Short-Term Memory networks. Then, we experiment with approaches based on the

state-of-the-art pre-trained language models, specifically BERT, and apply a multi-
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source domain adversarial model using the representations computed from pre-trained

BERT model.

Word-embeddings are pre-trained on very large unlabeled corpora, and as a result

they capture semantic meanings (e.g., similar words are close in the embedding space).

Given such embeddings, the goal here is to investigate whether these pre-trained word

embeddings or sentence encoding models can be used as simple representation to pro-

duce a domain adaptation approach for crisis tweet classification. We further apply

the self-training strategy on top of the CNN models, and experimentally show that the

resulting model performs better than the supervised models on crisis relevant versus

irrelevant task. Pre-trained language models have shown to improve transfer learn-

ing for many NLP tasks. We build classifiers based on BERT and compare with an

adversarial model using BERT representations.

This chapter is based on published work (Li et al., 2018b) and unpublished work (Li

and Caragea, 2020a) (to be submitted).

• Chapter 6: Conclusions and future directions

The last chapter summarizes the thesis and discusses ideas for future work.
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Chapter 2

Background

In this chapter, we review the fundamentals of machine learning. We first overview the

basics of machine learning in Section 2.1. Then, we present the supervised learning concepts

and the supervised learning classifiers used in this thesis in Section 2.2, and after that we

introduce unsupervised learning and semi-supervised concepts in Section 2.3 and 2.4, we will

briefly discuss the learning algorithms that are related to domain adaptation. Finally, we

will give the definition of domain adaptation in Section 2.5. This chapter will provide the

necessary background for the following chapters.

2.1 Machine learning basics

One definition of machine learning that is widely quoted is as follows:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T , as

measured by P , improves with experience E”(Mitchell, 1997).

For example, for text classification, the task T can be classifying an email to be spam

or not-spam, or in our crisis tweet classification case either relevant to a disaster or not,

informative or not, and so on. Performance P can be accuracy which measures the percentage
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of examples for which the model outputs the correct answer. The experience E would be

the text with labels.

Depending on how the computer program is allowed to process (experience) the data, this

program/algorithm can be broadly categorized as supervised learning or unsupervised

learning (Goodfellow et al., 2016)1. In supervised learning, an example in the dataset is

associated with a label provided by a teacher who shows the algorithm what to output given

the example. In unsupervised learning, the learning program only sees the examples, no

labels are provided, and the goal is to learn the useful properties of the structure of the data.

One example is clustering, which is used in applications such as market segmentation where

we want to separate a company’s customers into different groups for different marketing

strategies.

Building a machine learning algorithm

To design machine learning algorithms for learning tasks, we first need to represent the data

in the format of input-output that the computer can understand. Typically, each example

in the dataset (e.g. document or tweet) is taken as an input and is represented as a vector

x ∈ Rn that has n features, with feature values corresponding to an attribute (e.g. word) of

that data example. A set of examples can be represented as a matrix X ∈ Rm×n containing

m examples with each example as a row. The observed example set is called the training

set, and the unobserved example set called the test set. For supervised learning, an output

(label) yi (typically yi ∈ R) is also provided with every input xi, and correspondingly label

vector y for an entire set of examples X. From this point on, we denote the training dataset

as D, which includes training examples X and their labels y in supervised learning and only

X in unsupervised learning.

From a probability perspective2, machine learning often involves probabilistic infer-

1Note that there is also reinforcement learning, in which there is a feedback loop between the algorithm
and its experience as it interacts with the environment. We may see it in literature reviews being used in
domain adaptation for selecting source labeled examples close to the target domain to improve performance,
but we will not go into those details here.

2Key Ideas in Machine Learning, Tom M. Mitchell, http://www.cs.cmu.edu/%7Etom/mlbook/keyIdeas.pdf
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ence of the learned model from the training data and prior probabilities. Let X denote the

random variable associated with the training example3, and let Y be the random variable as-

sociated with the label in supervised learning. The training data is usually viewed as drawn

independent and identically distributed (i.i.d) from some unknown distribution P (X, Y ) in

supervised learning or P (X) in unsupervised learning. In theory, if we know the joint distri-

bution we can solve any classification, regression, or other function approximation problem

defined over these variables4. For example, in classification, or supervised learning in general,

we are actually interested in the conditional distribution P (Y |X), which can be derived from

P (X, Y ) with Bayes’ rule. But in machine learning we never know the true distribution.

What we do know is the given data samples, from which we can get the empirical distribu-

tion P̂ (D). We can estimate empirical probability distribution from samples with a model

that has parameters θ, denoted as P (D;θ). There are two main probabilistic principles for

choosing θ : Maximum Likelihood Estimation (MLE) and Maximum a Posteriori Probability

(MAP) estimation.

MLE estimates one or more parameters θ that define a probability distribution based on

the principle that we choose the value of θ that makes the observed data D most probable,

i.e. find θ̂ that maximizes the likelihood of the data P (D;θ):

θ̂MLE = argmax
θ

P (D;θ) (2.1)

We can often solve this maximization problem in two steps. First, make an assumption about

what type of distribution the data are sampled from, plug in the terms for the distribution

and take the log of the function. Second, compute the derivative of the function and set it

equal to zero to we get the optimal value for θ. Based on the first step, we can say that we

3We use uppercase letters to denote random variable, including both vector and non-vector variables.
If X is a vector X = 〈X1, X2..Xn〉 we use Xi to refer to each random variable or ith feature in X. We
use lower case symbols to refer to values of random variables, e.g. Xi = xij refers to random variable Xi

taking on its jth possible value. And we abbreviate by omitting variable names, for example abbreviating
P (X = x | Y = y) to P (x | y), P (Xi = xij | Y = yk) to P (xij | yk).

4Tom M. Mitchell, Estimating probabilities, http://www.cs.cmu.edu/t̃om/mlbook/Joint MLE MAP.pdf
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are actually maximizing the log likelihood.

θ̂MLE = argmax
θ

logP (D;θ) (2.2)

MLE can find the true parameters if the dataset size m is large and the distribution (model)

assumption is correct. However, when m is small and the model is incorrect, MLE can fail.

In MAP estimation, we choose the parameters of θ that are most probable given the

observed data D and our prior knowledge or assumptions of θ, summarized by P (θ), i.e.

find θ̂ that maximizes the posterior P (θ | D):

θ̂MAP = argmax
θ

P (θ | D) = argmax
θ

P (D | θ)P (θ) (2.3)

The difference from MLE is the extra P (θ); here θ is not a parameter anymore, it’s a

random variable. If we think MLE corresponds to the intuitive notion that we should base

probability estimate on observed ratios like a set of coin tosses, then MAP corresponds to

the the intuition that we can represent prior assumptions of θ by making up “imaginary”

tosses to reflect these assumptions. Like in a set of coin tosses where we only see heads,

based on our prior knowledge that there are two sides, we imagine some tails so that the

probability that a tail appears is not zero. Many algorithms are derived based on these two

principles, and we will see MLE being used to derive cost functions in some machine learning

algorithms.

From an optimization perspective, machine learning tasks can be formulated as opti-

mization problems to discover the best parameters that optimize a cost function (an objective

function) given the dataset. The algorithms can usually be described as a combination of

a specification of dataset D, a model or hypothesis function h() which maps the input to

the output, a cost function J(θ) (or objective function or loss function) and an optimiza-

tion procedure (Goodfellow et al., 2016). Many learning algorithms, especially deep learning

models, can be described in this way. This recipe supports both supervised and unsupervised

learning. In supervised learning the cost function is constructed with respect to the output y,
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while in unsupervised learning the cost function is constructed only relative to the input ex-

amples x like in dimension reduction. In both settings, a cost function can be derived based

on the MLE principle. One common cost function in supervised algorithms, such as logistic

regression or neural networks, is cross-entropy loss. This cost function corresponds to the

negative log-likelihood (NLL) of the model parameters; therefore minimizing cross-entropy

loss is equivalent to maximizing the likelihood of the model parameters. One common op-

timization procedure is gradient descent, where we update the model’s parameters θ in the

opposite direction of the gradients ∇θJ(θ) with a learning rate α.

These two perspectives of machine learning are compatible. In many cases, deriving

a learning algorithm based on MLE or MAP principle involves first defining an objective

function in terms of parameters of the hypotheses and training data, and then applying an

optimization procedure to find the optimal parameter values. We will see in a later overview

section that in some cases, the learned model may itself contain explicit probabilities, for

example the learned parameters in a Naive Bayes classifier. In other cases, even though the

model parameters do not correspond to specific probabilities, for example in neural network

models, we may still find it useful to view the algorithm as performing probabilistic inference

to find the maximum likelihood or maximum a posterior probability network parameters’

values5.

Generalization and regularization

The main challenge for machine learning is the ability to perform well on previously unseen

inputs, which is called generalization. The unseen inputs are referred to as test data, which

are assumed to be drawn from the same distribution as the observed training data. The

error that the machine learning model makes on the observed training data is called training

error, and the error on test data is called test error or generalization error. In practice, we

usually draw a portion of the training data and treat it as unseen data, which we call the

validation set. The test error thus is the error on the validation set. An ideal model will

achieve low training error as well as low test error close to the Bayes error, which is the error

5Key Ideas in Machine Learning, Tom M. Mitchell, http://www.cs.cmu.edu/%7Etom/mlbook/keyIdeas.pdf
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incurred by an oracle knowing the true distribution of the data. The ability to

1. make the training error small;

2. make the gap between training and test error small;

determines how well a machine learning algorithm performs. If the training error is high, the

model is underfitting the data, or the model has high bias from a probabilistic perspective.

In this case, we should increase the capacity of the model, which is its ability to fit a wide

variety of functions. If the gap between training error and test error is large, then the model

is overfitting data, or the model has high variance. In this case, we want to decrease the

capacity of the model. When the test data distribution is different from training data, such

as in domain adaptation problems, the test error is much more important than training error

because we are mainly interested in the test (target) data.

Regularization is another way to change the capacity of the model, and is usually used

to prevent overfitting. By adding a regularization term to the cost function, we can change

the model to prefer certain functions while searching in the hypothesis space:

J̃(θ; X,y) = J(θ; X,y) + αΩ(θ) (2.4)

The most commonly used regularization forms are l1 and l2 norm, where Ω(θ) = ‖θ‖1 and

Ω(θ) = 1
2
‖θ‖22 respectively. Intuitively, both terms encourage the model to find parameters

that are sparse where weights for some features will be zero. Therefore, these terms can help

prevent overfitting. While l1 results in a solution more sparse than l2 in general, derivatives

of l2 are easier to compute. The prior knowledge P (θ) in MAP estimation corresponds to

the regularization terms in some algorithms.

2.2 Supervised learning

Now that we have introduced the concept of supervised learning, we can further formalize

that concept. In supervised learning, the training data comes in input-output pairs and is
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denoted as D = {(x1, y1), . . . , (xm, ym)} ⊆ X × Y where xi ∈ Rn is the input instance, yi is

its label, X = Rn is the feature space or input space and Y is the label space. If Y = {0, 1}

or {1,−1}, then the machine learning task is called a binary classification. If Y = {1, 2 . . . C}

where (C ≥ 2), then it is a multi-class classification, and if Y = R, then it is a regression

task.

The goal of supervised learning is to learn a function h such that h(x) ≈ y or h(x) = y

with a high probability. From a probability perspective, h(x) can be viewed as probability

P (y|x). We can estimate this conditional probability through estimating P (x, y) as we have

discussed. These kinds of algorithms are usually referred to as generative models. We can

also model it directly with P (y|x;θ) and find the parameters that maximize the conditional

likelihood. These models are referred to as discriminative models. The Naive Bayes model is

a typical example of a generative model, and logistic regression is usually referred to as the

discriminative counterpart of Naive Bayes. There are other traditional supervised learning

algorithms that are nonprobabilistic and also used in this thesis, such as Support Vector

Machines (SVM), K-nearest Neighbors and Random Forests. We will give the overviews of

these models along with neural networks and some deep learning models.

2.2.1 Traditional supervised learning algorithms

Naive Bayes

As a generative model, Naive Bayes models P (y|x) through estimating P (x, y), according

to Bayes’ rule:

P (y|x) =
P (x, y)

P (x)
=
P (x|y)P (y)

P (x)
=

P (x|y)P (y)∑
y′ P (x | y′)P (y′)

(2.5)

So we can estimate P (y) and P (x|y) instead. Estimating P (y) is simple. For example, if Y

takes on discrete binary values, estimating P (Y ) reduces to coin tossing. With maximum

likelihood estimation, we simply need to count how many times we observe each outcome
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(in this case each class):

P (y = c) =

∑m
i=1 I(yi = c)

m
= π̂c (2.6)

Estimating P (x|y) however is more complicated, as it involves n features and therefore joint

distribution of n random variables, which can be very complex. An additional assumption

that Naive Bayes makes is that the features are conditional independent given the label.

That means we can estimate:

P (x|y) =
n∏

j=1

P (xj|y) (2.7)

where xj is the value for feature j. Then we can derive our classifier as:

h(x) = argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)∑
y′ P (x | y′)P (y′)

= argmax
y

P (x|y)P (y)

= argmax
y

n∏
j=1

P (xj|y)P (y)

= argmax
y

log(P (y)) +
n∑

j=1

log(P (xj|y))

(2.8)

Thus the estimation simplifies to each feature. Depending on the types of feature values,

there are usually three common cases. Features can be categorical or just binary, or multino-

mial or continuous. We can use multivariate Bernoulli Naive Bayes to model binary features.

Multinomial Naive Bayes models multinomial features where a feature value is a count, such

as the count of how many times a word appears in one document. Gaussian Naive Bayes

models continuous features. In our experiments, for short text samples such as tweets,

Bernoulli Naive Bayes model usually works better than a multinomial model. Therefore

the base classifier used in Chapter 5 is the Bernoulli Naive Bayes model. When there are

continuous features, Gaussian Naive Bayes is used, which can be shown to be exactly the
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same as logistic regression under some assumptions6.

Logistic regression

For binary classification, logistic regression models assume that P (y|x) takes the form:

P (y = 1|xi; w) =
1

1 + e−(wTxi)
(2.9)

And

P (y = 0|xi; w) = 1− P (y = 1|xi; w) (2.10)

where w ∈ Rn is the parameter vector that has the same dimensions as the input x. It

corresponds to the probabilistic parameters θ in the previous discussion. We can always add

an offset b into w through an additional constant dimension to xi to form an affine function,

but we will absorb b for simplicity and just use a linear function in place of an affine function.

We can think of logistic regression as linear regression generalized to a classification task,

where we use a sigmoid function or logistic function g(z) = 1
1+e−z

to squash the real-valued

output into a value between 0 and 1. When z = 0, g(z) = 0.5, and g(z) tends to 0 for negative

infinity and to 1 for positive infinity. So if w>xi >> 0 then the probability that y = 1 is close

to 1. Therefore we interpret the output value as a probability ŷ = P (y = 1|xi; w) = g(w>xi).

Notice we can rewrite equation 2.9 and 2.10 as follows:

P (y|x; w) = (ŷ)y(1− ŷ)1−y (2.11)

We can then estimate the parameters using MLE given that the data points are drawn i.i.d.

ŵMLE = argmax
w

m∏
i=1

P (yi | xi; w)

= argmin
w

1

m

m∑
i=1

−y log(ŷ)− (1− yi) log(1− ŷi))
(2.12)

6Refer to lecture notes, https://alliance.seas.upenn.edu/ cis520/dynamic/2020/wiki/index.php?n=Lectures.Logistic
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The last part is the averaged cross-entropy loss over all data points, which we usually refer

to as the cost function of logistic regression. We can use gradient descent to find the optimal

w that minimizes the cost function. We then get our classifier as demonstrated in Equation

2.9 to predict the probability of its label given a test sample.

For multi-class classification, we learn a separate set of weights wc for each class y = c.

We then use a softmax function to squash the values to obtain a categorical distribution:

P (y = c|x; w) =
ewc

>x∑C
c′=1 e

w>
c′x

(2.13)

where we sum over the scores for all C classes to normalize the scores to a distribution.

Support Vector Machines

Support Vector Machines (SVM) algorithm (Boser et al., 1992; Cortes and Vapnik, 1995) is

one of the most influential supervised learning algorithms. Similar to logistic regression, SVM

is also driven by a linear function; unlike logistic regression, it does not provide probabilities

but only outputs a class sign. For a binary classification task, y ∈ {−1, 1}, SVM defines a

linear classifier h(x) = sign(wTx + b). If the data D is linearly separable by a hyperplane,

then SVM aims to find the one hyperplane that maximizes the distance to the closest data

points from both classes, i.e. the hyperplane with the maximum margin. A hyperplane is

defined through w, b as a set of points such that H =
{
x|wTx + b = 0

}
. Let the margin

γ be defined as the distance from the hyperplane to the closest point across both classes.

These closest points are also referred to as support vectors. The objective is to maximize

the margin γ under the constraints that all data points must lie on the correct side of the

hyperplane, which is eventually transferred to the optimization problem:

min
w,b

1

2
‖w‖2

s.t. ∀i yi(w>xi + b) ≥ 1

(2.14)
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This is a problem with a convex quadratic objective and linear constrains, which can be solved

by quadratic programming (QP) software. One important result we get after optimization

for w is that

w =
m∑
i=1

αiyixi (2.15)

which is a linear combination of samples. Furthermore, only αi of the support vectors are

non-zeros. So now given sample x, its decision function is decided by its dot product with

the training examples.

w>x + b = b+
m∑
i=1

αiyi(xi · x) (2.16)

This enables us to apply the kernel trick with SVM, which is useful for machine learning

algorithms involving the dot products between examples. The kernel trick allows us to

replace x with output of φ(x), a feature function. The dot product with a function k(x,xi) =

φ(x)·φ(xi) is called a kernel. If the data samples are not linearly separable, we can use kernel

to map them to a higher dimension space where they may be linearly separable. This kernel

trick is powerful for two reasons. First, it enables us to learn models that are nonlinear of x

but still use convex optimization which is guaranteed to converge efficiently. Second, kernel

function k often is significantly more computationally efficient than naively constructing the

dot product of two φ(x) vectors. One commonly used non-linear kernel in SVM is the radial

basis function (RBF) or Gaussian kernel, k(x, z) = e−
(x−z)2

σ2 .

SVM can be generalized to multi-class classification using a one vs all strategy where we

train one classifier for each class in {1, 2, . . . , C} to distinguish it from the rest.

K-Nearest Neighbors and Random Forests

K-Nearest Neighbors (KNN) is a simple non-probabilistic and non-parametric learning

algorithm. Parameters of non-parametric algorithms depend on the number of training

examples. KNN assumes that similar inputs should have similar outputs, with similarity

being measured by a distant metric. For a test input x, KNN assigns the most common

label amongst its k most similar training inputs. Once we select the distant metric and k,
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we can predict the label for an input. The most common distance metric is the Minkowski

distance:

dist(x,x′) =

(
n∑

j=1

|xj − x′j|p
)1/p

(2.17)

when p = 1, it is the Manhattan distance, when p = 2, it is the Euclidean distance. The

value of k can be from 1 to the size of the training set, with computation cost increasing

with k. If k equals the training data size m, KNN can achieve minimum training error,

however the computation cost becomes extremely high. If there is infinite training data, a

test point will have infinitely many training set neighbors at distance zero. If we allow all of

these neighbors to vote, the procedure converges to the Bayes error rate. This means that

KNN has high capacity that enables it to obtain high accuracy given a large training set

but it may generalize badly if the training set is small. Another weakness of KNN is that it

cannot learn whether one feature is more discriminative than others. KNN also suffers from

the curse of dimensionality, as the distance between two points increase drastically from low

dimension spaces to high dimension spaces. When the dimension n approaches infinity, and

the points drawn from a probability distribution stop being similar to each other, the KNN

assumption breaks down.

Random Forests (Breiman, 2001) is a bagging (bootstrap aggregation) (Breiman, 1996)

algorithm based on decision trees. For decision trees, we build a tree structure using the

training data. Each node in the tree divides the space into regions with similar labels. The

root node represents the whole training set, which is split to the left and right child nodes

based on one feature or dimension with a value threshold. The leaf nodes are again split

until eventually all data points of one leaf are in the same class or cannot be split any further

(in the rare case with two identical points of different labels). In bagging, we first sample

d different subsets of D (with replacement) and then apply a learning algorithm to each

subset to learn a model. The final model is the average of each subset model. The Random

Forests algorithm is essentially bagging applied to a Classification And Regression Tree

(CART) algorithm (Breiman et al., 1984) with full depth (max-depth=∞), where at each

split only k ≤ n randomly sampled features are evaluated to find the best splitting point.
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The construction of a single tree is independent from earlier trees, thus making Random

Forests an inherently parallel algorithm (Mohan et al., 2011). There are two parameters

that need to be tuned for Random Forests: the number of trees in the forest d and the

number of features k that each node considers to find the best split. One commonly used

value for k is
√
n. One advantage of Random Forests is that because of bagging, it doesn’t

overfit with increasing the number of trees. And another advantage is that it doesn’t require

much preprocessing. For instance, the features can have different scales.

2.2.2 Neural networks

Neural networks

In neural networks, the final hypothesis function can be viewed as a composition of several

different functions. Recall our discussion about squashing linear regression output to the

interval [0, 1] to derive logistic regression for classification. The function of logistic regression

h(x) is actually formed by chaining two functions together: a linear functions f and then

a sigmoid function g with h(x) = g(f(x)) = g(wx + b) where x ∈ Rn and w ∈ R1×n 7.

Logistic regression can be seen as a simple neural network with just one layer and a sigmoid

function as an activation function.

In neural networks, the information flows through different functions with each one

taking the previous one’s output as input. For instance, it can be in this form: f(x) =

f (1)(f (2)(f (3)(x))), where each function corresponds to a layer. In this example, f (1) is de-

fined as the first layer and so on, and the overall length of the chain defines the depth of the

model (Goodfellow et al., 2016). The input is referred to as the input layer, the last layer is

called the output layer and the middle layers are hidden layers. Each layer performs a linear

transformation on the input, which is then followed by a non-linear activation function. The

activation function for an output layer of a classification task is usually sigmoid or softmax

function. Activation function for each hidden layer can be different, though one common

7We change the parameter vector w from a column vector to a row vector in order to simplify later
parameters’ matrix symbol. We also put b explicitly to be consistent to conventions to neural networks.
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hidden layer activation function is rectified linear unit(ReLU):

g(z) = max(0, z) (2.18)

Another common hidden layer activation function is the hyperbolic tangent or tanh function:

g(z) =
ez − e−z

ez + e−z
(2.19)

Each hidden layer can have many units with each unit acting similarly to a biological neuron,

or loosely speaking, performing a logistic regression calculation if we use a sigmoid function.

Therefore, we will have a parameter matrix W for each layer. The dimensions of the pa-

rameter matrix W for each layer is determined by the input and output layer units. One

example of two hidden layers neural network for multi-class classification can be as follows:

h1 = g1(W1x + b1)

h2 = g2(W2h1 + b2)

ŷ = softmax(h2)

(2.20)

With the model, we can define a cost function and use gradient descent to find the optimal or

local optimal values of Ws. The calculation process from input to output in a neural network

is called forward propagation. The gradient descent process, which can be seen as allowing

information flowing from cost function backward through the networks, is performed with a

back-propagation algorithm.

Word embeddings

In many neural network models for text classification, especially those with deep neural

network architectures, each word in the vocabulary V is usually represented as a vector.

The vector xt for word wt is called the word embedding of wt. Then, given a piece of text,

we can view it as a sequence of words w1, . . . , wT , which can be represented as a sequence of
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the word vectors x1, . . . ,xT . This can then be the input to a neural network model, including

a deep neural network model that we will introduce next. The simplest word embedding is

one-hot embedding. If the vocabulary size is |V |, one-hot embedding maps each word in the

vocabulary to a vector that has 1 at the position where the word appears in the vocabulary

and |V | − 1 0s. As pre-trained word embeddings such as Word2Vec (Mikolov et al., 2013a)

work better with the deep learning models, pre-trained word embeddings are widely used.

Recurrent Neural Networks

Recurrent Neural Networks or RNNs (Elman, 1990; Hopfield, 1982; Jordan, 1986) are a

family of neural networks for processing sequential data. Therefore, RNNs have been used

not only in NLP tasks such as speech recognition, machine translation, text generation and

text classification, but also in other areas such as biological sequence tasks. Depending on

the task, RNNs can have different output formats. For example, in classification we just

have a single output, a label or a probability distribution over labels. However, in machine

translation, we have a sequence as the output. In text generation, RNNs are used to train

a language model where the model predicts the next word given the previous sequence of

words. Given a start word or token, the model will generate a sequence of words until it

generates an end token.

In general, an RNN can be seen as a feedforward neural network that has a dynamic

number of hidden layers depending on the input sequence. Given a sequence of inputs at

each time step, it not only takes the input at this time step but also the output from the

previous time step. The parameter matrix as well as the activation function can be shared

for all time steps. One example for a task that has an output at each time step can be as

follows: suppose the input sequence is x1, . . . ,xT and we use a hyperbolic tangent activation

function for hidden layers and a softmax function for each time step output. Then for each
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time step from t = 1 to t = T , the forward propagation computes the following equations:

ht = tanh(Wxt + Uht−1 + bh)

ŷt = softmax(Vht + by)

(2.21)

where the parameters are the bias vectors bh and by along with weight matrices W,U,V

for input-hidden, hidden-hidden, hidden-output connections, respectively.

Long-short term memory

One significant problem for RNNs is that during back-propagation, the gradients are mul-

tiplied with the same values over and over and tend to either vanish (become very small)

or explode (become very large). Even if we assume that the model is stable (gradients

not exploding), difficulties with long-term dependencies arise from the exponentially smaller

weights given to long-term interactions compared to short-term ones. Long-short term mem-

ory (Gers et al., 2000; Hochreiter and Schmidhuber, 1997) networks (LSTM) are sometimes

used instead of RNNs to retrain information for longer time spans. Intuitively, LSTM in-

troduces mechanisms to choose what should be memorized or forgotten. A LSTM unit adds

different gates to a RNN unit: a forget gate ft, an update gate ut and an output gate ot,

which are all functions of current input xt and the previous hidden state ht−1. Meanwhile,

it also maintain a memory cell state ct, which is determined by the previous memory state

ct−1 and forget gate ft as well as the candidate current memory state c̃t and the update gate

ut. Take the same example as in RNNs, the LSTM will compute the following equations for
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each time step:

ft = σ(Wf [xt,ht−1] + bf )

ut = σ(Wu[xt,ht−1] + bu)

ot = σ(Wo[xt,ht−1] + bo)

c̃t = tanh(Wc[xt,ht−1] + bc)

ct = ft � ct−1 + ut � c̃t

ht = ot � tanh(ct)

(2.22)

where σ is the sigmoid function, Ws and bs are the parameter matrices, � means element-

wise product and [xt,ht−1] means concatenation of the two to simplify the equations. In-

tuitively, the current memory state ct is the combination of how much the model chooses

to forget given the previous state, and how much to update given the current input. The

final output of this time step is determined by both the output gate and the current memory

state.

Both RNNs and LSTM can be extended to be bidirectional where the model is given the

whole sequence, and runs forward first and then backward over the sequence. We can also

stack multiple layers of the units to get a deeper model.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) (Lecun et al., 1998) is another type of neural net-

work used specifically for processing data with grid-like topology, such as images. In fact,

CNNs are one of the dominant models in current computer vision research. CNNs are also

used in NLP, specifically text classifications. We will next introduce the commonly followed

CNN architecture for text classification (Kim, 2014).

Given a sequence of words and xi ∈ Rd as the word embedding for the i-th word, the

whole sequence then is represented as x1:T = [x>1 ; . . . ; x>T ] ∈ RT×d. Let xi:i+j−1 ∈ Rj×d

refer to the concatenation of j words x>i ,x
>
i+1, . . . ,x

>
i+j−1. A convolution operation involves
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a filter represented by a weight matrix W ∈ Rj×d, which is applied to xi:i+j−1 to generate a

feature ci by

ci = g(W · xi:i+j−1 + b) (2.23)

where b ∈ R is a bias term and g is the activation function. Sliding the filter over each

possible window of j words of the sequence will produce a feature map c ∈ RT−j+1

c = [c1, c2, . . . , cT−j+1]
> (2.24)

where each entry can corresponds to a n-gram feature in traditional NLP which considers

the j consecutive words as one feature. Then we can further apply max-pooling to get the

one most important entry as the final feature of this filter:

c̃ = max(c) (2.25)

We can have hundreds of such filters with window size 2 and hundreds of filters with window

size 3 and so on in CNNs, and the max-pooling from all feature maps are finally concatenated

to a vector c̃ ∈ Rk where k is the number of filters. This vector can then be passed to the

next layer or to the output layer for classification. If we have 100 filters with window size

2 and another 100 filters with window size 3, intuitively that corresponds to 100 bigram

features and 100 trigram features for the given piece of text. This enables CNNs to capture

local features with different spans.

We have discussed a lot on supervised learning, next we will move on to unsupervised

learning, semi-supervised learning and finally domain adaptation.

2.3 Unsupervised learning

In unsupervised learning, we have a training set D = {x1,x2, . . . ,xM} ⊆ X , where xi ∈ Rn

is the input instance which is assumed to be drawn i.i.d. from a distribution, but the labels

are not known. The goal is to learn the internal structure of the data or distribution. Some
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common unsupervised tasks are: 1) dimensionality reduction, where we want to project the

inputs to a lower dimensional space for purposes such as saving storage space, visualization or

for more meaningful distance calculations. One common algorithm is Principal Component

Analysis (PCA); 2) clustering, where we want to group similar inputs into clusters. K-

Means clustering, a simple iterative clustering algorithm, is one common algorithm for this

task. Given the dataset D, we first randomly pick k cluster centers among all data points.

We then assign each data point to its nearest center. Finally, we update the center to be

the mean of its assigned points. The last two steps are alternated until convergence; 3)

density estimation, where we want to estimate the distribution of the data. This is used for

applications such as anomaly detection.

Another type of unsupervised learning is focused on latent representation learning, which

can been seen as one type of dimensionality reduction task. However its main purpose

here is to learn a better and more compact representation of the data. One example is

an autoencoder, which is a type of neural network that aims to output its input using an

encoding and decoding process. Through the hidden layers, we can discover interesting

structures in the data and use the hidden layer representations as latent representations of

the original data.

Another type of unsupervised learning is sometimes called self-supervised learning, where

we create heuristic labels from the unlabeled data and then turn the unsupervised problem

into a supervised problem. Pre-trained word embeddings and language models can be seen

as examples of self-supervised learning. We will leave this to later discussion.

Mixture of Gaussian and EM

One common model for density estimation is a mixture model, such as a mixture of Gaus-

sians, where the assumption is that data is generated from a linear combination of K

Gaussian distributions, p(x) =
∑K

k=1 πkN (µk,Σk). We can introduce a hidden variable

z ∈ {1, . . . , K} for each observed sample x, such that z indicates from which mixture com-

ponent the sample originated, and write the marginal probability as p(x) =
∑K

k=1 P (z =
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k)p(x | z = k) =
∑

z P (z)p(x, z). The parameters (πk, µk,Σk) for k = 1, . . . , K in a Gaus-

sian mixture model are estimated with an algorithm called Expectation Maximization (EM)

(Dempster et al., 1977). EM finds the maximum likelihood solution for models with latent

variables by estimating parameters in an iterative way. Intuitively, the idea of EM is much

like K-Means. EM also alternates between two steps, E step and M step, until convergence.

In the E step we estimate distributions of hidden variables given the model, and in the M

step we estimate the model given the hidden variable estimates in E step. We can think of

the hidden variables in K-Means as the cluster assignments. In K-Means, we assign a data

point to just one cluster, which is a hard assignment. In EM, the cluster assignments for

Gaussian mixtures are soft, meaning we assign a point to each cluster with a probability.

EM is used in this thesis together with a base classifier for domain adaptation.

Autoencoder

As a type of neural network that copies its inputs to outputs, an autoencoder has two

components: an encoder and a decoder. Let’s just take one hidden layer architecture as an

example. The encoder first maps the input to a vector such as:

h = g(Wx + b) (2.26)

where g is the activation function. Then the decoder reconstructs the input from the latent

representation as:

x̃ = g̃(W̃h + b̃) (2.27)

Then the model is trained to minimize the reconstruction loss between the original and

reconstructed input as the mean squared loss. In practice, deep neural network architectures

such as RNNs or LSTMs are often used in autoencoders for text. Autoencoders are used in

domain adaptation to learn latent domain representations.
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2.4 Semi-supervised learning

Semi-supervised learning lies between supervised and unsupervised learning. In semi-supervised

learning, we have some labeled data, DL = {(x1, y1), . . . , (xm′ , ym′)} ⊆ X × Y , but usually

not enough to learn a good supervised model. Thus, we also use a set of unlabeled data

DU = {xm′+1, . . . ,xm} ⊆ X that is drawn from the same distribution to help the supervised

tasks. Here, the size of unlabeled dataset is usually much larger than labeled dataset. Since

unlabeled data comes from the same distribution as the labeled data, unlabeled data can be

used for more accurate probability distribution estimation and also to learn better represen-

tations. There are different types of semi-supervised learning algorithms, such as generative

models with EM, and low density separation like Transductive SVM. Semi-supervised learn-

ing and domain adaptation both use unlabeled data, so we will see some algorithms used

in semi-supervised learning also used in domain adaptation such as self-training (Yarowsky,

1995) and co-training (Blum and Mitchell, 1998; Chen et al., 2011a; Nigam and Ghani, 2000).

We will discuss these methods in the reviews of domain adaptation approaches.

2.5 Domain adaptation

We can limit the labeled data even more strictly than in semi-supervised learning. For

example, if we don’t have any labeled data available, but we have labeled data from a

related domain for the same learning task, then we can use domain adaptation approaches

to perform the learning task. In domain adaptation problems, the domain where labeled data

is available is referred to as the source domain, and the domain of interest where labeled data

is either not available or available in a very small amount is referred to as the target domain.

Domain adaptation is often mentioned together with transfer learning, and according to a

seminal survey paper by Pan and Yang (2010), domain adaptation can be seen as a special

case of transfer learning. We will follow the notation in this paper to give the definition of

transfer learning and then domain adaptation.
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Transfer learning

According to Pan and Yang (2010), transfer learning involves the concepts of a domain and

a task. A domain D consists of a feature space X and a marginal probability distribution

P (X) over the feature space, so we can denote a domain as D = {X , P (X)}. Recall from our

discussion in previous sections, X is the random variable associated with training examples,

and we can have a random vector X = 〈X1, X2..Xn〉 where Xi refers to each random variable

or ith feature in X. Given a domain D = {X , P (X)}, a task T consists of a label space Y

and a hypothesis function h(·), which is the conditional probability distribution P (Y | X)

from a probability perspective that needs to be learned from the training data consisting of

pairs of examples and labels. We can denote a task as T = {Y , P (Y | X)}8.

Given a source domain DS, its task TS, and a target domain DT and its task TT , the goal

of transfer learning is to learn the target conditional probability distribution PT (YT | XT )

with knowledge and experience from DS and TS where either DT 6= DS or TT 6= TS.

Let DS denote the source labeled data, DSU denote source unlabeled data, similarly DT

be the target labeled data and DTU be the target unlabeled data. The case in which the

target task is different from the source TT 6= TS and DT is available (usually in a small

amount) is called inductive transfer learning. Here, if DS is used, it is usually a multi-task

learning case. If DSU is used, it is sometimes referred to as self-taught learning (Raina et al.,

2007) or sequential transfer learning in Ruder (2019) since unlabeled data is usually first

used for representation learning, then the representation is sequentially used in the target

task. Pre-trained models in our later discussion can fall into this category.

The case when TT = TS but DT 6= DS, and only DTU is available, is called transductive

transfer learning. Here, domain differences DT 6= DS can be classified as one of two cases:

1) XS 6= XT , meaning feature spaces are different, which Ruder (2019) refers to as cross-

lingual learning where we can learn a mapping from source to target domain such that

PS(f(XS)) = PT (XT ). 2) XS = XT but PS(XS) 6= PS(XT ), meaning feature spaces are same

but marginal probability distributions are not, which is referred to as domain adaptation.

8Notice that in Ruder (2019), T also includes a prior distribution P (Y )
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We see here domain adaptation is usually seen as a case of transductive transfer learning.

However, in other related works, domain adaptation is seen as a broader concept, and the

definition given here is only for unsupervised domain adaptation.

Domain adaptation

Some domain adaptation papers assume target labeled data DT is also available in very small

amounts (Ben-David et al., 2007; Jiang, 2008). The approaches that use only target unlabeled

data DTU are categorized as Unsupervised Domain Adaptation approaches, while those that

use a very small amount of target labeled data are called Supervised Domain Adaptation

approaches (Daumé III, 2007). Furthermore, those that use both target unlabeled and a

very small amount of target labeled data are called Semi-supervised Domain Adaptation

(Daumé et al., 2010). The difference with semi-supervised learning is the additional usage

of source domain labeled data DS. Thus, in this sense, domain adaptation also has some

overlap with inductive transfer learning. Here, we will adopt the broader concept of domain

adaptation, and will refer to domain adaptation as the case XS = XT but PS(XS) 6= PS(XT )

such as in transductive transfer learning, but we are not limiting the usage of target labeled

data. Therefore, here domain adaptation is a scenario that will use source data either labeled

DS, unlabeled DSU or both and also target data either labeled DT , unlabeled DTU or both.

Furthermore, we may also need to address PS(YS|XS) 6= PT (YT |XT ) in domain adaptation

(Jiang and Zhai, 2007b; Zhang et al., 2015).

In this thesis, given the assumption that an on-going crisis event’s labeled data is hardly

available, we will focus on the unsupervised domain adaptation. More formally, in unsu-

pervised domain adaptation, we have DS = {(x1, y1), . . . , (xmS
, ymS

)} ⊆ X × Y and target

unlabeled data DTU = {x1, . . . ,xmTU
} ⊆ X , we may in addition have source unlabeled data

DSU = {x1, . . . ,xmSU
} ⊆ X , where PS(XS) 6= PS(XT ) and usually the size of the unla-

beled dataset is large. The goal is to learn a good hypothesis function h(·) or PT (YT |XT )

for the target domain. For our classification tasks, we assume tweets of different disas-

ters including different types of disasters still share some characteristics, so we assume that
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PS(YS|XS) = PT (YT |XT ) in most of the cases. For example, intuitively donation related

tweets or infrastructure damaged related tweets have very similar content in different disas-

ters, thus we can assume that PS(YS|XS) and PT (YT |XT ) are the same. Finally, while our

discussion so far is based on only one source domain, we can also extend this to multi-source

domain adaptation.

Multi-source domain adaptation

Currently, many research papers about domain adaption focus on single source domain

adaptation. But in many cases, such as sentiment analysis and our disaster tweet classifi-

cation problem, multiple sources may be available. To formalize the multi-source domain

adaptation, we only need to change the number of sources from one to many in our nota-

tions. Formally, suppose we have S sources and DSi denotes the ith source domain. Let

Si = {(x(i)
1 , y

(i)
1 ), . . . , (x

(i)
si , y

(i)
si )} be the ith source labeled sample. Our goal is to learn a good

hypothesis h(·) on the target domain with help from these multi-source domain data and

target unlabeled data.

Other related concepts

We should note that domain adaptation is different from semi-supervised learning in that the

latter uses labeled and unlabeled data from the same domain. Furthermore, domain adaption

is different from multi-task learning in that the latter learns several tasks simultaneously,

while domain adaptation focuses on learning the target task using knowledge from same task

of one or more different domains.

There are other concepts related to domain adaptation, and also other perspectives re-

garding domain adaptation distribution differences. For example, the case that assumes

PS(YS|XS) = PT (YT |XT ) but PS(XS) 6= PT (XT ) is also termed covariate shift as a particular

case of sample selection bias (Huang et al., 2006). The case when PS(XS|YS) = PT (XT |YT )

but PS(YS) 6= PT (YT ) is sometimes called class imbalance (Jiang, 2008), prior probability

shift or target shift (Zhang et al., 2015).
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Chapter 3

Literature review

In this chapter, we present the different approaches to domain adaptation through a com-

prehensive literature review in Section 3.1 followed by a literature review of social media

crisis data classification in Section 3.2.

3.1 Domain adaptation approaches

In general, there are several different ways domain adaptation algorithms are used to align

source and target domain distributions. Inductive transfer learning approaches have been

organized by Pan and Yang (2010) into four different categories: instance transfer, feature

transfer, parameter transfer and relational knowledge transfer, while only the first two cat-

egories are appropriate for Transductive transfer learning. As we discussed in Section 2.5,

there are supervised and semi-supervised domain adaptation approaches, so these approaches

somehow have overlap with Inductive transfer learning. Supervised and semi-supervised

domain adaptation approaches can also be categorized into the four categories mentioned

above. However, these categories are not exclusive from each other, so here we will only dis-

cuss research that is closely related to our work, especially unsupervised domain adaptation

on text classification tasks. We put these works into four categories1: 1) Parameter based

1Note that these categories are listed for the convenience to follow our work. Just as definition of domain
adaptation is not always consistent, the categories of the approaches can also vary. Other researchers may
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approaches, which use some priors from the source domain to inform the target domain.

2) Instance based approaches, which weigh or select either only source labeled instances or

both source labeled and target unlabeled instances with different methods to align the dis-

tributions of source and target domain. 3) Feature based approaches, where we change the

feature representations of source and target to make them similar. 4) Pre-training language

models and fine-tuning based, where we will use pre-trained language models and fine-tuning

for the current tasks. We can also combine these different types of approaches to build a

hybrid domain adaptation model.

3.1.1 Parameter and instance approaches

Most domain adaptation algorithms are designed around one question, which is how to bring

the source labeled data close to the target data with help from target unlabeled data, so that

the distribution can be better aligned. Instance based adaptation approaches try to decrease

the domain shift between source and target domains by re-weighting source and/or target

instances based on different criteria. For example, the distribution of the source domain

can shift towards the distribution of the target domain by giving higher weights to source

instances that are closer to the target unlabeled instances. Parameter based adaptation

approaches are more related to multi-task learning, but they can be easily adapted to domain

adaptation. Such approaches assume that related tasks share some parameters and prior

distributions of hyper-parameters. However, from a probability perspective, approaches that

estimate the target probability parameters with help from source data can also be considered

a type of parameter based approach, which are sometimes achieved with a EM style process

involving instance selection or weighting.

EM/Self-training and Co-training

Recall that an Expectation Maximization (EM) algorithm is used in statistical models to find

maximum likelihood estimates of parameters iteratively (Dempster et al., 1977). Combined

put the approaches discussed here into different categories.
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with machine learning classifiers that also rely on probability distribution estimations, such

as Naive Bayes, EM can be used to improve the classifiers with unlabeled data. This approach

has been used for many machine learning tasks, including text classifications (Nigam et al.,

2000). Self-training (ST) (Yarowsky, 1995) labels the unlabeled data and converts the most

confidently predicted document of each class into a labeled training example. This iterates

until convergence similar to EM. Co-training algorithms (Blum and Mitchell, 1998) learn

two or more functions based on distinct subsets of the features. To predict the labels, co-

training trains these distinct functions both to fit the labeled examples and also to agree on

their predictions for unlabeled examples. EM, self-training, co-training and also a hybrid of

EM and co-training (co-EM) are being compared for text classification task in Nigam and

Ghani (2000), where co-training performs well if the feature set independence assumption is

valid. These approaches are being adapted to domain adaptation problems as well, and are

sometimes referred to as self-labeling approaches. Below, we will review some papers related

to these approaches and also some papers that are closely related to our proposed domain

adaptation approach in Chapter 5, a weighted Naive Bayes classifier with self-training/EM.

Dai et al. (2007) proposed a domain adaptation algorithm, based on the Naive Bayes

classifier and EM, to classify text documents from Newsgroups, SRAA, and Reuters into top

categories. Experimental results showed that this algorithm performed better than super-

vised algorithms based on either Support Vector Machine (SVM) or Naive Bayes classifiers.

Tan et al. (2009) proposed a weighted version of the multinomial Naive Bayes classifier com-

bined with EM for sentiment analysis. Their algorithm filters out domain-specific features

from the source domain, by keeping only the top-ranking features that have similar prob-

abilities in both source and target domains. In the first step, a Naive Bayes classifier is

trained on the source data and used to label the unlabeled data from the target domain. In

subsequent iteration, the EM algorithm is used with a weighted combination of the source

and target data to train a new Naive Bayes classifier. Specifically, in the maximization (M)

step, the prior and likelihood are calculated, and in the expectation (E) step, the posterior is

calculated for the instances in the target data. These steps are repeated until convergence,

with the weight shifting from the source to the target domain, iteration by iteration. In
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our experiments, we use Bernoulli Naive Bayes classifier instead, and we use target domain

features to represent both source and target data.

Viswa Mani Kiran Peddinti (2011) used domain adaptation to perform sentiment classi-

fication of tweets. Given a source dataset, in addition to target labeled data, they proposed

two methods to identify source instances that could improve the classifier for the target based

on EM and Rocchio SVM. Namely, at each EM iteration, they first used target labeled data

to classify source instances, then selected the most confident source instances to add back

to the training set. Therefore, this method requires a small amount of target labeled data.

Herndon and Caragea (2015) proposed an approach like the one in Tan et al. (2009) for

the task of splice site prediction. They used a weighted Naive Bayes classifier, and three

methods for incorporating the target unlabeled data: EM with soft-labels, ST with hard-

labels, and also a combination of EM/ST with hard-labels for the most confidently labeled

instances in the current target unlabeled data, and soft-labels for the other instances. They

found that for the task of splice site prediction, EM with soft-labels gives better classifiers

than the other two methods, contrary to what has been observed in text classification (Nigam

and Ghani, 2000), where ST with hard-labels gives better results. Here, a small amount of

target labeled data is used which is different from our approach that no target labeled data

is used.

In Li et al. (2015), we proposed a domain adaptation approach based on the iterative EM

algorithm and a weighted Naive Bayes classifier, for identifying disaster relevant tweets. In

this approach, a classifier is learned at each iteration, and used to label the target unlabeled

data. Subsequently, the target data, with probabilistic soft-labels assigned by the current

classifier (e.g., p(+|d) = 0.7 and p(−|d) = 0.3 for an instance d), are combined with the

labeled source data and used to train the classifier at the next iteration. The original classifier

is trained from source data only. The process continues for a fixed number of iterations, or

until convergence, by slowly giving more weight to soft-labeled target data during training.

Some other variations of self-training have also been proposed (Guo et al., 2012). Similar

to the EM strategy, our proposed self-training based domain adaptation approach (Li et al.,

2018a) is an iterative approach that uses a weighted Naive Bayes classifier to combine source
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and target data. Just like the EM approach, it starts by learning a supervised classifier

from source data only, and uses that classifier to label the target unlabeled data. However,

instead of adding all the target data with probabilistic soft-labels to the training set for the

next iteration as in EM, in self-training only the most confidently classified data are added

to the training set, with hard (e.g., +/- or 1/0) labels.

Chen et al. (2011a) adapted co-training for domain adaptation (CODA) using pseudo-

multiview regularization that they proposed in (Chen et al., 2011b) to split the features

into two mutually exclusive views. CODA slowly adapts the training set from the source

distribution to the target, both data-wise and feature-wise. To shift the distribution of the

training data from source to target, CODA gradually adds inputs from the target domain to

the training set using co-training. Meanwhile, it includes a feature selection component to

shift the features used by the model from source-heavy to target-heavy features. Combining

these two strategies, CODA significantly outperforms self-training as well as some feature

based domain adaptation approaches we will discuss later on a sentiment analysis task.

Some recent papers also use self-training in a similar setting to domain adaptation and

achieve satisfactory results. For instance, self-training has been used for zero-shot text

classification, where for some classes there are no labeled examples but other classes may have

some labeled examples. Ye et al. (2020) proposes a self-training based method where they use

a reinforcement learning framework to select unlabeled instances for zero-shot classification.

Xie et al. (2020) proposes self-training with noisy student to improve image (ImageNet)

classification in a semi-supervised setting.

Instance weighting and selection

Instance weighting methods aim to approximate target distribution PT (x, y)2 through esti-

mating PT (x,y)
PS(x,y)

and PS(x, y) because PT (x, y) = PT (x,y)
PS(x,y)

PS(x,y). We can estimate PS(x, y) with

the source labeled data, but PT (x,y)
PS(x,y)

is unsolvable. However, we can approximate PT (x,y)
PS(x,y)

by

adding each source example with a weight which we can get with small amount of target la-

beled and target unlabeled data. Based on Bayes’ rule, we can further transfer PT (x,y)
PS(x,y)

into two

2here means PT (XT = x, YT = y), the joint distribution of target domain, similar for PS .
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parts: 1) PT (y|x)
PS(y|x)

and 2) PT (x)
PS(x)

3. If we assume the first term is 1, meaning PT (y | x) = PS(y | x),

then we just need to focus on the ratio of the marginal distribution, or the second term. If we

can estimate this ratio for each instance from source and target, then we can solve the adap-

tation problem. There are many different methods described in the literature to estimate

this ratio. Some works set these as parameters that are tuned and learned during the train-

ing step, some works estimate the weight for each example through minimizing the distance

such as KL divergence between the weighted source domain examples and target domain

examples. Our self-training with Naive Bayes approach also involves a weighting shift from

source examples to target unlabeled examples, and therefore our self-training with Native

Bayes approach is related to instance weighting approaches.

Jiang and Zhai (2007b) introduced an instance weighting framework for domain adapta-

tion for use in NLP tasks (POS tagging, name entity and spam filter). Besides source labeled

data DS. They assume both a small set of target labeled data DT and also a large amount

of unlabeled target data DTU are available. From the probability perspective, they pro-

posed three ways to approximate the target input spaces X , using DS, DT , DTU respectively.

They assigned three parameters to control the contributions from these three approxima-

tions. They also assigned a parameter αi to indicate how likely PT (yTi |xTi) is to be close

to PS(yTi |xTi). Large values for αi indicated that we could trust this instance and therefore

this parameter could help remove misleading training instances. Another parameter βi was

also assigned to source instances to approximate PS(XS)
PT (XT )

, and finally a parameter γk similar

to the parameter in bootstrapping semi-supervised learning was set to be weight for a target

unlabeled instance in DTU . Those confidently predicted instances were set to 1, others to 0.

The experiments on NLP tasks (POS tagging, name entity and spam filter) were comparable

to other methods.

Huang et al. (2006) estimated PS(x)
PT (x)

by matching the means between the source domain

and target domain data, which is referred to as Maximum Mean Discrepancy (MMD) in

other works. The main idea is to minimize the distance between two distributions based on a

3Some works may also focus on 1) PT (x|y)
PS(x|y) and 2) PT (y)

PS(y) , assuming the first term is 1, then focusing on

the class imbalance problem.
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mapping to a Reproducing Kernel Hilbert Space (RKHS). Sugiyama et al. (2007) and Tsuboi

et al. (2009) used KL divergence as distance function to minimize and to determine the

instance weights. Søgaard and Haulrich (2011) and Plank et al. (2014) used the probabilities

produced by a domain classifier that was trained separately as instance weights.

Unlike weighting each instance in instance weighting approaches, instance selection ap-

proaches aim to just pick the instances that will help the algorithm to learn a good target

domain function. Instance weighting and instance selection are related similarly to the re-

lationship between EM and self-training methods we discussed above, where with EM we

assign a soft-label and with self-training we assign a hard label. However, here the instance

selection focuses more on source instances rather than target unlabeled data, especially in

multi-source domain adaptation problems. Most of the instance selection approaches will

first estimate the weights or scores for the instances, and then select the instances based on

some threshold. For example, Ruder et al. (2017b) studied different data selection metrics for

sentiment analysis under a multi-source domain setting, on the domain level (the close do-

mains), on the instance level (the close instances), and on the instance subset level or feature

subset (the close instances based on partial features). Ruder et al. (2017a) proposed a data

selection metric called maximum cluster difference (MCD), which is the absolute difference

in similarity of an instance’s representation with the cluster centroids of the positive and

negative classes. This measure is inspired by the clustering assumption in semi-supervised

learning and motivated by the observation that incorrect predictions are frequent along the

decision boundary. This measure was also used in Guo et al. (2018) for multi-source do-

main adaptation where they proposed a mixture-of-experts approach to explicitly capture

the relationship between a target example and different source domains.

In (Mazloom et al., 2018) and the extended version (Mazloom et al., 2019), we also

proposed to select source instances based on a matrix factorization and k-nearest neighbors

algorithm. The proposed hybrid adaptation approach is used to select a subset of the source

disaster data that is representative of the target disaster. The selected subset is subsequently

used to learn accurate supervised or domain adaptation Naive Bayes classifiers for the target

disaster.
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3.1.2 Feature representation approaches

Feature representation based approaches aim to bring the source domain and target domain

closer through change feature representations. For example, this can be done by projecting

data into a low-dimensional space with singular value decomposition (SVD) or latent Dirich-

let allocation (LDA), or using other representation approaches. Many domain adaptation

approaches with deep learning models often involve representation learning. We will first

review some traditional methods, which are not based on deep learning models. Then, we

will review the concepts of an autoencoder and a domain adversarial network, as well as

discuss some papers based on the idea of domain adversarial networks. Since we study pre-

trained word embeddings and sentence encoding models for crisis tweets representations, we

will discuss some of those works here. Just as with transfer learning, some other researchers

may put domain adaptation approaches with word embedding into other categories, such as

sequential transfer learning, as we discussed previously.

Traditional feature based approaches

Blitzer et al. (2006) introduced structural correspondence learning (SCL) to automatically

induce correspondences among features from different domains for part-of-speech tagging

domain adaptation task. Blitzer et al. (2007) extended SCL such that the selection of pivot

features not only based on common frequencies, but also based on mutual information for

use in sentiment analysis. Given DS and DTU , SCL first chooses pivot features based on

their frequencies in both domains. It then uses linear pivot predictors to predict occurrences

of each pivot in the unlabeled data from both domains to model the correlation between

the pivot features and all other features. Each pivot is finally characterized by its weight

vector. All such weight vectors then form the matrix which can be used to select the top

principal predictors. Then, if such pivot features are chosen appropriately, the principal

predictors can discriminate both domains well. However, in sentiment analysis, frequently

occurring words may vary significantly for different domains. Therefore, they proposed to

use mutual information to choose the pivot features that had high mutual information to
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the source label. They further proposed to use a small amount of target labeled data DTL

to correct the misalignment of the pivot features. Experiments on four kinds of Amazon

product reviews showed that with correcting misalignment, the model could always improve

from the baseline. They also showed that A−distance which was analyzed by Ben-David

et al. (2007) correlated well with adaption loss with respect to the golden in-domain accuracy.

This Amazon multi-domain dataset they published along with this paper has also become a

standard popular dataset for domain adaptation on sentiment analysis.

In (Daumé III, 2007), the author assumes there is some target labeled data DTL available

in addition to source labeled data DS. He proposed a very simple method for representing

the source and target with duplicate features consisting of three versions: the general version,

the source specific version and the target specific version. An instance from domain Di will

be represented by both its original features and the features specific to Di. All others features

from other domains will be zero. As the author argued, in the single source scenario, if we

were to apply this method to a kernelized version and then took the kernel as a measure

of similarity, then data points (instances) from the same domain would be twice as similar

as those from different domains. This would give the target domain twice as much as

predictive influence as source instances. We can easily extend this method to multi-source

domain adaptation. The experiments with the NLP sequence labeling tasks (named-entity

recognition, shallow parsing or part-of-speech tagging) showed that this method outperform

the baseline in most cases. Some of these experiments used multi-source on one target. In

(Jiang, 2008), similarities were drawn between this method and some multi-task learning

methods. Jiang and Zhai (2007a) also proposed a two-stage domain adaptation method

where in the first stage they looked for a set of features generalizable across domains, and

in the second adaptation stage they picked up useful features specific to the target domain.

Pan et al. (2010) proposed a spectral feature alignment (SFA) algorithm with an idea

similar to SCL but aiming to align domain-specific words from different domains into unified

clusters with the help of domain-independent words acting as a bridge. Then, the clusters can

be used to reduce the gap between domain-specific words of the two domains, which can be

used to train sentiment classifiers in the target domain accurately. SFA first selects domain-
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independent words that are frequent in both domains and also not high mutual information

on the source domain. It then constructs a bipartite graph to model the relationship between

domain-specific and domain-independent features, and finally it adapts a spectral clustering

algorithm on the feature bipartite graph to align domain-specific features. Compared to

previous approaches, SFA can discover a robust representation for cross-domain data by

fully exploiting the relationship between the domain-specific and domain-independent words

via simultaneously co-clustering them in a common latent space.

Sun et al. (2015) also proposed a simple CORrelation ALignment (CORAL) to repre-

sent the source domain to better align with the target domain for use on object recognition

and sentiment analysis. They assume only source labeled data DS and unlabeled target

data DTU is available. CORAL aligns the input source distribution by re-coloring whitened

source features with the covariance of the target distribution. They also use the Amazon

product reviews dataset. Despite the simplicity of this method, it can produce results com-

parable to other, more complex algorithms (TCA, GFS and GFK) which we will not review

here. The authors later extended CORAL to deep neural networks such as CNN (Sun and

Saenko, 2016). They proposed to add CORAL loss to the hidden layers of the model in

order to minimize the difference in second-order statistics between source and target feature

activation. The CORAL loss is jointly trained with classification loss of the source labeled

data. We adopted CORAL as a feature based approach and combined it with self-training

on the crisis tweets classifications.

Pre-trained word embeddings

With standard bag-of-word fixed vocabulary representations, the similarities between words

are not considered. Although simple, such representations have their limitations when it

comes to domain adaptation problems. When the source and target domains do not share

too many features, such bag-of-words representations may limit the transfer from source to

target domains. Distributed words representations, i.e., word embeddings, which capture

similarities by representing words in a semantic vector space, can be helpful to address this
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problem. With each word as a vector, similarities between two words can be calculated

through cosine-similarity or other measurements. Then, the similarities between tweets

from source and target domains, which use different words but similar semantic meaning

to humans, can be captured through word similarities. Therefore, in this research, we also

study different ways to utilize word vector representations.

Just like the deep learning concepts, the idea of distributed word representations is not

new, but has become more popular given the more powerful computing resources currently

available. The most popular and successful works on word embeddings are Word2Vec by

Mikolov et al. (2013a,b) and GloVe by Pennington et al. (2014). The models from both

papers are trained on a large corpus, and the trained models of word vectors are publicly

available. GloVe is similar to the Word2Vec model but uses global word counts and co-

occurrences of word pairs.

Given a tweet, there are many ways it can be represented using word embeddings. The

simplest way is to tokenize the tweets and represent the whole tweet as a vector by averaging

the word embeddings per each dimension. We then end up with a vector having the same

dimensions as the word vectors. Alternatively, in addition to averaging the word vector

embeddings, we can also keep the minimum and maximum value of each dimension and

concatenate them. In this case we end up with a vector having three times the dimensions of

the word vectors. We can also use weighted averaging (Arora et al., 2017), which, although

very simple, has been shown to be hard to beat for sentence embedding in sentence similarity

tasks.

Similar to word embedding, there are also sentence encoding models that learn to build

better representations on a sentence level, such as (Cer et al., 2018; Conneau et al., 2017).

The models are trained on a natural language inference dataset, and are trained to capture

the semantics when producing the sentence embedding. We use these models to generate

sentence embedding and then build a supervised classifier or domain adaptation classifier

on top of that. We can also represent a tweet as a matrix using deep learning models like

Convolutional Neural Network (CNN) or Long short-term memory (LSTM).

Existing NLP works that compare different word embeddings aim to evaluate the qual-
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ity of the embeddings across different NLP tasks (Baroni et al., 2014; Nayak et al., 2016;

Schnabel et al., 2015). Evaluation approaches can be grouped into two categories: intrinsic

evaluation and extrinsic evaluation (Schnabel et al., 2015). Intrinsic evaluations measure

the quality of word embeddings by directly computing the correlation between semantically

and geometrically related terms, usually through pre-collected inventories of query terms

(Schnabel et al., 2015). For instance, Word2Vec is evaluated on a word similarity task in

the original paper in which it was introduced. Baroni et al. (2014) and Faruqui and Dyer

(2014) also focus on intrinsic evaluations using a variety of query inventories.

In extrinsic evaluations, word embeddings are used as input features to a downstream

task, and the evaluation of the word embeddings is done according to the performance metrics

specific to that task (Schnabel et al., 2015). For instance, GloVe embeddings are evaluated

on part-of-speech tagging and named-entity recognition tasks (Pennington et al., 2014).

Nayak et al. (2016) also proposed to evaluate word embeddings using a standardized suite

of characteristic downstream tasks, so that the evaluation is more likely to be generalized

to real-world applications of the embeddings. Together, a thorough intrinsic evaluation

and a limited extrinsic evaluation of word vectors (Schnabel et al., 2015) show that the

performance on two downstream tasks (noun phrase chunking and sentiment classification)

is not consistent, and may not be consistent with intrinsic evaluations either. The authors

suggest that training specific embeddings to optimize a specific objective is generally better

for downstream tasks. This is one reason we compare pre-trained embeddings with crisis-

specific embeddings on crisis tweet classification. Schnabel et al. (2015) showed, in the

context of sentiment classification of movie reviews, that CBOW (a Word2Vec model) was

better than GloVe and some other distributed word representations. In their study, the

word embeddings for sentiment classification are used to generate embedding-only features

for each movie review by computing a linear combination of word embeddings weighted by

the number of times that word appeared in the review.

Other prior studies that used word embeddings on tweet classification tasks also gener-

ated the vector representations of tweets by averaging the word embedding vectors along

each dimension for all the words in a tweet (Boom et al., 2016; Wang et al., 2015; Yang
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et al., 2016). The average representation was usually compared with the weighted average

word embedding representation, and/or with approaches that use the word embeddings in

deep learning models such as Convolutional Neural Networks (CNN). For example, Boom

et al. (2016) focused on learning short text representations by averaging each dimension of

the word embeddings. They also experimented with averaged embeddings concatenated with

minimum and/or maximum aggregated embeddings, and propose a weight-based approach

that performs better on their semantically related and non-related pairs of words from Twit-

ter data. Yang et al. (2016) studied the effect of the configuration used to train and generate

word embeddings on a Twitter election classification task, where average word embedding

representations of tweets, used with the SVM classifier, were compared with CNN models.

The results suggested that the CNN models outperformed the SVM models.

While many previous studies have focused on text representations through the means of

word embeddings or sentence encoders, the research on the usability of word/sentence embed-

dings for crisis tweet representation and classification is limited. Nguyen et al. (2016) used

Word2Vec embeddings to initialize CNN models trained to classify crisis tweets. They also

used crisis-specific Word2Vec embeddings trained on a corpus with approximately 60,000

tweets, and showed that the crisis-specific embeddings were slightly better than the pre-

trained embeddings. We also compared pre-trained and crisis-specific embeddings, and ex-

perimented with comparing a larger variety of word embeddings used subsequently with

supervised classifiers. Furthermore, our training corpora (about 5.8 million tweets) for crisis-

specific embeddings is much larger than the one used by Nguyen et al. (2016).

Autoencoders

An autoencoder tries to encode the input through an encoder function and subsequently

reconstructs the input through a decoder. It is trained to minimize the reconstruction error,

so it is essentially an unsupervised method. If the features of the input are correlated,

then the hidden layer maybe able to discover the correlation and often gives a reduced

representation of the original input. Thus, domain adaptation from source to target can be
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achieved by changing the representations through the encoder trained on source data and

target unlabeled data. One alternative to standard autoencoder is Denoising Auto-encoder

(Vincent et al., 2008) or DAE, in which the input vector is stochastically corrupted and the

model is trained to minimize a denoising reconstruction error. The benefit of DAE comes

from learning a more robust feature representation. An autoencoder or DAE can be stacked,

with the second encoder taking the output of the first encoder as input etc., to form a stacked

autoencoder.

Glorot et al. (2011) first proposed Stacked Denoising Auto-encoders (SDA) for domain

adaptation problems on sentiment analysis. They used SDA to get the latent representa-

tions of both the source and target domains, then with those representations a supervised

SVM was trained for classification. To address the limitations of the high computational

cost and lack of scalability to high-dimensional features of SDA, Chen et al. (2012) proposed

marginalized Stacked Denoising Auto-encoders (mSDA) which do not require stochastic gra-

dient descent or other optimization algorithms to learn parameters but still achieve almost

identical performance. There are also other autoencoders, such as those proposed in (Zhou

et al., 2016; Zhuang et al., 2015). Instead of putting the source and target domain instances

together to the autoencoder, Zhou et al. (2016) proposed a Bi-Transferring Deep Neural

Networks (BTDNNs), which essentially trains an autoencoder that has one encoder but two

decoders to transfer the source domain examples to the target domain, and also to transfer

the target domain examples to the source domain.

Ziser and Reichart (2017) proposed a model that combines SCL and autoencoders (AE-

SCL), which is a three-layer neural network that learns to encode the non-pivot features of an

input example into a low-dimensional representation, so that the existence of pivot features

in the example can be decoded from that representation. The low-dimensional representation

is then employed in a learning algorithm for the task. They later also proposed the Pivot

Based Language Model (PBLM) in (Ziser and Reichart, 2018). This model is: 1) aware

of the structure of its input text and 2) outputs a representation vector for every input

word, so that the classification later can be performed with deep learning models like CNN

or LSTM. PBLM is a sequential neural network (LSTM) that operates very similarly to
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LSTM language models (LSTM-LMs). The main difference is that while for every input

word LSTM-LMs outputs a hidden vector and a prediction of the next word, the output of

PBLM is a hidden vector and a prediction of the next word if that word is a pivot feature,

otherwise the output is given a generic NONE tag.

Domain adversarial neural networks

Another line of research on domain adaptation follows the popularity of Generative Adver-

sarial Nets (GANs) (Goodfellow et al., 2014), which are called domain adversarial neural

networks (DANN) (Ajakan et al., 2014; Ganin and Lempitsky, 2015; Ganin et al., 2016).

Different from autoencoder based methods, which learn the feature representations and then

any supervised classifier can be applied on top of those feature representations, domain ad-

versarial learning combines classification and feature learning within one training process

and therefore can be used with any existing feed-forward architecture that is trainable by

backpropagation. The framework focuses on learning features that are discriminative but

at the same time domain-invariant. This is achieved with two classifiers on these features:

1) a label classifier that predicts labels; 2) a domain classifier that discriminates between

the source and target domains during training. The parameters are optimized to minimize

the loss of the label classifier while maximize the loss of the domain classifier, so that the

feature representations learned for source and target domain are hard to distinguish. A new

gradient reversal layer is added to a domain classifier so that these two classifiers can be

trained together with standard backpropagation.

The neural network in DANN is simply a one layer neural network, so there are many

later studies that use other more complex neural network architectures with the domain

adversarial idea. For example, Li et al. (2017b) proposes an adversarial cross domain model

for sentiment classification with memory network. Additionally, Du et al. (2020) uses a pre-

trained language model BERT that we will later discuss. It should be noted that the domain

adversarial training idea has already been extend to multi-source domain adaptation (Zhao

et al., 2017).
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3.1.3 Pre-trained language models and fine-tuning based approaches

The default task for language models is to predict the next word given the past sequence.

This idea, framing a supervised learning task in a special form to predict only a subset of

information using the rest subset, is sometimes referred to as self-supervised learning. We

can change the default task to be predicting any “missing” part of the input or we can bring

in more tasks like predicting the next sentence.

The idea of fine-tuning pre-trained models can be considered to have originated with

computer vision. In computer vision models, for example a CNN for image classification,

the intuition of the filters is that it may be able to detect artifacts such as an edge at the

first layer and then some simple shape in upper layers. After this model is trained, the

filters have learned to detect different levels of an object in the image. Therefore, many

models in computer vision are not trained from scratch but from a pre-trained model such

as a model trained on ImageNet and then fine tuned to the current task. This kind of

approach has also been used in domain adaptation or transfer learning in computer vision.

With computational power readily available, language models trained with very large corpora

and the deeper models introduced recently, there have been a significant impact on transfer

learning in NLP. Similar to pre-trained image classification models, language models can

capture different levels of feature representations. For instance, a word embedding layer

captures word similarity, then subsequent lower layers may capture local syntax, while upper

layers may capture semantics. Similar to pre-trained word embedding for domain adaptation,

intermediate representations in pre-trained language models will ideally capture the similar

semantic and/or structural meanings between source domain and target domain, allowing

us to then fine tune the model to get a target domain classifier.

Dai and Le (2015) were the first to propose the use of unlabeled data to train a language

model as a pre-training step to help the supervised text classification task. Their work is in

a semi-supervised setting. Peters et al. (2018) proposed to use a language model objective

to get deep contextualized word embedding which they named the ELMo (Embeddings from

Language Models) representation. They are also the first to show that a pre-trained language
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model is useful for several different NLP tasks. They use a character level CNN followed

by a language model based on Bi-LSTM. Howard and Ruder (2018) proposed Universal

Language Model Fine-tuning (ULMFiT), which pre-trained a language model on a large

general-domain corpus and then fine-tuned it on the target task to retain previous knowledge.

To avoid catastrophic forgetting during fine-tuning, they proposed discriminative fine-tuning,

slanted triangular learning rates and gradual unfreezing. Radford et al. (2018) proposed a

deeper model with larger training data and demonstrated large gains on several NLP tasks

with generative pre-training of a language model and fine-tuning. This model is usually

referred to as GPT for generative pre-training. They later also scaled the model up to GPT-

2 as a deeper model (1.5 billion parameters, 10 times of GPT) with more than 10 times

the amount of data. The even more powerful model GPT-3 is trained to improve few-shot

performance without a fine-tuning process. Sometimes, the results are competitive with

fine-tuning approaches.

Devlin et al. (2018) proposed a new language model called Bidirectional Encoder Rep-

resentations from Transformers (BERT). Unlike the previous language models whose main

tasks are to predict the next word, which just go in one direction, BERT alleviates this

unidirectionality constraint by introducing a masked language model (MLM) pre-training

objective. The masked language model randomly masks some of the tokens from the input,

and the objective is to predict the original vocabulary id of the masked word based only on its

context. The MLM objective enables the representation to use the left and the right context,

so as to pre-train a deep bidirectional model. In addition, they also jointly train another

task, next sentence prediction. Both GPT and BERT are based on a network architecture,

Transformer, that is based on solely on the attention mechanisms (Vaswani et al., 2017).

There are other variants also based on the previous language models, including RoBERTa,

XLNet and ALBERT. Those models try to improve the previous language models either

with a more efficient training process or reducing the parameters of the model.

Since its initial proposal, BERT has been used in many different tasks and settings

including domain adaptation. Nguyen et al. (2020) introduced BERTweet, a large-scale pre-

trained language model for English Tweets that was trained with the same architecture as
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BERT but with the training procedure from RoBERTa. In domain adaptation of sentiment

analysis, Du et al. (2020) investigated how to efficiently apply the pre-training language

model BERT on the single source unsupervised domain adaptation for sentiment analysis of

the Amazon multi-domain data. They first take a pre-trained BERT model and further train

it with two tasks: 1) domain-distinguish task, where instead of predicting the next sentence

in original BERT model, they predict whether two sentences are from the same domain or

from different domains; 2) target domain MLM, where they further train the model with

MLM on a target domain to inject target domain knowledge. With the post-trained BERT

model, they further proposed to use adversarial training. And this combination of post-

training and adversarial training is shown to be better with just fine-tuning or adversarial

training with vanilla (default pre-trained) BERT model.

3.1.4 Multi-source domain adaptation approaches

Similar to the case of single source domain adaptation, multi-source domain adaptation al-

gorithms can also be categorized into different groups, e.g. feature representation or instance

based approaches. We have introduced some relevant papers in previous sections. The differ-

ence is that we have several sources, each with different distribution from the target domain.

How to combine these sources to get a better model represents the main challenge. We can

simply combine all sources as one, we can weight the sources, or weight the hypothesis built

from each source and then form a target hypothesis. Multi-source may also apply instance

selection or weighting like in single source domain adaptation, some of which we have briefly

mentioned in the previous discussion, for example (Guo et al., 2018; Ruder et al., 2017a,b).

We will briefly review some other works here.

Mansour et al. (2008) provided a theoretical analysis of the linear combinations of hy-

potheses (or classifiers) from the sources, and proved that the standard convex combinations

of the source hypotheses may perform poorly. Instead, combinations by the sources distribu-

tions benefited from favorable theoretical guarantees. Blitzer et al. (2008) provided learning

bounds for algorithms that minimized a convex combination of source and target empirical
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risk through theory. These bounds explicitly model the inherent trade-off between training

on a large but inaccurate source data set and a small but accurate target training set. The

theory in this paper is cited by many other papers and be extended to multi-source domain

adaptation setting in (Zhao et al., 2017). Based on the theory, Zhao et al. (2017) proposed

Multi-source Domain Adversarial Network (MDAN) that has same general architecture as

domain adversarial neural network but consider each source and target pair during training.

Duan et al. (2009) developed a multi-source domain adaptation method called Domain

Adaptation Machine (DAM) to learn a target classifier by leveraging a set of pre-computed

classifiers. The idea is that based on the smooth assumption, the target classifier should have

similar decision values with the auxiliary classifier of the source domains on the unlabeled

target data. They use a parameter γi as the weight for measuring the relevance between

the ith source domain and the target domain, which is set based on Maximum Mean Dis-

crepancy (MMD) as distances of (DS, DT ). Then they define a data-dependent regularizer,

and minimize it together with the structural risk functional of Regularized Least-Squares

(RLS), Least-Squares SVM (LS-SVM). In other words, they combine source SVM classifiers

by weighting each source using a distance measured by MMD.

Zhang et al. (2015) studied multi-source domain adaptation from a casual view. They

use causal models to represent the relationship between X and Y . For example, in clinic di-

agnosis, disease Y usually will cause a symptom X. Therefore, casual background knowledge

of X and Y can help us choose the corresponding algorithms. Even without such knowledge,

available multi-source domain distributions may allow us to find a causal structure of the

target. So, from the causal point of view, they consider four possible situations: 1) if X → Y ,

P (X) changes with the domain but P (Y |X) stays the same; 2) if X → Y , P (X) may stay

the same or change and P (Y |X) changes with the domain; 3) if Y → X, P (Y ) changes with

domain but P (X|Y ) stays the same; 4) if Y → X, P (Y ) may stay the same or change, but

P (X|Y ) changes with domain. They further focused on the last situation where both P (Y )

and P (X|Y ) changes with domain. If we assume PT (XT |YT ) is linear mixture of PSi(XS|YS),

then we could reconstruct P new
T (X) from PSi(XS|YS) with some parameters to approximate

PT (XT ) according to Bayes rule. Thus, we can estimate the parameters by minimizing the
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maximum mean discrepancy (MMD) between P new
T (X) and PT (XT ). Then, given the pa-

rameters estimated above, we can use different weighting methods to construct the target

domain classifier. We can accomplish this by reweighting the source instances or by general

model, or by a weighted combination of source classifiers. They also considered the case of

a weighted distribution of hypotheses in (Mansour et al., 2008). The experiments on the

Amazon product reviews showed that weighting samples and combination of classifiers give

better accuracy when compared with other methods such as pool-SVM.

Due to the ability of feature representation methods to transfer to novel adaption prob-

lems (Hoffman et al., 2012), some feature representation methods used in single domain

adaptation cases can be easily extended to multi-source domain adaptation. Such a case is

presented by (Daumé III, 2007). In object detection, Hoffman et al. (2012) also extended

their previous work on single transform domain adaptation which maps both source and

target data into kernel space to multi transform domain adaptation. In this method, they

first consider a similarity function between source and target parameters by a matrix W

i.e. simW (Xs, Xt) = φs(Xs)Wφt(Xt) where φ is the matrix of data mapped to kernel space

for source and target, respectively. Then W can be learned with a regularized optimization

problem with a loss function depending on the similarity function, and finally a classifier

such as SVM can be used to predict the test data. For the multi-source case, they first

use the single feature transformation Wi for each source. The label of a new test instance

then amounts to a weighted sum of the probability of a class, given the test instance is from

a particular domain where the weights are the probabilities that the test instance belongs

to each domain. So, for this method to work, all of the source domains should be known.

However, there are cases where we will have training data whose domains are unknown.

Therefore, they also propose a novel constrained clustering method that can discover latent

domains.
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3.2 Social media crisis data research

Work that has studied the value of social media in emergencies, known under the name of

Information and Communications Technologies (ICT) in the early days, can be dated back

to the 9/11 terrorist attacks in 2001 (Reuter and Kaufhold, 2018; Reuter et al., 2018). Since

then, many practices have proved the value of social media and of the data extracted from

it during emergencies. Research surrounding social media crisis analysis spans over multiple

disciplines, from management science such as emergency management to information systems

and computer science field. There is a significant amount of research on this topic with

different focuses and viewpoints, including a management or information systems point of

view. We will only review the research that is focused on machine learning methods with

social media crisis data, specifically tweets in this thesis.

To optimize current organizational mechanisms in terms of speed, efficiency and knowl-

edge, supervised machine learning algorithms have been used to help crisis responders sift

through the large amounts of crisis data, and prioritize information that may be useful for

response and relief (Ashktorab et al., 2014; Beigi et al., 2016; Caragea et al., 2014; Gao et al.,

2011; Imran et al., 2015; Kumar et al., 2014; Terpstra et al., 2012; Yin et al., 2012). In the

context of disaster response and rescue, there are several studies that have applied machine

learning and natural language processing (NLP) methods for disaster management (Kumar

et al., 2014; Purohit et al., 2014; Sakaki et al., 2010; Terpstra et al., 2012). In particular, sev-

eral works have studied supervised learning algorithms in regard to transferring information

from a prior source disaster to a current target disaster (Imran et al., 2013a, 2016; Verma

et al., 2011). Other than works from our group, there are also works on domain adaptation

approaches on crisis tweets from several other research groups. We will review them here.

Verma et al. (2011) used natural language processing techniques together with machine

learning algorithms, Naive Bayes and Maximum Entropy, to identify situational awareness

tweets during crisis events. They use data from four crisis events: the Red River Floods in

2009 and in 2010, the Haiti Earthquake in 2010 and the Oklahoma Grass Fire in 2009. They

first build two supervised classifiers with Naive Bayes and Maximum Entropy to classify
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situational awareness tweets from each of the four crisis events, respectively. Subsequently,

they also study how well the classifiers performed across the four events. They find that the

classifiers generalized well across the Red River Flood 2009 and Red River Flood 2010 events,

but not for the other two events. For example, the performance (measured as accuracy)

is poor when using the classifier learned from the Haiti Earthquake data to classify the

Oklahoma Grass Fire data and vice versa, because these two types of events differ from each

other in many aspects.

Imran et al. (2013a) performed similar experiments with two disasters, namely the Joplin

Tornado (as source) and Hurricane Sandy (as target), to identify information nuggets using

conditional random fields (CRF). After classifying different types of informative (casualties,

donations, etc.) tweets with Naive Bayes classifiers, they use a sequence labeling algorithm,

conditional random fields (CRF), to extract useful information, such as the number of casual-

ties or the name of the infrastructure. They learn supervised classifiers either from source, or

from source and 10% of labeled target data. They test these classifiers on all target data and

the remaining 90% of target data, respectively, and compare the domain adaptation results

with the results of the supervised classifiers learned from 66% of labeled target data, which

is then tested on 33% of the target data. Their experiments show that only using source

data results in a significant drop in the detection rate, while not significantly affecting the

recall.

Imran et al. (2016) studied the usefulness of previous disaster tweets, and also the use-

fulness of incorporating data in different languages. They experiment with several pairs of

disasters, earthquakes and floods, from different countries. They learn a Random Forest

classifier from a source disaster to classify a target disaster. Their results also show that

data from prior disasters of the same type as the current disaster can be very useful even

across different languages.

While these works represent great steps towards using domain adaptation for disaster and

crisis situations, the performances of the supervised classifiers used across different types of

disasters or events are still poor, especially for domain specific tasks (e.g., identifying tweets

relevant to a certain disaster). Therefore, deep learning models, and also domain adaptation
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techniques that have been successfully used in text classification, have been proposed or

adopted to disaster and crisis tweet classifications.

Caragea et al. (2016) explored the use of Convolutional Neural Networks (CNN) to classify

informative tweets from six flood events. Their idea to identify overall well-fitting parameters

for their models is similar to the idea presented in our paper. To implement this idea, they

use three flood disaster datasets with labeled instances, tune parameters on one dataset

and then test them on the other two test datasets to see how well the tuned parameters

generalize.

Nguyen et al. (2016) used Convolutional Neural Networks (CNN) to classify crisis related

tweets. They assume that some target labeled data is available and use two simple supervised

domain adaptation techniques to combine prior source disaster data with current disaster

labeled data during training. One technique is weighting the prior source disaster data,

while regularizing the modified model. The other technique is simply selecting a subset of

the prior source disaster tweets, specifically those that are correctly labeled by a target-

based classifier. It is experimentally shown that CNNs with the simple instance selection

domain adaptation technique gave better results. One drawback of these approaches is the

requirement that some target labeled data is available.

Zhang and Vucetic (2016) proposed an approach that can be seen as a supervised domain

adaptation which requires target labeled data. They also use the same dataset that is studied

in this thesis. Their proposed approach first clusters words from unlabeled tweets, and then

trains a logistic regression classifier on labeled disaster tweets represented with the word

clusters as features. They vary the number of current disaster labeled instances and find

that the performance is generally better with more labeled data. This result is similar to

our result which suggests that the more source labeled data, the better the performance.

However, we discover that for our domain adaptation approach, more source labeled data

can help only up to the point where the performance stabilizes. They also vary the number

of unlabeled instances from the current disaster and/or other source disasters, and even

pre-trained a vocabulary based on word clustering. They find that more unlabeled data

gives better results in general, with some exceptions. In our experiments, the performance
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stabilized around 3000 target unlabeled instances for the disaster relevant vs. irrelevant task.

Alam et al. (2018a) proposed a domain adaptation approach that combines domain adver-

sarial training and graph embeddings with a classification network. The adversarial training

is used to reduce the distribution shift, while the graph embeddings are used to induce

structural similarity between source and target data. Yao and Wang (2020) proposed to

apply a domain-adversarial neural network on a sentiment analysis of tweets posted dur-

ing hurricanes. Their method first retrieves hurricane-relevant tweets with a supervised

trained Random Forest classifier, then classifies the sentiment of the retrieved tweets with

the domain-adversarial neural network.

Chowdhury et al. (2019) proposed to extract disaster-related keyphrases for filtering

relevant tweets to enhance situational awareness. They propose to improve the previous

keyphrase extraction model by incorporating contextual word embeddings, POS-tags, pho-

netics, and phonological features. Chowdhury et al. (2020) constructed a unique dataset of

disaster-related tweets annotated with hashtags that can be used to filter actionable tweets.

They build LSTM models within a Multi-Task Learning framework for predicting the hash-

tags using this dataset. Desai et al. (2020) built an emotion dataset of 15,000 English tweets

spanning three hurricanes: Harvey, Irma, and Maria. They present a comprehensive study

of fine-grained emotions and propose classification tasks to discriminate between coarse-

grained emotion groups. They use unlabeled Twitter data to further train the BERT model

and achieve the best results overall when comparing to other models such as CNNs.

Khare (2020) investigated similar problems to this thesis from a semantics perspective.

While this thesis also includes approaches for classifying information for different types of

crisis, and also for different language, their approaches are based on semantic enrichment of

data through entity linking and expansion of context via knowledge bases such as DBpedia

and Wikipedia.

Ma (2019) applied BERT on crisis tweets classification for multi-class task. The report

proposed customized BERT with neural network and CNN as well as LSTM as the last

layer for classification with representations from BERT. The experiments are run on several

datasets combined together ignoring the disaster differences. Some of those datasets are also
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used in this thesis, and we use similar models in the multi-source setting and compare with

MDAN from (Zhao et al., 2017). Fan et al. (2020) proposed a pipeline aiming to unfold how

a disaster affects different areas using social media data. The authors use Hurricane Harvey

as an example and showed that this pipeline can be used for automated mapping of an event

across time and affected areas, and thus can be a useful tool to help different stakeholders

during a disaster. A fine-tuned BERT model is used to classify posts to humanitarian

categories (e.g., damages, rescue etc.) in the pipeline’s learning module. Named Entity

Recognition (NER) is also used for detecting locations, and graph-based clustering is also

used to identify credible situational information in the learning module. The final outputs

of the pipeline are timelines of credible tweets of different situational categories for each

affected area and how social media attentions changed according to time at different areas

showed in maps.

As works from our groups, in (Mazloom et al., 2018) and (Mazloom et al., 2019), we

proposed a hybrid feature-instance adaptation approach based on matrix factorization and

the k-nearest neighbors algorithm. The proposed hybrid adaptation approach first applies

matrix factorization to reduce the dimensionality of the data, and then uses a k-nearest

neighbors algorithm to select a subset of the source disaster data that is representative for

the target disaster. The selected subset is subsequently used to learn accurate Naive Bayes

classifiers for the target disaster. Experimental results show that the approach can signifi-

cantly improve the performance as compared with a baseline Naive Bayes classifier. Other

group members also applied domain adaptation on image classifications as well as tweet

classification. Li et al. (2019) proposed domain adaptation approaches for identifying dis-

aster damages in images, and Li and Caragea (2020b) proposed domain adaptation with

reconstruction for disaster tweet classification. The reconstruction process contains an au-

toencoder that reconstructs the target data, while the source shares the encoder and whose

reduced representation is used to learn a source classifier.
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Chapter 4

Overview of datasets used

In this thesis, we mainly use three publicly available labeled datasets for training and evalu-

ating models. For the task of filtering crisis related tweets, we use a dataset of tweets called

CrisisLexT6 (Olteanu et al., 2014) and another dataset about incidents like fires or gunshots

from (Schulz et al., 2017), denoted by 2CTweets. For the task of filtering informative tweets,

we use the dataset called CrisisLexT26 (Olteanu et al., 2015). CrisisLexT6 and CrisisLexT26

are available from the CrisisLex project website1. We obtained the 2CTweets dataset directly

from the authors. We will present a brief description of these datasets here, and give further

statistics after data cleaning in the Chapters 5, 6 when the datasets are used for evaluation.

Besides these datasets, we also collected tweets through the Twitter Streaming API dur-

ing the 2017 Hurricane season, specifically tweets about Hurricane Harvey, Hurricane Irma,

Hurricane Maria, and also Mexico Earthquake. The total corpus contains approximately 5.8

million tweets. Most of these tweets are crisis related, but there is also some inherent noise

due to the fact that the streaming is keyword-based. This corpus is used as unlabeled data

when training crisis specific word embeddings. Finally for future work, there are also mul-

tiple datasets from the CrisisNLP project website, for example CrisisMMD dataset (Alam

et al., 2018b) 2, where tweets are labeled with situational awareness category labels such as

infrastructure damage, volunteer and donation, etc.

1http://crisislex.org/data-collections.html
2https://crisisnlp.qcri.org/

59



4.1 Relevant vs. irrelevant task

4.1.1 CrisisLexT6

The tweets in this dataset are collected through Twitter API based on keywords and geo-

locations of affected areas, and manually labeled as on-topic (i.e., relevant) or off-topic (i.e.,

irrelevant) to a disaster using the crowdsourcing platform CrowdFlower (currently, renamed

FigureEight). As we have discussed in the introduction, for a new disaster, the task of

identifying tweets relevant to that disaster (on-topic), among all the tweets posted during

the disaster, is the first task that needs to be addressed. Furthermore, this task is particularly

suitable for domain adaptation, which uses prior source labeled data together with target

unlabeled data, and can thus capture specific patterns in the target data itself.

The CrisisLexT6 dataset contains six disasters occurring between October 2012 and July

2013 in USA, Canada and Australia. There are approximately 10,000 labeled tweets for each

disaster. The statistics for the dataset are shown in Table 4.1, organized based on the time

when each disaster happened.

Table 4.1: Statistics about the dataset CrisisLexT6

Before Cleaning
Crisis On-topic Off-topic Total
2012 Sandy Hurricane 6138 3870 10008
2013 Queensland Floods 5414 4619 10033
2013 Boston Bombings 5648 4364 10012
2013 West Texas Explosion 5246 4760 10006
2013 Oklahoma Tornado 4827 5165 9992
2013 Alberta Floods 5189 4842 10031

4.1.2 2CTweets

2CTweets, is a collection of tweets about incidents, such as car crash, fire or shooting, which

happened in 10 different cities, as shown in Table 4.2. Tweets are labeled as incident related

(Yes) or not (No). Given that incidents in different cities most likely involve local named
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entities, such as local street names, adaptation is needed to enable generalization of classifiers

between different cities (Schulz et al., 2017). The statistics for the dataset are shown in Table

4.2, organized roughly based on the time when tweets of each city were posted3.

Table 4.2: Statistics about the dataset 2CTweets

Before Cleaning

2CTweets Yes No Total
Memphis 361 721 1082
Seattle 800 1404 2204
NYC 413 1446 1859
Chicago 214 1270 1484
San Francisco 304 1176 1480
Boston 604 2216 2820
Brisbane 689 1898 2587
Dublin 199 2616 2815
London 552 2444 2996
Sydney 852 1991 2843

4.2 Informative vs. non-informative task

4.2.1 CrisisLexT26

CrisisLexT26, is a collection of tweets posted during twenty six crisis events that happened

in 2012 or 2013, with most events having between 2,000 and 4,000 tweets. These tweets are

also collected using filtering keywords, and labeled by CrowdFlower workers according to

informativeness (i.e., informative or non-informative), information types (e.g., caution and

advice, infrastructure damage), and information sources (e.g., Governments, NGOs). As we

are focusing on English language in this thesis, we only selected seven events that mainly

have English tweets, as shown in Table 4.3. For this dataset, we focus on task of classifying

tweets as informative or non-informative. The statistics for the dataset are shown in Table

4.3, organized based on the time when each disaster happened.

3As some tweets of several cities are collected at the same time
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Table 4.3: Statistics about the dataset CrisisLexT26

Before Cleaning
CrisisLexT26 Informative Non-Informative. Total
2012 Colorado wildfires 685 268 953
2013 Queensland floods 728 191 919
2013 Boston bombings 417 512 929
2013 West Texas explosion 472 439 911
2013 Alberta floods 685 298 983
2013 Colorado floods 768 157 925
2013 NY train crash 904 95 999
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Chapter 5

Self-labeling and correlation

alignment approaches with Naive

Bayes

In this chapter, we propose two domain adaptation approaches based on the supervised

Naive Bayes classifier. The first proposed approach is a weighted Naive Bayes Classifier with

either self-training strategy or Expectation-Maximization (EM) strategy for handling target

unlabeled data. We compare the EM approach with self-training and find self-training gives

better results. Following that, we perform an extensive study to select hyper-parameters

for the weighted Naive Bayes classifier with self-training approach. The goal is to provide

guidance on practical usage of this approach. The second proposed approach combines a

feature-based domain adaptation approach called Correlation Alignment (CORAL) with the

first approach. We compare the results between the two approaches, i.e., weighted Naive

Bayes with self-training strategy and the Correlation Alignment extension. Both approaches

have better performance than the corresponding base classifiers and are computationally

efficient. In the following sections, we will first introduce the dataset used here, the cleaning

steps and the setup of pairs of source and target domains in Section 5.2.2. Then we will

present the first approach in detail, and discuss the experimental setup and results, followed
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by the extensive experiments for parameter tuning in Section 5.2. Finally, we present the

second approach, a hybrid model, and discuss the results in Section 5.3.

5.1 Naive Bayes

We have briefly introduced Naive Bayes classifiers in Chapter 2. We now present the details

of the Naive Bayes classifiers used in this chapter. Our domain adaptation approaches in

this chapter use the multivariate Bernoulli Naive Bayes (Manning et al., 2008) and Gaussian

Naive Bayes model. Let’s first look at Bernoulli Naive Bayes model. Given a collection

of documents D as training set, each document di ∈ D, (i = 1, . . . , N), represents a data

instance, and has a class label ck ∈ C associated with it. The set of words wt in the collection

D corresponds to the set of features used to represent documents, a.k.a., vocabulary V . Using

the features in V , each document di is represented as a |V | dimensional vector of 0 s and

1 s, based on the occurrence of word wt ∈ V in document di. Using the Bayes rule and the

assumption that features are independent given the class, the class label for a new document

d can be obtained as:

c∗ = argmax
ck

P (ck|d) = argmax
ck

P (d|ck)P (ck)

P (d)
= argmax

ck

P (ck)

|V |∏
t=1

P (wt|ck) (5.1)

Therefore, to be able to predict the class label for new documents d, we need to estimate

the prior class probabilities P (ck) for all ck ∈ C, and the likelihoods P (wt|ck) for all wt ∈ V

and ck ∈ C. Estimation of the class priors and likelihoods can be done based on a training

data. Specifically, we estimate the class priors and likelihoods from the training data, using

the add-1 smoothing strategy (to avoid zero probabilities), as follows:

P (ck) =
N(ck) + 1

N + 1
(5.2)

P (wt = 0|ck) =
N(wt = 0, ck) + 1

N(ck) + 2
(5.3)
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P (wt = 1|ck) =
N(wt = 1, ck) + 1

N(ck) + 2
(5.4)

where N is the total number of documents in the collection D, N(ck) is the number of

documents in class ck, N(wt = 0, ck) is the number of documents in class ck that don’t

contain the word wt, and N(wt = 1, ck) is the number of documents in class ck that contain

the word wt.

For Gaussian Naive Bayes, the estimation of priors is the same as in Equation 5.2. For

likelihood estimation, the likelihood is assumed to be Gaussian, and is estimated with:

P (wt|ck) =
1√

2πδ2tk
exp−

(
(wt − µtk)2

2δ2tk

)
(5.5)

where µtk is the mean of feature t of class ck, δ2tk is corresponding variance.

5.2 Self-training/EM with Naive Bayes classifier

5.2.1 Self-training/EM with Naive Bayes

Here we present the Bernoulli Naive Bayes classifier with self-training, as well as with the

iterative Expectation-Maximization (EM) approaches. We may implicitly refer to these two

approach as Self-Training (ST) approach and EM approach in this chapter. In the EM

approach, a classifier is learned at each iteration, and used to label the target unlabeled

data. Subsequently, the target data, with probabilistic soft-labels assigned by the current

classifier (e.g., p(+|d) = 0 .7 and p(−|d) = 0 .3 for an instance d), are combined with the

labeled source data and used to train the classifier at the next iteration. The original classifier

is trained from source data only. The process continues for a fixed number of iterations, or

until convergence.

Similar to the EM approach, Self-Training approach is also an iterative approach that

uses a weighted Naive Bayes classifier to combine source and target data. Same as the

EM approach, it starts by learning a supervised classifier from source data only, and uses
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that classifier to label the target unlabeled data. However, instead of adding all the target

data with probabilistic soft-labels to the training set for the next iteration as in EM, in

self-training, only the most confidently classified data are added to the training set, with

hard (e.g., +/− or 1/0 ) labels. More precisely, only the most confidently labeled instances

(e.g., the top k instances in each class based on the posterior class distribution, respectively)

are added to the training set at subsequent iterations. And a new classifier is learned from

the added target instances together with the original source instances. Given that we use

the most confidently labeled target instances, which presumably have high posterior class

distributions, we incorporate these instances with hard-labels, as opposed to probabilistic

soft-labels, to help keep a cleaner decision boundary between the two classes.

The details of the algorithm with Self-Training approach are shown in Algorithm 1. With

EM strategy, we just need to change Step 2 and the M-step and E-step. In step 2, for EM,

we use all unlabeled target examples with soft labels instead of top-k examples with hard

labels. And then we calculate weighted priors and likelihood and posteriors with soft labels.

We denote the training source labeled data by tSL and the training target unlabeled data

by tTU.

5.2.2 Data preprocessing and setup

We evaluate the proposed methods on CrisisLexT6 (Olteanu et al., 2014) for relevant vs.

irrelevant task. We use the bag-of-words 0/1 representation to represent a tweet as a vector

of features. We clean the tweets as follows:

1. We remove non-printable, ASCII characters, as they are generally regarded as noise

rather than useful information.

2. We convert printable HTML entities into their corresponding ASCII equivalents.

3. We replace URLs, email addresses, and usernames with a URL/email/username place-

holder for each type of entity, respectively.

4. We keep numbers, punctuation signs and hashtags, under the assumption that numbers
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Algorithm 1: Pseudocode for Naive Bayes Classifier with Self-Training strategy

1. Simultaneously estimate the priors and likelihoods (a.k.a., train a Naive Bayes
classifier) for the source domain:

P (ck) = PtSL(ck)

P (wt|ck) = PtSL(wt|ck)

2. Use the classifier learned from source to assign labels to the unlabeled instances from
the target domain, and select the most confidently labeled instances (based on the
prior class distribution, e.g., top 5 instances in each class, for a balanced dataset) as
hard-labeled instances for self-training.

3. Loop until the labels assigned to the remaining unlabeled target instances don’t
change:

(a) M-step: Same as Step 1, but use also the target instances labeled so far:

P (ck) = (1− γ) · PtSL(ck) + γ · PtTU(ck)

P (wt|ck) = (1− γ) · PtSL(wt|ck) + γ · PtTU(wt|ck)

where γ = min(τδ, 1 ), τ is the iteration number, and δ is a parameter that
determines how fast we shift the weight from the source labeled data used for
training (tSL) to the (originally unlabeled) target data used for training (tTU ).

(b) E-step: Calculate the posterior class distribution for the remaining set of
unlabeled instances from the target domain.

4. Use the final classifier to label test target unlabeled instances d = (w1 , . . .w|V |):

c∗ = argmax
ck

P (ck)

|V |∏
t=1

P (wt|ck)

where V is the set of features/words used to represent instances.

could be indicative of an address, while punctuation/emoticons and hashtags could be

indicative of emotions.

5. We remove RT (i.e., retweet), under the assumptions that such features are not infor-

mative for our classification tasks.

6. Finally, duplicate tweets and empty tweets (that have no characters left after the
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cleaning) are removed from the data sets.

The statistics for the final dataset are shown in Table 5.1, organized based on the time when

each disaster happened.

Table 5.1: Statistics for CrisisLexT6 before cleaning and after cleaning

Before Cleaning After Cleaning
Crisis On-topic Off-topic Total On-topic Off-topic Total
2012 Sandy Hurricane 6138 3870 10008 5261 3752 9013
2013 Queensland Floods 5414 4619 10033 3236 4550 7786
2013 Boston Bombings 5648 4364 10012 4441 4309 8750
2013 West Texas Explosion 5246 4760 10006 4123 4733 8856
2013 Oklahoma Tornado 4827 5165 9992 3209 5049 8258
2013 Alberta Floods 5189 4842 10031 3497 4714 8211

From Table 5.1, we can see that the CrisisLexT6 disaster datasets are fairly balanced

(i.e., the ratio of on-topic to off-topic tweets is close to 1).

We follow the timeline of the six disasters in the dataset and select a variety of disaster

pairs to perform experiments. Except for Hurricane Sandy, which does not have a prior

disaster in this dataset, all the other disasters are used as target disasters in one or more

pairs. We end up with 11 pairs, which cover natural disaster pairs, man-made disaster pairs,

and also natural and man-made disaster pairs. The pairs also contain disasters of different

types as well as pairs of disasters of the same type (e.g. Queensland Floods to Albert Floods).

Intuitively, the similarity in terms of the type of the disaster should generally help. When

reporting the results, we arrange pairs having the same target disaster but different source

disasters together, and represent each pair with its initials of the source and target disasters,

as shown in Table 5.2.

5.2.3 Experimental setup

Our goal is to evaluate the proposed domain adaptation approaches for the task of identifying

tweets relevant to a target disaster (i.e., on-topic versus off-topic tweets). Our main working

hypothesis is that the domain adaptation approach, which makes use of target unlabeled

data in addition to source labeled data, can better capture patterns specific to the target
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Table 5.2: Source-target pairs of disasters used in the experiments

Pair Source Disaster Target Disaster

SH → QF 2012 Sandy Hurricane 2013 Queensland Floods

SH → BB 2012 Sandy Hurricane 2013 Boston Bombings
QF → BB 2013 Queensland Floods 2013 Boston Bombings

SH → WTE 2012 Sandy Hurricane 2013 West Texas Explosion
BB → WTE 2013 Boston Bombings 2013 West Texas Explosion

SH → OT 2012 Sandy Hurricane 2013 Oklahoma Tornado
QF → OT 2013 Queensland Floods 2013 Oklahoma Tornado
BB → OT 2013 Boston Bombings 2013 Oklahoma Tornado

SH → AF 2012 Sandy Hurricane 2013 Alberta Floods
QF → AF 2013 Queensland Floods 2013 Alberta Floods
BB → AF 2013 Boston Bombings 2013 Alberta Floods

as compared to a supervised learning approach that would use only source labeled data. To

verify this hypothesis, we ask the following questions:

• How do supervised classifiers learned only from source labeled data perform on target

data?

• How do the results of the domain adaptation classifiers, which use both source labeled

data and target unlabeled data, compare with the results of the supervised classifiers,

which use only source data, when used to classify target data?

Given that the proposed domain adaptation approach can work with Self-Training with hard-

labeled target data, as well as EM with soft-labeled target data, our next research question

is:

• How do the results of the self-training strategy with hard-labeled target data compare

with that of the EM strategy with soft-labeled target data?

Finally, we want to see how the results of the domain adaptation approach compare with

the results of ideal supervised learning classifiers trained from target labeled data, with the

assumption that time and effort would be spent to manually label the available unlabeled

target data. Thus, our last research question is:s
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• How close are the results of the domain adaptation classifiers to the results of supervised

classifiers learned from a large amount of target labeled data?

For each pair of source and target disasters in Table 5.2, we use 5-fold cross-validation

to select the target data to be used as unlabeled and test data. Specifically, the target

data is split into five folds; at each rotation, one fold is selected as target test (TT), and

three folds as target unlabeled data (tTU), used by the domain adaptation approach with

self-training/Expectation-Maximization, together with source labeled data (tSL). The fifth

fold is reserved as target labeled data to be used in future work.

We report the results using accuracy and area under the receiver operating characteristic

curve (auROC ) averaged over the five target test folds. Both accuracy and auROC are

metrics commonly used in machine learning, and capture different qualities of a classifier.

The accuracy measures the percentage of correctly labeled instances out of the total number

of instances. The auROC measures the ability of the classifier to rank instances based on

the probability, P (c|d), that they belong to a class (positive or negative), without effectively

assigning instances to classes. Given a ranking, the ROC plots the true positive rate as a

function of the false positive rate, obtained at different cut-points in the ranking. As opposed

to that, the accuracy is obtained based on one single cut-point (most commonly 0.5).

For each pair of source-target disasters, we perform four groups of experiments as de-

scribed below, one for each of our research questions stated above.

Supervised learning from source labeled data only. In this group of experiments, we

use source labeled data as the training set, and learn supervised Naive Bayes classifiers. We

then use the resulting classifiers to classify target test data. Thus, the classifiers learned in

this group of experiments can serve as baselines (intuitively, lower bounds) for the domain

adaptation classifiers. We denote the supervised Naive Bayes classifiers by NB-S. The train-

ing data for this classifier, training source labeled data, is denoted by tSL. Given that other

supervised classifiers have been used successfully in prior work, we also compare the results

of the supervised Naive Bayes classifiers with the results of supervised random forest (RF),

logistic regression (LR) and support vector machine (SVM) classifiers. One advantage of the
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Naive Bayes classifier over other classifiers, and the reason our domain adaptation approach

uses it as base classifier, is that the Naive Bayes algorithm does not have any parameters

that require tuning. We used an open-source machine learning library, called WEKA (Hall

et al., 2009), to learn supervised classifiers. We used default parameters for the RF, LR,

SVM algorithms.

Domain adaptation with Self-Training and Expectation-Maximization, respec-

tively. There are two groups of domain adaptation experiments. One is domain adapta-

tion with self-training and hard-labeled target data, the other is domain adaptation with

Expectation-Maximization and soft-labeled target data. In both groups, we use source la-

beled data and target unlabeled data to train a domain adaptation classifier for the target,

and subsequently test the classifier on the target test data. We use the notation NB-EM

for domain adaptation with the EM strategy, and NB-ST for domain adaptation with the

Self-Training(ST) strategy. The training data for this classifier is denoted by tSL+tTU to

suggest that it is consists of source labeled data and target unlabeled data.

Supervised learning from target labeled data. In this group of experiments, we use

the target unlabeled dataset (tTU) that is used in the domain adaptation setting and assume

that the labels of the instances in this dataset are provided. We learn Naive Bayes classifiers

from the target labeled data and test them on target test data. Intuitively, if labeled training

data from a target disaster is available, we should be able to learn accurate classifiers for

that disaster. Therefore, the results of the supervised classifiers learned from the assumed

target labeled data can be seen as upper bounds for all the results of the other classifiers.

We denote this supervised Naive Bayes classifiers by NB-T*.

Parameter tuning. The domain adaptation approach has two parameters that need to

be tuned: the parameter δ that controls how fast we shift the weight from source to target in

both ST and EM strategies; and the parameter k that controls how many instances to hard-

label at each iteration of the ST strategy. To avoid over-fitting, we tune parameters during
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a validation step. For the validation, we select one of three target unlabeled (tTU) folds as

validation data (TV), and use the other two folds of tTU as target unlabeled data (tUV).

We use tSL+tUV for training and test on TV to select the best values for the parameters.

After tuning, the whole tTU is used for self-training as well as for EM. The performance

metrics are estimated using the target test set TT. The following values are considered for the

parameter δ: 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. In addition, in Self-Training

approach, we hard-label k=1, 5, or 10 instances of on-topic and off-topic, respectively.

5.2.4 Results and discussion

Tables 5.3 and 5.4 show the results of the supervised classifiers learned from source data only

in terms of accuracy and auROC (averaged over 5-folds), respectively. The results of the

domain adaptation classifiers compared with supervised Naive Bayes classifiers are shown in

Tables 5.5 and 5.6 in terms of accuracy and auROC, respectively.

For supervised models, we compare the following classifiers: Naive Bayes (NB-S), Sup-

port Vector Machines (SVM-S), Random Forests (RF-S) and Logistic Regression (LR-S). As

mentioned earlier, we used the Weka implementations (Hall et al., 2009), with default pa-

rameters. Furthermore, we used the LibLinear variant of SVM (Fan et al., 2008), as opposed

to LibSVM variant (Chang and Lin, 2011), as the results were consistently better for the

LibLinear variant.

For domain adaptation approaches, we compare the baseline NB-S with Expectation-

Maximization (NB-EM) and Self-Training (NB-ST), respectively as well as NB-T* which

corresponds to an ideal classifier learned from target labeled data. The results of this clas-

sifier, underlined, can be seen as an upper bound for the results that can be achieved with

domain adaptation which has access to only unlabeled data from the target domain, in

addition to labeled data from a prior source domain.

We perform paired t-tests to identify classifiers that are statistically significantly better

than their counterparts (using p < 0 .05 ). The best values( not include NB-T*) for a pair

are shown in bold. Furthermore, if a result is equivalent to the result of the ideal NB-
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T* classifier, it is indicated with underscore, and underscore with star (*) means that the

corresponding domain adaptation result is better than the result of the NB-T* classifier.

Table 5.3: Accuracy results of supervised classifiers trained from labeled source data only.

S → T NB-S SVM-S RF-S LR-S
SH → QF 76.84 73.81 70.11 71.85
SH → BB 68.66 55.23 73.33 56.41
QF → BB 74.97 65.76 71.65 58.00
SH → WTE 77.21 63.43 77.16 64.86
BB → WTE 94.77 84.29 92.15 87.85
SH → OT 80.78 77.15 79.78 72.6
QF → OT 84.13 83.97 81.56 79.01
BB → OT 84.35 81.45 82.45 79.78
SH → AF 71.06 68.86 65.85 67.09
QF → AF 78.87 76.69 74.49 72.06
BB → AF 73.81 71.17 73.95 66.42

Table 5.4: Weighted auROC results of supervised classifiers trained from labeled source data
only.

S → T NB-S SVM-S RF-S LR-S
SH → QF 0.911 0.763 0.885 0.847
SH → BB 0.753 0.555 0.825 0.525
QF → BB 0.82 0.661 0.833 0.472
SH → WTE 0.853 0.626 0.873 0.598
BB → WTE 0.983 0.835 0.977 0.919
SH → OT 0.865 0.743 0.860 0.612
QF → OT 0.880 0.824 0.899 0.775
BB → OT 0.905 0.81 0.891 0.817
SH → AF 0.830 0.707 0.818 0.766
QF → AF 0.860 0.733 0.860 0.714
BB → AF 0.806 0.705 0.818 0.628

As can be seen from Tables 5.3 and 5.4, the Naive Bayes classifier has the overall best

performance in terms of both accuracy and auROC metrics, when compared with other

supervised classifiers trained with default parameters. Furthermore, the Naive Bayes classi-

fier has the advantage that it does not require any parameter tuning. Given these reasons,

we build our domain adaptation classifiers based on Naive Bayes, and compare the domain

adaptation classifiers only with supervised Naive Bayes classifiers in what follows.
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Table 5.5: Accuracy results of supervised classifiers (baseline and upperbound), EM and
Self-training domain adaptation approaches

NB-S NB-EM NB-ST NB-T*
SH → QF 76.84 78.96 82.40 93.42
SH → BB 68.66 80.88 84.06 89.20
QF → BB 74.97 76.69 81.86 89.20
SH → WTE 77.21 94.66 90.82 95.90
BB → WTE 94.77 95.79 94.82 95.90
SH → OT 80.78 87.58 87.76 90.45
QF → OT 84.13 86.63 85.48 90.45
BB → OT 84.35 87.44 86.91 90.45
SH → AF 71.06 76.87 82.57 92.63
QF → AF 78.87 82.43 86.01 92.63
BB → AF 73.81 82.47 83.96 92.63

Table 5.5 shows the 5-fold average accuracy for each classifier and each pair. Table 5.6

shows the 5-fold average weighted auROC for each classifier and each pair. The first row in

each of the result tables corresponds to the supervised Naive Bayes classifiers learned from

source only (NB-S), the next two rows correspond to the domain adaptation approaches with

Expectation-Maximization (NB-EM) and Self-Training (NB-ST), respectively. The last row

in each table NB-T* corresponds to an ideal classifier learned from target labeled data. The

results of this classifier, underlined, can be seen as an upper bound for the results that can

be achieved with domain adaptation which has access to only unlabeled data from the target

domain, in addition to labeled data from a prior source domain.

Based on the results in Tables 5.3, 5.4, 5.5 and 5.6, we answer our research questions

below.

How do the supervised classifiers learned only from source labeled data perform on target

data? As our results in Tables 5.3 and 5.4 show, labeled data from a prior source disaster

can be very useful for learning classifier for different target disasters. When using only

source labeled data to learn Naive Bayes classifier (the approach NB-S), the auROC values

are greater than 0.8 or 0.9 for most pairs, with the exception of pair SH → QF, for which

the auROC value is around 0.75. Similarly, the accuracy for most pairs is over 70% or
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Table 5.6: Weighted auROC results of supervised classifiers (baseline and upperbound), EM
and Self-training domain adaptation approaches.

S → T NB-S NB-EM NB-ST NB-T*
SH → QF 0.911 0.973* 0.974* 0.969
SH → BB 0.753 0.929 0.941 0.954
QF → BB 0.82 0.832 0.890 0.954
SH → WTE 0.853 0.984 0.987 0.989
BB → WTE 0.983 0.989 0.984 0.989
SH → OT 0.865 0.938 0.951 0.961
QF → OT 0.88 0.925 0.924 0.961
BB → OT 0.905 0.942 0.944 0.961
SH → AF 0.83 0.953 0.972 0.971
QF → AF 0.86 0.882 0.922 0.971
BB → AF 0.806 0.898 0.950 0.971

80% except for pair SH → BB as well. The accuracy and auROC values are especially

high when considering disasters of the same type (e.g., pair BB → WTE: Boston Bombings

→ West Texas Explosion), and relatively smaller for more different disasters (e.g., pairs

QF → BB: Quessland Floods → Boston Bombings, and BB → AF: Boston Bombings →

Alberta Floods). Furthermore, it is worth noting that, while both pairs SH → AF and QF

→ AF have Alberta Floods as target, the results for QF → AF, which has Queensland

Floods as source (another flood) are better than the results for SH → AF, which has Sandy

Hurricane as source. Similar behavior is observed for pairs SH → WTE and BB → WTE,

which both have West Texas Explosion as target: Boston Bombings as source in BB→WTE

gives better results than Sandy Hurricane in SH → WTE. Together, these results show that

supervised learning based on source can be used to learn classifiers for a target if the source

and target disasters are similar. This conclusion is consistent with other prior studies (Imran

et al., 2013b; Li et al., 2015; Verma et al., 2011).

A more interesting observation is that for the pair BB → WT, the supervised Naive

Bayes classifier is highly accurate, with accuracy close to 95% and auROC close to 1.0.

By examining sample tweets from the two disasters, we find that they share more common

features than other pairs of disasters in our experiments. Reasons for the common features
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include the fact that the West Texas Explosion happened shortly after the Boston Bombings,

both disasters happened in US, and they were man-made. Thus, people who tweeted about

West Texas Explosion often mentioned Boston Bombings as well. However, this is not the

case for the pair QF → AF (Queensland Floods → Alberta Floods), where both the source

and the target disasters are floods (natural disasters), with different geo-locations, but people

don’t talk about Alberta Floods in relation to Queensland Floods.

Another interesting observation can be made for pairs SH → BB and QF → BB that

have Boston Bombings as target, but Hurricane Sandy versus Queensland Floods as sources,

respectively. As Hurricane Sandy mostly affected the east coast of the US, one might expect

that the classifier for pair SH → BB may give better accuracy than the classifier for pair

QF → BB. However, this is not the case as can be seen in Table 5.3, which suggests that

domain similarity or closeness of disasters can be more sensitive to the occurring times of the

disasters rather than geo-locations, or other facts about the disaster types. More datasets

and experiments are needed to get a firmer conclusion in this respect.

How do the results of the domain adaptation classifiers that use both source labeled data

and target unlabeled data compared with the results of the supervised classifiers that use only

source data, when used to classify target data? As can be seen from Tables 5.5 and 5.6,

domain adaptation approaches that make use of target unlabeled data definitely help to

improve the results of the classifiers learned from source data only. By comparing the results

of the supervised NB-S with the results of the domain adaptation approaches NB-EM and

NB-ST, we can see that all pairs of disasters considered except for BB → WTE, domain

adaptation classifiers with either EM or ST are significantly better than the corresponding

supervised classifiers. For some pairs, the improvement is very big; for example, for pairs

SH → BB, SH → WTE, SH → AF and BB → AF, the accuracy in Table 5.5 has improved

by more than 10% when using the domain adaptation approach NB-ST as compared to the

supervised learning algorithm with source only. For pair BB → WTE, domain adaptation

NB-EM with soft-labels still improves the accuracy, whereas domain adaptation NB-ST with

hard-labels doesn’t help much. The reasons for this may lie in the fact that the source itself

is close to that target, and the instances added with self-training are not very different from
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the source instances. Still the domain adaptation with EM give results that are better than

the results of the supervised classifier, according to the t-test (at p < 0 .05 ).

How do the results of the self-training strategy with hard-labeled data compare with those

of the EM strategy with soft-labeled target data? When comparing the NB-ST approach

(with hard-labels) with the NB-EM approach (with soft-labels), we can see that in general

NB-ST performs better than NB-EM. More specifically, for 8 out of 11 pairs, NB-ST is

either equivalent (3 pairs) or better (5 pairs) than NB-EM in terms of accuracy, and for all

pairs except P11, either equivalent or better in terms of auROC. For pair P3, although the

accuracy in Table 5.5 is higher for NB-EM, the weighted auROC in Table 5.6 is equivalent to

NB-ST. NB-EM with soft-labels is statistically better than NB-ST with hard-labels only on

pairs SH→WTE, QF→ OT and BB→WTE. EM which is using all target unlabeled data

at each iteration may provide more information than ST as the sources in pair SH→WTE,

QF → OT are not only of different types as compared to the target, but also far in time,

and thus the original classifier learned from them is not reliable enough to accurately label

a small number of instances for the NB-ST approach. However, overall, we can confidently

say that ST performs better than EM for our classification task.

How close are the results of the domain adaptation classifiers to the results of supervised

classifiers learned from a large amount of target labeled data? Finally, to answer our last

research question, from Tables 5.5 and 5.6, we can see that domain adaptation approaches

can achieve results very close to the upper bound in several cases but not always. By

comparing the accuracy results of EM/ST in Table 5.5 with the accuracy results obtained

with the ideal NB-T* approach (used as an upper bound), we can see that the domain

adaptation algorithms get close to the upper bound in a few cases, for example, for pairs

SH → WTE, SH → OT, SH → AF and especially pair BB → WTE. However, in general,

there is still significant room for improving the accuracy results of the domain adaptation

classifiers. By comparing the auROC results in Table 5.6, we can see that the results of the

domain adaptation classifiers are, in general, closer to the upper bounds except for pairs QF

→ BB, QF → OT. Furthermore, in some cases the results are even better than the upper

bound, for example for pair SH → QF. This can be explained by the fact that the source
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itself provides accurate results (auROC value higher than 0.9), which makes it possible to

accurately label the originally unlabeled target data. Thus, the accurately labeled target

data together with the source data produce classifiers that are better than those learned

from labeled target data alone (which could be noisy).

5.2.5 Hyper-parameter analysis for practical usage

We have shown that the proposed Naive Bayes with self-training domain adaptation approach

is effective in disaster related tweets classification task. Here, we want to provide some

guidance on the use of the approach, from a practical point of view. First, we want to

understand how many source instances are needed to learn an accurate classifier for a target

disaster in a domain adaptation setting. Second, we aim to understand how the performance

of the domain adaptation classifier varies with parameters δ and k values, and to select good

overall values to use in practice. Third, we aim to study how the performance varies with

different numbers of iterations, and to identify an appropriate number of iterations for good

performance. More specifically, we ask the following questions:

• How many source labeled instances are needed to build an accurate classifier for the

target?

• What values should we use in practice for the parameters δ and k of the domain

adaptation algorithms?

• How many iterations are needed to build an accurate classifier for the target?

We run an extensive set of experiments to answer the above questions.

Experimental setup

Training and test data: For each pair, we use the same 5 folds splits of the target data.

To choose different amounts of source labeled data for each pair, we randomly select 250,

500, 1000, 2000 instances from each class (on-topic/off-topic), and then finally include all
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instances from each class. Thus, we end up with SL-500, SL-1000, SL-2000, SL-4000 and SL-

ALL number of source instances, respectively. The number of all instances for each disaster

is around 8000 after cleaning, except for Hurricane Sandy whose number is around 9000. To

report best performance for a pair, we tune parameters δ and k during a validation step.

Recall from subsection 5.2.3 that, we randomly select one of the three target unlabeled (tTU)

folds as validation data (TTV), and use the other two folds of tTU as target unlabeled data

for validation (TUV). We use tSL+TUV for training and TTV and select the best values

for the parameters based on TTV. After tuning, the whole tTU is used to learn the final

classifier for the target, and performance is estimated using the target test set TT. The

values used for δ are: {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and the values

used for k are {1,5,10}.

Experiments: We perform several experiments on each pair of disasters. The first ex-

periment is domain adaptation with self-training running until convergence, with parameter

values tuned based on the validation data. We refer to this experiment as NB-STT-Conv.

The second experiment, NB-STF-Conv, is similar to the first one, except that the algorithm

runs with fixed values for parameters δ and k. We compare the results of these experiments

to understand how much is lost, if anything, by fixing parameters.

To see whether the performance can still improve after convergence, we also vary the

number of iterations for fixed δ and k parameters, beyond convergence. The following value

are considered for the number of iterations: {10, 50, 100, 150, 200, 250, 300}, and the best

number of iterations, among those considered, is identified. We refer to the experiment

where the algorithm runs with fixed parameters δ and k, and fixed number of iterations as

NB-STF-Iter. The results of all experiments are reported in terms of the area under the

ROC curve (auROC), but other measures (e.g., accuracy) show similar trends.

Results and discussion

To answer our research questions, we first run the algorithm using source datasets of different

sizes and tune parameters. We then analyze how the performance varies with different values
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for parameters δ and k, when running until convergence. We identify the general best values

for those parameters. Then, using the selected δ and k values, we study the performance

of the algorithm when increasing the number of iterations, and identify a good number of

iterations to use instead of convergence. We answer the research questions in the following

discussion.

How many source labeled instances are needed to build an accurate classifier for the target?

Table 5.7 shows the variation of the performance with the size of the source dataset.

We performed column-wise paired t-tests p ≤ 0.05) to compare the results in a row and

identify values that are significantly better than their counterparts. The best values for

each row/pair are shown in bold. As can be seen, the performance generally increases with

the amount of labeled source data. However, between using 4000 instances and using all

instances (approximately 8000), the performance does not increase much. In fact, for 7 out

of 11 pairs, the results obtained with 4000 instances are as good as the results obtained

with all source instances, suggesting that the effort that goes into data labeling is not worth

beyond 4000 instances. Furthermore, we can also see that as few as 500 source instances

can produce classifiers with performance close to 90%, and most of the time better than

the performance of the supervised classifiers learned from all the source data. Therefore, if

labeling 4000 instances is not possible, the domain adaptation algorithm can still help as

compared to the supervised learning algorithm.

What values should we use in practice for the parameters δ and k of the domain adaptation

algorithms?

Figures 5.1 and 5.2 show the variation of performance with parameters δ and k, respec-

tively. In each figure, the variation of performance when 500 source instances are used is

shown on the left, whereas variation when 4000 source instances are used is shown on the

right. We focus on 500 and 4000 instances, respectively, to understand if the best values for

parameters are different for smaller versus larger source datasets. In all cases, the algorithm

is run to convergence.

Subplots (a), (b), (c) in Figure 5.1, show the variation of the performance with δ when

500 source instances are used, and k is fixed to 1, 5, 10, respectively. Similarly, subplots
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Table 5.7: Variation of the performance of the domain adaptation algorithm with the size
of the source dataset. The supervised Naive Bayes classifier learned from all source data
is used as a baseline. Performance is reported as weighted auROC values obtained using
parameter tuning (averaged over 5 folds). The algorithm terminates upon convergence (NB-
STT-Conv). The best value in each row is shown in bold (based on a t-test with p ≤ 0.05).

Pair Baseline SL-500 SL-1000 SL-2000 SL-4000 SL-All

SH → QF 0.911 0.945 0.955 0.964 0.971 0.974

SH → BB 0.753 0.877 0.914 0.926 0.935 0.941
QF → BB 0.820 0.840 0.863 0.866 0.890 0.890

SH → WT 0.853 0.973 0.972 0.976 0.986 0.987
BB → WT 0.983 0.969 0.972 0.972 0.980 0.984

SH → OT 0.865 0.921 0.932 0.944 0.953 0.951
QF → OT 0.880 0.916 0.921 0.919 0.926 0.924
BB → OT 0.905 0.919 0.924 0.927 0.942 0.944

SH → AF 0.830 0.925 0.942 0.956 0.970 0.972
QF → AF 0.860 0.880 0.890 0.892 0.918 0.922
BB → AF 0.806 0.898 0.912 0.935 0.950 0.950

(d), (e), (f) in Figure 5.1, show the variation of the performance with δ when 4000 source

instances are used, and k is fixed to 1, 5, 10, respectively. We can see that when we have

4000 source instances, the best results are generally obtained for a very small value of δ,

specifically 0.001, regardless of the value used for k. This result suggests that a source with

4000 instances produces a reasonably good classifier in the first place, and therefore the

shift from the source to the target should be done slowly to allow for the accumulation of

accurately labeled target instances in the training set. Another interesting observation is

that for values of δ greater than 0.1, the performance does not change much. This is because

when δ is large, the algorithm shifts all the weight to the target data in a small number of

iterations. For example, when δ = 0.2, the weight assigned to the target will be 1.0 at the

sixth iteration (min(5∗0.2, 1) = 1), and thus the classifier solely depends on the self-training

of the target unlabeled instances added in the first 5 iterations, which will lead the algorithm

to converge very fast.

When 500 source instances are used, the best results are also obtained with small values
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(c) SL-500:k = 10
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(f) SL-4000:k = 10

Figure 5.1: Variation of the performance (auROC) with δ for two sizes of the source dataset:
SL-500 (left) and SL-4000 (right). The parameter k is fixed to 1, 5, and 10, respectively.
The algorithm terminates upon convergence.

of δ, but the best value is not consistent as 0.001. In some cases, the best δ value is 0.01

or 0.1, which shows that the shift from source to target happens faster when the original

classifier learned from source is not very good. In effect, a higher weight will be assigned to

the target data, which is still small in size and possibly not very accurate. Given that, from a

practical point of view, it is desirable to have a larger amount of source data (approximately

4000), as that makes it easier to find good overall values for the parameter δ.

Subplots (a), (b), (c) in Figure 5.2 show the variation of the performance with k when 500
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source instances are used, and δ is fixed to 0.001, 0.01, 0.1, respectively. Similarly, subplots

(d), (e), (f) in Figure 5.2 show the variation of the performance with δ when 4000 source

instances are used, and δ is fixed to 0.001, 0.01, 0.1, respectively. By analyzing these plots,

we can see that when δ is very small, for example 0.001, the performance is more steady,

generally increasing very slowly with k, with some exceptions (e.g., SH → AF in Figure

5.2 (a)). In particular, for 4000 source instances and δ = 0.001, the best performance is

observed for either k = 5 or k = 10. The performance decrement from k = 5 to k = 10 that

is observed for some pairs can be explained by the addition of mislabeled target instances

to the training data, which can easily happen when too many target instances are added at

once. When δ is 0.01 or 0.1, the increase/decrease pattern is less consistent overall, although

for many pairs larger k is better.

Figures 5.1 and 5.2 together suggest that the best performance overall is obtained when

the source data consists of approximately 4000 instances, parameter δ is set to 0.001 and

parameter k is set to 5 or 10. Furthermore, even when only 500 source instance are available,

the same parameters can be used.

To understand if performance is sacrificed when fixing parameters as opposed to tuning

them, we compare the two settings when the algorithm runs to convergence. The results are

shown in Table 5.8. As can be seen, the results obtained using fixed parameter values are

as good as the results obtained using tuned values for most pairs, with only two exceptions

for ST-4000 (QF → BB, QF → OT) and two exceptions for ST-500 ( QF → OT and SH →

WTE), where the performance with fixed values is just slightly worse than the performance

with tuned values.

How many iterations are needed to build an accurate classifier for the target?

Using the findings about best overall parameters, our next objective is to compare the

performance when the algorithm terminates upon convergence versus performance when the

algorithm terminates after a fixed number of iterations, identified as a good overall number

of iterations during validation. Specifically, we run experiments with fixed parameters δ and

k, and vary the number of iterations. The results on the target validation data are shown in

Figure 5.3, for 500 source instances (left) and 4000 source instances (right). The dot on each
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Figure 5.2: Variation of performance (auROC) with k for two sizes of the labeled source data:
SL-500 (left) and SL-4000 (right). Parameter δ is fixed to 0.001, 0.01 and 0.1, respectively.
The algorithm terminates upon convergence.

curve represents the number of iterations at “convergence” for the corresponding pair on a

curve. As can be seen, the performance generally increases with the number of iterations,

beyond the number of iterations at which “convergence” is reached. However, after a certain

number of iterations (equivalently, after a certain number of target instances have been added

to the training set), the performance does not change much. As expected, the number of

iterations at which performance stabilizes is larger for k = 5 as compared to k = 10, as less

target instances are added to the training data, at each iteration, for k = 5. In particular, the

84



Table 5.8: Tuning results (NB-STT-Conv) versus results with fixed parameters δ = 0.001
and k = 5 (NB-STF-Conv). In both cases, the algorithm terminates upon convergence. Best
value in each column of a pair is shown in bold (row-wise t-test with p ≤ 0.05).

Pair Experiment SL-500 SL-4000

SH → QF NB-STT-Conv 0.945 0.971
NB-STF-Conv 0.949 0.967

SH → BB NB-STT-Conv 0.877 0.935
NB-STF-Conv 0.873 0.938

QF → BB NB-STT-Conv 0.840 0.890
NB-STF-Conv 0.855 0.878

SH → WTE NB-STT-Conv 0.973 0.986
NB-STF-Conv 0.959 0.985

BB → WTE NB-STT-Conv 0.969 0.980
NB-STF-Conv 0.973 0.983

SH → OT NB-STT-Conv 0.921 0.953
NB-STF-Conv 0.910 0.931

QF → OT NB-STT-Conv 0.916 0.926
NB-STF-Conv 0.893 0.914

BB → OT NB-STT-Conv 0.919 0.942
NB-STF-Conv 0.911 0.942

SH → AF NB-STT-Conv 0.925 0.970
NB-STF-Conv 0.928 0.965

QF → AF NB-STT-Conv 0.880 0.918
NB-STF-Conv 0.864 0.919

BB → AF NB-STT-Conv 0.898 0.950
NB-STF-Conv 0.894 0.946

performance becomes stable around 250/300 iterations for k = 5 and around 150 iterations

for k = 10. For k = 5, 300 iterations correspond to 5x2x300=3000 target instances being

added to the training data, while for k = 10, 150 iterations correspond to 2x10x150=3000

target instances as well. This result suggests that the number of target instances to be

included in the training dataset needs to be greater than 3000 for best performance. However,

it is important to note that the algorithm can start with the unlabeled target data available

at the onset of a disaster. As more unlabeled target data becomes available at a later time,
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(c) SL-4000: = 0.001, k = 5
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Figure 5.3: Variation of performance (auROC) with the number of iterations for two sizes of
the labeled source data: SL-500 (left) and SL-4000 (right). The dots on each curve represent
the performance at “convergence.”

that data can be used in subsequent iterations of the domain adaptation algorithm, in an

online fashion.

Table 5.9 shows the results of the algorithm when run with fixed parameters δ = 0.001

and k = 5 and two termination conditions, respectively: convergence (NB-STF-Conv) and

fixed number of iterations, specifically 300 iterations (NB-STF-Iter). As can be seen, the

results are almost aways better when using a fixed number of iterations, therefore running

the algorithm beyond pseudo-convergence is generally advantageous.

In summary, our empirical results suggest that fixing the algorithm’s parameters δ and

k, and fixing the number of iterations τ can be done without scarifying performance. In
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Table 5.9: Results with fixed parameters when the algorithm runs to convergence (NB-STF-
Conv) or for a fixed number of iterations (NB-STF-Iter), specifically 300 iterations. Best
value in each column of a each pair is shown in bold (row-wise t-test with p ≤ 0.05).

Pair Experiment SL-500 SL-4000

SH → QF NB-STF-Conv 0.949 0.967
NB-STF-Iter 0.957 0.972

SH → BB NB-STF-Conv 0.873 0.938
NB-STF-Iter 0.893 0.935

QF → BB NB-STF-Conv 0.855 0.878
NB-STF-Iter 0.880 0.898

SH → WTE NB-STF-Conv 0.959 0.985
NB-STF-Iter 0.980 0.990

BB → WTE NB-STF-Conv 0.973 0.983
NB-STF-Iter 0.981 0.987

SH → OT NB-STF-Conv 0.910 0.950
NB-STF-Iter 0.938 0.962

QF → OT NB-STF-Conv 0.893 0.914
NB-STF-Iter 0.919 0.933

BB → OT NB-STF-Conv 0.911 0.942
NB-STF-Iter 0.934 0.952

SH → AF NB-STF-Conv 0.928 0.965
NB-STF-Iter 0.940 0.968

QF → AF NB-STF-Conv 0.864 0.919
NB-STF-Iter 0.902 0.916

BB → AF NB-STF-Conv 0.894 0.946
NB-STF-Iter 0.932 0.959

turn, this finding makes it possible to use our domain adaptation approach in a practical

situation, where target labeled data for tuning parameters is not available, but batches of

unlabeled target data accumulate quickly in an online fashion.

5.3 Hybrid model combining Self-training and CORAL

Correlation alignment algorithm (CORrelation ALignment, CORAL) (Sun et al., 2015), is

a feature-based adaptation approach that aligns the distribution of the source domain with
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the distribution of the target domain to reduce the variance shift. Previous work on using

CORAL (Sopova, 2017) to identify disaster relevant tweets has outperformed the Naive Bayes

baseline. In this section, we will first compare CORAL with self-training to understand which

approach benefits more from source adaptation based on unlabeled data. We will then design

a hybrid approach that combines CORAL with self-training, with the goal of improving the

results obtained with each independent approach further.

5.3.1 Correlation alignment

Introduced by Sun et al. (2015), CORrelation ALignment (CORAL) is a simple yet effective

domain adaptation method. CORAL works by aligning the distributions of the source and

target data in an unsupervised manner. More specifically, CORAL minimizes the domain

shift by aligning the second-order statistics of source and target distributions, namely, the

covariance, without requiring any target labels. As stated by Sun et al. (2015), CORAL

aligns the distributions by re-coloring whitened source features with the covariance of the

target features. The approach involves the following steps:

1. Compute covariance statistics in each domain, and

2. Apply the whitening and re-coloring linear transformations to the source features.

Then, supervised learning proceeds as usual – a classifier is trained using the transformed

source features and used to classify the target data. Since the correlation alignment algorithm

changes the features only, it can be applied to any base classifier.

Formally, we are given DS = {(x1, y1), . . . , (xmS
, ymS

)} ⊆ X × Y and target unlabeled

data be DT = {x1, . . . ,xmTU
} ⊆ X , for easier discussion, let’s first ignore the labels in DS.

Suppose µS, µT and CS, CT are the feature vector means and covariance matrices for source

DS and target DT , respectively. According to Sun et al. (2015), to minimize the distance

between the second-order statistics (covariance) of the source and target features, one can

apply a linear transformation A to the original source features. This transformation can be
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obtain as a solution to the following minimization problem:

min
A
‖CŜ − CT‖2F = min

A

∥∥ATCSA− CT

∥∥2
F
, (5.6)

where CŜ is the covariance of the transformed source features DSA, and ‖·‖2F denotes the

Frobenius norm of a matrix, used as a distance metric.

Let DS = USΣSV
>
S be the singular value decomposition (SVD) of the matrix correspond-

ing the the source data DS, and similarly, let DT = UTΣTV
>
T be the SVD decomposition

of the matrix corresponding the target data DT . Furthermore, let ΣT [1:r], UT [1:r], VT [1:r] be

the largest r singular values and the corresponding left and right singular vectors of DT , re-

spectively. As proven by Sun et al. (2015), the optimal solution for the above minimization

problem can be found as:

A∗ =
(
USΣ

+ 1
2

S U>S

)(
UT [1:r]Σ

+ 1
2

T [1:r]U
>
T [1:r]

)
, (5.7)

which can be interpreted as follows: the first part is used to whiten the source data, while

the second part is used to re-color it with the target covariance.

As Sun et al. (2015) suggest, after CORAL transforms the source features according

to the target space, a classifier h(x; w) parametrized by w can be trained on the adjusted

source features and directly applied to target features. In this work, we run experiments

using Naive Bayes Classifier. The CORAL algorithm is summarized in Algorithm 2.

5.3.2 Experimental setup

We will use the same dataset as shown in subsection 5.2.2 for evaluation here.

Feature Selection

Sun et al. (2015) used a sentiment analysis dataset, where the dimensionality was reduced

based on the information gain criterion. Sopova (2017) uses a different criterion for feature

selection, specifically an unsupervised feature selection algorithm called “Variance Thresh-
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Algorithm 2: Correlation Alignment Algorithm

Input: Target unlabeled data DT , source labeled data DS

Output: Adjusted source labeled data DS∗

import numpy as np

from scipy.linalg import fractional matrix power

ncolsS = DS.shape[1]

ncolsT = DT .shape[1]

CS = np.cov(DS, rowvar = 0) + np.eye(ncolsS)

CT = np.cov(DT , rowvar = 0) + np.eye(ncolsT )

DS = np.dot(DS, fractional matrix power(CS,−0.5))

DS∗ = np.dot(DS, fractional matrix power(CT , 0.5))

old”. To compare, we will also use this feature selection technique in the hybrid model.

Essentially, we remove all lowvariance features from the target data. The low-variance fea-

tures are defined as those that are either 0 or 1 in more than k% of the samples, which

corresponds to the Variance Threshold equal to 0.k ∗ (1 − 0.k). The Variance Threshold

looks only at the features X, but not at the class labels y. In order to select features, we

first concatenate labeled source data DS and unlabeled target data DT . Once a subset of

the features is selected, we represent DS and DT using the selected features.

Experiments

We design our experiments to answer the following questions:

• How does the feature-based adaptation (CORAL) perform compared to the parameter-

based adaptation (self-training)?

• How does the hybrid feature-parameter adaptation approach compare with the indi-

vidual feature-based and parameter-based approaches?
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We perform the following experiments, with self-training approach parameters from sub-

section 5.2.5 with the fixed number of iterations.

1. Run Variance Threshold (VT) on the combined dataset of DS and DT to select a

subset of features. Run CORAL with the selected features to transform the source.

Use the transformed source to learn a Gaussian Naive Bayes classifier. We refer to this

experiment as NB+CORAL+VT.

2. Run Bernoulli Naive Bayes with self-training on the source with the original features.

We refer to this experiments as NBST.

3. Run Variance Threshold (VT) on the combined dataset of DS and DT to select a subset

of features. Run Bernoulli Naive Bayes with self-training on the source represented

using the features selected with VT. We refer to this experiments as NBST+VT.

4. Run Variance Threshold (VT) on the combined dataset of DS and DT to select a

subset of features. Run CORAL with the selected features to transform the source.

Run Gaussian Naive Bayes with self-training on the transformed source. We refer to

this experiment as NBST+CORAL+VT.

We setup the experiments same as in Subsection 5.2.5 except for feature selection.

• We use the same 11 source-target pairs as in Table 5.2, and split target data into 5-

folds, each source is “aligned” with three target unlabeled folds, one target fold is used

for testing, and one target fold is kept for future use as potential target labeled data.

Similarly, NBST uses three target unlabeled folds in the training process, and one fold

for testing.

• The number of features selected varies from one experiment/split to another. For ex-

ample, for one pair, the original dataset has 1334 features, and the VT approach selects

anywhere from 160 to 176 features (for different splits), thus resulting in significant

dimensionality reduction.
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• In preliminary work, we varied the value of the threshold k in VT. Precisely, we ex-

perimented with k = 0.95, k = 0.90, k = 0.80, etc. The highest accuracy was obtained

when the threshold is equal to 0.99, and this is the value used in the experiments.

• We varied the number of instances in the sources to see how the performance vary

with different numbers of source instances. Concretely, in addition to the whole source

labeled data, which we denote as Total, we also selected 500, 1000, 2000 instances from

each class (on-topic or off-topic), respectively.

The evaluation of the classifiers is based on accuracy as the dataset is relatively balanced.

5.3.3 Results and discussion

The results of the experiments that are used to compare NBST, NBST+VT, and CORAL+VT,

NBST+CORAL and NBST+CORAL+VT are shown in Table 5.10. In the table, a source

and target pair (S→T) is denoted using the source and target disaster abbreviations intro-

duced in Table 5.2. The numbers 500, 1000, 2000 in the header denote how many source

instances from each class (on-topic or off-topic) are used for training, and Total means that

all source instances are used. The highlighted values are the best values for each pair with

a certain number of source instances across different experiments/approaches. The more

highlighted values one approach has, the better that approach performs. We will use this

table to answer the research questions.

How does the feature-based adaptation (CORAL) perform compared to the parameter-

based adaptation (self-training)?

Based on results in Table 5.10, we compare two domain adaptation methods, self-training

and CORAL with Naive Bayes as a base classifier, i.e., NB+CORAL+VT and NBST+VT.

As can be seen, NBST+VT performs better than NB+CORAL+VT overall, and implicitly

better than the baselines (NB, NB+VT). Furthermore, NBST is better than CORAL, as

NBST benefits from using all features, while CORAL works better with a selected set of

features.
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Table 5.10: Accuracy results of domain adaptation approaches, Naive Bayes with self-
training (NBST), and Naive Bayes with self-training and Variance Threshold (VT) feature
selection (NBST+VT), CORAL with VT feature selection (NB+CORAL+VT), and the hy-
brid feature-parameter based approach (self-training on top of CORAL) with VT feature
selection (NBST+CORAL+VT)

S → T 500 1000 2000 Total

NB
ST

SH → QF 82.4 84.3 85.5 82.4
SH → BB 82.8 83.2 84.6 84.1
QF → BB 78.7 79.2 81.4 81.9
SH →WT 92.3 92.4 92.3 90.8
BB →WT 92.9 92.8 93.9 94.8
SH → OT 85.8 87.9 88.7 87.8
QF → OT 85.3 85.0 85.5 85.5
BB → OT 84.8 84.8 86.5 86.9
SH → AF 79.3 79.9 84.0 82.6
QF → AF 82.4 83.0 85.2 86.0
BB → AF 80.2 82.4 83.9 84.0

Average 84.3 85.0 86.5 86.1

NB
ST
+
V T

SH → QF 84.4 84.5 83.9 80.6
SH → BB 82.7 83.0 84.5 81.5
QF → BB 79.8 80.5 81.2 81.9
SH →WT 93.6 93.6 92.8 92.3
BB →WT 94.4 94.6 95.0 95.3
SH → OT 86.8 87.4 87.5 86.6
QF → OT 83.2 83.5 84.3 84.2
BB → OT 84.5 84.0 84.4 84.3
SH → AF 81.5 81.8 81.8 79.7
QF → AF 82.7 83.2 84.6 85.1
BB → AF 80.5 80.5 81.7 82.2

Average 84.9 85.1 85.6 84.9

S → T 500 1000 2000 Total

NB
+
CORAL
+
V T

SH → QF 75.1 85.1 85.2 83.8
SH → BB 78.9 76.4 82.7 76.6
QF → BB 83.4 81.9 80.4 68.0
SH →WT 80.2 73.8 67.4 83.6
BB →WT 88.8 94.5 94.5 94.9
SH → OT 85.3 85.8 85.7 75.3
QF → OT 82.7 86.7 87.3 81.5
BB → OT 79.2 85.3 82.7 82.3
SH → AF 77.0 84.3 85.7 84.6
QF → AF 73.2 80.7 81.3 80.2
BB → AF 71.2 71.3 74.4 79.1

Average 79.5 82.3 82.5 80.9

NBST
+
CORAL
+
V T

SH → QF 81.5 89.1 88.0 87.7
SH → BB 75.6 76.5 82.4 76.3
QF → BB 84.5 85.9 84.8 74.3
SH →WT 80.5 88.1 79.1 90.6
BB →WT 87.5 92.1 94.5 93.6
SH → OT 86.3 87.8 88.0 73.5
QF → OT 82.1 88.7 87.8 81.5
BB → OT 82.8 82.3 85.4 82.1
SH → AF 84.9 87.6 87.9 86.1
QF → AF 75.1 82.4 83.0 83.5
BB → AF 74.7 79.7 75.7 81.1

Average 81.4 85.5 85.1 82.8

How does the hybrid feature-parameter adaptation approach compare with the individual

feature-based and parameter-based approaches?

To answer this question, we compare the results of NBST+CORAL+VT with the re-

sults of NBST and NBST+VT, and also with the results of NB+CORAL+VT in Table

4. Overall the self-training approach performs better than the hybrid feature-parameter

variant NBST+CORAL+VT. However, for some specific source-target pairs, the combined

self-training and CORAL approach is better than either self-training or CORAL alone.

More concretely, we can see that for pairs SH→QF, QF→BB, SH→AF, the hybrid ap-

proach achieves the best performance. Moreover, NBST+CORAL+VT can improve the

performance of NB+CORAL+VT for almost all pairs, regardless of the number of source
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instances used. As last, NBST+CORAL+VT performs well also in terms of precision and

recall metrics too, with an average precision of 0.836 and average recall of 0.827 when all

source instances are used for training, which we didn’t show here.

5.4 Conclusions

In this chapter, we proposed domain adaptation approaches based on Naive Bayes with

Expectation Maximization (EM) and self-training strategy, we did hyper-parameter analysis

to provide guidance for potential practical application. We further compared the self-training

approach with a feature representation based approach, Correlation Alignment (CORAL),

on top of supervised Naive Bayes classifiers, and proposed a hybrid model to combine self-

training and CORAL on top of Naive Bayes models. We experimented with different source

and target disaster pairs to identify disaster related tweets.

EM and self-training incorporate labeled data from a source disaster and unlabeled data

from an emerging target disaster into a classifier for the target disaster. We first compared

Naive Bayes with self-training (NB-ST) with supervised classifiers learned only from source

(NB-S) and with domain adaption classifiers based on expectation-maximization (NB-EM)

in Section 5.2. The results of our experiments showed that using source data only with su-

pervised learning could help when the source and target disasters were similar. However, the

domain adaptation approaches were always better than the supervised learning with source

data only. Between the NB-ST and NB-EM approaches, generally the NB-ST approach was

better. As last, our experimental results showed that the domain adaptation approaches

could give results comparable, and in some cases better, than an ideal supervised classifier

that would have (noisy) labeled target data available. However, in general, there is still

room for improving the results of domain adaptation classifiers as compared to the ideal

supervised classifier that would have access to labeled target data.

In subsection 5.2.5, we provided recommendations for good overall parameter values to

be used in practice for the domain adaptation algorithm with self-training. Furthermore, our

study provided recommendations with respect to the number of labeled source instances to
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be used for good performance, and also with respect to the number of iterations needed for

good performance. We showed that in general more source labeled data could produce better

results, but performance did not change significantly after a certain amount, for example after

4000 instances (2000 on-topic and 2000 off-topic). If that amount of source labeled data is

not available, our experiments showed that even 500 source labeled instances could result

in a relatively good classifier. This provides some insights into how much effort we should

put into labeling data. Based on the analysis of performance variation with parameters,

we recommend small values for δ (e.g., 0.001) to very slowly shift the weight from source to

target and get good overall results. Furthermore, our study suggested that adding more than

1 instances from each class at each iteration of the algorithm (e.g., adding 5 or 10 instances

from each class) benefited the final classifier. Finally, we showed that best overall results

were obtained when fixing the shifting speed δ as 0.001, adding k = 5 instances from each

class at each iteration, and running 300 iterations. This suggests that we can potentially use

these parameter values as default in practice without sacrificing performance, and thus help

disaster management and response teams prioritize the information that they need to more

carefully analyze.

In Section 5.3, we compared a feature-based adaptation approach, CORAL, with self-

training and also combined these two in one model on the same dataset as in the previous

sections. CORAL is a simple yet effective domain adaptation method based on unsupervised

feature alignment between source and target data. Experimental results showed that Naive

Bayes with self-training (NBST) performed better than Naive Bayes with CORAL in many

cases, especially when leveraging more features. It could be hypothesized that the gradual

labeling and usage of the target data in NBST could potentially capture more knowledge

from the target unlabeled data, as compared to the one-shot use of the target unlabeled

data in CORAL (to shift the distribution of the source data). The comparison of the hy-

brid approach with the individual feature-based and parameter-based adaptation approaches

supported this hypothesis. Specifically, when comparing the hybrid approach with the in-

dividual feature-based and parameter-based approaches, no significant gains were observed

from the combination. Furthermore, the results of the hybrid were overall similar with the
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results of the NBST approach itself. This suggests that the CORAL approach, while useful

on its own, did not have complementary strengths as compared with NBST for this dataset.

Nevertheless, there were some specific pairs where the hybrid approach performed better

than the self-training approach.

There are of course limitations to our work. To understand how the algorithm behaviors

generalize to different classification tasks, the approaches in this chapter for example self-

training domain adaptation approach needs to be analysed with more classification tasks

and also multi-class classification tasks. For example, we can consider the task of classifying

disaster related tweets further into subcategories based on the user publishing the tweets

or based on the tweet content - a tweet can be contributed by eyewitnesses, by victims or

by news agents, or a tweet can be about casualty, infrastructure damage or volunteer and

donation needs.
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Chapter 6

Domain adaptation using

embedding-based approaches

In this chapter, we investigate embedding-based approaches that use pre-existing embedding

models to transfer knowledge. The general goal is to build classifiers that are ready-to-use

whenever a disaster strikes. Concretely, we experiment with embeddings on word-level,

sentence-level, and also pre-trained language model based contextual embeddings under the

multi-source domain adaptation setting. These approaches can be viewed as feature/repre-

sentation based domain adaptation approaches. In Section 6.1, we experiment with simple

adaptation approaches with pre-trained word embeddings and sentence encoding models. We

evaluate how different representations using pre-trained word embeddings or sentence encod-

ings perform with supervised learning models on the three datasets introduced in Chapter 4.

In Section 6.2, we evaluate pre-trained word embedding with deep learning models. We also

propose to run self-training on top of a CNN model. In Section 6.3, we experiment with ap-

proaches based on the state-of-the-art pre-trained language models, specifically BERT, and

apply a multi-source domain adversarial model using the representations computed from

pre-trained BERT model.
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6.1 Pre-trained word/sentence embeddings with tradi-

tional supervised models

6.1.1 Representations using word embeddings

Currently, research on word embeddings is still one of the most popular topics in the NLP

area. Here, we adopt three types of word embeddings widely used in the NLP community:

1. Word2Vec (Mikolov et al., 2013a,b);

2. GloVe (Pennington et al., 2014);

3. FastText (Bojanowski et al., 2017; Mikolov et al., 2018).

With each type, we use both existing embeddings pre-trained on Wikipedia or Twitter data,

and also crisis word embeddings trained specifically on our crisis tweet corpora. Subsequently,

we use several simple ways to combine the word embeddings into reduced representations,

as described below:

a) Mean: We average the embeddings of each word in the tweet along each dimension.

Thus, a tweet vector will have the same dimension as a word vector/embedding.

b) MinMaxMean (MMM): In addition to mean, we also take the minimum and maximum

over all the words in a tweet, along each dimension of the word vectors. Each aggrega-

tion, min/max/mean, will produce a vector that has the same dimension as the word

vectors. We concatenate the vectors corresponding to min/max/average, respectively,

and obtain a tweet vector whose dimension is three times the dimension of the word

vector.

c) Tf-idf-Mean: We assign Tf-idf (term frequency - inverse document frequency) weights

to the words in a tweet, and calculate the weighted average of the word embeddings

along each dimension (where the contribution of a word is proportional to its Tf-idf

weight).
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6.1.2 Representations using sentence encodings

Given that tweets resemble sentences as they are relatively short, we also experiment with ap-

proaches on sentence-level embeddings/encodings. Specifically, we use the following models

to get tweet representations:

1. Smooth Inverse Frequency (SIF) (Arora et al., 2017): The representation produced

by this approach can be seen as the weighted average of the word vectors, modified

by removing the projections of the average vectors on their first principal component

(“common component removal’) (Arora et al., 2017). This simple method has been

shown to beat more sophisticated models, such as Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN), on semantic textual similarity tasks.

2. InferSent (Conneau et al., 2017): This approach consists of universal sentence repre-

sentation models trained with natural language inference data, using different network

architectures such as Long Short-Term Memory (LSTM) networks, Gated Recurrent

Units (GRU), or Bi-directional LSTM networks (BiLSTM). We use the pre-trained

model published by the authors to generate tweet representations with this approach.

3. Universal Sentence Encoder on TensorFlow (tfSentEncoder) (Cer et al., 2018): The

universal sentence encoding models are trained with the same data as the InferSent

models, but with different model architectures.

In general, the purpose and usage of the universal sentence encoders are similar to pur-

pose/usage of the word embeddings, as the pre-train universal sentence encoders can help

with NLP and text classification tasks that rely on sentences (Cer et al., 2018).

6.1.3 Datasets and preprocessing

We use all three datasets introduced in Chapter 4 here, specifically: 1) CrisisLexT6 (Olteanu

et al., 2014); 2) CrisisLexT26 (Olteanu et al., 2015); and 3) 2CTweets (Schulz et al., 2017).

To benefit the most from pre-trained embeddings, ideally, one should preprocess the

data to be embedded the same way as the corpus that was used for training the embeddings.
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Table 6.1: Statistics about the datasets (CrisisLexT6, CrisisLexT26, and 2CTweets), before
and after cleaning

Before Cleaning After Cleaning

CrisisLexT6 On-topic Off-topic Total On-topic Off-topic Total

2012 Sandy Hurricane 6138 3870 10008 5443 3757 9200
2013 Queensland Floods 5414 4619 10033 3324 4530 7854
2013 Boston Bombings 5648 4364 10012 4824 4301 9125
2013 West Texas Explosion 5246 4760 10006 4123 4711 8843
2013 Oklahoma Tornado 4827 5165 9992 4101 5111 9212
2013 Alberta Floods 5189 4842 10031 4550 4745 9295

CrisisLexT26 Informative Non-Inf. Total Informative Non-Inf. Total

2012 Colorado wildfires 685 268 953 665 252 917
2013 Queensland floods 728 191 919 681 183 864
2013 Boston bombings 417 512 929 397 489 886
2013 West Texas explosion 472 439 911 444 390 834
2013 Alberta floods 685 298 983 665 284 949
2013 Colorado floods 768 157 925 736 147 883
2013 NY train crash 904 95 999 684 88 772

2CTweets Yes No Total Yes No Total

Memphis 361 721 1082 333 699 1032
Seattle 800 1404 2204 739 1293 2032
NYC 413 1446 1859 373 1411 1784
Chicago 214 1270 1484 202 1254 1456
San Francisco 304 1176 1480 290 1146 1436
Boston 604 2216 2820 586 2123 2709
Brisbane 689 1898 2587 667 1746 2413
Dublin 199 2616 2815 189 2574 2763
London 552 2444 2996 490 2287 2777
Sydney 852 1991 2843 832 1947 2779

However, for the pre-trained Word2Vec and FastText embeddings, the original preprocessing

performed is not well documented, so we use directly the raw tweets to obtain the corre-

sponding word embeddings representations. As opposed to that, the preprocessing script

used when training GloVe word embeddings on Twitter data is available from the GloVe’s

website1. Thus, we apply the same preprocessing for all our datasets when using pre-trained

GloVE or crisis-specific word embeddings. Specifically, we use a Python version of the

GloVe’s Ruby preprocessing script, which consists of the following main steps: 1) replacing

URLs and user mentions with placeholders <url> and <user>, respectively; 2) replacing dif-

ferent emoticons with placeholders such as <smile>, <lolface>, <sadface>, <neutralface>

1https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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and <heart>, respectively; 3) replacing numbers with a placehoder <number>; 4) changing

uppercase words to lowercase words, and tagging them with the tag <allcaps>, for example,

“HURRICANE” becomes “hurricane <allcaps>”; 5) similarly, tagging punctuation repeti-

tions, elongated words and hashtags, for example “!!!” becomes “! <repeat>”, “soooo”

becomes “so <elong>” and “#HurricaneSandy” becomes “<hashtags> hurricanesandy”; 6)

converting all tweets to lowercase and tokenizing them based on whitespace using the Stan-

ford Tokenizer. Finally, duplicate tweets identified after preprocessing are removed. The

statistics of each class in each event dataset, before and after the preprocessing, together

with the total number of tweets in the dataset, are shown in Tables 6.1 for the three datasets,

respectively.

Our crisis tweet corpora for training crisis specific word embeddings are also processed

the same way. Besides the three datasets described above, the corpora also includes tweets

that we collected through the Twitter Streaming API during several disasters that happened

in 2017 hurricane season, specifically Hurricane Harvey, Hurricane Irma, Hurricane Maria,

and also Mexico Earthquake. The total corpora contains approximately 5.8 million tweets.

Most of these tweets are crisis related, but there is also some inherent noise due to the fact

that the streaming was keyword-based.

6.1.4 Experimental setup

Once we obtain the vector representations for tweets, any supervised learning algorithm (or

even more complex domain adaptation algorithms) can be used to learn classification models

using the tweet reduced representations. Here, for the sake of simplicity, and also to satisfy

the real-time prediction requirements, we choose first to experiment with four traditional

supervised machine learning algorithms:

1. Naive Bayes (NB);

2. Random Forest (RF);

3. K-Nearest Neighbors (KNN);
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4. Support Vector Machines (SVM).

We included the Naive Bayes algorithm in our study as it doesn’t require hyper-parameter

tuning, and Random Forest, KNN, and especially SVM, all have been extensively used in

text classification tasks.

For each of the three datasets, we experimented with three types of word embeddings,

both existing pre-trained embeddings, and custom embeddings trained on crisis tweets, as

well as three sentence embedding models, for a total of nine different representations for the

tweets. We include three traditional bag-of-words representations in the experiments to serve

as baselines, 0/1 binary representation, words counts and tf-idf representations. Notice that

Multivariate Bernoulli Naive Bayes model is used for 0/1 binary bag-of-word representation,

Multinomial Naive Bayes is used for count and tf-idf representations and Gaussian Naive

Bayes is used for word embeddings representations. We take target data as unlabeled data

and use words from it as in bag-of-words experiments, specifically, we use 5000 unigrams

to represent a tweet in these baselines2. In word embeddings experiments, all words from

sources and target disasters are used. Embeddings of words that are not included in pre-

trained word embeddings vocabulary are set to zero vectors. and use all the words of that

tweet that have pre-trained embeddings.

The notations and details of the embeddings used are as follows:

• Word2Vec: denotes the pre-trained Word2Vec embeddings. Specifically, we used the

set of embeddings trained on Google news. The dimension of the Word2Vec embeddings

is 300.

• CrisisW2V : denotes the Word2Vec embeddings trained with our crisis tweet corpus.

We use the Gensim package implementation of Word2Vec, and trained a CBOW (Con-

tinuous Bag Of Words) model, also with dimension 300. We use the default values for

all the other parameters in Gensim package.

2We also experiment with using all words and also unigrams together with bigrams, the results are worse
than 5000 unigrams in general.
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• GloVe: denotes the GloVe embeddings pre-trained on Twitter data. We also experi-

mented with GloVe embeddings pre-trained on Wikipedia data, but the results were

worse than those obtained with the Twitter embeddings, we will not show these here.

Furthermore, there are four different sets of pre-trained GloVe Twitter embeddings,

corresponding to four dimensions: 25, 50, 100 and 200. Our preliminary results showed

that 50 or 100 dimensions give similar results, generally better or comparable with the

results obtained with 25 or 200 dimensions. We only show the results obtained with

embeddings with 100 dimensions.

• CrisisGloVe: denotes GloVe embeddings trained on our crisis tweet corpus. We use

the GloVe original package to learn the embeddings, minimum word frequency count is

10, maximum iterations is set to 100 and window size is 10. We only show the results

obtained with the 100 dimensional embeddings with same reason as GloVe setting.

• FastText : denotes the pre-trained FastText embeddings. We experiment with the 1

million word vectors trained on Wikipedia 2017, UMBC webbase corpus and statmt.org

news dataset. The dimension is 300.

• CrisisFastText : denotes the embeddings trained on the crisis tweet corpus with the

FastText original package. We used CBOW as in CrisisW2V, with dimension 300, and

default values for all the other parameters.

• SIF : denotes the SIF approach, which is considered to be a baseline for sentence embed-

dings. The original paper used GloVe embeddings pre-trained on the Common Crawl

data. We will use GloVe embeddings with 100 dimensions, pre-trained on Twitter data

here, for consistency with the GloVe setting.

• InferSent : denotes the universal sentence representation model trained with natural

language inference data. We used the pre-trained model (Conneau et al., 2017), which

encodes tweets into 4096 dimensional vectors.

• tfSent : denotes the universal sentence encoder from (Cer et al., 2018). We use the
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encoder available from TensorFlow TF-hub, which encodes tweets into 512 dimensional

vectors.

As discussed in Section 6.1.3 (Dataset section), all experiments are performed on processed

tweets, except for the experiments with Word2Vec and FastText which are performed on

original raw tweets corresponding to the cleaned tweets, due to the fact that the preprocessing

steps are not explicit for these two types of pre-trained embeddings3. For each type of word

embedding, we further used the three aggregation approaches mentioned in the previous

section, specifically, Mean, Min/Max/Mean (MMM) and Tf-idf-Mean (Tf-idf) to convert

the word embeddings into reduced tweet representations. Furthermore, for each word-based

or sentence-based representation, we experimented with four supervised learning algorithms

from the scikit-learn library: 1) Gaussian Naive Bayes (GNB); 2) Random Forest (RF),

where the number of trees (n estimators) was set to 100 (and default values were used for

the other parameters); 3) K Nearest Neighbors (KNN), for which the default number of

neighbors was 5; 4) Support Vector Machine (SVM), with default parameters, including cost

parameter C = 1 and RBF kernel.

Leave-one-out: For CrisisLexT6 and 2CTweets, the classification task is to separate

disaster/incident relevant tweets from the irrelevant ones. After that, we can further filter

out the informative ones from the relevant tweets. This classification task is evaluated with

CrisisLexT26. We could combine, for example, CrisisLexT6 and 2CTweets in the future. We

evaluate different tweet representations based on word embeddings or sentence embeddings,

on each of the three datasets. A leave-one-out setting is used for evaluation to simulate

a real scenario. Namely, for each dataset, in a particular experiment, we select one event

as the target, and use the rest of the events from that dataset as training. For example,

when Hurricane Sandy from CrisisLexT6 is selected as test, the other five disasters from

CrisisLexT6 are used for training. Each disaster is left out in one experiment, therefore, the

number of experiments conducted for one dataset is given by the number of events in the

dataset. The results reported for a dataset are averaged over all experiments conducted on

3We also run these experiments on the cleaned tweets and the results were slight better or worse depending
on the datasets, and therefore not showed here.
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Table 6.2: Average accuracy values (and standard deviation) of CrisisLexT6 using bag-
of-words representations (baseline) and word embeddings representation with traditional
models. For word embeddings representations, the best value of each column is highlighted
in bold font. Furthermore, underscored values represent the best values among those corre-
sponding to a particular classifier. The more underscored values in a column, the better the
corresponding word embedding performs as compared to other embeddings. Also, the more
bold values one type classifier has for a dataset, the better that type of classifier is for that
dataset.

CrisisLexT6 Binary Count Tf-idf

NB 85.8±9.4 84.3±9.0 84.5±9.7
RF 81.3±10.8 81.4±10.3 81.4±10.1
KNN 69.4±7.9 71.6±7.6 78.5±9.6
SVM 64.2±15.1 64.6±15.0 74.7±9.4

Word2Vec CrisisW2V GloVe CrisisGloVe FastText CrisisFastText

GNB Mean 80.8±7.9 75.7±7.3 83.4±7.6 78.3±8.5 82.5±7.2 76.4±5.9
MMM 79.7±6.2 79.8±5.8 82.8±6.7 79.1±6.5 79.8±6.0 77.4±6.0
Tf-idf 68.7±4.7 75.3±8.8 83.1±5.9 78.5±10.3 66.2±4.6 75.2±6.5

RF Mean 84.1±8.7 83.3±9.2 87.5±7.4 83.5±10.7 84.7±9.3 81.5±8.5
MMM 82.4±9.1 83.2±8.8 85.9±9.6 81.6±11.6 80.8±9.5 81.9±7.4
Tf-idf 82.4±8.7 82.1±10.1 87.2±7.1 82.7±12.1 82.4±9.4 80.5±9.7

KNN Mean 84.7±4.1 82.0±6.0 83.8±3.4 82.5±8.2 82.3±3.5 77.9±4.8
MMM 86.3±5.8 82.1±6.7 84.8±5.9 82.9±9.9 85.0±5.9 74.6±4.3
Tf-idf 80.1±3.7 80.1±5.1 81.9±3.5 80.0±6.9 79.1±3.4 75.1±4.4

SVM Mean 84.6±7.7 86.3±10.2 89.4±4.7 82.6±12.5 82.9±8.1 84.7±11.0
MMM 87.3±6.6 85.8±9.5 89.0±5.9 83.3±13.1 86.2±7.8 83.7±8.3
Tf-idf 87.2±5.7 79.5±11.2 88.8±4.3 82.8±12.4 87.5±5.4 79.2±10.4

that dataset. Intuitively, the averages should provide an indication of how well the models

built generalize to different future events.

6.1.5 Results and discussion

Given the variety of word embeddings that are available in the machine learning and NLP

community, we aim to understand how the performance of traditional classifiers vary with

different types of word embeddings, and whether re-training the embeddings on crisis data is

necessary or not. Furthermore, given that text classification tasks (e.g., sentiment analysis)
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Table 6.3: Average accuracy values (and standard deviation) of CrisisLexT26, using bag-of-
words representations(baseline) and word embeddings representation with traditional mod-
els. For word embeddings representations, the best value of each column is highlighted in
bold font. Furthermore, underscored values represent the best values among those corre-
sponding to a particular classifier. The more underscored values in a column, the better the
corresponding word embedding performs as compared to other embeddings. Also, the more
bold values one type classifier has for a dataset, the better that type of classifier is for that
dataset.

CrisisLexT26 Binary Count Tf-idf

NB 78.5±6.5 78.4±6.3 83.0±4.8
RF 84.2±5.0 84.7±5.0 84.0±5.5
KNN 45.0±10.2 54.3±8.7 79.9±5.9
SVM 84.2±5.9 84.0±6.0 70.2±14.8

Word2Vec CrisisW2V GloVe CrisisGloVe FastText CrisisFastText

NB Mean 80.7±5.8 79.6±6.0 82.1±6.1 81.7±6.6 79.8±6.2 78.5±5.8
MMM 78.7±6.7 79.6±6.2 84.1±4.6 83.2±4.8 79.3±6.0 77.3±5.1
Tf-idf 80.6±5.6 81.4±5.3 81.2±5.3 81.1±6.6 80.8±5.7 81.5±5.0

RF Mean 83.6±4.5 84.9±4.6 85.0±4.6 85.8±4.0 84.3±4.7 84.1±4.8
MMM 83.8±4.6 85.3±4.3 85.6±4.5 86.1±4.6 84.4±5.0 84.3±4.2
Tf-idf 82.4±4.6 85.0±4.2 83.0±4.6 84.5±4.7 81.6±4.6 84.2±4.0

KNN Mean 82.3±6.0 83.0±5.0 83.6±5.6 83.4±5.5 81.3±7.0 82.6±4.4
MMM 80.5±6.3 80.0±3.9 83.8±5.8 82.2±5.7 80.9±6.5 76.9±6.2
Tf-idf 79.7±6.1 83.0±4.8 83.0±5.2 82.1±6.7 79.6±7.4 84.5±4.4

SVM Mean 70.3±14.8 86.2±3.9 85.7±4.5 86.3±4.2 70.2±14.8 85.5±4.2
MMM 79.7±8.2 85.7±3.8 86.1±4.6 86.1±4.1 71.2±14.3 84.1±4.8
Tf-idf 84.4±4.6 83.8±4.5 84.1±6.3 84.1±6.0 83.9±4.3 83.8±4.8
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Table 6.4: Average accuracy values (and standard deviation) of 2CTweets, using bag-of-
words representations(baseline) and word embeddings representation with traditional mod-
els. For word embeddings representations, the best value of each column is highlighted in
bold font. Furthermore, underscored values represent the best values among those corre-
sponding to a particular classifier. The more underscored values in a column, the better the
corresponding word embedding performs as compared to other embeddings. Also, the more
bold values one type classifier has for a dataset, the better that type of classifier is for that
dataset.

2CTweets Binary Count Tf-idf

NB 89.4±4.5 88.8±4.5 89.4±4.1
RF 89.9±3.4 90.0±3.4 89.3±3.8
KNN 82.1±7.3 81.7±7.3 86.6±5.2
SVM 90.9±3.3 90.4±3.6 77.3±8.5

Word2Vec CrisisW2V GloVe CrisisGloVe FastText CrisisFastText

NB Mean 88.1±4.6 78.5±5.8 85.0±5.3 82.9±5.3 84.9±4.7 73.7±5.6
MMM 87.7±5.1 80.1±5.7 84.4±5.6 82.8±6.1 83.8±5.3 74.4±5.9
Tf-idf 82.5±5.4 81.8±4.8 85.2±5.3 85.4±5.0 78.6±5.5 79.1±5.4

RF Mean 89.6±4.2 88.6±3.9 89.0±3.7 89.1±3.3 88.6±4.3 87.7±4.5
MMM 90.5±3.6 90.5±3.6 90.6±3.3 90.3±3.2 90.5±3.8 88.3±4.5
Tf-idf 86.4±5.6 88.5±4.0 88.4±4.3 87.6±4.6 85.7±5.9 87.6±4.4

KNN Mean 90.1±3.2 89.1±3.6 88.0±3.9 88.7±4.3 87.9±4.1 86.9±4.6
MMM 90.0±3.3 88.2±4.1 87.1±4.9 88.5±4.2 88.1±2.8 82.2±4.7
Tf-idf 88.4±3.2 88.1±4.1 87.5±4.0 87.6±4.4 87.0±4.4 86.6±4.4

SVM Mean 85.9±4.5 90.7±3.6 89.3±3.6 89.8±3.4 77.7±8.2 91.2±3.1
MMM 89.0±3.7 92.1±2.5 90.4±3.7 90.2±3.6 84.0±5.2 89.2±4.0
Tf-idf 90.3±3.8 88.9±4.7 90.0±3.9 90.6±3.4 89.2±4.1 87.6±6.0
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Table 6.5: Average accuracy values (and standard deviation) for three datasets with three
types of sentence embeddings and traditonal models. For each dataset, the best value of
each column is highlighted in bold font. Furthermore, underscored values represent the best
values among those corresponding to a particular classifier. The more underscored values
in a column, the better the corresponding word embedding performs as compared to other
embeddings. Also, the more bold values one type classifier has for a dataset, the better that
type of classifier is for that dataset.

SIF InferSent tfSent

CrisisLexT6 NB 83.4±6.5 80.6±6.0 88.1±6.1
RF 88.5±5.7 88.3±4.8 87.9±6.5
KNN 85.6±3.5 87.3±4.8 87.7±5.2
SVM 89.6±4.2 87.0±6.1 89.3±5.0

SIF InferSent tfSent

CrisisLexT26 NB 80.0±2.0 82.1±4.9 80.0±5.3
RF 81.3±7.0 85.3±4.4 84.7±4.1
KNN 81.0±6.0 82.2±5.2 81.8±7.1
SVM 81.0±8.5 70.2±14.8 70.2±14.8

SIF InferSent tfSent

2CTweets NB 83.5±3.2 85.9±5.0 88.0±5.0
RF 88.1±5.3 89.8±3.9 89.5±4.6
KNN 87.6±3.0 90.1±3.6 88.7±3.6
SVM 88.0±4.6 84.9±5.5 86.4±7.0
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have been shown to benefit from sentence-level embeddings pre-trained on data from other

NLP tasks, we also aim to understand how different sentence-level embeddings perform

when used for crisis tweet classification tasks. Finally, towards the ultimate goal of building

“generalized” classifiers, we aim to gain insights into how different classifiers handle different

types of embeddings, and what algorithms best handle the embeddings, in general. The

observations that we seek to draw from our experiments could be used to provide guidelines

for future studies that need to choose among different types of embeddings and supervised

classifiers, as well as guidelines for the adoption of the framework for domain adaptation

through embeddings in practice.

The results of the experiments that used tweet representations based on word embeddings

are shown in Table 6.2, 6.3 and 6.4, and the results based on sentence embeddings are shown

in Table 6.5. First of all, for all three datasets, we can always find a model trained word em-

beddings representations outperform the bag-of-words representations baselines. Although,

the baselines of 2CTweets dataset are very strong, averaged accuracy of SVM model up to

90%, but the averaged accuracy of CrisisWord2Vec MinMaxMean representation with SVM

reaches 92%. We will focus on analyzing the results of models trained with pre-trained word

embeddings in the following. Specifically, the analysis is driven by several research questions

described below.

Among the pre-trained word embeddings (i.e., Word2Vec, GloVe and FastText), which

embeddings and aggregations work better, in general, with different supervised classifiers?

By analyzing the results in Table 6.2, 6.3 and 6.4 by column, we can compare the perfor-

mance of different types of embeddings and aggregation methods (i.e., Mean, MinMaxMean

or Tfidf weighted averaging), when used with different algorithms. For each dataset and each

classifier, we underscore the best value obtained with that classifier on the dataset to ob-

serve which types of embeddings/aggregations perform well for specific classifiers and across

different classifiers. The more underscored values in a column, the better the corresponding

embedding performs. From Table 6.2, 6.3 and 6.4, we can see that the GloVe embeddings

work better for two datasets out of three. Specifically, for CrisisLexT6, GloVe pre-trained

Twitter embeddings work the best, while for CrisisLexT26 dataset, CrisisGloVe embeddings
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are better. However, for the 2CTweets dataset, the Word2Vec embeddings (either pre-

trained or trained on crisis data) are better across several supervised classifiers, although

the performance of the GloVe embeddings is very close or even better in some cases (e.g.,

with Random Forests). One possible explanation for this may be that the 2CTweets dataset

is mostly about incidents that appear as local news in a city, as opposed to large-scale dis-

asters. Intuitively, the GloVe embeddings pre-trained on Twitter may capture well disasters

such as Hurricane Sandy (given that tweets about disasters may be part of the training set),

but may not capture well the local incidents.

Regarding the different approaches to aggregate word embeddings, the performances vary

with the aggregation approach, and it cannot be claimed that one approach is better than the

others, in general. However, if we focus on the best types of word embeddings for each dataset

(CrisisLexT6, GloVe column; CrisisLexT26, CrisisGloVe column; and 2CTweets, Word2Vec,

CrisisW2V columns), it can be observed that the MinMaxMean (MMM) is generally better

than or very close to the other two aggregation approaches, although sometimes the best

values are achieved by Mean aggregation.

Given the existing pre-trained embeddings, do crisis tweet classification tasks benefit from

embeddings trained specifically on a crisis tweet corpus?

When comparing the pre-trained embeddings with the embeddings trained on the crisis

tweet corpus, we can see that for CrisisLexT6 the embeddings pre-trained on a general

corpus are better, while for CrisisLexT26 and 2CTweets the embeddings trained on the crisis

tweet corpus are better. In particular, for CrisisLexT26, the results with CrisisW2V and

CrisisFastText are better for almost all classifiers, as compared to the results obtained with

the corresponding Word2Vec and FastText pre-trained embeddings. While the CrisisGloVe

embeddings are not always better than the pre-trained Twitter GloVe embeddings, they can

still achieve competitive performance when used with Random Forest or SVM classifiers.

One possible reason that the GloVe crisis-specific embeddings perform better than the

pre-trained embeddings on CrisisLexT26, but not on the CrisisLexT6 dataset, may be the

fact that the CrisisLexT6 classification task (relevant to disasters or not relevant) is more

general, and thus its vocabulary may be better covered by the general Twitter corpus used
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for the pre-trained embeddings. As opposed to that, the CrisisLexT26 tasks are more specific

to crises and benefit more from crisis embeddings.

Among the sentence encodings (i.e., SIF, InferSent, tfSent), which encodings work better,

in general, with different classifiers? How do the sentence encodings compare with the word

embeddings?

By comparing columns in Table 6.5, we can see that the InferSent sentence encoder is

better for CrisisLexT26 and 2CTweets, while the simple SIF encoder is generally better for

the CrisisLexT6 dataset. InferSent generates sentence encodings with 4096 dimensions, a

significantly larger number of dimensions as compared to the SIF sentence encoder (which

uses just 100 dimensions), and the tfSent encoder (which uses 512 dimensions). Based on

our prior experimentation with CrisisLexT6 and CrisisLexT26, a relatively small number

of features is needed to discriminate between relevant and irrelevant tweets in CrisisLexT6,

while a larger number of features is needed to discriminate between crisis informative and

non-informative tweets in CrisisLexT26. Our prior observations match with the current

study which suggests that a sentence encoder that produces vectors with a small number

of dimensions (SIF) is useful for CrisisLexT6, while an encoder that produces vectors with

a large number of dimensions (InferSent) is useful for CrisisLexT26. Thus, in general, the

choice of the sentence encoder may be related to the choice of the number of dimensions

used by the encoder, which in turn depends on difficulty of the classification task at hand.

To evaluate word embeddings versus sentence encodings, we compare Tables 6.2, 6.3, 6.4

with 6.5, and observe that the best values for a dataset are generally obtained using word

embeddings. This is counter-intuitive, as one would expect the sentence-level encodings

to better capture the content of a tweet. The reason for this may be related to the fact

that we do not perform hyper-parameter tuning for classifiers such as RF and SVM. For

CrisisLexT6, the Naive Bayes (NB) classifier, which does not have any hyper-parameters,

the tfSent model produces an average accuracy of 88%, which is a 5% improvement of the

best accuracy obtained with word embeddings. Thus, sentence encoders have great potential

for crisis tweet classification tasks, but more experiments and hyper-parameter tuning are

needed to better evaluate their benefits.
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Among the classifiers studied, NB, RF, KNN and SVM, which one benefits more from

embeddings?

When using word embeddings, the SVM classifier performs the best overall, regardless

of the type of embedding and aggregation employed. The results of the RF classifier are

sometimes the best for a dataset, or very close to the results of SVM. When using sentence

encodings, both RF and SVM classifiers work well for the CrisisLexT6 dataset, while for the

other two datasets, the RF classifier works better. However, we believe that hyper-parameter

tuning might improve the results of SVM, making this classifier more competitive also when

using sentence encodings. Gaussian Naive Bayes doesn’t work well with simple word em-

bedding aggregations, but performs well with sentence encodings on the larger CrisisLexT6

dataset. The results of the KNN classifier are better than the results of Gaussian Naive

Bayes, but worse than those of RF and SVM, in general. The less-competitive performance

of KNN may be due to the differences between the events in a dataset. Given that we are

using several disasters to train a model, and then we test the model on a left-out test disaster,

the different disasters used in training may bring in noise with respect to the test disaster.

Even though the word embeddings or sentence encodings are meant to bridge the semantic

gap between tweets, KNN is still sensitive to noise as it is making its classifications based

on the nearest neighbors selected. If the nearest neighbors are noisy, the classification can

be wrong. Thus, overall, our study suggests that SVM or RF are good choices as traditional

supervised learning classifiers, but hyper-parameter tuning may still be needed to achieve

best performance.

6.2 Pre-trained word embeddings with deep learning

models and self-training

In this section, we evaluate pre-trained word embeddings with neural network models:

1. A standard neural network with three layers (NN);

2. A Convolutional Neural Network (CNN) based on (Kim, 2014);
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3. A one layer bidirectional Long Short-Term Memory (LSTM)Network.

We have introduced these models in Chapter 2. In addition, we also experiment with self-

training on top of the CNN model (CNN-ST), as the CNN model has the best overall

performance among the above models.

6.2.1 Experimental setup

We will use the same setting as in the previous Section 6.1 and experiment with the six types

of word embeddings. We combine all sources into one training set, the simplest combination

strategy, and use 80% of all source instances for training and 20% to validate the models

in this section. For the neural network model, we use the Mean to aggregate the word

embeddings. The dimension of the first layer is the same as the dimension as the word

embeddings, while the following two layers have 64 and 32 units, respectively. For CNN

and LSTM, the pre-trained word embeddings are loaded as the embedding layer. We use

the CNN architecture proposed by Kim (2014). We use filter window sizes of 3, 4, 5 with

100 feature maps each, and dropout rate of 0.5. The LSTM model has a 64 dimension

bidirectional LSTM layer followed by a 64 units fully connected layer and an output layer.

For all three models, ReLu is used as activation function for hidden layers, and sigmoid for

final output layer. The mini-batch size is 128, and the optimization is done with the Adam

optimizer.

For CNN with self-training, we use soft-labels. The final outputs of the CNN model are

interpreted as probabilities. We first train the CNN model with only the sources disasters

as training set. Then at each iteration, we use the CNN model from last step to label target

unlabeled instance. We then add all target unlabeled instance as positive instances to the

training set with sample weights that are based on the probabilities that they are positive.

Similarly, we add all target unlabeled instances as negative instances with sample weights

to the training set. Finally, we can train a new CNN model. We can iterate these steps for

a certain number of iterations. Here, we only run for three iterations4. We use a setting

4Considering that CNNs are slow and expensive to train compared with Naive Bayes for example, we only
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Table 6.6: Average accuracy values (and standard deviation) for three datasets, using the
leave-one-out evaluation strategy, with six types of word embeddings and deep learning
models. The best values of each model (row) is highlighted in bold font and the overall best
value for the dataset is in bold and underscore.

CrisisLexT6 Word2Vec CrisisW2V GloVe CrisisGloVe FastText CrisisFastText

SVM-Mean 84.6±7.7 86.3±10.2 89.4±4.7 82.6±12.5 82.9±8.1 84.7±11.0

NN 86.4±7.8 84.6±13.0 90.5±3.0 81.6±15.8 87.4±6.2 82.5±11.8
CNN 84.3±10.9 83.7±17.7 90.3±4.1 82.7±16.8 86.1±9.6 82.4±15.6
LSTM 84.3±9.2 84.7±15.0 88.7±3.9 82.9±17.6 87.8±6.7 81.6±15.5

CNN-ST 91.5±3.2 93.0±2.7 92.5±2.7 92.5±2.8 91.4±3.2 89.43±7.3

CrisisLexT26 Word2Vec CrisisW2V GloVe CrisisGloVe FastText CrisisFastText

SVM-Mean 70.3±14.8 86.2±3.9 85.7±4.5 86.3±4.2 70.2±14.8 85.5±4.2

NN 83.8±6.0 85.3±4.2 85.0±5.1 85.5±4.4 83.0±5.7 84.8±3.9
CNN 84.5±5.3 86.3±4.1 86.2±4.6 86.6±4.1 84.0±7.1 85.3±5.0
LSTM 84.0±5.4 86.2±4.0 85.6±4.9 86.2±4.6 84.5±5.4 85.5±4.6

CNN-ST 84.6±4.1 85.6±6.0 85.7±4.1 85.4±3.9 85.2±5.3 85.1±5.1

2CTweet Word2Vec CrisisW2V GloVe CrisisGloVe FastText CrisisFastText

SVM-MMM 89.0±3.7 92.1±2.5 90.4±3.7 90.2±3.6 84.0±5.2 89.2±4.0

NN 92.1±3.3 91.1±3.3 90.2±3.5 91.0±3.1 91.6±3.5 90.7±3.42
CNN 92.3±3.4 91.6±3.8 92.0±3.4 91.3±3.5 92.1±3.7 90.5±3.2
LSTM 91.7±3.5 91.9±2.9 91.5±3.1 91.5±2.7 91.5±3.3 91.5±3.3

CNN-ST 92.4±3.3 91.1±4.3 92.3±3.6 91.1±3.8 92.0±4.1 91.7±3.2

similar to the one in Section 5.2: we split the target data into 5 folds; we use 1 fold (20%)

as target test data, and the remaining 4 folds (80%) as target unlabeled data.

6.2.2 Results and discussion

The averaged accuracy results of the experiments are shown in Tables 6.6. To compare

with traditional models, we also take the rows that contain the best results from Tables

6.2, 6.3 and 6.4, specifically, the results correspondingto the SVM models with Mean or

MinMaxMean aggregations of word embeddings. We discuss the results following research

questions similat to those in the previous Section 6.1.

experiment with small iteration numbers.Specifically, the results reported here are for three steps. Running
more iterations - up to 10 - didn’t show a significant improvement over just three iterations.
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Among the pre-trained word embeddings and crisis word embeddings, which types work

best with different models overall?

From Table 6.6 we can see that the GloVe embeddings pre-trained with general Twit-

ter data, when used with CNN models, can achieve best or close to best results for all

three datasets. Overall, GloVe embeddings can get more stable results with deep learning

models than with traditional models. While Word2Vec works better for 2Ctweets dataset,

CrisisWord2Vec and CrisisGloVe work better for CrisisLexT26. The performance gaps with

different word embeddings sometimes are rather large, especially for CrisisLexT6, which also

proves the value of evaluating different word embeddings on the given tasks.

As for the benefits of word embeddings trained on crisis tweet corpora, we can find

similar pattern as for the experiments performed with traditional supervised models. Word

embeddings pre-trained on the general corpus work better for the relevant vs irrelevant tasks,

and crisis word embeddings trained on the crisis corpus work best for the informative vs.

non-informative task. Specifically, for CrisisLexT26 dataset, CrisisGloVe embeddings and

CrisisWord2Vec are better than embeddings pre-trained on the general corpus. Furthermore,

for the CrisisLexT6, deep learning models with general pre-trained GloVe embeddings are

better than crisis specific embeddings. For the 2CTweets dataset, CNN model with pre-

trained general Word2Vec, GloVe and FastText embeddings achieve equivalent results, and

all are better than the crisis specific word embeddings overall. The reason for this maybe be

similar to the one discussed in Section 6.1.5.

How do the deep learning models compare with traditional models? And which model,

between NN, CNN and LSTM, performs best overall for the three datasets?

Comparing deep learning models with SVM models using word embeddings, we can see

that the performances of deep learning models is just slightly better and sometimes equivalent

to that of the SVM models for all three dataset. For the best deep learning models of a

dataset, we can find an SVM model that achieves very close or equivalent results. Therefore,

SVM with aggregated word embeddings should be considered as a strong baseline for deep

learning models. Among the deep learning models, CNN models achieves the best results

overall compared with NN and LSTM models. The reason may be that tweets are short,
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Table 6.7: Accuracy results of each disaster in CrisisLexT6 in leave-one-out setting. We
represent each target disaster with its initials. The best result for each disaster (column) is
highlighted in bold.

SH QF BB WTE OT AF Averaged

CNN 85.6 94.7 85.8 94.5 92.2 89.3 90.3±4.1
CNN-ST-GloVe 91.5 94.7 91.3 97.3 91.2 89.2 92.5±2.7
CNN-ST-CrisisW2V 90.3 94.8 90.0 97.8 92.1 93.2 93.0±2.7

and small local pieces (n-grams) of the tweets can better reflect tweets’ labels. CNN models

are able to captures different n-grams features and therefore can get better results.

Does self-training help with deep learning models?

Given the best overall word embeddings and the best overall model (CNN), selected

based on the results, we want to see whether self-training can further help the CNN models

or not. From Table 6.6 we can see, for CrisisLexT6, self-training helps improve the base

CNN models for all types embeddings. Using pre-trained Twitter GloVe embeddings and

CrisisGloVe, CNN-ST improves the overall average accuracy from about 90% in the CNN

model to 92%, which is a 2% improvement. But surprisingly, CNN-ST achieves the best

results using crisis embeddings CrisisWord2Vec with the averaged accuracy up to 93%. A

closer look into the accuracy results of each disaster in Table 6.7 shows that the improvement

of CNN-ST from CNN mainly comes from the better performances on Hurricane Sandy,

Boston Bombing, and Albert Flood. Especially Albert Flood, CNN with CrisisWord2Vec

has significiant improvements (from 89% to 93%). As the majority of tweets in our crisis

corpora are retrieved from hurricanes during the 2017 hurricane season, when several severe

floods among cities such as Houston were also reported together with Hurricane Harvey,

better results using crisis specific embeddings for Hurricane Sandy and Alberta Flood are

expected. However, self-training doesn’t help for 2CTweets, and even slightly hurts the

performance of the CNN models for CrisisLexT26. The reason maybe that we have enough

target unlabeled data in CrisisLexT6 but not for the other two datasets. The size of each

dataset is shown in Table 6.1. For CrisisLexT6, for each target disaster/crisis, we have nearly

8,000 tweets, therefore about 6,800 target unlabeled tweets. However, for CrisisLexT26, each
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target disaster/crisis has only about 1,000 tweets in total, and some are very unbalanced

(e.g., in New York train crash case). For 2CTweets, the size of each target disaster/crisis

is more than 1,000, but still less than 3,000. With our leave-one-out setting, the source

instances are roughly 10 times the target unlabeled instances, therefore still dominate the

models’ performances. We believe self-training should, in general, help deep learning models

when we have a very large number of target unlabeled data. But the training cost increases

significantly also comparing with just train the model once. Furthermore, the training cost

is even higher with larger dataset. For our experiments, the good outcome is that the results

of ten iterations doesn’t change much compared to the outcome with three iterations.

6.3 Pre-trained language model with multi-source do-

main adversarial networks

In this section, we experiment with pre-trained language based models, specifically models

based on BERT (Devlin et al., 2018). We take the results of CNN and CNN-ST models

from the previous section as baselines, and run BERT based models. We also run the multi-

source domain adversarial networks model (MDAN) (Zhao et al., 2017) with averaged word

embedding representations, and finally representations using BERT language model outputs.

6.3.1 Experimental setup

As a pre-trained language model trained on large datasets, BERT can be used here in

different ways. We can simply take the final hidden vector of the first input token [cls], add

one classification layer and fine-tune the model with sources labeled data, which is usually

referred as default BERT model. We can also just use embeddings computed from a pre-

trained BERT language model to get token representations, and use them in other models

just like we use pre-trained word embeddings in traditional supervised models. This use of

BERT with other models can be seen as a feature representation based approach. Here,

we experiment with both fine-tuning and the embeddings idea. For MDAN models, the
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original paper is using 5000 dimensional feature vectors of unigram and bigram tokens, and

three hidden layers in the networks (with 5000, 500, 100 units, respectively). We will use

averaged word embeddings as representations, as well as average of the final hidden state

sequences of BERT pre-trained language model. BERT has two pre-trained models: base

and large. We will use the base one, specifically “bert-base-uncased”, which has 12 layers of

transformer blocks and 12 attention heads, while the hidden dimension is 768. The details

of the experiments are as follows:

• BERT: This model adds a fully connect layer to the language model. It takes the final

hidden vector of the first input token (a 768 dimension vector) as the aggregation of

a tweet, and passes it to the classification layer. The whole model is fine-tuned with

sources labeled instances.

• BERT-CNN: Instead of just using the hidden vector of the first input token, here we

will use the hidden states of all layers of BERT. The sequence of the hidden states of

each layer is passed to a convolutional layer, followed by a fully connected layer as the

classification layer. The model is set as in (Ma, 2019), where the convolutional layer

has 16 filters of size 3,768 and the out channels are then concatenated together (16

filters, 12 layers, 192 in total).

• BERT-LSTM: With this model, the final hidden states sequence of all tokens in a tweet

are used, and the sequence is passed to a 256-units bidirectional LSTM layer followed

by a classification layer.

• MDAN: For this model, we use averaged pre-trained word embeddings as representa-

tions, specifically, the best representations based on the previous section results. We

use 100-dimensional pre-trained general Twitter GloVe embeddings for CrisisLexT6,

100-dimensional crisis specific word embeddings, CrisisGloVe, for CrisisLexT26, and

300-dimensional pre-trained Word2Vec word embeddings for 2CTweets. The units of

the three hidden layers are (word embedding dimension, 64, 32).

• MDAN-BERT: For this model, we take the final hidden states of all tokens of a tweet
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Table 6.8: Averaged accuracy results of three datasets with BERT and MDAN based models.

CrisisLexT6 CrisisLexT26 2CTweets

CNN 90.3±4.1 86.6±4.1 92.3±3.4
CNN-ST 93.0±2.7 85.4±3.9 92.4±3.3

BERT 88.3±7.4 87.7±4.1 93.1±3.1
BERT-CNN 88.8±6.6 87.6±4.1 92.9±3.4
BERT-LSTM 88.9±6.7 87.5±4.2 92.9±3.0
MDAN 90.2±3.7 86.1±4.3 90.4±3.5
MDAN-BERT 89.1±4.4 87.2±3.3 91.4±3.5

and average them to one vector as the representation of that tweet. Thus, each tweet

is still represented as a 768-dimensional vector like in BERT default model, but the

average on all token final hidden states usually works better than the vector of the first

input token. Then we feed the representations from BERT to a MDAN model that

has hidden units (768, 256, 64).

We still use the same leave-one-out setting as in two previous sections.

6.3.2 Results and discussion

The average accuracy results of the experiments are shown in Table 6.8. The best values of

each dataset (column) is highlighted in bold. Comparing with CNN models, BERT based

models work better for CrisisLexT26, sightly better than CNN baselines for 2CTweets, but

not better than the CNN model, especially the CNN-ST model for CrisisLexT6. We suspect

that too many source instances may deteriorate the model performance on the target domain,

especially with the fine-tuning approach. To investigate this further, for CrisisLexT6, we did

a simple experiment using just 10% percent of all available sources instance for training, and

the results show that we can achieve equivalent averaged accuracy as the CNN model. This

suggests that we may be able to get better results using carefully selected source instances

with BERT fine-tuned models. If we compare BERT-CNN and BERT-LSTM with the BERT

default fine-tuned model, the results are very close to each other. For 2CTweets, the BERT

default model is actually better, although the differences are not significant. This suggests
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that we may not need to use complex layers on top of BERT, as a simple layer with fine-

tuning can work well.

Similarly, for the two MDAN models, MDAN-BERT model slightly improves the perfor-

mance of the CNN baseline for CrisisLexT26, but not for the other two datasets for which the

results are actually worse than those of the CNN models. The results of the MDAN models

for CrisisLexT6 and CrisisLexT26 are close or equivalent to CNN baselines, but are worse

than the CNN baselines for 2CTweets. Our preliminary experiments with hyper-parameter

tuning for the MDAN models also show that these models are not highly sensitive to the

hyper-parameters, meaning the performance of the model may not improve when changing

some hyper-parameters, although more careful hyper-parameter tuning is needed to finally

conclude that. But from the representation comparison perspective, the MDAN model works

better with BERT representations than with the word embedding representations for two

datasets, CrisisLextT26 and 2CTweets. This is an intuitive results, considering that pre-

trained language models are built with much more deep models than the models used to

train word embeddings.

To further investigate where the differences between model performances are observed,

we look into the accuracy results for each disaster in CrisisLexT6 as in Table 6.9. We take

CNN as the baseline, and compare BERT, MDAN-embeddings and CNN-ST for each target

disaster in CrisisLexT6. Recall that the experimental setting is leave-one-out, where one

disaster is taken as target, and the other disasters in the dataset are included in the sources.

It can be observed that, when compared with the CNN baseline, CNN-ST can significantly

improve the performance on three disasters, SH, BB and AF, it performs slightly worse on

one disaster (OT), and it does not deteriorate the performance on the other two (QF, WTE).

Compared with the CNN baseline, BERT model improves the performance significantly for

only one target (QF), slightly improves the performance for two disasters (WTE, OT), and

performs much worse than the baseline for three disasters (SH, BB, AF). Interestingly, the

BERT model behaves almost the opposite of the CNN-ST. The BERT model performs better

than the CNN baseline, where the CNN-ST performs worse, for example QF and OT, while

the BERT model performs much worse than the baseline when CNN-ST performs better,
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Table 6.9: Accuracy results of each disaster in CrisisLexT6 in leave-one-out setting. We
represent each target disaster with its initials. The best result for each disaster (column) is
highlighted in bold.

SH QF BB WTE OT AF Averaged

CNN 85.6 94.7 85.8 94.5 92.2 89.3 90.3±4.1

BERT 79.4 96.0 82.0 95.8 92.6 83.9 88.3±7.4
MDAN 85.6 92.8 89.1 95.1 91.7 86.8 90.2±3.7
CNN-ST 90.3 94.8 90.0 97.8 92.1 93.2 93.0±2.7

specifically, for SH and BB. Fine-tuning a pre-trained language model can easily overfit the

sources, therefore the performance may deteriorate when the target disaster is too different

from the sources, as in the case of Hurricane Sandy (SH). The MDAN model performs better

than the CNN baseline for two disasters, BB and WET, and worse for three disasters, QF,

OT and AF. If we only compare disasters of the same type, it’s interesting to see that

the MDAN model can improve the results for man-made disasters, Boston Bombing (BB)

and West Texas Explosion (WTE) but not for floods (QF and AF). The reason may be

that the distances between the distribution of BB and the distributions of the other source

disasters, such as SH or OT, are bigger than the distance between the distribution of QF

and the distributions of its source disasters, e.g., SH or OT, because both a Hurricane and

a Tornado may cause floods as well. The adversarial learning of the MDAN models may

improve the results more when the target and sources domains are further apart.

6.4 Conclusions

In this chapter, we experimented with embeddings based representation approaches, which

utilized word embeddings, sentence encodings, and pre-trained language models, in a multi-

source domain adaptation setting. We first evaluated how different representations using pre-

trained word embeddings and sentence encodings perform with supervised learning models

in Section 6.1. We then evaluated pre-trained word embedding with deep learning models in

Section 6.2, and also proposed to run self-training with a CNN model here. Finally, in Section
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6.3, we used the state-of-the-art pre-trained language model BERT on the classification

tasks and finally applied a multi-source domain adversarial model using the representations

obtained from the pre-trained BERT model.

In Section 6.1, we used the bag-of-word representations as baselines, and compared sim-

ple feature or representation-based approaches with pre-trained word embeddings. We found

that this simple feature based adaptation could help improve the performances. We then

compared three types of word embeddings (Word2Vec, GloVe and FastText) and three ap-

proaches to aggregate the word embeddings into tweet representations (specifically, Mean,

MinMaxMean, and TfidfMean). We performed an extrinsic evaluation, where the embed-

dings were used with four traditional machine learning algorithms (Naive Bayes, Random

Forest, K-Nearest Neighbors and Support Vector Machines) for crisis tweet classification

tasks.

We used both word embeddings pre-trained on corpora such as Google News, Wikipedia

or Twitter, and crisis-specific embeddings trained on our tweet corpora. We observed that

the crisis-specific embeddings were more suitable for more specific crisis-related tasks, while

the pre-trained embeddings are more suitable for more general classification tasks, where

not all the tweets classified are crisis related. Among the three types of word embeddings

(Word2Vec, GloVe and FastText), the GloVe embeddings performed the best overall on the

three datasets used in our study (CrisisLexT6, CrisisLexT26 and 2CTweets). Specifically,

the pre-trained GloVe embeddings worked better for the more general classification task in

CrisisLexT6, while the CrisisGloVe performed better for the more specific classification tasks

in CrisisLexT26. Furthermore, among the traditional supervised models, SVM models were

shown to make the best use of the embeddings in terms of generalizing to data from future

disasters.

In addition to word embeddings, we also experimented with models for sentence encoding

in Section 6.1, and showed that the sentence encoders have great potential for being used in

crisis tweet classification tasks. For example, the sentence encoding representations worked

much better than the aggregated pre-trained word embeddings for the Naive Bayes classifier.

This suggests that we can get better representations with sentence encoding models than
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just aggregating pre-trained word embeddings.

In Section 6.2, an extrinsic evaluation of the different types of word embedding was

performed with deep learning models, namely Neural networks (NN), Convolutional neural

networks (CNN) and Long short-term memory networks (LSTM). We found similar patterns

regarding the types of word embeddings that work better. CNN models, in general, worked

better than the other two types of models. Given that, we further ran self-training with

CNN as base model, and improved the averaged accuracy of the CNN model by up to 3% for

CrisisLexT6. Therefore, we claim that self-training holds great potential if a larger number

of target unlabeled data is available.

In Section 6.3, we ran BERT fine-tuned classification models, and MDAN models with

representations from pre-trained word embeddings and from pre-trained BERT language

models. We found that BERT-based models, including fine-tuned models, and MDAN with

the BERT representation model (MDAN-BERT) were better than the CNN baselines for

CrisisLexT26, but not for the other two datasets. Multi-domain differences may be one

reason that BERT based models, as well as MDAN models have worse performance for the

CrisisLexT6 and 2CTweets datasets.

To conclude, our study provides insights into to how to build “generalized” classifiers that

are ready to use in real crisis situations. For an emergent disaster, the first classification

task to be addressed is the classification of tweets as relevant or irrelevant to the disaster

(similar to CrisisLexT6). Subsequently, relevant tweets can be classified as informative and

non-informative (CrisisLexT26), and further into specific situational awareness categories,

such as injured people, damaged infrastructure, etc. Our preliminary results suggest that

the relevant versus irrelevant classification task may be addressed using a “generalized”

classifier that employs Twitter pre-trained GloVe embeddings with a CNN model, and if

time allows, we can use self-training to improve the classifier’s performance for the specific

target disaster. The informative versus non-informative classification task may be addressed

with a “generalized” classifier that employs a pre-trained language model (BERT) and the

fine-tuning approach, assuming that we can get labeled source disaster data that cover

different types of disasters or crises.
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Chapter 7

Conclusions and future directions

In this thesis, we have studied domain adaptation problems for social media crisis data classi-

fication tasks, specifically crisis tweet classification. We proposed simple yet effective domain

adaptation approaches that could be used in practice in disaster management. Concretely,

the main contributions are summarized in what follows.

In Chapter 5, we proposed domain adaptation approaches based on Naive Bayes with

Expectation Maximization (EM) and self-training strategies. We also performed a hyper-

parameter analysis to provide guidance for potential practical application. We further com-

pared the self-training approach with a feature representation based approach, Correlation

Alignment (CORAL), used on top of supervised Naive Bayes classifiers, and proposed a

hybrid model combining self-training and CORAL on top of Naive Bayes models. We ex-

perimented with different source and target disaster pairs on predicting the disaster related

tweets.

In Chapter 6, we utilized word embeddings, sentence encodings, and pre-trained language

models in a multi-source domain adaptation setting. We first evaluated how different repre-

sentations using pre-trained word embeddings and sentence encoding models perform with

supervised learning models in Section 6.1. We then evaluated pre-trained word embedding

with deep learning models in Section 6.2, we also proposed to run self-training with a CNN

model here. Finally, in Section 6.3, we experimented with approaches based on state-of-
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the-art pre-trained language models, specifically BERT, and applied a multi-source domain

adversarial model using the representations computed from pre-trained BERT model.

For parameter and instance based domain adaptation approaches, we found that EM/self-

training represent effective approaches for domain adaptation problems if we had large target

unlabeled data. For feature/representation based approaches, simple approaches which ag-

gregate pre-trained word embeddings could improve the performance of supervised models

with bag-of-words representations in the supervised settings. The extrinsic evaluation of

different pre-trained word embeddings showed that such evaluation was needed for the clas-

sification tasks. For our datasets, GloVe word embeddings worked better overall. For the

pre-trained language model based approaches, we found that smaller datasets benefited more

from pre-trained language model (BERT) with the fine-tuning approach. This approach has

great potential and needs further investigation.

As for future work, there are still many challenges and problems that need to be ad-

dressed From the social media crisis data point of view, we need more diverse data that

will cover more types of disasters/crises. Multi-modal data that includes not only texts but

also images, or even videos, are also needed to perform more insightful analyses. From the

classification tasks point of view, we can extend our approaches to more classification tasks,

such as multi-class classification tasks for situational awareness categories. It would also

be useful to consider the classification of eyewitness tweets versus non-eyewitness tweets.

Many other classification tasks that are important for emergency management are also

challenging and need more research efforts, such as misinforamtion/disinformation labeling,

cross-language classifications task, and event/object/location detection, as well as damage

evaluation, among others. From the approaches perspective, we can experiment with more

instance weight and selection approaches, especially in the multi-source domain adaptation

setting. We can collect a large disaster/crisis dataset, for example, from Wikipedia, and

use that to train a language model that is specific for disaster/crisis, and then fine-tune the

model for downstream crisis data classification tasks. We have experimented with single-

source domain adaptation and multi-source domain adaptation approaches, with focus on

unsupervised domain adaptation. Other transfer learning approaches, like multi-task learn-
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ing, would be interesting too when we have small amount of target labeled data. Similarly,

cross-lingual models are of interest, to help crisis management in countries where they have

more limited resources in terms of model training. In addition, zero-shot or few-shot learn-

ing can be valuable too for cases where we do not have disaster/crisis labeled tweets for all

classes. Finally, domain adaptation approaches for multi-modal social media data that have

both texts and visual data, such as images or videos, could also be of great value to enhance

situational awareness in disaster management.
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dence learning. In D. Jurafsky and É. Gaussier, editors, EMNLP 2006, Proceedings of

the 2006 Conference on Empirical Methods in Natural Language Processing, 22-23 July

2006, Sydney, Australia, pages 120–128. ACL, 2006. URL https://www.aclweb.org/

anthology/W06-1615/.

J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders:

Domain adaptation for sentiment classification. In Association for Computational Lin-

guistics, Prague, Czech Republic, 2007.

J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds for domain

adaptation. In Advances in Neural Information Processing Systems 21, Cambridge, MA,

2008. MIT Press.

A. Blum and T. M. Mitchell. Combining labeled and unlabeled data with co-training. In

P. L. Bartlett and Y. Mansour, editors, Proceedings of the Eleventh Annual Conference

on Computational Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24-26,

1998, pages 92–100. ACM, 1998. doi: 10.1145/279943.279962. URL https://doi.org/

10.1145/279943.279962.

128

https://www.aclweb.org/anthology/W06-1615/
https://www.aclweb.org/anthology/W06-1615/
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/279943.279962


P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5:135–146,

2017. ISSN 2307-387X.

C. D. Boom, S. V. Canneyt, T. Demeester, and B. Dhoedt. Representation learning for very

short texts using weighted word embedding aggregation. CoRR, abs/1607.00570, 2016.

URL http://arxiv.org/abs/1607.00570.

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.

In D. Haussler, editor, Proceedings of the Fifth Annual ACM Conference on Computa-

tional Learning Theory, COLT 1992, Pittsburgh, PA, USA, July 27-29, 1992, pages 144–

152. ACM, 1992. doi: 10.1145/130385.130401. URL https://doi.org/10.1145/130385.

130401.

L. Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996. doi: 10.1007/

BF00058655. URL https://doi.org/10.1007/BF00058655.

L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001. doi: 10.1023/A:

1010933404324. URL https://doi.org/10.1023/A:1010933404324.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

C. Caragea, A. C. Squicciarini, S. Stehle, K. Neppalli, and A. H. Tapia. Mapping moods:

Geo-mapped sentiment analysis during hurricane sandy. In S. R. Hiltz, L. Plotnick,

M. Pfaf, and P. C. Shih, editors, 11th Proceedings of the International Conference on

Information Systems for Crisis Response and Management, University Park, Pennsylva-

nia, USA, May 18-21, 2014. ISCRAM Association, 2014. URL http://idl.iscram.org/

files/caragea/2014/372_Caragea_etal2014.pdf.

C. Caragea, A. Silvescu, and A. H. Tapia. Identifying informative messages in disasters

using convolutional neural networks. In A. H. Tapia, P. Antunes, V. A. Bañuls, K. A.
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H. Daumé III. Frustratingly easy domain adaptation. In Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics, pages 256–263. Association for

Computational Linguistics, 2007. URL http://www.aclweb.org/anthology/P07-1033.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the royal statistical society. Series B (methodological),

pages 1–38, 1977.

S. Desai, C. Caragea, and J. J. Li. Detecting perceived emotions in hurricane disasters. In

D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, editors, Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online,

July 5-10, 2020, pages 5290–5305. Association for Computational Linguistics, 2020. URL

https://www.aclweb.org/anthology/2020.acl-main.471/.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional

transformers for language understanding. CoRR, abs/1810.04805, 2018. URL http://

arxiv.org/abs/1810.04805.

C. Du, H. Sun, J. Wang, Q. Qi, and J. Liao. Adversarial and domain-aware BERT for cross-

domain sentiment analysis. In D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, edi-

tors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, ACL 2020, Online, July 5-10, 2020, pages 4019–4028. Association for Computational

Linguistics, 2020. URL https://www.aclweb.org/anthology/2020.acl-main.370/.

L. Duan, I. W. Tsang, D. Xu, and T. Chua. Domain adaptation from multiple sources

via auxiliary classifiers. In A. P. Danyluk, L. Bottou, and M. L. Littman, editors, Pro-

ceedings of the 26th Annual International Conference on Machine Learning, ICML 2009,

132

http://dl.acm.org/citation.cfm?id=1870526.1870534
http://dl.acm.org/citation.cfm?id=1870526.1870534
http://www.aclweb.org/anthology/P07-1033
https://www.aclweb.org/anthology/2020.acl-main.471/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/2020.acl-main.370/


Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International Confer-

ence Proceeding Series, pages 289–296. ACM, 2009. doi: 10.1145/1553374.1553411. URL

https://doi.org/10.1145/1553374.1553411.

J. L. Elman. Finding structure in time. Cogn. Sci., 14(2):179–211, 1990. doi: 10.1207/

s15516709cog1402\ 1. URL https://doi.org/10.1207/s15516709cog1402_1.

C. Fan, F. Wu, and A. Mostafavi. A hybrid machine learning pipeline for automated map-

ping of events and locations from social media in disasters. IEEE Access, 8:10478–10490,

2020. doi: 10.1109/ACCESS.2020.2965550. URL https://doi.org/10.1109/ACCESS.

2020.2965550.

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large linear

classification. Journal of Machine Learning Research, 9:1871–1874, 2008. doi: 10.1145/

1390681.1442794. URL http://doi.acm.org/10.1145/1390681.1442794.

M. Faruqui and C. Dyer. Community evaluation and exchange of word vectors at wordvec-

tors. org. In Proceedings of 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 19–24, 2014.

Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagation. In

F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd International Conference

on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR

Workshop and Conference Proceedings, pages 1180–1189. JMLR.org, 2015. URL http:

//proceedings.mlr.press/v37/ganin15.html.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,

and V. S. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine

Learning Research, 17:59:1–59:35, 2016. URL http://jmlr.org/papers/v17/15-239.

html.

H. Gao, G. Barbier, and R. Goolsby. Harnessing the crowdsourcing power of social media for

133

https://doi.org/10.1145/1553374.1553411
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1109/ACCESS.2020.2965550
https://doi.org/10.1109/ACCESS.2020.2965550
http://doi.acm.org/10.1145/1390681.1442794
http://proceedings.mlr.press/v37/ganin15.html
http://proceedings.mlr.press/v37/ganin15.html
http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html


disaster relief. IEEE Intelligent Systems, 26(3):10–14, 2011. doi: 10.1109/MIS.2011.52.

URL https://doi.org/10.1109/MIS.2011.52.

F. A. Gers, J. A. Schmidhuber, and F. A. Cummins. Learning to forget: Continual prediction

with lstm. Neural Comput., 12(10):2451–2471, Oct. 2000. ISSN 0899-7667. doi: 10.1162/

089976600300015015. URL https://doi.org/10.1162/089976600300015015.

X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classifi-

cation: A deep learning approach. In Proceedings of the 28th International Conference on

International Conference on Machine Learning, ICML’11, pages 513–520, USA, 2011. Om-

nipress. ISBN 978-1-4503-0619-5. URL http://dl.acm.org/citation.cfm?id=3104482.

3104547.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.

Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 27: Annual Conference on Neural Information Processing Systems

2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–2680, 2014. URL

http://papers.nips.cc/paper/5423-generative-adversarial-nets.

I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive computation

and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL http://www.

deeplearningbook.org/.

J. Guo, D. J. Shah, and R. Barzilay. Multi-source domain adaptation with mixture of

experts. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, editors, Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,

Belgium, October 31 - November 4, 2018, pages 4694–4703. Association for Computational

Linguistics, 2018. URL https://www.aclweb.org/anthology/D18-1498/.

Y. Guo, H. Zhang, and B. Spencer. Cost-sensitive self-training. In Proceedings of the 25th

Canadian Conference on Advances in Artificial Intelligence, Canadian AI’12, pages 74–

134

https://doi.org/10.1109/MIS.2011.52
https://doi.org/10.1162/089976600300015015
http://dl.acm.org/citation.cfm?id=3104482.3104547
http://dl.acm.org/citation.cfm?id=3104482.3104547
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://www.aclweb.org/anthology/D18-1498/


84, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-30352-4. doi: 10.1007/

978-3-642-30353-1 7. URL http://dx.doi.org/10.1007/978-3-642-30353-1_7.

M. A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

WEKA data mining software: an update. SIGKDD Explorations, 11(1):10–18, 2009. doi:

10.1145/1656274.1656278. URL http://doi.acm.org/10.1145/1656274.1656278.

W. L. Hamilton, K. Clark, J. Leskovec, and D. Jurafsky. Inducing domain-specific senti-

ment lexicons from unlabeled corpora. In Proceedings of the 2016 Conference on Em-

pirical Methods in Natural Language Processing, pages 595–605, Austin, Texas, Nov.

2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1057. URL

https://www.aclweb.org/anthology/D16-1057.

N. Herndon and D. Caragea. An evaluation of self-training styles for domain adaptation on

the task of splice site prediction. In J. Pei, F. Silvestri, and J. Tang, editors, Proceedings of

the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining, ASONAM 2015, Paris, France, August 25 - 28, 2015, pages 1042–1047.

ACM, 2015. doi: 10.1145/2808797.2808809. URL https://doi.org/10.1145/2808797.

2808809.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):

1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:

//doi.org/10.1162/neco.1997.9.8.1735.

J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discovering latent domains for multisource

domain adaptation. In A. W. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,

editors, Computer Vision - ECCV 2012 - 12th European Conference on Computer Vision,

Florence, Italy, October 7-13, 2012, Proceedings, Part II, volume 7573 of Lecture Notes in

Computer Science, pages 702–715. Springer, 2012. doi: 10.1007/978-3-642-33709-3\ 50.

URL https://doi.org/10.1007/978-3-642-33709-3_50.

J. Hoffman, E. Rodner, J. Donahue, B. Kulis, and K. Saenko. Asymmetric and category in-

135

http://dx.doi.org/10.1007/978-3-642-30353-1_7
http://doi.acm.org/10.1145/1656274.1656278
https://www.aclweb.org/anthology/D16-1057
https://doi.org/10.1145/2808797.2808809
https://doi.org/10.1145/2808797.2808809
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-642-33709-3_50


variant feature transformations for domain adaptation. International Journal in Computer

Vision (IJCV), 2013.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. ISSN

0027-8424. doi: 10.1073/pnas.79.8.2554. URL https://www.pnas.org/content/79/8/

2554.

J. Howard and S. Ruder. Universal language model fine-tuning for text classification. In

I. Gurevych and Y. Miyao, editors, Proceedings of the 56th Annual Meeting of the Associ-

ation for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,

Volume 1: Long Papers, pages 328–339. Association for Computational Linguistics, 2018.

doi: 10.18653/v1/P18-1031. URL https://www.aclweb.org/anthology/P18-1031/.

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf. Correcting sample

selection bias by unlabeled data. In B. Schölkopf, J. C. Platt, and T. Hofmann, editors,

Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth An-

nual Conference on Neural Information Processing Systems, Vancouver, British Columbia,

Canada, December 4-7, 2006, pages 601–608. MIT Press, 2006. URL http://papers.

nips.cc/paper/3075-correcting-sample-selection-bias-by-unlabeled-data.

A. L. Hughes, L. A. S. Denis, L. Palen, and K. M. Anderson. Online public communications

by police & fire services during the 2012 hurricane sandy. In M. Jones, P. A. Palanque,

A. Schmidt, and T. Grossman, editors, CHI Conference on Human Factors in Computing

Systems, CHI’14, Toronto, ON, Canada - April 26 - May 01, 2014, pages 1505–1514.

ACM, 2014. doi: 10.1145/2556288.2557227. URL https://doi.org/10.1145/2556288.

2557227.

M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, and P. Meier. Practical extraction of disaster-

relevant information from social media. In L. Carr, A. H. F. Laender, B. F. Lóscio,
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