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Abstract 

Groundwater discharge serves as a link between terrestrial and aquatic habitats that 

influences stream biogeochemistry, including nutrient availability and system stability. Climate 

and land use changes can alter the proportion of groundwater discharge in streamflow and impact 

stream biogeochemistry, but we lack a clear understanding of these relationships. Here, we 

consider how groundwater discharge varies with land use across Kansas precipitation gradient 

and the biogeochemical impacts of that variation. To assess proportions of groundwater 

discharge, we used hydrograph separation to analyze 15 years of continuous streamflow data 

from 27 streams. The calculation evaluated runoff, baseflow and baseflow index (BFI), which we 

used as an estimate of groundwater discharge. We evaluated stream biogeochemistry using a 

grab sampling approach at all sites and used a diel sampling approach at four sites. In addition, 

we collected groundwater samples at the diel sites. Results show that runoff and baseflow both 

increase with average annual precipitation (p < 0.001) eastward. However, the eastward increase 

in runoff is greater than that for baseflow. As such, the average proportion of groundwater 

discharge in streamflow tends to decrease eastward (p < 0.02). Further, groundwater discharge is 

influenced by watershed geology, clay content and land use to various degrees. Biogeochemistry 

results show that variation in major ion concentrations correlate with factors that affect 

groundwater discharge, such as soil and bedrock properties, as well as land use, and to a lesser 

extent with the calculated groundwater discharge values. Nutrients (NO3-/TN and NPOC) and 

trace elements (B, V, Ni, Co, Se, Mo, Cd) are more influenced by the proportion of agriculture 

than the proportion of groundwater discharge. These results highlight the significance of 

understanding and managing all factors that influence stream biogeochemistry for the future of 

water resources. 
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Chapter 1 - Introduction 

Groundwater discharge can provide stability by sustaining streamflow and influencing 

basic controls on stream habitats, such as temperature and solute loads, that directly impacts 

microbial activity and resulting stream biogeochemistry (Baez-Cazull et al., 2008; Barlow & 

Leake, 2012; Stegen et al., 2016; Jasechko, 2019). The terrestrial signature of groundwater 

discharge is dictated by the rate at which water percolates through and interacts with catchment 

soil and lithology before reaching streams (Jasechko et al., 2016; Zeglin et al., 2019). As 

groundwater discharges to streamflow, redox gradients are produced by bringing the terrestrially 

influenced, potentially reduced water to streams (Triska et al., 1993; Winter, 2001; Boano et al., 

2014; Zeglin et al., 2019). The resulting interaction drives important biogeochemical processes 

that are essential to naturally attenuate excess nutrients and harmful pollutants that can lead to 

degradation of downstream water quality, eutrophication and related health risks (Diaz et al., 

2004; Dubrovsky, 2010; Harvey et al., 2013; Peralta-Maraver et al., 2018). 

Although previous research identifies groundwater discharge as a control for stream 

habitats and water quality, the consequences of climate and land-use gradients on discharge and 

its biogeochemical impact are unclear (Triska et al., 1993; Boano et al., 2014; Stegen et al., 

2016, Peralta-Maraver et al., 2018, Cavicchioli et al., 2019). Further, previous research often 

focuses on small scales (i.e. hyporheic mixing); however, evidence demonstrates that these 

scales are hydrologically constrained and limited (Wondzell, 2011). It is important to understand 

these relationships as watershed and long-time groundwater discharge trends are suspected to 

have disproportionate influence on stream microbial communities, greenhouse gas emissions and 

overall water quality (Dahm et al., 1998; Jones & Mulholland 2003; Jasechko et al., 2016; 
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Schade et al., 2016; Stegen et al., 2016; Loecke et al., 2017; Rawitch et al., 2019; Zipper et al., 

2019).  

Predictions of climate change emphasize the need for an improved understanding of 

factors that influence groundwater discharge and stream biogeochemistry (Triska et al., 1993; 

Boano et al., 2014; Dodds et al., 2015; Peralta-Maraver et al., 2018; Cavicchioli et el., 2019). 

Regional climate predictions include the eastward shift of an established precipitation gradient 

(e.g. the ‘dry line’) that extends longitudinally throughout states with the United States interior 

(including Kansas). Shifts in the dry line will leave regions of the west of this boundary more 

arid and regions in the east undergoing more intense precipitation (Seagar et al., 2018). A long-

term analysis of annual precipitation data demonstrates that the central and eastern portions of 

Kansas has already experienced greater increases in rainfall than the rest of the state (Rahmani et 

al., 2015; Lin et al., 2017). Changes in rainfall patterns, such as storm intensity and frequency, 

can influence rates of recharge, nutrient and sediment loading that can impact stream 

biogeochemical processes and overall water quality (Park et al., 2010; Saeger et al., 2017; 

Vercruysse et al., 2017; Loecke et al., 2017).  

Land-use alterations can further disrupt stream biogeochemical processes and impact 

water quality through increases in runoff, sediment generation, and transport of contaminants 

(Dahm et al., 1998; Park et al., 2010; Mulholland et al. 2008; Liu et al., 2017). Contaminants 

such as potentially harmful trace elements including As, Ni, Co, Mo and Cu, are particularly 

susceptible to mobilization from agriculture (Berrow & Ure, 1986; Indraratne &. 

Kumaragamage, 2017). Agricultural nutrients nitrate, phosphate and organic carbon, in excess 

can contaminate surface and groundwater resulting in eutrophication of downstream surface 

waters (Domagalski et al., 2008; Richard, 2015; Foster et al., 2019; Frei et al., 2020).  
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The susceptibility of groundwater to anthropogenic alterations has growing implications 

for stream biogeochemistry and water quality (Dubrovsky, 2010; Domagalski & Johnson, 2011; 

Sanford & Pope, 2013). In Kansas and across the Midwest, increases in groundwater nutrient 

concentrations have been observed in areas of intense farming and locations with favorable 

geochemical conditions that allow for infiltration to the water table (Dubrovsky, 2010; 

Domagalski & Johnson, 2011; Richard, 2018). Groundwater transported along deeper flow paths 

takes years to discharge to streams, meaning the full effects of increased groundwater nutrient 

levels have likely not been observed (Sanford & Pope, 2013). Conversely, the infiltration of 

groundwater into streams can be limited by siltation, impacting biogeochemical cycling and 

ecosystem dynamics from microbes to macro-organisms (Jones et al., 2015). These growing 

trends increase the need for further research on the implications of groundwater discharge to 

streams.  

In this study, we investigated how groundwater contribution to streams varies across a 

precipitation gradient and how that variation affects stream biogeochemistry. We used graphical 

hydrograph separation to evaluate 15 years of continuous streamflow data at 27 sites across a 

portion of the Kansas precipitation gradient. The analysis partitions streamflow into runoff and 

baseflow components, allowing us to use the proportion of baseflow out of total streamflow 

(BFI) as an estimate of groundwater discharge over time.  

We conducted two field investigations to evaluate the influence of groundwater discharge 

on stream biogeochemistry: grab and diel sampling approaches. The grab sample approach was 

used to assess variability in stream chemistry through field measurements and analysis at the 27 

streams along a portion of the Kansas precipitation gradient. The diel sampling approach was 

carried out at a subset of those streams to capture the daily variability of stream redox chemistry 
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and nutrient cycles which can vary significantly as a function of temperature, dissolved oxygen 

and discharge (Nimick et al., 2011). We also sampled groundwater in available wells near 

streams chosen for diel sampling. We utilized stream discharge, chemistry and isotopic 

signatures of stream and groundwater to assess the variation in stream composition over the 

course 24 hours. The results of this study provide insight on the impact of groundwater 

discharge, climate and land-use on stream biogeochemistry and water quality and has 

implications from municipal water-use to sustainable agriculture practices that are necessary for 

protecting resources, stream habitats and human health. 
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Chapter 2 - Methods 

 Study area 

We surveyed the available USGS gage sites across the state that fit requirements of 

hydrograph separation (Barlow et al., 2015). Specifically, streams with 15 years of continuous 

discharge data (USGS, 2016), drainage areas less than 1295 km2 (500 mi2) and groundwater 

discharge and surface runoff serving as main contributors to flow (Barlow et al., 2015). None of 

the stream sites are downstream from dams or discharges from wastewater treatment facilities. 

The resulting 27 sampling sites are co-located with the USGS stream gage stations from which 

we acquired streamflow data.  

The sampling sites span a steep precipitation gradient from eastern to west-central 

Kansas. Along the eastern margin, annual precipitation varies northeast to southwest with annual 

precipitation averages of 945 mm/yr (Lin et al., 2017). From central Kansas to the extent of the 

western sites, annual precipitation decreases east to west with an average of 660 mm/yr (Lin et 

al., 2017). Reflecting this precipitation gradient, soil moisture and vegetation also change across 

the state with temperate deciduous forests and temperate tallgrass prairie in eastern Kansas to 

semi-arid grasslands in the west (Seagar et al., 2018). 

Alongside the climate and vegetation gradients, elevation decreases eastward from 1231 

to 207 m, creating a landscape that cuts across a range of sediments and sedimentary rocks 

deposited from the Paleozoic to the Cenozoic eras (Figure 1; KGS, 2008). From the western 

border extending into central Kansas, the predominant lithology is loess, river valley deposits 

and Cretaceous shale, sandstone and chalk deposits (KGS, 2008). In the eastern portion of the 

state, the geology is predominantly flat-lying, alternating limestone and shale of the Permian and 

Carboniferous systems (Stoeser et al., 2005). As a result of changes in lithology, Kansas aquifers 
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shift from Great Plains Aquifer sandstones and unconsolidated sand/gravel aquifers of the larger 

High Plains Aquifer, to limestone aquifers of the Flint Hills and Osage Aquifers in the east, to 

glacial drift aquifers in the northeast corner (Macfarlane et al., 2000). Alluvial aquifers are 

scattered across the state and tend to dominate in eastern areas that experience increased 

streamflow (Macfarlane et al., 2000). 

 

Watershed characteristics were gathered from open-source, online databases. Geospatial 

data and watershed characteristics, such as land-use, soil type and crop coverage, were gathered 

Figure 1 Map of surficial geology across Kansas. White circles indicate co-located USGS 

gages and grab sampling sites. Diel sampling was conducted at the four labeled sites.  
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from USGS GAGES II (Falcone, 2011). Geologic map and general geology data were gathered 

from KGS (Stoeser et al., 2005). Average annual climate (precipitation and temperature) data 

were gathered from PRISM Climate Data (PRISM, 2020).  

 Hydrograph separation 

We analyzed daily discharge data from each site with the USGS Groundwater (GW) 

Toolbox software (Barlow et al., 2017). The software requires daily discharge data which we 

acquired from the United States Geological Survey (USGS) National Water Information System 

for all 27 sites from 2004 to 2019 (USGS, 2016). GW Toolbox uses six different hydrograph 

separation methods to partition the discharge records into baseflow and runoff components: BFI 

standard and modified, Part, and HYSEP fixed, sliding, interval, and local minimum. A detailed 

description and source for each method is available in the GW Toolbox user manual (Barlow et 

al., 2015). Briefly, the various separation analyses partition runoff from baseflow by determining 

the portions of the hydrograph that are not affected by runoff via various methods (turning point 

factor, recession index, algorithms to connect low points, and continuous recession). We use the 

proportion of baseflow from total flow, known as baseflow index (BFI), as an estimate of 

groundwater discharge variability across Kansas.  

We ran our analyses using the original settings in USGS GW Toolbox: Partition Length 

(N days) 5; Turning Point Test Factor (F) 0.9; Daily Recession Index (K) 0.97915. The drainage 

area of the basin (square miles) is required for the hydrograph separation analysis to normalize 

volumetric flow rates to flow rates per unit area over the contributing drainage area (in inches). 

Thus, the runoff and baseflow results of our analyses are in inches (volume/area). The BFI 

results are presented at unitless values between 0 (no baseflow component) and 1 (no runoff 

component). 
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 Field methods 

We used grab and diel sampling approaches to capture samples for stream 

biogeochemistry across a portion of the Kansas precipitation gradient. For both approaches, 

samples were collected at the location of the USGS stream gage. We measured water pH, 

temperature, and conductivity using an Oakton PC 450 meter and dissolved oxygen and 

atmospheric pressure using a YSI ProDO 2030 meter for all sampling approaches. We calibrated 

both meters each day before collecting measurements. Specific sampling approaches for each 

method are outlined below.  

For grab sampling, we collected and filtered (0.45 µm) samples in the field for analysis of 

major cations and anions, trace elements, dissolved non-purgeable organic carbon (NPOC) and 

total dissolved nitrogen (TDN). Samples for major ions and trace elements were collected and 

stored in polyethylene bottles, with cation samples preserved with trace metal grade nitric acid to 

pH < 2. NPOC/TDN samples were collected and stored in amber glass bottles, preserved with 

concentrated hydrochloric acid to pH < 2. All sample vials and bottles were acid washed, pre-

rinsed with de-ionized water and flushed with sample water prior to collection. Samples were 

stored on ice in the field until they could be transferred to the laboratory refrigerator for storage 

at 2 °C.  

For the diel sampling approach, we selected a subset of four streams to conduct a more 

extensive field investigation on the effects of groundwater on stream diel biogeochemistry. We 

selected the streams for their similarity in size (stream order 4-5 and drainage area 780 km2), 

difference in long time baseflow averages and proximity to local/domestic wells. Stream samples 

were collected every 1.5 hours over a 24-hour period (9 AM to 9 PM). Samples were collected 

for analysis of major ions, NPOC, TDN, stable isotopes of water and total phosphorus and total 
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iron. Major ions, NPOC and TDN were sampled, stored and preserved as outlined in grab 

sampling approach. Samples for stable isotopes of water were collected and stored in glass vials 

with neoprene seals. Unfiltered samples for total phosphorous and total iron were collected and 

stored in polyethylene bottles. These samples were preserved with concentrated sulfuric acid to 

pH < 2. Again, samples were stored on ice until they could be transferred to the laboratory 

refrigerator. 

We collected groundwater samples from domestic wells that were located near the diel 

sites. Wells were chosen due to distance from the stream, well depth and accessibility. Samples 

were collected once from each well when feasible during the fall/winter season with the 

exception of Vermilion, which was sampled during the summer. The wells were purged prior to 

sampling at low-medium flow rates depending on well. Faster flow rates were due to wells 

having a spigot that regulated flow. General well information is located in Table 1.  Groundwater 

pH, temperature, DO and conductivity were measured using the same probes used for stream 

sampling. To limit exposure to air, water was input to the bottom of 5-gallon buckets and the 

probes were submerged groundwater sample. The same parameters collected for diel sampling 

were collected for groundwater (major ions, NPOC, TDN, stable isotopes of water and total 

phosphorus and total iron). Groundwater samples were taken when measurements stabilized (5 

%) for at least three readings taken at least 10 minutes apart and collected using the same 

protocol outlined for stream samples. 
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Table 1 Information for the well sampled near each diel sampling site is outlined below. Units 

for screened interval depths and distance from stream are in meters. Pumping rate is in L/min. 

Site 
Lat./ 

Long. 

Well 

Depth 

Static 

Water 

Level 

Interval 

Depths 

Sed/rock 

type 

Distance 

from 

Stream 

Pumping 

Rate 

Vermillion  
39.347, 

-96.22 
60 ' 14 ' 

7.6 – 12.2 

17.7 –18.3 

Loose cherty 

limestone/ 

limestone 

214  22.27 

Chapman  
39.028, 

-97.047 
38 ' 7 ' 5.5- 11.6 

Fine sand, 

loose coarse 

rock 

647 0.5 

Mill  
39.072, 

-96.166 
48 ' 16' 13.1- 14.6 

Chert  

gravel 
806 17.47 

Mulberry  
38.844, 

-97.685 
65 ' 17' 17.7 –18.9 

Sand &  

gravel 
62 19.82 

  

 Geochemical analysis 

The geochemical analyses were primarily conducted in the biogeochemical laboratory in 

the Kansas State University Department of Geology. We measured alkalinity using Gran 

alkalinity titrations with 0.02 N sulfuric acid titrant. We measured major ion concentrations 

using a Thermo Fisher Scientific ICS-1100 Ion Chromatograph (IC). NPOC and TN were 

measured using Shimadzu total organic carbon analyzer using the NPOC/TN analysis method. 

The total phosphate and total iron from diel sampling were measured by direct colorimetric 

analysis using Thermo Scientific Genesys 10S UV-Vis spectrophotometer. We measured total 

phosphate following the USEPA 365.3/1 total orthophosphate method and total iron using the 

ferrozine method (Stookey, 1970). Major cations and trace elements were measured at the RBC 

Spectroscopic and Biophysics Core Facility, University of Nebraska using an Agilent ICP-MS 

Model 7500 cx. Standards and quality control samples were used in all analyses.  
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We used water stable isotopes (18O and D) to evaluate contribution of groundwater to 

streams at diel sites. The isotopic abundance for a sample is expressed in δ notation as parts per 

mil (‰) according to:  

 𝛿 = [(𝑅sample/ 𝑅std) − 1] × 1000 (1) 

where Rsample and 𝑅std are the abundance ratios of heavy to light isotopes for the sample and 

standard (Vienna standard mean ocean water), respectively. Stable isotopes of water were 

analyzed on L2130-I Picarro isotope and gas concentration analyzer in the Stable Isotope Mass 

Spectrometry Laboratory in the Division of Biology at Kansas State University. 

 Excess CO2 

We estimated excess CO2, a measure of the potential for CO2 loss, by comparing the 

concentration of dissolved CO2 in the streamwater (𝐶𝑂2
𝑠𝑎𝑚𝑝𝑙𝑒

) to the concentration that would be 

present if the water were in equilibrium with the atmosphere 𝐶𝑂2
𝑒𝑞𝑢𝑖𝑙𝑖𝑏

(Rawitch, 2019): 

 
𝑒𝑥𝑐𝑒𝑠𝑠 𝐶𝑂2 =

𝐶𝑂2
𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑂2
𝑒𝑞𝑢𝑖𝑙𝑖𝑏

 
(2) 

We calculated 𝐶𝑂2
𝑠𝑎𝑚𝑝𝑙𝑒

 concentrations from measured sample chemistry using The 

Geochemist’s Workbench software (version 12; Bethke, 2010) and estimated 𝐶𝑂2
𝑒𝑞𝑢𝑖𝑙𝑖𝑏

 

concentrations using Henry’s law. For our estimate of 𝐶𝑂2
𝑒𝑞𝑢𝑖𝑙𝑖𝑏

, we assumed an atmospheric 

CO2 partial pressure of 4.1185 x 10-4 atm and adjusted the value of the Henry’s law constant 

(3.4E-2 at 25°C; Sander, 1999) based on the temperature measured in the field for the sample 

and the van’t Hoff equation. 

 Statistical analysis 

 We tested the statistical relationships within our data using RStudio, version 1.2.5033 

(RStudio Team, 2019). Spearman’s Rho rank order correlation test was used to assess the 



 

12 

strength of variability between our parameters. We used a threshold for significance of 

correlation (rho) greater than 0.40 and probability value (P) less than 0.05. 
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Chapter 3 - Results 

 Hydrograph separation results 

Runoff and baseflow increase eastward across the study area in the direction of 

increasing precipitation (west to east). The increase in runoff (0.3 to 9.96 in) across the study 

area was greater than that for baseflow (0.32 to 3.72 in). As a result, BFI generally decreased 

westward across the study area (0.6 to 0.26). For example, Salt Creek near Ada (western site) 

had an average of 0.64 inches in baseflow with 1.71 inches of total flow. Kill Creek (eastern site) 

had an average of 2.79 inches of baseflow and 12.46 inches of total flow. Despite Kill Creek 

having a higher amount of baseflow, Salt Creek had a higher proportion of baseflow out of total 

streamflow. 

The results of the hydrograph separation analyses were similar at each site and 

demonstrated consistent trends across the study area. The variability between the six different 

hydrograph separation methods for each component (runoff, baseflow and BFI) at each site can 

be observed in Figure 2. The greatest variation in results were observed at streams that have 

higher annual precipitation (Figure 2 and Table 5). The full results are available in Table 3 and 

Table 4 in Appendix A. We used the average from all six hydrograph separation methods to 

compare our hydrograph separation results to all other data (watershed characteristics, 

geochemical results, etc.).  
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 Figure 2 The boxplots demonstrate the variability of the 6 hydrograph 

separation methods at each site from west (left) to east (right). Runoff (top) 

and baseflow (middle), increase eastward across the study area, whereas BFI 

(bottom) decreases. Precipitation generally is lower in the west and higher in 

the east as indicated by the fill of the boxplots. 

W E 
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 Geochemical results 

 Grab sampling  

Results of our geochemical analysis reveal considerable variation in streamwater 

chemistry across the precipitation gradient (Figure 3). Stream temperature, DO and pH showed 

inconsistent trends across the study area. Temperature ranged between 2 and 8 °C. Stream pH 

values generally ranged from 8 and 8.75, with a minimum value of 6.92 and a maximum of 9.46. 

Dissolved oxygen in streams ranged from 11.6 to 20.3 mg/L, yet most values fell between 12 and 

15 mg/L.  

Conductivity, bromide and chloride follow similar trends to each other, with higher 

concentrations on the western and eastern ends of the precipitation gradient than in the middle. 

Stream conductivity ranged from 0.5 to 2.17 mS, with average value of 0.87 mS. Stream bromide 

concentrations ranged from below detection (0.06 mg/L) to 3.29 mg/L with an average of 1.3 

mg/L. Average chloride concentrations were 63.5 mg/L, with concentrations varying 

significantly from 6.5 up to 395.6 mg/L.  

Concentrations of other major ions (sulfate, alkalinity, fluoride, sodium, potassium, 

calcium and magnesium) generally decreased with precipitation. Sulfate concentrations ranged 

from 20 up to 256.2 mg/L. The alkalinity ranged from 3.63 to 8.17 meq/L. Fluoride 

concentrations ranged from 0.17 to 0.4 mg/L. Sodium concentrations ranged from 6 up to 214 

mg/L. The concentrations of potassium ranged from 1 to 6 mg/L. Calcium concentrations ranged 

from 47.4 to 114 mg/L. Magnesium varied between from 5.8 to 26 mg/L.  
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Figure 3 Results of field measured parameters temperature (T), pH, dissolved oxygen (DO) and 

conductivity, major ions and nutrients against annual precipitation (mm/yr). Units are mg/L for 

everything except T (Celsius) and conductivity (mS/cm). 

 

Nutrients nitrate, TDN and NPOC, also generally did not demonstrate observable trends 

with precipitation across the study area. Only 18 sites were analyzed for TDN and NPOC. 

Nitrate and TDN had minimums and maximums at the same locations, from 0.59 to 10.45 mg/L 

and 0.21 to 2.66 mg/L, respectively. NPOC ranged from 2.55 to 6.99 to mg/L, again with no 
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consistent trend across the sites. Phosphorous concentrations generally decreased as precipitation 

increased from 2 to below 0 mg/L (not shown). 

Trace elements lithium, boron, vanadium, arsenic, molybdenum and selenium also tended 

to decrease in concentration with increasing precipitation (Figure 4). Lithium concentrations 

decreased from 39,011 to 719 ppt, with the majority of streams having concentrations below 

20,000 ppt. The average stream boron concentrations were 22,096 ppt and ranged from 72,652 to 

8,335 ppt. Stream vanadium concentrations were 6 ppb at western sites and decreased to below 1 

ppb as precipitation increased. Arsenic and molybdenum decreased from 3,779 to 343 ppt and 

5,387 to 78 ppt, respectively. Selenium concentrations ranged from 7,972 to 149 ppt, with higher 

concentrations in areas of lower precipitation. 

Trace elements iron, manganese, cobalt, nickel, copper, zinc and cadmium did not 

demonstrate such trends (Figure 4). Average stream iron and manganese concentrations varied 

from site to site, ranging from 2 to 77 ppb and from 10 up to 347 ppb respectively. Stream zinc, 

cadmium and copper concentrations for most streams were below 30 ppb, 50 ppt and 2 ppb 

respectively, with the exception of outliers (Mill Creek at Washington for Zn, Mulberry and 

Chapman Creeks for Cd and Vermillion Creek for Cu). Nickel and cobalt (not shown) 

concentrations ranged from below detection to 1,921 ppt and 69 to 609 ppt, respectively. 
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Diel sampling results 

Results of our diel geochemical analysis show that stream biogeochemistry not only 

varies across sites, but also demonstrates variability throughout the day. Average stream 

measurements and concentrations from the 24-hour sampling period are available in Table 2. 

Full results are available in the appendix (Diel Sampling Results; Extra Figures).  

In general, streamflow decreased gradually over the sampling period. Discharge 

decreased the most at Mill Creek (360 to below 300 cfs), followed by Chapman (105 to below 85 

cfs), then Mulberry Creek (23 to 21 cfs). Although discharge at Vermillion Creek generally 

decreased over the sampling period, there was a peak in discharge that occurred during the day 

before concentrations then decreased over the rest of the sampling period.  
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Figure 4 Trace elements Li, B, V, Mn, Fe, Ni, Co, Cu, As, Se, Mo, and Cd concentrations (ppm, 

ppb or ppt) against annual precipitation (mm/yr).  
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Stream water temperature and DO increased during the day and decreased at night. The 

variation in temperature over the sampling period was greatest at Vermillion Creek (24.1 to 29.3 

oC) and least at Mill (24 to 25.4 oC). The variation in DO was greatest at Vermillion again (6.6 to 

11.8 mg/L) and was lowest at Chapman Creek (6.8 to 7.4 mg/L).  

Stream pH and conductivity were more variable from site to site. Stream pH increased 

during the day at Vermillion and Mulberry Creeks, ranging from 8.21 to 8.35 and 8.06 to 8.2 

respectively. Conversely, pH at Mill Creek was lower during the day and higher at night and 

ranged from 8.08 to 8.19. Chapman Creek pH and conductivity both increased over the sampling 

period, from 7.89 to 8.04 and from 0.67 to 0.81 mS/cm respectively. Mulberry Creek 

conductivity also increased from 1.07 to 1.086 over the sampling period. Conductivity was 

generally consistent at Mill Creek yet did experience a slight increase from 0.59 to 0.61. 

Vermillion Creek was an exception, with conductivity decreasing during the day (from 0.67 to 

0.62 mS/cm) and increasing at night (0.62 to 0.66 mS/cm). 

Stream excess CO2 followed a trend that was opposite of pH at all sites. At Vermillion 

and Mulberry Creeks, excess CO2 decreased during the day and increased at night with a range 

of 2.12 and 2.79 (unitless) respectively. Excess CO2 at Mill Creek was higher during the day and 

lower at night and ranged from 4.7 to 6.58. At Chapman Creek, excess CO2 decreased over the 

sampling period from 8.97 to 6.18. 

Trends in major ions concentrations also varied based on site. Chloride concentrations 

generally increased at Mill (7.89 to 10.59 mg/L), Chapman (15.58 to 19.326 mg/L) and Mulberry 

Creeks (57.25 to 61.61 mg/L). Conversely, Vermillion chloride concentrations generally 

decreased from 15.25 to below 13.36 mg/L. Nitrate concentrations increased at Mill (5.13 to 5.81 

mg/L) and Chapman (5.48 to 6.52 mg/L) Creeks. Nitrate at Vermillion Creek decreased from 
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5.71 mg/L in the morning to 4.55 mg/L in the evening and slightly increased during the night to 

5.04 mg/L. Nitrate at Mulberry was fairly consistent and ranged from 1.7 to 1.97 mg/L. Calcium 

generally increased over the 24-hour period at Mill, Chapman and Mulberry Creeks. Calcium 

concentrations at Vermillion decreased during the day from 84.56 to 77.24 mg/L and increased 

through the night to 82.47 mg/L. Magnesium concentrations at Mill and Chapman generally 

increased over the study period from 16.73 to 17.67 mg/L and 44.67 to 52.95 mg/L. Vermillion 

magnesium concentrations did not demonstrate a clear trend and varied slightly from 23.13 to 

23.74 mg/L. Magnesium at Mulberry Creek was generally higher during the day and lower at 

night and ranged from 29.9 to 30.53 mg/L.  

Again, TDN and NPOC trends differed from site to site. Mill, Vermillion and Chapman 

Creeks were consistent over the sampling period with a range of 0.17, 0.36 and 0.58 mg/L 

respectively. Mulberry generally decreased from 1.26 to 0.80 mg/L over the sampling period. 

NPOC concentrations at Mill Creek peaked in the evening (3.26 mg/L) but was lowest during the 

middle of the day and middle of the night (2.23 and 2.13 mg/L respectively). 

Stable isotopes of water 18O and D were consistent during the day at Mill, Chapman 

and Mulberry Creeks. Mill and Chapman Creek isotopes slightly increased during the night. 

Stable isotopes were the most variable at Vermillion Creek, where they decreased during the day 

to -4.9 ‰ and increased during the night to -2.3 ‰ for 18O. The trend for D was the same, with 

values ranging from -32 to -24 ‰. 
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Table 2 Averages for each parameter over the course of the 24-hour sampling period at the four 

diel sites. Bold numbers indicate parameters that had daylight maximums and italicized numbers 

indicate nighttime maximums. 

Parameter Mill Vermillion Chapman Mulberry 

Q (cfs) 328.8 26.24 92.02 21.74 

T (C) 24.74 26.55 21.23 26.12 

pH 8.15 8.27 7.97 8.13 

EC (mS) 0.6 0.65 0.74 1.084 

DO (mg/L) 7.45 8.49 7.07 7.09 

Cl (mg/L) 8.43 14.33 17.38 59.64 

Br (mg/L) 0.05 0.09 0.11 0.19 

NO3 (mg/L) 5.57 5.06 6.01 1.84 

Na (mg/L) 8.64 18.39 27.6 76.65 

K (mg/L) 3.16 3.32 6.15 5.07 

Mg (mg/L) 17.21 23.48 43.54 30.29 

Ca (mg/L) 89.37 80.38 83.58 111.08 

TN (mg/L) 1.53 1.68 2.23 0.95 

NPOC (mg/L) 2.54 2.87 7.78 5.94 

 -4.88 -3.83 -4.94 -5.26 

  -30.41 -28.35 -29.92 -35.06 

Excess CO2 5.71 3.97 7.63 5.05 

 

 Average diel results compared to groundwater  

Field measurements and geochemical analyses demonstrate that groundwater is distinct 

from stream chemistry at all diel sampling sites. Stable isotopes of water (18O and D) were 

generally lower for groundwater samples than corresponding stream samples. Samples from 

Vermillion Creek were an exception, as stream and groundwater isotopic ratios were similar 

(Figure 5). Mill and Vermillion signatures varied over the course of the day compared to the 

other sites, as seen by the deviation of samples from the GMWL at those two sites compared to 

the clustering of Chapman and Mulberry Creek samples. Groundwater temperature, pH, DO and 

potassium concentrations were lower than the 24-hour average for the corresponding stream 

measurements at each site (Figure 6; temperature and K not shown). Conductivity, chloride, 

alkalinity, sodium and calcium concentrations were typically higher in groundwater than stream 

samples, with Mulberry Creek as an exception. Bromide was also slightly higher in groundwater 
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than stream samples, however concentrations did not exceed 0.5 mg/L for any sample (not 

shown). 

 

Figure 5 Stable isotopes of water plotted against the GWML. The color of the scatter plot 

markers indicates whether the sample was stream water (sw) or groundwater (gw) and the shape 

corresponds to the site.  

 

In contrast, nutrient concentrations varied considerably with no consistent differences 

between stream and groundwater across the sites (Figure 6). At Chapman Creek, groundwater 

nitrate concentrations were lower than streamwater concentrations. Stream and groundwater 

nitrate concentrations were similar at Mulberry Creek, with groundwater concentrations slightly 

higher. Mill Creek and Vermillion Creek had groundwater nitrate concentrations well above 

stream concentrations. NPOC was typically lower in groundwater than streams at all sites except 

Mill Creek, where concentrations were similar.  
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Figure 6 Variation in groundwater (gw) and stream water (sw) concentrations of a) pH, b) 

conductivity, c) DO, d) Cl, e) alkalinity, f) nitrate, g) Na, h) Ca, i) NPOC. The color corresponds 

with site location.  
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Chapter 4 - Discussion 

This study investigated how groundwater discharge varies across Kansas precipitation 

gradient and its impact on stream biogeochemistry. Results show that runoff and baseflow 

increase and BFI tends to decrease as the annual precipitation gets higher. Stream composition 

varies considerably, with many parameters demonstrating a decreasing trend with increasing 

precipitation. Below, we further discuss how these patterns relate to hydrogeology, annual 

precipitation and the land use of the study area. 

 Variability of groundwater discharge 

Our analysis of hydrograph separation results reveals significant and unexpected 

relationships between streamflow components, groundwater discharge and precipitation. 

Baseflow and runoff both increase significantly (P < 0.05) with increasing precipitation (Figure 

2, Table 24). We expected the contribution of groundwater to streamflow to also increase with 

precipitation. However, the calculated BFI values decrease significantly with increasing 

precipitation (Figure 2; rho = -0.44, P < 0.05). 

We interpret that these results reflect the influence of infiltration on the contribution of 

groundwater to streams. During precipitation events, some portion of the water infiltrates the 

surface, percolates downward, and ultimately recharges the underlying saturated zone. Thus, the 

amount of precipitation and permeability of the surface are controls on the absolute amount of 

groundwater discharge to streams (Price, 2011). However, runoff also increases with 

precipitation. If runoff increases more rapidly than recharge, then the relative contribution of 

groundwater to streamflow would decrease with precipitation, as we observed. 
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The rate of infiltration, and thus recharge, can be limited by variations in permeability of 

watershed surfaces, further explaining the decreasing trend in BFI across Kansas. Such variations 

can result from shifts in surficial and underlying geology. For example, western streams located 

on unconsolidated coarse sand and gravel deposits, sandstones and chalks. These deposits are 

associated with higher rates of groundwater transmission and can have hydraulic conductivity 

values (K) of 102 – 103, 3.1 and 30 m/day respectively (de Marsily, 1986). As a result, these 

streams tend to have high amounts of groundwater discharge (BFI > 0.40).  

The amount of clay in soils can also explain the discrepancies in proportion of baseflow 

and runoff trends eastward. High clay content in soils is associated with lower permeability and 

hydraulic conductivity (1-5 m/day) (de Marsily, 1986), resulting in limited infiltration and 

recharge (Hillel, 1982; Price, 

2011; Goodman & Quigley, 

2015). Although we do not 

observe a relationship between 

clay content and groundwater 

discharge explicitly (rho = -0.21, P 

= 0.29), both parameters show 

significant variation across the 

precipitation gradient. Figure 7 

demonstrates this relationship, as 

clay content of soils increases with 

precipitation (Table 20; rho = 0.46, P 

Figure 7 Average stream BFI decreases with increased 

precipitation (black trend line). The color of the points 

corresponds with watershed clay content. Higher clay 

content is yellow and lower clay content is purple to blue.  
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< 0.05) and proportion of baseflow decreases (Table 20; rho = -0.44, P < 0.05).   

 Biogeochemical impact of groundwater discharge 

The other aim of our study has been to identify whether differences in the contribution of 

groundwater discharge to streamflow (estimated by BFI) leaves a distinguishable fingerprint on 

stream chemistry. We hypothesize that the BFI, which is averaged over 15 years of streamflow 

records, can leave a sustained impact on stream chemistry by increasing the flux of solutes to 

streams and reducing the hyporheic zone. As precipitation infiltrates the lands surface to 

recharge groundwater, it interacts with soils that contain CO2 with partial pressures that are 10-

100X atmospheric levels (Macpherson, 2009). As a result, increases in groundwater 

concentrations of dissolved CO2 can acidify the water which reacts with minerals, increasing the 

solute concentrations and pH of the water with distance and time (Jones et al., 2003). Therefore, 

streams receiving greater proportions of groundwater discharge may have higher concentrations 

of mineral weathering products, including carbonate alkalinity, alkali and alkali Earth metals, 

and silica (Dedzo et al., 2017). Moreover, anoxic conditions are common in aquifers because 

groundwater is isolated from the surface. Anoxic conditions can further be created through 

sequential redox reactions that are stimulated with groundwater mixing in streams (Triska et al., 

1993; Rivett et al., 2008; Bethke et al., 2011). As a result, streams that receive greater inputs of 

groundwater may often have more reduced hyporheic zones, increased nutrient attenuation and 

overall water quality (Triska et al., 1993). 

Results of our grab sampling efforts are consistent with aspects of this conceptual model.  

We observe that stream alkalinity concentrations increase with groundwater discharge from east 

to west (rho = 0.52, p < 0.005). There is also a general transition from NaCl to Ca-HCO3 water 

types eastward that reflects shifts in underlying geology, demonstrating that geogenic solutes are 
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being transported to streams (Figure 8). Total dissolved solids (TDS) follows this trend. 

Groundwater is known to have increased concentrations of chemical weathering products such as 

alkalinity, major ions and TDS (Dedzo, 2017), and our results indicate these products could be 

transported to streams as a result of increased groundwater discharge.  

 

 

 

Figure 8 Piper diagram demonstrates that water type/major ion chemistry changes from the 

western sites to eastern sites. The circles around each site indicates TDS. The sites are listed 

from furthest west at the top (Bow Creek) to the furthest east at the bottom (Blue River). 



 

28 

 Although we do not see many significant relationships between BFI and chemical 

results, we do observe numerous 

significant relationships with the clay 

content of watershed soils that can 

further demonstrate the clay as limiting 

factor in groundwater discharge to 

streams (Figure 9). Specifically, we 

observe that increases in clay content 

coincide with decreased stream 

concentrations for solutes that are 

associated with groundwater contribution 

Br, Li and B (Davis et al., 1998) and 

excess carbon dioxide (P < 0.05). Clay 

soils are known to have low hydraulic 

conductivity (1-5 m/day) that limits 

groundwater flow (de Marsily, 1986), 

explaining the lower concentrations of 

conservative tracers and dissolved CO2 in 

streams.  

Additionally, we observe lower 

concentrations of cations and metals (Na, 

K, Ca, Cd, Mo, As, Co, Ni) that may 

reflect increased sorption along flow paths 

Figure 9 Correlation matrix comparing stream 

and watershed characteristics (BFI, annual 

precipitation, watershed clay content and the 

percent agriculture or developed). Color 

indicates correlation (rho) and asterisks indicate 

statistically significant relationships.  
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due to changes in soil texture (clay content) and mineralogy across the study area. Iron and 

organic carbon-rich soils have increased affinity for absorption of such elements, and recent 

findings indicate that organic carbon and ferric iron levels in soil increase across the precipitation 

gradient (Wang & Li, 2011; Ugwu & Igbokwe, 2019; Koenigsberger, in prep). 

The results of our diel sampling 

further demonstrate that evidence of 

groundwater discharge can be observed 

in stream biogeochemistry. For 

example, creeks that have higher 

calculated BFI values show evidence of 

potential mixing of groundwater 

(Figure 10). More specifically, nitrate 

concentrations of groundwater at Mill 

Creek were higher (80 mg/L) than in 

streams and could potentially provide 

nitrate to streams. As streamflow 

increases, or as the proportion of 

baseflow from total streamflow decreases, 

the concentration of nitrate in those streams 

decrease as well. In contrast, Mulberry Creek had the lowest BFI (0.22) and demonstrated 

inconsistent variations in stream nitrate chemistry.  

In general, however, our diel results indicate that variations in stream chemistry is due to 

changes in diel (temperature/light) cycles as well as hydrology (BFI and discharge) at each site. 

Figure 10 Concentration discharge graphs for 

stream with high BFI value Mill Creek (0.42) 

compared to lower BFI value stream Mulberry 

Creek (0.22). 
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More specifically, the extent of decrease in discharge over the sampling period appears to 

influence the magnitude of variation for parameters such as temperature, DO, pH, calcite 

saturation and excess carbon dioxide. For example, discharge at Mulberry and Vermillion Creek 

decreased by less than 5 cfs over the study period and show variability in concentrations that is 

typical of diel cycles (peaks occur during the day or night). In contrast, discharge at Mill and 

Chapman decreased by around 70 and 20 cfs respectively, and tend to have muted, less evident 

diel cycles. Full diel results can be found in Appendix C - Diel Sampling Results and observed in 

Appendix J - Extra Figures. 

Additionally, our diel results suggest that the impact of diel variation on stream chemistry 

in our grab sampling is likely minimal. We carried out diel sampling during the summer and grab 

sampling in the winter. The variability of parameters from site to site was much larger than the 

diel variations we observed at each site, even during summer months when variations in 

temperature and discharge were more variable. 

 Role of land use on groundwater discharge and stream chemistry 

Our results demonstrate that land use, both amount of development and agriculture in a 

watershed, influences streamflow components and the proportion of groundwater discharge to 

streams (Figure 11). More specifically, we observe that developed watersheds have higher runoff 

(rho = 0.59, p < 0.002) and proportions of baseflow (rho = -0.54, P < 0.005). These relationships 
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could be explained by the increase in 

impervious surfaces that, similar to 

clay, that allow for increased rates of 

runoff that limits recharge. Conversely, 

watersheds with higher agricultural 

percent have lower baseflow (rho = -

0.77, p < 0.0001). Groundwater 

withdraw due to irrigation has been 

observed to lower groundwater levels 

and reduce groundwater discharge to 

streamflow, which could explain the 

negative relationship we observe 

between agriculture and baseflow (Barlow & Leake, 2012; Juracek & Eng, 2017). However, 

further investigation of individual watershed management and practices is required to determine 

the cause of these observed relationships.   

The impact of land use on stream chemistry is also evident from the results of our grab 

sampling approach. Of the 24 stream chemistry parameters we measured (Figure 9), 21 of the 

parameters demonstrate significant positive relationships with agriculture (P < 0.05). Although 

the amount of development in watersheds does not demonstrate many significant relationships 

with chemistry parameters, we do see streams that were consistently outliers were in more 

developed/urbanized watersheds (Cowskin Creek in Wichita, Mill Creek at Johnson and Big Bull 

Creek in Kansas City area). Additionally, Salt Creek at Ada was consistently an outlier and 

although it is not in a highly developed watershed, it is located near the Ottawa City landfill (2 

Figure 11 Correlation matrix comparing streamflow 

components (RO, BF, BFI) to watershed characteristics 

(annual precipitation, and the percent agriculture or 

developed). Color indicates correlation (rho) and asterisks 

indicate statistically significant relationships.  
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miles). Landfill are known to contain a wide variety of chemicals that can contaminate water 

resources (Jones-Lee & Lee, 1993).  

The superimposed relationship between precipitation and land use should be addressed in 

order to draw sound conclusions from our results (Figure 11). For example, more developed 

watersheds tend to be in areas of higher annual rainfall (rho = 0.51, p < 0.01), which could also 

explain high proportion of runoff in eastern streams. The reality is that the high runoff 

component of eastern streams is likely due to the combination of both precipitation and land use 

gradients across Kansas. Similarly, watersheds with increased agriculture tend to receive less 

precipitation annually (rho = -0.63, p < 0.005), which could also explain the negative 

relationship between baseflow and the amount of agriculture. These results suggest that the 

influence of precipitation and land use on water quality are superimposed, which is important to 

take into consideration for future management of water resources. 

Limitations 

There are important limitations to our approaches that should be understood when 

interpreting the results of these analyses (Eckhardt, 2008; Barlow et al., 2015). The results of the 

hydrograph separation method are estimates, with true values of BFI often unknown, and studies 

to validate the results using chemical tracers are geographically limited (Eckhardt, 2008). 

Comparing the results for the six different methods is used to ensure accuracy (Barlow et al., 

2015) and for our study such comparison suggests that the results are consistent across all sites 

(Figure 2). However, the use of hydrograph separations to determine baseflow conditions is 

widely used and useful metric for understanding relationships between groundwater discharge 

and watershed characteristics (Tesoriero et al., 2009; Price, 2011). 
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Limitations of our sampling approaches are important to address. The grab sampling 

approach allowed us to study a large spatial scale; however, we lack temporal data to account for 

variability of stream chemistry. Diel allows us to capture an aspect of temporal variation. 

However due to the nature of the 24-hour sampling, our spatial scale is limited. We utilized both 

approaches to account for the inherent disadvantage each method presents Furthermore, the 

watershed characteristics to which we compare are hydrograph and geochemical results derive 

from national, open source geospatial data that uses modeled or extrapolated site-specific 

measurements to determine environmental features and anthropogenic influences of watersheds 

(USGS, 2016). Nevertheless, our sampling approaches and use of available watershed data allow 

for effective and extensive analysis of the influence of groundwater discharge on stream 

biogeochemistry. 

Although we do observe strong and significant relationships, due to the nature of our 

study we were unable to determine the cause of groundwater discharge and stream chemistry 

trends or the extent that precipitation and/or land use influenced them. Regardless, our results 

add to the growing knowledge on the importance of groundwater discharge and that precipitation 

and land use often demonstrate complex relationships that convolute its effects on water quality 

and increases the need for further investigation (Price, 2011; Zipper at al., 2018; Sebastian et al., 

2019).  
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Chapter 5 - Conclusion 

We examined the variation of groundwater discharge across a portion of the Kansas 

precipitation gradient. Our results indicate that runoff and baseflow increase with annual 

precipitation eastward across Kansas. However, runoff and baseflow components of streamflow 

do not increase at the same rate. As a result, the proportion of groundwater discharge is lower in 

watersheds that receive more annual precipitation. This likely occurs due to the permeability of 

watershed surfaces negatively influencing rates of baseflow recharge. These differences are a 

result of both natural (shifts in soil clay content and lithology) as well as anthropogenic alteration 

of watershed surfaces.  

We also sought to understand the implications of the variability of groundwater discharge 

on stream biogeochemistry. Our results show that stream biogeochemistry varies across the study 

area relative to changes in watershed hydrogeology and land use. Alkalinity has a significant 

relationship with groundwater discharge, however most chemical parameters have strong and 

significant relationships with clay content, suggesting that variations in clay content of watershed 

soils could serve as a potential limiting factor in nutrient and trace element loading to streams. 

Major ions chemistry is generally reflective of dominant watershed geology (water type shifts 

from NaCl to Ca-HCO3 eastward), but also appears to be influenced by land cover (both percent 

agriculture and developed). Further highlighting the importance of land use on stream 

biogeochemistry, nutrients (nitrate/nitrogen and organic carbon), and trace elements are also 

strongly correlated with the percent of agriculture within watersheds. 

Our study provides evidence that hydrogeology, precipitation and land use collectively 

influence steam components and biogeochemistry which has implications on overall water 

quality. Although we are unable to determine the direct cause of variability in groundwater 
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discharge and stream chemistry trends, our results add to the understanding of terrestrial and 

aquatic connectivity and emphasize the need to answer questions that remain regarding how 

future climate and anthropogenic changes will affect the quality of water resources. 
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Appendix A - Hydrograph Separation Results 
 

Table 3 Results of the Hydrograph Separation from USGS GW Toolbox. Results are normalized 

to drainage area (DA), thus units are inches/area. Streamflow components are baseflow (BF), 

runoff (RO) and baseflow index (BFI). This table hold results for Part and BFI standard 

(BFIStd). 

Site  DA 

(mi2) 

Stream 

flow 

BF 

Part 

RO 

Part 

BFI 

Part 

BF 

BFIStd 

RO 

BFIStd 

BFI 

BFIStd 

1. BOW C 341 0.62 0.35 0.27 0.64 0.3 0.33 0.55 

2. WHITE ROCK C 227 1.22 0.46 0.76 0.42 0.38 0.84 0.35 

3. SALT C (ADA) 406 1.71 0.72 0.99 0.45 0.47 1.24 0.32 

4. MULBERRY C 261 1.79 0.37 1.43 0.25 0.26 1.54 0.18 

5. COWSKIN C 86 4.94 0.93 4.01 0.26 0.56 4.38 0.18 

6. CHAPMAN C 300 3.43 1.21 2.23 0.4 1 2.43 0.34 

7. MILL C (WASH) 344 3.32 0.96 2.36 0.31 0.72 2.6 0.24 

8. WHITEWATER R 426 6.99 1.53 5.46 0.29 1.11 5.88 0.23 

9. CEDAR C (CEDAR POINT) 110 8.2 2.96 5.24 0.43 2.19 6.01 0.32 

10. BLACK VERMILLION 410 4.72 1.3 3.42 0.3 0.88 3.84 0.22 

11. CANEY R 445 9.2 3.39 5.81 0.41 1.74 7.45 0.2 

12. VERMILLION C 243 4.59 1.68 2.91 0.4 1.2 3.38 0.29 

13. ELK R 220 9.3 2.85 6.45 0.34 1.46 7.84 0.17 

14. MILL C (PAXICO) 318 6.65 3.07 3.58 0.5 2.18 4.47 0.36 

15. TURKEY C 276 4.52 1.42 3.1 0.32 1.03 3.5 0.22 

16. MARAIS DES CYGNES R 177 6.58 1.69 4.89 0.27 1.04 5.54 0.17 

17. SOLDIER C (DELIA) 149 6.67 1.89 4.78 0.34 1.32 5.35 0.24 

18. DRAGOON C 114 7.1 1.6 5.5 0.24 0.95 6.16 0.14 

19. SOLDIER C (TOPEKA) 290 6.5 1.76 4.74 0.31 1.26 5.23 0.22 

20. SALT C (LYNDON) 97.8 7.73 1.23 6.5 0.17 0.7 7.03 0.1 

21. WAKARUSA R 164 7 1.85 5.15 0.28 1.01 5.99 0.15 

22. DELAWARE R (MUSCOTAH) 431 6.45 1.65 4.8 0.28 1.16 5.29 0.2 

23. STRANGER C (TONGANOXIE) 406 8.12 2.07 6.05 0.28 1.37 6.75 0.19 

24. BIG BULL C (EDGERTON) 28.7 10.06 1.57 8.48 0.17 0.83 9.23 0.09 

25. KILL C (DESOTO) 53.4 9.15 2.67 6.49 0.32 1.61 7.54 0.2 

26. MILL C (JOHNSON) 58.1 13.67 4.32 9.35 0.33 2.8 10.87 0.21 

27. BLUE R (OVERLAND PARK) 65.8 11.46 3.44 8.03 0.32 1.89 9.57 0.17 
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Table 4 Results of the Hydrograph Separation from USGS GW Toolbox. Results are normalized 

to drainage area (DA), thus units are inches/area. Streamflow components are baseflow (BF), 

runoff (RO) and baseflow index (BFI). This table hold results for modified BFI (BFIMod) and 

all HySEP methods: HySEP Fixed, HySEP LocMin, HySEP Slide. 

Site 
BF 

BFIMod 

RO 

BFIMod 

BFI 

BFIMod 

BF 

Fixed 

RO 

Fixed 

BFI 

Fixed 

BF 

LocMin 

RO 

LocMin 

BFI 

LocMin 

BF 

Slide 

RO 

Slide 

BFI 

Slide 

1.  0.3 0.33 0.55 0.34 0.28 0.63 0.31 0.32 0.57 0.34 0.29 0.63 

2.  0.38 0.84 0.34 0.48 0.74 0.44 0.43 0.8 0.39 0.48 0.74 0.44 

3.  0.48 1.23 0.32 0.79 0.92 0.47 0.61 1.1 0.37 0.79 0.92 0.47 

4.  0.25 1.54 0.18 0.36 1.44 0.24 0.3 1.49 0.21 0.36 1.44 0.24 

5.  0.56 4.38 0.18 1.11 3.83 0.29 0.89 4.05 0.24 1.14 3.81 0.29 

6.  1 2.43 0.34 1.13 2.3 0.38 1.08 2.35 0.37 1.15 2.29 0.38 

7.  0.71 2.61 0.24 0.89 2.43 0.29 0.81 2.51 0.27 0.91 2.41 0.3 

8.  1.1 5.89 0.23 1.63 5.35 0.3 1.4 5.59 0.27 1.59 5.4 0.29 

9.  2.16 6.04 0.31 2.91 5.3 0.42 2.71 5.49 0.39 2.93 5.27 0.42 

10.  0.88 3.84 0.22 1.21 3.51 0.28 1.05 3.68 0.26 1.21 3.51 0.28 

11.  1.73 7.46 0.2 3.1 6.09 0.37 2.48 6.71 0.29 3.09 6.11 0.37 

12.  1.19 3.39 0.29 1.76 2.83 0.41 1.54 3.04 0.37 1.71 2.88 0.41 

13.  1.46 7.84 0.17 2.97 6.33 0.36 2.4 6.9 0.29 3.13 6.17 0.36 

14.  2.15 4.5 0.35 2.73 3.92 0.45 2.39 4.26 0.39 2.77 3.87 0.45 

15.  1.02 3.51 0.22 1.32 3.2 0.3 1.19 3.34 0.26 1.33 3.19 0.3 

16.  1.03 5.55 0.17 1.82 4.76 0.3 1.47 5.11 0.24 1.82 4.76 0.3 

17.  1.3 5.37 0.24 1.92 4.75 0.34 1.7 4.97 0.3 1.93 4.74 0.34 

18.  0.94 6.17 0.14 1.69 5.42 0.26 1.42 5.68 0.21 1.67 5.43 0.26 

19.  1.26 5.24 0.22 1.61 4.88 0.28 1.45 5.05 0.25 1.64 4.86 0.29 

20.  0.7 7.03 0.1 1.38 6.35 0.21 1.1 6.63 0.16 1.4 6.33 0.2 

21.  1 5.99 0.15 1.98 5.02 0.3 1.59 5.41 0.24 2 4.99 0.3 

22.  1.15 5.3 0.2 1.59 4.87 0.26 1.38 5.07 0.23 1.59 4.86 0.27 

23.  1.39 6.73 0.19 2.08 6.04 0.28 1.74 6.38 0.23 1.99 6.13 0.27 

24.  0.81 9.24 0.09 2.43 7.62 0.27 1.94 8.12 0.21 2.56 7.5 0.28 

25.  1.61 7.55 0.2 2.59 6.56 0.31 2.25 6.9 0.27 2.65 6.5 0.32 

26.  2.78 10.89 0.21 4.31 9.36 0.33 3.8 9.87 0.29 4.28 9.39 0.33 

27.  1.89 9.57 0.17 3.35 8.12 0.31 2.79 8.68 0.26 3.39 8.07 0.31 
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Table 5 Standard deviation between the six hydrograph separation analyses for each component 

(BF, RO, BFI). Streams with greatest standard deviation tend to occur in watersheds with higher 

annual precipitation values (in bold). 

Site  BF  RO BFI Annual PPT 

1.  0.023 0.027 0.043 607.74 

2.  0.046 0.047 0.044 692.33 

3.  0.146 0.146 0.072 748.91 

4.  0.054 0.051 0.031 780.1 

5.  0.256 0.253 0.050 852.27 

6.  0.085 0.081 0.024 822.19 

7.  0.104 0.104 0.030 821.08 

8.  0.237 0.239 0.031 922.76 

9.  0.373 0.372 0.053 873.33 

10.  0.180 0.181 0.033 849.62 

11.  0.724 0.721 0.091 1029.67 

12.  0.257 0.252 0.057 876.28 

13.  0.752 0.752 0.090 1059.66 

14.  0.367 0.368 0.059 907.85 

15.  0.167 0.172 0.043 840.59 

16.  0.366 0.366 0.060 961.79 

17.  0.296 0.296 0.049 922.88 

18.  0.349 0.352 0.056 986.09 

19.  0.208 0.207 0.038 939.9 

20.  0.317 0.317 0.048 977.31 

21.  0.463 0.462 0.071 957.06 

22.  0.225 0.223 0.035 926.58 

23.  0.329 0.329 0.043 1007.97 

24.  0.761 0.760 0.084 1033.55 

25.  0.504 0.504 0.057 1017.12 

26.  0.743 0.743 0.059 1027.41 

27.  0.737 0.734 0.070 1041.02 
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Appendix B - Grab Sampling Results 
Table 6 Field measured data and major anions for grab sampling. Units are mg/L for all 

parameters except T (C), EC (mS), pH and alkalinity (meq/L). 

Stream  Date pH DO Temp EC F Cl Br NO3 SO4  Alk 

1.  2/24/20 8.22 12.7 6.75 0.95 0.397 59.659 0.218 4.272 177.736 5.38 

2.  2/25/20 8.14 14.6 5.53 1.2 0.335 46.857 0.245 8.889 218.032 8.17 

3.  2/3/20 6.92 11.6 4.4 2.17 0.268 324.253 0.314 3.675 256.171 6.55 

4.  2/3/20 7.64 12.7 5.2 1.03 0.346 51.102 0.154 0.533 213.353 4.25 

5.  2/10/20 9.46 20.3 5.55 0.965 0.245 136.138 0.221 3.79 92.337 4.76 

6.  2/1/20 7.98 14.1 2.55 0.97 0.297 25.743 0.134 5.552 217.097 5.51 

7.  2/19/20 8.26 12.5 2.6 0.88 0.272 27.951 0.15 7.455 103.035 6.46 

8.  2/10/20 8.63 16.7 5.35 1.319 0.291 73.294 0.329 10.317 321.092 5.87 

9.  2/10/20 8.9 17.5 5.5 0.545 0.305 6.542 0.042 0.189 20.097 5.11 

10.  2/19/20 8.21 12.7 3.45 0.69 0.275 19.094 0.102 10.45 49.927 5.16 

11.  2/16/20 8.27 13.3 4.9 0.525 0.223 9.608 0.06 0.158 26.827 4.25 

12.  2/19/20 8.29 12.7 2.75 0.69 0.306 11.344 0.057 4.918 50.684 5.88 

13.  2/16/20 8.24 12.7 3.3 0.52 0.211 8.579 0.058 0.871 26.242 4.57 

14.  2/1/20 8.19 13.5 3.9 0.61 0.268 9.335 0.059 1.782 44.366 5.33 

15.  2/19/20 8.28 13.3 3.15 0.675 0.325 10.625 0.083 8.846 63.666 4.62 

16.  2/5/20 8.55 13 2.7 0.63 0.211 9.389 0.052 1.297 71.061 5.18 

17.  2/1/20 8.42 13.8 3.1 0.62 0.278 12.182 0.067 2.878 47.67 5.19 

18.  2/5/20 8.47 13.5 3.05 0.68 0.214 14.161 0.058 2.606 75.059 5.48 

19.  2/1/20 8.27 13.6 4.25 0.6 0.233 14.096 0.065 3.462 48.826 4.91 

20.  2/5/20 8.24 13.9 3.25 0.65 0.197 14.992 0.077 2.158 92.229 4.45 

21.  2/5/20 8.33 13.1 2.55 0.575 0.202 17.025 0.063 1.614 59.872 4.56 

22.  2/19/20 8.28 13.6 2.4 0.62 0.27 18.755 0.086 8.251 43.954 5.09 

23.  2/17/20 8.22 12.9 2.4 0.62 0.234 18.528 0.077 5.449 31.345 5.04 

24.  2/17/20 7.91 12.3 3.3 1.38 0.168 257.525 0.207 1.153 66.766 3.63 

25.  2/17/20 8.54 17.4 5.1 0.69 0.25 46.19 0.085 3.259 50.238 4.56 

26.  2/17/20 8.28 15.1 4.6 2.04 0.196 395.557 0.248 7.386 71.955 4.14 

27.  2/17/20 8.2 18 4.5 0.78 0.192 77.241 0.098 0.905 35.721 4.54 
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Table 7 Major cations and nutrients data for grab sampling. Units are mg/L for all parameters 

except for Mn and Fe which are ppb. 

Stream Date Na Mg K Ca Mn  Fe  P NPOC TN 

1.  2/24/20 29 11.1 6 93.0 13 13 2 3.78 1.20 

2.  2/25/20 41 16.3 6 113.8 347 10 1 4.62 2.20 

3.  2/3/20 214 18.5 6 105.9 197 14 1 6.99 1.38 

4.  2/3/20 50 18.6 3 72.3 292 26 0 3.66 0.29 

5.  2/10/20 67 12.3 5 59.4 89 63 0 6.82 1.50 

6.  2/1/20 25 20.2 3 81.7 275 37 1 5.95 1.86 

7.  2/19/20 31 8.2 3 82.2 305 5 1 4.08 1.90 

8.  2/10/20 35 26.0 3 114.1 111 30 0 4.85 2.61 

9.  2/10/20 7 12.0 1 52.5 21 22 0 2.72 0.21 

10.  2/19/20 18 11.0 2 56.8 191 77 1 5.11 2.66 

11.  2/16/20 8 8.0 1 54.9 10 2 0 3.49 0.52 

12.  2/19/20 10 12.8 2 63.0 81 39 0 3.56 1.32 

13.  2/16/20 6 7.6 1 49.5 27 6 0 3.20 0.61 

14.  2/1/20 6 10.1 1 58.4 27 4 0 2.55 0.56 

15.  2/19/20 12 12.5 2 66.9 32 26 1 4.33 2.33 

16.  2/5/20 10 10.1 2 56.2 49 46 0 5.12 0.71 

17.  2/1/20 8 9.7 2 50.8 46 9 0 5.15 1.00 

18.  2/5/20 11 10.6 1 60.1 79 74 0   

19.  2/1/20 11 9.0 2 49.7 71 9 0 4.93 1.12 

20.  2/5/20 12 9.0 2 51.5 85 45 0   

21.  2/5/20 10 8.0 2 47.4 45 7 0   

22.  2/19/20 13 9.8 2 52.6 63 13 0   

23.  2/17/20 9 7.8 2 53.2 148 36 0   

24.  2/17/20 88 9.7 3 57.1 128 45 0   

25.  2/17/20 21 6.5 2 58.0 51 12 0   

26.  2/17/20 167 11.7 3 81.1 54 42 0   

27.  2/17/20 27 5.8 1 57.2 64 8 0   
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Table 8 Trace element concentrations for grab sampling. Units for Li, B, Ni, Co, As, Se, Mo and 

Co are ppt. V, Cu and Zn are ppb. 

Stream Date Li B V Ni Co Cu Zn As Se Mo Cd 

1.  2/24/20 14585 32396 6 759 146 1 7 3779 6065 5071 27 

2.  2/25/20 18826 37163 5 1430 537 1 8 3516 7972 5387 26 

3.  2/3/20 39011 72652 5 1544 489 1 3 2721 1572 4352 25 

4.  2/3/20 14367 40463 1 795 395 1 1 727 522 666 292 

5.  2/10/20 6226 42963 3 1580 609 1 4 1439 630 2146 51 

6.  2/1/20 10207 42670 2 1182 492 1 17 1374 1327 590 226 

7.  2/19/20 8126 19578 2 952 605 2 108 1780 1897 2291 22 

8.  2/10/20 11201 48481 2 969 308 4 5 1606 1249 1799 21 

9.  2/10/20 2392 11600 1 169 96 1 1 656 217 1098 14 

10.  2/19/20 4476 17904 2 1921 368 2 4 2450 1641 1178 36 

11.  2/16/20 1480 12174 0 -150 69 0 7 310 159 177 7 

12.  2/19/20 4349 17656 1 866 186 4 9 1056 1016 748 37 

13.  2/16/20 1409 10049 0 -56 90 0 11 340 157 164 9 

14.  2/1/20 2684 12204 1 -13 107 2 2 611 367 333 11 

15.  2/19/20 7180 18856 2 888 143 2 2 2563 2847 934 23 

16.  2/5/20 1961 14730 1 703 129 1 8 492 320 2271 20 

17.  2/1/20 2102 11433 1 440 177 1 0 913 439 358 11 

18.  2/5/20 2003 15626 0 1172 167 0 10 470 263 1558 19 

19.  2/1/20 2134 12444 1 412 186 1 1 862 551 366 19 

20.  2/5/20 1479 12707 0 895 207 1 25 413 136 386 33 

21.  2/5/20 1453 11941 0 179 139 1 11 485 174 116 9 

22.  2/19/20 2957 12081 1 684 197 2 6 1505 788 688 19 

23.  2/17/20 1755 8335 0 785 227 1 4 819 570 1224 29 

24.  2/17/20 1215 14889 0 1027 232 1 7 458 335 1506 30 

25.  2/17/20 719 14141 0 313 199 1 5 569 284 214 27 

26.  2/17/20 5764 22470 0 757 152 1 3 431 534 1511 33 

27.  2/17/20 1216 8996 0 179 129 1 5 343 149 78 9 
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Appendix C - Diel Sampling Results 
Table 9 Field measured data and major anions for diel sampling at Mulberry Creek. Units are 

mg/L for all parameters except T (C), EC (mS), pH and alkalinity (meq/L). 

Hour DO Temp EC pH F  Cl Br NO3 SO4 Alk 

0 6.1 25.0 1.1 8.1 0.3 57.2 0.2 1.8 241.0 5.0 

1.5 6.0 25.0 1.1 8.1 0.4 57.4 0.2 1.9 240.3 5.0 

3 6.9 25.3 1.1 8.1 0.4 57.5 0.2 1.9 274.1 5.0 

4.5 7.7 26.0 1.1 8.1 0.4 58.1 0.2 1.9 249.2 4.9 

6 8.4 26.6 1.1 8.2 0.4 60.0 0.2 1.8 348.1 5.0 

7.5 8.7 27.0 1.1 8.2 0.4 59.2 0.2 1.9 240.7 5.7 

9 8.4 27.0 1.1 8.2 0.4 59.6 0.2 1.8 246.1 5.0 

10.5 8.2 27.0 1.1 8.2 0.4 60.4 0.2 1.9 234.4 4.9 

12 7.7 28.8 1.1 8.2 0.4 59.7 0.2 1.8 290.2 4.6 

13.5 7.3 26.5 1.1 8.2 0.4 60.9 0.2 1.8 237.7 5.0 

15 6.9 26.3 1.1 8.2 0.4 60.2 0.2 1.8 237.4 5.1 

16.5 6.6 26.1 1.1 8.2 0.4 60.3 0.2 1.8 229.6 5.0 

18 6.5 25.8 1.1 8.1 0.4 60.2 0.2 1.7 273.8 4.8 

19.5 6.4 25.6 1.1 8.1 0.4 60.9 0.2 1.8 252.9 5.0 

21 6.3 25.5 1.1 8.1 0.4 60.5 0.2 1.8 238.3 4.6 

22.5 6.2 25.3 1.1 8.1 0.4 60.3 0.2 1.9 244.0 5.0 

24 6.3 25.2 1.1 8.1 0.4 61.6 0.2 2.0 234.8 5.1 
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Table 10 Major cations, nutrients and isotope data for diel sampling at Mulberry Creek. Units 

are mg/L for all parameters except isotopes, which are permille. 

Hour Na K Mg Ca Sr NPOC TN Iron dH2 dO18 

0 75.4 5.4 29.9 113.1 3.8 6.4 1.3 1.0 -35.0 -5.2 

1.5 77.8 5.1 30.4 110.2 3.8 6.0 1.0 1.4 -35.0 -5.2 

3 75.1 5.1 30.4 110.9 3.8 5.7 0.9 2.6 -35.0 -5.3 

4.5 75.1 5.3 30.5 111.1 3.7 6.6 1.0 1.9 -35.0 -5.2 

6 72.0 5.1 30.5 112.4 3.7 6.5 1.0 1.6 -35.0 -5.2 

7.5 100.3 5.0 30.5 110.6 3.8 6.1 0.9 1.2 -35.0 -5.2 

9 75.6 5.0 30.5 111.4 4.0 5.5 0.9 1.7 -35.0 -5.2 

10.5 73.7 4.9 30.3 106.2 3.9 6.0 1.1 1.6 -35.0 -5.3 

12 73.2 5.1 30.1 111.1 3.6 6.6 0.9 2.0 -35.0 -5.3 

13.5 73.7 5.1 30.1 110.4 3.6 6.6 1.1 1.8 -35.0 -5.3 

15 72.9 5.0 30.3 110.8 3.6 5.6 0.8 0.8 -35.0 -5.3 

16.5 74.9 5.0 30.2 113.9 3.6 6.1 1.0 1.4 -35.0 -5.3 

18 75.0 5.0 30.2 112.8 3.6 5.4 0.9 1.1 -35.0 -5.3 

19.5 76.7 5.2 30.1 109.8 3.5 5.6 0.9 1.5 -35.0 -5.3 

21 74.9 5.1 30.2 115.8 3.6 5.6 0.9 1.9 -35.0 -5.3 

22.5 80.5 4.9 30.5 107.1 3.7 5.4 0.9 1.5 -36.0 -5.3 

24 76.4 5.1 30.4 110.8 3.7 5.2 0.8 1.7 -35.0 -5.3 
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Table 11 Field measured data and major anions for diel sampling at Chapman Creek. Units are 

mg/L for all parameters except T (C), EC (mS), pH and alkalinity (meq/L). 

Hour DO Temp EC pH F  Cl Br NO3 SO4 Alk 

0 7.1 20.0 0.7 7.9 0.3 15.6 0.1 5.6 130.6 3.9 

1.5 7.4 20.2 0.7 7.9 0.3 15.9 0.1 5.5 128.8 3.9 

3 7.3 20.5 0.7 7.9 0.3 15.9 0.1 5.6 120.7 3.9 

4.5 7.3 21.2 0.7 8.0 0.4 16.6 0.1 5.5 128.6 4.0 

6 7.3 21.8 0.7 8.0 0.3 17.1 0.1 5.8 137.4 4.0 

7.5 7.2 22.1 0.7 7.9 0.3 16.5 0.1 5.6 131.8 4.4 

9 7.0 22.1 0.7 8.0 0.3 16.7 0.1 5.8 125.9 4.7 

10.5 7.0 22.1 0.7 8.0 0.3 16.9 0.1 5.8 140.8 3.6 

12 - - - - - - - - - - 

13.5 6.8 21.9 0.7 8.0 0.3 18.1 0.1 6.2 146.5 4.2 

15 - - - 8.0 0.3 17.2 0.1 6.1 151.8 4.2 

16.5 6.8 21.6 0.8 8.0 0.3 17.9 0.1 6.2 152.0 3.7 

18 6.8 21.3 0.8 8.0 0.3 18.3 0.1 6.5 168.7 3.8 

19.5 6.9 21.1 0.8 8.0 0.3 18.3 0.1 6.4 160.7 4.4 

21 7.0 20.9 0.8 8.0 0.3 18.6 0.1 6.5 168.1 4.0 

22.5 7.0 20.8 0.8 8.0 0.3 19.1 0.1 6.4 173.7 4.5 

24 7.1 20.8 0.8 8.0 0.3 19.3 0.1 6.5 169.1 4.4 
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Table 12 Major cations, nutrients and isotope data for diel sampling at Chapman Creek. Units 

are mg/L for all parameters except isotopes, which are permille. 

Hour Na K Mg Ca Sr NPOC TN Iron dH2 dO18 

0 25.9 6.2 44.7 83.7 3.3 3.7 7.7 2.1 -30.0 -5.0 

1.5 26.3 6.2 40.6 79.7 3.3 2.7 7.3 2.0 -30.0 -5.0 

3 26.3 6.1 39.2 79.4 3.5 3.3 8.4 2.1 -30.0 -5.0 

4.5 26.8 6.2 38.5 80.0 3.2 2.7 7.7 2.5 -30.0 -5.0 

6 26.9 6.2 40.0 79.4 3.6 3.0 7.5 2.1 -30.0 -5.0 

7.5 26.7 6.0 40.1 79.8 3.4 3.0 9.0 2.3 -30.0 -5.0 

9 27.4 6.1 42.8 82.6 3.4 3.3 8.9 2.2 -30.0 -5.0 

10.5 27.5 6.1 38.3 78.3 3.8 3.0 7.5 2.0 -30.0 -5.0 

12 27.3 - 43.4 81.6 3.5 2.8 8.0 2.6 - - 

13.5 27.8 6.0 43.8 83.9 3.5 3.0 8.4 2.2 -30.0 -4.9 

15 27.8 6.0 47.0 87.0 3.5 3.0 7.2 2.6 -30.0 -4.9 

16.5 28.5 5.9 47.5 87.6 3.8 2.5 7.1 2.6 -30.0 -4.8 

18 28.0 6.2 51.2 90.9 4.2 3.2 7.1 2.1 - - 

19.5 28.5 7.8 39.5 80.4 2.3 4.0 8.0 2.2 - - 

21 29.0 5.8 47.0 87.8 3.8 2.2 7.0 2.1 -29.0 -4.7 

22.5 28.7 5.9 53.0 93.2 3.3 2.6 7.7 2.3 - - 

24 29.3 5.7 27.0 99.9 4.2 2.5 7.8 2.2 - - 
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Table 13 Field measured data and major anions for diel sampling at Vermillion Creek. Units are 

mg/L for all parameters except T (C), EC (mS), pH and alkalinity (meq/L). 

Hour DO Temp EC pH F Cl Br NO3 SO4 Alk 

0 7.0 25.0 0.7 8.2 0.3 14.5 0.1 5.7 57.0 5.1 

1.5 8.2 25.4 0.7 8.2 0.3 14.7 0.1 5.5 56.9 5.6 

3 9.2 26.1 0.6 8.2 0.3 14.2 0.1 5.4 57.2 5.3 

4.5 10.8 27.4 0.7 8.3 0.3 15.3 0.1 5.2 56.8 5.4 

6 11.8 28.8 0.6 8.4 0.3 14.6 0.1 4.8 56.7 5.2 

7.5 11.8 29.3 0.6 8.3 0.3 14.5 0.1 4.9 56.2 5.0 

9 10.8 29.0 0.6 8.3 0.3 14.1 0.1 4.6 57.0 5.1 

10.5 9.6 28.6 0.6 8.3 0.3 14.4 0.1 4.9 56.1 5.2 

12 8.7 28.1 0.6 8.3 0.3 14.3 0.1 4.9 55.4 5.2 

13.5 7.8 27.4 0.6 8.3 0.3 14.4 0.1 4.9 56.0 5.2 

15 7.5 26.6 0.6 8.3 0.3 14.2 0.1 5.0 55.3 5.2 

16.5 7.1 26.0 0.6 8.3 0.3 14.2 0.1 5.0 56.7 5.2 

18 6.8 25.6 0.6 8.3 0.3 14.3 0.1 5.1 56.5 5.3 

19.5 6.6 25.1 0.7 8.2 0.3 14.3 0.1 5.1 56.7 5.3 

21 6.8 24.6 0.7 8.2 0.3 14.0 0.1 5.0 56.0 5.2 

22.5 6.7 24.2 0.7 8.2 0.3 13.9 0.1 5.0 58.1 5.3 

24 7.2 24.1 0.7 8.2 0.3 14.0 0.1 5.0 56.9 5.4 
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Table 14 Major cations, nutrients and isotope data for diel sampling at Vermillion Creek. Units 

are mg/L for all parameters except isotopes, which are permille. 

Hour Na K Mg Ca Sr NPOC TN Iron dH2 dO18 

0 25.9 6.2 44.7 83.7 3.3 3.7 7.7 2.1 -30.0 -5.0 

1.5 26.3 6.2 40.6 79.7 3.3 2.7 7.3 2.0 -30.0 -5.0 

3 26.3 6.1 39.2 79.4 3.5 3.3 8.4 2.1 -30.0 -5.0 

4.5 26.8 6.2 38.5 80.0 3.2 2.7 7.7 2.5 -30.0 -5.0 

6 26.9 6.2 40.0 79.4 3.6 3.0 7.5 2.1 -30.0 -5.0 

7.5 26.7 6.0 40.1 79.8 3.4 3.0 9.0 2.3 -30.0 -5.0 

9 27.4 6.1 42.8 82.6 3.4 3.3 8.9 2.2 -30.0 -5.0 

10.5 27.5 6.1 38.3 78.3 3.8 3.0 7.5 2.0 -30.0 -5.0 

12 27.3 - 43.4 81.6 3.5 2.8 8.0 2.6 - - 

13.5 27.8 6.0 43.8 83.9 3.5 3.0 8.4 2.2 -30.0 -4.9 

15 27.8 6.0 47.0 87.0 3.5 3.0 7.2 2.6 -30.0 -4.9 

16.5 28.5 5.9 47.5 87.6 3.8 2.5 7.1 2.6 -30.0 -4.8 

18 28.0 6.2 51.2 90.9 4.2 3.2 7.1 2.1 - - 

19.5 28.5 7.8 39.5 80.4 2.3 4.0 8.0 2.2 - - 

21 29.0 5.8 47.0 87.8 3.8 2.2 7.0 2.1 -29.0 -4.7 

22.5 28.7 5.9 53.0 93.2 3.3 2.6 7.7 2.3 - - 

24 29.3 5.7 27.0 99.9 4.2 2.5 7.8 2.2 - - 
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Table 15 Field measured data and major anions for diel sampling at Mill Creek. Units are mg/L 

for all parameters except T (C), EC (mS), pH and alkalinity (meq/L). 

Hour F  Cl Br NO3 SO4 DO Temp EC pH Alk 

0 0.3 8.0 0.0 5.2 38.2 7.4 24.5 0.6 8.2 5.2 

1.5 0.2 8.2 0.0 5.1 37.0 7.3 24.5 0.6 8.1 5.3 

3 0.2 8.1 0.1 5.5 40.5 7.4 24.7 0.6 8.1 5.3 

4.5 0.2 7.9 0.0 5.5 40.3 7.6 24.9 0.6 8.1 5.4 

6 0.2 7.9 0.0 5.4 39.3 7.6 25.2 0.6 8.1 5.4 

7.5 0.2 8.0 0.0 5.5 40.3 7.8 25.4 0.6 8.1 5.3 

9 0.2 9.3 0.0 5.5 39.7 7.9 25.4 0.6 8.1 5.4 

10.5 0.2 8.9 0.0 5.5 39.6 7.7 25.3 0.6 8.2 5.0 

12 0.2 8.3 0.0 5.6 41.1 7.6 25.2 0.6 8.2 5.4 

13.5 0.3 10.6 0.0 5.7 41.4 7.5 25.0 0.6 8.2 5.3 

15 0.2 8.1 0.0 5.5 40.4 7.6 24.8 0.6 8.2 5.4 

16.5 0.2 8.2 0.0 5.7 42.1 7.3 24.6 0.6 8.2 5.5 

18 0.2 8.0 0.0 5.8 41.7 7.2 24.4 0.6 8.2 5.5 

19.5 0.2 8.3 0.1 5.8 43.4 7.2 24.3 0.6 8.2 4.7 

21 0.2 8.8 0.0 5.8 43.5 7.2 24.2 0.6 8.2 5.5 

22.5 0.2 8.4 0.1 5.8 43.8 7.2 24.1 0.6 8.2 5.4 

24 0.2 8.4 0.1 5.8 44.1 7.2 24.0 0.6 8.2 5.6 
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Table 16 Major cations, nutrients and isotope data for diel sampling at Mill Creek. Units are 

mg/L for all parameters except isotopes, which are permille. 

Hour Na K Mg Ca Sr NPOC TN Iron dH2 dO18 

0 8.3 3.1 16.7 89.2 3.4 2.8 1.5 1.6 -30.0 -5.0 

1.5 8.2 3.0 16.8 86.1 3.4 2.4 1.5 1.4 -31.0 -5.0 

3 8.3 3.0 17.0 88.1 3.5 2.3 1.5 2.1 -31.0 -5.0 

4.5 8.2 3.0 17.0 87.4 3.5 2.2 1.6 1.9 -31.0 -5.0 

6 8.4 3.1 17.1 90.1 3.5 2.3 1.5 1.6 -31.0 -5.1 

7.5 8.6 3.3 16.9 84.3 3.5 2.6 1.5 1.8 -31.0 -5.0 

9 9.0 3.4 17.2 89.5 3.6 2.5 1.5 1.6 -31.0 -5.0 

10.5 8.5 3.1 17.0 89.8 3.6 3.3 1.5 2.1 -31.0 -5.1 

12 8.6 3.1 17.3 89.0 3.7 3.0 1.5 1.6 -31.0 -5.1 

13.5 8.4 3.0 17.1 90.6 3.6 2.8 1.6 1.6 -31.0 -5.0 

15 8.7 3.1 17.3 91.7 3.7 2.6 1.5 1.6 -31.0 -5.0 

16.5 9.2 3.4 17.4 86.0 3.8 2.1 1.5 1.6 -31.0 -5.1 

18 8.8 3.1 17.5 92.2 3.8 2.4 1.5 1.2 -30.0 -4.9 

19.5 9.0 3.4 17.5 90.4 3.8 2.2 1.5 2.2 -28.0 -3.9 

21 8.7 3.1 17.5 91.6 3.7 2.3 1.6 2.3 -31.0 -5.1 

22.5 8.9 3.0 17.6 91.4 3.8 2.8 1.6 1.2 -28.0 -4.0 

24 9.2 3.4 17.7 92.0 3.7 2.5 1.5 1.7 -29.0 -4.6 
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Appendix D - Groundwater Data 
 

Table 17 Information and field data from groundwater sampling. Measurements were taken 

approximately 10 minutes apart. Samples were taken after the last measurement was recorded. 

Site Mulberry Chapman Vermillion Mill 

Sample Date 2/3/2020 11/01/2019 7/11/2019 11/08/2019 

Time 1 

DO (mg/L) 0.3 0.2 7.2 0.3 

pH 6.63 7.13 7.04 7.01 

EC (mS) 0.7065 1.418 0.986 1.179 

Temp (C) 14.4 14 19.4 14.75 

Time 2 

DO (mg/L) 0.2 0.1 6.5 0.1 

pH 6.43 7.14 7.04 7.01 

EC (mS) 0.703 1.4185 0.9845 1.1755 

Temp (C) 14.5 14.6 18.5 14.85 

Time 3 

DO (mg/L) 0.1 
 

6.3 0.5 

pH 6.5 7.14 7.04 6.99 

EC (mS) 0.704 1.4165 0.982 1.194 

Temp (C) 14.5 15.1 18 14.8 

Time 4 

DO (mg/L) 0.1 0.2 6.3 - 

pH 6.6 7.14 7.04 - 

EC (mS) 0.693 1.4165 0.988 - 

Temp (C) 14.5 15.1 17.9 - 
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Table 18 Average groundwater geochemical results. Units are mg/L for all parameters except T 

(C), EC (mS), pH, alkalinity (meq/L) and isotopes (permille). 

 Vermillion Chapman Mill Mulberry 

DO 6.3 0.3 0.5 0.1 

Temp 17.9 14.5 14.8 14.5 

EC 1 1.4 1.2 0.7 

pH 7 7.1 7 6.6 

F 0.3 0.2 0.2 0.4 

Cl  18.2 78.8 73.4 23.8 

Br  0.1 0.3 0.4 0.2 

NO3 79.7 0.1 27.6 4.5 

SO4 85.1 326.1 88.2 - 

Alk  6.7 6.6 7.3 5.1 

Na  77.3 60.3 104.7 25 

K 2 3.3 1.7 2 

Mg  18 58 20.5 - 

Ca 103.8 155 117.2 49.5 

Sr  3.6 8.7 3.4  

OP  0 0 0 1.2 

Iron 1.2 6.2 1 0 

NPOC 1.5 1.8 2.5 0.8 

TN 22.3 1.2 7.6 1 

d2H -31 -40 -36 -41 

d18O -5 -6.1 -5.9 -6.3 
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Appendix E - WS Characteristics (Prism and GAGES II 

Data) 
 

Table 19 The following tables provide data gathered from online databases and used in our 

statistical analyses. Annual precipitation and temperature were from Prism, all other information 

was gathered from USGS GAGES II. Continued onto following pages. 

Site DA 
Annual 

PPT 

Annual 

Temp 
Agriculture Grassland Urban Forest 

Total flow 

(km) 

1 341.00 607.74 11.60 67.64 31.38 0.00 0.94 1266.01 

2 227.00 692.33 13.10 48.82 47.73 0.12 3.19 976.18 

3 406.00 748.91 11.20 43.45 53.90 0.07 1.75 1975.35 

4 261.00 780.10 13.20 20.50 77.61 0.19 1.55 1220.27 

5 86.00 852.27 13.80 79.59 10.08 7.84 1.82 385.13 

6 300.00 822.19 12.90 39.01 57.72 0.26 2.80 1443.58 

7 344.00 821.08 11.90 48.06 46.36 0.64 4.71 1666.50 

8 426.00 922.76 13.80 55.07 38.93 0.43 4.70 1957.70 

9 110.00 873.33 13.10 9.04 87.97 0.16 2.40 590.51 

10 410.00 849.62 11.90 64.54 28.81 0.72 5.23 1922.07 

11 445.00 1029.67 14.60 0.00 0.00 0.00 0.00 0.00 

12 243.00 876.28 12.60 23.02 64.65 0.42 11.47 1067.61 

13 220.00 1059.66 13.90 6.72 85.17 0.56 6.05 989.04 

14 318.00 907.85 12.70 6.58 86.28 0.28 6.48 1373.00 

15 276.00 840.59 11.50 38.52 49.79 0.04 11.27 1164.83 

16 177.00 961.79 12.80 14.43 79.81 0.00 5.34 503.49 

17 149.00 922.88 12.70 22.00 65.80 0.00 11.78 656.77 

18 114.00 986.09 12.80 19.81 71.13 0.70 8.05 533.39 

19 290.00 939.90 12.90 22.86 64.83 0.77 10.99 1271.68 

20 97.80 977.31 12.70 28.98 61.80 1.39 7.21 441.95 

21 164.00 957.06 12.60 16.51 66.39 1.31 14.55 748.12 

22 431.00 926.58 12.50 48.30 44.01 0.99 6.06 1523.92 

23 406.00 1007.97 12.60 35.50 46.97 0.79 16.09 1598.10 

24 28.70 1033.55 12.80 34.47 50.17 5.37 8.69 118.13 

25 53.40 1017.12 12.70 17.55 47.41 16.44 17.34 151.61 

26 58.10 1027.41 13.00 1.95 19.27 67.27 10.26 213.84 

27 65.80 1041.02 13.00 13.35 49.94 20.99 14.51 306.79 
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Site Basin 

Comp 

PET Clay Silt Sand Elev. Slope Pop 

Den 

1 0.37 766.88 21.33 69.06 9.61 745.87 1.70 0.16 

2 1.38 746.89 25.65 64.42 9.93 564.30 2.46 0.78 

3 1.73 816.86 29.65 56.97 13.38 447.26 2.72 0.44 

4 1.87 821.86 27.26 50.06 22.68 437.96 3.37 1.86 

5 2.28 848.50 28.98 43.29 27.73 434.10 0.94 35.33 

6 1.50 820.44 30.05 54.77 15.19 401.12 2.20 1.89 

7 1.68 779.08 31.20 56.49 12.32 451.51 2.34 3.06 

8 2.24 824.32 39.36 51.11 9.53 435.28 1.73 0.41 

9 1.70 785.88 38.11 47.24 14.65 398.91 2.52 3.65 

10 1.59 861.76 37.03 53.24 9.73 343.27 3.75 1.12 

11 1.86 792.97 36.77 49.33 13.90 379.19 3.74 2.97 

12 2.04 847.56 37.95 52.77 9.28 355.87 2.82 1.82 

13 2.08 785.13 40.40 49.80 9.80 397.55 4.61 2.84 

14 1.51 794.25 35.61 48.60 15.79 396.36 3.30 2.36 

15 2.17 785.36 39.92 51.13 8.94 386.45 2.32 1.50 

16 1.32 796.11 37.83 47.94 14.24 360.83 3.23 2.14 

17 2.10 787.98 39.25 51.52 9.22 367.50 2.73 4.94 

18 1.20 798.81 37.38 48.36 14.26 340.86 3.23 7.07 

19 1.35 813.52 38.90 53.09 8.02 341.44 2.06 8.42 

20 1.24 812.64 38.82 52.99 8.18 339.19 2.14 9.92 

21 1.47 796.14 38.92 50.87 10.20 336.80 2.81 20.55 

22 1.58 796.53 36.71 49.29 14.00 349.09 2.65 6.17 

23 1.42 801.72 35.32 51.27 13.41 314.57 3.32 11.94 

24 2.04 815.37 36.31 53.49 10.20 312.14 1.52 43.28 

25 1.97 814.30 36.69 54.41 8.90 295.22 2.28 54.69 

26 1.89 809.34 36.28 58.83 4.89 294.28 3.64 464.57 

27 2.40 802.37 37.49 57.17 5.35 313.73 2.55 66.95 
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Site Developed 
Forest 

NLCD06 

Plant 

NLCD06 

Grass 

NLCD06 

Pasture 

NLCD06 

Crop 

NLCD06 

1 3.28 0.28 61.96 32.84 0.00 61.96 

2 4.12 3.83 45.83 45.01 0.05 45.78 

3 3.24 1.91 41.35 52.49 0.55 40.80 

4 4.26 3.35 19.67 71.35 1.18 18.48 

5 7.85 1.64 74.00 15.00 1.20 72.79 

6 3.96 4.80 33.50 56.77 0.90 32.60 

7 4.69 5.59 46.94 42.26 1.98 44.95 

8 2.64 2.76 10.47 82.14 3.05 7.42 

9 4.63 6.55 60.20 27.28 2.61 57.59 

10 3.16 5.25 18.32 72.41 14.35 3.96 

11 4.14 12.08 27.61 55.22 9.38 18.22 

12 2.97 5.33 26.94 63.05 22.63 4.31 

13 3.23 4.11 13.34 78.51 8.75 4.59 

14 3.72 14.48 36.04 44.54 9.97 26.06 

15 3.67 3.43 21.69 69.90 12.90 8.78 

16 3.55 8.46 60.29 26.21 44.43 15.86 

17 5.19 5.87 34.24 53.72 20.76 13.49 

18 4.64 9.12 61.87 22.84 43.95 17.91 

19 5.10 5.76 40.13 48.17 20.54 19.59 

20 5.51 5.88 38.91 48.75 20.17 18.74 

21 6.70 11.87 47.67 31.42 36.42 11.25 

22 4.94 8.42 74.92 10.07 36.62 38.30 

23 5.51 16.70 72.72 3.35 47.11 25.61 

24 13.85 5.54 78.49 0.79 42.98 35.51 

25 30.88 12.28 53.40 1.68 30.75 22.65 

26 62.77 11.75 22.11 2.16 15.94 6.16 

27 23.40 10.48 62.75 1.42 42.63 20.12 
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Site NAppKG 

sqKM 

PhosAppKG 

sqKM 

PestAppKG 

sqKM 

Screening Comments 

1 
3832.49 648.32 66.40 

hvy irrigated ag, small towns 

2 
3524.62 591.41 47.33 

hvy ag, NEoA 

3 
4269.83 707.87 38.19 

hvy ag, NEoA 

4 
2629.69 495.21 15.08 

hvy ag, forest rip, lt develop, NEoA 

5 
7043.21 973.54 64.46 

urban 

6 
4797.07 805.07 41.36 

hvy ag, small towns, NEoA 

7 
6104.13 1051.23 72.15 

hvy ag, NEoA 

8 
2422.31 522.34 13.80 

hvy ag, NEoA 

9 
5823.46 932.19 83.48 

hvy ag, much riparian, NEoA 

10 
2061.03 503.09 6.75 

small dams on most tribs 

11 
4521.84 864.28 47.39 

hvy ag in valleys, no ag in uplands, NEoA 

12 
2154.90 478.48 10.13 

small dams on most tribs 

13 
2241.11 483.55 13.24 

hvy ag, small reservoirs on some tribs, NEoA 

14 
4534.49 786.57 69.54 

hvy ag, some riparian, NEoA 

15 
2921.79 580.86 26.13 

hvy ag, some riparian, NEoA 

16 
3988.58 737.16 37.69 

hvy ag, some riparian, NEoA 

17 
3393.59 622.05 41.46 

hvy ag, NEoA 

18 
3844.81 690.89 42.16 

hvy ag, much riparian, NEoA 

19 
3506.59 585.71 56.61 

hvy ag, some riparian, upstrm city, NEoA 

20 
3395.91 569.77 54.23 

hvy ag, some riparian, upstrm city, NEoA 

21 
3254.95 544.53 39.81 

hvy ag, forest rip, lt develop, NEoA 

22 
6336.18 1026.44 84.63 

upstrm towns & small reservoirs 

23 
5420.31 904.62 66.61 

hvy ag, much riparian, NEoA 

24 

4740.01 766.36 48.37 

hvy ag, forest rip, channeled hw, upstrm towns,  

imoundment on prox trib 

25 
4120.74 662.96 30.82 

ag, forested rip, suburban, small impoundments 

26 
3293.11 528.08 15.02 

ag, forested rip, suburban, small impoundments 

27 
4251.65 689.49 30.38 

ag, forested rip, suburban, small impoundments 

 

  



 

62 

Site Corn Sorghum Soybeans Pasture WinterWheat Wwht_Soy AvgCrops 

1 19.73 7.66 3.46 32.93 17.70 0.05 81.53 

2 4.65 9.43 12.25 42.06 17.79 0.23 86.42 

3 1.18 7.34 4.64 51.73 24.18 0.37 89.44 

4 0.28 2.36 2.28 68.58 11.76 0.73 85.98 

5 5.65 8.89 11.65 11.77 37.68 5.38 81.02 

6 1.23 7.87 9.16 50.75 14.34 2.58 85.94 

7 8.61 6.36 15.66 38.63 12.64 0.68 82.57 

8 1.73 0.53 2.05 64.53 1.36 0.20 70.39 

9 21.19 0.97 26.36 14.11 7.22 0.29 70.14 

10 0.25 0.03 0.61 28.09 0.49 0.11 29.57 

11 8.46 0.25 8.05 21.93 0.67 0.07 39.43 

12 1.27 0.20 2.52 22.05 0.40 0.15 26.59 

13 1.74 0.12 1.88 20.38 0.33 0.03 24.49 

14 10.33 0.28 9.70 5.79 1.91 0.03 28.04 

15 4.40 0.13 4.81 32.15 0.13 0.06 41.68 

16 7.42 0.28 8.13 11.35 0.39 0.03 27.60 

17 4.75 0.25 7.15 16.62 0.65 0.28 29.71 

18 7.23 0.41 8.88 8.00 0.62 0.03 25.16 

19 6.93 0.41 14.58 22.20 0.59 1.18 45.88 

20 6.84 0.37 13.65 21.76 0.55 1.05 44.22 

21 5.66 0.18 6.58 9.09 0.32 0.07 21.90 

22 20.09 0.14 18.91 7.85 1.37 0.06 48.42 

23 13.44 0.03 14.05 0.80 0.28 0.08 28.68 

24 9.83 0.22 17.83 0.62 0.52 0.12 29.13 

25 3.62 0.01 8.64 0.84 0.45 0.15 13.72 

26 0.60 0.01 0.78 0.30 0.02 0.00 1.72 

27 1.98 0.02 6.65 0.33 0.38 1.40 10.77 
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Site GEOL_Hunt 

1 Pliocene-age and older stream deposits on the Great Plains 

2 Deeply weathered loess 

3 
Shaley or sandy ground; on mixed sandstone and shale formations; where shaley, contains con

siderable swelling clay 

4 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

5 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

6 Deeply weathered loess 

7 Deeply weathered loess 

8 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

9 Pre-Wisconsinan drift 

10 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

11 Pre-Wisconsinan drift 

12 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

13 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

14 Pre-Wisconsinan drift 

15 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

16 Wisconsinan loess 

17 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

18 Wisconsinan loess 

19 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

20 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

21 Sandy or silty residuum; probably includes loess. Depth generally less than 10 feet 

22 Wisconsinan loess 

23 Wisconsinan loess 

24 Wisconsinan loess 

25 Wisconsinan loess 

26 Pre-Wisconsinan drift 

27 Wisconsinan loess 
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Appendix F - Statistics 
Table 20 Results of spearman’s rank correlation (rho) listed in table between site characteristics 

(hydrograph separation, GAGES II and Prism data) and grab sampling data. Italicized numbers 

represent P < 0.05. Bold represents P < 0.01. Bold and italicized represents P < 0.005. Land use 

is presented as % Ag (agriculture) and % Dev. (developed).  
 

Longitude BFI BF RO % Ag. % Dev. PPT % clay Temp. 

pH 0.19 -0.15 0.26 0.28 -0.12 0.12 0.21 0.49 0.16 

DO 0.21 0.01 0.30 0.31 -0.12 0.42 0.17 0.13 0.48 

EC -0.28 0.04 -0.46 -0.27 0.49 0.01 -0.37 -0.56 -0.05 

Alk -0.58 0.53 -0.45 -0.66 0.47 -0.60 -0.63 -0.19 -0.31 

F -0.71 0.52 -0.53 -0.80 0.48 -0.56 -0.84 -0.26 -0.20 

Cl -0.06 -0.12 -0.33 -0.06 0.46 0.31 -0.16 -0.57 -0.03 

Br -0.29 0.06 -0.47 -0.25 0.61 0.09 -0.38 -0.55 -0.03 

NO3 -0.19 0.16 -0.43 -0.40 0.72 -0.23 -0.23 -0.17 -0.42 

SO4 -0.52 0.02 -0.76 -0.50 0.56 -0.19 -0.58 -0.44 -0.08 

TN -0.23 -0.09 -0.49 -0.35 0.80 -0.32 -0.39 -0.02 -0.37 

NPOC -0.12 -0.29 -0.44 -0.26 0.57 0.11 -0.20 -0.16 -0.23 

Li -0.78 0.45 -0.69 -0.81 0.59 -0.50 -0.88 -0.48 -0.16 

B -0.64 0.17 -0.70 -0.57 0.57 -0.33 -0.65 -0.49 -0.03 

Na -0.22 -0.10 -0.50 -0.21 0.52 0.18 -0.33 -0.56 -0.03 

Mg -0.65 0.29 -0.53 -0.62 0.44 -0.51 -0.71 -0.28 0.04 

P -0.60 0.48 -0.64 -0.70 0.59 -0.43 -0.72 -0.41 -0.49 

S -0.52 0.02 -0.75 -0.49 0.57 -0.20 -0.57 -0.47 -0.08 

K -0.48 0.12 -0.67 -0.53 0.69 -0.04 -0.59 -0.60 -0.16 

Ca -0.54 0.38 -0.50 -0.49 0.45 -0.33 -0.58 -0.57 -0.08 

V -0.81 0.48 -0.72 -0.86 0.73 -0.55 -0.91 -0.38 -0.25 

Mn -0.26 -0.24 -0.56 -0.33 0.56 0.00 -0.36 -0.45 -0.06 

Fe 0.02 -0.47 -0.28 0.03 0.34 -0.03 -0.05 -0.08 -0.06 

Ni -0.41 -0.16 -0.72 -0.45 0.77 -0.19 -0.51 -0.39 -0.23 

Co -0.37 -0.16 -0.68 -0.44 0.76 0.04 -0.50 -0.53 -0.14 

Cu -0.10 0.13 -0.20 -0.35 0.44 -0.31 -0.43 0.06 -0.46 

Zn -0.03 -0.13 -0.18 0.07 0.10 -0.08 0.14 -0.01 -0.03 

As -0.63 0.38 -0.70 -0.83 0.83 -0.45 -0.87 -0.35 -0.49 

Se -0.56 0.39 -0.64 -0.76 0.77 -0.43 -0.78 -0.44 -0.43 

Mo -0.49 0.12 0.58 -0.44 0.61 -0.27 -0.53 -0.49 -0.20 

Cd -0.25 -0.16 -0.51 -0.33 0.51 -0.01 -0.40 -0.51 -0.14 

Longitude -  -0.51 0.68 0.80 -0.48 0.66 0.82 0.42 -0.06 

PPT 0.82 -0.44 0.77 0.95 -0.63 0.47 - 0.46 0.34 
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Appendix G - Detection Limits 

 
Table 21 Detection limits for IC. Units are mg/L.  

ICS-1100 Ion 

Chromatograph 

(IC)  

F Cl Br- NO3 SO42 Na K Mg Ca Sr 

MDL 0.06 1.54 0.08 0.016 0.71 0.22 0.16 0.19 0.50 0.17 

 

 

Table 22  Detection limit for ICP-MS. Samples were run at 0.9-fold dilution (spiked with 10% 

v/v of 50 ppb Ga final concentration) as internal standard. 

Agilent 7500 

cx 

ICP-MS 

Li / 7 B / 11 
Na / 

23 

Mg / 

24 
P / 31 S / 34 K / 39 

Ca / 

40 
V / 51 

Cr / 

52 

Units ppt ppt ppm ppb ppm ppm ppm ppb ppb ppb 

DL 108 474 0.0064 0.88 0.023 0.21 0.0029 1.28 0.36 0.14 

 Mn / 

55 

Fe / 

56 

Co / 

59 

Ni / 

60 

Cu / 

63 

Zn / 

66 

As / 

75 

Se / 

78 

Mo / 

95 

Cd / 

111 

Units ppb ppb ppt ppt ppb ppb ppt ppt ppt ppt 

DL 
0.002

3 
0.21 9.18 326 0.052 0.36 33.5 62.7 64.9 18 
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Appendix H - Ferrozine Protocol  
This ferrozine method can only measure the concentration of ferrous iron [Fe(II)]. It is 

insensitive to ferric iron [Fe(III)]. In order to use the ferrozine method to measure the total 

concentration of iron in a sample that contains ferric iron, therefore, the ferric iron must first be 

reduced to ferrous iron.  

Reagents: 

 0.5 N HCl. 

 6 M hydroxylamine hydrochloride (NH2OH*HCl; FW = 69.49 g/mol). Do not make a 

large volume of this reagent. Just make slightly more than you need. It should be used 

soon after it is made. 

Procedure: 

1. Add 1 mL of acidified water sample to a 15 mL centrifuge tube. You can use an 

unacidified sample as well. However, in that case, the ferric iron may not all be 

dissolved/suspended. Use a sample that was acidified in the field if given the choice and 

be sure to mix the sample before removing the 1 mL aliquot. 

2. Add 0.5 mL of hydroxylamine solution. 

3. Add 8.5 mL of 0.5 N HCl. Be careful when pipetting acid. You do not want to draw the 

solution too rapidly into the pipet. If that happens, acid may splash inside the pipet and 

damage seals. 

4. Cap and vortex the tube and then allow it to incubate overnight. 

5. The next day, measure iron concentration in the sample using the ferrozine method (see 

lab protocol). Note that this digestion dilutes the sample 10-fold. Also note that you will 

probably want to use a more strongly buffered ferrozine solution. Color development in 

the assay is pH dependent. 

Iron Analysis: Extra-buffering approach 

Use this method to analyze the Fe(II) content of samples that have been prepped as outlines 

above.. 

Reagents: 

• Ferrozine solution –Because the formation of the ferrous-ferrozine complex is pH 

dependent, some buffering needs to be present to ensure consistency between samples 

and standards. For this purpose, the standard ferrozine solution contains 46 mM HEPES. 

For samples from 0.5 N HCl extractions, however, more buffering is needed. Make the 

ferrozine solution as described above but with 1 M HEPES. Per L of solution: 238.3 g of 

HEPES, 1 g of ferrozine. Adjust the pH to 7.0 and store at 4°C.  
• Ferrous iron standards – Make the standards as described above, except make the 

dilutions with 0.5 N HCl.  
• 0.5 N HCl – Partially fill a 1 L volumetric flask with DI water. Inside a fume hood, 

slowly add 41.7 mL of concentrated HCl (12 N) to the flask, and then fill the flask to the 

mark with DI.  

Procedure: 
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1. Add 2.5 mL of ferrozine reagent to a test tube.  

2. Add 1 mL of sample/standard and wait for color development. Wait 1 hour and start 

analyzing samples. You need to be consistent between samples and standards because 

absorbance changes over time. Therefore, I suggest you work only with small batches of 

samples (e.g., <20). It may be necessary to dilute the sample (e.g., add 0.1 mL of sample 

+ 0.9 mL of 0.5 N HCl for 1:10 dilution).  

3. Set wavelength on spectrophotometer to 562 nm.  

4. Normalize absorbance on the spectrophotometer to absorbance of a blank sample 

consisting of 2.5 mL of ferrozine solution + 1 mL of 0.5 N HCl. Pour the blank sample 

into a cuvette, place the cuvette in the spectrophotometer, close the lid, and press 

“Measure Blank”.  

5. Measure and record the absorbance for each sample/standard. To accomplish this task, 

you simply add the sample/standard to a cuvette, place it in the spectrophotometer, close 

the lid, and read the absorbance value on the display.  

6. Perform a linear regression on the absorbance and concentration data from the standards. 

Use this regression line and the absorbance of the samples to calculate sample 

concentrations.  
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Appendix I - Extra Figures 

 

Diel Graphs 

 

 

 

 

Figure 12 Discharge data over the 24-hour sampling period at each stream. 
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Figure 13 Variations in stream chemistry over 24-hour sampling period. Shaded area indicates 

samples taken during the night. Diel variations in field measured parameters (pH, T, DO) and 

calculated parameters (calcite saturation and excess carbon dioxide) are more evident at streams 

that do not experience large changes in discharge. NPOC at Chapman and Mill demonstrate 

some diel variation as seen by the peaks in concentrations near the end of the day. NO3 increased 

with decreasing discharge at Mill and Chapman. Stable isotopes of water were generally 

consistent during the day at Mulberry, Chapman and Mill. Mill and Chapman isotopes were 

slightly higher at night. Vermillion isotopes are a result of diel variations (lower during the day 

and higher at night). 
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BFI & Clay vs Chemistry Graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

6

8

0.2 0.3 0.4 0.5 0.6

Avg. BFI

A
lk

a
li
n
it
y
 (

m
e
q

/L
)

0

10000

20000

30000

40000

25 30 35 40

L
i 
(m

g
/L

)

0.0

0.1

0.2

0.3

25 30 35 40

Clay content

B
r 

(m
g

/L
)

0

10

20

30

25 30 35 40

E
x
c
e
s
s
 C

O
2

 

0

2

4

6

8

25 30 35 40

K
 (

m
g

/L
)

0

2000

4000

6000

25 30 35 40

M
o

 (
p

p
t)

50

75

100

125

25 30 35 40

Clay content

C
a

 (
m

g
/L

)

0

2000

4000

25 30 35 40

Clay content

A
s
 (

p
p

t)

Figure 14 Stream alkalinity increases with groundwater discharge (BFI). Parameters 

often associated with groundwater discharge (Li, Br, and CO2) decrease with clay 

content, possibly indicating that clay limits groundwater discharge. Cations and metals 

concentrations in streams also are generally lower in watersheds with higher clay content. 
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