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Abstract

[Spherical shells are widely used in aerospacehar@cal, marine, and other industrial
applications. Accordingly, the accurate determoratf their behavior becomes more and more
important. One of the most important problems inescal shell behavior is the determination of
buckling loads either experimentally or theoretical' herefore, in this study some elastic and
plastic buckling problems associated with sphestalls are investigated.

The first part of this research study presentsataytical, numerical, and experimental
results of moderately thick and thin hemispherio&tal shells into the plastic buckling range
illustrating the importance of geometry changeshenbuckling load. The hemispherical shell is
rigidly supported around the base circumferencensgdorizontal translation and the load is
vertically applied by a rigid cylindrical boss (Laiag actuator) at the apex. Kinematics stages
of initial buckling and subsequent propagation lakpc deformation for a rigid-perfectly plastic
shell models are formulated on the basis of Druckehield's limited interaction yield
condition. The effect of the radius of the bossduse apply the loading, on the initial and
subsequent collapse load is studied. In the nualenwdel, the material is assumed to be
isotropic and linear elastic perfectly plastic witih strain hardening obeying the Tresca or Von
Mises vyield criterion. Finally, the results of thealytical solution are compared and verified
with the numerical results using ABAQUS software axperimental findings. Good agreement
is observed between the load-deflection curvesimdtausing three different fundamental
approaches.

In the second part, the Southwell’s nondestructhaethod for columns is analytically
extended to spherical shells subjected to unifaxtaraal pressure acting radially. Subsequently
finite element simulation and experimental workwhdhat the theory is applicable to spherical
shells with an arbitrary axi-symmetrical loadingp.toThe results showed that the technique
provides a useful estimate of the elastic buckloagl provided care is taken in interpreting the
results. The usefulness of the method lies in ésegality, simplicity and in the fact that, it is
non-destructive. Moreover, it does not make anyragsion regarding the number of buckling

waves or the exact localization of buckling.]
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Preface

A shell can be defined as a body that is boundetiMoyclosely spaced parallel curved
surfaces. A shell is identified by its three featurits reference surface that is the locus oftpoin
which are equidistant from the bounding surfacesthickness, and its edges. Of these, the
reference surface is the most significant becatusiefines the shape of the shell where its
behavior is governed by the behavior of its refeeesurface. The thickness of a point of a shell
is the length of the normal bounded by the boundimfaces at that point. Edges of the shell are
designed by appropriate values of the coordindtasdre established on the reference surface.
Shells may have no edges at all, in which case #éheyeferred to as closed or complete shells.
A spherical shell is a generalization of an annughree dimensions. A spherical shell is
therefore the region between two concentric sphefrdgfering radii.

A shell is called “thin” if the ratio of its thicless to its minimum principle radius of
curvature is small compared to unity. A shell iglda be “shallow” if the ratio of its maximum
rise to the base diameter is small.

The analysis of shells of revolution consideringlivearities is of importance in various
engineering areas. When analyzing a shell stragubjected to a given loading one could make
use of the general equations of the three dimeakitbreory of elasticity to come up with the
state at stress at any given point. However, tlegs&tions are quite complicated and in only a
few idealized cases can a solution be achieved.tiisrreason, three dimensional incident is
approximated by making use of two dimensional thexdrelasticity. The following assumptions
are the basis for the classical linear shell theory

1. Shell thickness is small

XVii



2. The displacements and rotations are small

3. The normals to the shell surface before loadingaiemormal after loading

4. The transverse normal stress is negligible

The most common shell theories are based on liakesticity concepts. Linear shell
theories adequately predict stresses and deformnsatfor shells exhibiting small elastic
deformations, that is, deformations for which it assumed that the equilibrium equation
conditions for deformed elements are the same #weif were not deformed and Hook’s law
applies.

The nonlinear theory of elasticity forms the bdsisthe finite deflection and stability
theories of shells. Large deflection theories dterorequired when dealing with shallow shells,
highly elastic membranes and buckling problems. Aidwinear shell equations are considerably
more difficult to solve and for this reason are enlimited in use.

Shells play an important part in all branches afieeering applications, especially in
aerospace, nuclear, marine and petrochemical indsistThe sophisticated use of shells
incomponents are being made, such as missilesge spalticles, submarines, nuclear reactor
vessels, and refinery equipment is very commonth&sshells are subjected to various loading
conditions such as external pressure, seismic artbgrmal loads, compressive membrane
forces are developed which may cause the shellfaitodue to buckling or compressive
instability. Among shell structures, the sphericalell is used frequently in the form of a
spherical cap or a hemisphere and recently, thelgmo of the buckling of spherical shells has
received considerable attention. Accordingly, ie piiesent study, a treatise of two independent
parts elastic and plastic buckling of sphericalllshender various loading conditions are

investigated.
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Objectives and Resear ch M ethodology

Spherical shell structures are widely used in savaianches of engineering. The class of shells
covered here in are thin, and moderately thick ature by buckling is often the controlling
design criterion. It is therefore essential that tuckling behavior of these shells is properly
understood and then suitable mathematical modeisbeaestablished. The objectives of this
study are stated below:

The first chapter of this study presents the ai@ltnumerical, and experimental results
of moderately thick and thin hemispherical metaklish into the plastic buckling range
illustrating the importance of geometry changeghenbuckling load. The hemispherical shell is
rigidly supported around the base circumferencensgaertical horizontal translation and the
load is vertically applied by a rigid cylindricabbs actuatar at the apex. Kinematic stages of
initial buckling and subsequent propagation of fitageformation for rigid-perfectly plastic
shells are formulated on the basis of Drucker- Bfselimited interaction yield condition.
The effect of the radius of the boss, used to apipéyloading, on the initial and subsequent
collapse load is studied. In the numerical mode, material is assumed to be isotropic and
linear elastic perfectly plastic without strain t@ning obeying the Tresca or Von Mises yield
criterion. Both axisymmmetric and 3D models arelengented in the numerical work to verify
the absence of non-symmetric deformation modekencase of moderately thick shells. In the
end, the results of the analytical solution are garad and verified with the numerical results
using ABAQUS software and experimental findings.o@@greement is observed between the

load-deflection curves obtained using three diffieproaches.
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In the second chapter, Southwell’'s nondestructivethod for columns is extended to
spherical shells subjected to uniform external gues acting radially. Subsequently by means of
finite element simulation and experimental workjsitshown that the theory is applicable to
spherical shells with an arbitrary axi-symmetrit@dding. For this technique any measurable
deformation may be used. The results showed teaethnique provides a useful estimate of the
critical load provided care is taken in interprgtithe results. The usefulness of the method lies
in its generality, simplicity and in the fact thétjs non-destructive. Moreover, it does not need

any assumption regarding the number of bucklingesaxr the exact locality of buckling.
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A Review of Literature

|. Historical Background of the Spherical Shell Buckling

The first problems of instability, concerning latebuckling of compressed members
were solved about 200 years ago by L. Euler. At tinge the principle structural materials were
wood and stone. The relatively low strength of ¢éhesaterials necessitated stout structural
members for which the question of elastic stabiktyhot of primary importance. Thus Euler’s
theoretical solution, developed for slender baesmained for a long time without application.
Only with the beginning of extensive constructidnsteel railway bridges did the question of
buckling of compression members become of praciicpbrtance.

At the beginning of the twentieth century, the stomction of thin reinforced concrete
shell concrete roofs was widespread in Europe. fido$is of the type where a cylindrical shell
with a span between 3.00 and 5.00 m is built betvageh beams that give the shape of the roof.
These arches have a tie beam to resist thrusttharelis therefore only a vertical reaction on the
piers. Arches are placed at the bottom side ofhiedl. At this period concrete was considered to
be an elastic and linear material that obeyed Hsdkes and the arches were therefore analyzed
in these terms.

In Germany, Walter Bauersfeld and Mergler, engisesr Dyckerhoff and Widmann,
built the first spherical dome of concrete in 1982.order to build the dome, they proposed
installing a spherical net of steel bars and Merglaggested projecting concrete against
formwork. The spherical shape of the dome allowwssl use of the same pieces of formwork

again and again. The dome was analyzed like araomis surface.
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The construction of the dome at Jena city was nmulsible by Prof. Spangenberg's report.
Construction began in the winter of 1923-1924. Bhes close to the edge started to buckle and
some stabilization bars were needed. In this cocisbn, Bauersfeld analyzed the bending

moment and deformation. In the first dome (JenaQ@&n span), not only were the in plane

tension and compression in the plan of the domentakto account, but bending moments and
deformation were also studied.

The theory of the rigid of dome rotation was puiid by Foppl, Drang and Zwang. Second

order differential equations were needed to sohe groblem. Bauersfeld found an approach
which yielded a solution, in which the Zoelly forlauwas used to analyze the problem of

buckling, which gives a safety factor of 13.

Bauersfeld asked Dr. Geckeler to undertake somergwpnts. He did many tests and
found that in the loads close to the Zoelly formioleckling start.

In the autumn of 1933 Torroja began several prejedth shell structures. The first
project he undertook was the roof of Algeciras Ma&rkrhis was a dome of 46.22 m span,
supported by 8 piers. The shell consisted of arsgddeconcrete construction. The shell was built
using wooden formwork on a scaffold. With this noeththere was no problem with bars
buckling as had happened to Bauersfeld with thetcoation of his first dome in Jena.

In 1934 Fligge proposed a value for the criticatkling load of spherical shells. However the
expression was given for a full sphere.

Von Karman and Tsien (1939) showed that the statstability of some structures,
usually shell like structures, is weak. In otherrel® a small disturbance might cause them to
snap into a badly deformed configuration. They ad¢tempted to explain the discrepancy

between the classical and excremental bucklingspres for clamped shallow spherical shells
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under a uniform pressure. After the studies of \Karman and Tsien (1939), the buckling
problem of spherical shell has been examined butloretically and experimentally by many
investigators under various types of loading. Tg#E®M2) showed that a small disturbance in a
test would cause the shell to jump to a new coméiion with large displacements as soon as the
buckling load was exceeded.

Kaplan and Fung (1954) and Simons (1955) studiedbtickling behavior of spherical
caps from pressure deflection curve. Their analysis based on integration of nonlinear finite
deflection equations. Kaplan and Fung (1954) madeesexperiments for very shallow clamped
spherical caps under a uniform pressure. They coedphese results with the ones obtained by
a perturbation solution of the governing nonlineguations and observed that the agreement
was satisfactory.

Buckling of clamped shallow spherical shells undeternal pressure has been studied
extensively both experimentally and theoretically. 1954, Kaplan and Fung performed an
analytical and experimental investigation of clachdallow spherical shells. Thurston (1961)
obtained a numerical solution for the nonlinearatmuns for clamped shallow spherical shells
under external pressure and presented the resultsei post buckling range not previously
computed. Then he compared the upper buckling eanerl post buckling pressures with the
experimental data of Kaplan and Fung (1954).

Huang (1964) worked on the problem of clamped shabpherical shells for symmetric
and unsymmetric buckling as well. Huang comparsdomerical finding with the experimental
results.

Famili and Archer (1965) investigated the bucklmghavior of shallow shells by using

the nonlinear equations, considering the asymmaeatdformations at the beginning of the
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buckling to be finite. The nonlinear eigenvalue lpeon was solved numerically. Their results
were in agreement with those of Huang (1965).

Thurston and Penning (1966) conducted an extensierimental and analytical
investigation of the buckling of clamped shellslwaxisymmetric imperfections. They basically
compared the pressure strain and pressure deflegults obtained both experimentally and
theoretically. They found out that the effect ofsgxnmetric imperfections is not large enough to
give good agreement between theory and experini@ntery thin shells.

Hutchinson (1967) studied the initial post bucklinghavior of a shallow section of a
spherical shell subjected to external pressure.f¢dmd out that imperfection in the shell
geometry have the same severe effect on the bygcldinengths of spherical shells as
demonstrated for axially compressed cylindricallshe

Budiansky (1969) and Weinitschke (1970) also deimech the axisymmetric buckling
pressures of shallow spherical shells numericdllyere is a good agreement among all the
results obtained.

Fitch (1968) studied the elastic buckling and alifpost buckling behavior of clamped
shallow spherical shells under concentrated loadihg determined that bifurcation into an
asymmetric pattern will occur before axisymmetm@s- buckling unless the ratio of the shell
rise to the thickness lies within a narrow rangeesponding to moderately thick shells. Fitch
(1970) also investigated the elastic buckling antial post buckling behavior of clamped
shallow spherical shells under axisymmetric load. feund out that as the area of the loaded
region increase, the buckling behavior changes femymmetric bifurcation to axisymmetric

snap-through, and then back to asymmetric bifuvoati
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Stricklin and Martinez (1969) studied nonlinear lgsis of shells of revolution by the
matrix displacement method. The nonlinear straiergy expression was evaluated using linear
functions for all displacements. Five different @edures were examined for solving the
equations of equilibrium, with Houbolt's method te the most suitable. Solutions were
presented for the symmetric and asymmetric buckbhghallow caps under step pressure
loadings and a wide variety of other problems idolg some highly nonlinear ones. The
difficulty of repeated solutions of a large humbéequations has been circumvented by placing
the nonlinear terms on the right hand side of tipgagons of equilibrium and treating them as
additional loads. The solutions of the governingapns were obtained by iterations and found
to yield accurate results for some practical protge For highly nonlinear problems, the
equations were solved by the Newton-Raphson praoeeduth the coupling between harmonics
being ignored when the nonlinear terms were treasegseudo loads and taken to the right hand
side of the equations.

Huang (1969) studied the behavior of axisymmetgoainic snap-through of elastic
clamped shallow spherical shells under impulsive step loading with infinite duration. It was
observed that the dynamic snap-through buckling meagpossible under impulsive loads but it
was achieved under step loading conditions. Thealtsesbtained for static uniform pressure and
dynamic loading formed a benchmark for many ingeagars in the verification of their results.

Axisymmetric and dynamic buckling of spherical cagise to centrally distributed
pressure was studied by Stephens and Fulton (168 ders’ axisymmetric nonlinear elastic
shell theory was approximated by finite differeremuations including the Houbolt backward
difference formulation in time. The equations wimearized using an iterative Newton-Raphson

procedure. Axisymmetric buckling loads were given & spherical cap subjected to a constant
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static pressure or step pulse of infinite durati@tributed axisymmetrically over a portion over
the center of the shell. The influence of the sit¢he loaded area and of moment and inplane
boundary conditions on both static and dynamic bogkwas studied, as well as various
buckling criteria to define dynamic buckling wersed.

Grossman et al. (1969) investigated the axisymmeibrations of spherical caps with
various edge conditions by carrying out a conststequence of approximations with respect to
space and time. Numerical results were obtainedbdth free and forced oscillations involving
finite deflections. The effect of curvature was mxaed with particular emphasis on the
transition from a flat plate to a curved shell. 3och a transition, the nonlinearity of the
hardening type gradually reversed into one of safige

Tillman (1970) presented the results of a theoattimd experimental investigation into
elastic buckling of clamped shallow spherical shethder a uniform pressure, focusing mainly
on low values of the geometric parameter, for whieh symmetrical and first two asymmetrical
deformations are valid.

Archer (1981) studied the behavior of shallow spiaéishells subjected to dynamic loads
of sufficient magnitude to result in finite nonlereaxisymmetric deformations. Marguerre’s
equations for the small finite deflections of sballshells with the inclusion of inertia terms
were taken as the governing equations. Resultshtoiquasi statically loaded shell before and
after snap through and snap back were studied amgppared with known results. The dynamic
response of the shell to rectangular pulse loadimybuckling loads were obtained.

Dynamic buckling of orthotropic shallow sphericdlelis by Ganapathi and Varadan
(1982) and axisymmetric static and dynamic buckbhgrthotropic shallow spherical cap with

circular hole by Dumir (1983) were investigated.
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Geometric nonlinear 3D dynamic analysis of shel&sda on a total Largrangian
formulation and the direct time integration of thguation of motion was derived by Wouters
(1982).

Dumir et al. (1984) investigated axisymmetric buregglof orthotropic shallow spherical
cap with circular hole. Analysis has been carriatl for uniformly distributed load and a ring
load at the hole.

Zheng and Zhou (1989) developed semi-analyticalprdar method to solve a set of
geometrically nonlinear equations of plates andishBy this method, analytical solutions such
as exact expansion in series, perturbations aratites of the equations can be obtained.

Hsiao and Chen (1989) used a degenerated isopaiastetll element for the nonlinear
analysis of shell structures. Six types of rotatraniables and rotation strategies were employed
to describe the rotation of the shell normal. Imtipalar, a finite rotation method was proposed
and tested. Both the rotation variations between successive increments and the rotation
corrections between two successive iterations weed as the incremental rotation (rotation
variables) to update the orientation of the shethmal.

Chan and Chung (1989) used higher order finite etemfor the geometrically nonlinear
analysis of shallow shells. Based on K. Marguers#isll theory, a family of higher order finite
elements was developed. A step iteration NewtorhBap scheme was adopted in solving the
final system of nonlinear equations.

Bhimaraddi and Moss (1989) developed a shear defolenfinite element for the
analysis of general shells of revolution.

Xie, Chen and Ho (1990) studied the nonlinear awisygtric behavior of truncated

shallow spherical shells under transverse loadingad-deflection relation were obtained
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through iteration and numerical integration. Shslibjected to uniform pressure and combined
uniform pressure and concentrated ring loading werestigated.

Eller (1990) derived finite element procedures fioe stability analysis of nonlinear
periodically excited shell structures. Startingnfra geometrically nonlinear shell theory and
applying Ljapunow’s first method as well as Flodsi¢heory, a numerical stability criterion was
deduced.

Luo et al. (1991) investigated the influence of puekling deformations and stresses on
the buckling of the spherical shell. They obtaifiesn Von Karman's large deflection equation
of the plate and by assuming that a plate hasitialideflection in the form of a spherical cap,
the equilibrium equations of a spherical cap subpkto hydrostatic pressure were written.

Chang (1991) developed a non-linear shear-defoomatieory for the axisymmetric
deformations of a shallow spherical cap comprideginated curved-orthotropic layers. He
expressed the governing equations in terms ofrdmesverse displacement, stress function and
rotation. Numerical results on the buckling andtgmsckling behavior of spherical caps under
uniformly-distributed loads were presented for @as boundary conditions, cap rises, base
radius-to-thickness ratios, numbers of layers aatenal properties

Delpak and peshkm (1991) developed a variationgdrageh to the geometrically
nonlinear analysis of asymmetrically loaded shedgolution. The formulation was based on
taking the second variation of the total potenéiaérgy equation. The analysis commenced by
taking the first and second variation of the tgiadential energy of the elastic system by ensuring
that load increments were applied infinitely slowhfter separating the load and the stiffness

terms and factorizing the nodal variables, a distdemarcation in the contribution of linear and
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second order terms was observed which provide@a chethodology in calculating nonlinear
and geometric matrices that lead to the generatidhne tangent matrix.

A large deformation elastic plastic dynamic anaysi square plate and spherical shell
subjected to shock loading was studied by Liangpland Ma (1991). A transient dynamic finite
element method was proposed for shock loading dymamalysis. An incremental updated
Lagrangian finite element procedure was drived. GAnbde isoparametric shell element was
chosen for the study of the square plate and 8-twdadimensional axisymmetric element for
the spherical shell.

Goncalves (1992) investigated the axisymmetric bagkbehavior of clamped spherical
shells under uniform pressure. He examined the lmgckharacteristics of the spherical shells
using a fully nonlinear Galerkin solution proceduaelassical bifurcation analysis and a reduced
stiffness bifurcation analysis.

Polassopoulos (1992) presented a new analyticahadetor the determination of the
strength of structures subjected to bifurcation kling affected by small structural
imperfections.

Chaotic dynamic analysis of viscoelastic shallovhespral shells was performed by
Karaesmen (1992).

The nonlinear dynamic buckling strength of clampgetierical caps under uniform step
loading was investigated by Lee, Lie and Liou (1993he geometric coordinates were updated
at every time step. Thus, linearized finite elemeatemental equations based on the principle of
virtual work could be derived. A three dimentioséilell element with arbitrary geometry was

used in the finite element formulation.
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Terndrup et al. (1995) studied the buckling behawbd imperfect spherical shells
subjected to different loading conditions. Theylgmed the bifurcation and initial post-buckling
behaviour of highly imperfection-sensitive largehepcal .shells, such as cargo tanks for ship
transportation of liquefied natural gas and largkesical containment shells for nuclear power
plants.

Zhang (1999) studied the torsional buckling of spa¢ shells under circumferential
shear loads. He used Galerkin variational methardstudying the general stability of the hinged
spherical shells with the circumferential sheadka

Uchiyama et al. (2003) studied nonlinear bucklimglastic imperfect shallow spherical
shells by mixed finite elements. They used nineensidell element and mixed formulation for
stress resultant vectors then they compared felément results with fifty-two experiments on
the elastic buckling of clamped thin-walled shallsphericathells under external pressure.

Grunitz (2003) examined the buckling strength afngbed and hinged spherical caps
under uniform pressure with a circumferential welepression by using the finite element
method. The results obtained show a significantedese in the buckling strength due to these
imperfections depending on the location of the weld

Dumir et al. (2005) presented axisymmetric buckkmglysis for moderately thick laminated
shallow annular spherical cap under transverse. lbadheir study, buckling was considered
under uniformly distributed transverse load, appbéatically. Annular spherical caps have been
analyzed for clamped and simple supports with miavadnd immovable in-plane edge
conditions and typical numerical loads and havenbemmpared with the classical lamination

theory.
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Jones et al. (2007) investigated the problem diragpherical linearly-elastic shell, perfectly
bonded to an infinite linearly-elastic medium. Anstant axisymmetric stress field is applied at
infinity in the elastic medium, and the displacemand stress fields in the shell and elastic
medium are evaluated by means of harmonic potentakions.

Nie et al. (2009) derived an asymptotic solutionrfonlinear buckling of orthotropic shell on
elastic foundation. They performed an extensivampatric study for deformation and buckling
of such structures.

The foregoing literature review is by no means ewtiae. However, the references cited

and surveyed cover some of the important studiashithve been contributed in this area.
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Il. A Brief History of Yield Line Theory

As early as 1922, the Russian, A. Ingerslev preskmt paper to the institution of
Structural Engineers in London on the collapse raamferectangular slabs. Later on yield Line
theory as it is known today was pioneered in th408%y the Danish engineer and researcher
KW Johansen.

Authors such as R. H. Wood, L. L. Jones, A. Sawcao# T. Jaeger, R. Park, K. O.
Kemp, C.T. Morley, M. Kwiecinski and many otherg@neolidated and extended Johansen’s
original work so that now the validity of the thgas well established. In the 1960s, 1970s, and
1980s a significant amount of theoretical work e &pplication of yield line theory was carried
out around the world and was widely reported. Tppsut this method, extensive testing was
undertaken to prove the validity of the theory. &llent agreement was obtained between the
theoretical and experimental yield line patternd #re ultimate loads. The differences between

the theory and tests were small and mainly on tmservative side.
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[11. Historical Background of the Southwell M ethod

Sir Richard Vynne Southwell (1888— 1970) was aisftimathematician who specialized
in applied mechanics as an engineering scienceeatiadRichard Southwell was educated at the
University of Cambridge, where in 1912 he achieViest class degree results in both the
mathematical and mechanical science tripos. In 18g&dbecame a Fellow of Trinity College,
Cambridge, and a lecturer in Mechanical Sciencesittvell was in the Royal Naval Air
Service during World War |. After World War |, heaw head of the Aerodynamics and
Structures Divisions at the Royal Aircraft Estabireent, Farnborough. In 1920, he moved to the
National Physical Laboratory. He then returned tnify College in 1925 as Fellow and
Mathematics Lecturer. Next, in 1929, he moved tofo@k University as Professor of
Engineering Science and Fellow of Brasenose Call&gere, he developed a research group,
including Derman Christopherson, with whom he wdrke his relaxation method. He became a
member of a number of UK governmental technical mittees, including the Air Ministry, at
the time when the R100 and R101 airships were bmangeived.

Southwell was rector at Imperial College, Londammir1942 until his retirement in 1948.
He continued his research at Imperial College. H aiso involved in the opening of a new
student residence, Selkirk Hall.

As a scientist, in 1932, Southwell presented hialyais for the special case of a pin
ended strut of constant flexural rigidity &l . Southwell method for determining the minimum
buckling load is a nondestructive test for pinedsanitially imperfects struts. Southwell showed
that the load deflection curve of such a membea isyperbolic in the neighborhood of the

smallest critical load, while the asymptote is arizemtal line, P=P,. By suitable
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transformation of variables this hyperbolic portiohload deflection curve may be converted

into a straight line for which the inverted slopeghe minimum critical load.
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CHAPTER 1 - Plastic Buckling of Hemispherical Shell Subjected
to Concentrated L oad at the Apex

1.1 Introduction and Pur pose of this Chapter

Due to the increasing use of shell type structurespace vehicles, submarines, buildings
and storage tanks, interest in the stability oflsheas accordingly increased by researchers and
practicing engineers. Because a hemispherical ghalblle to resist higher pure internal pressure
loading than any other geometrical vessel with #agne wall thickness and radius, the
hemispherical shell is one of the important strradtelements in engineering applications. It is
also a major component of pressure vessel constnudh practice, most pressure vessels are
subjected to external loading due to hydrostatiespure, or external impact in addition to
internal pressure. Consequently, they should bégued to resist the worst combination of
loading without failure. The load transmitted bgydindrical rigid actuator applied at the summit
of the sphere is considered a common external [bhads, it is important to study its effect on
the initial buckling and plastic buckling propagetiof this type of shells. This study presents
the analytical, numerical, and experimental resoftsmoderately thick hemispherical metal
shells into the plastic buckling range illustratitige importance of geometry changes on the
buckling load. The hemispherical shell is rigidlypported around the base circumference
against vertical and horizontal translation and tbhed is vertically applied by a rigid
cylindrical boss at the apex. Kinematic stagesdifal buckling and subsequent propagation of
plastic deformation for rigid-perfectly plastic flseare formulated on the basis of Drucker-
Shield's limited interaction yield condition. Théfext of the radius of the boss, used to

apply the loading, on the initial and subsequertapse load is studied. In the numerical



model, the material is assumed to be isotropiclen@ér elastic perfectly plastic without strain
hardening obeying the Tresca or Von Mises yieltedon. Both axisymmmetric and 3D models
are implemented in the numerical work to verify @gsence of non-symmetric deformation
modes in the case of moderately thick shells. énethd, the results of the analytical solution are
compared and verified with the numerical results\giABAQUS software and experimental
findings. Good agreement is observed between tad-deflection curves obtained using the
three different approaches. The preparations tawonexperimental verifications are also

shown in Fig. 1.1.

Figure 1. 1: Sample construction procedure foretkgerimental study



1.2 Preliminary Considerations

This study is focused on the following physical pbeenon. A hemispherical shell is
compressed by a concentrated load at the summithédload below a certain critical value,
called the initial buckling load, the shell remasgherical or unbuckled but when the increasing
applied load reaches the critical initial bucklinglue, the shell snaps into a non-spherical
buckled state which is characterized by a roundpténaround the apex of the hemispherical
shell. Therefore, it creates a deformation statehviextends or propagates over the surface of

the shell leaving undetermined the amplitude obdwehtion at various levels of load (Fig. 1.2).

-
o

Figure 1. 2: Geometry and post buckling of hemisighéshells subjected to a concentrated load




1.3 Analytical Formulation

1.3.1. Kinematics Assumptions

The behavior of a moderately thick metal hemislaishell under a concentrated load

at the summit may be analyzed as follows:

a) The perfectly-rigid state culminating at theasrttment of the initial collapse lo&).

For a concentrated load acting on a hemispheriwl the initial collapse takes place only

in a vanishingly small region of the shell, Fig3.1The collapse load?, depends on the
plastic momentM , of the shell material. If a rigid cylindrical bossused for loadingurposes, the

size of this boss influences the region of collagseé hence the collapse lodd

Figure 1. 3initial buckling under concentrated load



b) Deformation under the collapse Idad

At the load P, the shell snaps to reverse its curvature and coesirio deform under the
same load, resulting in the formation of a dimflee dimple is taken to be conical in shape and
the apex of the cone is the point where the loattsg. This assumption is not at variance with
the observed behavior. The extent of the dimplesddp again on the plastic momevi of the
shell material and on the radius of the loadingsharsactuator. A section of the shell through a
meridional plane, immediately after the deformatiomder the initial collapse loadp,, is
shown in Fig.1.4.

The outer undeformed portion of the shell (of radR and constant thicknegg and
the conical dimple are connected by an annular zomwehich the cone is tangent, and which
shares a common tangent with the undeformed patieoghell. Both the conical dimple,
and the annular zone which looks in section likknackle of radiusp symmetrical about

the axis of revolution, are plastic.

Figure 1. 4: Post buckling deformation at inisallapse loadP,



c) Propagation of the annular zone.
This is the third stage of deformation. It takeaqae only after the deformation under the
constant loadP, is complete. The dimple extends outward with arsyarimetric deformation

under an increasing load® to render a greater portion of the shell plastig.Eb. The

deformation involves a conical shape and an anrnadae.

Figure 1. 5: Plastic buckling deformation extendsa@ard under an increasing lo&d

d) Degeneration of the shape of deformation.
After the annular zone (which is circular in pldrgs propagated to an extent depending

for a given material on theR/t, ratio, the axisymmetric deformation described above

begins to change. The annular zone becomes triangmd then polygonal in plan. A new
mechanism which involves the folding of the shedlitemial about the edges of a pyramid-like
surface takes over and replaces the conical patieofieformation. This phenomenon could be
associated with some sort of a secondary instgbilihis stage of deformation will not be

addressed in part of this study, because it ikahlito take place in moderately thick shells.
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1.3. 2. Thelnitial Collapse Load and Reversal of Curvature

Shells are commonly subjected to transverse loaglsJoads that act in the direction
perpendicular to the surface of the shell. Suclisheay fail locally by so called fan mechanism,
with positive yield lines radiating from the poiltad. Consequently, at sufficiently high load,
the shells may experience extensive plastic defoomaocally and eventually lose all its
structural function and changes its curvature timecthis phenomenon known as local plastic
collapse.

Unlike elastic analysis, exact solutions for thaspic collapse load are not available in
most cases. Even for the idealized rigid perfepthstic constitutive relation, the collapse load
can only be approximated over a range of values.t€bhnique used to define the boundary of
the collapse load is known as limit load and theotem associated with it known as limit
analysis.

Consider an n-sided regular polygon plate cagyansingle concentrated load at its
center and rigidly supported along the n sides,1Fg If a small virtual displacemerd is

imposed under the load, the external work don&iss P and the internal work exerted during
the assigned virtual displacement is found by sumgntine products of plastic momekt, per

unit length of yield lines times the plastic rotettié at the respective yield lines, consistent with

the virtual displacement. If the resisting moméa} is constant along a yield line of lengéh

and if a rotationé is experienced, the internal work\l¢ = M a@ for each yield line. Because
there aren yield lines, the total internal work\Wg, = ZMoaﬂ . The rotation at the plastic hinge

can be calculated in terms of the deflection théss (OLHJrO;;Kj In view of the fact



thatOK = a tana’ andOH =atana,, Fig.1.6 By equating W,and W  one

obtainsPonOZ(cotq+cotai'). Because in an n-sided regular  polygon

a=a = (LZT—%TJ and accordingly P, = 2nM, cot(g—l—TJ =2nM, tan’’. If n tends to infinity,
n n

n-sided regular polygon converts to a circle Bnd Iimnm(ZnM0 tanl—Tj. Using LHopital once
n

P =27M, .Thus, for a circular plate, the value of the @mnicated load necessary to initiate
collapse is given by, =27M, and as it can be seen, the collapse load is intkpd of

the size of the plate. This formula can be proveingianother method too (See appendix A)

Aia
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Figure 1. 6: n-sided regular polygon plate carryagjngle concentrated load at its center

Following the same procedure, it can be easily gnothat the load applied through a
rigid boss of radiu$, to a circular plate of radiusproduces a collapse load level given by:

_ZIMO
I
3a

P (1)
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The region of a hemisphere subjected to downwandentrated load at the apex that
initially collapses with a reversal of curvaturejigite small and can be easily considered to be
a very shallow spherical cap. If the boss sizegisored, 27M, is known to be the exact
collapse load for any circular plate and therefibrean serve as a lower bound on the initial
collapse load of a shallow spherical cap. Theahitollapse load of a hemispherical shell under

a concentrated load should thus approach the vamé, because the local nature of the

collapse may mean that the collapse loddsis dependent on the shell curvature. When the she
is loaded by means of a finite rigid boss of radiuthe collapse load?, has a value which is
observed to be greater thzaM , while it is dependent on the size. As mentionatiezathis is
also true of a plate loaded with a boss, and sosdme modification of the collapse load
formula referred to above can be made. The diffeedn that while the flat plate radiwsis
known, the dimple planner radius at initial collega the case of a hemispherical shell is not
readily available but has to be calculated. Theiwadf this dimple radius for the shell is
found by equating the initial collapse lo&j] with the load predicted by the mechanism of
dimple propagation at the start of the third stageeformation, as shown below. The initial
collapse and subsequent deformation mechanismecaadn in Fig. 1.7.

The shell initially collapses at a load value Bf which is equal to or greater th&rM ,
to an extent depending on the boss raliu& portion of the shell shown as a dotted line at
its initial position as part of a hemisphere ofitadR takes up the buckled position shown
by the bold line, comprising a cone and an annwane, Fig.1.7 The extent of the

deformation is measured bg, the meridional angle corresponding to the bounddrihe



plastic region. During this deformation, the lo& remains constant. It is between these

initial and final positions that the toroidal anaukzone with the knuckle radiys and the cone
come into being. It is only after this stage is pdgte that the third stage of deformation with a
different type of mechanism takes over. This cosgwithe propagation of the dimple and the

outward movement of the annular zone.

Figure 1. 7: Profile of deformation during initialickling and post buckling behavior
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In the ideal case of a concentrated loadngcét the shell apex, it is natural to
expect that the second step of deformation shoedhbalmost immediately after the shell load

reaches the valiM . The following geometrical relations in which thess will not play a

significant part can be derived for the initial laplse using the incompressibility condition, and
assuming no difference between the thickness oflied in the dimple region before and after
collapse:

The surface area of the spherical cap which regergevature is:

Surface Area initial27R* (1- cosd,) . (1.2)

This must be equated to the sum of the surfacsakthe cone and the annutane,
which are equal to:

Surface Area Buckled=Surface area of annular p&urface area on conical part=

n(R-2p) sin® 6,

2nR- p)sing, 206, + 1.3
(R~ p)sing, 2/, 0%, (1.3)
Equating egs. (1.2) and (1.3) then simplifying, fibléowing equation is obtained:
20 . 1 ., sin’ 8
1-cosg, =—(1- p/R)E, sind, +=(1-2p/R : 14
, =5 W= pIR)6, sind, + (1~ 20/ R) =7 (1.4)

As g, is smalll-cosg, =8 /12-6; /124, andsing, =6, -6’ /6 Neglecting the second
terms on the right hand side of the cosine and serees expansions and ignoring the fourth

power of §,would makeequation (1.4) trivially satisfied. Substitutingeie values into equation

(1.4) and neglecting powers d, higher than the fourth, the equation reduces to:

eg[p——£+ 3/16}20 (1.5)
R R
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For any non-zero value &, the solution giveso/ R= 025and/or 0.75. For the larger
value of p/ R= 0.75 R-2p becomes negative, which means that the conicabp#ne dimple
cannot exist. Thus the relevant value pfisR /4. Althoughg, has a small value, it can be
assumed thato is equal toR /4throughout the subsequent deformation for whéhs

greater tha#, roughly until @ Olrad = 57296’ since all assumptions are satisfied.

1.3.3. Propagation of the Dimple

During the formation of the initial dimple, the defation is small and the buckling

happens under a constant I6%dAs the deflection increases, the effect of geometrgnge

starts to become significant and the load increasiéis continuing deformation. When the

non-plastic material surrounding the deforming eagiannot support a load higher thgn the

plastic region must grow in size with increasingdo It is assumed here that the deforming
surface maintains a geometrical similarity during propagation of the dimple as evidenced by
the the numerical results. The deformation stagegbielentified by a single parametgr which
is the angular position of the surface at the bauwpdof the plastic region (Fig.1.7). It is
assumed that the radius of curvature of the todokshackle remains constant while its
crown moves away from the axis of revolution bytowmous rotation and translation of the rigid
material entering into the plastic region.

The middle surface of the deforming shell feransurface of revolution and the state of

stress is completely specified by the direct forcesultant moments and transverse shead If

and N, denote the meridional and circumferential forcessypet length,M , and M , the cor-

12



responding bending moments, a@dthe transverse shear force (Fig. 1.8), the meralion

equations of equilibrium for a shell of revolutican be written as

%ﬂ(er)— N, cosp—rQ =0 (1.6)

%ﬂ(rM ») ~Mzcosp-rrQ=0 (1.7)

wherer is the distance of the element from the axis ofohetion and r its mean

meridional radius of curvature, which is equaldacat the annular zone.

Figure 1. 8: Equilibrium of an axisymmetric shdéraent
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In our assumed deformation model, the annular baisea constant radius of curvatpre
It is easily visualized thaN, changes sign from positive (tension) to negatogmpression) as
we move from the inner to the outer part of theital knuckle.
N, at the boundary of the cone annular zone is tenaied at the boundary of the
annular zone- undeformed shell is compressiondistréhe downward® such thaE F,=0.1In

other words, under increasing load the shell maltérom the outer undeformed region is pushed
into the annular zone and material from the annatawe is pulled into the conical dimple.

Thus N, may be assumed to vanish at the crown of the toadsidering the outer part of the
knuckle defined by0< ¢ <6 and noting thatN, is compressive in this region, it is evident
that N, should also be compressive. This is due to thé t#aat compressiveN causes

expansion in the hoop direction while the rigid Ishestraints the knuckle from expansion thus
inducing compressive stress:

N, =-0t, (1.8)
where g, is the (constant) yield stress of the material teisdhe current thickness. The

first equation of equilibrium, equation (1.6), tefare reduces to

ai(r N, )= -po tcosp+rQ (1.9)
@

This equation must be supplemented with the equativertical equilibrium, namely
271(N¢,sin¢+ Qcosw) =-P (1.10)

where P is the total vertical downward load at the coneaéx. EliminatingQ

between (1.9) and (1.10),
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0 P
—(rN sew)=-po.t-—sec 1.11
a(0( ,5€0p) = ~pa, e (1.11)

Assuming that the thickness variation may be neégtem the equilibrium equations

and noting that =t, (the initial thickness) at =68, equation (1.11) can be integrated to

obtain

rN, = —(paotoqocosw+£sin¢j, (1.12)
2r

where N, = Oat ¢ = Ois used as a boundary condition.

Considering the moment equation of equilibriumsibbserved that the second term of
equation (1.7) is of the order ofr times that of the last term, as proven by Druckesi&eld
(1959), and hence the second term may be negledted the region of interest is not close

to the axis of revolution. Equation (1.7) then regkito

0
&o(r M(/,):prQ (1.13)

From egs. (1.10) and (1.12),
. P
rQ=po,t,@gsing——-cosy (1.14)
2
and eq. (1.13) becomes

0 . P
—IrM _|= o,t,gsing——-co 1.15
2" M) p{p ologsing=— sqa} (1.15)

Since the crown of the toroidal knuckle suffers tim@st severe bending, it is

natural to assume tha#l , at the crown is equal to the yield moment,. It may also be

15



assumed that at the boundary of the rigid regidbh, attains the value of the yield

moment. Neglecting again the thickness variatitre, boundary conditions can be written

M,=-M, at ¢ = 0 and ¢ = 6. Integration of eq. (1.15) between the limits cdrtl & gives:

M= jpzaoto¢sin¢d¢—£jpcos¢dgo: —gpcosgp’o t, +j,020'0t0 cosqajqa—p—PsionC
! 2 2

= p’o.t,(sing- pcosy) —gisin(ﬁ C
T

p=0- M =-M - C=-RsinéM_ + oM, sind

~RsinéM, = pzaoto(sinH—Hcosﬁ)—’g—PsinH— RsinéM, + oM, siné
s

This will then lead to:

—Mosin6?=paoto(sine—ecos@)—zisine (1.16)
T

. t .
Inserting the value , = 020 and p =§, equation (1.16) reduces to

P__ 1+ R/to(l—ij (1.17)
27, tand

This formula directly relates the downward vertit@dd to the angular position of the

dimple denoted bg = g,. It is independent of the size of the boss, predithe diameter of
the boss is small in comparison with the diametéhe shell. For a truly concentrated loéglis

vanishingly small and the solution reduces to tled known resulf, = 27M .
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1.3.4. Solution of the Complete Problem

If the shell is loaded by a concentrated load atapex, the formula (1.17) provides the
complete load- deformation characteristic of thellsiHowever, a fully concentrated load is only
a mathematical convenience which cannot be realiz@dactice. In fact the initial collapse load
is very sensitive to the size of the boss and dl $ross can considerably increase the collapse load

from the valud®, =27M,, . It is therefore essential to include the bose 8izdeveloping a realistic
theory.
The initial angle for the propagating dimpée is also a measure of the plastic region

corresponding to the initial collapse. Assumingtttias small portion of the shell behaves
like a plate during collapse even when the loaapislied by a finite boss in the form of a rigid

punch of a small base radius b, equation (1.1)bmmrewritten as:

= 1.18
i, (1.18)

3R,

Since the load corresponding to the beginning efdimple propagation is alsg,, eq.

(1.17) gives
R+ R @ (1.19)
27, t, tang,
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If the power greater than three is neglected so,

k)
tant 1+ % 8 6 )_ 6
) =1-——=1-|1-2 =2
1 _. & tang, 3
1+ % 3
3
Thus,
k-1 R (1.20)
27M t, 3
Equations (1.18) and (1.20) furnish the followirgmation forg, :
R 2)_ 2t
g 2g -5 =0 1.71
(2a-2)-2 w

which can be solved numerically for each particdase. An immediate conclusion

from (1.21) is thatg, is always greater thab/R. It is easily seen from the geometry in

Fig.1.7 that the punch penetration correspondirt@e position of the dimple given & is

h=R(@-cosf) +(R-2p)sinfdtand (1.22)
and
% = % (1- cos8)(3+sed) (1.23)

by using the resup =R /4

Egs. (1.17) and (1.23) give the load-deflectioratieinship parametrically through

when82=46,.
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When 5{ <100, this solution is found to correct for large amylies of deflection, however

for 3{ > 100 the deformation follows the same axisymmetric patie the beginning. Then, the

annular zone degenerates into various n-sided polyteformation modes and bifurcation in
deformation pattern is observed. In order to deftgenthe bifurcation point during deformation,
assume the deformed part behaves similar to a ednepcular plate of radiuswith large

deformation before bifurcation point (Fig. 1.9).rRbin circular clamped plate the radial and

tangential moments are (see Appendix B):

Figure 1. 9: Deformed part of hemispherical shiefipe before the secondary bifurcation point

I, T,
| — —
el el
— — T
— —
— - —
— —
+— +—
-+ -+
| — “
-+ -+
C C

Figure 1. 10: Effect of axial force on plastic morheapacity
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=P c_
M, = 477{(1+ v)in r 1} 1.24)

=P c_
M, = 4ﬂ{(l+ v)in U} 43)

;
In the bifurcation point = Rsind - psind 0 P L c= 3%sin9
Assuming that at the bifurcation point,M, reaches to the plastic moment

atr :c—psin0=%sin6’ (as evidenced by the numerical and experimentalirfgs). By

combining equations (1.17) and (1.25) and insertitegvalueP = 27V o{“ R/tO[l_ tai&ﬂ it

can be written:

M, =M . = +0)In

plastic

ar

27M{1+ R/to[l—taigﬂ {(1 W-u} .

%sin&

: : o,t? L
Because of the membrane effect, shell plastic momsemot M, = °4 anymore and it will be

t? : A
almost equal tM , = M, - %o . In this equationt = # and consequently:
info,

M0|:1+ R/to[l_t;f]gj}
M, = , [(1+0)In15-0] -
Hence:

ot ]
00 _

o.t? 4 {“ R/to(l tanHﬂ

M, - =% = [1+0)In15-0] 16)
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In the last stage of deformation, hemisphericalllshdl be punched under the point load.

Subsequently; the ultimate bearing capacity is Inbugqual to:

t
P, = 277[b + ontoao (1.27)
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1.4. Nonlinear Finite Element Analysis (FEA)

1.4.1 Elements and Modeling

Finite element analysis (FEA) is capable of modglalastic-perfectly plastic material
behavior with nonlinear geometry where the analisisased on the initial geometrical shape.
This should give a limit load and load-deformati@sponse almost equal to the rigid-plastic
limit load and overall response since the elas@fowations are negligible compared to the
plastic deformations. This makes it possible to para the results using the finite element
method with those of the analytical solution. AltA for this investigation was performed using
the general purpose program ABAQUS Version 6.7. bbes used to load the spherical shell
was modeled as a rigid element. Both eight nodeyaxinetric rectangular and six node
triangular shell elements were used to model thmisgherical shell Figs.1.11-1.13. In the
present numerical analyses, the hybrid elementclasen for all finite element models in order
to avoid the problem of mesh locking and to getexrelement stiffness and accurate results.
The shell is pinned at the base and the materizber after yielding is assumed to obey the

Tresca or Von Mises yield criterion.
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Figure 1. 11: Deformation pattern of the hemispiarshell using 8 node axisymmetric

rectangular shell element.
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Figure 1. 12: Different cuts of the deformed motisethick shelR/t, < 100
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Figure 1. 13: Deformation pattern of the moderateigk shell R/t, < 100using six node

triangular shell element.
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1.4.2 Numerical Results

The numerical results for moderately thick shel®/{, <100) were identical in the case of

axisymmetric and general 3D models. These reswdte ¥ound to compare well to the analytical
and experimental findings. On the other hand artdfion from axisymmetric response is
observed at some point after initial collapse inn tishells with ®/t, > 10Q and this

phenomenon is shown in Figs.1.14-1.17. The levdifoircation load depends on the effect of

geometrical parameters of shell (wall thickrgssadiusk , R/ t, ratio), the material properties as

well as the size of the boss.

Figure 1. 14: Buckling initiation of thin sheR/t, >~ 108ing six node triangular shell

elements.
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Figure 1. 15: Subsequent deformation of thin sRell, >~ 100showing the secondary

bifurcation phenomenon.
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Figure 1. 16: Different cuts of the deformed thirelé R/t, >~ 100
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Figure 1. 17: Deformation pattern of the thin sh&lI't, > 100 showing the secondary

bifurcation phenomenon.
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1.5. Experimental Program

1.5.1 Parameters and test setup

Different samples with variouR/t, ratios were designed, manufactured, and tested,
Figs. 1.18. These were made out of Bronfe=120GPaandF, =110MPa), stainless steel
(E =210GPaandF, =315VPa), and copper £ =116GPaand F, =132MPa). The radius of

the shells wasR=50mm and R=75mm respectively. The thickness of the shells were
t, = 0.3mmandt, =1mm. These parameters yiel/t, ratio of 250 for Bronze, 166 for Stainless
Steel, and 75 for Copper alloy. During testingstn shells were subjected to concentrated loads
at the apex by means of rigid flat-based circutzdsr of three different boss sizes, namely

b= 0125,02505mm (Fig.1.19).
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Figure 1. 19: Three different boss size used fading (b = 1252550 mm)
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The hemispherical shells were rigidly supportedregidranslation around the bottom

circumference by using grooved base plate as showig.1. 20.

Figure 1. 20: Grooved base plate agpaat for two sizes of hemispherical shells

The load-deflection curves for the shells were réed on a Riehle Universal testing
machine (Figs.1.21). The materials were selectedrfanufacting after tension coupons were
tested to ensure that their material behavior spwads closely to rigid-plastic. This was the

case in order to fruitfully compare experimentad éimeoretical results.
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Figure 1. 21: Riehle Universal testing machinedisplacement control mesurments

The yield stress for each material was found frtwn lbad-deflection diagrams for the metal
coupons since in forming the shell specimens onmegligible amount of work hardening was
involved. Figs.1.22-1.24 shows typical stressistdgagrams for the Copper alloy, Bronze, and

Stainless Steel used in experiments.
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Figure 1. 22: Stress strairgchan for copper alloy.
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Figure 1. 23: Stress strain diagfar Bronze.
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Figure 1. 24: Stresaistdiagram for Stainless Steel.

1.5.2 Experimental Results:

It is evident from Fig 1.25 that the deformationttod moderately thick copper alloy shell
R/t, =75 is axisymmetric throughout the different loadingges. On the other hand, the
deformation of the thin stainless steel shellt, = 16@xisymmetric upon initial collapse and

early subsequent deformation Figs 1.26-1.27. Hewe\igsl.27-1.28 show the latter

bifurcation in deformation as an interesting se@gdohenomenon. This phenomenon takes

place in thin shells, which have/t, >~ 108s shown by the numerical results (Fig 1.46).
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Figure 1. 26: Initial buckling and post bucklingtag thin shell (Stainless SteRl't, = 166
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Similarly, the deformation of the thin bronze h&lt, = 250 is also axisymmetric upon initial

collapse and some short subsequent deformationrd=i@29. Then, Fig 1.30 shows the
degeneration to the secondary bifurcation defowwnatvhich is clearly identified in Figs.1.31-
1.33.

Figure 1. 27: Degeneration of axisymmetric deforaraof the thin shell (Stainless Steel
R/t, =166).
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Figure 1. 28: Secondary bifurcation deformationhef thin shell (stainless stéelt, = 166
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IS
Figure 1. 29: Initial buckling and axisymmetric pbsickling of the thin shell (Bronze
R/t, = 250
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Figure 1. 30: Degeneration of the axisymmetric defdion of the thin shell (Bronze
R/t, = 250 .
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Figure 1. 31: Secondary bifurcation deformationhef thin shell (Bronzer/t, =250 )
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Figure 1. 32: Different stages of the triangul@hveecondary bifurcation (Bronze/t, = 250




Figure 1. 33: Final deformation of the thin sh8i¢nzeR/t, = 250
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1.6 Results and Discussion

As it is seen in Fig.1.25 for relatively thick shieft, <100, shell deformation pattern as

assumed in the analytical solution consists of aneccand torus which spread out
axisymmetrically from the apex with increasing load herefore, the analytical solution,
experimental findings and numerical results areeetgd to match for large amplitude of

deformations, Fig 1.34. However, wheht, >~ 10@he deformation follows the same

axisymmetric pattern in the beginning. Then, theuar zone degenerates into various n-sided

polygon deformation modes and bifurcation in defation pattern is observed (Figs.1.26-1.33).

In order to find bifurcation point in thin wall hespherical shell R/t, = 10Pfor which

the bending and membrane stresses are simultagaoysirtant and assuming the boss pressure
to be uniformly distributed over the region of cactt new solution has been derived using

equilibrium approach.

Figs. 1.34, 1.40, and 1.43 give the load deflectiorve for the copper alloy, Bronze, and
stainless steel shell respectively. The analysodlition results seem to be always slightly less
than the numerical solution because the finite el@nsolution gives a lower bound on the
maximum displacements for a given set of forces gimds an upper bound on the maximum

stresses for a given set of displacements. Thendacy bifurcation response is shown to yield

higher loads than the axisymmetric response forstrae % value Fig 1.40 and 1.43, the

axisymmetric analytical solution may still be used design of thin shells since it is on the
conservative side. Figs.1.35, 1.41, and 1.44 shewbss effect on the initial collapse load. Due

to ignoring the shell curvature in the small vigimof the load, the collapse load is always
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slightly on the safe side. However, because ofsdmple imperfection in the experimental

study, the experimental findings are on the lovide s
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Figure 1. 34: Dimensionless Load deflettorve for copper alloy shelR/t, = J5
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Figure 1. 35: Comparison of initial leplse response for copper alloy sh&l¢, = )75
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Figure 1. 37: Dimensionless initial collapse leadnitial collapse angle for copper alloy
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1.7 Conclusions

In this research the effect of the geometry chamgeahe plastic buckling behavior of
hemispherical metal shells loaded inwardly at thpexahas been studied theoretically,
numerically and experimentally. An analytical exggien has been derived for plastic buckling
of hemispherical shell in a form which is espegiatbnvenient for application due to its
simplicity. In addition, it shows that a quite simpmodel of deformation at equilibrium is
sufficient to make predictions concerning postbinckl behavior of a moderately thick
hemispherical shell subjected to a concentrated ¢matop. The initial buckling load has been
shown to be highly depending on the radius of theding boss. A formulation is used to
evaluate this effect based on the initial collap$ea simply-supported circular plate under
concentrated rigid boss. The results of initiathing load formulation due to ignoring the
shell curvature in small vicinity of the loadingtaator are always slightly on the safe side. It is
found that the shell carrying capacity after inittllapse increases continuously with the
deflection. The hemispherical shell deformation banrepresented by a mathematical model
consisting of a cone and a torus which spread guinsetrically from the apex with
increasing load. The whole region of the shell forgnthe cone must be plastic to make this
deformation possible. The analytical solution reswdre shown to closely match those of
numerical and experimental values. It is also evidleat larger boss size corresponds to higher
initial collapse load and larger dimple size. Thution is rigorously applicable for shells

having smaller values oR/t, (not exceeding approximately 100). This is becatrse

symmetry of the propagating annular zone abouvéngcal axis cannot be assumed throughout

the load-deflection response for large/t, . For R/t, greater than 100, the outer part of the
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annular zone turns at to be unstable after a cedifiormation level where the plastic part of

the shell degenerates into an n-sided polygonttiorshell whichR/t, is larger than 100, the

bifurcation point is approximately found using an@hal solution as well. On the other hand, for

very thin shells ultimate load carrying capacityiisited by punch strength of the shell material.
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Notation used in this chapter

a Radius of Circular Plate

¢ Radius of Circular Plate used to model behaatdnifurcation point
b Radius of Rigid Boss

t, Initial Shell Thickness

t  Current Shell Thickness

M, Shell Plastic Moment/Unit Length in shell

M, Meridional Moment/Unit Length in shell

M, Circumferential Moment/Unit Length in circularapé
M, Radial Moment/Unit Length in circular plate
Tangential Moment/Unit Length in shell
Meridional Force/Unit Length in shell

N, Circumferential Force/Unit Length in shell

Q Transverse Shear Force /Unit Length in shell

P, Shell initial Collapse Load

P Shell Current Load

R Shell Radius

6 Knuckle Meridional Angle
¢ Toroid Angle

£ Knuckle Radius

h  Vertical deflection of the apex of the hemispted shell
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CHAPTER 2 - Nondestructive M ethod to Predict the Buckling

Load in Elastic Spherical Shells

2.1 Introduction and Pur pose of this chapter

As the variety and the quantity of shells incredbke, determination of shell behavior
becomes more and more important. One of the mopbrant things is to determine the
buckling load of shells either experimentally oeadhetically.

The critical load for an axially loaded elasticusture is the load at which straight
(undeformed) and the deformed form of a structuee laoth possible. Therefore, a small
increment of this critical load causes a sudderordedition called buckling. In an initially
straight member, if the weight of member is negldcand no eccentricity exists, until the
buckling load is attained there is no transverderdetion theoretically. But this definition of
critical load holds true only in a theoretical senBecause, in reality, due to the manufactural
imperfections, a very small eccentricity or non lg®@nity, which are unavoidable for most
cases from the first point of application of thado transverse deformations begins. When the
critical load has been attained there will be esieesdeformations. Therefore, the theoretical
minimum buckling load is not a reliable one, sirtbe actual critical load is less than that.
Theoretically speaking, there are an infinite numdbiecritical loads, but in practice only the
smallest one is necessary, since, at this loadightly below that load buckling should be
expected. Accordingly, the target is to determhis minimum buckling load either theoretically

or experimentally.
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The modern design technique goes into the modeksiiyation, especially, for
complicated structures as shells. Since in moss;dke true behavior of the shell is not known
or very difficult to know, the best thing is to neakome assumptions and then to verify these
assumptions by means of model tests. Accordingig, ¢hapter is investigating a possibility of
nondestructive method for finding the critical blieg load in spherical shells. For this purpose,
Southwell’'s nondestructive method for columns iseaged to spherical shells subjected to
uniform external pressure acting radially, and thgmqmeans of experiments, it is shown that the
theory is applicable to spherical shells with abitesiry symmetrical loading. In addition,
Southwell’'s nondestructive technique for columnexgended to the framed columns. Therefore,
a procedure is developed that the critical loadsca@timns in a multi-story frame can be

determined by using lateral deflections obtainedugh matrix formulation.

2.2 Southwell Method in Columns

If x is measured along the line of the thrust, andefines the transverse deflection,

which is very small everywhere meaning that the Isoheformation theory is applicable, and
assumingP has a constant intensity over the span lerigthwriting the sum of the forces in
horizontal and vertical directions and the momeal®ut an arbitrary point, (equilibrium
equations) the condition of equilibrium for the beonfiguration may be obtained, Fig .2.1.

Summing up the forces in vertical direction andang to zero;
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Figure 2. 1: Column under compression force
+1Y F,=0--V+(V+AV)+gAx=0 (2.1)
therefore, after taking the limit:
dv
= 2.2
4=~"0 (2.2)
The sum of the moments,
M = (M +aM)+ (v +AV)ax+ g8/ + P(ay) =0 (2.3)

taking the limit,
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dy_dm

V+P (2.4)
dx  dx
but sinceEl d X:—M
dx
d°M _dv  _d?’y _ d’y "' " _
B¢ Tax e TP - EY) <P =g @9

where El is the flexural rigidity,P is the axial force andjis the lateral load. In the case

of zero lateral load, it is possible to write eduium equation as:

Ely" +Py=0 (2.6)
calling,a’ = %I , the general solution equation will be:

y = Asina(x-x,) (2.7)
where Aand x, are two arbitrary constants of integration.

The condition thaty must vanish at both ends of the strut will be mliif, sinal = 0

which is possible for = Qbut in that case, the strut will remain straightn other words, there

will not be any deformation. The further soluticare a = nl_n wheren=123,............

2
Substitution of this value into the equatiof = 5 yieldsg = nI Zz or by substituting
the values of,
PI?
=149,....... n’ 2.
e 1, )

For practical purposes, only the smallest valuthaf critical load is needed. Therefore,

using the smallest value of which is one,
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PCF = ]le_zEl

(2.9)

Suppose now that the strut is not quite straighilty, and lety, be the initial transverse
deflection of the strut. Then the equation of d@fiiim for zero lateral loads will be;

El(y' -ys)+py=0- y" +a’y=y; (2.10)

Provided thaty vanishes at both ends of the strut. A general isoluhay be obtained by

expressing botty and y,in terms of Fourier’s series. Therefore;

y=>w, sin? (2.11)
n=1
Yo = D W, sin% (2.12)
=1

Differentiating them with respect te tweice,

“\ N°7’ . N7
'=— W Ssin 2.13
Y Z "L (2.13)
" =\ N°7° . N7x
=- W Ssin 2.14
yO ; Lz n L ( )

Substituting back into the differential equationl(®),

w

W, :ﬁ (2.15)
l_
n’m
22
If P, isthen-thcritical load, therP, = d EZEI .Therefore,
w = (2.16)
P
1-—
P

>
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As P approaches to its first critical val&g w, will be very largely magnified, whilen,
will be approximately in the ratio four over threg,nine over eight and so on.

This result explains why as the load is increagedry strut appears to bent into a sine
wave of one bay, other harmonics are present, lmyt are very little magnified by the load,
whereas the first harmonic soon becomes large. itlsbat case, from the differential equation
it is possible to notice that the deflection bedmmn the first application of the load, since the
differential equation is not homogeneous anymore tlu the consideration of the initial
imperfections, which are almost unavoidable in ficac

The deflection of the strut at its centre may bitem as;

5=ZWnSinn—ﬂ><£=W1—W3+W5— ........ (2.17)
=1 L 2
or
50w, =4 (2.18)
P
1-—
P

Thus provided that the above mentioned assumplioltstrue, the load-deflection curve
is a rectangular hyperbola having the axis IBf and the horizontal lind> = P, as asymptotes.

(See Fig. 2.2a)
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Figure 2. 2: Load Deflection curve in Southwell kied

Now, if a hyperbola passes through the origin assldsymptotes of equations.

x+a=0 (2.19)
y-B=0 '
The equation of this hyperbola will be:
xy—ﬁx+ay:0 (220)
or dividing by y ;
x—ﬁ%+a=0 (2.21)
caIIing% =v the equation of the hyperbola becomes;

(2.22)

X=-p+a=0
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which is a straight line. Therefore, xf is plotted against, the inverted slopg—xis the
\

measure of the smallest critical load (See Fig)2.2b
If instead of having an initial curvature, an ialteccentricitye has appeared since in the

case of a single lateral lo&the deflected shape may be defined as;

3 (o]
1ot > 1 sin /% gin V% (2.23)

=T nzl[z pJ L L
nn: —

where cis the distance between the support and the pbapmication of the load. Making

cinfinitely small, the condition of bending by a qie is obtain. Therefore, using the notation

sin (2.24)

2 —
2 ML > 1 |_sinnfx+sin—rm(|'|_ X)} (2.25)

oo, (2.26)

Since due to symmetry, the even terms do not appear
If the couples at both ends are caused due tentladl eccentricitye of the applied axial loads

P, then callingPe= M
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5= Foeerree (2.27)

As PreachesP, the ratio% reaches to unity. So, while the first term appraagiio
1

infinity, the others approach to zero therefore,

_4Pe 1

= e (2.28)
-P
TR 1 P
or in a more compact form,
5=t 1 (2.29)
T Fy_l
P

For a more general case of combination of bothcaerricity and curvature:

5:(Wn+59j 1 (2.30)
T Fy_l
P

which is analogous to the original equation:

=" (2.31)
1-P5
1

The main advantage of the method lies in its gétgend simplicity. In all ordinary

examples of elastic instability the equation
Ely -y, |+Py=0 (2.32)

governs the deflection as controlled by its initialue, provided that both are small. It
follows that the deflection is related with the bgg load by an approximate equation of the

hyperbolic form
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50w, =— (2.33)

2.3 Agreement of Test Resultsin Columns

As stated in the preceding section, the relatiawéen measured load and deflection will
not be hyperbolic if the deflections are so larigat tthe elasticity of the material is impaired,;
moreover, when the deflections are large the apprations will not hold true. On the other
hand, if both the deflections and loads are sntladl,exact measurements will not be possible.

Thus, same scatter of the observational points msixpected. Moreover, in this range (the

first term of the Fourier series) does not necdgsdominate the expression for deflection
(Southwell 1932).

The data required for a satisfactory test is rdlatdues of load and central deflection for
columns which have been loaded as axially as plessib

The recorded observations of this nature are giweril. Von Karman (1909) in an

inaugural dissertation published in 1909. In hipgrathe experimental struts are classified in

three groups, described relatively as slender, umedir thick. Slender struts having}eﬁ ratio

greater than 90 and for medium struts the slendsrragio ranges between 45and90, and thick
struts are those for which the slenderness ratessthan 45.

In the slender group, Von Karman tested eight stmattmbered 1, 2, 3a, 3b, 4a, 4b, 5,
and 6. These have been analyzed by R. V. Soutli®@3R) in Table 2.1 and Fig. 2.3 exhibiting
the relation ofx tov. In some instances the initial observations haenlrejected in estimating

the best fitting straight lines; such observatians distinguished in the table by asterisks. The
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remaining observations have been analyzed by theau®f least squares by R.V. Southwell, in
order that the best fitting lines might be detemdinvithout introduction of personal judgment.
Table 2.2, gives the values of slope as determired the best fitting lines. This table

shows that the agreement with theory in regarchédritical load is in fact very close. The
actual value of the modulus of elasticity, measurgdarman is 2170006g%rr2 :

As applied to the struts in Karman’s medium andkligroups, the method failed for the
reason that practically every observation relatedléflections, which can be shown to have
involved in elastic failure of the material. Ituth appears that the method has given good results
in every case where these could be expected, aubttty trial can show whether in any instance
sufficient observations can be taken of deflectidmch on the one hand are large enough to give
reasonable certainty of and on the other hand, are not so large that rabtestill elastic.

One of the struts tested by Prof. Robertson (1948% loaded with such small
eccentricity by R. V. Southwell as to provide ar fi@st of the method. Table 2.3 presents the
analysis of this case, and related values.

As it is seen from that figure, the plotted poifa# on two distinct straight lines; the
first, covering values of the measured deflectianging from 7 to 18 thousands of an inch,
indicated an initial deflection of about 0.01 inghd a critical load of 14.5 tons, which is some

ten percent in excess of the value 12%6@ obtained from Euler’s theoretical expression when
modulus of elasticity is given the value 13@%2 , which was measured by Prof. Robertson.

The second test representation values of the medsl@flection in excess of 18 thousandths of

an inch (of which 0.0064 inch is the amplitude loé first harmonic in the Fourier series for the
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specified eccentricity of 0.005 inch) and a criticead of about 12.9 tons, which is less than half
percent in error as compared with the theoretigairé.

Table 2. 1: Nos. 1, 2, 3a, 3b, 4a, 4b, 5 and 6d Klieel: Modulus of

Elasticity= 2170006‘9%“r2

Strut No:1
P, end load in kilograms X, measured deflection (mm) V= %xwe
2260 0.01 4.43
3020 0.025 8.28
3170 0.04 12.62
3320 0.06 18.07
3470 0.09 25.94
3620 0.25 69.06
Strut No:2
P, end load in kilograms X, measured deflection (mm) V= %xme
4520 0.02 4.43
4830 0.05 10.35
5130 0.11 21.44
5280 0.24 45.45
Strut No:3a
P, end load in kilograms X, measured deflection (mm) V= %xwe
6030 0.01 1.66
7540 0.03 3.98
8290 0.11 13.27
8520 0.52 61.03
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Strut No:3b

P, end load in kilograms X, measured deflection (mm V= %xm‘s
7840 0.02 2.55
8140 0.05 6.14
8290 0.07 8.44
8445 0.11 13.03
8600 0.21 24.42
Strut No:4a
X, measured deflection (mm V= %xloe
P, end load in kilograms
9050 0.02 2.21
9660 0.025 2.59
10260 0.03 2.92
10560 0.07 6.63
10710 0.10 9.34
10860 0.13 11.97
11010 0.25 22.71
11160 0.73 65.41
Strut No:4b
P, end load in kilograms X, measured deflection (mm V= %xm‘s
3020 0.03 9.93
4530 0.05 11.04
6030 0.07 11.51
7540 0.09 11.94
8300 0.12 14.46
9050 0.15 16.58
9805 0.23 23.46
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9960 0.26 26.10
10110 0.29 28.8
10260 0.33 32.16
10410 0.41 39.39
10560 0.52 49.24
10710 0.71 66.29
10860 1.46 134.44
Strut No:5

P, end load in kilograms

X, measured deflection (mm

v=%,><1o6

9050 0.01 1.105
10560 0.03 2.84
10860 0.05 4.67
11160 0.07 6.27
11470 0.10 8.72
11770 0.15 12.74
12070 0.22 18.23
12370 0.30 24.25
12520 0.45 35.94
Strut No:6

P, end load in kilograms

X, measured deflection (mm

v:>/P><1O6

10560 0.01 0.95
12070 0.04 3.31
12370 0.08 4.85
12670 0.10 7.89
12970 0.15 1.57
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13270 0.25 8.84
13430 0.34 25.32
13580 0.74 54.49

Table 2. 2: T. Von Karman'’s tests

Strut No: A deduced from best fittingP , estimated from slop aof P, as given by
line in Fig. 3 (mm) best fitting line in Fig. 3 | theoretical formul&gf
1 0.005 3712 3790
2 0.005 5453 9475
3a 0.005 8590 8645
3b 0.005 8758 8610
4a 0.003 11220 10980
4b 0.030 11090 10920
5 0.010 12815 12780
6 0.010 13750 13980

Table 2. 3: Robertson’s Strut No:5. Mild steel:detive length- 22.25 inches.

Diameter-0.999 inches.
Slenderness- 89.1

Eccentricity-0.005 inches.

P, end loads in tons X, measured deflection in V= %
thousandths of an inch.
1.62 1.0 0.617
1.79 15 0.838
2.14 1.7 0.794
2.48 2.2 0.887
2.82 2.4 0.851
2.99 2.6 0.869
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3.16 2.8 0.886
3.34 3.0 0.898
3.50 3.27 0.934
3.68 3.64 0.989
3.86 4.00 1.037
4.02 4.24 1.060
4.19 4.46 1.063
4.36 4.68 1.078
4.53 4.81 1.063
4.70 4.94 1.051
4.90 5.07 1.028
5.13 5.66 1.106
5.56 6.32 1.140
5.99 6.97 1.163
6.42 7.80 1.218
6.84 8.95 1.310
1.27 9.84 1.358
7.70 11.18 1.450
8.12 12.75 1.572
8.55 14.08 1.647
8.98 15.88 1.768
9.4 18.34 1.951
9.83 21.91 2.222
10.25 26.27 2.563
10.68 32.47 3.040
11.11 41.17 3.706
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2.4 An Extension of the Southwell Method for columnsin a Frame structure

This section shows an approach whereby the critcads of columns in a multi-story
frame can be determined by using lateral deflestiolbtained through matrix formulation. The
deflection data of columns in a multi-story framre abtained by including the effect of presence
of axial loads in the member and structure stiffnestrices. Effects of initial bending moments
are also included. The results prove that Southyielting technique used to determine the

critical load of single column is also applicaldeftamed columns.

2.4.1 Formulation of the Governing Equations

For a single column, formulations can be made tyé¢c obtain the critical load. Simple
formulations can also be extended to simple pdréahes as done by Zweig (1968). When the
problem arises to analyze and design a tall buldnbjected to gravity and lateral loads,
however, use of modern matrix methods becomes s&oes

Because of large number of degrees of freedom wedoin a multi-story building frame,
one is confronted with a correspondingly large nembf equations which can be repeatedly
solved only by use of matrix method. When bucklirsg involved then efficient matrix

formulations can be made using slope deflectioratgus modified by stability functions.
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Figure 2. 3: Notation for member and structure

With reference to a notation system shown in Fg.&hember stiffness equations 1, 2, 3,
and 4 are formed using equations of equilibriurre(@i (1952)).
The axial force equation is given by:

f, = ETA(ubl ~u, ) (2.34)

The shear force equation is given by

fa2 = (%jﬂiﬁu% + (%jﬂiﬁum - (%}85 (ub2 - Ua2 ) (2)35

The bending moment equations are given by

4El 2El 6El
=2 Jw + (2 Jon - 55 il -0, (2:36)
2El 4El 6El
t = 28 s+ 25 Jo, - 5l -u,) k2
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where f is the end forceuis the end displacement, the subscriptand j refer to the

particular end of the member and the direction eespely, £

represents corresponding
stability functions E,A, |l and Lare modulus of elasticity, cross sectional areamerds of
inertia and length of the member respectively.

Stability functionsB, have been widely publicized (Gregory (1968)).

They may be concisely expressed as (see appendix C)

_a(l-2acot2a)

>° tara - a -38)

" e sacocsn 239
B=9, (2.40)
£, =59 (2.41)
p, =S+ C% (2.42)
B, =acota
Bs = BB (2.43)

where a:% % with P being the axial load on a given structural memded
E

P: being the Euler Load for that particular member.

By use of appropriate transformation matrices, thember stiffness equations are
transformed to a global coordinate system. Strecs$tiffness equations are then formed by using
the equations of compatibility.

The steps leading to the computer program are suizedaas follows:
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a) For a given frame adopt numbering systemnfiembers and joints, formulate the
number equations, transform them to the structw@dinate system, and formulate the
structure stiffness matrix by using compatibiliuations.

b) Adopt a proportionate multiplier of load, , for a given external loading pattern.
Then for any value oft, formulate an external force vector. In the exaéforce vector, the
fixed end moments of each member must be modifiedhe presence of axial load in that
member. This is done by deriving the appropriatbility function corresponding to the
particular lateral loading on the member.

The stability function corresponding to a uniforndigtributed load over the complete

length of a member is derived a%:r This function is used to modify the fixed end maorse
3

in the force vector due to the loading of this feam

c) For any valud of a loading pattern, initial solution necessisatdl 5 be set to

unity (i.e. axial forces 0 By using an invert subroutine, solve the systdraquations for
the unknown displacements. With the displacemendsusing equation 1, a vector of axial

forces of members is obtained. For each memjgeryalues are calculated and equations

(2.35), (2.35) and (2.36) are modified in orderrédormulate the member and structure
equations.

d) The iteration is continued until eleneat force vectors and displacement vectors of
two successive iterations are correspondingly closene another. The control point in
continuing further iterations is the test valudale determinant of the stiffness matrix.

If the values of the determinant are positive, tlamcording to the principle of

positive definiteness for stability, further itacat becomes possible.
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e) Once the final set of displacements famdes for a value ofl are obtained, then

they are stored further use.
f) Steps ¢, d and e are repeated for ardifit value oA .

Solutions for the structure are completed; end ldtgments and end forces have

been obtained. Now, it is possible to further sttidymembers.

2.4.2 Member Formulations and Solutions

For a straight prismatic member, the general eqoatf equilibrium is given by

L

j(Equ'V + faluzn —q)dx: Olet f, =P

(2.44)
0
where qis the intensity of the lateral load on the member.
Solution of equation (2.44) is
u2=A0052Tax1+Bsin2Tax1+Cxl+D+%><%x12 2.45)

In the member axis syste(nl,xz,xs)of each member, the boundary conditions, the final

end forces and displacements corresponding to\esak of A of a loading pattern (obtained in

step e of the procedure) are:

End a End b
Displacements Forces Displacements Forces
U, fa Uy, fy,
uai = uaz fai = faz ubi = ubz fai = sz
Uy, fa, Uy, f
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Using these, the coefficients of equations of @quaf2.45) can be determined.

Let r:sin20,t=0052a,w:2—a anda =2 % then,
L 2 E

1 0 0 1TA uaz
0 1 0o|B *
=, -9 (2.46)
t r L 1||C A
-wr wt 1 0|D] |, _9t
b3 P

Knowing the right hand side of equation (2.46),idt possible to determine the

coefficients and use them in equation in equat®4s) to calculate the lateral displacemajdat

any pointx, of the member.

2.4.3 Southwell Plot

Using the computer program, for a given frame ardaaling pattern, all information
regarding the axial forces and displacements d&bréifit points of columns are calculated and
stored. For every column member, plotting axiadlteteral deflection ratio against axial load
for various points within member length yields &gjhd lines converging to one point on the axial
load axis. This is the elastic critical loa, of the column under the given loading of the frame
The critical load corresponds to that value of #éx@l load when the displacements approach
infinity.

A curve fitting routine greatly reduces the amoohtwork involved in determining a

Southwell Plot which leads to a critical load.
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2.4.4 Case Study

In order to demonstrate the procedure, the fransggded by Wood and investigated by
Bowles and Merchant (1956) is adopted. A loadintygpa is accepted and the solution is carried
out. Fig 2.4 gives the dimensions and the crossoseprofiles of members of the frame. Also, is
illustrated the numbering system used in the cosmpyirogram. Table 2.4 gives the
characteristics of the members of this frame adongrth the numbering system of Fig 2.4.

The loading pattern used is given in Fig. 2.5alol¢ 2.5 are given the results for member

8 for various values oAl of this loading pattern of the frame. The SouthvAiits are illustrated,

and as seen in Fig. 2.5, tl%' vs. P curves yield straight lines that converge to thmeaoint

defining the critical loadP, which is equal to 338@ips.
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Table 2. 4: Characteristics of Wood’s Frame

Members L(in) 1 (in*) Alin?) P (ksi)

1 180 322 20.78 2942.6
2 177 322 20.78 3043.2
3 177 271 18.28 2561.p
4 189 208 14.71 1724.1
5 183 115 10.30 1016.8
6 180 602 22.30 5501.4
7 177 460 19.30 4347.5
8 177 378 18.78 3572.b
9 189 221 17.03 1831.9
10 183 492 10.30 4349.9
11 180 322 20.78 29426
12 177 322 20.78 3043.2
13 177 271 18.28 2561.p
14 189 208 14.71 17241
15 183 115 10.30 1016.8
16 279 1226 19.12

17 279 1226 19.12

18 279 1226 19.12

19 279 1226 19.12

20 279 492 13.24

21 279 1226 19.12

22 279 1226 19.12
23 279 1226 19.12
24 279 1226 19.12
25 279 492 13.24
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Table 2. 5: Results for Member 8 of Wood's Framigiected to the given loading pattern

Pkips, inches
A 1 2 3 4 5 6
p! 384.6 769.5 1154.7 1542.3 1929.9 2317.2
A 0.511 1.155 2.001 3.180 5.030 8.369
% 753.2 666.3 577.2 484.9 383.7 276.9
2
A, 0.726 1.656 2.898 4.654 7.455 12.599
% 529.5 464.7 398.8 33.14 258.9 183.9
3
A, 0.771 1.774 3.133 5.092 8.251 14.166
% 498.5 433.8 368.6 302.9 233.9 163.6
4

2.4.5 Discussion Results and Conclusion

In present day practice to design rigidly conneaeldimns of a multi-story frame, one

uses the AISC (American Institute for Steel Corgtom) nomographs (Manual of Stell

Construction 2008) to determine the effective calutength factok. In referring to the

assumptions behind the nomographs, one finds ttiatapy bending moments inherent in all

multistory frame are ignored. In other words, oakyal loads are considered.

Here, the effect of primary bending moments ( duéads applied at points other than

the joints) are included in the formulations thoubk use of stability functions to modify the
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fixed end moments ( for uniformly distributed loa B is used). Therefore, the procedure leads
3

to a more rational evaluation of the critical load.

Once the critical load has been determined, trectfle length factok is given by

_ P
=%

For member 8 of the frame in the example, the Holad P.is in Table 2.4. Therkis

found to be equal to 1.03. AISC nomographs yieual to 1.14.

The technique demonstrates that there is an aeffabe loading pattern of a frame on the
load carrying capacity of a column in that framéisTfact has been long discussed, and the
German Codes partially take into account. Zweig68)9proved that load carrying capacity
changes when two different values of external laadsapplied to a portal frame.

In conclusion, by using matrix formulations, theu8wvell plotting technique is proved
to be applicable to determine the critical loadscolumns in multistory frames under given

loading patterns.
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Figure 2. 4: Wood'’s frame
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2.5 The Southwell Method Applied to Shells

To apply the Southwell method of predicting thetical load without disturbing the
model, a uniformly compressed spherical shell issaered. If a spherical shell is submitted to a
uniform external pressure, it may retain its sptedrform, and undergo a uniform compression

whose magnitude is in this case;

o= (2.47)

So, for values of pressure increasing from zere,sthell will at first deform in a rather

uniform manner. This process persists until theerel pressurgy, reaches a certain critical
value, p., called the initial buckling pressure. At thislua of pressure the shell no longer

deforms in a uniform manner but jumps or snaps iatmther non-adjacent equilibrium
configuration. The pressure to which the shell jgrigpcalled the final buckling pressure. Thus,
if the pressure increases beyond a certain linhi¢, $pherical form of equilibrium of the
compressed shell may become unstable, and buctieg occurs. In order to calculate this
critical pressure, the buckled surface is assuradzetsymmetrical with respect to the diameter
of the sphere. But before going into the detaithad buckling problem it is advisable first to

consider the bending theory of shells.
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2.5.1 Deformation of an Element of a Shell of Revolution

In the Fig. 2.6 1etABCD represents an infinitely small element taken fiashell by two
pairs of adjacent plans normal to the middle s@rfat the shell and containing its principle
curvature( Timeshenko et.al (1961) and Timeshemkb. €1959)).

Taking the coordinate axesand y tangent at an arbitrary poimtof the middle surface

and the axisz normal to the middle surface, the element may bmelk In bending theory of
shells, it is assumed that, the linear elements;iwéire normal to the middle surface of the shell
remain straight and become normal to the deformigidllen surface of the shell. Thus the law of
variation of the displacements through the thickreghe shell is linear (Novozhilov (1959)).
During bending, the lateral faces of the elem@&BCDhave rotation and displacement;
superposing and first considering rotation onlyhwitspect to their lines of intersection with the

middle surface. The unit elongations of a thin laanat a distance from the middle surface are;

1-1}
e Ty (2.48)

ri,——] (2.49)
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Figure 2. 6: Element taken from a shell by two paf adjacent plans normal to the middle

If in addition to rotation, the lateral sides oktklement are displaced parallel to themselves,

owing to stretchind, of the middle surface, the elongation of the landoasidered above,
£ = I, -1y

(2.50)
but since;l, = ds(l—%) and, |, = dg1+ 51)(1—%,

)substituting them back into the
equation (2.50) and summing up wighdue to the rotation only,

r

X

_ & z ( 1 1J
E = - -
g 1—% 1—% (1—81)@2

(2.51)
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and similarly,

gyzl_% —1_% ((1—52)@ _EJ (2.52)

Since the thicknesgk, of the shell always will be assumed small in congoa with the

radius of curvature, the quantitie}{ and % may be neglected in comparison with unity.
X y

Also neglecting the effect of elongatiogsand €, 0n the curvature the expressions become,

E, =&~ Z(ri —ri] (2.53)

£,=&- z{— ——] 2.84)

Assuming that, there are no normal stresses betlaeginaso, =0 is obtained. Then,

from the well known formulae;

0= (e s, %)
0,= (e, +uz) 58)

Therefore, substituting the values of strain congms;
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g, = 1—Eu2 (51 +ueg, - z(,‘(X +U)(y)) (2.57)
0, = (e, ~ve,~x, +ox,) (2.58)

are obtained. Since the thickness of the shelkkig small, the lateral sides of the element
may be considered as rectangles. Therefore theespmnding normal forces acting to the

centroit of the side will be;

Et
Nx = dezzﬁ(é‘l +U£2) fordy: 1 (259)
tof
% Et
N, = [ o,dz=—2(¢, -vg)) fordx= 1 (2.60)
—tV 1_U
2
and the momentd], = J'zaxdz= —D()(x —U)(y), andM , = jzaydz= —D()(y —U)(X) in which
t
z Et,’

E
D= z°dz= .
1-v? J/ 121-v?)
2
Now knowing that the shearing stresses are alsagaon the lateral sides of the element in

addition to the normal stresses. ifis the shearing strain in the middle surface gngtix the

rotation of the edgeBCrelative to z - axes, 7,, = (y—2zx,,)Gis obtained. Also knowing that

v % Y P

Q, = Irxzdz, Q, = Iryzdz, N, =N, = J‘rxydz and-M, =M, = J'zrxydz one may find,
9% % % %
_ _ _Nn - WEY

M,, =-M, =D(-v)x, andN,, =N, = 2(i+u)



Thus assuming that during bending of a shell oblaion the linear elements, normal to

the middle surface the resultant forcds, N, and N, and the momentsM, ,M , and M, may

be expressed in terms of six quantities; three corapts of straig,, &,, and y of the middle
surface of the shell and the three quantites, x,, and x,, representing the changes of

curvature and the twist of the middle surface efshell.

2.5.2 Equations of Equilibrium of a Spherical shell

Due to the symmetrical deformation, one of the ldispment components vanishes, and

the others are only the functions of arglélherefore;

u=f,6)
v=0
w= f,(6)
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Figure 2. 7: Spherical shell element and correspgridrces

In the case of symmetrical deformation, there aitg three equations to be considered as

the projections of forces on tke and z axes and moments of forces with respectyheaxes.

Therefore after simplification, the three equatiohgequilibrium become;

d'\g +(N, =N, Jcots-Q, =0 (2.61)
%+Qxcot0+ N, +N, +pa=0 (2.62)
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M, , (M, =M, )coto-Q,a=0 (2.63)

dé

2.5.3 Equations of Equilibrium for the Case of Buckled Surface of the Shell

In writing the equations of equilibrium for the easf buckled surface of a shell, which is
assumed symmetrical with respect to any diametéhefkhell, the small changes of the angles
between the faces of any element suchABCDdue to the deformation has to be considered.

Since there is symmetry of deformation, the rotatioll only be with respect toy — axes. For

the faceOC, this deformation is;

dw (2.64)

u
4
a add

Thus the angle between the fac@€ and AB after deformation becomes;

d9+i[ﬂ+ﬂjde (2.65)
dé\a adé@

The facesAOand BC owing to symmetry of deformation, rotate in theiwroplanes by

an angle,

_(LM} (2.66)
a adé
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Such a rotation in the plane of the faB&€ has components with respect to tkand

zaxis equal tc{g+ﬂjcos&w/ and, —(E+Mjsin6dz// respectively. Thus after
a adfd a add

deformation, the direction of the fad&@Cwith respect to the facD may be obtained by the
rotation of the face AOwith respect to the x and =zaxis through the

anglessin@y + (E + Mj cosdy and,cosdy — (E + Mjsiméblzp respectively.
a add a add

Using the above derived angles instead of thealmimes;dd sin@dy, and cosédy the
equations of equilibrium of the eleme@ABCbecome;

dN,
d6

u dw d’w w
+{N, - N_Jcotd-Q +N | —+— |- ——+— (=0 2.67
( ) y) Q. y(a adH] Q{adﬁ2 aj ( )

2
%+QX cotd+ N, +N, + pa+ Nx( I j-* Ny(£+%)cot9= 0 (268

adg? adg a a

dM u dw

X+(M,-M_Jcotd-Q.a+M | —+——|=0 2.69
déo ( X y) < y(a adﬁj ( )
In this case;

du w
& =———— 2.70
' add a (2.70)
&, =Yeotg- Y (2.71)

a a
¥ = d*w du )
* a’de* a%de
X :(i+ dw jcot@ (2.73)
Y a2 a%dg '
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The differential equation of equilibrium developeave above are based on Love’s
general theory of small deformations of thin shellsch neglects stresses normal to the middle
Surface of the shell and assumes that the planmesahto the undeformed middle surface remain

normal to the deformed middle surface.

Figure 2. 8: Meridian of a spherical shell befone after buckling
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2.5.4 Buckling of Uniformly Compressed Spherical Shells

If a spherical shell is submitted to a uniform em#e pressure, there will be a uniform

compression whose magnitude is;

Let u,vand wrepresent the components of small displacemenisglbuckling from the

compressed spherical form, thé) and N, differ little from the uniform compressive force

p% and they become,
N, =- pza+ N (2.74)
a '
N, :_%+ N (2.75)

where N, and N_ are the resultant forces due to small displacemegntand w.

Also, considering the small change of pressureroelement of the surface, due to the
stretching of the surfacep becomesp(1+ & +£2). Therefore substituting equations (2.74) and
2.75) back into the differential equations of euitm (2.67), (2.68), and (2.69) and

simplifying and neglecting the small terms, suchti@s products ofN, N and Q with the

derivations ofu,vand w;

th; +(N )cot@ Q,—-05 a(—+ﬂj=0 (2.76)

2
OI—Q‘+Q cot+N, +N +p E+ucot19—&/vj—05p ﬂJ+ d —05paco|6{9+ﬂvj:0(2.77)
do dé a a a?d
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M,

" +(M,-M,)cotd-Qa=0 (2.78)

From the Equation (2.78):

o, )22

dMm,
adé@

Qx:

SubstitutingQ, into the Equations (2.76) and (2.77);

N, =Elo ﬂ_v_vw[u&t@_v_vj (2.79)
1-v°|adfd a a a

' Et, du

N, =m{ucot0—w+ U(@—Wﬂ (2.80)

2
M, =-2| U, d "2"+u(u +d—chot0 (2.81)
a“|dgé dé dé
2
My=—% (u+d—chot6?+u %+OI vzv (2.82)
a dég dg dé

Now introducing two dimensionless parametersand ¢ which are defined as;

-v?) _ t° -v? . .
a= D(l v )- 0 d qozmand using the elastic law to express the forces and

a’Et, 122> 2Ft,
moments in terms afi and wone obtains;
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2 [ 3 2
(1+a){CI l:+cot6?d— [v+cot g) u}(1+u)d—w+a[d e d Y ({v+cot H)d—w}
do dé dé dé dé dé

(2.83)
—¢(u—d—wj=0
de
du du du ,du _ _d'w
(1+U)[de+ucot9 2\N+a{ & 2cot9(w2+(1+u+cog H)dé’ c06(2 U+cof6’)u Y
(2.84)
—2001932’+(1+U+CO?9)d 7 —006(2 u+cof9)— ]- —ucol9—j6+4w+c ;N} 0

These two equations may be simplified by negledtingpmparison with unity in the first
term, since the shell is thin, and theref(t)}é ratio is very small. Also, due largely to angular

displacementy we make good use of this situation by introdu@ngauxiliary variabléJ such
that u = —d—w. Thus, the expressions in the brackets becomeitdenThen using the symbol

H for the operation;

Equation (2.83) may be written as follows,
L [H )+ aH ()~ (+ o) +w)- o+ ohw- el + w)] =0

The forth term, containing the factor, may be nefgld in comparison with the third.
Integrating this equation with respectfioand assuming the constant of integration is etgual

Zero;

H(w)+aH (w) - 1+ o)y +w)-dy +w)=0 (2.85)
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And similarly for Equation (2.84) ;

aHHy+W ~{1+0)H()~(3+d)oH(W + 1+ o)+ w +4-Hg) +HwW+2w+w] =0 (2.86)

Now, any regular function ofos@in the interval-1< cosf <1 may be expanded in a
series of Legendre functions;

P,(cosf)=1
P, (cosd)=cosd
P,(cosd) = 0253co26+1)

Pn(cosﬁ):21x3x5x'"x(2n_1) cosn6’+}>< d cogn-2)g + 13, (n-1) cogn—-4)8+...
2"n 1 2n-1 1x2 (2n-1)(2n-3)
which satisfy the differential equation,
2
C(Ij:z” +cotd ((j;'; +n(n+1)P, =0 (2.87)

Thus, performing the operatidd one obtains,

H(P,)=-AP (2.88)
)= 2p (2.89)
In which A, = n{n+1)-2

Assuming general expressionsldiand wfor any symmetrical buckling of spherical

shell,
W= AP, (2.90)
n=0
W:iBnpn (2.91)
n=0
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substituting them back,

i{An[An +(@+0)+ @+ B [ar, +(1+0v)+¢P, =0 (2.92)

0

>
1

Ms

{12+, +2)+da, +2)]+B oA +(B+v)at, + d1+0)-fA, -2)P, =0(2.93)

>
1
o

The Legendre functions form a complete set of fionst Therefore, the two series can

not vanish identically ird unless each coefficient vanishes;
Thus, for each value af, the following two homogeneous equations are obthine

A, +(1+0)+g+B [aA, +([1+uv)+ g =0 (2.93)

Ao ? + 1+ o)A, +2)+da, +2)|+ B |an 2 +(3+v)ad, + AL+v) - g, -2)|=0 (2.94)
Buckling of the shells become possible if theseaéiqus for some value afi, yield for

A, and B, a solution different than zero, which means aidtigolution or in other words

requires having a zero determinant of the systeegations. Thus,
(-0, +aa 2,2 +24, + @+ 0) |- [A, +(1+30)] = 0 (2.95)

A solution of whichA, = Q That corresponds to a valueméqual to unity. Substituting

this value ofA, pne obtains,

A=-B

which corresponding to the displacements,
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u= v —-A sind

w=—A cosf

This is a displacement of the sphere as a rigi¢ loigplacement “buckling mode” along
the axis of symmetry. This must, of course, be wketl when we wish to investigate the elastic
instability of the shell.

Now for A, # Oother than zero;

(1—v2)+ a[/inz +2A + (1+ vz)l

p= A+ 30) (2.96)
which yields for its minimum, or fead/]in = O after simplification;

A7+ 201+ 30)A - 1;"2 =0 (2.97)

Thus,

A =—(L-30)A + 1_;2 (2.98)

and

o = 2/l- 0o -6var (2.99)

But since

- M (2.100)
2Et,
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and ¢, yields the first critical loadp,,

b, = 2ctofhn - 2EL | 1707t Uy (2.101)
a(l—u ) a(l—u ) 3 a Z2a

or neglecting the second term in the parenthesis;

2Et,? (2.102)

2

pCI’ i e
az\/31-v?

or,

Et,

T a/di-v?

In the above derivation a continuous variatiordphas been assumed bijfis defined
so thatnis an integer. Hence, to get a more accurate falude critical load, two adjacent
integers as obtained from the equatign= n(n —1) - 2should be substituted in the equation of
¢ and the value ofl, which gives the smaller value fg, should be used in calculating critical

stresses. But this more accurate calculation o€titieal load will differ little from that given
the above formula, since the valueAfis so large (Timoshenko et al.1961).
Although in the derivation a symmetrical buckling shells was considered, a more

general investigation shows that owing to symmefrthe uniformly compressed spherical shell

with respect to any diameter, the formula alwayslwa used for calculating the critical stress.
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2.5.5 Southwell Procedure Applied to Shells

The Southwell procedure was first applied to colarbg Southwell in 1934. In this part
of this chapter, an attempt is made to show thatti&eell procedure is also applicable to
uniformly compressed spherical shells.

In the derivation of the formula, as it was donetfe classical theory of buckling shells (

See previous part) it is assumed that the displan&u and wmay be expressed as,

| o

u—

V=15 ;AnPn

where P, is the Legendre functions of the ordersand A and B, are the real constants

as before.
Furthermore, as explained in the proceeding sedir@nmanufactural imperfections,

which are unavoidable, are considered and it igrasd that they may be expressed as;

Moreover, for the sake of simplicity, it is assuntedt the manufactural imperfections of

Y,is equal to zero. Thus, it is tried only with thieedtion w.
When the compressive loadis applied to shell, each point of the middle stefa

undergoes elastic displacementandw, and its normal distance from the reference splgere

then becomew+w;. It is assumed of course, thagis of the order of an elastic deformation,
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and then the element of the shell looks like thioreed elements, which are used to establish
the differential equations of the buckling problehgain going through the same procedure one
finds that the terms of those equations belongvm groups. (See proceeding section) In those

terms which contain the factgr the quantitiesiand wdescribe the difference in shape between

the deformed element and an element of true sphretbese termsv must now be replaced by

w+w,. On the other hand, all terms which do not haegeféictor ¢, can be traced back to terms

of the elastic law, and represent the stress @#gltacting on the shell element. Before the
application of the load, the shell has been frestodss and the stress resultants depend only
elastic displacementaand w. Consequently, in all these termsis just wand nothing else.
Thus one arrives the following set of differenggjuations:

H (@ +w)+aH (w) - (L-0)ly +w) - d +w+wy) =0 (2.103)

aHH(y+w) {1+ 0)H (@) -3+ v)aH (w)+ A+ o) +w)+ o - Hw) + Hw+ wo )+ Hw-+wg)

+2((//+W+WO):O] (2.104)

In which H denotes the same operator as before;

Again following the same procedure that is usedtha classical buckling theory of

spherical shells (see the proceeding section) bters the following set of algebraic equations:
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A, +1+u+@)+B (aA, +1+v+¢)=-Bg (2.105)

Ah(a)lzn + A +2+UA, 20+ @A, +2¢)+ Bn(a)lzn +3a, +vad, +2+2u0 - @A, +2¢):

2.106
B¢, -2) (.109)

Thus the problem is reduced to solving this sedgpfations. Eliminatingd, from the

above set of equations,

[ala 172 +(@r—20+ QA? +(va+0? + 2+ 9+ 207 ~1-a—a-va +vg-ap-vag)

. (2.107)
A8, =8, dla+ 127 +(@+20),
Therefore the coefficienB, becomes;
B, (o +2)A, + 20 + g (2108

B =-¢ N
" ad(t-a)+(o-20 + @A, +u(Bp-20) + @+ P —a -1},

After cancelingA, and neglecting the small quantities@sg and their products in

comparison with unity;

B, O-— o A, +2v+ ) (2.109)
—aA? +(p-20 +ga)A, + 0% -1
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Coming back to the definition of the displacem&ine may write the equation,

w=>"B P, orwriting it in detail,w= B,R, + BB +B,P, + ........
n=0

Substituting the values of the Legendre Polynomratbeir places;

w:{BO + 025B, +%{B4 +.....]+{Bl +§Bg+ ....... ]cos&H[Bz +....Jcos20+.........

Also according to the definition of;

A =n(n+1)-2

which is minimum for n = }é therefore it has the same values foequals to minus one
and zero. Sinc& must be an integer, it is chosen as zero, whiddgjel = —2and corresponds
to B, which is a function ofA, and gets smaller whe#, becomes greater. Thus, it is possible to
neglect all the terms and simply wrivel] B,

since the terms which contaiesd cos26 ....are much more smaller so, buckling is

usually expected at the places whélis large.

Accordingly, it is possible to write;

Bogl-2+2(u+¢)]
Aq +(p-2a + g )2 +1-V?
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or rearranging the terms,

2By¢lv + ¢ -1
201+ @) +1-0°

w [

Neglecting the small terms @sand ¢ in comparison with unity,

YA
Now writing ¢ in detail, = q(l v ) or B|n which mis the ratio of the

2Em 1-v* @

thickness to the radius of the sphere. The classitial load for a spherical shell as found

before is;

therefore 2Em =3 p”

[L-v?) ~2EN?

mor pcr—a—)

Equating the two relations;

q 3p cr
¢ 2En?
Thus,

2
1_3,9%« 1
¢ 2 Em p

Substituting back

B (v-1)

1+ il U )p cr
4AEmM’q

w=

or performing the cross multiplication,
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Which is the equation of a straight line if onesaisi taken asvand the other one %

Thus the inverse slope of this line gives the @itload with a minus sign. Therefore obtaining

the slop of this line experimentally,

where S denotes the slope. Thus, the Southwell proceduapplicable for uniformly

compressed spherical shells.
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2.6. Nonlinear Finite Element Analysis (FEA)

Finite element analysis (FEA) is capable to find thitical load associate with elastic
buckling behavior. The first step in elastic bunglianalysis is to find the critical load, which
should be related to the lowest eigenvalue. All FBAthis investigation was performed using
the general purpose program ABAQUS Version 6.7. ABSS is a highly sophisticated, general
purpose finite element program, designed primatdy model the behavior of solids and
structures under externally applied loading. Eightle shell element was used to model
hemispherical shells. This element is a generghqgae quadratic shell element. The material of
the shells is assumed as homogeneous, isotroptonipressible and elastic. In order to check
for the accuracy attainable by this method, a nunabepherical shells with different kinds of

boundary condition and loading were solved (Fi§s225).
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Figure 2. 9: Deformation pattern for hemisphergtall with hinge support under radially

uniform pressure
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Figure 2. 10: Subsequent deformation of hemispaksitell with hinge support under radially

uniform pressure
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Figure 2. 11: Deformation of hemispherical shethainge support under maximum radially

uniform pressure
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Figure 2. 12: Different cuts of the deformed herhesjcal shell with hinge support under

radially uniform pressure
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Figure 2. 13: Subsequent deformations in the dutiseodeformed hemispherical shell with

hinge support under radially uniform pressure
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Figure 2. 14: Buckling initiation of the hemisphaii shell with roller support under radially

uniform pressure
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Figure 2. 15: Subsequent deformation of the heineispal shell with roller support under

radially uniform pressure
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Figure 2. 16: Second mode of the deformation iniegherical shell with roller support under

radially uniform pressure

114



Iy e 8 iy

Figure 2. 17: Buckling initiation of the hemisptaaii shell with hinge support under ring load in

%
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Figure 2. 18: Buckling of the hemispherical sheathvhinge support under ring load %
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Figure 2. 19: Subsequent deformation of the heleispal shell with hinge support under ring

load at%
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Figure 2. 20: Large deformation of the hemisphésball with hinge support under ring load
distributed at%
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Figure 2. 21: Buckling initiation of the hemisplaaii shell with hinge support under ring load in

%
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Figure 2. 22: Buckling of the hemispherical sheathvwhinge support under ring load %
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Figure 2. 23: Large deformation of the hemisphésball with hinge support under ring load
distributed at%
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Figure 2. 24: Buckling initiations of the hemispbal shell with hinge support under gravity
loading
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Figure 2. 25: Subsequent deformation of the henaisgdl shell with hinge support under

gravity loading
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2.7. Experimental Program

In this part, an attempt is made to find the caitioad for hemispherical shells pinned at
the base and subject to uniform pressure in a p@gberimental way. It is intended to show
that the formulation which has been derived in thtigdy give correct results for shells of
revolution under various axisymmetric loading caioahs.

A total of six thin walled polyethylene hemisphatishells were constructed and tested under

uniform suction pressure. The base diameters detlsbells were 15 cm and 10 cm and their

wall thickness were 0.05 cm yieldirﬁ{ ratios of 150 and 100 respectively. It is evidivat

the construction of these shells through machinvauld have been difficult and for the
following reasons, the shells were made of solilygtbylene plastic which posses good tensile,
flexural, and impact strengths and its flexural niad is proportional to the stiffness of the
material. Its creep resistance is excellent anduisstantially superior to most plastics. Its
mechanical properties are as follows:

Flexural modulus: 650 MPa

Poisson’s ratio: 0.4

Density: 1150 kg/mh

Poisson’s ratio: 0.4

A complete family of hemispherical shells is shawiirig 2.26.

The manufacturing of these shells was carried ailt the aid of machined male and
female molds made from cast aluminum alloy. Thenahum alloy molds were machined with
considerable precision and then the sphericalshalle cast by “puddling” technique. Each

shell was inspected by a polariscope to ensurentihair bubbles were trapped in the shell wall.
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Figure 2. 26: Hemispherical shells samples magmlyethylene
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Figure 2. 27: A test made of R=75 mm shell usiagtion pressure and three displacement

gages at various points.
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Figure 2. 28: Deformation measurement with thregegaat different locations in hemispherical
shells under uniform suction pressure (R= 75mm).
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Figure 2. 29: Tests made of R=50 mm shells witlisagressure and three displacement gages
at different locations hemispherical shells und&farm suction pressure (R=50 mm).
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Figure 2. 30: Deformation measurement with thregeegan different locations at hemispherical
shells under uniform suction pressure (R=50 mm).
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Figure 2. 31: Initial buckling of hemispherictiedls under uniform suction pressure (R= 50

mm).
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Figure 2. 32: Initial buckling of hemispherical §sainder uniform suction pressure (R= 50

mm).
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Figure 2. 33: Initial buckling of hemispherical #sainder uniform suction pressure (R= 75

mm).
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Figure 2. 34: Several tests made on different saswp$ing suction pressure with three and five

gages at different locations.
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2.8. Results and Discussion

In this study, the Southwell predictions are comegamwith experimentally, and
numerically obtained values. The results of thegtigation are summarized in Figs 2.35 to 2.45
which the predictions of the Southwell method asenpared with measured buckling loads in
experimental study and numerical simulations. $catt the experimentally obtained buckling
pressures is probably due to variations that eXisteurred in the specimens because of the fact
that each one was cast separately. The manufazticerhowever, take considerable care during
the manufacturing process, and especially withntitg and for this reason the scatter is very
small. Thus, it is likely that the main source afoe compared to theory is because of
measurement reading errors, and imperfections itenaaproperties. However, the agreement
between measured buckling load and Southwell ptiedics remarkable. Mostly, the Southwell
method tended to yield buckling loads which arghgly higher than those measured and the
disparity of buckling load is somewhat difficult tetect. Nevertheless, the predicted loads are
reliable to be slightly higher (up to about 17%arhthe actual load encountered. Therefore, a
reasonable degree of caution is recommended tadreised.Scatter in the numerically obtained
buckling pressures for axisymmetrical buckling saaee very small and it is most likely due to
the assumptions of the finite element solutionr the case of buckling of spherical shell with
roller support under uniform pressure, the bucldbdpe is not axisymmetric anymore (Fig
2.15). So, once data are collected from the prieapes locations, the answer is acceptable and
there is only 13% error otherwise, the deviatianfrthe correct values is considerable.

Briefly, the method provides valuable technique éstimating the buckling load of
spherical shells without having to conduct a desiva test. The results obtained have logical

accuracy and the method does not suffer from tlyenaajor issues. Any boundary condition at
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the edge may be taken into account and as longeakading is axisymmetric, this procedure

can be used with reasonable accuracy.

2.8.1 Experimental work findings
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Figure 2. 35: Plot of% againstw (R =50mm,t, = 0.5mm)

S=-01321
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cr — - = 0088VIPa
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Figure 2. 36: Plot of% againstw (R =50mm,t, = 0.5mm)
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Figure 2. 37: Plot of% againstw (R =50mm,t, = 0.5mm)

S=-0.1179
) - 4Em’
cr — - P = 0.0935MPa
P J1-02)s P
From testp = 008MPa

Error for this case:%o_ao'08 x100= 168%

137



w/p-w

5.57 -
5.568 -
5.566 - i
@ Experimental
5.564 |
5.562

5.56 -

w/p (mm?3/N)

5.558 -

5.556 -

5.554 -

y =-0.1885x + 5.5705

5.552 -

5.55 T T T T T 1
0 0.02 0.04 0.06 0.08 0.1 0.12

w (mm)

Figure 2. 38: Plot of% againstw (R =75mm,t, = 0.5mm)
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2.8.2 Numerical Study results

2.8.2.1. For uniform radial pressure case with hinge support:
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Figure 2. 40: Plot of% againstw (R =50mm,t, = 0.5mm)
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Figure 2. 41: Plot ofp againstw (R =75mm,t, = 0.5mm)
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2.8.2.2. For uniform downward pressure case with hinge support:
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Figure 2. 42: Plot of% againstw (R =50mm,t, = 0.5mm)
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2.8.2.3. For uniform radial pressure case with roller support :
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Figure 2. 43: Plot of% againstw (R =50mm,t, = 0.5mm)
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2.8.2.4. For Ring load case with hinge support:
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Figure 2. 44: Plot of% againstw (R =50mm,t, = 0.5mm)
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Figure 2. 45: Comparison of Southwell experimeptadiction to theoretical buckling pressures.
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2.9. Conclusion

The accurate prediction of buckling loads of sptershells, based on the nondestructive
buckling test data, is generally a difficult praile Hence, this chapter presents a general
methodology for predicting the critical bucklingalits of spherical shells using a nondestructive
test. For this purpose, the well known graphicathoe of predicting buckling loads, i.e., the
Southwell’'s nondestructive method is extended teespal shells and a new formula is derived
for the critical buckling load of uniformly compieesd spherical shells. The feasibility of this
technique for determining critical buckling loadk spherical shells is demonstrated provided
caution is exercised in analyzing the test resultis method may be used in any kind of
spherical shells with arbitrary axisymmetrical loagdand it provides a valuable procedure for
estimating the buckling load of a spherical shelicture without having to conduct a destructive
test. In this method, the curve of displacement/lzaplotted against displacement, which is a
straight line, and the slope of this line when mplikd by a constant value presents the critical
buckling load with sufficient accuracy. The expeudig of the method lies in its simplicity, and
in the fact that it is nondestructive. This teclugigdoes not need any assumption as to the
number of buckling waves or the exact locality afckliing so long as the loading remains
axisymmetric. During experimental study, the test be terminated if enough data points have
formed a straight line. In this procedure, erraynbe introduced as a result of the accuracy of
instruments, skill of the examiner and also appr@tion in determining Poisson’s ratio value.
Moreover, the accuracy of this method depends entdht cut off point and the mathematical

function which is used for curve fitting. In theakt squares fitting technique, the slope of the
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fitted line is affected by the accuracy of the elifint displacement data points. Small
inaccuracies in the measured data points caussldpe of line to be changed noticeably and
may cause over prediction of the buckling load. 8ith increasing the number of data points
plotted together one can get more precise andstealbuckling load. The data points in the
lower region are less important than the data pointthe higher load region. In addition,
increasing the number of gages may tremendouslyowepthe accuracy. Even though the
numerical solution can make the buckling load gaaWailable to the user, it is here as an
additional tool to verify the accuracy of the Soudi technique compared with the actual

numerical and analytical buckling loads. Excellemtrelation is observed.

147



Notation that used in this chapter

S Slope ofw versest line

u Displacement of the shell elementxndirection

v Displacement of the shell elementyirdirection
w Displacement of the shell elementimirection

U, Effect of initial imperfections

V Shearing force in straight members

y Deflection of straight member
a Buckling coefficient to be determined experimelytal

&, The unit elongation or strain in x- direction
€, The unit elongation or strain in y-direction
&, The unit elongation of middle surface in x-direati
£, The unit elongation of middle surface in y-directi

v Poisson’s ratio

X, Change of curvature in x-direction
X, Change of curvature in y-direction
t, Thickness of shell

p., Classical buckling pressure

H( ) A mathematical operator

148



Refer ences

Abramovich, H., Weller, T. and Yaffe, R. (1990). gplication of a Modified Southwell
technique for the determination of critical loaddmperfect plates”, Computers and Structures,
Volume 37, Issue 4, pp.463-469.

Archer, R.R. and Lange, C.G. (1965). “On the Nuogdir Dynamic Behavior of Shallow
Spherical Shells”, AIAA Journal. Vol.3. pp. 2313123

Archer, R.R. and Famili, J., (1965). “On the Viloas and Stability of Finitely
Deformed Shallow Spherical Shells”, J. App. Mecbl.\382. pp.116-120.

Beyer, K. (1933-1934). “Die Statik im Eisenbetonbaein Lehr-und Handbuch der
Baustatik”, vol.2 Berlin: Julius Springer.

Bhimaraddi A., Carr J., and Moss P.J., (1989). ‘he& Deformable Finite Element for
the Analysis of General Shells of Revolution”, Cartgy and Structures, Vol.31, (3), pp.299-
308.

Bleich, F., (1952).“Buckling Strength of Metal Sttures”, McGraw-Hill, 256p.

Bowles, R. E., and Merchant, W., (1956). “Crititalads of Tall Building Frames” The
Structural Engineer,Vol 36, Pp. 324-329.

Brush, D. O., Almroth, B. O., (1975). “Buckling bfrs, plates and shells”, New York:
McGraw-Hill Books Company, 325p.

Budiansky, B. and Hutchinson, J. W. (1964). “DynanBuckling if Imperfection
Sensitive Structures”, Proceeding of the Xl Intéioraal Congress of Applied Mechanics, edited

by Gortler, H., Springer-Verlag, Berlin, pp.639-651

149



Budiansky, B., (1959). “Buckling of Clamped Shall@&pherical Shells” Proceeding of
the symposium on the Theory of thin Elastic ShéMelft, North Holland Publishing Company,
Amsterdam, pp.64-94.

Budiansky, B., (1966). “Dynamic Buckling of Elasttructures: Criteria and Estimate.”
Proceedings, International Conference on Dynamabiftly of Structures. Pergamon, New
York, pp.83-106.

Budiansky, B., and Roth, R., (1962). “Axisymmetidynamic Buckling of Clamped
Shallow Spherical Shells”. NASA TN D-1510, pp.59096

Chan H.C., (1989). “Geometrically Nonlinear Anatysif Shallow Shells using Higher
Order Finite Elements”, Compure Structure, Vol. Rb,3, pp.329-338.

Choi C., Yoo S., (1991). “Geometrically Nonlinearelavior of an Improved
Degenerated Shell Element”, Compure Structure BpINb.3, pp.785-794.

Cohen, G. A. (1968). “Effect of a Nonlinear Preklutg State on the Postbuckling
Behavior and Imperfection Sensitivity of Elasticrustures”, AIAA Journal, Vol.6. No.8.
pp.1616-16109.

Del Pozo, F, (1973). “La cupula del Palau Blau-Graklormigén y Acero, 107-108, pp.

Delpak R., and Peshkam V., (1991). “A Variationappfoach to Geometrically
Nonlinear Analysis of Asymmetrically Loaded Rotat@ Shells: Theory and Formulation”,
Computer Structure, Vol.39, No.34, pp.317-326.

Drucker, D. C., Greemberg, W., and Prager, W. ()19Bie safety factor of an elastic
plastic body in plane strainTrans. A.S.M.E.Journal of Appied Mechanid/ol. 173, No.1

p.371.

150



Drucker, D.C, and Shield, R.T., (1959). “Limit Analysis of Syretrically Loaded Thin
Shells of Revolution” Journal of Applied Mechani®®l. 26, pp 61-68.

Dumir, P. C. , Gandhi, M. L., and Nath, Y., (198Axisymmetric static and dynamic
buckling of orthotropic shallow spherical cap withicular hole ” Computers and Structures,
Volume 19, No.5, Pages 725-736.

Dumir, P. C., Dube, G. P., and Mallick, A., (2008xisymmetric buckling of laminated
thick annular spherical cap ” Communications in Noear Science and Numerical Simulation,
Vol. 10, Issue 2, ppl191-204.

Eller C., (1990) “Finite Element Procedures for tB&ability Analysis of Nonlinear
Parametric Excited Shell Structures”, Computer &trdcture Vol.35, No.3, pp.259-265.

Euler, Leonhard, (1744). “De Curvis Elasticis” Lanse-Genf, Switerland, pp.72-160.

Famili, J. and Archer, R. R. (1965). “Finite Asymme Deformation of Shallow
Spherical Shells”, AIAA Journal, Vol.3, pp. 506-510

Famili, J. (1965) “Asymmetric Buckling of Finitelpeformed Conical Shells”, AIAA
Journal, Vol.3, No.8, pp.1456-1461.

Fauconnier, (1934). “Essai de rupture d' una vaditece conoide en béton armé”,
Proceedings IABSE, Vol. Il, pp. 167-192.

Fitch, J.R., and Budiansky, B., (1970). “BucklingdaPostbuckling Behavior of Spherical
Caps under Axisymmetric Load”, AIAA Journal. Voli8p.4, pp.686-693.

Fligge, W, (1934). Statik und dynamik der schalerBerlin: Julius Springer, 118p.

Fligge, W, (1960). “Statique et dynamique des cequraris: éditions eyrolles.

Fligge, W, (1960). “Stresses in Shells”, Springer&g, Berlin.

151



Foppl, A, (1930). “Résistance des matériaux et érémde la théorie mathématique de
I'élasticité”, Paris, Gauthier-Villars et Cie.

Foster, G.C, Tennyson, R.C. (1983). “Use of thetSweall Method to Predict Buckling
Strengths of Stringer Stiffened Cylindrical Shell&n International Journal for Experimental
Mechanics, Volume 19, Issue 2, pp.63-67.

Fung, Y. C. (1974). “Thin Shell Structures: TheoBxperiment and Design”, Prentice
Hall, USA, pp. 247-259.

Gill S.S., and Leckie F.A., (1968).“The Effect ok@netry Change on The Application
of Limit Analysis to the Design of Pressure VesNelzzles” International Journal of Mechcal
Science, Vol 10, pp.989-993.

Goncalves, P. B. and Croll, J. G. S. A. (1992). Xiskmmetric Buckling of Pressure
Loaded Spherical Caps”, Journal of Structural Eeeiimg, Vol. 118, No.4, pp. 970-985.

Grafton P.E., Strome D.R., (1963). “Analysis of sxnmetric Shells by the Direct
Stiffness Method”, AIAA Journal, Vol.2, No.3, pp 8332.

Gregory, M.S., (1968). “Elastic Instability”, Spdutd.

Grunitz, L., (2003).“The effect of welding on thedkling behavior of a spherical cap”
International Journal of Pressure Vessels and &ipol. 80, Issue 4, pp. 237-241.

Gupta P.K., Gupta N.K., (2009). “A Study of Axialo@pression of Metallic
Hemispherical Domes” Journal of Materials Procasdiachnology, Vol. 209, Issue 4, pp.2175-
2179.

Hetenyi. M, (1950). “Handbook of Experimental Sgrésalysis” John Wiley and Sons.

Hodge, P. G., (1965). “Limit Analysis of RotatiolalSymmetric Plates and Shells”

Prentice-Hall Inc., Englewood Cliffs, N.J.

152



Hsiao K., Chen Y., (1989).“Nonlinear Analysis of élhStructures by Degenerated
Isoparametric Shell Element”, Computer and Stmecunl.31, No.3, pp.427-438.

Huang N.C., (1964). “Unsymmetric Buckling of Thinh@&@low Spherical Shells”,
Tranaction of ASME, Journal of Applied Mechanicgl\32, pp.447-457.

Huang N. C., (1969). “Axisymmetric Dynamic Snapethigh of Elastic Clamped Shallow
Spherical Shells”, AIAA Journal Vol.7, No.2, pp2229.

Humphreys, J. S. and Bodner, S. R., (1962). “DycaBuickling of Shallow Shells under
Impulsive Loading”, Journal of Engineering MechaSCE, Proceedings of the American
Society of Civil Engineers Journal of the EnginegrMechanics Division 88 (1962), pp. 17-36.

Hutchinson, J. W. (1967). “Imperfection Sensitivaf Externally Pressurized Spherical
Shells”, Transaction of ASME, Journal of Applied ¢éhanics, Vol. 34, No 49, pp.49-55.

Ingerslev A., (1923). “The Strength of RectanguB#aibs”, The Institution of Structural
Engineers Journal. Vol.1, No.1, pp.3-14.

Jones L.L., (1962). “ Ultimate Load Analysis of Rieirced and Prestressed Concrete
Structures”, Chatto and Windus, London, 248p.

Jones L.L., and Wood R.H., (1967). “Yield Line Aysik of Slabs”, Thames and
Hudson, London, 405p.

Jones, G. W. and Chapman, S. J. and Allwright].[2008). “Axisymmetric buckling of
a spherical shell embedded in an elastic mediuneruadiaxial stress at infinity,” The Quarterly
Journal of Mechanics and Applied Mathematics, al. No.4, pp. 475-495.

Kaplan, A. and Fung, Y. C. (1954). “A Nonlinear Ding of Bending and Buckling of

Thin Elastic Shallow Spherical Shells” NACA TN 321Zp.

153



Koiter, W. T. (1945).“On the Stability of Elastiequilibrium”, Thesis, Delft, H.J. Paris
Amsterdam.

Koiter, W.T. (1963). “Elastic Stability and Post &ling behavior”, Proceedings of
Symosium on Nonlinear Problems, edited by Langet.RUniversity of Wisconsin Press, p.257.

Liang C.C., Liao C.C. and Ma Y.C., (1991). “A lardggeformation Elastic Plastic
Dynamic Analysis of Square Plate and Spherical ISBjected to Shock Loading” Computer
and Structure, Vol.39, No.6, pp 653-661.

Luo, P., Luo, H., Tong, F., (1991). “The Influenoé Pre buckling Deformations and
Stresses on the Buckling of the Spherical Shefiterhational Journal of Offshore and Polar
Engineering, Vol.1, No.4, pp 25-37.

American Institute of Steel Construction (AISC), 008). “Manual of Steel
Construction”.

Nagtegaal J.C., Parks, D.M., and Rice, J.R. (1974). “On Nucadly Accurate Finite
Element Solutions in the Fully Plastic Range” Cotepsl Methods in Applied Mechanics and
Engineering, Vol. 4, No., pp 153-177.

Nie, G. H., Chan, C. K., Yao, J. C., and He, X. @009).“Asymptotic Solution for
Nonlinear Buckling of Orthotropic Shells on Elasfoundation,” AIAA Journal, vol. 47, No.7,
pp. 1772-1783.

Palassopoulos, G. V. (1992). “Response Variabildly Structures Subjected to
Bifurcation Buckling”, Journal of Engineering Meches, ASCE, Vol.118, EM6 proceedings,
pp. 1164-1183.

Roorda, J.,(1967). “Some Thoughts on the Southwét” Journal of Engineering

Mechanics Division, ASCE, Vol 93, (EM6) proceedinBaper 5634, pp.37-48.

154



Seide, P. (1975). “Small Elastic Deformations ofnfBhells”, Noordhoff International
Publishing Leyden, California, USA, pp.227-229.

Seide, P., (1962). “On the Stability of Internalyessurized Conical Shells under Axial
Compression”, Proceedings of the Fourth U.S. Nati@ongress of Applied Mechanics, Vol.2
pp.761-773.

Singer, J. (1961). “Buckling of Conical Shells end\xisymmetrical External Pressure”,
Journal of Mechanical Engineering Science, Vol.8.4\p.330.

Singer, J., Eckstein A., Baruch. M, (1962). “Buakjiof Conical Shells under External
Pressure, Torsion and Axial Compression”, TAE Repdpn.19. Technion Research and
Development Foundation, pp.97-122.

Southwell, R. V., (1932). “On the Analysis of Expeental Observations in Problems of
Elastic Stability” Proceedings of Royal SocietyLoihdon (A), Vol.135, pp.601-616.

Stephens, W. B., and Fulton, R. E. (1969). “Axisyetine Static and Dynamic Buckling
of Spherical Caps due to Centrally Distributed Buess”, AIAA Journal, Vol.7, No.11, p.2120.

Stricklin, J.A., Martinez, J.R., Tillerson, J.R.phY, J. H., and Haisler, W.E., (1971).
“Nonlinear Dynamic Analysis of Shells of Revolutiby Matrix Displacement Method”, AIAA
Journal Vol.9, No.4, pp629-636.

Stricklin, J.A., and Martinez, J.E., (1969). “DynanBuckling of Clamped Spherical
Caps under Step Pressure Loading”, AIAA Journal¥bdlo.6, pp.1212-1213.

Teng J.G., and Rotter J.M., (1989).“Elastic-Plaskarge Deflection Analysis of
Axisymmetric Shells”, Computer and Structure, Vial.8lo.2, pp.211-233.

Terndrup, P., Jensen, J., (1995). “Buckling Behawb Imperfect Spherical Shells

Subjected to Different Load Conditions”, Thin-Wall8tructures, Vol.23, No.4, pp.41-45.

155



Thurston, G. A. (1961) “A numerical Solution of Thdonlinear Equations for
Axisymmetric Bending of Shallow Spherical Shell$tansactions of ASME, Journal of Applied
Mechanics, pp. 557-562.

Thurston, G. A. ,Penning, F. A. (1966). “Effect Axisymmetric Imperfections on the
Buckling of Spherical Caps under Uniform PressufdAA Journal, Vol.4, No.2, pp.319-327.

Tillman, S. C. (1970). “On the Buckling Behavior 8hallow Spherical Caps under
Unifor Pressure Load”, International Journal ofi&®IStructures, Vol.6, pp.37-52.

Timoshenko, S., (1953). “History of Strength of als” Mc-Graw-Hill.

Timoshenko, S., and Gere (1961). “Theory of elaStability” Mc-Graw-Hill Second Ed.

Timoshenko, S., and Krieger (1959). “Theory of €lahd Shells” Mc-Graw-Hill Second
Ed.

To C.W., and Wang B., (1991).“An Axisymmetric Thi@hell Finite Element for
Vibration Analysis”, Computers and Structures, ¥6|.No.3, pp.555-568.

Torroja, E., (1934). Cubiertas laminares de hormigdén armadoMadrid: Instituto
Técnico de la Construccién u Edificacion, 315p.

Uchiyama, M.and Yamada, S. (2003). “Nonlinear Buckling Simwaa# of Imperfect
Shell Domes by Mixed Finite Elements” Journal ofgimrering Mechanics,ASCE, Vol.
129,No.7, pp. 707-714.

Von Karman, T. (1909). “Untersuchungen uber Kniskfgkeit” Ver, Deust, Ing, Berlin.

Von Karman, T., and Tsien, H. S., (1939). “The Bumgy of Spherical Shells by
External Pressure” Journal of Aerospace Scienck/Vdo.2, p.43.

Weinitschke, H. (1960) “On the Stability Problent hallow Spherical Shells”, Journal

of Mathematics and Physics. Vol.38, No.4, p. 209.

156



Winter, G., Hsu, P.T., Koo, B., and Loh, M.H. (194Buckling of Trusses and Rigid
Frames”, Cornell University, Engineering Experim&iation Bulletin, No. 36.

Xie C.R., and Ho D., (1990). “Axisymmetric Bucklirgf Truncated Shallow Spherical
Shells”, Computers and Structures, Vol.34, No.229p-301.

Xu C.S., (1991). “Buckling and Post-Buckling of symatrically laminated moderately-
thick spherical caps” International Journal of 8sland Structures, Vol. 28, No. pp1171-1184.

Yiniyi, Z. (1999). “Torsional Buckling of Spheric&hells under Circumferential Shear
Loads”, Applied Mathematics and Mechanics, Vol20,4.

Yuan K.Y. and Liang C.C.,(1989). “Nonlinear Analyf an Axisymmetrc Shell using
Three Noded Degenerated Isoparametric Shell Elém@umputers and Structures, Vol.32,
No.6, pp.1225-1239.

Zheng X., and Zhou Y., (1989). “Analytical Compuzation Method for Solving a Kind
of Nonlinear Equation of Plate and Shells”, Computand Structures Vol.32, No.1, pp.185-194.

Zweig, A., (1968).“Buckling Analysis of One Storydfmes”, Journal of the Structural

Division, ASCE 94, ST9, pp. 2107-2134

157



Appendix A - Collapseload of circular plate

A plate is supposed to yield in bending at pc(bqt xz)if the stress tensor there obeys the
yield criterion at everyx,exceptx, = Q points in the middle plane are observed as retsnain
the elastic core. If the stresseg are assumed negligible in magnitude next todhg(this does

not mean that they can be neglected in the equifibrequations, because derivatives occur

there), then a plane-stress yield criterion mayyapp

In every plane, # O0Equilibrium is satisfied if

4
O = _F M .z SONX,

. e t,’ : L
If the ultimate moment is defined &8, = Iy 0/,then the plate yield criterion is given

by f(maﬂ): 0,
wherem,, = M % ;the Mises and Tresca criteria become, respectively,
0

mllz -mm,, + mzz2 +3mlzz =1 (Mises),
maxﬂml|,|mz|,|ml—m2|):1 (Tresca),

If the loading and support are axisymmetric, thbe bnly nonvanishing moments

areM ,M, and the equilibrium equation is,
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(er)' -M, =j0r grdr (A.1)

This equation and the yield condition constituteo twquations forM and M,.
Equivalently, if the yield condition is solved fd ,in terms of M, and the resulting expression
for M ,is substituted in (A.1), the result is a nonlinkest order differential equation foM , . At
the center of the platéyl, = M and thus, if the curvature there is positive (ceecapward),
M, (0) = M, constitutes an initial condition with which the feifential equation may be solved.
In addition, a boundary condition at the edge a must be satisfied; this yields the ultimate
load. Let us recall that for a simply supportedtglahe edge conditions ate= M, =0 thus
M, =0 is a boundary condition with which the differehtequation may be solved. For a

clamped plate, the edge must form a hinge cirblat, is, a locus of slope discontinuity. As we
" _ _—2M
shall see, the edge condition there becoe¢a)=M, or M, (a)= %\/5 for the Tresca

or Mises material, respectively. Fig A.1 shows thkeses and Tresca yield criteria for

axisymmetrically loaded circular plates. It follofrem the preceding discussion that the center
of the plate is in the moment state correspondingaint B, and that a simply supported edge
corresponds to point C. A simply supported platey iiais be assumed to be entirely in the

regime BC. For the the Tresca material, this meéaasM , = M, everywhere, and the problem

to be solved is therefore linear.
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My Mises

Tresca

D O A, Mo

D/

E
Figure A. 1. Mises and Tresca yield crador axisymmetrically loaded circular plates

Solution for Tresca Plate

Let us consider, for example, a downward Idgd uniformly distributed over a circle of

radius b, the plate being unloaded outside th@eciiThe equilibrium equation is then

P,r?

. - > =<b
(er)_MO: 27;0)
_5]' r-b

The solution forr < b satisfying the condition at= &

P,r?

M, =M, e

while the solution forr > b satisfying the condition at=a is

RIS

Continuity atr =b requires that
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27,
_2
3a

P, =

1

This result includes the extreme cad@s=67M, for the uniformly loaded platd=a and
P, =27M, for a plate with concentrated load. This last camdd not have been treated directly

because the moments would have to go to infinitha@tcenter which is a condition incompatible

with plasticity.

Note: For this part | used from Prof. Jacon Farzan lechotes. He is emeritus professor from

Tabriz University and | passed theory of plate ahdll course with him. He has taught Theory

of plate and shell course for more than forty y@éarBabriz University.
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Appendix B - Axisymmetrically Loaded Circular Plates

Given a circular plate of radasthe solution for a concentrated load acting atdénter
of the plate can be obtained by assuming that #ldéus of the circleb which the load is
distributed becomes infinitely small, whereas tlmalt load Premains finite. Using this

assumption, we find that the maximum deflectiothatcenter of a simply supported plate is:

_ (3+v)pPa?
Winax = 1677(1+U)D (Bl

The deflection and moments at any point of theutacsimply supported plate at a

distancer from the center are:

P 3+v 2 2 2
W:].G—ID[1+U(a - )+2r Ln(%)} (B.2)
M = (1+0)P Ln(§j+ (1-v)Pb? (iz_izj (B.3)
4 r 16mr r< a
M, :i{(1+u)Ln(Ej+l—U}—w(i2 +i2j (B.4)
ar r 167 r- a

The bending moment for points with>- bmay be found by omitting the terms in the

equations (B.3) and (B.4) which conthi This gives

|\/|r :M Ln(gj w
arr r
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M, :;{(1+U)Ln(EJ+l—U} (B.6)

7T r

To obtain formulas for a circular plate with clardpsiges we differentiate equation

(B.2) and find for the slope at the boundary oinagdy supported plate.

aw) __Pa_
_(Ejrza " 41+ 0)D (B.7)

The bending moments _, uniformly distributed along the clamped edge paa

bending of the plate to spherical surface the sadfuwhich is given byl— S —. , and
e I, D(1+ U)
the corresponding slope at the boundary is
dw) _  M,a
(&) =@ @
Using (B.7) and (B.8), the condition that the binledge does not rotate gives:
P

M,.,=—— B.9

= (8.9)

2 _ A2
Deflections produced by moments,_, = —ifor one circular plate aM.
A 8rD(1+v)

Superposing these deflections on the deflectiorsssanply supported plate in equation (B.2),

we obtain the following expression for the deflens of a clamped plate loaded at the center:

2
W= Pr Ln[ij+i(a2 —r2) (B.10)
87D a) 16D

Adding equations (B.9) to equations (B.5) and JBo8 a simply supported plate, we obtain the
following equations for the bending moment of alex clamped plate at any point not very

close to the load:
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M, :;[(n U)Ln(ij—l} (B.11)

r

M, = ;{(u u)Ln(Ej —u} (B.12)

7T r

When r approaches zero, expressions (B.5), (B.6), (B.amy (B.12) approach infinity and
hence are not suitable for calculating the bendmgmnents. Moreover, the assumptions that
serve as the basis for the theory of bending afutar plates do not hold near the point of

application of a concentrated load.

Note: This part is from Timoshenko and Woinowsky-Krie@&959) book.
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Appendix C - Effect of Axial Forceon the Stiffness of the Frame

Member

Assume a member with one end clamped and the etitkis free to rotate.

—— unit rotation
N _2E|.n'|__ ’F/d-’—“_ _-__-----xh
’/l_l\_" ut, %1 ) _____________ .
uslxg i3 El fy /ﬂE
Wy

Figure C. 1

. . 4E| . . . .
Without any axial force, a momen{L— IS necessary to create a unit rotation at theberidhis

2El . : : .
moment producesL—lnternaI moment at the pointaf When there is axial force, the
magnitude of the moment to create unit rotation alier. Compression force will make this
: : L El .
moment smaller and tension force will make it bigdessumeK = T and the moment for unit

rotation at the end of the member let3¥€. Then, for any rotatiom,;the moment is

f,s = SKu,,and at pointa the momentf_, = SCKy,; ,
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Ups

132

Figure C. 2

It is evident thatSand C reduce to4and 0.5 correspondingly whef, = 0

Let P anl , P = %3 ,K—— anda——\/_

P. =Euler load, and® = f_ = —f,,

[f
2a/ = |la
Then, /I I (C.1)

Applying small deflection theory:

2
EI &-’- faluz = faS - fale (CZ)
f, = SCKy, (C.3)
(= fio * fos _ (S+SCOKu,, _ S[i+C)K . (C.4)

L L L
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By substituting equations (C.3) and (C.4) into (Gt following equation is obtained:

d’u,  f SCK S(1+C)Ku,,

Jaly = -

dx® El el (E1)L

d?u, 4a® _ SCK S(1+C)Kuy,
2 + 2 u2 - ub3
dx” L El

Solution of (C.6) is:

. K
u, = AcosZTax1 + Bsszax1 +ﬂCL—(1+ C)x1

al

Boundary conditions:

At x, =0,u, =0 0= SfCKub3+A, A= _SCKu

al

b3

dx, ful L
. S(1+C)k
- 20f b3
al
u, = SKu, [CL (1+C) ] SCKuy, SZa
fa fa L
Rearrangement,
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u, = SKu, C(l— cos?? xlj +(1+ C)(—ﬁ + L sin® X,
fL L L 20 L
To find C
2
At x =L, E19Y = = _sky,
dx

_ SKu, _ SKuy,(4a®
El f L2

j{(c)cosm -1+ C)Zi SinZa}

a

al

2
tal —2a(- 2Ca cos2a +Csin2a +sin2a) = -4a?

_ 2a-sin2a
sin2a — 2a co<2a

Tofind S
At x =L M-y
dx,
—Uy = %{Cz—asin&r + @(COSZQ' —1)}
fa L L
fL

e =d2nCsinea - A1+ C)sirt a

-20° = EiC(asinZa—sin2 cr)—sin2 a]

First solve forSand then substitute€
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_ -20°
Clasinza -sirt a)-sirf a

_ —20°(sinca —2aco2a)
asirea—sirf a|( 20 —sinza) —sirt ofsirea - 2acoa)

— 207 (sin2a —2aco2a)
20° sirka —2asirt a —asirt 2a +sirf asir2a —sirt asin2a +2asirf acola

_  —20%(sirea—2acogn) _
alsinca(2a—sin2a) + 2sirt a{coga 1)

_ —2all-2acoRn)  _ —20(1-2acota)
2”‘Si”2”‘4s'rf%in2a 20r—2cogrsina - 2sirf atary

__ —a{1-2acoea)
a-sino{cosr +sinatar)

Finally,

. a(1-2acot2a) ©.11)
tara - a

Now, the slope deflection equations (for no tratmsitg can be written as:

f, =3u;, (C.12)
Where,
i
S = K‘ > Sﬂ and }:a&b (C.13)
SC S J
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uz2,x2 A
fb2
b3
b1
uad
N
ub3 ub2
i fa1
ua2 : l/ fa3
’ H—
T | uai l L+(ub1-ua1) | u1, x1
— T =
| L | ub1 |
I~ = =~
Figure C. 3
For jointed member with rotation and translation ba written:
d2u2 —
El XmZ iU, = o —fat fal(ubz _Uaz) (C.14)

The solution is:

. f f
u, = Acosz—ax1 + Bsmz—ax1 +—22x ——B 4y,
L Lty B

Boundary conditions:

f, f,
% =0,U, =U, = A-—2+u,, A=-%=

al fa_’l.
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The shear force,

_ Fas 1 + fal(ubz _uaz)

f =

a2 L L

uz —_as3 COSZ—axl +L I f":13 + fb3 ub2 a2 Slnz—aX1 + f":13 + fb3 ub2 uaZ Xl __a3 +ua2
f, L 2a foL L L foL L f

Let r =sin2a,t = cos2a

du
At x, =L, u, = ubzandd—xf = Uy,

Uy = ffa:‘l‘_ (1-2ar -t)+ ffb?l’_ (1—t)+@(1—t)+tuas
al al

0= fa3(1—2m _t)+ fbs(l_t)+ fal(ubz _Uaz)(l_t)+ faltu, — fulupg

To solve equations (C.15) and (C.16), multiply(iy t) and - (2 - r) respectively.
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0= fa3(20t - r)(l_t)"' 1tb?,(za'_ r)(l_t)_ fal(ubz _Uaz)(l_t)(r)"' falLr(l_t)ua3

0=-f(1-2ar -t)(2a -r)- f (20 - r)1-1t)- f(u, —u,)1-t)(2a -r)- f,Lt(2a - r)u_,
+f,L(20 - r)u,

fol(2at —r)1-t)- (- 2ar —-t)(2a —r)|+ f Lur(1-t)-t(2a —r)+ f Lu, (20 —r)+ f, (U, —u,,)
x[r(t-1)+(t-1)(2a-r)]=0

This can be written as:
Ai fa3 + AZ fall-ua3 + A3 fa:l.l-ub3 + A4 fal(ubz - uaz) = O (C:L?)

A =(2at-r)1-t)-(1-2ar —t)(2a —r)=2at —2at?> -1 +r1t —2a +4a®r +2at +r - 2ar® — 1t
= 20t - 2a(t? +1?)- 20 + 4a’r + 20t = 4a(t -1+ ar)

A =r(l-t)-t(2a-r)=r-rt - 2at +rt = (r - 2at)

A =20 -r

A =r(t-1)+(t-2)(2a-r)=rt—r+2at -rt - 2a +r = 2a(t -1)
Substituting these coefficients into equation (¢ ArTd solving forf,

N N 2 S\ [
4a(l—t—ar)ua3+4a(1—t—ar)ub3+2(1_t_m)(ub2 U,,) (C.18)

fa3

To get f,, substitute equation (C.18) into equation (C.15),

(20t - )(r—Zat)falLu +(2at—1)(2a—r)falL+(2m—r)(t— )
- 4al-t-ar) 4a(l-t-ar) 2A1-t-ar)
falLruaS - falr Upz _uaz)

(r - 2a)f,, = falLua{(Zat —r)r-2at) r} .\ falLub{(Zat -r)2a - r)} 1 (u, ~u, )

4a(l-t-ar) 4a(l-t-ar)
oot —)e-1)_
e

(sz _uaz)"' 1tb?,(zal_ r)

(r —20’) fos = falLua3(Bl)+ falLUbs(Bz)+ fal(ubz _uaz)(Bs) 19)
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B = 2atr —4a*t? —r? + 2atr +4ar - 4a’r?
=

4a(l-t-ar)
B :—4az(t2+r2)—r2+4m _ ~(a-r)
' 4a(l-t-ar) 4a(1-t-ar)
2at -r)2a —r
B, = ( A?;(l_)f_m) )
B —M_r_2m2—2m—rt+r—2r+2rt+2m2 _(1—t)(20'—r)
T A-t-ar) B A1-t-ar) T fi-t—ar)

(a-r)f L, (r-2at)f,L (t-1)f,
N PR ~ 8 v Ta (y - 5
. 4a(1—t—ar)ua3+4a(1—t—ar)ub3+2(1_t_m)(ub2 Uz ) (C.20)

It is observable that (C.18) and (C.20) are slogféedtion equations. The next step is to express

the coefficients of the displacements in termshaf toefficients of slope deflection equations

without any axial load but modified b#,

Let,

fa3 = (4_EI ﬁl}uaB + (Z_EIIBZJUM - (%ﬂiﬁ}(ubz - uaz) (C21)
fb3 = (Z_EIIBZJuaS + (4_Elﬂljub3 _(%IBZSJ(UM - uaz) (C22)
Therefore,
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Solving for B, the following is obtained:

(r - 2at)f L2
4E1)aa(1-t-ar)

,31:(

B = (sin2a - 2a cos2a)4a? :(gj(sinZa—ZaCOSZaj:(gjl—ZacotZa:§ (C.23)
' 16a(l-cos2a -asin2a) \ 4\ 2sinfa-asin2a) \4) tana-a 4
5 - (2a-r)f > _  (2a-sin2a)4a® _  (2a-sin2a) ><(1—2acot2a)x(sinZa)x(gj
2 (8El)a(l-t-ar) 8a(l-cos2a-sin2a) 2sina-asin2a (1-2acot2a) (sin2a) \ 2
:(gj (20 -sin2a) | (1-2acot2a) _SC (C.24)

2) (2sinfa)_ (sin2a - 2acos2a) 2 '

sin2a
il

_ —t-)f > _(a? —(cos2a-1)  _ \3
Bs = — o el — =7 (C.25)

12EI(1-t-ar) | 3 J1-cos2a -asin2a) (1-acota)

Define S, = a cota
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(1_2 (cota—ljj
g =S_a,l-2acoa _p 1-2acora B 2cota

Y4 4 tana-a 4 1- 4, 4 1- 4,
Similarly,

1
B, = 5[3:53 - :35]
Therefore, 3, can be expressed in terms®and C

4/81 + 2/82 = ﬁs +3ﬁ3 +3ﬁ3 _ﬁs = 6/83

S(1+C)
6

g, =lag +25,]-

The equilibrium condition for the member is:

fazl- = fas + fb3 + fal(ubz _uaz)

or

12El f 4E| 2El| 2El
faz :{_?ﬁs"'fﬂ}(ubz_uaz)"{ 12 131"' 12 ,3} a3 {_132

This can be written as:

fo= [_lzj:@}(ubz _Ua2)+(6_EzI/87Jua3 +(65I ﬁJubs _lzjﬁ4 ==

L3 L L3
falo a’ _(a? 1
Pe=bs ™ om 72 ﬂs_?_(?j[l—acota 1)
_(a*\ acota _
Fu = (?j(l—acotaj =B b

And 6, = 4[5, +2f3, = 6/3;

175

= %[,85 +34,](C.27)

(C.28)
(C.29)
(C.30)
4Elﬁium
%?&+%
(C.31)



B =By (C.32)

These derivations are based on the assumptiontlieaiaxial force f,on the member is
compressive. If the axial force is tensile, thee thigonometric functions in the stability

functions Sand C and £, all become hyperbolic functions.
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