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Abstract 

 [Spherical shells are widely used in aerospace, mechanical, marine, and other industrial 

applications. Accordingly, the accurate determination of their behavior becomes more and more 

important. One of the most important problems in spherical shell behavior is the determination of 

buckling loads either experimentally or theoretically. Therefore, in this study some elastic and 

plastic buckling problems associated with spherical shells are investigated.  

The first part of this research study presents the analytical, numerical, and experimental 

results of moderately thick and thin hemispherical metal shells into the plastic buckling range 

illustrating the importance of geometry changes on the buckling load. The hemispherical shell is 

rigidly supported around the base circumference against horizontal translation and the load is 

vertically applied by a rigid cylindrical boss (Loading actuator) at the apex. Kinematics stages 

of initial buckling and subsequent propagation of plastic deformation for a rigid-perfectly plastic 

shell models are formulated on the basis of Drucker- Shield's limited interaction yield 

condition. The effect of the radius of the boss used to apply the loading, on the initial and 

subsequent collapse load is studied. In the numerical model, the material is assumed to be 

isotropic and linear elastic perfectly plastic without strain hardening obeying the Tresca or Von 

Mises yield criterion. Finally, the results of the analytical solution are compared and verified 

with the numerical results using ABAQUS software and experimental findings. Good agreement 

is observed between the load-deflection curves obtained using three different fundamental 

approaches. 

In the second part, the Southwell’s nondestructive method for columns is analytically 

extended to spherical shells subjected to uniform external pressure acting radially. Subsequently 

finite element simulation and experimental work shown that the theory is applicable to spherical 

shells with an arbitrary axi-symmetrical loading too. The results showed that the technique 

provides a useful estimate of the elastic buckling load provided care is taken in   interpreting the 

results. The usefulness of the method lies in its generality, simplicity and in the fact that, it is 

non-destructive. Moreover, it does not make any assumption regarding the number of buckling 

waves or the exact localization of buckling.] 
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 [Spherical shells are widely used in aerospace, mechanical, marine, and other industrial 

applications. Accordingly, the accurate determination of their behavior becomes more and more 

important. One of the most important problems in spherical shell behavior is the determination of 

buckling loads either experimentally or theoretically. Therefore, in this study some elastic and 

plastic buckling problems associated with spherical shells are investigated.  

The first part of this research study presents the analytical, numerical, and experimental 

results of moderately thick and thin hemispherical metal shells into the plastic buckling range 

illustrating the importance of geometry changes on the buckling load. The hemispherical shell is 

rigidly supported around the base circumference against horizontal translation and the load is 

vertically applied by a rigid cylindrical boss (Loading actuator) at the apex. Kinematics stages 

of initial buckling and subsequent propagation of plastic deformation for a rigid-perfectly plastic 

shell models are formulated on the basis of Drucker- Shield's limited interaction yield 

condition. The effect of the radius of the boss used to apply the loading, on the initial and 

subsequent collapse load is studied. In the numerical model, the material is assumed to be 

isotropic and linear elastic perfectly plastic without strain hardening obeying the Tresca or Von 

Mises yield criterion. Finally, the results of the analytical solution are compared and verified 

with the numerical results using ABAQUS software and experimental findings. Good agreement 

is observed between the load-deflection curves obtained using three different fundamental 

approaches. 

In the second part, the Southwell’s nondestructive method for columns is analytically 

extended to spherical shells subjected to uniform external pressure acting radially. Subsequently 

finite element simulation and experimental work shown that the theory is applicable to spherical 

shells with an arbitrary axi-symmetrical loading too. The results showed that the technique 

provides a useful estimate of the elastic buckling load provided care is taken in   interpreting the 

results. The usefulness of the method lies in its generality, simplicity and in the fact that, it is 

non-destructive. Moreover, it does not make any assumption regarding the number of buckling 

waves or the exact localization of buckling.] 
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Preface 

A shell can be defined as a body that is bounded by two closely spaced parallel curved 

surfaces. A shell is identified by its three features: its reference surface that is the locus of points 

which are equidistant from the bounding surfaces, its thickness, and its edges. Of these, the 

reference surface is the most significant because it defines the shape of the shell where its 

behavior is governed by the behavior of its reference surface. The thickness of a point of a shell 

is the length of the normal bounded by the bounding surfaces at that point. Edges of the shell are 

designed by appropriate values of the coordinates that are established on the reference surface. 

Shells may have no edges at all, in which case they are referred to as closed or complete shells. 

A spherical shell is a generalization of an annulus to three dimensions. A spherical shell is 

therefore the region between two concentric spheres of differing radii. 

A shell is called “thin” if the ratio of its thickness to its minimum principle radius of 

curvature is small compared to unity. A shell is said to be “shallow” if the ratio of its maximum 

rise to the base diameter is small.   

The analysis of shells of revolution considering nonlinearities is of importance in various 

engineering areas.  When analyzing a shell structure subjected to a given loading one could make 

use of the general equations of the three dimensional theory of elasticity to come up with the 

state at stress at any given point. However, these equations are quite complicated and in only a 

few idealized cases can a solution be achieved. For this reason, three dimensional incident is 

approximated by making use of two dimensional theory of elasticity. The following assumptions 

are the basis for the classical linear shell theory. 

1. Shell thickness is small 



 xviii  

2. The displacements and rotations are small 

3. The normals to the shell surface before loading remain normal after loading 

4. The transverse normal stress is negligible 

The most common shell theories are based on linear elasticity concepts. Linear shell 

theories adequately predict stresses and deformations for shells exhibiting small elastic 

deformations, that is, deformations for which it is assumed that the equilibrium equation 

conditions for deformed elements are the same as if they were not deformed and Hook’s law 

applies. 

The nonlinear theory of elasticity forms the basis for the finite deflection and stability 

theories of shells. Large deflection theories are often required when dealing with shallow shells, 

highly elastic membranes and buckling problems. The nonlinear shell equations are considerably 

more difficult to solve and for this reason are more limited in use. 

Shells play an important part in all branches of engineering applications, especially in 

aerospace, nuclear, marine and petrochemical industries. The sophisticated use of shells 

incomponents are being made, such as missiles, space vehicles, submarines, nuclear reactor 

vessels, and refinery equipment is very common. As the shells are subjected to various loading 

conditions such as external pressure, seismic and/or thermal loads, compressive membrane 

forces are developed which may cause the shells to fail due to buckling or compressive 

instability. Among shell structures, the spherical shell is used frequently in the form of a 

spherical cap or a hemisphere and recently, the problem of the buckling of spherical shells has 

received considerable attention. Accordingly, in the present study,  a treatise of  two independent 

parts elastic and plastic buckling of spherical shells under various loading conditions are 

investigated. 
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Objectives and Research Methodology 

 

Spherical shell structures are widely used in several branches of engineering. The class of shells 

covered here in are thin, and moderately thick so failure by buckling is often the controlling 

design criterion. It is therefore essential that the buckling behavior of these shells is properly 

understood and then suitable mathematical models can be established. The objectives of this 

study are stated below: 

The first chapter of this study presents the analytical, numerical, and experimental results 

of moderately thick and thin hemispherical metal shells into the plastic buckling range 

illustrating the importance of geometry changes on the buckling load. The hemispherical shell is 

rigidly supported around the base circumference against vertical horizontal translation and the 

load is vertically applied by a rigid cylindrical boss actuatar at the apex. Kinematic stages of 

initial buckling and subsequent propagation of plastic deformation for rigid-perfectly plastic 

shells are formulated on the basis of Drucker- Shield's limited interaction yield condition. 

The effect of the radius of the boss, used to apply the loading, on the initial and subsequent 

collapse load is studied. In the numerical model, the material is assumed to be isotropic and 

linear elastic perfectly plastic without strain hardening obeying the Tresca or Von Mises yield 

criterion. Both axisymmmetric and 3D models are implemented in the numerical work to verify 

the absence of non-symmetric deformation modes in the case of moderately thick shells. In the 

end, the results of the analytical solution are compared and verified with the numerical results 

using ABAQUS software and experimental findings. Good agreement is observed between the 

load-deflection curves obtained using three different approaches.  



 xx

In the second chapter, Southwell’s nondestructive method for columns is extended to 

spherical shells subjected to uniform external pressure acting radially. Subsequently by means of 

finite element simulation and experimental work, it is shown that the theory is applicable to 

spherical shells with an arbitrary axi-symmetrical loading. For this technique any measurable 

deformation may be used. The results showed that the technique provides a useful estimate of the 

critical load provided care is taken in interpreting the results. The usefulness of the method lies 

in its generality, simplicity and in the fact that, it is non-destructive. Moreover, it does not need 

any assumption regarding the number of buckling waves or the exact locality of buckling. 
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A Review of Literature 

I. Historical Background of the Spherical Shell Buckling  

 

The first problems of instability, concerning lateral buckling of compressed members 

were solved about 200 years ago by L. Euler. At that time the principle structural materials were 

wood and stone. The relatively low strength of these materials necessitated stout structural 

members for which the question of elastic stability is not of primary importance. Thus Euler’s 

theoretical solution, developed for slender bars, remained for a long time without application. 

Only with the beginning of extensive construction of steel railway bridges did the question of 

buckling of compression members become of practical importance. 

 At the beginning of the twentieth century, the construction of thin reinforced concrete 

shell concrete roofs was widespread in Europe. This roof is of the type where a cylindrical shell 

with a span between 3.00 and 5.00 m is built between arch beams that give the shape of the roof. 

These arches have a tie beam to resist thrusts and there is therefore only a vertical reaction on the 

piers. Arches are placed at the bottom side of the shell. At this period concrete was considered to 

be an elastic and linear material that obeyed Hooke's law and the arches were therefore analyzed 

in these terms. 

In Germany, Walter Bauersfeld and Mergler, engineers at Dyckerhoff and Widmann, 

built the first spherical dome of concrete in 1922. In order to build the dome, they proposed 

installing a spherical net of steel bars and Mergler suggested projecting concrete against 

formwork. The spherical shape of the dome allowed the use of the same pieces of formwork 

again and again. The dome was analyzed like a continuous surface. 

 



 xxii

The construction of the dome at Jena city was made possible by Prof. Spangenberg's report. 

Construction began in the winter of 1923-1924. The bars close to the edge started to buckle and 

some stabilization bars were needed.  In this construction, Bauersfeld analyzed the bending 

moment and deformation. In the first dome (Jena, 16.00 m span), not only were the in plane 

tension and compression in the plan of the dome taken into account, but bending moments and 

deformation were also studied.  

The theory of the rigid of dome rotation was published by Föppl, Drang and Zwang. Second 

order differential equations were needed to solve the problem. Bauersfeld found an approach 

which yielded a solution, in which the Zoelly formula was used to analyze the problem of 

buckling, which gives a safety factor of 13.  

Bauersfeld asked Dr. Geckeler to undertake some experiments. He did many tests and 

found that in the loads close to the Zoelly formula buckling start. 

In the autumn of 1933 Torroja began several projects with shell structures. The first 

project he undertook was the roof of Algeciras Market. This was a dome of 46.22 m span, 

supported by 8 piers. The shell consisted of a spherical concrete construction. The shell was built 

using wooden formwork on a scaffold. With this method there was no problem with bars 

buckling as had happened to Bauersfeld with the construction of his first dome in Jena. 

In 1934 Flügge proposed a value for the critical buckling load  of spherical shells.  However the 

expression was given for a full sphere.  

Von Karman and Tsien (1939) showed that the state of stability of some structures, 

usually shell like structures, is weak. In other words, a small disturbance might cause them to 

snap into a badly deformed configuration. They also attempted to explain the discrepancy 

between the classical and excremental buckling pressures for clamped shallow spherical shells 
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under a uniform pressure. After the studies of Von Karman and Tsien (1939), the buckling 

problem of spherical shell has been examined both theoretically and experimentally by many 

investigators under various types of loading. Tsien (1942) showed that a small disturbance in a 

test would cause the shell to jump to a new configuration with large displacements as soon as the 

buckling load was exceeded.  

Kaplan and Fung (1954) and Simons (1955) studied the buckling behavior of spherical 

caps from pressure deflection curve. Their analysis was based on integration of nonlinear finite 

deflection equations. Kaplan and Fung (1954) made some experiments for very shallow clamped 

spherical caps under a uniform pressure. They compared these results with the ones obtained by 

a perturbation solution of the governing nonlinear equations and observed that the agreement 

was satisfactory.  

Buckling of clamped shallow spherical shells under external pressure has been studied 

extensively both experimentally and theoretically. In 1954, Kaplan and Fung performed an 

analytical and experimental investigation of clamped shallow spherical shells. Thurston (1961) 

obtained a numerical solution for the nonlinear equations for clamped shallow spherical shells 

under external pressure and presented the results in the post buckling range not previously 

computed. Then he compared the upper buckling and lower post buckling pressures with the 

experimental data of Kaplan and Fung (1954).  

Huang (1964) worked on the problem of clamped shallow spherical shells for symmetric 

and unsymmetric buckling as well. Huang compared his numerical finding with the experimental 

results. 

Famili and Archer (1965) investigated the buckling behavior of shallow shells by using 

the nonlinear equations, considering the asymmetric deformations at the beginning of the 
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buckling to be finite. The nonlinear eigenvalue problem was solved numerically. Their results 

were in agreement with those of Huang (1965). 

Thurston and Penning (1966) conducted an extensive experimental and analytical 

investigation of the buckling of clamped shells with axisymmetric imperfections. They basically 

compared the pressure strain and pressure deflection results obtained both experimentally and 

theoretically. They found out that the effect of axisymmetric imperfections is not large enough to 

give good agreement between theory and experiments for very thin shells.  

Hutchinson (1967) studied the initial post buckling behavior of a shallow section of a 

spherical shell subjected to external pressure. He found out that imperfection in the shell 

geometry have the same severe effect on the buckling strengths of spherical shells as 

demonstrated for axially compressed cylindrical shells. 

Budiansky (1969) and Weinitschke (1970) also determined the axisymmetric buckling 

pressures of shallow spherical shells numerically. There is a good agreement among all the 

results obtained.  

Fitch (1968) studied the elastic buckling and initial post buckling behavior of clamped 

shallow spherical shells under concentrated loading. He determined that bifurcation into an 

asymmetric pattern will occur before axisymmetric snap- buckling unless the ratio of the shell 

rise to the thickness lies within a narrow range corresponding to moderately thick shells.  Fitch 

(1970) also investigated the elastic buckling and initial post buckling behavior of clamped 

shallow spherical shells under axisymmetric load. He found out that as the area of the loaded 

region increase, the buckling behavior changes from asymmetric bifurcation to axisymmetric 

snap-through, and then back to asymmetric bifurcation. 
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Stricklin and Martinez (1969) studied nonlinear analysis of shells of revolution by the 

matrix displacement method. The nonlinear strain energy expression was evaluated using linear 

functions for all displacements. Five different procedures were examined for solving the 

equations of equilibrium, with Houbolt’s method to be the most suitable. Solutions were 

presented for the symmetric and asymmetric buckling of shallow caps under step pressure 

loadings and a wide variety of other problems including some highly nonlinear ones. The 

difficulty of repeated solutions of a large number of equations has been circumvented by placing 

the nonlinear terms on the right hand side of the equations of equilibrium and treating them as 

additional loads. The solutions of the governing equations were obtained by iterations and found 

to yield accurate results for some practical problems. For highly nonlinear problems, the 

equations were solved by the Newton-Raphson procedure, with the coupling between  harmonics  

being ignored when the nonlinear terms were treated as pseudo loads and taken to the right hand 

side of the equations. 

Huang (1969) studied the behavior of axisymmetric dynamic snap-through of elastic 

clamped shallow spherical shells under impulsive and step loading with infinite duration. It was 

observed that the dynamic snap-through buckling was not possible under impulsive loads but it 

was achieved under step loading conditions. The results obtained for static uniform pressure and 

dynamic loading formed a benchmark for many investigators in the verification of their results.  

Axisymmetric and dynamic buckling of spherical caps due to centrally distributed 

pressure was studied by Stephens and Fulton (1969). Sanders’ axisymmetric nonlinear elastic 

shell theory was approximated by finite difference equations including the Houbolt backward 

difference formulation in time. The equations were linearized using an iterative Newton-Raphson 

procedure. Axisymmetric buckling loads were given for a spherical cap subjected to a constant 
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static pressure or step pulse of infinite duration distributed axisymmetrically over a   portion over 

the center of the shell. The influence of the size of the loaded area and of moment and inplane 

boundary conditions on both static and dynamic buckling was studied, as well as various 

buckling criteria to define dynamic buckling were used.  

Grossman et al. (1969) investigated the axisymmetric vibrations of spherical caps with 

various edge conditions by carrying out a consistent sequence of approximations with respect to 

space and time. Numerical results were obtained for both free and forced oscillations involving 

finite deflections. The effect of curvature was examined with particular emphasis on the 

transition from a flat plate to a curved shell. In such a transition, the nonlinearity of the 

hardening type gradually reversed into one of softening.  

Tillman (1970) presented the results of a theoretical and experimental investigation into 

elastic buckling of clamped shallow spherical shells under a uniform pressure, focusing mainly 

on low values of the geometric parameter, for which the symmetrical and first two asymmetrical 

deformations are valid. 

Archer (1981) studied the behavior of shallow spherical shells subjected to dynamic loads 

of sufficient magnitude to result in finite nonlinear axisymmetric deformations. Marguerre’s 

equations for the small finite deflections of shallow shells with the inclusion of inertia terms 

were taken as the governing equations. Results for the quasi statically loaded shell before and 

after snap through and snap back were studied and compared with known results. The dynamic 

response of the shell to rectangular pulse loading and buckling loads were obtained.  

Dynamic buckling of orthotropic shallow spherical shells by Ganapathi and Varadan 

(1982) and axisymmetric static and dynamic buckling of orthotropic shallow spherical cap with 

circular hole by Dumir (1983) were investigated. 
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Geometric nonlinear 3D dynamic analysis of shells based on a total Largrangian 

formulation and the direct time integration of the equation of motion was derived by Wouters 

(1982). 

Dumir et al. (1984) investigated axisymmetric buckling of orthotropic shallow spherical 

cap with circular hole. Analysis has been carried out for uniformly distributed load and a ring 

load at the hole. 

Zheng and Zhou (1989) developed semi-analytical computer method to solve a set of 

geometrically nonlinear equations of plates and shells. By this method, analytical solutions such 

as exact expansion in series, perturbations and iterations of the equations can be obtained. 

Hsiao and Chen (1989) used a degenerated isoparametric shell element for the nonlinear 

analysis of shell structures. Six types of rotation variables and rotation strategies were employed 

to describe the rotation of the shell normal. In particular, a finite rotation method was proposed 

and tested.  Both the rotation variations between two successive increments and the rotation 

corrections between two successive iterations were used as the incremental rotation (rotation 

variables) to update the orientation of the shell normal.  

Chan and Chung (1989) used higher order finite elements for the geometrically nonlinear 

analysis of shallow shells. Based on K. Marguerre’s shell theory, a family of higher order finite 

elements was developed. A step iteration Newton-Raphson scheme was adopted in solving the 

final system of nonlinear equations.  

Bhimaraddi and Moss (1989) developed a shear deformable finite element for the 

analysis of general shells of revolution. 

Xie, Chen and Ho (1990) studied the nonlinear axisymmetric behavior of truncated 

shallow spherical shells under transverse loading. Load-deflection relation were obtained 
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through iteration and numerical integration. Shells subjected to uniform pressure and combined 

uniform pressure and concentrated ring loading were investigated. 

Eller (1990) derived finite element procedures for the stability analysis of nonlinear 

periodically excited shell structures. Starting from a geometrically nonlinear shell theory and 

applying Ljapunow’s first method as well as Floquet’s theory, a numerical stability criterion was 

deduced.  

Luo et al. (1991) investigated the influence of pre buckling deformations and stresses on 

the buckling of the spherical shell. They obtained from Von Karman's large deflection equation 

of the plate and by assuming that a plate has an initial deflection in the form of a spherical cap, 

the equilibrium equations of a spherical cap subjected to hydrostatic pressure were written.  

Chang (1991) developed a non-linear shear-deformation theory for the axisymmetric 

deformations of a shallow spherical cap comprising laminated curved-orthotropic layers. He 

expressed the governing equations in terms of the transverse displacement, stress function and 

rotation. Numerical results on the buckling and post-buckling behavior of spherical caps under 

uniformly-distributed loads were presented for various boundary conditions, cap rises, base 

radius-to-thickness ratios, numbers of layers and material properties. 

Delpak and peshkm (1991) developed a variational approach to the geometrically 

nonlinear analysis of asymmetrically loaded shells revolution. The formulation was based on 

taking the second variation of the total potential energy equation. The analysis commenced by 

taking the first and second variation of the total potential energy of the elastic system by ensuring 

that load increments were applied infinitely slowly. After separating the load and the stiffness 

terms and factorizing the nodal variables, a distinct demarcation in the contribution of linear and 
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second order terms was observed which provided a clear methodology in calculating nonlinear 

and geometric matrices that lead to the generation of the tangent matrix.  

A large deformation elastic plastic dynamic analysis of square plate and spherical shell 

subjected to shock loading was studied by Liang, Liao and Ma (1991). A transient dynamic finite 

element method was proposed for shock loading dynamic analysis. An incremental updated 

Lagrangian finite element procedure was drived. A 16-node isoparametric shell element was 

chosen for the study of the square plate and 8-node two dimensional axisymmetric element for 

the spherical shell.  

Goncalves (1992) investigated the axisymmetric buckling behavior of clamped spherical 

shells under uniform pressure. He examined the buckling characteristics of the spherical shells 

using a fully nonlinear Galerkin solution procedure, a classical bifurcation analysis and a reduced 

stiffness bifurcation analysis. 

Polassopoulos (1992) presented a new analytical method for the determination of the 

strength of structures subjected to bifurcation buckling affected by small structural 

imperfections. 

Chaotic dynamic analysis of viscoelastic shallow spherical shells was performed by 

Karaesmen (1992). 

The nonlinear dynamic buckling strength of clamped spherical caps under uniform step 

loading was investigated by Lee, Lie and Liou (1993). The geometric coordinates were updated 

at every time step. Thus, linearized finite element incremental equations based on the principle of 

virtual work could be derived.  A three dimentional shell element with arbitrary geometry was 

used in the finite element formulation.  



 xxx

Terndrup et al. (1995) studied the buckling behavior of imperfect spherical shells 

subjected to different loading conditions. They analyzed the bifurcation and initial post-buckling 

behaviour of highly imperfection-sensitive large spherical .shells, such as cargo tanks for ship 

transportation of liquefied natural gas and large spherical containment shells for nuclear power 

plants. 

Zhang (1999) studied the torsional buckling of spherical shells under circumferential 

shear loads. He used Galerkin variational method, for studying the general stability of the hinged 

spherical shells with the circumferential shear loads. 

Uchiyama et al. (2003) studied nonlinear buckling of elastic imperfect shallow spherical 

shells by mixed finite elements. They used nine-node-shell element and mixed formulation for 

stress resultant vectors then they compared finite element results with fifty-two experiments on 

the elastic buckling of clamped thin-walled shallow spherical shells under external pressure.  

Grünitz (2003) examined the buckling strength of clamped and hinged spherical caps 

under uniform pressure with a circumferential weld depression by using the finite element 

method. The results obtained show a significant decrease in the buckling strength due to these 

imperfections depending on the location of the weld. 

Dumir et al. (2005) presented axisymmetric buckling analysis for moderately thick laminated 

shallow annular spherical cap under transverse load. In their study, buckling was considered 

under uniformly distributed transverse load, applied statically. Annular spherical caps have been 

analyzed for clamped and simple supports with movable and immovable in-plane edge 

conditions and typical numerical loads and have been compared with the classical lamination 

theory. 
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Jones et al. (2007) investigated the problem of a thin spherical linearly-elastic shell, perfectly 

bonded to an infinite linearly-elastic medium. A constant axisymmetric stress field is applied at 

infinity in the elastic medium, and the displacement and stress fields in the shell and elastic 

medium are evaluated by means of harmonic potential functions.  

Nie et al. (2009) derived an asymptotic solution for nonlinear buckling of orthotropic shell on 

elastic foundation. They performed an extensive parametric study for deformation and buckling 

of such structures. 

The foregoing literature review is by no means exhaustive. However, the references cited 

and surveyed cover some of the important studies that have been contributed in this area. 
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II. A Brief History of Yield Line Theory 

 

As early as 1922, the Russian, A. Ingerslev presented a paper to the institution of 

Structural Engineers in London on the collapse modes of rectangular slabs. Later on yield Line 

theory as it is known today was pioneered in the 1940s by the Danish engineer and researcher 

KW Johansen. 

Authors such as R. H. Wood, L. L. Jones, A. Sawczuk and T. Jaeger, R. Park, K. O. 

Kemp, C.T. Morley, M. Kwiecinski and many others, consolidated and extended Johansen’s 

original work so that now the validity of the theory is well established. In the 1960s, 1970s, and 

1980s a significant amount of theoretical work on the application of yield line theory was carried 

out around the world and was widely reported. To support this method, extensive testing was 

undertaken to prove the validity of the theory. Excellent agreement was obtained between the 

theoretical and experimental yield line patterns and the ultimate loads. The differences between 

the theory and tests were small and mainly on the conservative side.  
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III. Historical Background of the Southwell Method  

 

Sir Richard Vynne Southwell (1888– 1970) was a British mathematician who specialized 

in applied mechanics as an engineering science academic. Richard Southwell was educated at the 

University of Cambridge, where in 1912 he achieved first class degree results in both the 

mathematical and mechanical science tripos. In 1914, he became a Fellow of Trinity College, 

Cambridge, and a lecturer in Mechanical Sciences. Southwell was in the Royal Naval Air 

Service during World War I. After World War I, he was head of the Aerodynamics and 

Structures Divisions at the Royal Aircraft Establishment, Farnborough. In 1920, he moved to the 

National Physical Laboratory. He then returned to Trinity College in 1925 as Fellow and 

Mathematics Lecturer. Next, in 1929, he moved to Oxford University as Professor of 

Engineering Science and Fellow of Brasenose College. There, he developed a research group, 

including Derman Christopherson, with whom he worked on his relaxation method. He became a 

member of a number of UK governmental technical committees, including the Air Ministry, at 

the time when the R100 and R101 airships were being conceived. 

Southwell was rector at Imperial College, London from 1942 until his retirement in 1948. 

He continued his research at Imperial College. He was also involved in the opening of a new 

student residence, Selkirk Hall. 

As a scientist, in 1932, Southwell presented his analysis for the special case of a pin 

ended strut of constant flexural rigidity of EI . Southwell method for determining the minimum 

buckling load is a nondestructive test for pined-end, initially imperfects struts. Southwell showed 

that the load deflection curve of such a member is a hyperbolic in the neighborhood of the 

smallest critical load, while the asymptote is a horizontal line, crPP = . By suitable 
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transformation of variables this hyperbolic portion of load deflection curve may be converted 

into a straight line for which the inverted slope is the minimum critical load.  
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CHAPTER 1 - Plastic Buckling of Hemispherical Shell Subjected 

to Concentrated Load at the Apex 

1.1 Introduction and Purpose of this Chapter 

 

Due to the increasing use of shell type structures in space vehicles, submarines, buildings 

and storage tanks, interest in the stability of shells has accordingly increased by researchers and 

practicing engineers. Because a hemispherical shell is able to resist higher pure internal pressure 

loading than any other geometrical vessel with the same wall thickness and radius, the 

hemispherical shell is one of the important structural elements in engineering applications. It is 

also a major component of pressure vessel construction. In practice, most pressure vessels are 

subjected to external loading due to hydrostatic pressure, or external impact in addition to 

internal pressure. Consequently, they should be designed to resist the worst combination of 

loading without failure. The load transmitted by a cylindrical rigid actuator applied at the summit 

of the sphere is considered a common external load. Thus, it is important to study its effect on 

the initial buckling and plastic buckling propagation of this type of shells.  This study presents 

the analytical, numerical, and experimental results of moderately thick hemispherical metal 

shells into the plastic buckling range illustrating the importance of geometry changes on the 

buckling load. The hemispherical shell is rigidly supported around the base circumference 

against vertical and horizontal translation and the load is vertically applied by a rigid 

cylindrical boss at the apex. Kinematic stages of initial buckling and subsequent propagation of 

plastic deformation for rigid-perfectly plastic shells are formulated on the basis of Drucker- 

Shield's limited interaction yield condition. The effect of the radius of the boss, used to 

apply the loading, on the initial and subsequent collapse load is studied. In the numerical 
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model, the material is assumed to be isotropic and linear elastic perfectly plastic without strain 

hardening obeying the Tresca or Von Mises yield criterion. Both axisymmmetric and 3D models 

are implemented in the numerical work to verify the absence of non-symmetric deformation 

modes in the case of moderately thick shells. In the end, the results of the analytical solution are 

compared and verified with the numerical results using ABAQUS software and experimental 

findings. Good agreement is observed between the load-deflection curves obtained using the 

three different approaches. The preparations to conduct experimental verifications are also 

shown in Fig. 1.1. 

 

Figure 1. 1: Sample construction procedure for the experimental study 
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1.2 Preliminary Considerations 

 

This study is focused on the following physical phenomenon. A hemispherical shell is 

compressed by a concentrated load at the summit. At the load below a certain critical value, 

called the initial buckling load, the shell remains spherical or unbuckled but when the increasing 

applied load reaches the critical initial buckling value, the shell snaps into a non-spherical 

buckled state which is characterized by a round dimple around the apex of the hemispherical 

shell. Therefore, it creates a deformation state which extends or propagates over the surface of 

the shell leaving undetermined the amplitude of deformation at various levels of load (Fig. 1.2).  

 

Figure 1. 2: Geometry and post buckling of hemispherical shells subjected to a concentrated load 
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1.3 Analytical Formulation 

1.3.1. Kinematics Assumptions 

 

The behavior of a moderately thick metal hemispherical shell under a concentrated load 

at the summit may be analyzed as follows: 

a) The perfectly-rigid state culminating at the attainment of the initial collapse load0P . 

For a concentrated load acting on a hemispherical shell the initial collapse takes place only 

in a vanishingly small region of the shell, Fig. 1.3. The collapse load 0P  depends on the 

plastic moment 0M of the shell material. If a rigid cylindrical boss is used for loading purposes, the 

size of this boss influences the region of collapse and hence the collapse load0P . 

 

 

Figure 1. 3: Initial buckling under concentrated load 

 

 



 5 

b) Deformation under the collapse load0P . 

At the load 0P , the shell snaps to reverse its curvature and continues to deform under the 

same load, resulting in the formation of a dimple. The dimple is taken to be conical in shape and 

the apex of the cone is the point where the load is acting. This assumption is not at variance with 

the observed behavior. The extent of the dimple depends again on the plastic moment 0M  of the 

shell material and on the radius of the loading boss or actuator. A section of the shell through a 

meridional plane, immediately after the deformation under the initial collapse load 0P , is 

shown in Fig.1.4. 

The outer undeformed portion of the shell (of radius R  and constant thickness0t ) and 

the conical dimple are connected by an annular zone to which the cone is tangent, and which 

shares a common tangent with the undeformed part of the shell. Both the conical dimple, 

and the annular zone which looks in section like a knuckle of radius ρ  symmetrical about 

the axis of revolution, are plastic. 

 

Figure 1. 4:  Post buckling deformation at initial collapse load 
0

P   
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c) Propagation of the annular zone. 

This is the third stage of deformation. It takes place only after the deformation under the 

constant load 0P  is complete. The dimple extends outward with an axisymmetric deformation 

under an increasing load P  to render a greater portion of the shell plastic Fig.1.5. The 

deformation involves a conical shape and an annular zone. 

 

 

Figure 1. 5: Plastic buckling deformation extends outward under an increasing load P  

  

d) Degeneration of the shape of deformation. 

After the annular zone (which is circular in plan) has propagated to an extent depending 

for a given material on the 0/ tR  ratio, the axisymmetric deformation described above 

begins to change. The annular zone becomes triangular and then polygonal in plan. A new 

mechanism which involves the folding of the shell material about the edges of a pyramid-like 

surface takes over and replaces the conical part of the deformation. This phenomenon could be 

associated with some sort of a secondary instability. This stage of deformation will not be 

addressed in part of this study, because it is unlikely to take place in moderately thick shells.  
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1.3. 2. The Initial Collapse Load and Reversal of Curvature 

 

Shells are commonly subjected to transverse loads, i.e. loads that act in the direction 

perpendicular to the surface of the shell. Such shells may fail locally by so called fan mechanism, 

with positive yield lines radiating from the point load. Consequently, at sufficiently high load, 

the shells may experience extensive plastic deformation locally and eventually lose all its 

structural function and changes its curvature direction this phenomenon known as local plastic 

collapse. 

Unlike elastic analysis, exact solutions for the plastic collapse load are not available in 

most cases. Even for the idealized rigid perfectly plastic constitutive relation, the collapse load 

can only be approximated over a range of values. The technique used to define the boundary of 

the collapse load is known as limit load and the theorem associated with it known as limit 

analysis. 

  Consider an n-sided regular polygon plate carrying a single concentrated load at its 

center and rigidly supported along the n sides, Fig.1.6. If a small virtual displacement δ  is 

imposed under the load, the external work done is δ
0

PW
e

=  and the internal work exerted during 

the assigned virtual displacement is found by summing the products of plastic moment 
0

M  per 

unit length of yield lines times the plastic rotation θ  at the respective yield lines, consistent with 

the virtual displacement. If the resisting moment 
0

M  is constant along a yield line of length 
i

a  

and if a rotation θ  is experienced, the internal work is θ
ii

aMW
0

=  for each yield line. Because 

there are n  yield lines, the total internal work is ∑
=

=
n

i
iTi

aMW
1

0
θ  . The rotation at the plastic hinge 

can be calculated in terms of the deflection thus, 






 +=
OKOH

δδθ . In view of the fact 
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that
ii

aOK α ′= tan  and
ii

aOH αtan= , Fig.1.6 By equating 
Ti

W and 
e

W  one 

obtains ( )∑
=

′+=
n

i
ii

MP
1

00
cotcot αα . Because in an n-sided regular polygon 








 −=′=
nii

ππαα
2

and accordingly, 
n

nM
n

nMP
πππ
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2
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000

=






 −= . If n  tends to infinity, 

n-sided regular polygon converts to a circle and 






= ∞→ n
nMP

n

π
tan2lim

00
. Using LHopital once 

00
2 MP π=  .Thus, for a circular plate, the value of the concentrated load necessary to initiate 

collapse is given by 00 2 MP π=  and as it can be seen, the collapse load is independent of 

the size of the plate. This formula can be proven using another method too (See appendix A) 

 
Figure 1. 6: n-sided regular polygon plate carrying a single concentrated load at its center 

 

Following the same procedure, it can be easily proven that the load applied through a 

rigid boss of radius b, to a circular plate of radius a produces a collapse load level given by: 

a

b
M

P

3

2
1

2 0
0

−
=

π
                                                                                                                    (1.1)                                                                
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 The region of a hemisphere subjected to downward concentrated load at the apex that 

initially collapses with a reversal of curvature is quite small and can be easily considered to be 

a very shallow spherical cap. If the boss size is ignored, 02 Mπ  is known to be the exact 

collapse load for any circular plate and therefore it can serve as a lower bound on the initial 

collapse load of a shallow spherical cap. The initial collapse load of a hemispherical shell under 

a concentrated load should thus approach the value 02 Mπ  because the local nature of the 

collapse may mean that the collapse load is less dependent on the shell curvature. When the shell 

is loaded by means of a finite rigid boss of radius b, the collapse load 0P  has a value which is 

observed to be greater than 02 Mπ  while it is dependent on the size. As mentioned earlier, this is 

also true of a plate loaded with a boss, and so the same modification of the collapse load 

formula referred to above can be made. The difference is that while the flat plate radius a  is 

known, the dimple planner radius at initial collapse in the case of a hemispherical shell is not 

readily available but has to be calculated. The value of this dimple radius for the shell is 

found by equating the initial collapse load 0P  with the load predicted by the mechanism of 

dimple propagation at the start of the third stage of deformation, as shown below. The initial 

collapse and subsequent deformation mechanism can be seen in Fig. 1.7.  

The shell initially collapses at a load value of  0P  which is equal to or greater than 02 Mπ  

to an extent depending on the boss radiusb . A  portion of the shell shown as a dotted line at 

its initial position as part of a hemisphere of radius R  takes up the buckled position shown 

by the bold line, comprising a cone and an annular zone, Fig.1.7 The extent of the 

deformation is measured by 0θ  the meridional angle corresponding to the boundary of the 
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plastic region. During this deformation, the load 0P  remains constant. It is between these 

initial and final positions that the toroidal annular zone with the knuckle radius ρ  and the cone 

come into being. It is only after this stage is complete that the third stage of deformation with a 

different type of mechanism takes over. This comprises the propagation of the dimple and the 

outward movement of the annular zone. 

 

Figure 1. 7: Profile of deformation during initial buckling and post buckling behavior 
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      In the ideal case of a concentrated load acting at the shell apex, it is natural to 

expect that the second step of deformation should begin almost immediately after the shell load 

reaches the value
0

2 Mπ . The following geometrical relations in which the boss will not play a 

significant part can be derived for the initial collapse using the incompressibility condition, and 

assuming no difference between the thickness of the shell in the dimple region before and after 

collapse: 

The surface area of the spherical cap which reverses curvature is: 

Surface Area initial= )cos1(2 0
2 θπ −R .                                                                          (1.2) 

 This must be equated to the sum of the surface areas of the cone and the annular zone, 

which are equal to: 

Surface Area Buckled=Surface area of annular part + Surface area on conical part= 

( ) ( )
0

0

22

00 cos

sin2
2.sin2

θ
θρπρθθρπ −

+−
R

R                                                                    (1.3) 

Equating eqs. (1.2) and (1.3) then simplifying, the following equation is obtained: 

 ( ) ( )
0

0

2
2

000 cos

sin
/21

2

1
sin/1

2
cos1

θ
θρθθρρθ RR

R
−+−=−                                            (1.4) 

As 0θ  is small, 24/2/cos1 4

0

2

00
θθθ −=− , and 6/sin 3

000
θθθ −= . Neglecting the second 

terms on the right hand side of the cosine and sine series expansions and ignoring the fourth 

power of 0θ would make equation (1.4) trivially satisfied. Substituting these values into equation 

(1.4) and neglecting powers of  0θ  higher than the fourth, the equation reduces to: 

016/3
2

2

4

0
=




 +−
RR

ρρθ                                                               (1 .5 )  
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For any non-zero value of0θ , the solution gives 25.0/ =Rρ and/ or 0.75. For the larger 

value of ρρ 2,75.0/ −= RR  becomes negative, which means that the conical part of the dimple 

cannot exist. Thus the relevant value of ρ  is 4/R . Although 0θ  has a small value, it can be 

assumed that ρ  is equal to 4/R  throughout the subsequent deformation for which θ  is 

greater than0θ  roughly until 0296.571 =≅ radθ since all assumptions are satisfied.  

1.3.3. Propagation of the Dimple 

 

During the formation of the initial dimple, the deformation is small and the buckling 

happens under a constant load0P . As the deflection increases, the effect of geometry change 

starts to become significant and the load increases with continuing deformation. When the 

non-plastic material surrounding the deforming region cannot support a load higher than 0P , the 

plastic region must grow in size with increasing load. It is assumed here that the deforming 

surface maintains a geometrical similarity during the propagation of the dimple as evidenced by 

the the numerical results. The deformation stage being identified by a single parameterθ , which 

is the angular position of the surface at the boundary of the plastic region (Fig.1.7). It is 

assumed that the radius of curvature of the toroidal knuckle remains constant while its 

crown moves away from the axis of revolution by continuous rotation and translation of the rigid 

material entering into the plastic region. 

     The middle surface of the deforming shell forms a surface of revolution and the state of 

stress is completely specified by the direct forces, resultant moments and transverse shear. If φN  

and βN  denote the meridional and circumferential forces per unit length, φM  and βM  the cor-
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responding bending moments, and Q the transverse shear force (Fig. 1.8), the meridional 

equations of equilibrium for a shell of revolution can be written as 

0cos)( 1 =−−
∂
∂

rQNrrN φ
φ βφ                                                                                             (1.6) 

0cos)( 11 =−−
∂
∂

QrrMrrM φ
φ βφ                                                                                  (1.7) 

where r is the distance of the element from the axis of revolution and 
1

r its mean 

meridional radius of curvature, which is equal to ρ  at the annular zone. 

 

 

Figure 1. 8: Equilibrium of an axisymmetric shell element 
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In our assumed deformation model, the annular zone has a constant radius of curvatureρ , 

It is easily visualized that φN  changes sign from positive (tension) to negative (compression) as 

we move from the inner to the outer part of the toroidal knuckle.  

 φN  at the boundary of the cone annular zone is tension and at the boundary of the 

annular zone- undeformed shell is compression to resist the downward P  such that∑ = 0yF . In 

other words, under increasing load the shell material from the outer undeformed region is pushed 

into the annular zone and material from the annular zone is pulled into the conical dimple. 

Thus φN  may be assumed to vanish at the crown of the toroid. Considering the outer part of the 

knuckle defined by θφ ≤≤0  and noting that  φN   is compressive in this region, it is evident 

that  βN  should also be compressive. This is due to the fact that compressive φN causes 

expansion in the hoop direction while the rigid shell restraints the knuckle from expansion thus 

inducing compressive stress: 

,0tN σβ −=                                                                                                                     (1.8) 

where 0σ  is the (constant) yield stress of the material and t is the current thickness. The 

first equation of equilibrium, equation (1.6), therefore reduces to 

( ) rQtNr +−=
∂
∂ φρσ
φ φ cos

0
                                                                                        (1.9) 

This equation must be supplemented with the equation of vertical equilibrium, namely 

( ) PQNr −=+ φφπ φ cossin2                                                                                       (1.10) 

 where P  is the total vertical downward load at the conical apex. Eliminating Q  

between (1.9) and (1.10), 
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( ) φ
π

ρσφ
φ φ

2
0 sec

2
sec

P
tNr −−=

∂
∂

                                                                           (1.11) 

Assuming that the thickness variation may be neglected in the equilibrium equations 

and noting that 0tt =  (the initial thickness) at θφ = , equation (1.11) can be integrated to 

obtain 

,sin
2

cos
00 







 +−= φ
π

φφρσφ

P
tNr                                                                              (1.12) 

where 0=φN  at 0=φ  is used as a boundary condition. 

Considering the moment equation of equilibrium, it is observed that the second term of 

equation (1.7) is of the order of rt /  times that of the last term, as proven by Drucker & Shield 

(1959), and hence the second term may be neglected when the region of interest is not close 

to the axis of revolution. Equation (1.7) then reduces to 

( ) QrMr ρ
φ φ =

∂
∂

                                                                                                       (1.13) 

From eqs. (1.10) and (1.12), 

φ
π

φφσρ cos
2

sin00

P
tQr −=                                                                                     (1.14) 

and eq. (1.13) becomes 

( )






 −=

∂
∂ φ

π
φφσρρ

φ φ cos
2

sin00

P
tMr                                                                   (1.15) 

Since the crown of the toroidal knuckle suffers the most severe bending, it is 

natural to assume that φM  at the crown is equal to the yield moment 0M . It may also be 
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assumed that at the boundary of the rigid region, φM  attains the value of the yield 

moment. Neglecting again the thickness variation, the boundary conditions can be written 

0MM −=φ  at 0=φ  and θφ = . Integration of eq. (1.15) between the limits of 0 and θ  gives:     

( ) C
P

t

C
P

dttd
P

dtrM

+−−=

+−+−=−= ∫∫∫

φ
π

ρφφφσρ

φ
π

ρφφσρσφρφφφρ
π

φφφσρφ

sin
2

cossin

sin
2

coscoscos
2

sin

00

2

00

2

00

2

00

2

 

θρθφ φ sinsin0
000

MMRCMM +−=→−=→=  

0MM −=→= φθφ  

( ) θρθθ
π

ρθθθσρθ sinsinsin
2

cossinsin 0000
2

0 MMR
P

tMR +−−−=−  

This will then lead to: 

( ) θ
π

θθθρσθ sin
2

cossinsin 000

P
tM −−=−                                                              (1.16) 

Inserting the values 
4

2
00

0

t
M

σ
=  and ,

4

R=ρ  equation (1.16) reduces to 








 −+=
θ

θ
π tan

1/1
2 0

0

tR
M

P
                                                                                        (1.17) 

 

This formula directly relates the downward vertical load to the angular position of the 

dimple denoted by 0θθ ≥ . It is independent of the size of the boss, provided the diameter of 

the boss is small in comparison with the diameter of the shell. For a truly concentrated load 0θ  is 

vanishingly small and the solution reduces to the well known result 00 2 MP π= . 
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1.3.4. Solution of the Complete Problem 

 

If the shell is loaded by a concentrated load at the apex, the formula (1.17) provides the 

complete load- deformation characteristic of the shell. However, a fully concentrated load is only 

a mathematical convenience which cannot be realized in practice. In fact the initial collapse load 

is very sensitive to the size of the boss and a small boss can considerably increase the collapse load 

from the value 00 2 MP π= . It is therefore essential to include the boss size in developing a realistic 

theory. 

The initial angle for the propagating dimple 0θ   is also a measure of the plastic region 

corresponding to the initial collapse. Assuming that this small portion of the shell behaves 

like a plate during collapse even when the load is applied by a finite boss in the form of a rigid 

punch of a small base radius b, equation (1.1) can be rewritten as: 

0

0

0

3
2

1

1
2

θ
π

R

bM

P

−
=                                                                                                         (1.18) 

Since the load corresponding to the beginning of the dimple propagation is also 0P , eq. 

(1.17) gives 









−+=

0

0

00

0

tan
11

2 θ
θ

π t

R

M

P
                                                                                           (1.19) 

Since 0θ  is small, therefore; 



















+
++

−=







− ....

15

2

3

1
tan

1 5

0

3

0

0

0

0

0

θθθ

θ
θ

θ
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If the power greater than three is neglected so, 

 

33
11

tan
1

3
1

3
1

1
3

1

1
1

tan
1

2
0

2
0

0

0

0

0

00

0

2

2

2

θθ
θ

θ
θ

θ

θθ
θ

=








−−=−⇒















−=
+

+
−=








−

 

Thus,  

3
1

2

2

0

00

0
θ

π t

R

M

P
+=                                                                                                         (1.20) 

 

 Equations (1.18) and (1.20) furnish the following equation for 0θ : 

,
2

3
2 0

0
2
0 R

t

b

R =






 −θθ                                                                                                      (1.21) 

which can be solved numerically for each particular case. An immediate conclusion 

from (1.21) is that 0θ  is always greater than Rb / . It is easily seen from the geometry in 

Fig.1.7  that the punch penetration corresponding to the position of the dimple given by θ  is 

θθρθ tansin)2()cos1( −+−= RRh                                                                           (1.22) 

and 

( )( )θθ sec3cos1
2

1 +−=
R

h
                                                                                              (1.23) 

by using the result 4/R=ρ . 

Eqs. (1.17) and (1.23) give the load-deflection relationship parametrically through θ  

when 0θθ ≥ . 
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When  100pt
R , this solution is found to correct for large amplitudes of deflection, however  

for 100ft
R  the deformation follows the same axisymmetric pattern in the beginning. Then, the 

annular zone degenerates into various n-sided polygon deformation modes and bifurcation in 

deformation pattern is observed. In order to determine the bifurcation point during deformation, 

assume the deformed part behaves similar to a clamped circular plate of radiuscwith large 

deformation before bifurcation point (Fig. 1.9). For thin circular clamped plate the radial and 

tangential moments are (see Appendix B): 

 

Figure 1. 9: Deformed part of hemispherical shell shape before the secondary bifurcation point 

 

 
 

Figure 1. 10: Effect of axial force on plastic moment capacity 
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( ) 




 −+= 1ln1
4 r

cP
M r υ

π
                                                                                                     (1.24) 

 ( ) 




 −+= υυ
π r

cP
M t ln1

4
                                                                                                    (1.25) 

In the bifurcation point θθρθ ρ
sin4

3sinsin 4 RcRc
R

= →−= =
 

Assuming that at the bifurcation point, tM reaches to the plastic moment 

at θθρ sin2sin Rcr =−=  (as evidenced by the numerical and experimental findings). By 

combining equations (1.17) and (1.25) and inserting the value 














 −+=
θ

θπ
tan

1/12 00 tRMP  it 

can be written: 

( ) →













−+
















 −+
== υ

θ

θ
υ

π
θ

θπ

sin2

sin4
3

ln1
4

tan
1/12 00

R

RtRM

MM plastict  

Because of the membrane effect, shell plastic moment is not 
4

2
0

0

t
M

σ
= anymore and it will be 

almost equal to
4

ˆ2
0

0

t
MM p

σ
−≈ . In this equation, 

0sin2
ˆ

θσπ
υ

r

P
t =   and consequently: 

( )[ ] →−+















 −+
= υυ

θ
θ

5.1ln1
2

tan
1/1 00 tRM

M P  

Hence: 

( )[ ]υυ
θ

θσ
σ

−+















 −+
=− 5.1ln1

2

tan
1/1

4

4

ˆ 0

2
00

2
0

0

tR
t

t
M                                                 (1.26)                                                                           
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In the last stage of deformation, hemispherical shell will be punched under the point load. 

Subsequently; the ultimate bearing capacity is roughly equal to: 

00
0

2
2 σπ t

t
bPU 







 +≈                                                                                                            (1.27) 
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1.4. Nonlinear Finite Element Analysis (FEA) 

1.4.1 Elements and Modeling 

 

Finite element analysis (FEA) is capable of modeling elastic-perfectly plastic material 

behavior with nonlinear geometry where the analysis is based on the initial geometrical shape. 

This should give a limit load and load-deformation response almost equal to the rigid-plastic 

limit load and overall response since the elastic deformations are negligible compared to the 

plastic deformations. This makes it possible to compare the results using the finite element 

method with those of the analytical solution. All FEA for this investigation was performed using 

the general purpose program ABAQUS Version 6.7. The boss used to load the spherical shell 

was modeled as a rigid element. Both eight node axisymmetric rectangular and six node 

triangular shell elements were used to model the hemispherical shell Figs.1.11-1.13. In the 

present numerical analyses, the hybrid element was chosen for all finite element models in order 

to avoid the problem of mesh locking and to get correct element stiffness and accurate results. 

The shell is pinned at the base and the material behavior after yielding is assumed to obey the 

Tresca or Von Mises yield criterion. 
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Figure 1. 11: Deformation pattern of the hemispherical shell using 8 node axisymmetric 

rectangular shell element.  
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Figure 1. 12: Different cuts of the deformed moderately thick shell 100/ 0 ≤tR . 
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Figure 1. 13: Deformation pattern of the moderately thick shell  100/ 0 ≤tR  using six node 

triangular shell element. 
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1.4.2 Numerical Results  

The numerical results for moderately thick shells ( 100/
0
ptR ) were identical in the case of 

axisymmetric and general 3D models. These results were found to compare well to the analytical 

and experimental findings. On the other hand a bifurcation from axisymmetric response is 

observed at some point after initial collapse in thin shells with ( 100/ 0 ftR ) and this 

phenomenon is shown in Figs.1.14-1.17. The level of bifurcation load depends on the effect of 

geometrical parameters of shell (wall thickness0t , radiusR , 0/ tR ratio), the material properties as 

well as the size of the boss.  

 

Figure 1. 14: Buckling initiation of thin shell 100/ 0 ftR using six node triangular shell 

elements. 
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Figure 1. 15:  Subsequent deformation of thin shell 100/ 0 ftR showing the secondary 

bifurcation phenomenon.  
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Figure 1. 16: Different cuts of the deformed thin shell 100/ 0 ftR  
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Figure 1. 17: Deformation pattern of the thin shell  100/ 0 ftR  showing the secondary 

bifurcation phenomenon. 
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1.5. Experimental Program 

1.5.1 Parameters and test setup 

 

Different samples with various 
0

/ tR  ratios were designed, manufactured, and tested, 

Figs. 1.18. These were made out of Bronze ( GPaE 120= and MPaFy 110= ), stainless steel 

( GPaE 210= and MPaFy 315= ), and copper ( GPaE 116= and MPaFy 132= ). The radius of 

the shells was mmR 50=  and mmR 75=  respectively. The thickness of the shells were 

mmt 3.0
0

= and mmt 1
0

= . These parameters yield 0/ tR  ratio of 250 for Bronze, 166 for Stainless 

Steel, and 75 for Copper alloy.  During testing, these shells were subjected to concentrated loads 

at the apex by means of rigid flat-based circular rods of three different boss sizes, namely 

mmb 5.0,25.0,125.0=  (Fig.1.19). 
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Figure 1. 18: Different hemispherical shell samples were made for experimental study 

 
 

Figure 1. 19: Three different boss size used for loading ( )mmb 0.5,5.2,25.1=  
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The hemispherical shells were rigidly supported against translation around the bottom  

circumference by using grooved base plate as shown in Fig.1. 20. 

 

            Figure 1. 20: Grooved base plate as a support for two sizes of hemispherical shells 

The load-deflection curves for the shells were recorded on a Riehle Universal testing 

machine (Figs.1.21). The materials were selected for manufacting after tension coupons were 

tested to ensure that their material behavior corresponds closely to rigid-plastic. This was the 

case in order to fruitfully compare experimental and theoretical results. 
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 Figure 1. 21: Riehle Universal testing machine for displacement control mesurments  

The yield stress for each material was found from the load-deflection diagrams for the metal 

coupons since in forming the shell specimens only a negligible amount of work hardening was 

involved.  Figs.1.22-1.24 shows typical stress strain diagrams for the Copper alloy, Bronze, and 

Stainless Steel used in experiments. 
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                    Figure 1. 22: Stress strain diagram for copper alloy. 

 

 

 

                 Figure 1. 23: Stress strain diagram for Bronze. 



 35 

         

                            Figure 1. 24: Stress strain diagram for Stainless Steel. 

 

1.5.2 Experimental Results:  

 

It is evident from Fig 1.25 that the deformation of the moderately thick copper alloy shell 

75/ 0 ≈tR  is axisymmetric throughout the different loading stages. On the other hand, the 

deformation of the thin stainless steel shell 166/ 0 ≈tR  is axisymmetric upon initial collapse and 

early subsequent deformation Figs 1.26-1.27.  However, Figs1.27-1.28 show the latter 

bifurcation in deformation as an interesting secondary phenomenon. This phenomenon takes 

place in thin shells, which have 100/ 0 ftR , as shown by the numerical results (Fig 1.46).  

 



 36 

                                                   

 

Figure 1. 25: Deformation of the moderately thick shell (Copper alloy 75/
0

≈tR ) 

 

Figure 1. 26: Initial buckling and post buckling of the thin shell (Stainless Steel 166/ 0 ≈tR ). 
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Similarly, the deformation of the thin bronze hell 250/ 0 ≈tR  is also axisymmetric upon initial 

collapse and some short subsequent deformation Figure 1.29. Then, Fig 1.30 shows the 

degeneration to the secondary bifurcation deformation which is clearly identified in Figs.1.31-

1.33.  

 

 

 

 

 

 

 

 

 

Figure 1. 27: Degeneration of axisymmetric deformation of the thin shell (Stainless Steel 

166/ 0 ≈tR ). 
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Figure 1. 28:  Secondary bifurcation deformation of the thin shell (stainless steel 166/ 0 ≈tR ) 
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Figure 1. 29: Initial buckling and axisymmetric post buckling of the thin shell (Bronze 

)250/ 0 ≈tR
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Figure 1. 30: Degeneration of the axisymmetric deformation of the thin shell (Bronze 

)250/ 0 ≈tR .  
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Figure 1. 31: Secondary bifurcation deformation of the thin shell (Bronze )250/ 0 ≈tR  
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Figure 1. 32: Different stages of  the triangular with secondary bifurcation (Bronze 250/ 0 ≈tR ) 
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Figure 1. 33: Final deformation of the thin shell (Bronze 250/ 0 ≈tR ) 
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1.6 Results and Discussion 

 

As it is seen in Fig.1.25 for relatively thick shell 100/
0
ptR , shell deformation pattern as 

assumed in the analytical solution consists of a cone and torus which spread out 

axisymmetrically from the apex with increasing load.  Therefore, the analytical solution, 

experimental findings and numerical results are expected to match for large amplitude of 

deformations, Fig 1.34. However, when 100/
0
ftR , the deformation follows the same 

axisymmetric pattern in the beginning. Then, the annular zone degenerates into various n-sided 

polygon deformation modes and bifurcation in deformation pattern is observed (Figs.1.26-1.33).  

In order to find bifurcation point in thin wall hemispherical shell ( 100/
0
ftR ) for which 

the bending and membrane stresses are simultaneously important and assuming the boss pressure 

to be uniformly distributed over the region of contact, new solution has been derived using 

equilibrium approach.  

 Figs. 1.34, 1.40, and 1.43 give the load deflection curve for the copper alloy, Bronze, and 

stainless steel shell respectively. The analytical solution results seem to be always slightly less 

than the numerical solution because the finite element solution gives a lower bound on the 

maximum displacements for a given set of forces and gives an upper bound on the maximum 

stresses for a given set of displacements. The secondary bifurcation response is shown to yield 

higher loads than the axisymmetric response for the same  R
h  value Fig 1.40 and 1.43, the 

axisymmetric analytical solution may still be used for design of thin shells since it is on the 

conservative side. Figs.1.35, 1.41, and 1.44 show the boss effect on the initial collapse load. Due 

to ignoring the shell curvature in the small vicinity of the load, the collapse load is always 



 45 

slightly on the safe side.  However, because of the sample imperfection in the experimental 

study, the experimental findings are on the lower side 

 

        Figure 1. 34:  Dimensionless Load deflection curve for copper alloy shell ( 75/ 0 ≈tR ) 

 

            Figure 1. 35: Comparison of initial collapse response for copper alloy shell ( 75/ 0 ≈tR ) 
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Figure 1. 36: Dimensionless initial collapse load vs boss size for copper alloy shell ( 75/ 0 ≈tR ) 

 

Figure 1. 37:  Dimensionless initial collapse load vs initial collapse angle for copper alloy 

( 75/ 0 ≈tR ) 



 47 

 

                     Figure 1. 38: Initial collapse angle vs boss size for copper alloy ( 75/ 0 ≈tR ) 

 

 

Figure 1. 39:  Dimensionless Load vs knuckle meridional angle in rad for copper alloy shell 

( 75/ 0 ≈tR ). 
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Figure 1. 40: Dimensionless Load deflection curve for Bronze  shell ( 250/ 0 ≈tR ) 

 

 

              Figure 1. 41: Comparison of initial collapse response for Bronze shell ( 250/ 0 ≈tR ) 
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Figure 1. 42: Dimensionless initial collapse load vs boss size for Bronze shell ( 250/ 0 ≈tR ) 

 
Figure 1. 43: Dimensionless Load deflection curve for Stainless Steel  shell ( 166/ 0 ≈tR ) 
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Figure 1. 44: Comparison of initial collapse response for Stainless Steel shell ( 166/ 0 ≈tR ) 

 
Figure 1. 45: Dimensionless initial collapse load vs boss size for Stainless Steel shell 

( 166/ 0 ≈tR ) 
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Figure 1. 46: Numerical bifurcation point for Bronze, Stainless Steel, and Copper alloy versus 

( 0/ tR ). 
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1.7 Conclusions 

 

In this research the effect of the geometry change on the plastic buckling behavior of 

hemispherical metal shells loaded inwardly at the apex has been studied theoretically, 

numerically and experimentally. An analytical expression has been derived for plastic buckling 

of hemispherical shell in a form which is especially convenient for application due to its 

simplicity. In addition, it shows that a quite simple model of deformation at equilibrium is 

sufficient to make predictions concerning postbuckling behavior of a moderately thick 

hemispherical shell subjected to a concentrated load on top. The initial buckling load has been 

shown to be highly depending on the radius of the loading boss.  A formulation is used to 

evaluate this effect based on the initial collapse of a simply-supported circular plate under 

concentrated rigid boss.  The results of initial buckling load formulation due to ignoring the 

shell curvature in small vicinity of the loading actuator are always slightly on the safe side. It is 

found that the shell carrying capacity after initial collapse increases continuously with the 

deflection. The hemispherical shell deformation can be represented by a mathematical model 

consisting of a cone and a torus which spread out symmetrically from the apex with 

increasing load. The whole region of the shell forming the cone must be plastic to make this 

deformation possible. The analytical solution results are shown to closely match those of 

numerical and experimental values. It is also evident that larger boss size corresponds to higher 

initial collapse load and larger dimple size.  This solution is rigorously applicable for shells 

having smaller values of 0/ tR  (not exceeding approximately 100). This is because the 

symmetry of the propagating annular zone about the vertical axis cannot be assumed throughout 

the load-deflection response for large, 0/ tR  .  For 0/ tR  greater than 100, the outer part of the 
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annular zone turns at to be unstable after a certain deformation level where the plastic part of 

the shell degenerates into an n-sided polygon. For thin shell which 0/ tR  is larger than 100,   the 

bifurcation point is approximately found using analytical solution as well.  On the other hand, for 

very thin shells ultimate load carrying capacity is limited by punch strength of the shell material.  
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Notation used in this chapter 

a    Radius of Circular Plate 

c    Radius of Circular Plate used to model behavior at bifurcation point 

b    Radius of Rigid Boss 

0t    Initial Shell Thickness 

t      Current Shell Thickness 

0M  Shell Plastic Moment/Unit Length in shell 

φM   Meridional Moment/Unit Length in shell 

βM   Circumferential Moment/Unit Length in circular plate 

rM   Radial Moment/Unit Length in circular plate 

tM   Tangential Moment/Unit Length in shell 

ϕN    Meridional Force/Unit Length in shell 

βN   Circumferential Force/Unit Length in shell 

Q     Transverse Shear Force /Unit Length in shell 

0P     Shell initial Collapse Load 

P    Shell Current Load 

R  Shell Radius 

θ     Knuckle Meridional Angle 

φ     Toroid Angle 

ρ    Knuckle Radius 

h     Vertical deflection of the apex of the hemispherical shell 
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CHAPTER 2 - Nondestructive Method to Predict the Buckling 

Load in Elastic Spherical Shells 

2.1 Introduction and Purpose of this chapter 

 

As the variety and the quantity of shells increase, the determination of shell behavior 

becomes more and more important. One of the most important things is to determine the 

buckling load of shells either experimentally or theoretically. 

The critical load for an axially loaded elastic structure is the load at which straight 

(undeformed) and the deformed form of a structure are both possible. Therefore, a small 

increment of this critical load causes a sudden deformation called buckling. In an initially 

straight member, if the weight of member is neglected and no eccentricity exists, until the 

buckling load is attained there is no transverse deformation theoretically. But this definition of 

critical load holds true only in a theoretical sense. Because, in reality, due to the manufactural 

imperfections, a very small eccentricity or non homogenity, which are unavoidable for most 

cases from the first point of application of the load, transverse deformations begins. When the 

critical load has been attained there will be excessive deformations. Therefore, the theoretical 

minimum buckling load is not a reliable one, since the actual critical load  is less than that. 

Theoretically speaking, there are an infinite number of critical loads, but in practice only the 

smallest one is necessary, since, at this load or slightly below that load buckling should be 

expected. Accordingly, the target is to determine this minimum buckling load either theoretically 

or experimentally. 
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The modern design technique goes into the model investigation, especially, for 

complicated structures as shells. Since in most cases, the true behavior of the shell is not known 

or very difficult to know, the best thing is to make some assumptions and then to verify these 

assumptions by means of model tests. Accordingly, this chapter is investigating a possibility of 

nondestructive method for finding the critical buckling load in spherical shells. For this purpose, 

Southwell’s nondestructive method for columns is extended to spherical shells subjected to 

uniform external pressure acting radially, and then by means of experiments, it is shown that the 

theory is applicable to spherical shells with an arbitrary symmetrical loading. In addition, 

Southwell’s nondestructive technique for columns is extended to the framed columns. Therefore, 

a procedure is developed that the critical loads of columns in a multi-story frame can be 

determined by using lateral deflections obtained through matrix formulation.  

 

2.2 Southwell Method in Columns 

 

If x  is measured along the line of the thrust, and y defines the transverse deflection, 

which is very small everywhere meaning that the small deformation theory is applicable, and 

assuming P has a constant intensity over the span length L , writing the sum of the forces in 

horizontal and vertical directions and the moments about an arbitrary point, (equilibrium 

equations) the condition of equilibrium for the bent configuration may be obtained, Fig .2.1. 

Summing up the forces in vertical direction and equating to zero; 
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Figure 2. 1: Column under compression force 

 

( ) 00 =∆+∆++−→=↓+ ∑ xqVVVFy                                                                                (2.1) 

therefore, after taking the limit: 

dx

dV
q −=                                                                                                                         (2.2) 

The sum of the moments, 

( ) ( ) ( ) 02
2

=∆+∆+∆∆++∆+− yPxqxVVMMM                                                    (2.3)                                

taking the limit, 
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dx

dM

dx

dy
PV =+                                                                                                               (2.4) 

but since M
dx

yd
EI −=

2

2

  

( ) qyPyEI
dx

yd
Pq

dx

yd
P

dx

dV

dx

Md =′′+″′′→+−=+=
2

2

2

2

2

2

                                             (2.5) 

where EI is the flexural rigidity, P is the axial force and q is the lateral load. In the case 

of zero lateral load, it is possible to write equilibrium equation as: 

 

0=+′′ PyyEI                                                                                                                  (2.6) 

calling, EI
P=2α , the general solution equation will be: 

( )
0

sin xxAy −= α                                                                                                           (2.7) 

where Aand 
0

x are two arbitrary constants of integration. 

 The condition that y must vanish at both ends of the strut will be realized if, 0sin =lα  

which is possible for 0=α , but in that case, the strut will remain straight or in other words, there 

will not be any deformation. The further solutions are 
l

nπα =   where ...,.........3,2,1=n . 

Substitution of this value into the equation 
EI

P=2α  yields 
2

22

l

n

EI

P π= or by substituting 

the values ofn , 

2
2

2

,.......,9,4,1 n
EI

Pl =
π

                                                                                                     (2.8) 

For practical purposes, only the smallest value of that critical load is needed. Therefore, 

using the smallest value ofn , which is one, 
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2

2

L

EI
Pcr

π=                                                                                                                                (2.9) 

Suppose now that the strut is not quite straight initially, and let 
0

y  be the initial transverse 

deflection of the strut. Then the equation of equilibrium for zero lateral loads will be; 

( ) 0
2

0 0 yyypyyyEI ′′=+′′→=+′′−′′ α                                                                                   (2.10) 

Provided that y vanishes at both ends of the strut. A general solution may be obtained by 

expressing both y and 
0

y in terms of Fourier’s series. Therefore; 

∑
∞

=

=
1

sin
n

n L

xn
wy

π
                                                                                                       (2.11) 

∑
∞

=

=
1

0 sin
n

n L

xn
wy

π
                                                                                                      (2.12) 

Differentiating them with respect to x  tweice, 

∑
∞

=

−=′′
1

2

22

sin
n

n L

xn
w

L

n
y

ππ
                                                                                             (2.13) 

∑
∞

=

−=″
1

2

22

0
sin

n
n L

xn
w

L

n
y

ππ
                                                                                           (2.14) 

Substituting back into the differential equation (2.10), 

22

22

1
π
α

n

L

w
w n

n

−
=                                                                                                              (2.15) 

If nP  is the thn − critical load, then
2

22

L

EIn
Pn

π= .Therefore,  

n

n

n

P

P
w

w
−

=
1

                                                                                                                   (2.16) 
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AsP approaches to its first critical value1P , 1w will be very largely magnified, while 2w  

will be approximately in the ratio four over three, 3w nine over eight and so on.  

This result explains why as the load is increased, every strut appears to bent into a sine 

wave of one bay, other harmonics are present, but they are very little magnified by the load, 

whereas the first harmonic soon becomes large. Also in that case, from the differential equation 

it is possible to notice that the deflection begins from the first application of the load, since the 

differential equation is not homogeneous anymore due to the consideration of the initial 

imperfections, which are almost unavoidable in practice.  

The deflection of the strut at its centre may be written as; 

∑
∞

=

−+−=×=
1

531 ........
2

sin
n

n www
L

L

n
w

πδ                                                                          (2.17) 

 or 

1

1
1

1
P

P
w

w
−

=≅δ                                                                                                             (2.18) 

Thus provided that the above mentioned assumptions hold true, the load-deflection curve 

is a rectangular hyperbola having the axis of  P , and the horizontal line crPP = as asymptotes. 

(See Fig. 2.2a)  
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Figure 2. 2: Load Deflection curve in Southwell Method 

 

Now, if a hyperbola passes through the origin and has asymptotes of equations. 

 

0

0

=−
=+

β
α

y

x
                                                                                                                                (2.19) 

The equation of this hyperbola will be: 

0=+− yxxy αβ                                                                                                                      (2.20) 

or dividing by y ; 

0=+− αβ y
xx                                                                                                                    (2.21) 

calling vy
x =  the equation of the hyperbola becomes; 

0=+− αβvx                                                                                                                         (2.22) 
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which is a straight line. Therefore, if x  is plotted againstv , the inverted slop 
dv

dx
is the 

measure of the smallest critical load (See Fig 2.2b). 

If instead of having an initial curvature, an initial eccentricity ehas appeared since in the 

case of a single lateral load Q the deflected shape may be defined as; 

∑
∞

=



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P
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ππ
π

                                                                          (2.23) 

where c is the distance between the support and the point of application of the load. Making 

c infinitely small, the condition of bending by a couple is obtain. Therefore, using the notation 

QcM = ;  

∑
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= 




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                                                                                   (2.24) 

is obtained. For two moments applied at both ends, by superposition; 

( )





 −+
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
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and the deflection at the midspan is: 


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P
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π
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Since due to symmetry, the even terms do not appear. 

  If the couples at both ends are caused due to the small eccentricity eof the applied axial loads 

P , then calling MPe=  
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As P reaches 1P  the ratio 
1P

P reaches to unity. So, while the first term approaching to 

infinity, the others approach to zero therefore,  

1
1 1

14

P
PP

Pe

−
=

π
δ                                                                                                          (2.28) 

or in a more compact form, 

1

14

1 −
=

P
P

e

π
δ                                                                                                              (2.29) 

For a more general case of combination of both an eccentricity and curvature: 

1

14

1 −







 +=

P
P

e
wn π

δ                                                                                                           (2.30) 

which is analogous to the original equation: 

 

1

1

1 P
P

w

−
=δ                                                                                                                            (2.31) 

The main advantage of the method lies in its generality and simplicity. In all ordinary 

examples of elastic instability the equation 

00 =+




 ″−′′ PyyyEI                                                                                                            (2.32) 

governs the deflection as controlled by its initial value, provided that both are small. It 

follows that the deflection is related with the applied load by an approximate equation of the 

hyperbolic form 
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crP
P
w

w
−

=≅
1

1
1δ                                                                                                                   (2.33) 

2.3 Agreement of Test Results in Columns  

 

As stated in the preceding section, the relation between measured load and deflection will 

not be hyperbolic if the deflections are so large that the elasticity of the material is impaired; 

moreover, when the deflections are large the approximations will not hold true. On the other 

hand, if both the deflections and loads are small, the exact measurements will not be possible. 

Thus, same scatter of the observational points must be expected. Moreover, in this range 1w  (the 

first term of the Fourier series) does not necessarily dominate the expression for deflection 

(Southwell 1932). 

The data required for a satisfactory test is related values of load and central deflection for 

columns which have been loaded as axially as possible.  

The recorded observations of this nature are given by T. Von Karman (1909) in an 

inaugural dissertation published in 1909. In his paper, the experimental struts are classified in 

three groups, described relatively as slender, medium or thick. Slender struts having a k
1  ratio 

greater than 90  and for medium struts the slenderness ratio ranges between 45 and90 , and thick 

struts are those for which the slenderness ratio is less than 45.  

In the slender group, Von Karman tested eight struts, numbered 1, 2, 3a, 3b, 4a, 4b, 5, 

and 6. These have been analyzed by R. V. Southwell (1932) in Table 2.1 and Fig. 2.3 exhibiting 

the relation of x  tov . In some instances the initial observations have been rejected in estimating 

the best fitting straight lines; such observations are distinguished in the table by asterisks. The 
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remaining observations have been analyzed by the method of least squares by R.V. Southwell, in 

order that the best fitting lines might be determined without introduction of personal judgment.  

Table 2.2, gives the values of slope as determined from the best fitting lines. This table 

shows that the agreement with theory in regard to the critical load is in fact very close. The 

actual value of the modulus of elasticity, measured by Karman is 2170000 2cm
kgf .  

As applied to the struts in Karman’s medium and thick groups, the method failed for the 

reason that practically every observation related to deflections, which can be shown to have 

involved in elastic failure of the material. It, thus, appears that the method has given good results 

in every case where these could be expected, but that only trial can show whether in any instance 

sufficient observations can be taken of deflection which on the one hand are large enough to give 

reasonable certainty of ,v  and on the other hand, are not so large that material is still elastic.  

One of the struts tested by Prof. Robertson (1912) was loaded with such small 

eccentricity by R. V. Southwell as to provide a fair test of the method. Table 2.3 presents the 

analysis of this case, and related values.  

 As it is seen from that figure, the plotted points fall on two distinct straight lines; the 

first, covering values of the measured deflection ranging from 7 to 18 thousands of an inch, 

indicated an initial deflection of about 0.01 inch and a critical load of 14.5 tons, which is some 

ten percent in excess of the value 12960 kgs obtained from Euler’s theoretical expression when 

modulus of elasticity is given the value 3.13  2in
tons  , which was measured by Prof. Robertson. 

The second test representation values of the measured deflection in excess of 18  thousandths of 

an inch (of which 0.0064 inch is the amplitude of the first harmonic in the Fourier series for the 
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specified eccentricity of 0.005 inch) and a critical load of about 12.9 tons, which is less than half 

percent in error as compared with the theoretical figure.  

Table 2. 1: Nos. 1, 2, 3a, 3b, 4a, 4b, 5 and 6. Mild steel: Modulus of 

Elasticity 22170000
cm

kgf=  

Strut No:1 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

2260 0.01 4.43 

3020 0.025 8.28 

3170 0.04 12.62 

3320 0.06 18.07 

3470 0.09 25.94 

3620 0.25 69.06 

 

Strut No:2 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

4520 0.02 4.43 

4830 0.05 10.35 

5130 0.11 21.44 

5280 0.24 45.45 

 

Strut No:3a 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

6030 0.01 1.66 

7540 0.03 3.98 

8290 0.11 13.27 

8520 0.52 61.03 
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Strut No:3b 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

7840 0.02 2.55 

8140 0.05 6.14 

8290 0.07 8.44 

8445 0.11 13.03 

8600 0.21 24.42 

 

Strut No:4a 

 

P , end load in kilograms 

x , measured deflection (mm) 610×= P
xv  

9050 0.02 2.21 

9660 0.025 2.59 

10260 0.03 2.92 

10560 0.07 6.63 

10710 0.10 9.34 

10860 0.13 11.97 

11010 0.25 22.71 

11160 0.73 65.41 

 

Strut No:4b 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

3020 0.03 9.93 

4530 0.05 11.04 

6030 0.07 11.51 

7540 0.09 11.94 

8300 0.12 14.46 

9050 0.15 16.58 

9805 0.23 23.46 
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9960 0.26 26.10 

10110 0.29 28.8 

10260 0.33 32.16 

10410 0.41 39.39 

10560 0.52 49.24 

10710 0.71 66.29 

10860 1.46 134.44 

 

Strut No:5 

 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

9050 0.01 1.105 

10560 0.03 2.84 

10860 0.05 4.67 

11160 0.07 6.27 

11470 0.10 8.72 

11770 0.15 12.74 

12070 0.22 18.23 

12370 0.30 24.25 

12520 0.45 35.94 

 

Strut No:6 

 

P , end load in kilograms x , measured deflection (mm) 610×= P
xv  

10560 0.01 0.95 

12070 0.04 3.31 

12370 0.08 4.85 

12670 0.10 7.89 

12970 0.15 1.57 
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13270 0.25 8.84 

13430 0.34 25.32 

13580 0.74 54.49 

 

 

Table 2. 2: T. Von Karman’s tests 

Strut No: A deduced from best fitting 

line in Fig. 3 (mm) 

P , estimated from slop of 

best fitting line in Fig. 3 

P , as given by 

theoretical formulakgf  

1 0.005 3712 3790 

2 0.005 5453 5475 

3a 0.005 8590 8645 

3b 0.005 8758 8610 

4a 0.003 11220 10980 

4b 0.030 11090 10920 

5 0.010 12815 12780 

6 0.010 13750 13980 

 

Table 2. 3: Robertson’s Strut No:5. Mild steel: Effective length- 22.25 inches. 

Diameter-0.999 inches. 

Slenderness- 89.1 

Eccentricity-0.005 inches. 

P , end loads in tons x , measured deflection in 

thousandths of an inch. 
P

xv =  

1.62 1.0 0.617 

1.79 1.5 0.838 

2.14 1.7 0.794 

2.48 2.2 0.887 

2.82 2.4 0.851 

2.99 2.6 0.869 
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3.16 2.8 0.886 

3.34 3.0 0.898 

3.50 3.27 0.934 

3.68 3.64 0.989 

3.86 4.00 1.037 

4.02 4.24 1.060 

4.19 4.46 1.063 

4.36 4.68 1.078 

4.53 4.81 1.063 

4.70 4.94 1.051 

4.90 5.07 1.028 

5.13 5.66 1.106 

5.56 6.32 1.140 

5.99 6.97 1.163 

6.42 7.80 1.218 

6.84 8.95 1.310 

7.27 9.84 1.358 

7.70 11.18 1.450 

8.12 12.75 1.572 

8.55 14.08 1.647 

8.98 15.88 1.768 

9.4 18.34 1.951 

9.83 21.91 2.222 

10.25 26.27 2.563 

10.68 32.47 3.040 

11.11 41.17 3.706 
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2.4 An Extension of the Southwell Method for columns in a Frame structure 

 

This section shows an approach whereby the critical loads of columns in a multi-story 

frame can be determined by using lateral deflections obtained through matrix formulation. The 

deflection data of columns in a multi-story frame are obtained by including the effect of presence 

of axial loads in the member and structure stiffness matrices. Effects of initial bending moments 

are also included. The results prove that Southwell plotting technique used to determine the 

critical load of single column is also applicable to framed columns.  

2.4.1 Formulation of the Governing Equations 

 

For a single column, formulations can be made directly to obtain the critical load. Simple 

formulations can also be extended to simple portal frames as done by Zweig (1968). When the 

problem arises to analyze and design a tall building subjected to gravity and lateral loads, 

however, use of modern matrix methods becomes necessary.  

Because of large number of degrees of freedom involved in a multi-story building frame, 

one is confronted with a correspondingly large number of equations which can be repeatedly 

solved only by use of matrix method. When buckling is involved then efficient matrix 

formulations can be made using slope deflection equations modified by stability functions.        
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Figure 2. 3: Notation for member and structure 

 

With reference to a notation system shown in Fig.2.3, member stiffness equations 1, 2, 3, 

and 4 are formed using equations of equilibrium (Bleich (1952)). 

 The axial force equation is given by: 

 ( )
111 aba uu

L
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f −=                                                                                                       (2.34) 

The shear force equation is given by 
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 The bending moment equations are given by   
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where f is the end force, u is the end displacement, the subscripts i  and j refer to the 

particular end of the member and the direction respectively, iβ  represents corresponding 

stability functions IAE ,, and L are modulus of elasticity, cross sectional area, moments of 

inertia and length of the member respectively.  

Stability functions iβ  have been widely publicized (Gregory (1968)). 

They may be concisely expressed as (see appendix C) 

( )
αα

ααα
−

−=
tan

2cot21
S                                                                                                     (2.38) 

ααα
αα

2cos22sin

2sin2

−
−=C                                                                                                (2.39) 

41
S=β                                                                                                                        (2.40) 

22
SC=β                                                                                                                     (2.41) 

( )
6

1
3

CS +=β                                                                                                              (2.42) 

ααβ cot4 =  

435 .βββ =                                                                                                                    (2.43) 

where 
EP

P
2

1=α  with P  being the axial load on a given structural member and 

EP being the Euler Load for that particular member. 

By use of appropriate transformation matrices, the member stiffness equations are 

transformed to a global coordinate system. Structure stiffness equations are then formed by using 

the equations of compatibility.  

The steps leading to the computer program are summarized as follows: 
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      a) For a given frame adopt numbering system for members and joints, formulate the 

number equations, transform them to the structure coordinate system, and formulate the 

structure stiffness matrix by using compatibility equations. 

       b) Adopt a proportionate multiplier of load, λ  , for a given external loading pattern. 

Then for any value of λ , formulate an external force vector. In the external force vector, the 

fixed end moments of each member must be modified for the presence of axial load in that 

member. This is done by deriving the appropriate stability function corresponding to the 

particular lateral loading on the member. 

The stability function corresponding to a uniformly distributed load over the complete 

length of a member is derived as .
1

3β
 This function is used to modify the fixed end moments 

in the force vector due to the loading of this frame. 

           c) For any value λ  of a loading pattern, initial solution necessitates all iβ  be set to 

unity (i.e. axial forces 0= ). By using an invert subroutine, solve the system of equations for 

the unknown displacements. With the displacements and using equation 1, a vector of axial 

forces of members is obtained. For each member, iβ  values are calculated and equations 

(2.35), (2.35) and (2.36) are modified in order to reformulate the member and structure 

equations. 

        d) The iteration is continued until elements of force vectors and displacement vectors of 

two successive iterations are correspondingly close to one another. The control point in 

continuing further iterations is the test value of the determinant of the stiffness matrix. 

If the values of the determinant are positive, then according to the principle of 

positive definiteness for stability, further iteration becomes possible. 
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        e) Once the final set of displacements and forces for a value of λ  are obtained, then 

they are stored further use. 

        f) Steps c, d and e are repeated for a different value ofλ . 

Solutions for the structure are completed; end displacements and end forces have 

been obtained. Now, it is possible to further study the members. 

2.4.2 Member Formulations and Solutions 

 

For a straight prismatic member, the general equation of equilibrium is given by 

0
0

22 1
=


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
 −″+∫

L

a
IV dxqufEIu  let Pfa =

1
                                                                   (2.44) 

where q is the intensity of the lateral load on the member. 

Solution of equation (2.44) is 
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                                                  (2.45) 

In the member axis system ( )321 ,, xxx of each member, the boundary conditions, the final 

end forces and displacements corresponding to each value of λ of a loading pattern (obtained in 

step e of the procedure) are: 
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Using these, the coefficients of equations of equation (2.45) can be determined. 

Let   
L

wtr
ααα 2

,2cos,2sin ===  and 
EP

P
2
πα = then,                
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
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

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

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1001

                                                                         (2.46) 

 Knowing the right hand side of equation (2.46), it is possible to determine the 

coefficients and use them in equation in equation (2.45) to calculate the lateral displacement 2u at 

any point 1x of the member.          

 

2.4.3 Southwell Plot          

 

Using the computer program, for a given frame and a loading pattern, all information 

regarding the axial forces and displacements at different points of columns are calculated and 

stored. For every column member, plotting axial load/lateral deflection ratio against axial load 

for various points within member length yields straight lines converging to one point on the axial 

load axis. This is the elastic critical load, 
cr

P  of the column under the given loading of the frame. 

The critical load corresponds to that value of the axial load when the displacements approach 

infinity. 

A curve fitting routine greatly reduces the amount of work involved in determining a 

Southwell Plot which leads to a critical load. 
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2.4.4  Case Study  

 

In order to demonstrate the procedure, the frame designed by Wood and investigated by 

Bowles and Merchant (1956) is adopted. A loading pattern is accepted and the solution is carried 

out. Fig 2.4 gives the dimensions and the cross section profiles of members of the frame. Also, is 

illustrated the numbering system used in the computer program. Table 2.4 gives the 

characteristics of the members of this frame according to the numbering system of Fig 2.4.  

The loading pattern used is given in Fig. 2.5. In table 2.5 are given the results for member 

8 for various values of λ of this loading pattern of the frame. The Southwell Plots are illustrated, 

and as seen in Fig. 2.5, the 
i

P
∆   vs. P curves yield straight lines that converge to the same point 

defining the critical load, crP which is equal to 3380 kips. 
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Table 2. 4: Characteristics of Wood’s Frame 

 

 

Members ( )inL  ( )4inI  ( )2inA  ( )ksiPE  

1 180 322 20.78 2942.6 

2 177 322 20.78 3043.2 

3 177 271 18.28 2561.2 

4 189 208 14.71 1724.1 

5 183 115 10.30 1016.8 

6 180 602 22.30 5501.4 

7 177 460 19.30 4347.5 

8 177 378 18.78 3572.5 

9 189 221 17.03 1831.9 

10 183 492 10.30 4349.9 

11 180 322 20.78 2942.6 

12 177 322 20.78 3043.2 

13 177 271 18.28 2561.2 

14 189 208 14.71 1724.1 

15 183 115 10.30 1016.8 

16 279 1226 19.12  

17 279 1226 19.12  

18 279 1226 19.12  

19 279 1226 19.12  

20 279 492 13.24  

21 279 1226 19.12  

22 279 1226 19.12  

23 279 1226 19.12  

24 279 1226 19.12  

25 279 492 13.24  
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Table 2. 5: Results for Member 8 of Wood’s Frame subjected to the given loading pattern 

Pkips, inches 

 

λ  1 2 3 4 5 6 

1P  384.6 769.5 1154.7 1542.3 1929.9 2317.2 

2
2∆  0.511 1.155 2.001 3.180 5.030 8.369 

2∆
P  753.2 666.3 577.2 484.9 383.7 276.9 

3∆  0.726 1.656 2.898 4.654 7.455 12.599 

3∆
P  529.5 464.7 398.8 33.14 258.9 183.9 

4∆  0.771 1.774 3.133 5.092 8.251 14.166 

4∆
P  498.5 433.8 368.6 302.9 233.9 163.6 

 

2.4.5 Discussion Results and Conclusion  

 

In present day practice to design rigidly connected columns of a multi-story frame, one 

uses the AISC (American Institute for Steel Construction) nomographs (Manual of Stell 

Construction 2008) to determine the effective column length factork . In referring to the 

assumptions behind the nomographs, one finds that primary bending moments inherent in all 

multistory frame are ignored. In other words, only axial loads are considered. 

Here, the effect of primary bending moments ( due to loads applied at points other than 

the joints) are included in the formulations though the use of stability functions to modify the 
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fixed end moments ( for uniformly distributed load, 
3

1
β is used). Therefore, the procedure leads 

to a more rational evaluation of the critical load. 

Once the critical load has been determined, the effective length factor k is given by 

cr

E
P

Pk =  

For member 8 of the frame in the example, the Eular load EP is in Table 2.4. Then k is 

found to be equal to 1.03. AISC nomographs yield k equal to 1.14. 

The technique demonstrates that there is an effect of the loading pattern of a frame on the 

load carrying capacity of a column in that frame. This fact has been long discussed, and the 

German Codes partially take into account. Zweig (1968) proved that load carrying capacity 

changes when two different values of external loads are applied to a portal frame. 

In conclusion, by using matrix formulations, the Southwell plotting technique is proved 

to be applicable to determine the critical loads of columns in multistory frames under given 

loading patterns. 
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Figure 2. 4: Wood’s frame 
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Figure 2. 5: Loading of frame, Soutwell plot for member 8 
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2.5 The Southwell Method Applied to Shells 

 

To apply the Southwell method of predicting the critical load without disturbing the 

model, a uniformly compressed spherical shell is considered. If a spherical shell is submitted to a 

uniform external pressure, it may retain its spherical form, and undergo a uniform compression 

whose magnitude is in this case; 

 

02t

pa=σ                                                                                                                                   (2.47) 

 

So, for values of pressure increasing from zero, the shell will at first deform in a rather 

uniform manner. This process persists until the external pressure,p , reaches a certain critical 

value, crp , called the initial  buckling pressure. At this value of pressure the shell no longer 

deforms in a uniform manner but jumps or snaps into another non-adjacent equilibrium 

configuration. The pressure to which the shell jumps is called the final buckling pressure.  Thus, 

if the pressure increases beyond a certain limit, the spherical form of equilibrium of the 

compressed shell may become unstable, and buckling then occurs. In order to calculate this 

critical pressure, the buckled surface is assumed to be symmetrical with respect to the diameter 

of the sphere. But before going into the detail of the buckling problem it is advisable first to 

consider the bending theory of shells.   
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2.5.1 Deformation of an Element of a Shell of Revolution 

 

In the Fig. 2.6 let ABCD represents an infinitely small element taken from a shell by two 

pairs of adjacent plans normal to the middle surface of the shell and containing its principle 

curvature( Timeshenko et.al (1961) and Timeshenko et al. (1959)). 

Taking the coordinate axes xand y tangent at an arbitrary point oof the middle surface 

and the axis znormal to the middle surface, the element may be defined. In bending theory of 

shells, it is assumed that, the linear elements, which are normal to the middle surface of the shell 

remain straight and become normal to the deformed middle surface of the shell. Thus the law of 

variation of the displacements through the thickness of the shell is linear (Novozhilov (1959)). 

During bending, the lateral faces of the element ABCDhave rotation and displacement; 

superposing and first considering rotation only with respect to their lines of intersection with the 

middle surface. The unit elongations of a thin lamina at a distance z from the middle surface are; 

 









−

′−
−=

xx
x

x rr
r

z
z 11

1
ε

                                                                                                        (2.48) 














−

′−
−=

yy
y

y rr
r

z
z 11

1
ε                                                                                                        (2.49) 
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Figure 2. 6: Element taken from a shell by two pairs of adjacent plans normal to the middle 

surface  

 

If in addition to rotation, the lateral sides of the element are displaced parallel to themselves, 

owing to stretching 2l of the middle surface, the elongation of the lamina considered above,  

1

12
1 l

ll −
=ε                                                                                                                              (2.50) 

but since; 





 −=

xr
zdsl 11  and, ( ) 








′−+=
xr

zdsl 11 12 ε substituting them back into the 

equation (2.50) and summing up with xε due to the rotation only, 

 

    

                                                              (2.51) 
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and similarly, 

 

( ) 












−

′−−
−

−
=

yy
yy

y rr
r

z
z

r
z

1

1

1

11 2

2

ε
εε                                                                               (2.52) 

 

Since the thickness 0t  of the shell always will be assumed small in comparison with the 

radius of curvature, the quantities 
xr

z  and 
yr

z  may be neglected in comparison with unity. 

Also neglecting the effect of elongations 1ε  and 2ε on the curvature the expressions become, 

 









−

′
−=

xx
x rr

z
11

1εε                                                                                                       (2.53) 

and, 














−

′
−=

yy
y rr

z
11

2εε                                                                                                      (2.54) 

Assuming that, there are no normal stresses between laminas 0=zσ  is obtained. Then, 

from the well known formulae; 

 

( )yxx

E υεε
υ

σ +
−

= 21
                                                                                                   (2.55) 

( )xyy

E υεε
υ

σ +
−

=
21

                                                                                                   (2.56) 

Therefore, substituting the values of strain components; 
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( )( )yxx z
E υχχυεε
υ

σ +−+
−

= 2121
                                                                           (2.57) 

( )( )xyy z
E υχχυεε
υ

σ +−−
−

= 1221
                                                                            (2.58) 

are obtained. Since the thickness of the shell is very small, the lateral sides of the element 

may be considered as rectangles. Therefore the corresponding normal forces acting to the 

centroit of the side will be; 

 

 

                for 1=dy                                                         (2.59) 
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and the moments, ( )∫
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t
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Now knowing that the shearing stresses are also acting on the lateral sides of the element in 

addition to the normal stresses. If γ  is the shearing strain in the middle surface and dxxyχ  the 

rotation of the edge BC relative to −z axes, ( )Gz xyxy χγτ 2−= is obtained. Also knowing that 

∫
−

=
2

2

0

0

t

t
xzx dzQ τ , ∫

−

=
2

2

0

0

t

t
yzy dzQ τ , ∫

−

==
2

2

0

0

t

t
xyxyyx dzNN τ  and ∫

−

==−
2

2

0

0

t

t
xyyxxy dzzMM τ  one may find, 

( ) xyyxxy DMM χυ−=−= 1 ,and ( )υ
γ

+
==

12
0Et

NN yxxy  

( )∫
−

+
−

==
2

2

212
0

0

0
1

t

t
xx

Et
dzN υεε

υ
σ



 88 

Thus assuming that during bending of a shell of revolution the linear elements, normal to 

the middle surface the resultant forces yx NN , and xyN and the moments, xM , yM , and xyM may 

be expressed in terms of six quantities; three components of strain1ε , 2ε , and γ  of the middle 

surface of the shell and the three quantities xχ , yχ , and xyχ  representing the changes of 

curvature and the twist of the middle surface of the shell. 

2.5.2 Equations of Equilibrium of a Spherical shell 

 

Due to the symmetrical deformation, one of the displacement components vanishes, and 

the others are only the functions of angleθ . Therefore; 

 

( )θ1fu =  

0=v      

( )θ2fw =  
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Figure 2. 7: Spherical shell element and corresponding forces                                                              

                                                               

In the case of symmetrical deformation, there are only three equations to be considered as 

the projections of forces on thex , and zaxes and moments of forces with respect the −y axes. 

Therefore after simplification, the three equations of equilibrium become; 

 

( ) 0cot =−−+ xyx
x QNN

d

dN θ
θ

                                                                                   (2.61) 

           0cot =++++ paNNQ
d

dQ
yxx

x θ
θ

                                                                             (2.62) 
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( ) 0cot =−−+ aQMM
d

dM
xyx

x θ
θ

                                                                             (2.63) 

 

2.5.3 Equations of Equilibrium for the Case of Buckled Surface of the Shell 

 

In writing the equations of equilibrium for the case of buckled surface of a shell, which is 

assumed symmetrical with respect to any diameter of the shell, the small changes of the angles 

between the faces of any element such as ABCDdue to the deformation has to be considered. 

Since there is symmetry of deformation, the rotation will only be with respect to −y  axes. For 

the face OC , this deformation is; 

 

θad

dw

a

u +                                                                                                                       (2.64) 

 

Thus the angle between the faces OC and ABafter deformation becomes; 

 

θ
θθ

θ d
ad

dw

a

u

d

d
d 







 ++                                                                                                (2.65) 

 

The faces AOand BCowing to symmetry of deformation, rotate in their own planes by 

an angle, 

 








 +−
θad

dw

a

u
                                                                                                                (2.66) 
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Such a rotation in the plane of the face BChas components with respect to the xand 

zaxis equal to; ψθ
θ

d
ad

dw

a

u
cos






 +  and, ψθ
θ

d
ad

dw

a

u
sin






 +−  respectively. Thus after 

deformation, the direction of the face BCwith respect to the face ADmay be obtained by the 

rotation of the face AOwith respect to the x  and zaxis through the 

angles, ψθ
θ

ψθ d
ad

dw

a

u
d cossin 







 ++  and, ψθ
θ

ψθ d
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dw

a

u
d sincos 







 +− respectively. 

Using the above derived angles instead of the initial ones; ,θd ,sin ψθd and ,cos ψθd the 

equations of equilibrium of the element OABCbecome; 
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In this case; 

a

w
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du −=
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a

w

a

u −= θε cot2                                                                                                          (2.71) 
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The differential equation of equilibrium developed have above are based on Love’s 

general theory of small deformations of thin shells which neglects stresses normal to the middle 

Surface of the shell and assumes that the planes normal to the undeformed middle surface remain 

normal to the deformed middle surface. 

                                                        

 
Figure 2. 8: Meridian of a spherical shell before and after buckling 
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2.5.4 Buckling of Uniformly Compressed Spherical Shells 

 

If a spherical shell is submitted to a uniform external pressure, there will be a uniform 

compression whose magnitude is; 

02t

pa=σ  

Let vu, and w represent the components of small displacements during buckling from the 

compressed spherical form, then xN and yN differ little from the uniform compressive force 

2
pa and they become, 

xx N
pa

N ′+−=
2

                                                                                                        (2.74) 

yy N
pa

N ′+−=
2

                                                                                                         (2.75) 

where xN′  and yN′ are the resultant forces due to small displacements vu, and .w  

Also, considering the small change of pressure on an element of the surface, due to the 

stretching of the surface, p becomes ( ).1 21 εε ++p Therefore substituting equations (2.74) and 

2.75) back into the differential equations of equilibrium (2.67), (2.68), and (2.69) and 

simplifying and neglecting the small terms, such as the products of ,xN′ yN′ and xQ with the 

derivations of vu, and ;w  
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( ) 0cot =−−+ aQMM
d

dM
xyx

x θ
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                                                                              (2.78) 

 

From the Equation (2.78): 
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Substituting xQ into the Equations (2.76) and (2.77); 
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Now introducing two dimensionless parameters, α  and φ which are defined as; 
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( )

0
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Et

pa υφ −= and using the elastic law to express the forces and 

moments in terms of u and wone obtains; 
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 (2.84) 

These two equations may be simplified by neglecting in comparison with unity in the first 

term, since the shell is thin, and therefore a
t0 ratio is very small. Also, due largely to angular 

displacement χ   we make good use of this situation by introducing an auxiliary variable U  such 

that 
θ
ψ

d

d
u −= . Thus, the expressions in the brackets become identical. Then using the symbol 

H for the operation; 

 

( ) ( ) ( ) ( ).........2
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cot
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++=
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θ
θ d
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H  

 Equation (2.83) may be written as follows, 

( ) ( ) ( )( ) ( ) ( )[ ] 011 =+−+−++−+ wwwwHH
d

d ψφυαψυαψ
θ

 

The forth term, containing the factor, may be neglected in comparison with the third. 

Integrating this equation with respect to θ  and assuming the constant of integration is equal to 

zero;  

( ) ( ) ( )( ) ( ) 01 =+−++−+ wwwHH ψφψυαψ                                                             (2.85) 
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And similarly for Equation (2.84) ; 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ] 021231 =+++−+++++−+−+ wwHHwwHHwHH ψψφψυαυψυψα         (2.86) 

Now, any regular function of θcos in the interval 1cos1 ≤≤− θ  may be expanded in a 

series of Legendre functions; 
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nn

which satisfy the differential equation, 

( ) 01cot
2

2

=+++ n
nn Pnn

d

dP

d

Pd

θ
θ

θ
                                                                               (2.87) 

 

Thus, performing the operation ;H one obtains, 

( ) nnn PPH λ−=                                                                                                             (2.88) 

( ) nnn PPHH 2λ=                                                                                                            (2.89) 

In which ( ) 21 −+= nnnλ  

Assuming general expressions of U and w for any symmetrical buckling of spherical 

shell, 

∑
∞

=
=

0n
nnPAψ                                                                                                               (2.90) 

n
n

nPBw ∑
∞

=
=

0

                                                                                                              (2.91) 
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substituting them back, 

( )[ ] ( )[ ]{ } 011
0

=+++++++∑
∞

=n
nnnnn PBA φυαλφυλ                                              (2.92) 

( )( ) ( )[ ] ( ) ( ) ( )[ ]{ } 02123221
0

22 =−−++++++++++∑
∞

=n
nnnnnnnnn PBA λφυαλυαλλφλυλ (2.93) 

The Legendre functions form a complete set of functions. Therefore, the two series can 

not vanish identically in θ  unless each coefficient vanishes; 

 Thus, for each value of ,n the following two homogeneous equations are obtained. 

( )[ ] ( )[ ] 011 =+++++++ φυαλφυλ nnnn BA                                                             (2.93) 

( )( ) ( )[ ] ( ) ( ) ( )[ ] 02123221 22 =−−++++++++++ nnnnnnnn BA λφναλυαλλφλυαλ  (2.94) 

 

Buckling of the shells become possible if these equations for some value of n , yield for 

nA  and nB  a solution different than zero, which means a trivial solution or in other words 

requires having a zero determinant of the system of equations. Thus, 

 

( ) ( )[ ] ( )[ ] 031121 222 =++−++++− υλφλυλλαλλυ nnnnnn                                 (2.95) 

 

A solution of which 0=nλ . That corresponds to a value of nequal to unity. Substituting 

this value of ,nλ one obtains, 

 

11 BA −=  

 

which corresponding to the displacements, 
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θ
θ
ψ

sin1A
d

d
u −=−=  

θcos1Aw −=  

This is a displacement of the sphere as a rigid body displacement “buckling mode” along 

the axis of symmetry. This must, of course, be excluded when we wish to investigate the elastic 

instability of the shell. 

Now for 0≠nλ other than zero; 

( ) ( )[ ]
( )υλ

νλλανφ
31

121 222

++
++++−=

n

nn                                                                           (2.96) 

        which yields for its minimum, or for 0=
nd

d

λ
φ

after simplification; 

( ) 0
1

312
2

2 =−−++
α
νλυλ nn                                                                                      (2.97) 

Thus,  

( )
α
νλυλ

21
31

−+−−= nn                                                                                         (2.98) 

and 

 

( ) νααυφ 612 2
min −−=                                                                                           (2.99) 

But since  

( )
0

2

2

1

Et

pa υφ −=                                                                                                          (2.100) 
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and minφ  yields the first critical load ,crp  

( ) ( ) 










−×−

−
=

−
=

2

2
00

2

2
0

2
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23

1

1

2

1

2

a

t

a

t

a

Et

a

Et
pcr

υυ
υυ

φ
                                                   (2.101) 

 

or neglecting the second term in the parenthesis; 

  

                                                                                              (2.102) 

 

or, 

 

( )2

0

13 va

Et
cr

−
=σ  

 

In the above derivation a continuous variation of nλ has been assumed but nλ is defined 

so that n is an integer. Hence, to get a more accurate value for the critical load, two adjacent 

integers as obtained from the equation ( ) 21 −−= nnnλ should be substituted in the equation of 

φ  and the value of nλ which gives the smaller value for nφ should be used in calculating critical 

stresses. But this more accurate calculation of the critical load will differ little from that given by 

the above formula, since the value of nλ is so large (Timoshenko et al.1961). 

Although in the derivation a symmetrical buckling of shells was considered, a more 

general investigation shows that owing to symmetry of the uniformly compressed spherical shell 

with respect to any diameter, the formula always can be used for calculating the critical stress. 

( )22

2
0

13

2

ν−
=

a

Et
pcr
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2.5.5 Southwell Procedure Applied to Shells 

 

The Southwell procedure was first applied to columns by Southwell in 1934. In this part 

of this chapter, an attempt is made to show that Southwell procedure is also applicable to 

uniformly compressed spherical shells. 

In the derivation of the formula, as it was done for the classical theory of buckling shells ( 

See previous part) it is assumed that the displacements u and wmay be expressed as, 

∑
∞

=
==

0n
nnPA

d

du

θ
ψ                                                                                  

∑
∞

=
=

0n
nnPBw  

where nP  is the Legendre  functions of the orders n  and nA and nB are the real constants 

as before. 

Furthermore, as explained in the proceeding section, the manufactural imperfections, 

which are unavoidable, are considered and it is assumed that they may be expressed as; 

∑
∞

=

′=
0

0
n

nnPAψ  

∑
∞

=

′=
0

0
n

nnPBw  

Moreover, for the sake of simplicity, it is assumed that the manufactural imperfections of 

0ψ is equal to zero. Thus, it is tried only with the direction .w  

When the compressive load q is applied to shell, each point of the middle surface 

undergoes elastic displacements u andw , and its normal distance from the reference sphere is 

then becomes 0ww+ . It is assumed of course, that 0w is of the order of an elastic deformation, 
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and then the element of the shell looks like the deformed elements, which are used to establish 

the differential equations of the buckling problem. Again going through the same procedure one 

finds that the terms of those equations belong in two groups. (See proceeding section) In those 

terms which contain the factorφ , the quantities u and wdescribe the difference in shape between 

the deformed element and an element of true sphere. In these terms w  must now be replaced by 

0ww+ . On the other hand, all terms which do not have the factor φ , can be traced back to terms 

of the elastic law, and represent the stress resultants acting on the shell element. Before the 

application of the load, the shell has been free of stress and the stress resultants depend only 

elastic displacements u and w . Consequently, in all these terms w is just wand nothing else. 

Thus one arrives the following set of differential equations: 

( ) ( ) ( )( ) ( ) 01 0 =++−+−−++ wwwwHwH ψφψυαψ                                          (2.103) 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ( )[
( ) ]02

1231

0

00

=+++
++++−+++++−+−+

ww

wwHwwHHwwHHwHH

ψ
ψφψυαυψυψα

(2.104) 

 

In which H denotes the same operator as before; 

 

( ) ( ) ( )2cot
2

2

++=
θθ d

d
g

d

d
H  

 

Again following the same procedure that is used for the classical buckling theory of 

spherical shells (see the proceeding section) one obtains the following set of algebraic equations: 
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( ) ( ) φφυαλφυλ nnnnn BBA ′−=+++++++ 11                                                              (2.105) 

 

( ) ( )
( )2

2223222 22

−′
=+−+++++++++++

nn

nnnnnnnnnn

B

BA

λφ
φφλυυαλαλαλφφλυυλλαλ

 (2.106) 

 

Thus the problem is reduced to solving this set of equations. Eliminating nA from the 

above set of equations, 

 

( )[ ( ) ( )
] ( ) ( )[ ]nnnnn

nn

BB λφυλαφλ

υαφαφυφαυυααφφφυυυαλφαφαλαα

221

312221

2

22223

+++′−=

−−+−−−−++++++−+−
(2.107) 

 

Therefore the coefficient nB becomes; 

 

( ) ( )[ ]
( ) ( ) ( )[ ] nnn

nnn
n

B
B

λαυφαφυλφααφααλ
φυλαφλ

12321

21
22 −−++−++−+−−

+++′
−=               (2.108) 

 

After canceling ,nλ and neglecting the small quantities as φα ,  and their products in 

comparison with unity; 

 

( )[ ]
( ) 12

2
22 −++−+−

++′
−≅

υλφααφαλ
φυλφ

nn

nn
n

B
B                                                             (2.109) 
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Coming back to the definition of the displacement wone may write the equation, 

∑
∞

=
=

0n
nnPBw  or writing it in detail, ........221100 +++= PBPBPBw  

 

Substituting the values of the Legendre Polynomials in their places; 

 

 

 

Also according to the definition of; 

 

 

which is minimum for  2
1=n therefore it has the same values for n  equals to minus one 

and zero. Since nmust be an integer, it is chosen as zero, which yields, 2−=λ and corresponds 

to 0B which is a function of nλ and gets smaller when nλ becomes greater. Thus, it is possible to 

neglect all the terms and simply write 0Bw ≅  

since the terms which contains .........2cos,cos θθ are much more smaller so, buckling is 

usually expected at the places where θ is large. 

Accordingly, it is possible to write; 

 

( )[ ]
( ) 2

0

1224
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or rearranging the terms, 

[ ]
( ) 2

0

112
12
υφφ

φυφ
−++
−+′

≅ B
w  

Neglecting the small terms as α and φ in comparison with unity, 

 

( )

φ
υ

υ

2
1

1

1
2

0

−+

−′
≅ B

w  

Now writing φ in detail, 
( )

Em

q

2
1 2υφ −=  or 

φυ
pEm =

− 21

2
in which m is the ratio of the 

thickness to the radius of the sphere. The classical critical load for a spherical shell as found 

before is; 

( )2

2

13

2

υ−
= Em

pcr or ( )2

42
2

13

4

υ−
= mE

p cr  therefore, ( ) 3

2

2 2
3

1

2

Em

pEm cr=
−υ

 

Equating the two relations; 

3

2

2

3

Em

pq cr=
φ

 

Thus,  

pEm

q cr 1

2

31
3

2

××=
φ

 

Substituting back 

( )
( )

qEm

p

B
w

cr

n

3

22

4

13
1

1

υ
υ
−+

−′
=  

or performing the cross multiplication, 
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( ) ( )1
4

13 2
3

2

−′=××−+ υυ
ncr B

q

w
p

Em
w  

Which is the equation of a straight line if one axis is taken as wand the other one as p
w . 

Thus the inverse slope of this line gives the critical load with a minus sign. Therefore obtaining 

the slop of this line experimentally, 

( )S
Em

p cr 2

3
2

13

4

υ−
−=  

where S  denotes the slope. Thus, the Southwell procedure is applicable for uniformly 

compressed spherical shells. 
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2.6. Nonlinear Finite Element Analysis (FEA) 

 

Finite element analysis (FEA) is capable to find the critical load associate with elastic 

buckling behavior. The first step in elastic buckling analysis is to find the critical load, which 

should be related to the lowest eigenvalue. All FEA for this investigation was performed using 

the general purpose program ABAQUS Version 6.7. ABAQUS is a highly sophisticated, general 

purpose finite element program, designed primarily to model the behavior of solids and 

structures under externally applied loading.  Eight-node shell element was used to model 

hemispherical shells. This element is a general purpose quadratic shell element.  The material of 

the shells is assumed as homogeneous, isotropic, imcompressible and elastic.  In order to check 

for the accuracy attainable by this method, a number of spherical shells with different kinds of 

boundary condition and loading were solved (Figs 2.9-2.25).   
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Figure 2. 9: Deformation pattern for hemispherical shell with hinge support under radially 

uniform pressure  
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Figure 2. 10: Subsequent deformation of hemispherical shell with hinge support under radially 

uniform pressure  



 109 

 

 

Figure 2. 11: Deformation of hemispherical shell with hinge support under maximum radially 

uniform pressure  



 110 

 

 

Figure 2. 12: Different cuts of the deformed hemispherical shell with hinge support under 

radially uniform pressure  
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Figure 2. 13: Subsequent deformations in the cuts of the deformed hemispherical shell with 

hinge support under radially uniform pressure  
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Figure 2. 14: Buckling initiation of the hemispherical shell with roller support under radially 

uniform pressure 
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Figure 2. 15:  Subsequent deformation of the hemispherical shell with roller support under 

radially uniform pressure 
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Figure 2. 16: Second mode of the deformation in hemispherical shell with roller support under 

radially uniform pressure 
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Figure 2. 17: Buckling initiation of the hemispherical shell with hinge support under ring load in 

2
R  
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Figure 2. 18: Buckling of the hemispherical shell with hinge support under ring load at 2
R  
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Figure 2. 19:  Subsequent deformation of the hemispherical shell with hinge support under ring 

load at 2
R  
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Figure 2. 20: Large deformation of the hemispherical shell with hinge support under ring load 

distributed at 2
R  
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Figure 2. 21: Buckling initiation of the hemispherical shell with hinge support under ring load in 

3
R  
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Figure 2. 22: Buckling of the hemispherical shell with hinge support under ring load at 2
R  
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Figure 2. 23: Large deformation of the hemispherical shell with hinge support under ring load 

distributed at 3
R  
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Figure 2. 24:  Buckling initiations of the hemispherical shell with hinge support under gravity 

loading  
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Figure 2. 25: Subsequent deformation of the hemispherical shell with hinge support under 

gravity loading  
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2.7. Experimental Program  

In this part, an attempt is made to find the critical load for hemispherical shells pinned at 

the base and subject to uniform pressure in a purely experimental way.  It is intended to show 

that the formulation which has been derived in this study give correct results for shells of 

revolution under various axisymmetric loading conditions.  

A total of six thin walled polyethylene hemispherical shells were constructed and tested under 

uniform suction pressure. The base diameters of these shells were 15 cm and 10 cm and their 

wall thickness were 0.05 cm yielding t
R  ratios of 150 and 100 respectively.  It is evident that 

the construction of these shells through machining would have been difficult and for the 

following reasons, the shells were made of solid polyethylene plastic which posses good tensile, 

flexural, and impact strengths and its flexural modulus is proportional to the stiffness of the 

material. Its creep resistance is excellent and is substantially superior to most plastics. Its 

mechanical properties are as follows: 

Flexural modulus: 650 MPa 

Poisson’s ratio: 0.4 

Density: 1150 kg/m3 

Poisson’s ratio: 0.4 

A complete family of hemispherical shells is shown in Fig 2.26.   

 

The manufacturing of these shells was carried out with the aid of machined male and 

female molds made from cast aluminum alloy. The aluminum alloy molds were machined with 

considerable precision and then the spherical shells were cast by “puddling” technique. Each 

shell was inspected by a polariscope to ensure that no air bubbles were trapped in the shell wall.  
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Figure 2. 26: Hemispherical shells samples made of polyethylene 
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Figure 2. 27:   A test made of R=75 mm shell using suction pressure and three displacement 

gages at various points. 
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Figure 2. 28: Deformation measurement with three gages at different locations in hemispherical 

shells under uniform suction pressure (R= 75mm). 
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Figure 2. 29: Tests made of R=50 mm shells with suction pressure and three displacement gages 

at different locations hemispherical shells under uniform suction pressure (R= 50 mm). 
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Figure 2. 30: Deformation measurement with three gages in different locations at hemispherical 

shells under uniform suction pressure (R= 50 mm). 
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Figure 2. 31:  Initial buckling of  hemispherical shells under uniform suction pressure (R= 50 

mm). 



 131 

 

 
Figure 2. 32: Initial buckling of hemispherical shells under uniform suction pressure (R= 50 

mm). 
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Figure 2. 33: Initial buckling of hemispherical shells under uniform suction pressure (R= 75 

mm). 
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Figure 2. 34: Several tests made on different samples using suction pressure with three and five 

gages at different locations.   
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2.8. Results and Discussion 

 

In this study, the Southwell predictions are compared with experimentally, and 

numerically obtained values. The results of the investigation are summarized in Figs 2.35 to 2.45 

which the predictions of the Southwell method are compared with measured buckling loads in 

experimental study and numerical simulations. Scatter in the experimentally obtained buckling 

pressures is probably due to variations that existed occurred in the specimens because of the fact 

that each one was cast separately. The manufacturers did, however, take considerable care during 

the manufacturing process, and especially with the mix, and for this reason the scatter is very 

small. Thus, it is likely that the main source of error compared to theory is because of 

measurement reading errors, and imperfections in material properties.  However, the agreement 

between measured buckling load and Southwell prediction is remarkable. Mostly, the Southwell 

method tended to yield buckling loads which are slightly higher than those measured and the 

disparity of buckling load is somewhat difficult to detect. Nevertheless, the predicted loads are 

reliable to be slightly higher (up to about 17%) than the actual load encountered. Therefore, a 

reasonable degree of caution is recommended to be exercised.Scatter in the numerically obtained 

buckling pressures for axisymmetrical buckling cases are very small and it is most likely due to 

the assumptions of the finite element solution.  For the case of buckling of spherical shell with 

roller support under uniform pressure, the buckled shape is not axisymmetric anymore (Fig 

2.15). So, once data are collected from the principle axes locations, the answer is acceptable and 

there is only 13% error otherwise, the deviation from the correct values is considerable.   

 Briefly, the method provides valuable technique for estimating the buckling load of 

spherical shells without having to conduct a destructive test.  The results obtained have logical 

accuracy and the method does not suffer from the any major issues. Any boundary condition at 



 135 

the edge may be taken into account and as long as the loading is axisymmetric, this procedure 

can be used with reasonable accuracy.  

2.8.1 Experimental work findings  
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Figure 2. 35: Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 
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Figure 2. 36: Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 
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Figure 2. 37: Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 

 

1179.0−=S  

( ) MPap
S

Em
p crcr 0935.0

13

4
2

3
2 =→

−
−=

υ
 

From test MPap 08.0=  

Error for this case:  %8.16100
08.0

08.00935.0 =×−
 

 



 138 

w/p-w

y = -0.1885x + 5.5705

5.55

5.552

5.554

5.556

5.558

5.56

5.562

5.564

5.566

5.568

5.57

0 0.02 0.04 0.06 0.08 0.1 0.12

w (mm)

w
/p

 (
m

m
3 /

N
)

Experimental

 

Figure 2. 38: Plot of  p
w  against w  ( mmR 75= , mmt 5.00 = ) 
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Figure 2. 39 : Plot of  p
w  against w  ( mmR 75= , mmt 5.00 = ) 
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2.8.2 Numerical Study results  

 

2.8.2.1. For uniform radial pressure case with hinge support: 
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Figure 2. 40: Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 
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Figure 2. 41: Plot of  p  against w  ( mmR 75= , mmt 5.00 = ) 
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2.8.2.2. For uniform downward pressure case with hinge support: 
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Figure 2. 42: Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 
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2.8.2.3. For uniform radial pressure case with roller support : 
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Figure 2. 43:  Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 
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2.8.2.4. For Ring load case with hinge support: 
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Figure 2. 44:  Plot of  p
w  against w  ( mmR 50= , mmt 5.00 = ) 
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Figure 2. 45: Comparison of Southwell experimental prediction to theoretical buckling pressures. 
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2.9. Conclusion 

 

The accurate prediction of buckling loads of spherical shells, based on the nondestructive 

buckling test data, is generally a difficult problem. Hence, this chapter presents a general 

methodology for predicting the critical buckling loads of spherical shells using a nondestructive 

test. For this purpose, the well known graphical method of predicting buckling loads, i.e., the 

Southwell’s nondestructive method is extended to spherical shells and a new formula is derived 

for the critical buckling load of uniformly compressed spherical shells. The feasibility of this 

technique for determining critical buckling loads of spherical shells is demonstrated provided 

caution is exercised in analyzing the test results. This method may be used in any kind of 

spherical shells with arbitrary axisymmetrical loading and it provides a valuable procedure for 

estimating the buckling load of a spherical shell structure without having to conduct a destructive 

test. In this method, the curve of displacement/load is plotted against displacement, which is a 

straight line, and the slope of this line when multiplied by a constant value presents the critical 

buckling load with sufficient accuracy. The expediency of the method lies in its simplicity, and 

in the fact that it is nondestructive. This technique does not need any assumption as to the 

number of buckling waves or the exact locality of buckling so long as the loading remains 

axisymmetric. During experimental study, the test can be terminated if enough data points have 

formed a straight line.  In this procedure, error may be introduced as a result of the accuracy of 

instruments, skill of the examiner and also approximation in determining Poisson’s ratio value. 

Moreover, the accuracy of this method depends on the test cut off point and the mathematical 

function which is used for curve fitting. In the least squares fitting technique, the slope of the 
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fitted line is affected by the accuracy of the different displacement data points. Small 

inaccuracies in the measured data points cause the slope of line to be changed noticeably and 

may cause over prediction of the buckling load. So, with increasing the number of data points 

plotted together one can get more precise and realistic buckling load. The data points in the 

lower region are less important than the data points in the higher load region.  In addition, 

increasing the number of gages may tremendously improve the accuracy.  Even though the 

numerical solution can make the buckling load easily available to the user, it is here as an 

additional tool to verify the accuracy of the Southwell technique compared with the actual 

numerical and analytical buckling loads. Excellent correlation is observed.  
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Notation that used in this chapter 

SSlope of w  verses p
w  line 

u  Displacement of the shell element in x  direction 

v  Displacement of the shell element iny  direction 

w  Displacement of the shell element inz  direction 

0U  Effect of initial imperfections 

V  Shearing force in straight members 

y  Deflection of straight member 

α  Buckling coefficient to be determined experimentally 

xε  The unit elongation or strain in x- direction 

yε  The unit elongation or strain in y-direction 

1ε  The unit elongation of middle surface in x-direction 

2ε  The unit elongation of middle surface in y-direction 

υ   Poisson’s ratio 

xχ  Change of curvature in x-direction 

yχ  Change of curvature in y-direction 

0t  Thickness of shell 

crp Classical buckling pressure 

( )H  A mathematical operator  
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Appendix A - Collapse load of circular plate 

 

A plate is supposed to yield in bending at point ( )21, xx if the stress tensor there obeys the 

yield criterion at every 3x except 03 =x ; points in the middle plane are observed as remnants of 

the elastic core.  If the stresses 3iσ are assumed negligible in magnitude next to the αβσ (this does 

not mean that they can be neglected in the equilibrium equations, because derivatives occur 

there), then a plane-stress yield criterion may apply: 

 

,0=














y

f
σ
σ αβ  

In every plane 03 ≠x . Equilibrium is satisfied if  

 

32
sgn

4
xM

h
αβαβσ −=  

If the ultimate moment is defined as ,4

2
0

0

t
M yσ= then the plate yield criterion is given 

by ( ) ,0=αβmf  

where ;
0M

M
m αβ

αβ = the Mises and Tresca criteria become, respectively, 

13 2
12

2
222211

2
11 =++− mmmmm   (Mises), 

            ( ) 1,,max 2121 =− mmmm           (Tresca), 

If the loading and support are axisymmetric, then the only nonvanishing moments 

are rM , θM  and the equilibrium equation is, 
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 ( ) ∫=−′ r

r qrdrMrM
0θ                                                                                                  (A.1) 

This equation and the yield condition constitute two equations for rM and θM . 

Equivalently, if the yield condition is solved for θM in terms of rM and the resulting expression 

for θM is substituted in (A.1), the result is a nonlinear first order differential equation for rM . At 

the center of the plate, θMM r = and thus, if the curvature there is positive (concave upward), 

( ) 00 MM r = constitutes an initial condition with which the differential equation may be solved. 

In addition, a boundary condition at the edge ar =  must be satisfied; this yields the ultimate 

load. Let us recall that for a simply supported plate, the edge conditions are 0== rMw  thus 

0=rM  is a boundary condition with which the differential equation may be solved. For a 

clamped plate, the edge must form a hinge circle, that is, a locus of slope discontinuity. As we 

shall see, the edge condition there becomes ( ) 0MaM r =   or  ( )
3

2 0MaM r
−=  for the Tresca 

or Mises material, respectively. Fig A.1 shows the Mises and Tresca yield criteria for 

axisymmetrically loaded circular plates. It follows from the preceding discussion that the center 

of the plate is in the moment state corresponding to point B, and that a simply supported edge 

corresponds to point C. A simply supported plate may thus be assumed to be entirely in the 

regime BC. For the the Tresca material, this means that 0MM =θ  everywhere, and the problem 

to be solved is therefore linear. 
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       Figure A. 1:  Mises and Tresca yield criteria for axisymmetrically loaded circular plates 

Solution for Tresca Plate 

 

Let us consider, for example, a downward load 0P   uniformly distributed over a circle of 

radius b, the plate being unloaded outside this circle. The equilibrium equation is then  

 

( )









−

−
=−′

br
P

br
b

rP

MrM r

f

p

π

π

2

2
0

2

2
0

0  

The solution for  br p  satisfying the condition at 0=r  is 

2

2
0

0 6 b

rP
MM r π

−=  

while the solution for br f  satisfying the condition at ar =  is 
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Continuity at br =  requires that 
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a

b
M

P

3

2
1

2 0
0

−
=

π
 

This result includes the extreme cases 00 6 MP π=  for the uniformly loaded plate ab =  and  

00 2 MP π=  for a plate with concentrated load. This last case could not have been treated directly 

because the moments would have to go to infinity at the center which is a condition incompatible 

with plasticity. 

 

Note: For this part I used from Prof. Jacon Farzan lecture notes. He is emeritus professor from 

Tabriz University and I passed theory of plate and shell course with him. He has taught Theory 

of plate and shell course for more than forty years in Tabriz University. 
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Appendix B - Axisymmetrically Loaded Circular Plates 

           Given a circular plate of radiusa , the solution for a concentrated load acting at the center 

of the plate can be obtained by assuming that the radius of the circle b  which the load is 

distributed becomes infinitely small, whereas the total load P remains finite. Using this 

assumption, we find that the maximum deflection at the center of a simply supported plate is:  

( )
( )D

Pa
w

υπ
υ

+
+=

116

3 2

max                                                                                                   (B.1) 

The deflection and moments at any point of the circular simply supported plate at a 

distance r from the center are: 
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The bending moment for points with br f may be found by omitting the terms in the 

equations (B.3) and (B.4) which contain2b . This gives  
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To obtain formulas for a circular plate with clamped edges we differentiate equation 

(B.2) and find for the slope at the boundary of a simply supported plate. 

( ) D

Pa

dr

dw

ar πυ+
=




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−
= 14

                                                                                        (B.7) 

The bending moments arM =  uniformly distributed along the clamped edge produce  a 

bending of the plate to spherical surface the radius of which is given by ( )υ+
==

1

11

D

M

rr yx

, and 

the corresponding slope at the boundary is  

( )D
aM

dr

dw r

ar υ+
−=









= 1
                                                                                                    (B.8) 

Using (B.7) and (B.8), the condition that the built in edge does not rotate gives: 

 

π4

P
M ar −==                                                                                                                        (B.9) 

Deflections produced by moments 
π4

P
M ar −== for one circular plate are

( )
( )υπ +
−
18

22

D

arP
. 

Superposing these deflections on the deflections of a simply supported plate in equation (B.2), 

we obtain the following expression for the deflections of a clamped plate loaded at the center: 
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ra

D

P

a

r
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D
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


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=
ππ

                                                                                           (B.10) 

 

Adding equations (B.9)  to equations (B.5) and (B.6) for a simply supported plate, we obtain the 

following equations for the bending moment of  circular clamped plate  at any point not very 

close to the load: 
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( ) 



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

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+= υυ
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P
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When r  approaches zero, expressions (B.5), (B.6), (B.11), and (B.12) approach infinity and 

hence are not suitable for calculating the bending moments. Moreover, the assumptions that 

serve as the basis for the theory of bending of circular plates do not hold near the point of 

application of a concentrated load.  

 

Note: This part is from Timoshenko and Woinowsky-Krieger (1959) book. 
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Appendix C - Effect of Axial Force on the Stiffness of the Frame 

Member 

 

Assume a member with one end clamped and the other end is free to rotate. 

 

 

Figure C. 1 

 

Without any axial force, a moment 
L

EI4
is necessary to create a unit rotation at the endb . This 

moment produces
L

EI2
internal moment at the point ofa .  When there is axial force, the 

magnitude of the moment to create unit rotation will alter. Compression force will make this 

moment smaller and tension force will make it bigger. Assume
L

EI
K = , and the moment for unit 

rotation at the end of the member let beSK. Then, for any rotation 3bu the moment is 

,33 bb SKuf = and at point a  the moment ,33 ba SCKuf =  
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Figure C. 2 

 

It is evident that Sand C  reduce to 4and 5.0 correspondingly when 01 =af  

Let 
2

2

L

EI
PE

π= , 
EP

P=ρ , 
L

EI
K = , and ρπα

2
=  

=EP Euler load, and 11 ba ffP −==  

 

Then, 
EI

f
L

a12 =α                                                                                                              (C.1) 

Applying small deflection theory: 

 

123212
1

2
2

xffuf
dx

ud
EI aaa −=+                                                                                             (C.2) 

 

33 ba SCKuf =                                                                                                                        (C.3) 
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=                                                                 (C.4) 
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By substituting equations (C.3) and (C.4) into (C.2) the following equation is obtained: 

 

( )
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3
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1
2

1

2
2 1

x
LEI

KuCS
u
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f

dx
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3
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2
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2 14

x
LEI
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u

EI

SCK
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                                                                          (C.6) 

Solution of (C.6) is: 
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3
112 1
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2
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SKu
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L
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L
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                                                             (A.7) 

 

Boundary conditions: 

 

At 0,0 21 == ux   ,0 3
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Rearrangement, 
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To find C  
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2
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dx
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To find S  

At ,1 Lx = 3
1

2
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dx
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( )[ ]αααα 221 sin122sin24 CCS
K

Lfa +−=−=  

 

( )[ ]ααααα 222 sinsin2sin2 −−=− CS  

First solve for Sand then substitute C 
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Now, the slope deflection equations (for no translation) can be written as: 

jzijiz uSf =                                                                                                                                (C.12) 

Where, 
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KSij =              and   ba
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
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                                                                             (C.13) 
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Figure C. 3 

 

For jointed member with rotation and translation can be written: 

( )221312212
1

2
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abaaaa uuffxfuf
dx
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The solution is: 
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Boundary conditions: 
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( ) ( ) ( )( ) 313122133 11210 baaaababa LufLtuftuuftftrf −+−−+−+−−= α                              (C.16) 

 

To solve equations (C.15) and (C.16), multiply by ( )t−1 and ( )r−− α2 respectively. 
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This can be written as: 

( ) 0221431331231 =−+++ ababaaaa uufALufALufAfA                                                            (C.17) 
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Substituting these coefficients into equation (C.17) and solving for 3af  
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To get ,3bf substitute equation (C.18) into equation (C.15), 
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It is observable that (C.18) and (C.20) are slope deflection equations. The next step is to express 

the coefficients of the displacements in terms of the coefficients of slope deflection equations 

without any axial load but modified by .iβ  
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Therefore, 
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Solving for ,iβ the following is obtained: 
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Similarly, 
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Therefore, 3β  can be expressed in terms of Sand C  

3533521 63324 βββββββ =−++=+  

[ ] ( )
6

1
24

6

1
213

CS +=+= βββ                                                                                                (C.29) 

The equilibrium condition for the member is: 
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And 3217 6246 ββββ =+=  
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37 ββ =                                                                                                                                   (C.32) 

These derivations are based on the assumption that the axial force 1af on the member is 

compressive. If the axial force is tensile, then the trigonometric functions in the stability 

functions Sand C and iβ all become hyperbolic functions.  

 

 

 

 

 

 

 


