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Abstract 

Reverse diagonal shear cracking at the supports of many reinforced concrete girders is a 

phenomenon affecting a number of KDOT’s low-volume bridges built in the early-to-mid 

1900’s.  This phenomenon is not addressed in the AASHTO Bridge Design Manual (2002) or 

ACI specifications.  This study investigates the causes of this cracking and creates BRIDGE 

(Bridge Rating of Inclined Damage at Girder Ends), an Excel-based software to determine the 

load rating of a user specified bridge exhibiting reverse diagonal shear cracking at the girder 

supports.  A user-interface is created which allows a user to create a grillage model of an existing 

bridge and to place various rating trucks on the bridge.  Equivalent flexibility analysis is used to 

distribute the truck live loads from within the deck panels to the surrounding girders and 

diaphragms.  Stiffness matrices are utilized to find the nodal displacements then the reactions at 

the girder supports caused by the truck live loads and bridge dead load.  These reactions are 

checked against RISA software models to test the accuracy of the stiffness matrix application.  

ABAQUS FE models and Mohr’s circle stress distribution is used to find the driving and 

clamping forces on the crack.  These forces are caused by resolving the dead and live load 

reactions and the friction force generated between the concrete girder and the rusty steel bearing 

pad along the shear crack orientation.  These clamping and driving forces are used, along with 

the simplified modified compression field theory to determine the shear capacity of each girder 

at the reverse cracks.  A modified version of Equation 6B.4.1 from the Manual for Bridge 

Evaluation (2011) is used to find the operating and inventory rating factors for the bridge.   
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Chapter 1 Introduction 
 

1.1 Background 

            The Kansas Department of Transportation (KDOT) as well as several local counties in 

Kansas own dozens of low traffic bridges built in the early-to-mid 1900s which have developed 

abnormal reverse diagonal shear cracking at the concrete girder supports, as shown in Figure 1-1.  

It seems to be a major concern that these cracks might cause a loss of girder bearing support.  

Normally, diagonal shear cracking propagates from the bottom of the girder at the support 

toward the slab within the span of the girder, as shown in Figure 1-2.  It is hypothesized that the 

abnormal cracking is caused by friction between the concrete girder and the rusty and locked 

steel bearing pad.  This friction exists because the bearing pad has corroded, preventing the 

girder from rotating on its rocker.  Current bridges are built with rubber bearing pads, which do 

not corrode when exposed to moisture.  However, when these bridges were built, steel bearing 

pads were used, which corrode when exposed to decades of moisture and deicing salt.  This 

corrosion turns the originally-designed pinned connection into a partially-fixed connection. 

 

 

Figure 1-1: Reverse Diagonal Shear Cracking 
 

 

Figure 1-2: Normal Diagonal Shear Cracking 
 

1.2 Objective 
The reverse diagonal shear cracking phenomenon is not addressed in the AASHTO 

Bridge Design Manual (2002) or ACI specifications.  The objective of this project is to 

determine the cause of this phenomenon.  KDOT desires to rationally assess the safety of these 
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bridges, thus, another objective is to determine an accurate method for calculating the capacity 

and load rating factor for girders experiencing this phenomenon.  To this end, an Excel-based 

program, BRIDGE (Bridge Rating of Inclined Damage at Girder Ends), is developed which 

analyzes a user-defined bridge span and determines the capacity and rating factor for each girder 

end.  

 

1.3 Scope 
 This thesis is composed of six chapters.  The first chapter discusses the background and 

objectives of the project while highlighting the various sections of the thesis.  The second chapter 

reviews the literature used throughout this project, including how to load rate a bridge, various 

methods for calculating the shear capacity of a concrete beam, various values for the cracked 

concrete-to-cracked concrete coefficient of friction, and transformation of a stress block.  The 

third chapter discusses the BRIDGE’s user interface and the various input options available to 

the user.  The fourth chapter details the functions performed in the background of the program 

and discusses the various approaches considered to distribute the truck loads between the bridge 

elements and to find the capacity of the bridge girders.  The fifth chapter displays the results of 

the various approaches considered for calculating the capacity of the bridge girders as well as 

comparisons between the program and RISA modules to test the program’s accuracy and 

validity.  The sixth chapter reviews the conclusions determined throughout this thesis.    
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Chapter 2 Literature Review 

2.1 Load Ratings 

Bridge load rating is a method used to determine the safe live load capacities of both new 

and existing bridges.  Only permanent loads (dead loads) and vehicular loads (live loads & 

impact loads) are considered.  “Extreme event” loads, such as earthquake, wind, ice, flood, truck 

crashes, and fire loads are not typically considered when load rating a bridge and are not 

considered in this study.  This load rating is then used, along with engineering judgement, to 

determine the need for bridge strengthening or load posting.  Load posting is the restriction of 

truck loads, on a particular bridge, to a fraction of the legal truck load limits.  These legal truck 

loads are discussed in the section 2.1.2.1.  When necessary, the structure should be posted at a 

level which is safe and will not shorten the life of the structure (KDOT Bridge Manual, 2016, 

Section 4.7).  Any bridge which cannot carry a minimum gross live load of 6 kips must be closed 

(Manual for Bridge Evaluation (MBE), 2011, Article 6B.7.1).  MBE (2011) Article 6 outlines 

three methods to determine load rating: the Load and Resistance Factor Rating (LRFR) method, 

the Allowable Stress (ASD) method, and the Load Factor (LF) method.  MBE (2011) does not 

distinguish a preferred method and allows bridge owners the choice of which method to use.  

The Kansas Department of Transportation (KDOT) uses the LF method to load rate their bridges 

(KDOT Bridge Manual, 2016, Section 4.4), thus this method is used in this study.  Therefore, 

only the LF method is discussed further.  MBE (2011) explains that the LF method analyzes the 

actual loads on the structure multiplied by load factors (A1 & A2, defined in Equation 2-2).  

Different factors are applied to the dead and live loads based on uncertainty in the load 

calculations (dead loads are typically calculated with more accuracy than live loads, thus the 

dead load multiplication factor is smaller than the live load multiplication factors).  These 

factored loads are used in Equation 2-2 to determine the rating of the bridge to ensure that the 

strength of the various bridge members is not exceeded.  The bridges under investigation display 

unusual reverse diagonal shear cracking at the supports, thus this work focuses on the shear 

strength capacity at the girder ends. 

Two rating levels are required for the LF method, namely: inventory rating and operating 

rating.  The inventory rating describes the load which a bridge can sustain for an indefinite 

period of time.  This rating can be compared to the design load level but also incorporates the 

deterioration of the bridge.  The operating rating describes the absolute maximum live load to 



 

4 

which the bridge may be subjected (MBE, 2011).  Frequent loads at the operating level will 

cause deterioration to the bridge.  Each member of the bridge is rated and the lowest is the 

governing load rating for that bridge.  The bridge’s rating, as defined by MBE (2011) Equation 

6B.4.1-2, is the rating factor (RF) multiplied by the rating vehicle (Equation 2-1): 

 Load Rating = RF × Rating Vehicle Weight Equation 2-1 

 

The rating vehicle weight is the maximum legal load for a particular type of vehicle.  

According to the KDOT Bridge Design Manual (2016), Kansas State Statute allows for a gross 

vehicle weight of 80,000 lbs. on the Interstate and 85,000 lbs. on other highways without a 

special permit.  The program provides the user with 13 standard trucks (discussed in section 

2.1.2) with which to load rate the bridge.  Each standard truck produces a different live load 

effect on the bridge, thus the bridge will have a different rating factor and rating for each truck. 

Any truck which causes a smaller rating than the legal limit will be used for posting (KDOT 

Design Manual, 2016, Section 15.3). MBE (2011) Equation 6B.4.1-1 defines the rating factor by 

Equation 2-2: 

 

RF =  Capacity −  A�DLA� LL + I#  Equation 2-2 

 

Where: Capacity  = Capacity of girder DL  = Dead load reaction at support of girder LL  = Live load reaction at support of girder I  = Impact factor of live load A1  = Factor for dead loads 

  = 1.3 A2  = Factor for live loads 

  = 1.3 for operating rating level 

  = 2.17 for inventory rating level 
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When load rating a bridge, the girders are usually assumed to be either a fixed or a pinned 

support.  However, with integral abutments, it is sometimes advisable to analyze the girders as 

partially fixed (KDOT Design Manual, 2016, Section 15.5) 

 

2.1.1 Dead Load 

The dead load of the bridge is determined based on the existing conditions, geometry, and 

material properties at the time of analysis (MBE, 2011, Article 6B.6).  The overlay thickness, 

which is typically measured at the time of inspection, should also be considered in the dead load 

of the bridge.  

 

2.1.2 Live Load 

Truck loads, axle configurations, and truck placement for load rating bridges are 

discussed in this section.  A discussion of live load reductions and when these reductions are 

applicable is also included. 

 

2.1.2.1 Truck Types 

MBE (2011) Article 6B.6.2 states that the extreme live load used in Equation 2-2 is 

governed by AASHTO Standard Specifications (AASHTO, 2002).  MBE (2011) Article 6B.7.2 

states that eight standard trucks (Type 3, Type 3S2, Type 3-3, SU4, SU5, SU6, SU7, and 

Notional Rating Load (or NRL) should be analyzed to load rate a bridge in addition to any truck 

configurations specified by the bridge owners.  AASHTO (2002) Article 3.7.5 specifies two 

classes of loading; H and HS loading.  H loading is caused by a 2-axle truck and is designated 

with an ‘H’ followed by the gross tonnage of the truck.  HS loading is caused by a tractor truck 

towing a semitrailer and is designated with an ‘HS’ followed by the gross tonnage of the tractor 

truck only.  In addition to the H & HS trucks specified by AASHTO (2002) and the eight 

additional trucks specified by MBE (2011), KDOT, the bridge owner, states that any legal truck 

configuration which causes a higher stress on a bridge should be used for rating (KDOT Design 

Manual, 2016, Section 15.3).  There are eight standard trucks rated by KDOT, most of which are 

already specified by AASHTO (2002) or MBE (2011).  In addition, the KDOT Design Manual 

(2016) specifies that the T130, T170, and Heavy Equipment Transport (HET) trucks are used to 

load rate bridges.  In total, 13 standard trucks are load rated in this program.  Appendix A 
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displays these vehicles, their axle spacing, and weight in table form.  On the Kansas highway 

system, the maximum load allowed on one axle is 20 kips for a single axle and 34 kips for a dual 

axle with a maximum total truck weight of 85.5 kips.  Some of the truck axle loads in Appendix 

A exceed the maximum allowable load, thus, when these trucks are posted these axles are posted 

at the legal limit while the other axles on the truck are posted for proportionately reduced loads 

(KDOT Design Manual, 2016, Section 15.3). 

 

2.1.2.2 Truck Placement 

AASHTO (2002) should be followed when determining the number of loaded lanes and 

the placement of wheel lines (MBE, 2011, Article 6B.6.2.2).  MBE (2011) Article C6B.6.2.2 

recommends that in certain circumstances it is necessary to consider multiple trucks in the same 

lane.  It recommends that a minimum of 30 ft. clear space be used between trucks in the same 

lane when the loading per truck is less than 12 tons.  The truck loads are to be placed in such a 

way within their respective load lanes so as to produce the maximum stress in the member being 

analyzed (AASHTO, 2002, Articles 3.6.4 & 3.11.2).  As shown in Figure 2-1, the standard 

truck’s axles are spaced 6 ft. apart and the truck occupies a 10 ft. wide load lane (AASHTO, 

2002, Article 3.6.1).  This means that the truck will occupy the space 2 ft. to either side of the 

wheel loads. 

 

  

Figure 2-1: Clearance and Load Lane Width 
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2.1.2.3 Live Load Reduction 

A reduction in live load if multiple lanes are loaded simultaneously is allowed due to the 

improbability of coincident maximum loading in multiple lanes (AASHTO, 2002, Article 

3.12.1).  These live load reduction factors are described in Table 2-1: 

 

Table 2-1: Multiple Presence Factor (Adapted from AASHTO, 2002, Article 3.12.1) 

Number of Loaded Lanes Multiple Presence Factor 

1 or 2 1 

3 0.9 

4 or more 0.75 

 

2.1.3 Impact Factor 

MBE (2011) specifies that AASHTO (2002) Equation 3.1 be used for the impact factor in 

Equation 2-2.  This factor is shown in Equation 2-3.  The impact factor accounts for the dynamic 

effects caused by a truck, such as the bounce, sway, and momentum of the vehicle.  Dynamic 

effects also include the response of wheels impacting pavement surface discontinuities, such as 

joints, cracks, and potholes.  L is limited to the smallest of either the truck length or bridge length 

because this gives a higher impact load coefficient, which is conservative. 

 

I =  50125 + L  < 0.3 Equation 2-3 

 

 Where: 

 L   = Length of loaded part of bridge (ft.) 

   =  min * Truck LengthBridge Length 

 

2.1.4 Capacity 

Field investigations are the basis of the rating of an older bridge for its load-carrying 

capacity.  Any feature of a bridge which affects its capacity should be carefully evaluated and 

any damage, deterioration, and loss of cross-sectional area should be noted (MBE, 2011, Article 
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6.1.2).  MBE (2011) also specifies that certain bridges are subject to unique geometry, loadings, 

and deterioration.  The load rating procedure for these bridges should be augmented where 

needed to suit the unique characteristics of the bridge.  The BRIDGE program developed in the 

present study is tailored to analyze bridges which are experiencing unusual reverse diagonal 

shear cracking at the supports.  These diagonal cracks begin at the bottom edge of the girder 

close to the support and propagate toward the end of the girder.  Normally, shear cracks 

propagate diagonally toward the center of the girder.  The capacity of these girders at the 

supports is governed by the shear capacity of the girder at these cracks.  It is believed that this 

capacity is a function of two parameters: the material shear strength of the girder and the friction 

force between the two faces of the crack caused by clamping forces on either side of the crack. 

 

2.1.4.1 Material Capacity  

Figure 2-2 is a photo from an Inspection Report of Kansas Bridge No. 54-104-317.27 

taken in 2011.  In the photo, the claw of a hammer is wedged into a shear crack at a girder 

support.  This shows that, at the crack interface, parts of the girder have spalled off, indicating 

that not all of the width of the girder is providing shear resistance. 

 

 

Figure 2-2: Crack Width at Girder C, Left Side, Pier 1 of Bridge No. 54-104-317.27 (Reprinted 

from Special Bridge Inspection Report, 2011) 
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MBE (2011) Article 6B.5.3 states that capacity calculations should account for 

observable effects of deterioration in the girder while Article C6.1.2 explicitly states that the 

member cross section used to determine the capacity is the gross cross section less the 

deteriorated section of the member   To account for the kind of deterioration shown in Figure 

2-2, the program allows the user to decrease the width of girder used in the material shear 

capacity calculations by a certain percentage to be estimated during inspection.   

The ultimate shear strength, Vu, of the section is described by AASHTO (2002) Equation 

8-46, rewritten here as Equation 2-4: 

 /0 = 1/2 Equation 2-4 

 

Where: Vu  = Ultimate shear strength of the beam (lbs.) Vn  = Nominal shear strength of the beam (lbs.) 

ϕ  = Shear strength reduction factor 

  = 0.85 for reinforced concrete (AASHTO, 2002, Section 8.16.1.2.2) 

 

The nominal shear capacity, Vn, is given by Equation 2-5 (AASHTO, 2002, Equation 8-

47): 

 V3 = V4 + V5 Equation 2-5 

 

Where: Vc  = Shear capacity provided by concrete (lbs.) Vs  = Steel shear strength (ksi) 

 

A number of shear capacity models are discussed further below.   

 

2.1.4.1.1 AASHTO 

AASHTO (2002) Article 8.16.6.2.1 specifies that for LF design the shear capacity of 

beams subjected to shear and flexure be computed by either Equation 2-6 or Equation 2-7 
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(equations 8-48 or 8-49)  When a more detailed calculation is used to find the shear capacity, the 

shear capacity should not exceed Equation 2-8. 

 

V4 = 71.99f4; + 2,500ρ> V?dM? A b>d Equation 2-6 

V4 = 29f4;b>d Equation 2-7 V4 = 3.59f4;b>d Equation 2-8 

 

Where: f’c   = Concrete compressive strength (psi) bw  = Width of beam web (in.) d  = Depth of tensile reinforcement (in.) = 0.9h 

h  = Height of girder (through slab) (in.) Vu  = Factored shear force at section under consideration (lbs.) Mu  = Factored moment at section under consideration (lb.-in.) ρw  = Reinforcement ratio equal to flexural area of steel normalized by 

   bw and d 

 

Article 8.16.6.4 states that in cases where it is appropriate to consider shear transfer 

across a given plane, such as at an existing or potential crack, that shear-friction theory and 

equations be used to determine the capacity of a beam.  These theories and equations are the 

same as those specified by American Concrete Institute’s Building Code Requirements for 

Structural Concrete (ACI 318-14) and are discussed in the following section. 

 

2.1.4.1.2 ACI Equations 

ACI 318-14 Section 22.9 is applicable when shear transfer across an existing or potential 

crack is considered and is appropriate when analyzing the interactions at a crack interface in 

monolithic concrete.  This section uses the shear-friction concept to derive shear capacity 

equations.  This concept assumes that a crack will form and that reinforcement is provided across 

the crack to resist relative displacements at the crack interface (ACI 318-14 Section R22.9.1.1).  

When shear is present at a crack one side of the crack interface will slip relative to the other.  
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This relative displacement (s in Figure 2-3) causes a separation of the crack interfaces, which 

causes tensile stress, σs, in the reinforcement crossing the crack.  This tensile force transfers to 

the surrounding concrete causing a compressive clamping stress, σc, at the crack interface.  The 

clamping force causes friction between the crack interfaces as protruding aggregates on either 

side of the crack, along with dowel action of the reinforcement, resist shear stress, τ.  Figure 2-3 

helps explain the force transfer assumed in the shear-friction concept. 

 

 

Figure 2-3: Shear-Friction Response at Crack Interface 
 

ACI 318-14 Equation 22.9.4.3, shown below as Equation 2-9, provides a conservative 

estimate of the shear-transfer strength when the shear force produces tension in the 

reinforcement.  If the shear force produces compression in the reinforcement, shear friction does 

not apply and Vn is 0.  The coefficient of friction, µc, is found in ACI 318-14 Table 22.9.4.2 and 

is discussed in section 2.2.2. 

 V3 = AEfF GH sin α + cos α# Equation 2-9 

 

Where Av  = Area of shear-friction reinforcement (in.2) fy  = yield strength of reinforcement (kips) μc  = Coefficient of friction between crack interfaces α  = Angle between shear-friction reinforcement and shear plane 
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ACI 318-14 Table 22.9.4.4 specifies the use of Equation 2-10 as upper limits of Equation 

2-9 for the nominal cracked shear capacity.   

 

V3 = min *0.2f4;A4K0.8A4K    Equation 2-10 

 

Where: 

Acr  = Area of concrete resisting shear transfer (in.2) 

 

ACI 318-14 Table 14.5.5.1 provides Equation 2-11 as the shear capacity of an un-

cracked, plain concrete section subject to one-way shear.  Section R14.5.5.1 explains that shear 

failure in plain concrete will occur as a diagonal tension failure when the principal tensile stress 

near the centroidal axis becomes equal to the tensile strength of concrete.  

 

V4,?34KM4NOP =  43 9f4;b>h Equation 2-11 

 

Where: 

Vc,uncracked = Nominal concrete shear strength of plain, un-cracked section (lb.) 

 

In addition to these shear strength equations, ACI 318-14 also suggests using Equation 

2-7 (ACI 318-14 Equation 22.5.5.1) to find the concrete shear capacity, Vc, of non-prestressed 

beams without axial force. 

 

2.1.4.1.3 Simplified Modified Compression Field Theory 

The Simplified Modified Compression Field Theory (SMCFT) was developed by Bentz 

et al. (2006) as an abbreviated and simpler-to-implement form of the Modified Compression 

Field Theory (MCFT).  The MCFT is a model for reliably finding the shear capacity of 

reinforced concrete sections and was proposed in the 1980’s.  Before the MCFT, shear capacity 

calculations in various codes, including ACI codes, were extremely inconsistent and inaccurate.  

The ACI code found the shear strength as the load causing diagonal shear cracking at a 45° angle 

plus the axial load effect (subtracted capacity if member was in axial-tension and added strength 
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if member was in axial-compression).  Bentz et al. (2006) explains that, on average, the ACI 

calculated capacity was 40% more conservative than experimental shear capacities and the 

coefficient of variation (COV) was 46.7%.   

The MCFT was introduced to create a more effective method for calculating the shear 

capacity of a section.  Bentz et al. (2006) and Abouelleil (2015) explain the assumptions made by 

Vecchio and Collins (1982) to derive the MCFT.  First, the MCFT calculates the diagonal crack 

angle based on strain conditions present in the section instead of assuming an angle of 45° (with 

respect to the bottom of the beam).  It also accounts for the fact that tensile stresses exist in the 

concrete between the cracks and uses the average stresses and strains over large areas (covering 

multiple cracks) in the beam.  Also assumed is that each strain state corresponds to one stress 

state, that the longitudinal and transverse steel is distributed uniformly across the element, and 

that there is a perfect bond between the steel and concrete.  The shear capacity calculated by the 

MCFT is, on average, just 1% greater than the experimental shear failures and has a COV of 

only 12.2%.  Clearly the MCFT is a much more accurate predictor of shear capacity than 

previous methods.  Unfortunately, this model is mathematically very complex, requiring the 15 

equations shown in Bentz et al. (2006) to be solved iteratively through computer modeling.  

Bentz et al. (2006) simplified the MCFT in order for engineers to better understand the 

calculations so ‘back of the napkin’ calculations could be made. 

The SMCFT assumes that the direction of principal compressive stress remains constant, 

as an average, over the effective shear depth, dv, and that shear stresses are uniformly distributed 

over the width of the web and dv.  It also assumes that by considering the biaxial stress 

conditions at one location in the section web the shear strength of the section is calculated 

(AASHTO LRFD Bridge Design Specifications, 2014, Article C5.8.3.4.2).  According to Bentz 

et al. (2006), this method predicts shear capacities only 11% larger than experimental shear 

capacities and has a COV of 13%, which is reasonably accurate.  AASHTO (2014) incorporates 

the SMCFT into their procedure to find the nominal shear capacity of a section and is described 

with the following equations (Equations 5.8.3.3-1 through 5.8.3.4.2-5 of AASHTO, 2014): 

 V4 = β9f4;bEdE Equation 2-12 

V5 = AEfFdE cot θ + cot α# sin αs  Equation 2-13 
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β = TU
V 4.8 1 + 750ε5#                           contains ≥  min. shear reinf.4.8 1 + 750ε5# 51 39 + sZO#      contains <  min. shear reinf. Equation 2-14 

θ = 29 + 3500ε5 Equation 2-15 

ε5 = MdE + 0.5N + /2A5E5  Equation 2-16  

sZO = sZ 1.38a] + 0.63 Equation 2-17 

 

Where: β  = Factor indicating ability of diagonally cracked concrete to transmit 

   tension and shear bv  = Effective web width (in.) 

  = minimum web width within the depth dv dv  = Effective shear depth, measured perpendicular to the neutral axis 

   between the tensile resultant and compressive flexure forces.  Is  

   the greater of that depth defined here, 0.9d and 0.72h (in.) s  =  spacing of transverse steel (in.) Av  = Area of shear reinforcement within a distance s (in.2) α  = Angle of transverse reinforcement to longitudinal axis (degrees) θ  = Angle of inclination of diagonal compressive stresses (degrees) εs  = Strain in longitudinal steel N  = Axial force.  Positive if tensile, negative if compressive (kips) M  =  Absolute value of moment (kips) As  = Area of longitudinal steel on flexural tension side of member (in.2) sxe  = Crack spacing parameter sx  = Lesser of dv and the maximum distance between layers of 

   longitudinal crack control reinforcement (in.) ag  = Maximum aggregate size (in.) 
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 First, a shear strength, Vn, is assumed and Equation 2-16 is used to determine the steel 

strain, εs. Equation 2-17 is then used to find sxe.  This sxe and εs are used in Equation 2-14 and 
Equation 2-15 to determine β and θ respectively. β and θ are used in Equation 2-12 and 

Equation 2-13 to find Vc and Vs respectively.  Equation 2-5 is then used to find a new Vn.  The 

process is then repeated until convergence of Vn.  The shear at this convergence is the final shear 

capacity of the section 

 

2.1.4.1.4 Muttoni & Ruiz Equation 

Muttoni & Ruiz (2008) note that empirical or semi-empirical expressions have mainly 

been used to analyze the shear strength in a beam.  The MCFT has been successfully used to 

evaluate the shear strength of a beam without shear reinforcement.  However, using these kinds 

of methods are complicated as they often involve complex computer modeling and there is still 

no generally accepted method of finding the shear strength of a member without shear 

reinforcing.  Muttoni & Ruiz (2008) developed a physical model which accurately describes the 

shear strength of 285 beams.  They theorize that shear is initially resisted by three separate 

components: cantilever action, aggregate interlock, and dowel action from the flexural 

reinforcement traversing a crack.  As a critical shear crack forms a fourth shear resisting effect, 

arching action, develops because of the effects of aggregate interlock.  As this arching action 

becomes stronger, the effects of cantilever action and dowel action reduce and are eventually 

eliminated.  The aggregate interlock and arching action are functions of the estimated crack 

width in the critical shear region, the roughness of the crack, and the compressive strength of the 

concrete.  Tests by Muttoni and Thurlimann (1986) showed elbow-shaped struts forming in 

unreinforced beams loaded in shear, which were consistent with the arching action predicted by 

Muttoni & Ruiz (2008).  Equation 2-18 describes their model.  The equation assumes an elastic 

modulus of concrete of: Ec = 276fc1/3 (ksi).  This is similar to ACI 318-14 Equation 19.2.2.1.b 

which describes the elastic modulus of concrete for normal weight concrete: 57f’c1/2 (ksi). 
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V? = 4b>d9f41 + 120 εd5 in8 + d]
 

Equation 2-18 

 

Where: Vu  = Shear capacity of girder (lbs.)   dg  =  Aggregate diameter (in.) ε  = Strain in the control depth 

 

Muttoni & Ruiz (2008) further simplified this equation by assuming that the depth of the 

compression zone, c, is equal to 0.35d, that the reinforcement strain, εs, is proportional to the 

bending moment, mEd, and by estimating the flexural strength of the beam, mRd.  Safety factors 

for concrete (ϕc) and steel (ϕs) were also introduced as 0.67 and 0.9 respectively, 29,700 ksi was 

used as the modulus of elasticity of steel (Es), 70 ksi was used as the yielding stress of steel (fy), 
and 5/4 in. was assumed as the aggregate diameter.  With these assumptions and values, 

Equation 2-19 is calculated, which has been adopted into the Swiss Code for structural concrete. 

 

V? = 2.3bcd9f4;1 + 0.056d mdPmeP
 Equation 2-19 

 

Where: mEd  = Bending moment in girder (lb.-in.) mRd  = Flexural strength in girder (lb.-in.) 

 

2.2 Friction Coefficients 

2.2.1 Steel – to – Concrete 

Steel bearing pads were used to build the bridges analyzed by the present study.  Rubber 

was not yet used as a material for bearing pads when these bridges were built in the 1920’s to 

40’s.  As seen in Figure 2-4 from the Inspection Report for Kansas Bridge No. 54-104-317.27 

(2011), steel rockers can get heavily corroded, limiting the ability of the rockers to rotate.  This 
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prevents the girders from rotating at the supports, as designed.  The girder locks on the plate and 

a friction force at the girder-steel boundary is produced.  It is necessary to have a coefficient of 

friction for this interface to estimate the friction forces at the girder supports. 

 

 

Figure 2-4: Support Rockers at Pier 4, Left Side, Span 5 of Bridge No. 54-104-317.27 (Reprinted 

from Special Bridge Inspection Report, 2011) 

 

Rabbat & Russell (1985) conducted tests to determine the static coefficient of friction 

between concrete and steel for both dry and wet interface conditions.  It is assumed that the 

superstructure of the bridges shelter the girder-bearing pad interface from most rain water, so dry 

interface conditions are assumed in this study.  Rabbat & Russell (2008) tested a set of concrete 

specimens, with dry interfaces, at a normal stress of 60 psi.  From these tests, a static coefficient 

of friction of 0.57 is recommended for normal compressive stresses between 20 and 100 psi.  

This value was implemented in the current study. 

 

2.2.2 Cracked Concrete – to – Cracked Concrete 

Several methods were investigated as possible sources to find the coefficient of friction 

of cracked concrete-to-cracked concrete. 
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2.2.2.1 ACI 

ACI 318-14 Table 22.9.4.2 recommends a coefficient of friction, μc, of 1.4λ for concrete 

placed monolithically.  For normal weight concrete λ is 1 and for lightweight concrete λ is 0.75.  

As stated in section 2.1.4.1.2, ACI 318-14 Section 22.9 assumes the shear-friction concept is 

used to determine the shear capacity of the beam.  In this concept, it is assumed that shear 

reinforcement crosses the crack and friction between the crack faces produces all of the shear 

resistance.  Therefore, ACI 318-14 recommends artificially high values of the coefficient of 

friction so the calculated shear strengths will agree with test results (ACI 318-14 Section 

R22.9.4.2).  AASHTO (2002) Article 8.16.6.4, which outlines the shear-friction process, reflects 

the values of μc referenced in ACI 318-14.   

 

2.2.2.2 PCA 

Portland Cement Association’s (PCA) Concrete Masonry Handbook (2008) Appendix A 

recommends using a coefficient of friction, μc, between cast-in-place concrete to cast-in-place 

concrete of 0.4 when designing a building using concrete masonry.  This value is based on a 

safety factor of 2, thus the actual μc is 0.8 between cast-in-place-concrete – to – cast-in-place-

concrete. 

 

2.2.2.3 Loov 

Loov (1998) uses shear friction to formulate equations to model the shear capacity of 

reinforced concrete beams.  Clause 11.1.3 in the CSA A23.3-94 code (Canadian Standards 

Association, 1994) provides that shear friction must be used to design “interfaces between 

elements such as webs and flanges, between dissimilar materials, and between concretes cast at 

different times or at existing or potential major cracks along which slip can occur”.  Loov (1998) 

postulates that beams have “innumerable locations for ‘potential major cracks along which slip 

can occur’”, thus shear friction can be used for predicting the shear capacity of beams.  Equation 

2-20, first proposed by Loov (1978), is used as the basis for shear friction equations derived by 

Loov (1998).  This equation, with a k of 0.6, was compared to push-off tests conducted by 

Kumaraguru (1992) and the results are shown in Loov (1998).  Equation 2-20, with a k of 0.6, is 

consistent with these push-off tests.  As explained by Loov (1998), a k of 0.6 is conservative for 

un-cracked sections but is un-conservative for cracked sections.  Loov (1998) asserts that a k of 
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0.6 is appropriate for beams because the beam will likely be cracked along part of a shear plane 

but will remain un-cracked along the rest of the shear plane, particularly that portion in the 

compression zone. 

 

v = k9σf4; ≤ *0.25f4;         for f4; ≤ 4 ksi7                   for f4; > 4 ksi Equation 2-20 

 

To which: 

σ = RA Equation 2-21 

v = SA Equation 2-22 

μ4 = SR Equation 2-23 

 

Where: σ  = Average normal stress on shear failure plane v  = Average shear stress on shear failure plane k  = Factor for relating shear strength and normal strength 

  = Determined from experiments R  =  Normal force acting on shear failure plane – Figure 2-5 S  = Shear force acting on shear failure plane – Figure 2-5 A  = Area of cracked surface 

  =  bwh#/sinθ – Figure 2-5 

  Where: 

  θ = Angle of crack with respect to horizontal 
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Figure 2-5: Free Body Diagram of Forces Acting at Crack Interface 

 

Equation 2-21, Equation 2-22, and Equation 2-23 are substituted into Equation 2-20 to 

yield Equation 2-24 for the coefficient of friction, μc, between the cracked surfaces of the 

concrete beam: 

 

μ4 = kkf4;AR  Equation 2-24 

 

Loov (1998) continues to derive shear-friction equations to find the shear strength of 

concrete beams. The ACI shear capacity equations, discussed earlier, are based on shear-friction 

models.  Because shear-friction is already considered as a method to find the shear capacity of a 

beam, the shear strength equations derived by Loov (1998) will not be discussed further. 

 

2.2.2.4 Tassios and Vintzeleou 

Tassios & Vintzeleou (1987) analyzed and presented the results of tests to study the 

behavior of rough interfaces of plain concrete subject to imposed shear displacements.  Shear is 

transferred across a crack through concrete aggregate interlock when there is a normal 

compressive stress at the crack interface.  This compressive stress is caused by either external 

forces or from reinforcing bars crossing the crack.   

Referring to Figure 2-3, when a crack is subject to a small shear displacement, s, some 

deformation and cut-off occurs in the concrete aggregates on either side of the crack.  This 

causes an increase in the local crack width, w, which in turn produces a stress in the reinforcing 

steel crossing the crack producing a force equal to Asσs, which is the area of the reinforcing bar 
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times the stress in the bar.  This tensile force is equal to a compressive force in the concrete 

around the bar equal to Acσc, which is the area of concrete surrounding the reinforcing bar times 

the stress in the concrete.  Therefore, Equation 2-25 is proposed.  Alternatively, an external 

compressive force can cause a shear stress in the concrete at the crack interface. 

 σ4 = ρσ5 Equation 2-25 

 

Where: σc  = Stress in concrete in vicinity of reinforcing bar (psi) σs  = Stress in reinforcing bar (psi) ρ  = Steel to concrete ratio 

 

 In the tests analyzed by Tassios & Vintzeleou (1987), concrete blocks with reinforcing 

anchors were precracked to obtain natural cracks.  Displacements, s, were then induced in 

specimens using various constant normal compressive stresses (0.5, 1, and 2 MPa) and varying 

concrete compressive strengths (16, 30, and 40 MPa).  The crack width was then recorded.  Since 

the anchorage of the reinforcing bars in the test specimens were known, the tensile stress in the 

bar, σs, was determined.  Then, using Equation 2-25, the normal stress in the concrete at the 

crack, σc, was determined.  From this stress and the shear displacement, the shear stress and the 

frictional response at the crack interface was found. 

 It was found that the maximum shear stress transferred by the crack interface increased 

with increasing normal force but was not proportional to this force.  It is postulated in Tassios & 

Vintzeleou (1987) that at lower normal stresses the failure of the aggregate interlocking 

mechanism occurs when the peaks of the aggregate and cement paste particles protruding from 

the crack interface are ‘cut off’ by the shear force.  At higher normal stresses, the aggregate 

protrusions are so tightly interlocked that the tensile strength of the concrete matrix is weaker 

than the shear strength of the aggregate, thus failure occurs in the matrix.  This type of failure 

was observed in the test specimens subject to higher normal stresses. 

 From the results of these tests, Equation 2-26 was introduced to describe the maximum 

friction coefficient between the crack interfaces.  It should be noted that in these tests, the initial 
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crack width was less than 0.1 mm, so no free slip at the crack interface was recorded.  Thus, this 

equation is not applicable to cases of larger initial crack widths. 

 

μH = 0.44 7σ4lH;Am�/n
 Equation 2-26 

 

 The compressive stress in the concrete is equal to the normal force at the crack divided by 

the area of the concrete interface: σc = R/A.  Substituting this into Equation 2-26 yields Equation 

2-27, which is very similar to Equation 2-24 derived by Loov (1998). 

 

μ4 = 0.44 7 Rf4;AAm�/n
 Equation 2-27 

 

2.3 Transformation of Stress 

The stresses on a finite cube of an element, centered at Q, are described by the 6 stress 

components in Figure 2-6.  σx, σy, and σz represent the normal stresses on the faces of the cube 

while τxy, τyz, and τzx represent the shear stress on the element faces.  When two of the faces of 

the cubic element do not experience any stresses, as is the case on the surface of a structural 

element that is not subject to external forces, the remaining stresses are called plane stresses.  If 

the faces perpendicular to the z-axis in Figure 2-6 are free of stress, the resulting plane stresses 

are displayed in Figure 2-7. 

 

  

Figure 2-6: General State of Stress at a Point 
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Figure 2-7: Plane Stresses 

 

2.3.1 Transformation of Stress Block 

If Figure 2-7 is rotated about its z-axis by an angle, θ, the stresses at the faces of the cube 

change to σx’, σy’, and τx’y’, as shown in Figure 2-8.  Beer et al. (2012) Section 7.2 derives 

Equation 2-28, Equation 2-29, and Equation 2-30 which define these transformed stresses. 

 

  

Figure 2-8: Transformed Plane Stresses 
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σZ; = σZ + σF2 + σZ − σF2 cos 2θ + τZF sin 2θ Equation 2-28 

σF; = σZ + σF2 − σZ − σF2 cos 2θ − τZF sin 2θ Equation 2-29 

τZ;F; = − σZ − σF2 sin 2θ + τZF cos 2θ Equation 2-30 

   

 Where: 

 σx  = Normal stress normal to x-axis (psi) 

σy  = Normal stress normal to y-axis (psi) 

τxy  = Shear stress perp. to z-axis & parallel to either x- or y- axis (psi) 

θ  = Angle of Transformation (°) 

 σx’  = Normal stress normal to x’-axis (psi) 

σy’  = Normal stress normal to y’-axis (psi) 

τxy  = Shear stress perp. to z’-axis & parallel to either x’- or y’- axis (psi) 

  

2.3.2 Formulation of Mohr’s Circle 

Mohr’s Circle of plane stress was introduced by German engineer Otto Mohr and is 

displayed in Figure 2-9.  As Beer et al. (2012) explains, Mohr’s Circle is derived from Equation 

2-28 and Equation 2-30, which are the parametric equations of a circle.  For any given value of θ, the point of abscissa, σx’, and ordinate, τx’y’, defines a point, F, which lies on a circle displayed 

in Figure 2-9.  When  σx+σy#/2 is subtracted from each side of Equation 2-28, both sides of 

Equation 2-28  and Equation 2-30 are squared, and finally Equation 2-28 and Equation 2-30 are 

added together, Equation 2-31 is formed. 
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Figure 2-9: Mohr’s Circle of Plane Stresses 

 

7σZ; − σZ + σF2 A� + τZ;F;� = rσZ − σF2 s� + τZF�  Equation 2-31 

 

 Finally, substituting Equation 2-32 and Equation 2-33 into Equation 2-31 yields Equation 

2-34, which is the equation of a circle with radius, R, and center, point C.  Figure 2-9 shows that 

C is at abscissa σave and ordinate 0. 

 

σMEO = σZ + σF2  Equation 2-32 

R = truvmuw� s� + τZF�   Equation 2-33 

 σZ; − σMEO#� + τZ;F;� = R�  Equation 2-34 

 

 Where: 

 σave  = Stress at center of Mohr’s Circle (psi) 

 R  = Radius of Mohr’s circle (psi) 

 

2.3.3 Principal Stresses & Maximum Shearing Stress 

Points A & B of Figure 2-9 represent the minimum, σmax, and maximum, σmin, value of 

the normal stress, σx’, respectively.  As seen from Figure 2-9, τx’y’ equals 0 at these points.  
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Substituting τx’y’ = 0 into Equation 2-30 and rearranging yields Equation 2-35 which finds the 

angle, θp, of the principal planes of stress at point Q.  The maximum & minimum normal 

stresses, σmax & σmin, are called the principal stresses at point Q and act normal to the principal 

planes of stress.  Equation 2-35 defines two values of θp which are 90° apart.  As shown in 

Figure 2-10 one value is the angle from the x-axis to the x’-axis, which is perpendicular to 

maximum principal plane.  The other value is the angle from the x-axis to the y’-axis, which is 

perpendicular to the minimum principal plane.  No shear stresses are present on the principal 

planes. 

 

θx yMZ,yz3 = tanm� { 2τZFσZ − σF|2  
Equation 2-35 

 

 Where: 

 θp max,min = Transformed angles to the principal planes of stress (°) 

 

 

Figure 2-10: Principal Stresses 

 

 From Figure 2-9 it is seen that σmax,min = σave ± R.  Thus, substituting Equation 2-32 & 

Equation 2-33 yields Equation 2-36 which defines the maximum and minimum stresses.  It is 

necessary to substitute the θp values from Equation 2-35 into Equation 2-28 to determine which θp corresponds to which principal stress. 
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σyMZ,yz3 = σZ + σF2 ± krσZ − σF2 s� + τZF� Equation 2-36 

 

 Where: 

 σmax,min  = Maximum and minimum principle stresses (psi) 

 

 Points D and E from Figure 2-9 correspond to the points of maximum shearing stress, τmax.  The abscissa of these points is σave.  Substituting σave from Equation 2-32 as σx’ in 

Equation 2-28 and rearranging yields Equation 2-37 which defines two angles, θs, which are 90° 

apart.  As shown in Figure 2-11, either of these θs values correspond to the orientation of the 

cubic element which yields the maximum shearing stress at point Q.  The angles θs are 45° less 

than their corresponding θp values. 

 

θ5 = tanm� 7− σZ − σF2τZF A2  
Equation 2-37 

 

 Where: 

 θs  =  Transformed angles to the planes of maximum shear stress (°) 

 

 

Figure 2-11: Maximum Shearing Stress 
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 The planes of maximum shear stress, defined by the angles θs and displayed in Figure 

2-11, are subject to the same shear stress, τmax.  As shown in Figure 2-9, τmax is equal to the 

radius of Mohr’s Circle, R.  Thus Equation 2-33 also yields the maximum shear stress, which is 

redefined as Equation 2-38. 

 

τyMZ = krσZ − σF2 s� + τZF�  Equation 2-38 

 

2.4 Effective Flange Width 

AASHTO (2014) Article C4.6.2.6.1 defines the effective flange width as the “Width of 

the deck over which the assumed uniformly distributed longitudinal stresses result approximately 

in the same deck force and member moments calculated from elementary beam theory assuming 

plane sections remain plane, as are produced by the non-uniform stress distribution.”  AASHTO 

(2002) Article 8.10 specifies that the total effective flange width for a T-Girder should not 

exceed one-quarter of the span length of the girder & that the effective flange width overhang on 

each side of the web should not be more than six times the thickness of the slab or half the clear 

distance to the adjacent girder web.  The effective overhanging flange width for exterior girders 

with a slab only on one side of the web should be the lesser of 1/12 of the span length, 6 times 

the thickness of the slab, or half the clear distance to the adjacent girder web 

 

2.5 Previous Studies 

Al-Mahaidi et al. (2000) compared calculated load distributions and shear strengths to the 

measured load distribution and shear strength displayed by Baranduda Bridge, which is a T-

Girder bridge built around 1916 in Victoria, Australia, and was load tested to failure.  The 4 

girder-continuous 3-span bridges consisted of girders with 280 mm wide flanges, an overall 

depth (through slab) height of 610 mm, and a slab thickness of 150 mm.  The concrete had a 

compressive strength of 27 MPa and a Young’s Modulus of 21 GPa.  The flexural reinforcement 

consisted of 6 28.6 mm diameter bars in positive bending with 3 28.6 mm bars over the supports.  

The girders had 3 sets of 6.4 mm diameter stirrups ranging from 400-500 mm apart.  The steel 

had a Young’s Modulus of 195 GPa.  Al-Mahaidi et al. (2000) predicted the girder displacement 
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using both grillage analysis and a finite element analysis.  The resulting displacement from these 

two methods were extremely close to each other and were slightly more conservative than the 

actual displacements of the girders displayed during the test, indicating that a grillage analysis 

adequately distributes point loads to the surrounding members.  Al-Mahaidi et al. (2000) then 

calculated the shear force in the beam using the MCFT and a non-linear finite element model 

analysis (NLFEM).  These two methods yielded shear strengths which were lower than the 

measured shear strength, but which were relatively close to the measured shear strength and to 

each other.  This shows that the MCFT calculates reasonable shear strength for concrete girder 

T-beams. 

 Commander and Shultz (1997) load-tested 6 reinforced-concrete Illinois Bulletin Slab 

(IBS) bridges in Kansas by slowly moving a truck with known weight and axle spacing over the 

bridge and constantly recording the strain at the top and bottom of the deck slab and curbs. These 

bridges are typically continuous for three or more spans and the spans do not exceed 45 ft. It was 

found that the stiffness of the bridge was nearly the same at both positive and negative moment 

regions, that cracks had little effect on the flexure or load transfer in the bridge, and that the pier 

column bases acted as fixed supports.  Commander and Shultz (1997) then load rated the bridges 

for both inventory and operating levels using both allowable stress and load factor designs.  It 

was assumed that the live load distributed similarly to the dead load, however, the authors 

questioned this assumption based on the resulting load ratings.  In every case, the load rating at 

negative moment regions controlled because the calculated dead load moments at these locations 

nearly equaled the inventory capacities. 

 Azizinamini et al. (1994a, 1994b) performed an ultimate load test on a five-span concrete 

slab bridge built in 1938 which was 8 m. wide, and a maximum span length of 11.4 m. and a 

maximum slab thickness of 43 cm.  According to AASHTO provisions of the time, the bridge 

had a load rating of 0.671, so the bridge was decommissioned.  Azizinamini et al. (1994a, 1994b) 

found that, at ultimate failure, the bridge was equivalently loaded with 7 AASHTO HS20 trucks, 

or 10.4 times the inventory rating calculated using AASHTO provisions.  To determine a more 

accurate method for determining the load rating of the bridge, Azizinamini et al. (2004) 

developed a rating method which is based on determining the probability of failure of the bridge 

using the load effect on the bridge and the resistance of the bridge.  Based on their method, 

Azizinamini et al. (2004) rated the same bridge and found that trucks weighing up to 50 tons 
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could safely cross the bridge, which was much more accurate than the rating calculated using the 

AASHTO provisions. 

 Ranasinghe and Gottshall (2002) developed a method to load rate compression members 

which are specifically tailored for deck-filled arches composed of non-slender, rectangular, 

reinforced concrete members in uni-axial bending, which are sometimes used in bridge 

construction.  In this method, analysis software is used to measure the applied loads and 

moments on a compression member.  Then, the developed equations can be used in a spreadsheet 

application, such as Excel, in order to find the load rating of the compression member.  This 

method was tested on the Bulkeley Arch Bridge in Hartford, Connecticut and compared to an 

interaction diagram created from an exact solution.  The method created by Ranasinghe and 

Gottshall (2002) is agrees very well with this interaction diagram.  This proposed method can be 

manipulated for compression members experiencing bi-axial bending, members which are 

slender, and deteriorated members. 

 

2.6 Poisson’s Ratio 

When a stress is applied on a material in one direction the material typically deforms in 

the other two orthogonal directions as well.  This deformation is described by the Poisson’s ratio 

of the material.  When an axial load is applied to a material, the Poisson’s ratio, ν, is described 

by Equation 2-39. 

 

ν =  − Lateral StrainAxial Strain  Equation 2-39 

 

 Where: 

 ν  = Poisson’s ratio 

 

AASHTO (2002) Article 8.7.3 defines Poisson’s ratio as 0.2 for reinforced concrete. 
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Chapter 3 BRIDGE Input/Output Interface 

 

An excel-based program named Bridge Rating of Inclined Damage at Girder Ends, or 

BRIDGE, was created to allow a user to model a simply supported bridge span composed of 

concrete girders, diaphragms, and a deck slab.  The user then loads the bridge with the desired 

truck loading.  BRIDGE uses the user-input data to analyze the bridge and loading to determine 

the rating factor for each girder support. 

 

3.1 Mesh & Alignment Sheet 

The Mesh & Alignment sheet displays the Bridge Mesh and Lane Alignment options in 

the corresponding boxes shown in Figure 3-1.  The user input data is provided in the white boxes 

next to the respective parameters. 

 

 

Figure 3-1: Bridge Mesh & Alignment User Interface 
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3.1.1 Lane Alignment 

The input parameters for the Lane Alignment section, as seen in Figure 3-1, are: 

• Number of Lanes (NL) 

• Lane Width (LW) (ft.) 

• Cantilever Width (CW) (ft.) 

• Exterior Shoulder Width (ESW) (ft.) 

• Exterior Barrier Width (EBW) (in.) 

• Median Shoulder Width (MSW) (ft.) 

• Median Barrier Width (MBW) (in.) 

• Median Placement (‘Median Between Lanes’) 

 

The user selects the number of lanes from a drop-down menu, as shown in Figure 3-2 which 

ranges from 1 to 4 (‘Lanes_1’ to ‘Lanes_4’).  The lane width is assumed equal for all lanes.  The 

cantilever width is the distance from the outside face of the exterior girder to the edge of the slab 

and is displayed in the graphic in Figure 3-1.  It is assumed that the cantilever width, exterior 

shoulder width, and exterior barrier width are equal for both sides of the bridge.  The median 

shoulder width is assumed equal on both sides of the median barrier if median barriers and 

shoulders exist.  When one or two lanes are selected the ‘Median between Lanes’ drop-down 

menu is disabled and “N/A” is displayed in this field.  This is because the BRIDGE assumes that 

no medians exist on bridges with only one lane and if a median exists on a two lane bridge then it 

is between the two lanes.  When there are three lanes the ‘Median between Lanes’ drop-down 

menu, as shown in Figure 3-3, allows the user to place the median either between lanes ‘1 and 2’ 

or between lanes ‘2 and 3’.  When there are 4 lanes the ‘Median between Lanes’ drop-down 

menu is again disabled and ‘N/A’ is displayed as the program assumes the median, if one is 

present, is between lanes two and three.  As shown in Figure 3-1, the program assumes lane #1 is 

the closest lane to the bottommost girder of Figure 3-1.  The number of lanes increases until the 

last lane is closest to the topmost girder. 
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Figure 3-2: No. of Lanes Drop-Down Menu 

 

 

Figure 3-3: ‘Median between Lanes’ Drop-Down Menu 

 

3.1.2 Bridge Mesh 

The input parameters for the Bridge Mesh section, as seen in Figure 3-1, are: 

• Number of Girders (NG) 

• Length of Girders (GL) (ft.) 

• Number of Interior Diaphragms 

• Number of Virtual Diaphragms  

 

The girders, as shown in the graphic of Figure 3-1, refer to the bridge beams which run 

parallel to the bridge span.  The girder length input is defined as the clear span between the 

exterior diaphragms, or the distance from inside face-to-inside face of the exterior diaphragms 

(NOT the center-to-center distance between the exterior diaphragms).  The choice of using the 

clear span length is for user convenience, per KDOT request.  In our meetings with KDOT in 

Fall 2014 and Spring 2015 it was stated that the majority of bridge plans call out the “clear span” 

spacing of the diaphragms, thus, it is convenient for users to simply input the clear span girder 

length as described in the bridge plans.   

Diaphragms are the bridge beams which run perpendicular to the span length and the girders.  

Exterior diaphragms are those at the outside edges of the bridge span being analyzed.  BRIDGE 

automatically assumes there are two exterior diaphragms; one on either side of the span.  Interior 

diaphragms are an optional user input.  Interior diaphragms are real diaphragms between the two 

exterior diaphragms.  The program assumes these interior diaphragms are spaced uniformly 

between the exterior diaphragms.  Virtual diaphragms are also an optional user input.  Virtual 
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diaphragms are ‘imaginary’ diaphragms within the bridge which have a total depth equal to the 

depth of the slab, thus, virtual diaphragms have no web.   

If any virtual diaphragms are incorporated, BRIDGE automatically spaces them 

uniformly between the real end and interior diaphragms.  Their inclusion increases the number of 

nodes and members used in the analysis.  This makes the analysis more accurate, especially 

when the distance between real diaphragms is large.  In order for the program to work properly 

there must be the same number of virtual diaphragms between each pair of real diaphragms.  For 

example, if there is 1 interior diaphragm, there must be an even number of virtual diaphragms.  If 

there are 2 interior diaphragms, the number of virtual diaphragms must be divisible by ‘3’.  If 

there are no interior diaphragms, there are no limitations to the number of virtual diaphragms.  

The ‘Check Diaphragms’ button runs the ‘Verify_Deck_Width’ macro which checks to make 

sure that the number of virtual diaphragms is compatible with the number of real diaphragms.  If 

the number of virtual diaphragms is incompatible an error message will appear, as shown in 

Figure 3-4.  If this message appears, the user should select ‘OK’ on the error message box and 

adjust the number of virtual diaphragms until Equation 3-1 is satisfied, then reselect the ‘Check 

Diaphragms’ button.  If Equation 3-1 is satisfied the message box shown in Figure 3-5 appears.  

The user can then select ‘OK’ and continue with the BRIDGE program. 

 

 

Figure 3-4: ‘Check Diaphragms’ Error Message 

 # Virtual Diaphrams = n # Interior Diaphrams + 1# Equation 3-1 

 

Where: n   = Any integer 
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Figure 3-5: ‘Check Diaphragms’ Virtual Diaphragm Adequacy Message 

 

The total number of diaphragms and diaphragm length are automatically calculated within 

the program and are dependent upon the user inputs.  The total number of diaphragms is two 

(exterior diaphragms which are automatically assumed as part of the bridge) plus the number of 

interior and virtual diaphragms.  The diaphragm length, displayed in the program and shown in 

the graphic of Figure 3-1, is the clear distance between the interior faces of the two exterior 

girders.  Like the girder length, the use of clear span length is based upon KDOT request.  The 

diaphragm length is defined by Equation 3-2. 

 

DL =  NL × LW# +  2 × ESW# +  2 × MSW# + 7MBW12 A + 72 × EBW12 A
−  2 × CW# − 72 × GW12 A 

Equation 3-2 

 

Where: DL   = Diaphragm Length (ft.) GW  =  Girder Width (in.) (Described in section 3.2.1) 

 

3.1.3 Background Functions of the Mesh & Alignment Sheet 

Outside of the user input screen view, shown in Figure 3-1, is a table which calculates the 

actual and effective slab flange widths for each interior and exterior girder and diaphragm.  The 

actual slab width of the girders is used to calculate the dead load of the structure.  This actual 

slab width is that portion of the slab which is tributary to a girder and consists of the girder web 

width plus half the distance to the adjacent girder web on either side of the web.  For dead load 

calculation purposes, the entire slab is accounted for in the actual tributary widths of the girders, 
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therefore the actual tributary width of the diaphragms is unnecessary and is not calculated.  The 

effective slab width of the girders is in accordance with AASHTO (2002) Article 8.10 and 

follows the guidelines outlined in section 2.4.  AASHTO (2002) Article 8.10, however, does not 

specify an effective flange width for diaphragms, therefore the actual tributary width of the 

diaphragms is used as the effective slab width.  The tributary width of each diaphragm consists 

of the diaphragm web width plus half the distance to the adjacent diaphragm webs on either side 

of the web.  These effective slab widths are used in the Section Properties sheet to determine 

girder and diaphragm section properties.  The table of the actual and effective slab widths are 

shown in Figure 3-6: 

 

 

Figure 3-6:  Effective and Actual Slab Widths 

 

Outside of the user screen, BRIDGE determines and prints the number of lanes which the 

user specifies.  Since the ‘Median between Lanes’ drop-down menu is dependent upon the ‘No. 

of Lanes’ drop-down menu excel will not allow just numbers to populate the “No. of lanes” 

drop-down menu.  Thus, this cell, shown in Figure 3-7, determines the numerical number of 

lanes from the available drop-down menu options. 

 

 

Figure 3-7: Numerical Value for User Specified Number of Lanes 

 

The table in Figure 3-8 is used to facilitate the drop-down menu for the ‘Median between 

Lanes’ user input since it is dependent upon the selected number of lanes.  The lane number 

options are printed in the first row of the table while the ‘Median between Lanes’ options for 

each ‘No. of Lanes’ option is printed in the columns. 
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Figure 3-8: Median Placement Drop-Down Menu Facilitation 

 

Figure 3-9 displays the box which reads the user selection for ‘Median between Lanes’ 

and displays a numerical value dependent upon the selection.  If the user selects “1 and 2” then 

the box will display the number ‘1’.  If the user selects ‘2 and 3’ then this box will display the 

number ‘2’.  If the user does not have the option to specify where the median is located and 

‘N/A’ is selected then this box will display a ‘0’.  The number displayed in this box, along with 

the number of lanes, is used within the program to correctly place the median if one exists. 

 

 

Figure 3-9: Numerical Representation of Median Placement 

 

3.2 Section Geometry and Material Properties Sheet 

The Section Geometry and Material Properties user interface, shown in Figure 3-10, 

allows the user to input girder, diaphragm, slab, and wearing surface geometry.  In addition, the 

user can input concrete material properties and crack width properties.  All user-input boxes are 

displayed with a white background. 

 

3.2.1 Section Geometry 

This sheet allows the user to input the height (in.) and width (in.) of the girders and 

diaphragms as well as the deck slab thickness (in.).  Per KDOT request, BRIDGE defines the 

height of the girders and diaphragms as from the bottom of the element through the top of the 

slab.  This height definition should allow the user to more conveniently input the girder and 

diaphragm properties directly from the bridge design plans.  If the user desires either the girder 

or diaphragm to not have a ‘web’ section, the user may simply make the height of the girder or 

diaphragm equal to the deck slab thickness and the web width equal to any number.  The 
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program will work correctly and assume there is no web for the girder or diaphragm.   Per 

KDOT permission, the girders and diaphragms are assumed rectangular as this is the only beam 

shape used in the bridges targeted by this program.  The program allows the user to specify 

different dimensions for the interior and exterior diaphragms.  However, the program assumes 

that all exterior diaphragms have the same dimensions and all interior real diaphragms have the 

same dimensions.  If, in the Mesh & Alignment sheet, the user specifies that there are no interior 

diaphragms then the user may set the interior diaphragm user-input cells in the Section Geometry 

and Material Properties sheet to anything – BRIDGE knows to ignore these inputs.   No user 

input for the virtual diaphragms is necessary as the program already assumes that the virtual 

diaphragms, discussed in section 3.1.2, have a height equal to the deck slab thickness and have a 

tributary width equal to the interior diaphragm effective slab width, as displayed in Figure 3-6. 

 

 

Figure 3-10: Section Geometry and Material Properties User Interface 

 

Additionally, the user may input a wearing surface thickness (in.) along with the wearing 

surface unit weight (pcf).  The wearing surface properties are used strictly for bridge dead load 
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calculations and do not contribute to the girder or diaphragm cross sectional properties or the 

bridge stiffness. 

 

3.2.2 Material Properties 

Per KDOT request, the user specifies the concrete compressive strength, f’
c (psi), as well 

as the concrete unit weight, γc (pcf), which is used to determine the bridge’s dead load weight.  

The concrete strength is a user input, however, if the user does not know the specified design 

concrete strength, it is recommended that a value of 3000 psi be used.  3000 psi was a common 

compressive strength for concrete in the early 1900’s when most of the bridges affected by 

reverse diagonal cracking were built. 

 

3.2.3 Crack Properties 

 In this sheet, the user specifies the crack properties and the condition of the girders near 

the supports.  As discussed in section 2.1.4.1 and shown in Figure 2-2, the crack width of the 

reverse diagonal shear cracks are sometimes so severe that a portion of the crack faces are no 

longer in contact with each other and, thus, do not provide any shear capacity.  Based on 

inspection reports and engineering judgement, the user should determine the percent of the girder 

width which maintains full contact between crack faces and thus transfers shear across the crack.  

This percent is entered for the “% Cracked Girder Width Used”.  The less girder width used the 

smaller the shear capacity and more conservative the load rating.  The user may also specify the 

angle of crack propagation, θ, of the reverse diagonal crack.  The orientation of this angle is 

shown in Figure 3-11.  As discussed in section 4.3.9.2, the program calculates a predicted crack 

angle based on the effects of friction forces at the girder-to-bearing pad interface.  The user can 

choose to either use their manually-entered crack angle, θ, or use the program calculated crack 

angle.  To use the manually-entered angle the user should select “Manual” from the “User Input 

or Calculated Angle?” drop-down menu, as shown in Figure 3-12.  Otherwise, the user should 

select “Calculated” for the analysis to use the calculated crack angle.  The user may also specify 

the diameter of the aggregate used in the girder concrete in the ‘Aggregate Diameter’ input box.  

If this parameter is unknown, it is recommended that the user input an aggregate diameter of 1”.  

The larger the aggregate diameter specified, the larger and less conservative the rating factor. 



 

40 

 

Figure 3-11: Angle of Crack Propagation 

 

 

Figure 3-12: ‘Use Input or Calculated Angle?’ Drop-Down Menu 

 

3.2.4 Background Computations of Section Geometry Sheet 

Two tables, shown in Figure 3-13, are located in the background of this sheet. The first 

table displays the web area of the girders and diaphragms.  It also displays the distance from the 

top of the slab to the centroid of the girder or diaphragm web (assuming the slab thickness is 

NOT part of the girders and diaphragms).  These are used later to find other geometric properties 

for the bridge members.  The other table displays the torsion constants, J, for each interior, 

exterior, real, and virtual girder and diaphragm and its corresponding effective slab.  If interior or 

virtual diaphragms do not exist in the run, then no J is calculated for those members.  The 

slab/girder or slab/diaphragm element is broken into simpler rectangular sections in order to 

calculate the torsional constant.  There are two ways to break the elements, shown as ‘Method 1’ 

and ‘Method 2’ in Figure 3-14.  For each method, the torsional constant for each cut-up section 

is computed using Equation 3-3.  These torsional constants are then added together to find the 

overall torsional constant of the shape for each method.  The virtual diaphragms are composed 

entirely of a slab element.  Therefore, the torsional constant (J) of only a single rectangular 
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section is calculated.   BRIDGE uses the larger of the calculated torsional constants (using 

Method 1 or Method 2) in the analysis because it is closer to the actual value. 

 

 

Figure 3-13: Background of Section Geometry and Material Properties Sheet 

 

 

Figure 3-14: Methods to Calculate the Torsional Constant 

 

J = � bnh �13 − 0.21 bh �1 − 112 7bhA��� Equation 3-3 

 

Where 

J  = Torsional constant (in.4) 

b  = Smaller dimension of rectangles in Figure 3-14 (in.) 

h  = Larger dimension of rectangles in Figure 3-14 (in.) 
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3.3 Section Properties Sheet 

The Section Properties sheet is not a user input sheet.  However, the user may view this 

sheet in order to gain a better understanding of the analysis being conducted by the program or to 

help them perform hand checks.  The area, A, y-centroid from top of deck, Cy, x-centroid from 

center of the girder/diaphragm web, Cx, and the moments of inertia in both the x & y directions 

about the section centroid is calculated for each interior, exterior, real, and virtual girder and 

diaphragm web and effective tributary slab width.  These properties are displayed in the table 

shown in Figure 3-15.  The torsional constant, J, for each section is calculated in the background 

of the Section Geometry sheet and the governing J is displayed in the table in Figure 3-15.  The 

parallel axis theorem is used to find the moments of inertia about the centroid of each section.  

The moment of inertia does not include barriers, per KDOT request. Since the barriers would 

increase the stiffness of the sections, their exclusion is conservative.  A cross-sectional view of 

each real element, including the effective deck section, with the general centroid location, is also 

included in this sheet, as shown in Figure 3-15.  Steel reinforcement does not contribute to these 

section properties, which is a conservative simplification. 
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Figure 3-15: Section Properties Sheet 

 

3.4 Truck Input Sheet 

The Truck Input user interface, shown in Figure 3-16, allows the user to place between 

one and four trucks on the bridge.  All user input boxes are displayed with a white background.  

As seen in Figure 3-16, the information for Truck #1 is displayed in the upper-left section, Truck 

#2 in the upper-right section, Truck #3 in the lower-left section, and Truck #4 in lower-right 

section.  The display options are the same for each truck.  If the user desires only one truck 

placed on the bridge then the ‘Truck #1’ section MUST be filled out while all of the other truck 

sections MUST display ‘None’ in the ‘Truck Type’ user input box.  This configuration is 

displayed in Figure 3-16.  As long as the ‘Truck Type’ user input displays ‘None’ it does not 

matter what the other user-input boxes display for that truck.  If a second truck is added to the 

bridge, it MUST be entered into the ‘Truck #2’ section and so forth. 
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Figure 3-16: Truck Input User-Interface 

 

3.4.1 Truck Selection and Placement 

Further discussion of the Truck Input user interface will focus on the ‘Truck #1’ section, 

shown for more clarity in Figure 3-17. 
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Figure 3-17: Truck Input and Information Section 

 

3.4.1.1 Truck Type 

When the ‘Truck Type’ user interface box is selected a drop-down menu appears (Figure 

3-18) which lists all of the 13 truck types which the user can place on the bridge (discussed in 

section 2.1.2.1) along with the ‘None’ option discussed previously.  For rating purposes, all 

trucks on the bridge should be the same type.  Once a truck type is selected the ‘Gross Vehicle 

Weight (tons)’ and ‘Number of Axles’ sections will populate automatically to display the 

information unique to the truck type selected.  The table at the bottom of the ‘Truck #1’ section 

will also populate automatically.  The ‘Axle #’ column lists the number of axles on the truck 

type.  Axle #1 is always the axle closest to the front of the truck.  The ‘Distance behind Front 

(1st) Axle’ column displays the location (ft.) of each axle relative to the truck’s front axle.  For 

example, as shown in Figure 3-17, the 2nd axle of an H Unit truck is 14 ft. behind the front-most 

axle.  As shown in the figures in Appendix A, the 3rd axle of the HS Unit Truck is permitted to 

vary between 14 and 30 ft. behind the 2nd axle while the 2nd axle of the Notional Rating Load 

(NRL) is permitted to vary between 6 and 14 ft. behind the 1st axle.  For simplicity, the user is 

not given an option to choose the location of these axles.  BRIDGE assumes the smallest axle 
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spacing permitted (14 ft. for the HS Unit Truck and 6 ft. for the NRL) because this configuration 

leads to the truck loads being less distributed over the length of the bridge.  This more 

concentrated load pattern leads to larger live load reactions at supports close to the truck which 

lowers the rating factor, thus, this is a conservative approach.  The ‘Weight on Axle (tons)’ and 

‘Weight on Axle (lbs.)’ columns display the gross weight on each axle in the corresponding 

units.  This information is displayed to give the user confidence that the program is using the 

correct data which is taken from the AASHTO (2002), MBE (2011), and KDOT (2016) figures 

displayed in Appendix A. 

 

 

Figure 3-18: ‘Truck Type’ Drop-Down Menu 

 

There is a glitch in the program which occurs when a new truck type is selected for Truck 

#1.  The ‘Gross Vehicle Weight’ box, ‘Number of Axles’ box, and the Truck #1 table does not 

repopulate to display the information for the new truck selection.  However, the problem is 

entirely cosmetic as the user-selected truck is placed on the bridge and analyzed if the ‘Create 

Mesh’ and ‘Place Trucks on Bridge’ buttons are selected.  To adjust for this malfunction, it is 

suggested that the user reset Truck #2 to the desired truck type after adjusting Truck #1.  When 

Truck #2 is reset the page refreshes to display the correct information for Truck #1. 

 

3.4.1.2 Lane Number Assignment 

 When the ‘Lane #’ user interface box is selected a drop-down menu appears, as shown in 

Figure 3-19.  The drop down menu displays only the number of lanes which the user defined in 

the ‘Mesh & Alignment’ sheet.  As stated in section 3.1 and shown in the graphic of Figure 3-1, 

‘Lane #1’ is the lane closest to the bottom girder.  The lane numbers progressively increase 
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toward the top girder, as shown in Figure 3-1.  BRIDGE allows the user to place multiple trucks 

in the same lane.  As stated in section 2.1.2.2, MBE (2011) specifies that to load rate bridges, this 

is sometimes necessary.  When the user specifies two trucks occupying the same lane the ‘Lane 

#’ user interface boxes turn red and a warning message with red text appears, as shown in Figure 

3-20.  The text reads “Multiple trucks are in the same lane! Ensure they do not overlap! 

Trucks in the same lane should have the same ‘Direction of Travel’ and opposite ‘Truck 

Locations’!”.  While the program allows the user to place multiple trucks in the same lane, it is 

the user’s responsibility to place the trucks in such a way that the trucks to not occupy the same 

space or ‘overlap’.  To ensure that two trucks in the same lane do not overlap the following three 

criteria MUST be met: 

1. Both trucks must be traveling in the ‘Up-Station’ direction or both be traveling in the 

‘Down-Station’ direction   

2. One truck must be in the ‘Entering Bridge’ location while the other must be in the 

‘Exiting Bridge’ location 

3. The sum of the extreme axle spacings (last number in the ‘Distance behind Front (1st) 

Axle’ column) of the two trucks must not exceed the ‘Girder Length’ specified by the 

user in the ‘Bridge Mesh & Alignment’ sheet. 

a. An additional 30 ft. of clearance is recommended by MBE (2011) Article 

C6B.6.2.2. 

 

 

Figure 3-19: ‘Lane Number’ Drop-Down Menu 
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Figure 3-20: Warning Message if there are Multiple Trucks in a Lane 

 

3.4.1.3 Direction of Travel 

When the ‘Direction of Travel’ user interface box is selected a drop-down menu appears, 

as shown in Figure 3-21.  The user is given two options: ‘Up-Station’ and ‘Down-Station’.  As 

shown in the graphic of Figure 3-1, ‘Up-Station’ refers to the direction right of the bridge.  

Therefore, all trucks heading toward the ‘right’ of the bridge should be specified as traveling in 

the ‘Up-Station’ direction while all trucks heading toward the ‘left’ of the bridge should be 

specified as traveling in the ‘Down-Station’ direction.  Trucks in the same lane should travel in 

the same direction which is why the ‘Direction of Travel’ must be the same for all trucks placed 

in the same lane.  This connotation is used in BRIDGE because most bridge design sheets are 

orientated in such a way that the roadway stationing increases from left to right on the sheet.  

Thus ‘Up-Station’ is in the direction of increasing station numbers while ‘Down-Station’ is in the 

direction of decreasing station numbers. 

 

 

Figure 3-21: ‘Direction of Travel’ Drop-Down Menu 

 



 

49 

3.4.1.4 Truck Location 

When the ‘Truck Location’ user interface box is selected a drop-down menu appears, as 

shown in Figure 3-22.  The user is given two options: ‘Entering Bridge’ and ‘Exiting Bridge’.  

BRIDGE conservatively places the entire truck on the bridge as this will produce a larger live 

load at the girder supports (compared to the same truck only half on the bridge), thus producing a 

smaller rating factor.  When the ‘Entering Bridge’ option is selected the program places the 

truck’s last axle on the center of the end diaphragm with the rest of the truck on the bridge.  

When the ‘Exiting Bridge’ option is selected the program places the truck’s first axle on the 

center of the end diaphragm (the opposite end diaphragm referenced for the ‘Entering Bridge’ 

option) with the rest of the truck on the bridge.  When two trucks are placed in the same lane and 

both are given the same ‘Truck Location’, the program assumes the user is placing these trucks 

directly on top of each other which is not realistic and should be avoided. 

 

 

Figure 3-22: ‘Truck Location’ Drop-Down Menu 

 

3.4.2 Multiple Lane Presence Factor 

AASHTO (2002) Article 3.12 allows reduction of the live loads by the factors specified 

in Table 2-1.  BRIDGE allows the user to choose whether or not to use this reduction.  When the 

‘Use Multiple Lane Presence Factor’ user interface box is selected a drop-down menu will 

appear, as shown in Figure 3-23.  When the user selects ‘YES’ the program will apply the 

reduction factors to all truck loads placed on the bridge (When only one or two lanes contain 

trucks this factor is ‘1’ and the load is not reduced).  When the user selects ‘NO’ the program 

will NOT apply the reduction factors to any trucks and the bridge is analyzed for the full gross 

weight of all the trucks placed on the bridge.  Selecting ‘NO’ is conservative, as it creates a 
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larger live load reaction at the girder supports thus causing a smaller rating factor at those 

supports. 

 

 

Figure 3-23: ‘Multiple Lane Presence Factor’ Drop-Down Menu 

 

3.4.3 Background of the Truck Input Sheet 

The background of the Truck Input sheet contains many tables which are used within the 

program to properly assign a magnitude and location to each truck load.  The first table, shown 

in Figure 3-24, calculates and displays the number of user-specified trucks used in the analysis. 

 

 

Figure 3-24: Number of Trucks 

 

The second table, shown in Figure 3-25, gives numerical values to the user inputs.  For 

the ‘Direction’ of each truck, a ‘1’ signifies ‘Up-Station’ while a ‘2’ signifies ‘Down-Station’.  

For the ‘Entering or Exiting’ row, a ‘1’ signifies that the truck is entering the bridge while a ‘2’ 

signifies that the truck is exiting the bridge.  The ‘Direction’ and ‘Entering or Exiting’ rows may 

contain a value for a truck that is not placed on the bridge.  The ‘Lane #’ row indicates which 

lane each truck is in while a blank value indicates that there is no truck selected.   

 

 

Figure 3-25: Numerical Representation of Truck Placement User-Inputs 
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 The third table, shown in Figure 3-26, describes which trucks are sharing a lane with 

another truck.  A ‘0’ indicates that the truck is sharing a lane with another truck while a ‘1’ 

indicates that the truck is not. 

 

 

Figure 3-26: Trucks which Share a Lane 

 

 The table shown in Figure 3-27 indicates which lanes contain a truck.  A ‘1’ indicates 

that the specified lane contains a truck while a ‘0’ indicates that either that lane is empty or there 

is no corresponding lane.  The table shown in Figure 3-28 displays the number of lanes which 

contain a truck and is simply the sum of the values in Figure 3-27. 

 

 

Figure 3-27: Lanes Occupied by a Truck 

 

 

Figure 3-28: Number of Loaded Lanes 

 

 The background of this sheet contains a list of the axle spacings and the weight on each 

axle for every truck.  A sample of this list is shown in Figure 3-29.  This list is used to display 

the automatically generated information in this sheet to use within the program to place the truck 

loads on the bridge. 
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Figure 3-29: Snapshot of Spacing and Loads on each Truck Axle 

 

3.4.4 Create the Bridge & Place Trucks on the Bridge 

Once the user inputs in the ‘Mesh & Alignment’, ‘Section Geometry’, and ‘Truck Input’ 

sheets are completed the program is ready to create the bridge and place truck loads on the 

bridge.  To do this the user simply selects the ‘Create Mesh’ and ‘Place Trucks on Bridge’ 

buttons, shown in Figure 3-30.  The user MUST select the ‘Create Mesh’ button BEFORE the 

‘Place Trucks on Bridge’ button.  It should take no more than a few seconds for each of these 

buttons to perform their respective functions.  The more and larger the trucks placed on the 

bridge the more time required to run the ‘Place Trucks on Bridge’ function.  The amount of data 

needed to perform the tasks completed by these two buttons is too big to fit into one module.  

Therefore, they are divided into two modules and two buttons are required to run these two 

modules.  The functions performed by these buttons are described in sections 4.1 and 4.2. 

 

 

Figure 3-30: First Two Buttons which Run BRIDGE 
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3.5 Reaction Input Sheet 

The Reaction Input user interface, shown in Figure 3-31 allows the user to choose either 

the girder support reactions calculated by BRIDGE or their own reactions calculated externally 

by any other software in determining the rating factor for the bridge.  To enter a reaction the user 

simply inputs both the dead and live load reactions (kips) in the appropriate column and row, 

shown in Figure 3-31.  Each ‘Support Node #’ represents a girder support.  A graphic illustrating 

the support corresponding to each ‘Support Node #’ is shown in the Results sheet and in Figure 

3-34. 

 

 

Figure 3-31: Reaction Input User-Interface 

 

 When the ‘Use Calculated or Input Reactions’ user-input box is selected, a drop-down 

menu appears which displays two options: ‘CALCULATED’ and ‘INPUT’, as shown in Figure 

3-32.  When ‘CALCULATED’ is selected, the rating factor is based on the program-calculated 

reactions.  When ‘INPUT’ is selected the rating factor is based on the user-input reactions.  

 

 

Figure 3-32: ‘Use Calculated or Input Reactions’ Drop-Down Menu 
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 When the ‘Load Rate Bridge’ button is selected the load rating is calculated and 

displayed in the ‘Results’ sheet.  The functionality of this button is described in section 4.3. 

 

3.6 Results Sheet 

The Results sheet displays both the operating (left column) and inventory (right column) 

minimum load ratings at each support caused by the truck-load placement combination which 

caused the largest live load at each support.  This sheet is NOT a user-input sheet and only 

displays the program results.  Like in the Reaction Input sheet, each ‘Support Node #’ represents 

a girder support, which is graphically shown in Figure 3-34.  When ‘N/A’ is shown as the rating 

factor at a support, there is very little or no live load reaction at that support.  This leads to a 

rating factor which is either very large or undefined (due to the rating factor equation being 

divided by ‘0’).  If this is the case, the rating factor at this support will not govern the rating 

factor of the bridge, thus it is inconsequential and ‘N/A’ is printed.   The ‘Governing Load 

Rating’ table displays the absolute minimum operating and inventory load ratings for the bridge.  

These load ratings are used to assess the condition of the bridge and to determine if the bridge 

needs posting. 

 

 

Figure 3-33: Results Sheet 

 

 Also in this tab is a graphical representation of the bridge mesh, shown in Figure 3-34, 

which is created when the ‘Create Mesh’ button is selected.  This graphic illustrates the number 
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or girders (horizontal members) and diaphragms (vertical members) and shows how each 

member and node is labeled by the program.  When the ‘Show Node Numbers’ circle is selected, 

the graph only displays the node labels which, in Figure 3-34, are the numbers by the member 

intersections that are not boxed.  When ‘Show Member Numbers’ is selected, the graph only 

displays the member labels which, in Figure 3-34, are the boxed numbers adjacent to their 

respective members.  When ‘Show Node & Member Numbers’ is selected, both node and 

member labels are displayed on the graphic.  The graphic can illustrate up to 12 girders and any 

number of diaphragms.  End, real interior, and virtual interior diaphragms are illustrated in the 

graphic. 

 

 

Figure 3-34: Bridge Mesh Graphic 
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Chapter 4 BRIDGE Functionality 

 

4.1 Create Mesh 

The ‘Create Mesh’ button initializes the ‘Load_Path_Locations’ module within the 

program.  When this module is ran BRIDGE performs the following tasks: 

 

4.1.1 Creating Grid and Assigning Member & Node Numbers 

This module creates a grid composed of the bridge girders and diaphragms and assigns a 

number to each member and node (member ends) within the grid.  The grid of a bridge with 4 

girders and 3 diaphragms is shown in Figure 4-1.  The numbers in boxes represent member 

numbers while the numbers not boxed represent node numbers.   

If the number of girders is greater or equal to the number of diaphragms, the numbering 

of the nodes begins at the bottom left corner of the bridge and increases along the bottom girder 

until all the diaphragm-girder connecting points are assigned a number.  When the end of the 

first girder is reached, the successive node is on the far left end of the adjacent girder.  The node 

numbering then increases along the girder until all of the nodes on this girder are assigned. This 

continues with each successive girder until all of the diaphragm-girder connecting nodes are 

assigned, as shown in Figure 4-1.  Then the members are numbered, starting at the bottom 

leftmost girder and increasing across the girder before moving to the girder above, as shown in 

Figure 4-1.  After all the girder members are labeled, the diaphragm members are numbered 

starting at the bottom leftmost diaphragm member and increasing along the left diaphragm  

before starting with the next diaphragm, as shown in Figure 4-1. 

When the number of diaphragms is greater than the number of girders, the numbering of 

the nodes and members is similar to when the number of girders is greater than the number of 

diaphragms except the numbering first increases along the diaphragms beginning at the leftmost 

diaphragm before progressing to the girders. 
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Figure 4-1: Bridge Mesh with Labeled Members and Nodes 

 

4.1.2 Assigning Coordinates to Nodes and End Nodes to Members 

Coordinates (in.) are assigned to each node based on the user input from the Mesh & 

Alignment sheet.  Nodes are also assigned to the ends of each member.  The assignments are 

displayed in the Node & Member Assignment sheet, as shown in Figure 4-2.  For the node 

coordinates, the ‘x’ axis is parallel to the bridge span and girders while the ‘y’ axis is parallel to 

the diaphragms.  End node ‘i’ is the node to the left of a girder member or bottom of a diaphragm 

member while the ‘j’ node is on the opposite end of the member. 

 

 

Figure 4-2: Member End Nodes and Node Coordinates 
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4.1.3 Identifying Boundary Members for Panels 

The grid creates ‘panels’, which are rectangles surrounded above and below by girders 

and to the left and right by diaphragms.  These panels are numbered by the program starting with 

‘1’ for the bottom leftmost panel in Figure 4-1 and increases numerically first to the right then to 

the top.  The panel numbers and the number of each surrounding member are displayed in a table 

in the Node & Member Assignments sheet, as shown in Figure 4-3. 

 

 

Figure 4-3: Panel List and Surrounding Members 

 

4.1.4 Determining Truck-Load Paths 

BRIDGE determines the truck paths in each lane.  Standard truck axles are spaced 6 ft. 

apart and the truck encroaches an additional 2 ft. past the centerline of each wheel load, making 

the entire truck clearance 10 ft., as explained by Figure 2-1.  AASHTO (2002) states that the 

truck should be placed in its lane so as to produce the maximum live load reaction at the girder 

supports.  This would require the creation of influence lines to determine the exact truck 

placement combination which creates the maximum live load for each girder support.  This type 

of analysis is computationally expensive to create as it would result in much longer run times for 

the program.  As a simplified alternative, the program places each truck in four load paths across 

their respective lane.  The exterior wheels in the first and fourth load paths are placed 2 ft. from 

the edge of the barrier or lane-dividing line, as shown by the exterior trucks in Figure 4-4.  The 

other two truck-load paths (interior trucks in Figure 4-4) are spaced uniformly between the two 

exterior loading paths at a spacing labeled ‘Load Path Spacing’ in Figure 4-4.  The ‘Load Path 

Spacing’ is unique for each lane depending upon the lane width and shoulder widths adjacent to 
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that lane.  The shoulder widths are considered part of the adjacent lane, thus the truck is allowed 

to encroach upon the shoulder width.  Truck-load paths are assumed straight across the length of 

the bridge. 

To determine the extreme live load at each girder support the program places Truck #1 in 

its first load path and incrementally moves all the other trucks throughout their load paths.  Truck 

#1 is then moved to its second load path and the process is repeated until all possible truck 

placement combinations, and the girder support reactions caused by each combination, are 

analyzed.  For example, if there are two trucks on the bridge there will be 16 separate load 

combinations analyzed by the program.  If there are three trucks, there will be 64 total load 

combinations. 

 

 

Figure 4-4: Four Load Paths within each Lane 

 

4.1.5 Placing Trucks on Bridge 

The program uses the tables in the background of the Truck Input sheet to place the truck 

loads in the appropriate user-specified locations.  Each wheel load is assigned a number.  The 

loads from Truck #1 are labeled first followed by Truck #2 and so on.  The location of each 
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wheel load is then identified.  The x-coordinate of each load is measured from the center of the 

far left diaphragm while the y-coordinate of each load is measured from the center of the bottom 

exterior girder.  There are four y-coordinates corresponding to each load which represent the 

positions of the four truck-load paths discussed in the previous section.  The “Rightmost” load 

path refers to the load path closest to the bottom girder while the “Leftmost” load path refers to 

the load path furthest from the bottom girder.  The load magnitude and location of each load is 

displayed in the Node & Member Assignments sheet, as shown in Figure 4-5. 

 

 

Figure 4-5: Truck Load and Placement Information 

 

4.1.6 Determining Multiple Presence Factor 

BRIDGE reads whether or not the user chooses to use the live load reduction factor for 

loads in multiple lanes described by AASHTO (2002) Article 3.12.  If the user chooses not to use 

the reduction factors, the program sets the reduction factor to 1.  If the user does choose to use 

the reduction factors, the program will read the background of the Truck Input sheet to determine 

how many lanes are loaded and assign a reduction factor based on Table 2-1.  The program then 

prints the reduction factor into the background of the Truck Input sheet, as shown in Figure 4-6. 

 

 

Figure 4-6: Reduction Factor 
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4.1.7 Determining Load Length 

The program determines the length of each truck, which is defined by the program as the 

distance between the 1st and last axles.  This length (ft.) is then printed in the ‘Load Length’ 

section in the user-input section of the Truck Input sheet, shown in Figure 3-17.  The overall load 

length used for determining the impact factor in Equation 2-3 is then found and printed in the 

background of the Truck Input sheet, as shown in Figure 4-7.  This length is the smallest of either 

the shortest truck length on the bridge or the bridge length because this gives the highest impact 

load coefficient, which is conservative. 

 

 

Figure 4-7: Load Length for Impact Factor Calculation 

 

4.2 Place Trucks on Bridge 

The ‘Place Trucks on Bridge’ button initializes the ‘Truck_Placement’ module.  When 

this module is ran BRIDGE performs the following tasks: 

 

4.2.1 Identifying which Panel is under each Load and Location of the Load on the 

Panel 

This module reads the location of each load and determines which panel the load is on.  

The relative location of each load on the panel is then determined.  The ‘x’-distance of the load is 

measured from the center of the diaphragm on the left edge of the panel while the ‘y’ distance is 

measured from the center of the girder on the bottom edge of the panel. 

 

4.2.2 Distributing each Load to the Members Surrounding the Panel 

Each load is then distributed to the girders and diaphragms on the edges of each panel.  

The portion of each load distributed to the various edge members is dependent upon the length of 

the edge diaphragms and girders as well as the location of the load on the panel.  Three methods 

were investigated to find the most appropriate method of distributing the truck wheel point loads 

from the panels to the surrounding girders and diaphragms.  The three methods are the ‘Finite 
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Element Analysis of panel’, the ‘Rigid Slab Analysis of panel’, and the ‘Rigid Beam Analysis 

within the panel’. 

 

4.2.2.1 Finite Element Analysis of Panel 

To investigate the ‘Finite Element Analysis of Panel’ method a RISA model was created 

which represented a panel surrounded by 8 ft. long diaphragms and 12 ft. long girders.  The 

RISA model is shown in Figure 4-8.  This panel is assumed flexible and consisted of an 8 in. 

thick plate of 4 ksi normal weight concrete, which is a reasonable representation of bridge deck 

slab thicknesses and material strength.  To improve the accuracy of the model, the plate was 

divided using a 1’x1’ mesh.  A 10 kip load was placed 3 ft. from the origin along the girder and 2 

ft. from the origin along the diaphragm.  If the origin is at the bottom-left corner of the plate and 

the entire plate lies in the first quadrant with the bottom girder along the x-axis then the load is 

placed at the coordinates (3’, 2’), as shown in Figure 4-8.  Each node along the boundary girders 

and diaphragms was set as a pined reaction and the model was ran.  The reaction at each node of 

the boundary elements was recorded and the sum of the reactions equaled 10.242 kips.  This 

differentiated from the 10 kip original point load more than desired so the plate’s mesh was 

further refined to a 3”x3” mesh.  Keeping the load in the same location, the model was again ran.  

This time, the sum of the reactions at the boundary elements was 9.997 kips, which is very close 

to the original 10 kip point load, thus, the 3”x3” mesh was deemed to produce adequately 

accurate results.  The reactions along each boundary member are shown in Figure 4-9, Figure 

4-10, Figure 4-11, and Figure 4-12.  The ‘primary diaphragm’ is the diaphragm closest to point 

load while the ‘secondary diaphragm’ is the diaphragm furthest from the point load.  Likewise 

for the girders.  The total load on each edge member is shown in Table 4-1. 
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Figure 4-8: RISA Model of ‘Finite Element Analysis of Panel’ with a 3”x3” Mesh 

 

 

Figure 4-9: Reaction at Each Node along Primary Diaphragm 
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Figure 4-10: Reaction at Each Node along Secondary Diaphragm 

 

 

Figure 4-11: Reaction at Each Node along Primary Girder 
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Figure 4-12: Reaction at Each Node along Secondary Girder 

 

It was seen that the loads along each girder and diaphragm were centered near the 

location of the load, thus it was desired to determine if the portion of load distributed to each 

member can act as a single point load along the member at the location of the load.  Further, if 

this method is used in the program, a finite element analysis would need to be conducted for each 

panel on the bridge to find the loads on each surrounding girder and diaphragm.  This is very 

time consuming and complicated, thus, it was desired to determine if other distribution methods 

yield reasonable results. 

 

4.2.2.2 Rigid Slab Analysis of Panel 

For the ‘Rigid Slab Analysis of Panel’ a RISA model of the same panel from section 

4.2.2.1 was analyzed, except the diaphragms’ end nodes were freed so only the girder nodes 

were pinned and the slab acted in one way action between the girders, as shown in Figure 4-13.  

The load and load location remained the same and the deflection of the slab at the location of the 

load (∆d) was found.  Next, the girder nodes were freed and the diaphragm nodes were pinned so 

the slab acted in one way action between the diaphragms.  The load and load location remained 

the same and the deflection at the location of the load (∆g) was found.  These deflections were 

used, along with the applied load, to determine how the load distributed to each of the end 

diaphragms and girders.  The slab, for these calculations, was assumed rigid.  The calculations to 

distribute the load are derived below.  Equation 4-1 is substituted to create Equation 4-2 while 
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Equation 4-3 is substituted into Equation 4-4 to yield Equation 4-5 and Equation 4-6.  Equation 

4-1 and Equation 4-2 are then substituted into Equation 4-6 to yield Equation 4-7. 

 

 

Figure 4-13: RISA Model of ‘Rigid Slab Analysis of Panel’ with Pinned Girders and Free 

Diaphragms 

 

Derivation: 

K� = PΔ�  &   K� = PΔ� Equation 4-1 

K5?y = K� + K� = P∆� + P∆� Equation 4-2 

  

∆= P�K� = P�K� Equation 4-3 

K5?y = PΔ  →  Δ = PK5?y Equation 4-4 

P�K� = PK5?y   &  P�K� = PK5?y → Equation 4-5 

P� = K� PK5?y   &  P� = K� PK5?y → Equation 4-6 

Origin 
Pinned Girders 

Free Diaphragms 
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P� = PΔ� � Pr PΔ� + PΔ�s�   &   P� = PΔ� � Pr PΔ� + PΔ�s� Equation 4-7 

 

Where: P  =  Load Applied to Slab KG  = Stiffness of the slab when acting as a girder (kip/in.) KD  = Stiffness of the slab when acting as a diaphragm (kip/in.) 

 ΔG  = Deflection of slab when acting as a girder (in.) ΔD  = Deflection of slab when acting as a diaphragm (in.) Ksum  = Sum of slab stiffness when acting as girder and diaphragm (kip/in.) 

 PG   =  Total load transferred to diaphragms (slab acts as girder) (kips) PD  =  Total load transferred to girders (slab acts as diaphragm) (kips) 

 

For this analysis the ΔG and ΔD were 0.029 in. and 0.009 in. respectively while the applied 

load, P, was 10 kips.  Therefore, PG and PD were 2.39 kips and 7.63 kips respectively, as shown 

in Equation 4-8 and Equation 4-9: 

 

P� = 100.029 � 10r 100.029 + 100.009s� = 2.39 kip Equation 4-8 

P� = 100.009 � 10r 100.029 + 100.009s� = 7.63 kip Equation 4-9 

 

 The loads on each girder and diaphragm are then determined in a similar method as used 

to determine the reactions of a simply supported beam caused by a point load on the beam, as 

shown in Equation 4-10 and Equation 4-11.  The point loads transferred to each member using 

the ‘Rigid Slab Analysis’ are displayed in Table 4-1. 
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PPz5�Kz�?�OP �� PzMx�KM]y =  P� aL� Equation 4-10 

PPz5�Kz�?�OP �� ]zKPOK =  P� aL� Equation 4-11 

 

 Where: 

 Pdist. to diaphragm = Point load on each diaphragm 

Pdist. to girder = Point load on each girder 

 a  = Distance between point load and girder/diaphragm analyzed 

 LG  = Length of girders 

 LD  = Length of diaphragms 

 

4.2.2.3 Rigid Beam Analysis within the Panel 

It was then desired to see, with what accuracy, the slab could be modeled as two beams.  

In the ‘Rigid Beam Analysis’ a RISA model was created which consisted of two beams, each 1 

ft. wide and 8 in. thick.  The ‘girder’ beam was 2 ft. from the origin while the ‘diaphragm’ beam 

was 3 ft. from the origin, so that the intersection of the two beams was at the coordinates (3’, 2’).  

The 10 kip point load was applied at this location, just like the previous models.  This setup is 

shown in Figure 4-14.  The girder beam was deleted, leaving the diaphragm beam with both ends 

pinned. The deflection of the beam, ∆D, at the location of the load was determined.  The girder 

beam was then added and the diaphragm beam was deleted.  The deflection of the girder beam, 

∆G, at the location of the load was then found.  Equation 4-7 and Equation 4-10 were then used 

to find the load transferred to each diaphragm and girder. 

For this analysis the ΔG and ΔD were 0.19 in. and 0.057 in. respectively while the applied 

load, P, was 10 kips.  Therefore, PG and PD were 2.308 kips and 7.69 kips respectively, and the 

load transferred to each girder and diaphragm are as shown in Table 4-1. 
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Figure 4-14: RISA Model for the ‘Rigid Beam Analysis within the Panel’ 

 

4.2.2.4 Analysis Results and Conclusions 

As seen in Table 4-1, the ‘Rigid Slab Analysis of Panel’ and ‘Rigid Beam Analysis 

within the Panel’ distribute loads similarly to the more accurate ‘Finite Element Analysis of 

Panel’, especially for the primary girder, which receives the majority of the load.  Based on these 

results, it was concluded that the ‘Rigid Beam Analysis of Panel’ can distribute loads to the 

girders and diaphragms with reasonable accuracy. 

The centroid of reaction along each girder and diaphragm for each method are shown in 

Table 4-2.  The area under the curves of Figure 4-9 through Figure 4-12 were analyzed to find 

the reaction location for the ‘Finite Element Analysis’ while a similar process was used for the 

‘Rigid Slab Analysis’.  For the ‘Rigid Beam Analysis’ the load was assumed to transfer to the 

girders and diaphragms at the point along the member corresponding to the location of the 

concentrated load.  The centroid of the reaction for the ‘Rigid Slab Analysis’ was extremely 

close to the location along the girders and diaphragms of the concentrated load.  The centroid of 

reactions along the girders and diaphragms for the ‘Finite Element Analysis’ were further away 

from the location of the concentrated load.  However, for the primary girder, which carries the 

majority of the load, the centroid of reaction was at a distance of 3.7 ft. from the origin, which is 

close to the center of reaction for the ‘Rigid Beam Analysis’.  For the other diaphragms and 

girders, the centroid of reaction is 1.25-2 ft. away from the reactions of the ‘Rigid Beam 

Analysis’.  This was considered insignificant since less load is transferred to these members.  

Therefore, it was concluded that the ‘Rigid Beam Analysis’ transfers the load to the girders and 

diaphragms with reasonable accuracy.  Thus, this load distribution method is incorporated into 

BRIDGE. 

‘Girder’ Beam 

‘Diaphragm’ Beam 
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Table 4-1: Comparison of Load Distribution to Girders and Diaphragms using Different Analysis 

Methods 

 ANALYSIS 

METHOD: 

Load Transferred to: 

Diaphragm Girder 

Primary Secondary Primary  Secondary 
Finite Element  2.783 0.186 5.758 1.27 

Rigid Slab 1.776 0.592 5.723 1.908 

Rigid Beam 1.731 0.577 5.769 1.923 

 

Table 4-2: Comparison of the Centroid of Reaction along Girders and Diaphragms using the 

Different Analysis Methods 

 ANALYSIS 

METHOD:   

Centroid of Reaction from Origin (ft.): 

Diaphragm Girder 

Primary  Secondary Primary  Secondary 
Finite Element 3.25 3.99 3.70 4.99 
Rigid Slab 2.27 2.35 3.10 3.28 
Rigid Beam 2 2 3 3 

 

4.2.2.5 Aspect Ratio Tables: 

The ‘Rigid Beam Analysis’ method was then ran for a series of girder-to-diaphragm 

length ‘aspect ratios’.  In the analysis, each ‘diaphragm’ beam was 1 ft. wide, 8 in. thick, and 10 

ft. long.  Each ‘girder’ beam was 1 ft. wide and 8 in. deep while the length of the beam varied.  

For an aspect ratio of ‘1’ the beam length was 10 ft.  For each incremental ‘0.1’ increase of the 

aspect ratio the length of the ‘girder’ beam increased by 1 ft.  Therefore, for an aspect ratio of 

1.5, the girder length was 15 ft.  The aspect ratio is the girder-length-to-diaphragm-length ratio of 

a panel.   

The fD/fDmax & f G/fGmax values were calculated for various x/a and y/b load locations for 

each aspect ratio combination.  The fD/fDmax & f G/fGmax values are used to find the flexibility of 

the panel in each bending direction and are described by Equation 4-12 through Equation 4-15.  

These values are multiplied by the fDmax and fGmax for the actual panel being analyzed by the 

program to obtain the flexibility of the diaphragm and girder panel beams, fD and fG, 
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respectively.  fD is the flexibility of the panel beam acting as a diaphragm (spanning between the 

girders and parallel to the diaphragms) while fG is the flexibility of the panel beam acting as a 

girder (spanning between the diaphragms and parallel to the girders)  These flexibilities are 

inverted to find the stiffness of each beam, KD and KG.  These values are then used in Equation 

4-7 and Equation 4-10 to distribute the load to the girders and diaphragms.  The x/a and y/b 

ratios describe the location of the load on the panel.  As shown in Figure 4-15, ‘a’ represents the 

girder length along the panel edge, ‘b’ is the diaphragm length along the panel edge, ‘x’ is the 

position of the load along the girder and ‘y’ is the position of the load along the diaphragm.   

 

f�yMZ = L�n48EI� Equation 4-12 

  f�yMZ = L�n48EI� Equation 4-13 

f� = Δ�P  Equation 4-14 

f� = Δ�P  Equation 4-15 

 

Where: 

fDmax  = Maximum flexibility of the diaphragm beam (in./kip) 

fGmax  = Maximum flexibility of the girder beam (in./kip) 

LD  = Length of diaphragm (in.) 

LG  = Length of girder (in.) 

E  = Modulus of elasticity for concrete 

ID  = Moment of inertia of diaphragm beam (in.4) 

IG  = Moment of inertia of girder beam (in.4) 

fD  = Actual flexibility of the diaphragm beam (in./kip) 

fG  = Actual flexibility of the girder beam (in./kip) 

P  = Point load placed on beams (kips) 

∆D  = Deflection of the diaphragm beam at location of point load (in.) 

∆G  = Deflection of the girder beam at location of point load (in.) 
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Figure 4-15: Load Placement on Panel 
 

fD/fDmax & f G/fGmax values are calculated for aspect ratios ranging from 1 to 2 by 0.1 

increments.  Aspect ratios from 0.5 to 1 use the same values calculated from the aspect ratios 1 to 

2, except the load distribution is switched from the girders to the diaphragms and vice versa.  For 

example, the fD/fDmax value for an aspect ratio of 0.6 is the same as the fG/fGmax value for an 

aspect ratio of 1.2.  When the aspect ratio is below 0.5 the program assumes that the entire load 

is transferred to the diaphragms.  When the ratio is over 2, the program assumes that the entire 

load is transferred to the girders.  If a wheel load is on the cantilever portion of the deck the 

program automatically transfers the full load to the adjacent girder. 

The fD/fDmax & f G/fGmax values for various x/a and y/b values at different aspect ratios are 

displayed in Table 4-3 and Table 4-4. 

 

Table 4-3: fD/fDmax Values for Varying y/b Locations for All Aspect Ratios 

fD/fDmax All Aspect Ratios: 

y/b 

0 0 

0.2 0.415295601 

0.4 0.922879112 

0.6 0.922879112 

0.8 0.415295601 

1 0 
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Table 4-4: fG/fGmax Values for Varying x/a Locations and Aspect Ratios 

fG/fGmax 
Aspect Ratio 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

x/a 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.4153 0.4122 0.4095 0.4107 0.4092 0.4086 0.4081 0.4080 0.4079 0.4074 0.4070 

0.4 0.9229 0.9206 0.9198 0.9195 0.9174 0.9176 0.9163 0.9152 0.9152 0.9149 0.9145 

0.6 0.9229 0.9206 0.9198 0.9195 0.9174 0.9176 0.9163 0.9152 0.9152 0.9149 0.9145 

0.8 0.4153 0.4122 0.4095 0.4107 0.4092 0.4086 0.4081 0.4080 0.4079 0.4074 0.4070 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 

Table 4-3, shows the fD/fDmax values for varying y/b load locations.  The ‘diaphragm’ 

beam length was kept constant, therefore the fD/fDmax value was constant for every aspect ratio. 

Table 4-4, shows the fG/fGmax values for varying x/a load locations.  The values did 

change for varying aspect ratios as the girder became longer.  However, for a given x/a the 

fG/fGmax value is extremely close for all aspect ratios.  Therefore, for simplicity, the values for an 

aspect ratio of 1 are used regardless of the actual aspect ratio of the panel.  These match the 

fD/fDmax values for different y/b ratios, therefore, Table 4-3 and Table 4-4 are combined into 

Table 4-5.  More values for y/b and x/a were included in this table to increase the accuracy of 

interpolation within the table.  The program uses the x/a and y/b locations of the wheel-load on 

the panel to interpolate within Table 4-5 to determine an appropriate fD/fDmax and fG/fGmax for 

each load.  The fD/fDmax is found when y/b is used in Table 4-5 and fG/fGmax is found when x/a is 

used.  Table 4-5 is displayed in the program’s ‘Tables’ sheet. 
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Table 4-5: fD/fDmax & f G/fGmax Values for Varying Load Location on Panel 

y/b & x/a fD/fDmax & f G/fGmax 

All 
Aspect 
Ratios 

0 0 

0.1 0.133304761 

0.2 0.415295601 

0.3 0.707540653 

0.4 0.922879112 

0.5 0.999785705 

0.6 0.922879112 

0.7 0.707540653 

0.8 0.415295601 

0.9 0.133304761 

1 0 
 

4.2.3 Determining Fixed End Reactions at each Node Caused by Live Loads 

The re-distributed load is applied as a point load on the edge girders and diaphragms at a 

distance along the diaphragm member equal to the load’s ‘y’-distance on the panel and along the 

girder member equal to the load’s ‘x’-distance on the panel.  These loads are then converted into 

fixed-end forces at the member end nodes.  The fixed-end moments are defined by Equation 4-16 

and Equation 4-17 while Equation 4-18 and Equation 4-19, with reference to Figure 4-16, define 

the fixed-end shear forces.  The fixed-end shear forces are always in the positive ‘upward’ 

direction.  The fixed-end moments and shears at each end nodes of the member are then 

summed. 

 

 

Figure 4-16: Fixed-End Moments (FEM) for a Point Load anywhere on the Span 
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FEM�� = Pb�aL�  Equation 4-16 

FEM�� = Pa�bL�  Equation 4-17 

VM = Pb�Ln �L + 2a� Equation 4-18 

V� = Pa�Ln �L + 2b� Equation 4-19 

 

Where: 

FEMAB  = Fixed-End Moment at point ‘A’ in Figure 4-16 

FEMBA  = Fixed-End Moment at point ‘B’ in Figure 4-16 

Va  = Vertical reaction at point ‘A’ in Figure 4-16 

Vb  = Vertical reaction at point ‘B’ in Figure 4-16 

 

4.2.4 Determining Reactions at Nodes Caused by Dead Loads 

The cross sectional properties and material properties for the girders, slab, and wearing 

surface, along with the actual effective slab width from the background of the Mesh & 

Alignment sheet, are used to calculate the uniform dead load, w, along each girder.  The weight 

of the diaphragms and barriers is neglected as insignificant and their inclusion would add a great 

deal of unnecessary complication to the user input section and dead load calculations.  The dead 

load is transferred to the girders because, typically, the girders are closer together than are the 

diaphragms.  If the diaphragms are closer to each other than are the girders then the load should 

transfer to the diaphragms.  However, it is impractical for the diaphragms to be closer together 

than the girders, so the program always transfers the dead load to the girders.  The fixed-end 

moments are defined by Equation 4-20, while Equation 4-21, with reference to Figure 4-17, 

defines the fixed end shear forces.  The fixed-end shear forces are always in the positive 

‘upward’ direction. 
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Figure 4-17:  Fixed-End Moments (FEM) for a Distributed Load 

 

FEM�� = FEM�� = wL�12  Equation 4-20 

V� = V� = wL2  Equation 4-21 

 

4.2.5 Printing the k ff  & k sf Reactions for the Bridge Matrix 

The dead and live load fixed-end forces are sorted into the kff loads and ksf reactions for 

the bridge mesh.  The live kff loads and ksf reactions for each truck placement combination, 

discussed in section 4.1.4, are calculated and printed.  The dead kff loads and ksf reactions are 

kept separate from the live loads because the governing live load combination for each girder is 

not yet determined.  A sample of these reactions are displayed in the kff Loads and ksf Reactions 

sheets respectively, as shown in Figure 4-18 and Figure 4-19.   

 

 

Figure 4-18: Snapshot of the kff Loads in the ‘kff Loads’ Sheet 
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Figure 4-19: Snapshot of the ksf Reactions in the ‘ksf Reactions’ Sheet 

 

4.3 Load Rate Bridge 

When the user selects the ‘Load Rate Bridge’ button the “Stiffness” module is ran which 

performs the following tasks: 

 

4.3.1 Assigning Properties to each Member 

BRIDGE uses the information displayed in the Section Properties sheet, shown in Figure 

3-15, along with the concrete strength user-input, and the coordinates of each node to determine 

the area, length, moment of inertia (Ix), torsional constant (J), shear modulus (G), elastic modulus 

(E), and angle of rotation (theta = 0 or 90) for each member in the bridge mesh.  These properties 

are displayed in the Member Properties sheet, as shown in   

Figure 4-20.  Equation 4-22 and Equation 4-23 are used to find the elastic modulus and 

shear modulus respectively.  A Poisson’s ratio (ν) of 0.2 is used.  The girders are all oriented at 

an angle of 0° while the diaphragms are oriented at -90°.  The ‘theta’ column in   

Figure 4-20 displays these angles in radians. 

 E = 579f4; Equation 4-22 
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G = E2 1 + ν# Equation 4-23 

  

  

Figure 4-20: Member Properties 

 

4.3.2 Creating Assembled Stiffness Matrix for Bridge 

 The program uses the member properties to create the 6x6 stiffness matrix, shown in 

Appendix B, for each member.  The member end nodes are then used to combine these member 

stiffness matrices into one large assembled stiffness matrix which encompasses the entire bridge. 

 

4.3.3 Creating kff  & k sf Matrices 

 BRIDGE separates the assembled stiffness matrix into the kff & ksf matrices.  The kff 

matrix is square and consists of the matrix elements corresponding to both the unknown nodal 

displacements and known nodal forces.  In this program, the unknown nodal displacements are 

the translational displacements and rotations at all of the non-support nodes plus the rotations at 

the support nodes (nodes on the end diaphragms).  The translational displacements at each 
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support are zero and are known.  The known nodal forces are all of the forces and moments at 

the non-support nodes and the moments at the support nodes.  The ksf matrix consists of the 

matrix elements corresponding to both the unknown nodal displacements and unknown nodal 

forces.  The unknown nodal forces consists of all the vertical forces at the support nodes. 

 

4.3.4 Creating kff
-1 Matrix 

 The Gauss-Jordan Elimination method is used to find the kff -1 matrix.  To facilitate this 

method the program creates an identity matrix and the half band-width kff matrix.  The identity 

matrix is the same size as the kff matrix and its elements are all 0’s except for the diagonal, which 

are 1’s.  The kff matrix is symmetric, thus, to save memory, only half of it, the half band-width 

matrix, is used to solve for the kff
-1 matrix.  This half band-width and identity matrix are 

manipulated using the Gauss-Jordan Elimination method to find the kff -1 matrix.  This inverse 

matrix is displayed in the Kff^-1 sheet. 

 

4.3.5 Finding the Displacements at each Node 

 The unknown nodal displacements caused by both dead load and each live load 

combination are found.  These displacements are found by multiplying the kff -1 matrix by the ‘Pf’ 

loads, discussed in section 4.2.2.5. 

 

4.3.6 Finding the Reactions at each Support  

 Next, the reaction at each support due to the dead load and each live load combination are 

found.  They are found by multiplying the ksf matrix by the displacements found in the previous 

section then adding the fixed-end forces corresponding to the Ps vector, discussed in section 

4.2.2.5. 

 

4.3.7 Determining Governing Live Load at each Support 

BRIDGE cycles through the reaction caused by each load combination at every support 

and identifies the largest live load reaction at each support.  This load contributes to the 

governing rating factor for that support. 
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4.3.8 Calculating the Impact Factor 

The load length from Figure 4-7 is used in Equation 2-3 to find the impact factor used in 

Equation 2-2. 

4.3.9 Determining Capacity of the Girders 

As shown in Equation 2-2, the capacity of each girder at its supports is necessary to 

determine the rating factor of the bridge.  Two approaches were considered for determining the 

capacity of the girders.  The first approach assumes that just reactions caused by the live and 

dead loads act on the crack while the second approach assumes that a frictional force at the 

concrete girder-to-steel pad interface also acts on the crack. 

 

4.3.9.1 Dead & Live Load Approach 

The ‘Dead & Live Load’ approach assumes that only the reaction at the girder supports 

caused by live and dead load act on the crack face, as illustrated in Figure 4-21. 

 

 

Figure 4-21: Forces on Crack for the ‘Dead & Live Load Approach’ 

 

As shown in Figure 4-21, the driving force (Rsinθ) and clamping force (Rcosθ) are 

components of the dead & live load reaction at the support of the girder (R) and are dependent 

upon the angle the crack makes with the bottom of the beam in the direction of the support, θ.  

The driving force causes the crack to propagate while the clamping force holds the faces of the 
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crack together, thus resisting propagation and contributing to the capacity of the shear crack.  

With this assumption, Equation 2-2 is rewritten as Equation 4-24. 

 

RF =  Capacity −  A�R�� sin θA�R�� sin θ  1 + IL#  Equation 4-24 

 

Where: 

θ  = Angle between crack and bottom of beam in direction of support 

RDL  = Reaction at support caused by dead loads (kips) 

RLL  = Reaction at support caused by live loads (kips) 

 

Four methods were investigated to determine the capacity of the beam using the Dead & 

Live Load Approach. 

 

4.3.9.1.1 Method #1 

The capacity used in ‘Method #1’ assumes that the crack extends through the entire 

height and width of the girder web and that the shear capacity of the slab is neglected as 

insignificant.  These are very conservative assumptions because, in reality, the cracks do not 

necessarily extend through the entire web height and the slab does contribute to the shear 

capacity of the girder.  If the crack does not extend through the entire web of the girder then the 

un-cracked portion of the girder will provide more capacity than if that portion were cracked.  

This method also assumes that the entire width of the web contributes to the shear capacity of the 

girder.  This is a slightly un-conservative approach as spalling of the cover concrete could exist 

in actual beams.  However, the earlier conservative assumptions outweighed the un-conservative 

nature of this assumption. 

From these assumptions, the capacity of the beam is calculated as the minimum of 

Equation 2-10 and Equation 4-25.  Equation 4-25 is the shear resistance caused by friction 

between the two faces of the crack, which is a function of the clamping force and the cracked-

concrete-to-cracked-concrete coefficient of friction, µc.  Equation 2-10 acts as an upper limit to 

Equation 4-25.  The governing equation is then used in Equation 2-4 to determine the capacity, 

Vn, used in Equation 4-24. 
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 V3 = μ4 R�����# cos θ Equation 4-25 

 

 At this point in the program development, is was unclear what µc to use, so a value of 1.2 

was used, as it is within the range of researched values.  This µc used was later changed, as 

discussed in section 4.3.9.3.  As explained, the crack is assumed to propagate to either the end of 

the beam or to the bottom of the slab (through the height of the web), as described in Figure 

4-22. 

 

 

Figure 4-22: Crack Propagation to Either Top of Slab or Edge of Girder 

 

4.3.9.1.2 Method #2 

The capacity determined from Method #2 is the same as that obtained from Method #1 

except the crack is assumed to extend through the depth of the slab if the crack propagates to the 

slab.  Thus, the thickness of the slab also contributes to the shear capacity of the girder.  The 

tributary width of the slab is assumed to not contribute to the shear capacity. 

 

4.3.9.1.3 Method #3 

Method #3 accounts for the shear capacity of the slab, like Method #2, but also accounts 

for the effects of the un-cracked portion of the girder.  Equation 2-10 and Equation 4-25 from 

Method #1 are modified by adding the un-cracked capacity, based on Equation 2-11, to form 

Equation 4-26.   Since the un-cracked capacity in considered, the cracked capacity portions of 
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Equation 4-26 are reduced to account for only the shear capacity provided by the cracked portion 

of the girder.  This is done by reducing the cracked area, Acr, in Equation 2-10 (still assuming 

that the clear cover concrete contributes to the capacity of the beam) and by multiplying 

Equation 4-25 by the cracked length-to-total propagation length ratio, Lc/L.  The total 

propagation length, L, is the length of the crack if it did extend through the beam, either to the 

top of the slab, or to the edge of the girder, and is the cracked length, Lc, plus and un-cracked 

length, Luc, shown in Figure 4-23.  When the crack propagates to the bottom of the slab it is 

assumed that the crack propagates all the way to the top of the slab, which is a conservative 

assumption and is necessary because it is impossible for a bridge inspector to know how far 

through the slab the crack propagates.  When the crack propagates to the bottom of the slab or to 

the edge of the girder the un-cracked length, Luc, and un-cracked capacity are both ‘0’ and 

Method #3 is the same as Method #2. 

 

V3 = min �L4L μ4 R�����# cos θ + uncracked capacity0.2f4;A4K + uncracked capacity                     0.8A4K + uncracked capacity                          Equation 4-26 

 

 

Figure 4-23: Parameters used to Determine Crack Length 

 

 



 

84 

 

 

Where: 

Acr   = Area of crack (in.2) 

   = bwLc 

Lc   = Length of crack (in.), Figure 4-23 

un-cracked capacity = 
�n 9f4;A?4 (kips) 

Auc   = Area of un-cracked section (in.2) 

   = bwLuc 

Luc   = Length of un-cracked section (in.), Figure 4-23 

L   = Lc + Luc (in.) 

 

4.3.9.1.4 Method #4 

In Method #4, Equation 4-26 is modified so the capacity equation dependent upon the 

reaction is no longer influenced by the un-cracked capacity equation and is instead reliant upon 

the average coefficient of friction of the cracked, µc, and un-cracked, µuc, sections depending 

upon the cracked length.  This modification is shown in Equation 4-27.  Like with the previous 

methods µc is taken as 1.2.  µuc is taken as 1.6.  The un-cracked coefficient, logically, should be 

larger than the cracked coefficient, and this assumption is reasonable considering the cracked-

concrete coefficients of friction discussed in section 2.2.2.  All other assumption made for 

Method #3 are applied to Method #4. 

 

V3 = min �μ4L4 + μ?4L?4L  R�� + R��# cos θ0.2f4;A4K + uncracked capacity0.8A4K + uncracked capacity     Equation 4-27 

 

Where: 

µuc  = un-cracked concrete coefficient of friction 

 

4.3.9.2 Friction Load Approach 
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The ‘Friction’ approach assumes that the friction force between the girder and bearing 

pad is significant and actually causes the crack to propagate in the reverse diagonal direction.  In 

this approach the dead and live load reaction, R, and friction force, F, act at the crack interface, 

as shown in Figure 4-24.  Corrosion of the bearing pad and rocker prevents the end of the girders 

from rotating, leading to the friction force, which was not considered in the design of the girders.  

As the girder is loaded it will deflect downward which creates tension in the bottom of the girder.  

This causes the girder, at the supports, to try to slide further away from the center of the girder.  

This movement, however, is prevented by the friction force at the beam-to-pad interface.  The 

friction force in the girder, thus, acts toward the center of the girder, as shown in Figure 4-24.  

The crack-driving force component of the two forces, shown parallel to the crack in Figure 4-24, 

act against each other while the crack-clamping forces, shown perpendicular to the crack in 

Figure 4-24, are additive.  The driving and clamping forces are shown as Equation 4-28 and 

Equation 4-29. 

 

 

Figure 4-24: Reaction and Friction Forces Acting on the Reverse Diagonal Crack According to 

the ‘Friction Load Approach’ 

 Driving Force = R sin θ − F cos θ Equation 4-28 Clamping Force = R cos θ + F sin θ Equation 4-29 
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4.3.9.2.1 ABAQUS Study 

A parametric study using ABAQUS was conducted to test the validity of the Friction 

Load Approach.  Various girder models were created with varying geometric and loading 

parameters to investigate the reaction-to-friction force relationship at the beam-to-bearing pad 

interface. 

4.3.9.2.1.1 Parameters 

Various T-shape girders were created in ABAQUS.  The web width, bw, web width-to-

height ratio, bw/h, slab (flange) thickness, hs, and beam length-to-girder height ratio, L/h, were 

varied in each model.  These parameters are displayed in Figure 4-25.  Also displayed in the 

figure is how the effective flange width is calculated.  The slab extends past the girder web a 

distance equal to the girder web height (h-hs) on either side of the web, forming a 45° angle with 

the bottom of the girder web, as shown in Figure 4-25.  Table 4-6 displays the variations for each 

parameter.  One variation was changed while all the others were held constant until a model was 

created for every possible combination. 

 

 

Figure 4-25: Parameters Varied in the ABAQUS Models 
 

Table 4-6: ABAQUS Parameter Variation 
Variable 
Parameter: Variation: 

bw (in.) 12 15 18 

bw/h 0.4 0.5 0.6 
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hs (in.) 6 8 10 

L/h 7 12 17 
 

4.3.9.2.1.2 Model Creation 

The following sections discuss the ABAQUS input properties which were consistent for 

every model. 

4.3.9.2.1.2.1 Parts 

Three ‘Parts’ are created within ABAQUS: 1 beam and 2 pads.  They are deformable 

have a solid shape, and are an ‘extrusion’ type.  Both beam and pad parts have a dependent 

instance type and the pads are placed on the bottom of the beam web, one on either end of the 

beam length.  The ‘pad’ parts are 1 in. thick, 9 in. long, and have the same width as the beam 

web.  The ‘beam’ part follows the dimension parameters unique to each model, as discussed in 

section 4.3.9.2.1.1. 

 

4.3.9.2.1.2.2 Properties 

The beam sections consist of solid and homogeneous concrete.  The concrete is 

mechanical, elastic, and isotropic, has 0 field variables, a long-term moduli time scale, and a 

Poisson’s ratio of 0.2.  A Young’s modulus, E, of 3,122,019 psi is used.  This modulus is 

calculated using Equation 4-22 and assuming a compressive strength, f’c, of 3000 psi.  The pad 

sections consist of solid and homogeneous steel.  The steel is mechanical, elastic, and isotropic 

with 0 field variables, a long-term moduli time scale, a Poisson’s ratio of 0.3, and a Young’s 

modulus of 29,000,000 psi. 

 

4.3.9.2.1.2.3 Step 

A ‘step’ is created of the ‘General; Static, General’ type.  Everything else is kept as 

default. 

 

4.3.9.2.1.2.4 Interaction 

Two rigid body constraints are created; one for each ‘pad’ part.  A reference point is 

placed on each ‘pad’ part on a bottom-corner node.  A contact type interaction property is then 

created.  This interaction property is mechanical with tangential behavior.  It is assigned to have 
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a penalty friction formulation, isotropic directionality, 0 field variables, and a coefficient of 

friction of 0.57.  A surface-to-surface contact (standard) interaction is created with the top 

surface of the pads as the ‘Master’ surfaces and the bottom face of the beam web as the ‘Slave’ 

surface.  The discretization method for this interaction is ‘surface to surface’. 

 

 

4.3.9.2.1.2.5 Load 

A boundary condition is assigned to the reference point on each ‘pad’ part.  The boundary 

conditions are mechanical with a ‘Symmetry/Antisymmetry/Encastre: ENCASTRE 

(U1=U2=U3=UR1=UR2=UR3=0)’ type.  Next, a uniformly distributed pressure type mechanical 

load is applied to the top surface of the beam slab (flange) with a ramp amplitude.   

The HS20 truck is used to estimate the loading on the beams.  It is assumed that an entire 

line of wheel-loads acts on the girder.  This is conservative because a wheel-load is typically 

distributed to multiple girders.  It is also assumed that, if the beam is long enough, wheel-loads 

from multiple trucks are placed on the bridge.  As shown in Figure 4-26, a wheel-load of 16 kips 

(half of the 32 kip axle load) is placed on the right end of the beam.  The HS20 truck’s middle 

wheel-load of 16 kips is placed 14 ft. away while the truck’s front wheel-load of 4 kips is placed 

14 ft. away from the middle wheel-load.  A 6 ft. buffer region is assumed to separate two trucks, 

after which another truck’s rear wheel-load is placed.  This process continues until no more 

wheel-loads can fit within the beam span. 

 

 

Figure 4-26: Loading on the ABAQUS Model Girders 

 

 These truck loads are then applied as a pressure load to the ‘beam’ part using Equation 

4-30.  This applied pressure on the beam is displayed in Figure 4-27. 
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Pressure  psi# =  ∑ Truck wheel loads   b¡. #Length  in. # × Effective Flange Width in. # Equation 4-30 

 

 

Figure 4-27: Uniformly Distributed Pressure Load on ABAQUS Beams 

 

4.3.9.2.1.2.6 Mesh 

To facilitate ABAQUS’s finite element analysis, the ‘pad’ and ‘beam’ parts are divided 

into a mesh.  The program gives the option to divide parts into either rectangular or tetrahedral 

meshes.  Generally, the rectangular mesh out performs tetrahedral meshes, but tetrahedral 

meshes are more versatile and better suited for irregular shapes.  The ‘pad’ and ‘beam’ parts are 

both uniform regular shapes, thus they are divided using a rectangular mesh. 

The focus of these models is to analyze the forces at the beam-to-pad interface.  Thus, a 

smaller mesh was used near this interface to yield more accurate results in the region.  The mesh 

in the interior span of the ‘beam’ part is larger than at the supports, as shown in Figure 4-28.  

This larger size mesh in ‘non-critical’ areas of the beam allows ABAQUS to analyze the models 

faster.  The rectangular mesh at the supports are 3 in. x 3 in. x 3 in. cubes while in the middle 

span, the prisms are 3 in. x 3 in. x 6 in.  The pads are divided into 3 in. x 3 in. x 1 in. prisms.  To 

facilitate the differently sized rectangular meshes, the ‘beam’ part is partitioned into 12 sections, 

as shown in Figure 4-27.  The geometric order of the mesh is quadratic while the element library 

is standard.  Every other setting is set to the default values. 
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Figure 4-28: ABAQUS Model Mesh 

 

4.3.9.2.1.3 Model Output and Program Incorporation 

After a model is analyzed the normal and shear forces in the beam at the beam-to-bearing 

pad interface are found.  The results of these models are discussed further in section 5.3.3.  From 

the results, shear-to-normal force ratios, S/N, were found for each parametric variation.  These 

ratios are displayed in the Tables sheet, as shown in Figure 4-29.  BRIDGE uses the girder 

length, L, girder height, h, slab thickness, hs, and girder web width, bw of the user-defined girders 

to interpolate within the tables in Figure 4-29 to find the S/N ratio corresponding to the girders in 

the program.  This S/N ratio is the predicted ratio of the friction force to normal force between 

the girder and bearing pad.  If the interpolation yields a ratio larger than 0.57 then the program 

will limit the coefficient of friction to 0.57, as this is the theoretical point at which the girder 

starts slipping on the pad, which does not occur.   The program then finds the friction (shear) 

force due to live load, dead load, and combined dead and live load at each girder support by 

multiplying  the S/N ratio by the reaction at the support caused by live load, dead load, and 

combined dead and live load, respectively, as shown in Equation 4-31 through Equation 4-35. 
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Figure 4-29: Shear-to-Normal Force Ratio Tables 

 

¢££ = ¤¥ × ¦££ Equation 4-31 

¢ §£ = ¤¥ × ¦§£ Equation 4-32 

¢££�§£ = ¤¥ × ¦££�§£ Equation 4-33 

  

BRIDGE then divides the friction and reaction forces at each support caused by the total 

live and dead loads by the area of the girder-to-bearing pad interface to obtain the stresses at this 

location.  The program arbitrarily uses an area of 10 in.2.  All the forces in the analysis are 

divided by the same area to find stresses, thus the actual magnitude of the area is 

inconsequential.  The R/Area and F/Area stresses are σy and τxy, respectively, while σx is 0 at the 

interface.  The method outlined in section 2.3 is then used to find the maximum shear stress, τmax, 

and the angle of rotation to the plane of maximum shear stress, θs, for each support.  This θs is 

the calculated crack propagation (θ from Figure 4-24) and is the same at every girder support for 
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a user-defined bridge.  This is because, in the program, the geometry of every girder is the same, 

therefore, every S/N ratio is the same.  This leads to identical θs at every girder even if the 

reactions are dissimilar.  The user, in the Section Geometry and Material Properties sheet, has the 

option to use this calculated angle or a manually-entered crack angle.  The chosen angle, along 

with the friction force calculated in Equation 4-31, and the reaction force calculated within 

BRIDGE are used in Equation 4-28 and Equation 4-29 to find the clamping and driving forces on 

the crack at each girder support.  These forces are then used to find the rating factor for each 

girder support, which is described by Equation 4-34. 

 

¦¢ =  ¨©ª«ª¬­®¯ °/± © ª²«­³´ ¢±µ¬¶ + GH © ª²«­³´§£�££#· −  ¸�¹µ­º­³´§£¸�¹µ­º­³´££�»£  Equation 4-34 

 

Where: 

µc   = Concrete-to-concrete coefficient of friction 

   = 1.4 

ClampingDL+LL = cosθRDL+LL  + sinθFDL+LL   

DrivingDL  = sinθRDL - cosθFDL 

DrivingDL+IL  = sinθ(1+I)RLL – cosθ(1+I)FLL 

I   = Impact Load, Equation 2-3 

θ   = Angle of crack propagation chosen by user 

 

4.3.9.2.1.3.1 Capacity without Clamping Force 

Four methods were considered when calculating the shear capacity of the girders without 

clamping force.  The shear capacity is described by Equation 2-4 where Vn is described by one of 

the four methods below. 

 

4.3.9.2.1.3.1.1 SMCFT 

The SMCFT Equation 2-12, described in section 2.1.4.1 was considered and ultimately 

used in BRIDGE to find the capacity of the girders.  This method was chosen because it is 

consistent with AASHTO shear design specifications and it produces the most conservative 

rating factor, as shown in section 5.3.6.  In addition many studies have proven the accuracy and 
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validity of the SMCFT, unlike other approaches, especially the Muttoni and Ruiz (2008) 

equation. 

 

4.3.9.2.1.3.1.2 ACI Plain Concrete Equation 

Equation 2-11 was considered to describe the shear capacity of the girder at the support.  

This equation seemed valid because there is no steel transversing the crack, therefore only 

concrete resists shearing in the girders.  However, this approach was ultimately not used because 

this equation assumes that the shear plane is uncracked, which is untrue in the girders analyzed 

by the program. 

 

4.3.9.2.1.3.1.3 Muttoni & Ruiz Equation 

The Muttoni & Ruiz method outlined in the section 2.1.4.1 was considered.  However, 

the simplified Equation 2-19 is not applicable to this project and is modified using other 

assumptions.  This project is conducted using LF design.  For the LF method, AASHTO (2002) 

specifies 0.85 for ϕc and ϕs.  The aggregate diameter size was changed to 1”, as this is closer to 

the size of aggregate used in most of the bridges experiencing reverse diagonal cracking and 

because it yields a more conservative shear strength value.  Es was changed to 29,000 ksi and the fy was changed to 33 ksi.  MBE (2011) Article 6B.5.3.2 recommends using this yield stress for 

reinforcing steel in bridges which were made prior to 1954, and in which the steel strength is 

unknown, as is the case with all of the bridges analyzed by this program.  Muttoni & Ruiz (2008) 

explain that mEd/mRd can be set to 1 as a conservative value.  With these adjusted assumptions, 

Equation 2-19 becomes Equation 4-35: 

 

V? = 3.06bd9f4;1 + 0.0298d Equation 4-35 

 

4.3.9.2.1.3.1.4 AASHTO Equation 

Equation 2-7 from section 2.1.4.1 was considered because it is a well-known and widely 

used equation for finding the shear capacity of a beam.  However, as shown in section 5.3.6, this 

equation is less conservative than all the other methods and was not used. 
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4.3.9.3 Coefficient of Friction of Cracked Concrete 

The various values for the coefficient of friction for cracked concrete-to-cracked 

concrete, µc, are detailed in section 2.2.2.  Originally it was believed that ACI’s recommendation 

of 1.4 was too high because this value assumes shear reinforcement is traversing the crack.  

Reinforcing steel, however, does not traverse the reverse diagonal cracks in the girders analyzed 

by BRIDGE.  Reinforcing tension steel may or may not traverse the crack, however it is assumed 

to not contribute to shear capacity, which is a conservative, and likely accurate, assumption.  It 

was also reasoned that PCA’s 0.8 was too low because this describes the coefficient of friction of 

concrete between smooth faces, not rough cracks.  Therefore, a conservative value of 1 or 1.2 

was deemed reasonable.. 

Equation 2-24 and Equation 2-27, developed by Loov (1998) and Tassios & Vintzeleou 

(1987), respectively, were considered.  These equations are dependent upon the clamping force 

on the crack and, thus, to the reaction at the girder support.  Since the reaction varies depending 

upon the truck loads analyzed, the µc calculated by these equations varies with truck loading.  It 

was seen that these µc values were very large under some circumstances and were thus un-

conservative.  Since it was desired that µc be a constant material property Equation 2-24 and 

Equation 2-27 were no longer considered. 

Upon further analysis, it was seen that, for the ACI value, it is assumed that tension 

forces develop in the steel traversing the crack which in turn causes compressive forces in the 

concrete surrounding the steel at the crack interface.  This creates a clamping force between the 

two faces of the crack, as described in section 2.1.4.1.2.  Since the cracked faces are still being 

clamped together, as explained in section 4.3.9.3, this µc value of 1.4 is still applicable and is 

used in Equation 4-34 to find the rating factor of the bridge. 

 

4.3.10 Calculating the Rating Factor at each Support 

The rating factor calculations for the capacity method considered above was discussed in 

section 4.3.9. 
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Chapter 5 Analysis & Results 

 

5.1 Support Reactions: BRIDGE vs. RISA 3D 

It is desired to test the accuracy of BRIDGE’s calculated live load reactions at the support 

of each girder.  Eighteen program and RISA 3D models were created with the various 

combinations of parameters shown in Table 5-1.  The remainder of the bridge parameters, 

displayed in Table 5-2 and Appendix C, are varied randomly within reasonable and realistic 

bounds.  This was to obtain a wide variety of bridge diversity for the support reaction 

comparison.  At the time of this analysis, the dead load of the bridge was not calculated, the 

program did not calculate both the inventory and operating levels simultaneously, and the user 

specified the location of each truck in its respective lane with ‘South’ referring to the position in 

the lane closest to the ‘bottom-most’ girder.  None of these changes affected the calculations of 

the live load reaction at the supports.  Figure 5-1 displays the RISA model for Comparison #1 

with the truck wheel-loads distributed to each surrounding girder and diaphragm using the ‘Rigid 

Beam Analysis within the Panel’ discussed in section 4.2.2.3, which is the method used by 

BRIDGE to distribute wheel-loads.  Both the program and RISA 3D models were ran and the 

results for Comparison #1 are displayed in Table 5-3.  The ‘BRIDGE input’ and ‘results’ tables 

for the other 17 Comparisons are displayed in Appendix C.  As shown in the ‘results’ tables, the 

live load reaction calculated by BRIDGE and RISA 3D are extremely close.  There is usually not 

more than 0.3% error between the results.  When a larger error exists between the two models, it 

is usually at supports with very small reactions.  Thus, even very small differences result in 

larger percent errors.  From these comparisons, it is seen that the program calculates the live load 

reactions with high accuracy, indicating that the stiffness matrix creation and manipulation 

within the program is accurate. 

 

Table 5-1: BRIDGE vs. RISA 3D Model Parameter Variations 

  Parameter Variations: 
# of Lanes:  --- 2 4 
# of Girders: 3 4 5 

Diaphragm Configuration: 4 Real 4 Real, 3 Virtual 3 Real, 4 Virtual 
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Table 5-2: Support Reaction Comparison #1: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type T170 Unit Type T130 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Entering Bridge Exiting Bridge 
Position in Lane: South Edge North Edge 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 60 

Lane Width (ft.): 11 Width (in.): 18 

Cantilever Width (ft.): 0.083333 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 18 

Ext. Barrier Width (in.): 11 Interior 
Diaphragms 

Height (in.): 12 

Median Shld. Width (ft.): 0 Width (in.): 8 

Median Barrier Width (in.): 0 Slab Thickness (in.): 6 

BRIDGE MESH: 
# of Girders: 3 # of Interior Diaphragms: 1 
Length of Girders (ft.): 60 # of Virtual Diaphragms 4 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 36 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
 

Table 5-3: Support Reaction Comparison #1: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 87.595 87.721 -0.1434% 
2 122.985 122.735 0.2039% 
3 64.621 64.746 -0.1923% 
19 73.373 73.457 -0.1149% 
20 101.957 101.786 0.1676% 

21 55.469 55.555 -0.1550% 
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Figure 5-1: Support Reaction Comparison #1: RISA 3D Model 

 

5.2 Capacity: Dead & Live Load Approach 

The program was used to analyze the capacity and resulting rating factor of girders using 

the Dead & Live Load Approach: Methods #1 through #4.  These methods produced rating 

factors which were either too high, too low, or negative.  Thus the Dead & Live Load Approach 

for capacity calculations was discarded. 

 

5.3 Capacity: Friction Load Approach 

5.3.1 ABAQUS Setup Confirmation 

The ABAQUS models described in section 4.3.9.2 were analyzed to obtain the normal 

and shear forces at the girder-to-bearing pad interface.  One model was selected for initial testing 

to ensure the ABAQUS setup yielded accurate results.  The 12 – 0.4 – 10 – 12 model was 

selected where the first number refers to the girder width (in.), bw, the second number refers to 

the web width-to-girder height ratio, bw/h, the third number refers to the height (thickness) of the 

slab (in.), hs, and the fourth number refers to the L/h ratio.  The subsequent tables, figures, and 

discussion follow this nomenclature.  Figure 5-2 and Figure 5-3 display the normal and shear 
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force distribution, respectively, in the girder at the girder-to-bearing pad interface for Model 12 – 

0.4 – 10 – 12.  The left edge of the pads represent the outside face of the pad and girder while the 

right edge of the pads represent the inside face of the pad which is oriented toward the center of 

the girder.  In Figure 5-2, the numbers and lines above the pad midpoint surface represent 

compressive forces at the interface while the numbers and lines below the midpoint surface 

represent tensile forces.  In Figure 5-3, the numbers and lines above the pad midpoint surface 

represent shear forces in the girder acting toward the center of the girder while the number and 

lines below the midpoint surface represent shear forces in the girder acting toward the girder 

ends.  These results show that, at the ends of the girder, the bottom of the girder ‘lifts’ off the pad 

causing the girder and bearing pad to lose contact so no forces are transferred in this area, 

leaving the majority of force transfer to take place at the girder-to-bearing pad interface closest 

to the midpoint of the girder.  The uniform load on this girder is 1.92308 psi or 36 kips total.  If 

the load is split evenly between the bearing pads on either end of the girder then the total normal 

force at one bearing pad should equal 18 kips.  Figure 5-2 shows that the ABAQUS model 

predicts a total normal force of 18.0008 kips on one pad, which is within .039% of the theoretical 

value. 

 

 

Figure 5-2: Normal Force Distribution in the Girder at the Girder-to-Bearing Pad Interface for 
Model 12-0.4-10-12  
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Figure 5-3: Shear Force Distribution in the Girder at the Girder-to-Bearing Pad Interface for 

Model 12-0.4-10-12 

 

 The deflection at the midspan of Model 12 – 0.4 – 10 – 12 at the bottom face of the web 

is 0.105162 in.  The girder supports in ABAQUS are modeled to act as a partially fixed support.  

Thus, the midspan deflection should lie somewhere between the values obtained from Equation 

5-1 and Equation 5-2, which describe the theoretical maximum deflection for a beam with fully 

fixed supports and fully pinned supports, respectively.  ∆F equals 0.023156 in. while ∆P equals 

0.115779 in., thus, the measured deflection lies between these extreme values.  Based on these 

deflection results and the normal force at the supports, it is deemed that the ABAQUS setup is 

accurate and that the models should generate accurate data. 
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∆¼  =   wL�384 570009f4;# I# = 0.028429 in. Equation 5-1 

∆½= 5wL�384 570009f4;# I# = 0.142147 in. Equation 5-2 

 

 Where: 

 ∆F  = Displacement @ midspan for fixed girder supports (in.), 0.0232 in. 

∆P  = Displacement @ midspan for pinned girder supports (in.), 0.116 in. 

 w  = Uniform linear load on girder (psi), 100 lb/in. 

L  = Length of girder (clear span between bearing pads) (in.), 342 in. 

I  = Moment of inertia of girder (in.4), 49280.7 in.4 

 f’ c  = Concrete strength (psi), 3000 psi 

 

5.3.2 Girder Length vs S/N ratio 

The girder length-to-height ratio (L/h) was recognized as the most crucial parameter 

varied in the ABAQUS models, so its effect on the shear-to-normal force ratio (S/N) at the 

girder-to-bearing pad interface was investigated first.  Two parameter combinations from Table 

4-6 were selected: Model 12 - 0.4 - 6 - L and Model 18 - 0.4 - 6 - L.  ABAQUS models for these 

two parameter combinations were created for various L/h ratios ranging from 7 to 17 and the 

resulting S/N (%) ratios are shown in Table 5-4.  As shown, the S/N ratio increases for 

increasing L/h ratios until the S/N ratio reaches 0.57 (57%), at which point the S/N ratio remains 

constant.  0.57 is the coefficient of friction at the girder-to-bearing pad interface, which is the 

limiting value before movement of the girder on the bearing pad.  It was desired to see if there is 

any correlation between the L/h and S/N ratios, so the values in Table 5-4 were plotted in Figure 

5-4 and Figure 5-5 for Model 12 – 0.4 – 6 – L and Model  18 – 0.4 – 6 – L respectively.  The L/h 

ratios corresponding to an S/N ratio of 0.57 were excluded.  A line of best fit was created for 

each graph and the coefficient of determination, R2, was calculated for the lines.  The R2 values 

for Model 12 – 0.4 – 6 – L and Model 18 – 0.4 – 6 – L are 0.9789 and 0.9752 respectively, as 

shown in Figure 5-4 and Figure 5-5.  This indicates that the L/h-to-S/N relationship can 

accurately be approximated as a linear function.  Therefore, throughout the remainder of the 

parametric analysis, only L/h values of 7 and 12 were modeled.  It is assumed that the S/N 
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relationship between these two values is linear until an S/N ratio of 0.57 is reached, at which 

point the S/N ratio is constant for every increasing L/h ratio.  

 

Table 5-4: S/N Ratios at Bearing Pad for Various L/h Ratios for ABAQUS Models 12-0.4-6-L & 

18-0.4-6-L 

L/h 
ratio 

S/N ratio (%) 

12 - 0.4 – 6 - L 18 - 0.4 – 6 - L 
7 14.9 11.4 
8 19.5 16.3 
9 27 20.4 
10 30.1 34 
11 36.2 40.4 
12 46.9 47.4 
13 54.4 57 
14 57 57 

17 57 57 
 

 

 

Figure 5-4: L/h Ratio vs. S/N Ratio for Model 12-0.4-6-L 
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Figure 5-5: L/h Ratio vs. S/N Ratio for Model 18-0.4-6-L 

 

5.3.3 S/N Relationships 

Every combination of parameters in Table 4-6, except L/h = 17, was modeled in 

ABAQUS and the shear and normal forces in the girder at the girder-to-bearing pad interface 

were recorded at one of the supports.  The forces for each model are shown in Appendix D.  

Table 5-6 through Table 5-11 display the resulting S/N ratio for every combination.  These tables 

are color-coded and labeled per Table 5-5 based on the total load applied to the model.  As 

discussed previously, the amount of load applied to a girder is dependent upon the length of the 

girder. 

 

Table 5-5: Load on Corresponding ABAQUS Models, as Shown in Table 5-6 through Table 5-11 
Load on Beam 

(kips): 
116 
232 
336 
452 
568 
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Table 5-6: S/N Ratio Tables for ABAQUS Models with bw = 12” & L/h = 7 

hs 
6 8 10 

bw/h: 
0.4 14.9%2* 15.1%2 15.1%2 
0.5 14.5%2 14.6%2 14.7%2 

0.6 7.4%1 7.5%1 7.5%1 
 

Table 5-7: S/N Ratio Tables for ABAQUS Models with bw = 12” & L/h = 12 

hs 
6 8 10 

bw/h: 
0.4 46.9%3 47.4%3* 48.0%3 
0.5 42.8%2 43.5%2 44.0%2 

0.6 42.7%2 43.6%2 43.9%2 
 

Table 5-8: S/N Ratio Tables for ABAQUS Models with bw = 15” & L/h = 7 

hs 
6 8 10 

bw/h: 
0.4 12.9%2 12.9%2 13.0%2 
0.5 12.6%2 12.7%2 12.8%2 

0.6 12.3%2 12.4%2 12.5%2 
 

Table 5-9: S/N Ratio Tables for ABAQUS Models with bw = 15” & L/h = 12 

hs 
6 8 10 

bw/h: 
0.4 53.4%4 53.6%4 54.2%4* 
0.5 40.3%3* 40.7%3 41.2%3 

0.6 36.7%2 37.2%2 37.7%2 
 

Table 5-10: S/N Ratio Tables for ABAQUS Models with bw = 18” & L/h = 7 

hs 
6 8 10 

bw/h: 
0.4 11.4%2 11.3%2 11.3%2 
0.5 11.2%2 11.2%2* 11.2%2 

0.6 11.0%2 11.0%2 11.1%2 
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Table 5-11: S/N Ratio Tables for ABAQUS Models with bw = 18” & L/h = 12 

hs 
6 8 10 

bw/h: 
0.4 47.4%4 47.2%4 47.4%4 
0.5 47.6%4 47.7%4 48.2%4 

0.6 35.4%3 35.8%3 36.2%3* 
 

5.3.4 Estimation of Crack Propagation Angle 

The principal stresses σmax and σmin, maximum shearing stress, τxy max, and the angle of 

the maximum shear plane, θs were found for seven of the ABAQUS models (marked with an 

asterisk (*) in Table 5-6 through Table 5-11) using the transformation of stresses method 

discussed in section 2.3.  These values are displayed in Table 5-12.  The maximum shear plane 

angle is, theoretically, the plane on which the crack should propagate.  The angles shown in 

Table 5-12 are measured clockwise from the bottom of the girder, as displayed in Figure 2-11, 

thus, the magnitude of these angles is the predicted crack propagation angle.  All of these models 

predict relatively steep angles, which coincide with the observed steep propagation angles for the 

reverse diagonal cracking shown in inspection report photographs. 

 

Table 5-12: Principal Stresses, Max Shear Stress, and Angle of Maximum Shear Plan for 7 
ABAQUS Models. 

  

Model: 

12-0.4-6-7 12-0.6-6-7 12-0.4-8-12 15-0.4-10-12 15-0.5-6-12 18-0.5-8-7 18-0.6-10-12 

σmax (psi) 3.24 0.41 31.53 45.68 18.96 1.22 13.04 

σmin (psi) -151.39 -74.48 -198.19 -238.28 -152.29 -99.98 -124.15 

θs, max (°) -53.32 -49.22 -66.74 -68.65 -64.43 -51.29 -62.96 

τxy, max (psi) 77.31 37.44 114.86 141.98 85.62 50.60 68.59 
 

5.3.5 Predicted Crack Propagation Angle vs Actual Propagation Angle 

To test how accurately Method #6 predicts the crack angle, 7 girder supports were chosen 

from Bridge No. 54-104-317.27-(0005).  Their location and geometry properties are displayed in 

Table 5-13.  Interpolation was performed within Table 5-6 through Table 5-11 for each girder to 

determine an estimated interface S/N ratio.  Each girder exceeded the limits in the tables so an 

S/N ratio of 0.57 was used for each girder.  This coefficient, along with a reaction force of 26 
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kips at each support, was used to find the friction force at each support.  This friction force is the 

same for each girder and is 14.82 kips.  These forces were converted into stresses and 

transformed to find the predicted crack propagation angle, which was 69.4° for each girder.  The 

inspection report photos (Special Bridge Inspection Report, 2011) were observed for these 

supports and an approximate reverse diagonal crack propagation angle was determine.  These 

angles are shown in Table 5-14 and are close to the predicted angle of 69.4°.  Thus, it was 

determined that Method #6 is accurate for estimating the crack propagating angle for use in 

Equation 4-34. 

 

Table 5-13: Location and Geometry of 7 Girder Supports for Bridge No. 54-104-317.27-(0005) 

Support #: 1 2 3 4 5 6 7 
Span #: 1 1 2 2 2 4 5 

Girder #: F F E E F D G 

Abutment/Pier #: P1 P1 P2 P2 P2 P4 P4 

bw (in) 15 15 15 15 15 15 15 

h (in) 33 33 36 36 36 36 33 

hs (in) 6.5 6.5 6.5 6.5 6.5 6.5 6.5 

L (in) 510 510 570 570 570 570 510 

bw/h 0.45 0.45 0.42 0.42 0.42 0.42 0.45 

L/h 15.45 15.45 15.83 15.83 15.83 15.83 15.45 
 

Table 5-14: Observed Propagation Angles of Reverse Diagonal Crack for 7 Supports for Bridge 
No. 54-104-317-27-(0005) 

Support #: 1 2 3 4 5 6 7 

Observed Crack Angle 73.3 53.4 65.6 66.8 75.1 76.8 68.6 
 

5.3.6 Capacity without Clamping Force 

Equation 4-34 requires the capacity of the concrete girder section without consideration 

of the clamping force.  As discussed in section 4.3.9.2.1.3.1, four equations were considered; 

SMCFT (2006), ACI 318 (2014), Muttoni & Ruiz (2008), and AASHTO (2002).  The capacity 

of a girder with a web width of 15 in., web height (through the deck) of 41 in., and a concrete 

compressive strength of 3000 psi using each of the four equations are shown in Table 5-15.  The 

SMCFT method is the most conservative.  Since the SMCFT method is well tested and is known 
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as an accurate method for calculating the shear capacity of a beam, it is used in BRIDGE to 

calculate the shear capacity of the beam without clamping force. 

 

Table 5-15: Capacity of Girder with a Height of 41” & Web Width of 15” using different 

Capacity Eqn’s 

Capacity Equation: Capacity (kips) 

SMCFT (2006) 8.76 
ACI 318 (2014) 38.18 
Muttoni & Ruiz (2008) 44.18 

AASHTO (2002) 51.54 
 

5.4 Analysis of Bridge No. 54-104-15.45 

KDOT’s Bridge No. 54-104-15.45 displays the reverse diagonal shear cracking 

phenomenon and is analyzed by BRIDGE to demonstrate the program’s output and results.  This 

bridge consists of 5 spans.  Span #1 and #5 are identical, as are spans #2 and #4.  The results for 

span #1 and #5 are discussed herein.  The results for the other three spans are similar and are 

displayed in Appendix E.  Two of each truck are placed on the bridge, one in each lane on the 

same side of the bridge span.  Table 5-16 and Table 5-17 display the operating and inventory 

rating factors and truck ratings, respectively, for each standard truck option available within the 

program.  The program uses Equation 4-34 and the described procedure to calculate the rating 

factors in Table 5-16.  Equation 2-1 is used to determine the truck ratings shown in Table 5-17.  

Each truck was analyzed twice; once assuming the entire girder width provided shear resistance, 

and once assuming that the girder end has deteriorated to the point where only 50% of the girder 

width is resisting shear.  As shown in Table 5-16 and Table 5-17 the girders contributing 100% 

of their girder width have larger shear capacities and thus larger rating factors, as is intuitive.  

With few exceptions, the operating RF is larger than 1 while the inventory RF is less than 1, 

indicating that it is up to the engineer’s judgement whether to load rate this bridge. 
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Table 5-16: Rating Factors for Spans #1 & #5 for 50% & 100% Girder Width 

Rating: Operating Inventory 

bw used: 100% 50% 100% 50% 
H Unit 1.22 1.07 0.73 0.64 

T 3 1.17 1.04 0.7 0.62 
HS  1.11 1.01 0.67 0.6 
3S2 1.19 1.06 0.72 0.63 
T 3-3 1.25 1.09 0.75 0.65 
T-130 1.17 1.05 0.7 0.63 
T-170 1.14 1.04 0.68 0.62 
HET 1.03 0.97 0.62 0.58 
SU4 1.14 1.03 0.68 0.61 
SU5 1.12 1.01 0.67 0.61 
SU6 1.11 1.01 0.66 0.6 
SU7 1.1 1 0.66 0.6 

NRL 1.09 1 0.65 0.6 
 

Table 5-17: Truck Ratings for Spans #1 & #5 for 50% & 100% Girder Width 

Rating: Operating Inventory 

bw used: 100% 50% 100% 50% 
H Unit 15.25 13.375 9.125 8 

Type 3 29.25 26 17.5 15.5 
HS  24.975 22.725 15.075 13.5 
3S2 42.84 38.16 25.92 22.68 
Type 3-3 50 43.6 30 26 
T-130 76.05 68.25 45.5 40.95 
T-170 96.9 88.4 57.8 52.7 
HET 113.3 106.7 68.2 63.8 
SU4 30.78 27.81 18.36 16.47 
SU5 34.72 31.31 20.77 18.91 
SU6 38.573 35.0975 22.935 20.85 
SU7 42.625 38.75 25.575 23.25 

NRL 43.6 40 26 24 
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Chapter 6 Conclusions 

 

Dozens of KDOT bridges built in the early-to-mid 1900s exhibit a phenomenon known as 

reverse diagonal shear cracking, shown in Figure 1-1.  It is a concern that this cracking will 

result in a loss of bearing support at the girder ends.  Thus, it is important to study this 

phenomenon to determine the cause of the reverse diagonal cracking and its effects on the 

capacity of the girder. 

It is determined in this study that this cracking is caused by unintended frictional forces 

acting at the girder-to-bearing pad interface.  The girders are supported on steel bearing pads and 

rockers instead of rubber bearing pads, as is common in new construction.  Steel bearing pads 

and rockers rust and corrode due to decades of exposure to water and deicing salts.  This 

corrosion prevents the rocker from rotating, turning the once pinned connection into a partially-

fixed connection.  When rotation of the girder is prevented a buildup of shear stress at the girder-

to-bearing pad interface occurs caused by the bottom of the girder’s tendency to expand towards 

the ends of the girder when subject to tension during the loading process.  This friction force, 

coupled with the girder reaction, causes the reverse diagonal cracking. 

The live and dead load reactions at the support, along with the friction force, act on the 

reverse diagonal crack as shown in Figure 4-24.  These forces cause the crack-driving and crack-

clamping forces as shown.  From these forces, Equation 4-34 is developed to calculate the rating 

factor of the bridge at the girder supports.  This equation is based on Equation 2-2.   

The Simplified Modified Compression Field Theory is used to find the capacity of the 

girder ‘without clamping forces’.  This method was chosen because it results in the most 

conservative capacity estimate and it is widely accepted as a reliable method for finding the 

shear capacity of cracked concrete beams. 

The BRIDGE program was used to load rate Bridge No. 54-104-15.45 and yielded 

reasonable rating factors for varying trucks and reduced girder widths.  The operating rating 

factors were consistently above 1 while the inventory rating factors were below 1, indicating that 

the decision to load rate this bridge is based on the engineer’s judgement. 

  



 

109 

References 

AASHTO. (2002). Standard specifications for highway bridges (17th ed.). Washington, D.C.: 
American Association of State Highway and Transportation Officials (AASHTO).  

 
AASHTO. (2011). Section 6: Load rating. Manual for bridge evaluation (2nd ed., pp. 6-i-6-i). 

Washington, D.C.: American Association of State Highway and Transportation Officials 
(AASHTO).  

 
AASHTO. (2014). LRFD bridge design specifications (7th ed.). Washington, D.C.: American 

Association of State Highway and Transportation Officials (AASHTO).  
 
ACI Committee 318. (2014). Building code requirements for structural concrete (ACI 318-14) 

American Concrete Institute (ACI).  
 
Al-Mahaidi, R., Taplin, G., & Giufre, A. (2000). Load distribution and shear strength evaluation 

of an old concrete T-beam bridge. Transportation Research Record, 1696  
 
Azizinamini, A., Boothby, T. E., Shekar, Y., & Barnhill, G. (1994a). Old concrete slab bridges I: 

Experimental investigation. Journal of Structural Engineering, 120(11)  
 
Azizinamini, A., Boothby, T. E., Shekar, Y., & Barnhill, G. (1994b). Old concrete slab bridges 

II: Analysis. Journal of Structural Engineering, 120(11)  
 
Azizinamini, A., Elremaily, A., & Choobineh, F. (2004). Advanced methodology for rating 

concrete slab bridges. Structures Congress 2000: Advanced Technology in Structural 
Engineering, , 103  

 
Beer, F. P., Johnston Jr., E. R., DeWolf, J. T., & Mazurek, D. F. (2012). Chapter 7: 

Transformations of stress and strain. Mechanics of materials (6th ed., pp. 438-438-445) 
McGraw-Hill.  

 
Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field 

theory for calculating shear strength of reinforced concrete elements. ACI Structural 
Journal, July-August, 614-614-624.  

 
Commander, B., & Schulz, J. (1997). Field verified load rating method for reinforced concrete 

slab bridges. Building to Last: Proceedings of Structures Congress XV, Portland, Oregon. , 2  
 
Dassault Systemes. (2013). Abaqus. Providence, RI: Dassault Systemes Simulia Corp.  
 
Farny, J. A., Melander, J. M., & Panarese, W. C. (2008). Appendix A: Details of concrete 

masonry construction. Concrete masonry handbook (6th ed., pp. 246) Portland Cement 
Association.  

 



 

110 

KDOT. (2011). Special bridge inspection report: Special girder end inspection for bridge no. 
54-104-317.27-(0005). (Inspection). Topeka, KS: KDOT (Kansas Department of 
Transportation).  

 
KDOT. (2016). Bridge section - chapter 15: Bridge load rating. KDOT design manual (pp. 15-1-

15-1 - 15-41) Kansas Department of Transportation (KDOT).  
 
Kumaraguru, P. (1992). Strength of dapped-end beams. Unpublished manuscript.  
 
Loov, R. E. (1998). Review of A23.3-94 simplified method of shear design and comparison with 

results using shear friction. Canadian Journal of Civil Engineering, 437-437-450.  
 
Muttoni, A., & Ruiz, M. F. (2008). Shear strength of members without transverse reinforcement 

as function of critical shear crack width. ACI Structural Journal, (March), 163-163-172.  
 
Muttoni, A., & Thurlimann, B. (1986). Shear tests on beams and slabs without shear 

reinforcement. Unpublished manuscript.  
 
Rabbat, B. G., & Russell, H. G. (1985). Friction coefficient of steel on concrete or grout. Journal 

of Structural Engineering, 111, 505-505-515.  
 
Ranasinghe, A. P., & Gottshall, W. L. (2002). Numerical load rating of reinforced concrete 

compression members: Demonstration with Connecticut arch bridges. Transportation 
Research Record,  

 
RISA Technologies, L. (2012). Risa-3d (10.0.1 ed.) RISA Technologies, LLC.  
Tassios, T. P., & Vintzeleou, E. N. (1987). Concrete - to - concrete friction. Journal of Structural 

Engineering, 113, 832-832-849.  
 
Vecchio, F. J., & Collins, M. P. (1982). The response of reinforced concrete to in-plane shear 

and normal stresses. Department of Civil Engineering, University of Toronto, Ontario, 
Canada, 82-03, 332.  

 
  



 

111 

Appendix A -  Truck Types 
 

Table A-1: Truck Axle Loads and Spacings 

Truck 
Type Axle # 

Axle Load 
(kips) 

Axle Spacing (ft) 
Minimum Maximum 

H 20 
1 8 - - 
2 32 14 14 

Type 3 
1 16 - - 
2 17 15 15 
3 17 4 4 

HS 20 
1 8 - - 
2 32 14 14 
3 32 14 30 

Type 3S2 

1 10 - - 
2 15.5 11 11 
3 15.5 4 4 
4 15.5 22 22 
5 15.5 4 4 

Type 3-3 

1 12 - - 
2 12 15 15 
3 12 4 4 
4 16 15 15 
5 14 16 16 
6 14 4 4 

Type 
T130 

1 10 - - 
2 20 15 15 
3 20 4 4 
4 20 14 14 
5 20 4 4 
6 20 30 30 
7 20 4 4 

Type 
T170 

1 16 - - 
2 18 15 15 
3 18 4 4 
4 18 4 4 
5 20 14 14 
6 20 4 4 
7 20 30 30 
8 20 4 4 
9 20 4 4 
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Truck 
Type Axle # 

Axle Load 
(kips) 

Axle Spacing (ft) 
Minimum  Maximum 

HET 

1 21.48 - - 
2 21.35 12.92 12.92 
3 21.16 5 5 
4 19.23 5 5 
5 25.39 15.1 15.1 
6 27.84 5.94 5.94 
7 26.29 5.94 5.94 
8 27.42 5.94 5.94 
9 29.75 5.94 5.94 

SU4 

1 12 - - 
2 8 10 10 
3 17 4 4 
4 17 4 4 

SU5 

1 12 - - 
2 8 10 10 
3 8 4 4 
4 17 4 4 
5 17 4 4 

SU6 

1 11.5 - - 
2 8 10 10 
3 8 4 4 
4 17 4 4 
5 17 4 4 
6 8 4 4 

SU7 

1 11.5 - - 
2 8 10 10 
3 8 4 4 
4 17 4 4 
5 17 4 4 
6 8 4 4 
7 8 4 4 

NRL 

1 6 - - 
2 8 6 14 
3 8 4 4 
4 17 4 4 
5 17 4 4 
6 8 4 4 
7 8 4 4 
8 8 4 4 
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Appendix B -  Stiffness Matrix 
 

 
Figure B-1: Stiffness Matrix as Function Member Properties 
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Appendix C -  Support Reactions: Program vs. RISA 

 

Table C-1: Support Reaction Comparison #2: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: H Unit H Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Exiting Bridge Entering Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 48 

Lane Width (ft.): 12 Width (in.): 12 

Cantilever Width (ft.): 0 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 0 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 0 Width (in.): 12 

Median Barrier Width (in.): 0 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 3 # of Interior Diaphragms: 2 
Length of Girders (ft.): 50 # of Virtual Diaphragms 3 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 24 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
 

Table C-2: Support Reaction Comparison #2: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 4.871 4.871 -0.0044% 
2 4.400 4.4 0.0092% 
3 1.709 1.71 -0.0391% 
19 12.143 12.261 -0.9665% 
20 41.573 41.336 0.5734% 

21 15.304 15.423 -0.7718% 
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Table C-3: Support Reaction Comparison #3: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Heavy Equip. Trans. H Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Exiting Bridge Entering Bridge 
Position in Lane: Center North Edge 

Analysis Level: Operating Posting Operating Posting 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 48 

Lane Width (ft.): 12 Width (in.): 5 

Cantilever Width (ft.): 1 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 6 Width (in.): 12 

Ext. Barrier Width (in.): 17 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 0 Width (in.): 12 

Median Barrier Width (in.): 0 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 3 # of Interior Diaphragms: 2 
Length of Girders (ft.): 120 # of Virtual Diaphragms 0 

Tot. # of Diaphragms: 4 Diaphragm Length (ft.): 36 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
 

Table C-4: Support Reaction Comparison #3: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 33.185 33.179 0.0186% 
2 23.097 23.108 -0.0493% 
3 10.153 10.147 0.0547% 
10 67.873 67.867 0.0084% 
11 86.973 86.984 -0.0124% 

12 23.920 23.914 0.0240% 
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Table C-5: Support Reaction Comparison #4: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: H Unit H Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Entering Bridge Entering Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 18 

Cantilever Width (ft.): 2 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 6 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 18 

Median Shld. Width (ft.): 3 Width (in.): 8 

Median Barrier Width (in.): 12 Slab Thickness (in.): 10 

BRIDGE MESH: 
# of Girders: 4 # of Interior Diaphragms: 1 
Length of Girders (ft.): 25 # of Virtual Diaphragms 4 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 38 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
 

Table C-6: Support Reaction Comparison #4: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 6.567 6.589 -0.3330% 
2 30.591 30.533 0.1884% 
3 1.926 1.977 -2.5971% 
4 0.917 0.902 1.6364% 
25 0.917 0.902 1.6364% 

26 1.926 1.977 -2.5971% 
27 30.591 30.533 0.1884% 

28 6.567 6.589 -0.3330% 
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Table C-7: Support Reaction Comparison #5: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3S2 Unit H Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Exiting Bridge Entering Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Operating Posting Operating Posting 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 24 

Lane Width (ft.): 12 Width (in.): 6 

Cantilever Width (ft.): 2 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 6 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 3 Width (in.): 12 

Median Barrier Width (in.): 12 Slab Thickness (in.): 12 

BRIDGE MESH: 
# of Girders: 4 # of Interior Diaphragms: 2 
Length of Girders (ft.): 200 # of Virtual Diaphragms 3 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 40 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
 

Table C-8: Support Reaction Comparison #5: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 3.037 3.035 0.0628% 
2 2.297 2.302 -0.2170% 
3 2.444 2.439 0.2019% 
4 0.590 0.592 -0.2763% 
25 14.467 14.469 -0.0152% 

26 37.972 37.974 -0.0047% 
27 32.636 32.624 0.0373% 

28 3.557 3.564 -0.2069% 
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Table C-9: Support Reaction Comparison #6: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3S2 Unit H Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Exiting Bridge Entering Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Operating Posting Operating Posting 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 18 

Cantilever Width (ft.): 0 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 0 Width (in.): 12 

Median Barrier Width (in.): 0 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 4 # of Interior Diaphragms: 2 
Length of Girders (ft.): 75 # of Virtual Diaphragms 0 

Tot. # of Diaphragms: 4 Diaphragm Length (ft.): 53 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
 

Table C-10: Support Reaction Comparison #6: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 18.009 18.034 -0.1412% 
4 7.991 7.988 0.0368% 
5 34.088 34.027 0.1783% 
8 6.507 6.52 -0.1956% 
9 17.701 17.745 -0.2501% 

12 6.092 6.075 0.2825% 
13 5.887 5.878 0.1581% 

16 0.726 0.733 -1.0164% 
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Table C-11: Support Reaction Comparison #7: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3-3 Unit   
Lane #: 1   
Direction of Travel: Up-station   
Truck Location: Exiting Bridge   
Position in Lane: Center   

Analysis Level: Operating Posting   

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 24 

Lane Width (ft.): 11 Width (in.): 12 

Cantilever Width (ft.): 3 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 6 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 0 Width (in.): 6 

Median Barrier Width (in.): 0 Slab Thickness (in.): 12 

BRIDGE MESH: 
# of Girders: 5 # of Interior Diaphragms: 1 
Length of Girders (ft.): 60 # of Virtual Diaphragms 4 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 28 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
 

Table C-12: Support Reaction Comparison #7: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 9.695 9.755 -0.6154% 
2 14.055 13.943 0.8045% 
3 10.591 10.687 -0.9013% 
4 6.794 6.698 1.4334% 
5 -1.659 -1.608 3.1908% 

31 8.890 8.955 -0.7237% 
32 16.094 15.955 0.8738% 

33 11.023 11.146 -1.1058% 
34 5.879 5.789 1.5622% 

35 -1.362 -1.322 3.0483% 
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Table C-13: Support Reaction Comparison #8: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: HS Unit Type 3 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Exiting Bridge Entering Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 24 

Lane Width (ft.): 12 Width (in.): 8 

Cantilever Width (ft.): 1 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 0 Width (in.): 6 

Median Barrier Width (in.): 0 Slab Thickness (in.): 12 

BRIDGE MESH: 
# of Girders: 5 # of Interior Diaphragms: 2 
Length of Girders (ft.): 40 # of Virtual Diaphragms 3 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 28 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
 

Table C-14: Support Reaction Comparison #8: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 8.256 8.325 -0.8242% 
2 14.412 14.294 0.8288% 
3 12.503 12.555 -0.4154% 
4 10.304 10.274 0.2945% 
5 3.207 3.235 -0.8564% 

31 8.288 8.309 -0.2574% 
32 18.231 18.155 0.4169% 

33 30.655 30.966 -1.0047% 
34 45.879 45.403 1.0494% 

35 8.264 8.484 -2.5920% 
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Table C-15: Support Reaction Comparison #9: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3-3 Unit Type 3 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Down-station 
Truck Location: Exiting Bridge Entering Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 2 

Girders 
Height (in.): 30 

Lane Width (ft.): 10 Width (in.): 16 

Cantilever Width (ft.): 3 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 36 

Median Shld. Width (ft.): 2 Width (in.): 12 

Median Barrier Width (in.): 12 Slab Thickness (in.): 12 

BRIDGE MESH: 
# of Girders: 5 # of Interior Diaphragms: 2 
Length of Girders (ft.): 75 # of Virtual Diaphragms 0 

Tot. # of Diaphragms: 4 Diaphragm Length (ft.): 23.6667 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
 

Table C-16: Support Reaction Comparison #9: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 21.891 21.827 0.2919% 
4 26.221 26.172 0.1866% 
5 12.280 12.407 -1.0226% 
8 28.609 28.701 -0.3199% 
9 12.698 12.74 -0.3309% 

12 41.270 41.333 -0.1522% 
13 13.681 13.472 1.5486% 

16 47.749 47.546 0.4278% 
17 1.451 1.555 -6.6917% 

20 16.150 16.249 -0.6078% 
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Table C-17: Support Reaction Comparison #10: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: H Unit HS Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Entering Bridge Entering Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Operating Posting Operating Posting 

  Truck #3: Truck #4: 
Truck Type: Type 3 Unit H Unit 
Lane #: 3 4 
Direction of Travel: Left Bound Left Bound 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: South Edge North Edge 

Analysis Level: Operating Posting Operating Posting 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 48 

Lane Width (ft.): 10 Width (in.): 18 

Cantilever Width (ft.): 5 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 18 Interior 
Diaphragms 

Height (in.): 12 

Median Shld. Width (ft.): 0 Width (in.): 8 

Median Barrier Width (in.): 12 Slab Thickness (in.): 4 

BRIDGE MESH: 
# of Girders: 3 # of Interior Diaphragms: 1 
Length of Girders (ft.): 50 # of Virtual Diaphragms 4 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 37 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
 

 

 

 

 

 



 

123 

Table C-18: Support Reaction Comparison #10: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 24.483 24.538 -0.2243% 
2 77.988 77.877 0.1421% 
3 16.098 16.153 -0.3420% 
19 2.309 2.315 -0.2594% 
20 19.273 19.26 0.0653% 

21 4.850 4.857 -0.1433% 
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Table C-19: Support Reaction Comparison #11: BRIDGE Input 

LOADING: 

  Truck #1: Truck #2: 
Truck Type: Type T170 Unit Heavy Equip. Trans. 

Lane #: 1 2 

Direction of Travel: Up-station Up-station 

Truck Location: Entering Bridge Entering Bridge 

Position in Lane: Center Center 

Analysis Level: Operating Posting Operating Posting 

  Truck #3: Truck #4: 
Truck Type: Type T130 Unit Heavy Equip. Trans. 

Lane #: 3 4 

Direction of Travel: Left Bound Left Bound 

Truck Location: Exiting Bridge Exiting Bridge 

Position in Lane: Center Center 

Analysis Level: Operating Posting Operating Posting 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 12 

Cantilever Width (ft.): 6 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 6 Width (in.): 12 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 18 

Median Shld. Width (ft.): 0 Width (in.): 8 

Median Barrier Width (in.): 0 Slab Thickness (in.): 10 

BRIDGE MESH: 

# of Girders: 3 # of Interior Diaphragms: 2 

Length of Girders (ft.): 100 # of Virtual Diaphragms 3 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 47.333 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
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Table C-20: Support Reaction Comparison #11: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 114.990 115.043 -0.0464% 

2 260.107 260.001 0.0408% 

3 119.897 119.95 -0.0443% 

19 64.663 64.679 -0.0241% 

20 105.991 105.96 0.0294% 

12 74.752 74.767 -0.0201% 
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Table C-21: Support Reaction Comparison #12: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type T170 Unit Heavy Equip. Trans. 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Entering Bridge Entering Bridge 
Position in Lane: Center Center 

Analysis Level: Operating Posting Operating Posting 

  Truck #3: Truck #4: 
Truck Type: Type T130 Unit Heavy Equip. Trans. 
Lane #: 3 4 
Direction of Travel: Left Bound Left Bound 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: Center Center 

Analysis Level: Operating Posting Operating Posting 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 12 

Cantilever Width (ft.): 6 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 6 Width (in.): 12 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 18 

Median Shld. Width (ft.): 0 Width (in.): 8 

Median Barrier Width (in.): 0 Slab Thickness (in.): 10 

BRIDGE MESH: 
# of Girders: 3 # of Interior Diaphragms: 2 
Length of Girders (ft.): 100 # of Virtual Diaphragms 0 

Tot. # of Diaphragms: 2 Diaphragm Length (ft.): 47.333 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
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Table C-22: Support Reaction Comparison #12: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 120.519 120.543 -0.0197% 
2 249.081 249.034 0.0188% 
3 125.393 125.417 -0.0188% 
10 66.528 66.534 -0.0091% 
11 102.229 102.215 0.0135% 

12 76.650 76.657 -0.0095% 
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Table C-23: Support Reaction Comparison #13: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3S2 Unit H Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Entering Bridge Exiting Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

  Truck #3: Truck #4: 
Truck Type: Type T130 Unit Type T170 Unit 
Lane #: 3 4 
Direction of Travel: Left Bound Left Bound 
Truck Location: Entering Bridge Exiting Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 24 

Lane Width (ft.): 12 Width (in.): 8 

Cantilever Width (ft.): 0 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 8 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 16 

Median Shld. Width (ft.): 3 Width (in.): 8 

Median Barrier Width (in.): 12 Slab Thickness (in.): 6 

BRIDGE MESH: 
# of Girders: 4 # of Interior Diaphragms: 1 
Length of Girders (ft.): 125 # of Virtual Diaphragms 4 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 61 

MATERIAL PROPERTIES: Concrete Strength (psi) 4000 
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Table C-24: Support Reaction Comparison #13: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 45.792 45.793 -0.0014% 
2 86.691 86.693 -0.0029% 
3 104.374 104.367 0.0063% 
4 118.311 118.314 -0.0029% 
25 4.042 4.046 -0.0869% 

26 86.718 86.718 -0.0004% 
27 141.489 141.479 0.0074% 

28 78.583 78.590 -0.0084% 
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Table C-25: Support Reaction Comparison #14: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3-3 Unit Type T130 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

  Truck #3: Truck #4: 
Truck Type:     
Lane #:     
Direction of Travel:     
Truck Location:     
Position in Lane:     

Analysis Level:     

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 24 

Lane Width (ft.): 10 Width (in.): 8 

Cantilever Width (ft.): 1 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 8 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 16 

Median Shld. Width (ft.): 0 Width (in.): 8 

Median Barrier Width (in.): 0 Slab Thickness (in.): 6 

BRIDGE MESH: 
# of Girders: 4 # of Interior Diaphragms: 2 
Length of Girders (ft.): 125 # of Virtual Diaphragms 3 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 44 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
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Table C-26: Support Reaction Comparison #14: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 39.775 39.767 0.0201% 
2 26.594 26.619 -0.0951% 
3 28.497 28.472 0.0878% 
4 2.917 2.925 -0.2708% 
25 82.263 82.289 -0.0312% 

26 117.950 117.897 0.0448% 
27 56.182 56.209 -0.0486% 

28 -0.178 -0.178 -0.2407% 
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Table C-27: Support Reaction Comparison #15: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Type 3-3 Unit Type 3-3 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: Center Center 

Analysis Level: Inventory Inventory 

  Truck #3: Truck #4: 
Truck Type: Type 3 Unit H Unit 
Lane #: 3 4 
Direction of Travel: Left Bound Left Bound 
Truck Location: Entering Bridge Entering Bridge 
Position in Lane: South Edge North Edge 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 12 

Cantilever Width (ft.): 3 Exterior 
Diaphragms 

Height (in.): 36 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 8 Interior 
Diaphragms 

Height (in.): 16 

Median Shld. Width (ft.): 3 Width (in.): 12 

Median Barrier Width (in.): 12 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 4 # of Interior Diaphragms: 2 
Length of Girders (ft.): 60 # of Virtual Diaphragms 0 

Tot. # of Diaphragms: 4 Diaphragm Length (ft.): 54.333 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
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Table C-28: Support Reaction Comparison #15: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 52.812 52.844 -0.0602% 
4 49.858 49.911 -0.1066% 
5 73.042 72.967 0.1030% 
8 88.513 88.415 0.1112% 
9 19.670 19.725 -0.2775% 

12 84.281 84.318 -0.0439% 
13 0.115 0.104 10.8286% 

16 27.708 27.716 -0.0290% 
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Table C-29: Support Reaction Comparison #16: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: Heavy Equip. Trans. Type T170 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Inventory Inventory 

  Truck #3: Truck #4: 
Truck Type: Type 3-3 Unit Type T130 Unit 
Lane #: 3 4 
Direction of Travel: Left Bound Left Bound 
Truck Location: Entering Bridge Entering Bridge 
Position in Lane: South Edge North Edge 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 18 

Cantilever Width (ft.): 3 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 3 Width (in.): 12 

Median Barrier Width (in.): 12 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 5 # of Interior Diaphragms: 1 
Length of Girders (ft.): 90 # of Virtual Diaphragms 4 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 54 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
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Table C-30: Support Reaction Comparison #16: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 84.409 84.48 -0.0837% 
2 132.906 132.735 0.1290% 
3 75.796 75.912 -0.1524% 
4 54.987 54.988 -0.0014% 
5 46.302 46.285 0.0365% 

31 107.212 107.322 -0.1029% 
32 206.007 205.719 0.1398% 

33 108.477 108.756 -0.2563% 
34 105.658 105.520 0.1310% 

35 86.045 86.083 -0.0436% 
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Table C-31: Support Reaction Comparison #17: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: H Unit Type 3 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Inventory Inventory 

  Truck #3: Truck #4: 
Truck Type: HS Unit Type 3 Unit 
Lane #: 3 4 
Direction of Travel: Left Bound Left Bound 
Truck Location: Entering Bridge Entering Bridge 
Position in Lane: South Edge North Edge 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 18 

Cantilever Width (ft.): 3 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 3 Width (in.): 12 

Median Barrier Width (in.): 12 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 5 # of Interior Diaphragms: 2 
Length of Girders (ft.): 90 # of Virtual Diaphragms 3 

Tot. # of Diaphragms: 7 Diaphragm Length (ft.): 54 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
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Table C-32: Support Reaction Comparison #17: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 5.164 5.167 -0.0501% 
2 6.975 6.968 0.0998% 
3 6.652 6.661 -0.1372% 
4 7.026 7.021 0.0739% 
5 4.864 4.866 -0.0378% 

31 17.424 17.453 -0.1662% 
32 77.635 77.564 0.0919% 

33 48.463 48.556 -0.1914% 
34 58.055 57.965 0.1557% 

35 55.741 55.780 -0.0702% 
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Table C-33: Support Reaction Comparison #18: BRIDGE Input 

LOADING: 
  Truck #1: Truck #2: 
Truck Type: H Unit Type T170 Unit 
Lane #: 1 2 
Direction of Travel: Up-station Up-station 
Truck Location: Exiting Bridge Exiting Bridge 
Position in Lane: North Edge South Edge 

Analysis Level: Inventory Inventory 

LANE ALIGNMENT: SECTION GEOMETRY: 
# of Lanes: 4 

Girders 
Height (in.): 36 

Lane Width (ft.): 12 Width (in.): 18 

Cantilever Width (ft.): 3 Exterior 
Diaphragms 

Height (in.): 24 

Ext. Shld. Width (ft.): 3 Width (in.): 12 

Ext. Barrier Width (in.): 12 Interior 
Diaphragms 

Height (in.): 24 

Median Shld. Width (ft.): 3 Width (in.): 12 

Median Barrier Width (in.): 12 Slab Thickness (in.): 8 

BRIDGE MESH: 
# of Girders: 5 # of Interior Diaphragms: 2 
Length of Girders (ft.): 90 # of Virtual Diaphragms 0 

Tot. # of Diaphragms: 4 Diaphragm Length (ft.): 54 

MATERIAL PROPERTIES: Concrete Strength (psi) 5000 
 

Table C-34: Support Reaction Comparison #18: Results 

Reactions at Supporting Nodes: Program vs RISA 

Node: Program (k) RISA (k) % Difference: 
1 31.984 31.991 -0.0226% 
4 45.123 45.138 -0.0338% 
5 65.260 65.247 0.0203% 
8 98.490 98.462 0.0282% 
9 29.926 29.942 -0.0544% 

12 35.817 35.836 -0.0522% 
13 15.736 15.713 0.1477% 

16 16.093 16.078 0.0922% 
17 -5.983 -5.971 0.1939% 

20 -6.446 -6.437 0.1391% 
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Appendix D -  ABAQUS Models: Shear & Normal Forces 

 

Table D-1: Forces at One Support for ABAQUS Models with a Girder Width of 12 in. 

Beam 
Model 

Normal 
Force (lbs.) 

Shear 
Force (lbs.) 

12-0.4-6-7 15999.7 2391.6 
12-0.4-6-8 16001 3115.2 
12-0.4-6-9 18002.2 4865 
12-0.4-6-10 16002.5 4815.5 
12-0.4-6-11 16003.5 5788.9 
12-0.4-6-12 18006.9 8438.3 
12-0.4-6-13 18009.2 9803.3 
12-0.4-6-14 26024 14834 
12-0.4-6-17 26042.4 14842 
12-0.4-8-7 15980.7 2406.1 
12-0.4-8-12 18006.9 8537.2 
12-0.4-8-17 26038.7 14842 
12-0.4-10-7 16000.63 2417.6 
12-0.4-10-12 18007.1 8639.2 
12-0.5-6-7 16000.74 2321.3 
12-0.5-6-12 16006.54 6856.4 
12-0.5-8-7 16000.77 2344 

12-0.5-8-12 16006.82 6969.4 

12-0.5-10-7 16000.76 2348 
12-0.5-10-12 16007.02 7044.3 
12-0.6-6-7 8000.11 593.26 
12-0.6-6-12 16008 6842.8 
12-0.6-8-7 8000.125 599.09 
12-0.6-8-12 15988.45 6966.7 
12-0.6-10-7 8000.133 599.24 

12-0.6-10-12 16008.95 7022 
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Table D-2: Forces at One Support for ABAQUS Models with a Girder Width of 15 in. 

Beam 
Model 

Normal 
Force (lbs.) 

Shear 
Force (lbs.) 

15-0.4-6-7 16000.38 2067.6 
15-0.4-6-12 26010.25 13897 
15-0.4-8-7 16000.4 2066.2 
15-0.4-8-12 26010.06 13949 
15-0.4-10-7 16000.43 2076.5 
15-0.4-10-12 26010.22 14085 
15-0.5-6-7 16000.43 2020.5 
15-0.5-6-12 18005.22 7253.5 
15-0.5-8-7 16000.49 2030.6 
15-0.5-8-12 18005.24 7328.8 
15-0.5-10-7 16000.44 2042 
15-0.5-10-12 18005.4 7420.2 
15-0.6-6-7 16000.56 1969.2 
15-0.6-6-12 16004.75 5866.1 
15-0.6-8-7 16000.54 1981.3 
15-0.6-8-12 16004.86 5950.4 
15-0.6-10-7 16000.54 1996 

15-0.6-10-12 16005.04 6031.4 
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Table D-3: Forces at One Support for ABAQUS Models with a Girder Width of 18 in. 

Beam Model 
Normal 

Force (lbs.) 
Shear 

Force (lbs.) 

18-0.4-6-7 16000.3 1826.9 
18-0.4-6-8 18000.7 2936.3 
18-0.4-6-9 18000.9 3685.5 
18-0.4-6-10 26157.5 8900.4 
18-0.4-6-11 26005 10518 
18-0.4-6-12 26006.9 12317 
18-0.4-6-13 34016.6 19389 
18-0.4-8-7 16000.28 1814.3 
18-0.4-8-12 26006.61 12275 
18-0.4-10-7 16000.23 1815.4 
18-0.4-10-12 26006.58 12333 
18-0.5-6-7 16000.28 1788.5 
18-0.5-6-12 26008.83 12376 
18-0.5-8-7 16000.28 1786.7 
18-0.5-8-12 26008.84 12417 
18-0.5-10-7 16000.32 1794 
18-0.5-10-12 26008.84 12535 
18-0.6-6-7 16000.34 1755.4 
18-0.6-6-12 18004.13 6380.4 
18-0.6-8-7 16000.37 1762.2 
18-0.6-8-12 18004.16 6438.1 
18-0.6-10-7 16000.39 1772.3 

18-0.6-10-12 18004.31 6518 
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Appendix E -  RF and Truck Ratings for Bridge # 54-104-15.45 

 

Table E-1: Rating Factors for Spans #2 & #4 for 50% & 100% Girder Width 

Rating: Operating Inventory 

bw used: 100% 50% 100% 50% 
H Unit 1.24 1.09 0.74 0.65 
T 3 1.19 1.05 0.71 0.63 
HS  1.12 1.01 0.67 0.61 
3S2 1.19 1.05 0.71 0.63 
T 3-3 1.24 1.09 0.74 0.66 
T-130 1.18 1.06 0.71 0.64 
T-170 1.13 1.04 0.68 0.62 
HET 0.97 1.03 0.58 0.62 
SU4 1.16 1.04 0.69 0.62 
SU5 1.13 1.02 0.68 0.61 
SU6 1.12 1.01 0.67 0.61 
SU7 1.1 1.01 0.66 0.6 

NRL 1.1 1 0.66 0.6 
 

Table E-2: Truck Ratings for Spans #2 & #4 for 50% & 100% Girder Width 

Rating: Operating Inventory 

bw used: 100% 50% 100% 50% 
H Unit 15.5 13.625 9.25 8.125 
Type 3 29.75 26.25 17.75 15.75 
HS  40.32 36.36 24.12 21.96 
3S2 42.84 37.8 25.56 22.68 
Type 3-3 49.6 43.6 29.6 26.4 
T-130 76.7 68.9 46.15 41.6 
T-170 96.05 88.4 57.8 52.7 
HET 106.7 113.3 63.8 68.2 
SU4 31.32 28.08 18.63 16.74 
SU5 35.03 31.62 21.08 18.91 
SU6 38.92 35.0975 23.2825 21.198 
SU7 42.625 39.1375 25.575 23.25 

NRL 44 40 26.4 24 
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Table E-3: Rating Factors for Span #3 for 50% & 100% Girder Width 

Rating: Operating Inventory 

bw used: 100% 50% 100% 50% 
H Unit 1.28 1.11 0.77 0.67 
T 3 1.21 1.07 0.73 0.64 
HS  1.13 1.02 0.68 0.61 
3S2 1.19 1.06 0.71 0.64 
T 3-3 1.25 1.11 0.75 0.66 
T-130 1.19 1.07 0.71 0.64 
T-170 1.14 1.04 0.68 0.62 
HET 1.03 0.97 0.62 0.58 
SU4 1.18 1.05 0.71 0.63 
SU5 1.15 1.04 0.69 0.62 
SU6 1.13 1.03 0.68 0.61 
SU7 1.12 1.02 0.67 0.61 

NRL 1.11 1.01 0.66 0.61 
 

Table E-4: Truck Ratings for Span #3 for 50% & 100% Girder Width 

Rating: Operating Inventory 

bw used: 100% 50% 100% 50% 
H Unit 16 13.875 9.625 8.375 
Type 3 30.25 26.75 18.25 16 
HS  40.68 36.72 24.48 21.96 
3S2 42.84 38.16 25.56 23.04 
Type 3-3 50 44.4 30 26.4 
T-130 77.35 69.55 46.15 41.6 
T-170 96.9 88.4 57.8 52.7 
HET 113.3 106.7 68.2 63.8 
SU4 31.86 28.35 19.17 17.01 
SU5 35.65 32.24 21.39 19.22 
SU6 39.268 35.7925 23.63 21.198 
SU7 43.4 39.525 25.9625 23.638 

NRL 44.4 40.4 26.4 24.4 
 


