ON.THE -DESIGN OF AN APL MACHINE
by

WAT XKEUNG CHAXN

B.S5., THE CHINESE UNIVERSITY OF HCNG KONG, 1972

A MASTER'S REPCRT

submitted in partial fulfillment of the

requiremenfs-for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Xansas

1975

Approved by:

Major[Froiessor

L ACKNOWLEDGRMEN TS

The writer wishes to express his sincere gratitude
to his major professor, Dr. Virgil‘E. Wallentine for his
patience, encouragement and guidance during the preparation
of this report and the writer's study at Kansas State

University.

Page
TABLE OF CONTENTS

ABSTRACT 1
INTRODUCTION - 2
I. TRANSLATION 4
1 Representation of Literals T

2. Operators and Separators 9

3. Names ' 11

4, Varibles and Their Values 13

a) Scalars ' 14

b) Vectors and Arrays 15

5. Functions 17
IT. EXECUTION 19
1. Notation 20
72. Statement Scan and Syntactic Analysis 22
3. Function Call and Return 27

4, Execution of a Simple Cperator 33
CONCLUSION 35
REFERENCES 37

ii

TABLE OF ALGCRITHMS

Forming internal names for variables and
function names during the scanning of
statements

English flowchart of the scanning routine

- Programming-language-level flowchart of the

scanning routine

Function call of function with one argument
Return from a function with one argument
Funection call of function with two arguments

Execution of a simple operator

iii

Page

12

i~

Id

25
29
30
31
34

TABLES

1. Internal codes of operators

2. Internal codes of separators

3. Internal names for portion of an example program
4. Descriptors for variables and functions

5a., Table of syntatical types(partial)

5b. Syntax Decision Table(partial)

FIGURES

1. State Transition Graph
2. Significance of bits in a Descriptor of a name

3. Division of the random acess memory

4, The address map

iv

Page

10
10
11
13
22
22

13

17

55

) ABSTRACT

Microprogramming may be used to translate a high level
language, e.g., APL, into an intermediate language which is
then executed directly (by the microprogram). A computer
microprogrammed in this way is a computer whose machine
language is8 a high-level language. This report presents a
partial design of such a machine, The high-level language
chosen is APL/360. It includes a detailed description of
the intermediate representation of an APL program and main
routines of execution (statement scan, syntax analysis,
function call and an example of the execution of an operator).

1N TRODUCTICN

An APL machine is a2 machine whose machine language is
APL, It can be implemented in the hardware or by micropro-
gramming., This report concerns a microprogrammed implement-
ation of such a machine. Microprogramming is used to translate
an APL program into an intermediate text which is then
executed directly by microgrammed routines.

For the conventional compiler approach, there are usually
three phases: i) syntactic analysis which checks the correct-
ness of source statement and puts information into the symbol
tables and other tables; ii) sementic analysis which disassem-
bles the source program into its constituent parts and builds
the internal form of the program; iii) code generation which
translate the internal source program into assembly language
or machine language. After the compilation, the-code generated
is then executed. Comparing to this approach, the microgrammed
implementation of a high level language has the following
advantages:

i) Code generation phase is eliminated and hence the translation
process is simplified and speeded up.

ii) Computational thruput is improved because of the use of
microgrammed exection routines.

iii) particularily for this design, the APL machine includes
many checks and safeguards which the conventional compiler
cannot perfocrm.

Some quantitative and gqualitative analyses of these advantages
are given by Hassitt(2) and Merivin(3).

The design is guite machine independent. We assume the
computer is microgrammable, with 4 bytes per word and 8 bits
per byte. This report consists of 2 sections. The first

gection describes the translation of APL into an internal
form. The translating process resembles an assemble process.
Hence we are mainly concerned with the internal representation
of the program and its data. The second section concerns the
execution of the translated program. We show in detail the
syntactic analysis, function call and return, and an example

of the execution of an operator.

This report is an interpretation, a'supplementation and a
variation of the design by A. Hassitt, J.W. Lageschulte, and
L.E. Iyon(2). The design of the APL internal representation
is based on their paper. Only a few changes have been done to
the representation of a function, But the design is reorganized,
filled with details and provided with many examples and ready
to be adapted for implementation. The basic concept of the
statement scanning routine and the use of the syntax decision
table is also based on Hassitt's paper. The high-level algorithms
for function call and return are designed by the author. Algori-
thms and flowcharts in both English and a2 specification language
designed by the author, are presented to illustrate the concepts
of the scanning routine, the function call and the function
returm. In order for the design to be complete, we still need
memory allocation and execution routines of all APL operations.
Both are machine dependent and beyond the scope of this report.
However, this design provides a complete specification of an
APL machine which could be easily microprogrammed.

I. TRANSLATION

The internal representation of a program is designed
such that the translation is similar to a straightforward
assembly process and many checks and safeguards during
execution are possible, We assume there exists a scanner
(a microprogram) to separate tokens of user programs. The main
part of the machine is a microprogram called the supervisor/
translator which translates the user program, calls functions,
and operator routines, allocates memory and generates error
messages. -

A user's job usually has the form:

function definition 1
function definition 2

function definition n
statement (which causes one or more of the
functions to be executed)

Each function definition has the form:

V function header
statement 1
statement 2

L]
»

-

statement n

\%

Each function header has the form:
R<—14 F RA ; L1 5. e e 3 Lk

where R denotes the name of the result of the function (if
there is no result, R and the arrow are
omittes);
LA denotes the name of the left argument;
F denotes the name of the functiong
RA denotes the name of the rght argument;
L1...:,Lk denotes the names of the local variables.

A function may have no arguments (omit LA and RA in the
header) or one argument (omit LA) or two arguments. It may
have any number of local variables. Function which are defined
are first translated and then saved for execution at a later
time. A statement outside the scope of a function is executed
immediately. It is translated as though it is the one line
function '

VvV EXEC
statement

v

The function EXEC is executed immediately.

There are two modes for the supervisor/translator,
namely, the translation mode and the execution mode. The
transition graph is shown in Fig, 1, where £ is the execution
state, T is the translation state, and the symbol on the arrow
is the token encounted in scanning the user program. The
arrows without any token show the transition direction upon
encountering any other token except the labeled ones.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

one statement function transformation

and execute the function formed

Fig 1. State Transition Graph

Let us now discuss the translation of a statement and
a function. A statement may consist of variable names,
function names, operators, separators, scalar literals
and vector literals., We shall consider these items one by
one. Items within a statement are translated into the
intermediate representation in reverse order, and an 'end
of statement' marker is put at the end of each statement. The
marker token is the hexadecimal 'OAQO'. For example, the
statement,

Ae—B X C+ D
is translated into intermediate form as,
D+ C X B < A(END OF STATEMENT)
Once the representations of all itemé (variables, functions,

seperators, operators and literals) are known, the translation
process will be straight

1. Representation of Literal

a) A scalar literal is translated into the form:
DS

where D is a half-word descriptor which has the hexadecimal
form:

7200 indicates the literal is of logical mode;
7202 indicates the literal is of integer mode;
7203 indicates the literal is of real number mode;
7208 indicates the literal is of character mode;

and S is the data which may be:

i) IBM 360 32-bit integer;
ii) IBM 360 64-bit floating point form;
iii) a character in EBCDIC form with one additional
character added as padding to ensure 211 items
begin with an even address.

By looking at the descriptor, we can decide whether it is
a literal (the first 4 bits of the descriptor is 0111),
and its type. Data items of different types have different
descriptors. The choice of the representations of data

is machine dependent. '

EXAMPLE 1 Integer 245 is represented (in hexadecimal) as

7202 0000 001A

EXAMPLE 2 Real number 1.0 is represented as
7203 4110 0000 0000 0000

EXAMPLE 3 Character B is represented as
7208 C240

Note that 40 is the padding character.

b) A vector literal is represented as
DHN S
where D is a half-word descriptor such that

7220 represents a logical value;
7222 represents an integer value;
7223 represents a real value;'
7228 represents character;
and H is the number of half-words used by the literal:
N is the number of elements in the vector;
S is the vector itself.

As before, the first 4 bits in the descriptor shows that it
is a literal, The X'2' in th third 4-bits group shows that

it is a vector. N gives the size of the vector and H helps
memory allocation and deallocation,

EXAMPLE 1 Integer vector (2 4 6) is represented as:

7222 0009 0003 0000 0002 0000 .CO04 0000 0006

EXAMPLE 2 Real vector (1.5 1.0) is represented as :
7223 000B 0002 4118 0000 0000 0000 4110 0000 0000 0000
EXAMPLE 3 Charcater vector (N A H C) is represented as:
7228 0005 0004 D5C1 CBC3

2. All operators and separators are translated into a two-byte
internal code with the following rules:

i) The first 4 bits of the internal code of an operator are,

1000 or X'B!

ii) The first 4 bits of the internal code of a seperator are,
1100 or X'1' ;

iii) For operator which can only be Dyadic, the Eﬁd 4 bits are,
0001 or X'1! ;.

iV) For operator which can only be monadic, the 2nd 4 bits are,
0010 or X'2' ;

V) For operator which can be both monadic and dyadie, the
2nd 4 bits are,

0011 or X'3'

The arrangement of these bits will greatly enhance the ease
of type-checking during execution.

9

operator code
+ 8301
= 8302
< 8303

? s & 4
®
N
&
—

8101
8102
8103
8104
8105
8106
8107
8108
8109
810A

HVVUEAANLZL>: - -

- Table 1. Internal codes of operators

separator code
(CO01
) 002

Table 2. Internal codes of separators

10

3. All names are represented by a 2-byte internal name. For the
Nth name in the program, its internal representation is

(Namebase + 2*N)

where we arbitrarily choose X'2000' as our name base. Hence
each name{variable or function) has an internal name which

is a real address of 2 bytes. We need a name table containing
all names encountered in the user program in order. Whenever
a name is encountered, the name table is searched. If it is
not in the table, the name is added to the end of the table.
Otherwise, the internzl name is obtained from the table.
Names in the table are separated by '*¥', The internal name

is a real memory location address which contains the address
of the descriptor of the variable or the function.

EXAMPLE For the program beginning with
V A< X FIT Y¥; N; SUMX; SUMXX; ...
The name table looks likes
A* X% PIT ¥ Y * N * SUMX * SUMXX * ...

and the correspondance of names and internal names is shown
in Table 3.

name internal name
A 2002
X ' 2004
BT 2006
Y 2008 Table 3.
N 200A Internal names
SuMX 200E for portion of
an example pro-
: : —

11

When the supervisor/translator scans a name, it follows
Algorithm 1. The search always begins with the first name in

|
ik

the name table.

8 name token identica}\\
with next name in name noe | Né&— N + 1
table 7 /
yes
/
any more

names in name

table ?
no
/
translate the name add the name and

as 2000 + 2*XN < the separator *
e tc the name tablei

Algorithm 1, Forming internal names for variables

and function names during the scanning
of statements.

12

4., Variables and their values

Every name corresponds tc a real address, namely, its
internal name. The two bytecell at this address contains the
address of the descriptor of its value. A descriptor consists
of 2 bytes which define the type of the value. For easy type

checking, the configurations which indicate the various types
are shown in Fig. 2,

-

. o} i 1 B | i 1 t i | i 1
0 112 3 4 5 6 7!8 9510111 12 .13 14 15,
i : Coa
no value i : P I ! scalar

: : Lo ; vector
| | : ! array
: 1 I integer
! f real
! ‘eharacter

function
Fig., 2. Significance of bits in a descriptor of a name

Table 4 shows the different descriptors in hexdecimal.

integer real character
scalar FO11 FO21 FO41
vector FO12 rp22 FO42
array FO14 FO24 FO43
F100 -====~- function with one argument
F101 ~=e===- function with two arguments
4000 ======= no value has been assigned to the variable

Table 4, Descriptors for variables and functions

13

a) Scalar
A scalar value has the form
P D S

where P is the internal name of the variable;

D is the descriptor:

S may be a 32 bit integer or a 64 bit floating point
representation or an EBCDIC representation of a
character padded to 2 bytes (here again, the choice
is machine dependent).

The intermal name is the real address whose contents is the
address of the descriptor.

EXAMPLE * Real scalar 1.5 with internal name X'2002°

location 2002

2002 FO021 4118 0000 0000 0000

EXAMPLE 2 Character 'A' with internal name X'2004'

location 2004

2004 F041 C140

EXAMPLE 3 Integer scalar 45 with internal name X'2006'

[Loaction 2005}1

v
2006 FO11 0000 002D

14

b) Vector and Array

A vector or array value has the form

R H N P D V1 V2 V3 A

where R is the address of dimension information if item is
an array, O if a vector;
H is the number of half-words used by R H ...Vn;
N is the number of elements in vector of array;
P is the internal name of data;
D is the descriptor.
Hence it contains the information needed for type checking,

dimension checking, size checking and memory allocation.

EXAMPLE 1 Integer vector (1, 2, 3) with internal name
X'2008"* '

llocation 2008F

0000 0003 0003 2008 FO12 0000 0001 OCOO 0002 0000 0003
R H N P D v, V2 Vs

~ EXAMPLE 2 1Integer array (1 g g) with internal name X'200A'

Nocation 2004l 1
—xxxx 0011 0005 200A FO14 0000 0001 0000 0002 0000 0003

0000 0004 0000 0005 0000 0006

0000 0009 0002 xxxx FO12 CO00 0002 0000 0003

15

In EXAMPLE 2, location 200A contains the address of the
descriptor FO14. R of the value points to the descriptor of
another vector, (2, 3), which shows that the array is a 2 by
3 array. '

From this example, it is obviocus that dimension of more
than 2 is possible. This is illustrated by the next example.

EXAMPLE 3 Character array (of dimension 3 by 2 by 2)

A B G H
C D I J with internal name X'200R!
E F K L ’

{location 200% -

xxxx O00C O00C 200E F0O24 (C1C2 C3C4 C5C6 ...

0000 000A 0003 xxxx F012 0000 0003 0000 0002 0000 0002

Here, KR points to the descriptor of a vector (3, 2, 2) which
indicates that the item with internal name 200E is a
matrix.

16

5) Function

Since a program is represented as a set of functions in

the internal representation, functions play an important role
in this implementation., A function has the internal form,

H N P D V V, V2 i W Vh
where H is the number of half-words:

N is the number of characters in the internal represent-
ation of the function;

P is the internal name of the function;

D is the descriptor X'F100', X'F101' or X'F102'
depending on the number of arguments associated
with the function:

V is the number of local variables in the header, which

is used to speed up the process of function return;
«eey V_are the header , body and tail of the

n
function.

V1'

The header of a function contains

S L R Ly ... L, 0 B

where S is the intermal name of the result;
L is the internal name of the left argument;
R is the internal name of the right argument:
L1, g Ln are the internal names of the local variables;
O is the half-word X'C000' to signal the eand of the list;
B is the number of bytes from the descriptor, D, to
the tail of the function.
1f any of S, L and R does not exists, it is replaced by X'0000'.

17

The body of the function contains the internal
representation of all statements inside the function.
Following the last statement we have X'10000000' which
begins the tail.

The tail contains'

where T is the number of statements in the function;
T1 is the offset between the end of the header and
the beginning of the first statement; '

Tn is the offset between the end of the header and
the beginning of the last statement.

With the information in the tail, a branch to a statement
in a function can be easily performed.

Now, we have the whoe intermal representation of a

function:
HNPDV SLRIL..L OB S ...S X'10000000'
T T1 . 4 & Tm

It contains enough information to enable efficient function
call and return. This will be demonstrated in the next
section.

18

II. EXECUTION

We will discuss the syntex analysis, the function call and
an example of the execution of an operator. We don't intend
to present a memory mangement algorithm. APL needs a very
dynamic memory management; its space requirement may change
at each operation in each statement. Sample management schemes
are given by Zaks(4) and Hassitt{2). Here, we assume we can be
allocated the correct amount of space whenever we ask for and do
not worry about garbage collection. The random access
memory is divided into five sections as shown in Fig. 3.

machine work area

R Col
address table

function definitions,
data, vector literals program work area
and name table.

1L

scalar literals,

temporary results and variable stack

function results
= T T

S

operators, separators,

variables(names and

descriptors only), operator stack
address and descriptors

of literals

Fig.3 Division of the Random Access Memory

Use of these sections will be clear later.
ia

1. Notation

In order to discuss the algorithms in a precise and a

conceptually clear manner, we introduce some symbols and

notation in this section.

The following variables are used by the supervisor/
translator and reside in fixed locations in the machine

work area:

NB is
FN is
SN is
BWS 1is
0Ss is
Vs is

in

the address of the next two bytes of the statement
being scanned; |

the function name of the function currently being
executed;

the statement number in the function FNj;

the byte number in SN;

the operator stack;

the variable stack.

‘the following definitions, the length of each value

is two bytes.

A &= x means that the value x is inserted on top of stack A;

1.2 — 1

is equivalent to A<= x and then A &=y;

X 4= A means that x is set equal to the value at the top of

stack A and this value is deleted from A.

x<§§ A means that x i1s set equal to the value of the ith item

from the top of stack A and all i top values are
deleted;

c(a) means the content of location a (two bytes).

The pop and push operation of a stack are so useful that

they are actually supported by some hardware. They can be

easily simulated by microgrammed routines. Therefore we use

them as basic operators in our algorithms,

20

For the programming-language-level flowchart, we need some
additional notation.

SDT(m,n) represents the (m,n)-entry of the syntax decision
table;

‘QJ represents the current beginning address of the
available block in program work area;

TYPE(x) gives the syntactical type of the item x according
to Table S5a. This can be easily obtained from the

first 4 bits of the item, e.g.,

for names, the first 4 bits are {'2';

for literals, the first 4 bits are X'7';

for operators, the first 4 bits are X'8' and
for separators, the first 4 bits are X'C'.

x<}£;—y'means copying i half-words beginning at location y
to location beginning at x.

21

2. Sfatement Scan and Syntactic Analysis

An English-like flowchart and 2 progrgramming-language-
like flowchart of the syntactic analysis of the internal
form of the user's program will be given. At the execution
phase, the supervisor has the statements to be executed in
internal form. It scans the statement (two bytes per token)
pushes appropriate information on stacks, uses the syntax
decision table to test the top two items in the operator
stack to decide which action to perform. The flowchart and
and the decision table are shown in Algorithm 2 and Table 5b,
\ These are'only variations of those presented in Hassitt(2).

type meaning
null, end of current part of the stack
operator

descriptor of variable

deécriptor of function with two arguments
right parenthesis or bracket; another part
of the separator distinguishes between these
two cases

5 left parenthesis or bracket

NN - O

Table 5a., Table of syntactical types(partial)

N]7=0 1 7 3 4 5 6
of o 5 0 5 0 5 5
1 0 2 1) 0 2 2
2| o o s 0 0o 7 0
3|1 0 5 4 5 0 5 5
4 | o 5 0 5 0 5 0
5| o 3 8 5 0 5 5
6| o 5 0 5 o 0 0

Table 5b, (partial) Syntax decision table. T and N are
the types of the top and the next-to~top items on 08S.
22

(0)
(1)

L2)
(3
(4)
(5)

(6)
(7)

Actions specified in the Syntax Decision Table are:

Go to scan the next item,

Do a dyadic operation using the top three items on the
stack.

Backspace the instruction stream and the stack and do a
monadic operation.

Flag the fact that this is an indexed operation and
continue scanning.

Call a function of two arguments - the names of the
function and the arguments are on the top of the stack.
Go to the syntax errgr microroutine.

Evaluate a subscripted variable,

If the top of the stack is a left bracket, go back to

the scan routine, but if it is a left parenthesis, remove
it and the corresponding right parenthesis from the stack,
and go back to the decision routine.

Algorithm 2., English flowchart of the scanning routine

(The machine is scanning the internal form of a statement)

1
pick up next two bytes |

variable or function

X \
separator or (/check the type
% 7

} operator
literal
yes ——— no
o
7 \vector. bs T \Z
put on put on get space in put name,
operator variable program work descriptor
stack stack : area, copy on
into the work operator
area stack

:

put address & descriptor ‘

on operator stack
|

\ 7

//// Test top 2 items
no with syntax decision table,

Action needed?

ves

N
go to execute appropriate

microcede according to
Table 5b.

24

Now we have the programming-language-level flowchart
for the scanning routine,

Algorithm 3.

Programming-language-level flowchart of the

scanning routine,

-

4
_x1gr /Tirst 4 bits\

=X'7!

|S &= c(NB)

T <—TYPE(c(NB))

or =X'C' \ of c(NB) /

S &=c(NB},c(c(NB))
T .{—TYPE(C{NB))

_x1or /Tirst 4 bits\ _yip0
of c(NB+1)

- = h -
VS {::C(NB){ lwd_‘.’.(.ﬁ*_zj_ NB g
a &—Cc(NB), | ¢«—W+c(NB+2)]

|

| d
[Sé<=a, c(c(NB))
}T &—TYPE(c(c(NB)))

A

{(SDT(N, T)=0) 1°
4

yes

!
iNB<&<— NB+2

| Ne—T

25

<lexecute action]
SDT(W, T) |

ALGORITHM 3 is a refinement of ALGORITHM 2. In order to
understand ALGCRITHM 3, one has to be familiar with the
internal representation discussed in last section and the
notation introduced at the beginning of this section. The
memory allocation scheme in the algorithm is simple. We.
assume an unlimited memory size and ignore garbage collection.
Any discussion of a memory manage scheme is out of the scope
of this report. The interested reader may refer to Zaks(4)
and Hassitt(2).

26

3, Function Call and Function Return

Before we discuss the implementation of the function call
and return, let us discuss the function structure of APL.
All APL functions are defined at the same global level(level
0 or program level). An APL function may introduce new local
variables, which are explicitly defined in its header, and
reference former local variables introduced by a previously
called function (lower level). A local variable thus intro-
duced by a function FN is said to made global (and therefore
accessible) to all functions called during the activation of
its owning function FN. These variables are accessible to
all the functions called by FN, but, when FN returns, none
will be transmitted back to the calling level; their effect
is local to FN. A function can also be called recursively
(this can be done directly or indirectly).

ln our implementation, at level O, all variables are

global by the way we translate all the names. At a function
call, all old values of the function result, arguments and
local variables must be saved on the operator stack. New
values of arguments are passed by changing pointers in the
address table. New values of function result and local
variables are set to 'no value'. 0ld execution status (which

. function, which statement and which byte being executed)
must also be saved for function return and this is put on
the operator stack with a marker. New status is set to the
first byte of the first statement of the function being
called. When a function executes a return, the old status
and old values of the result, arguments, and local wvariables are
at the top of the operator stack and can tnerefore be restored.

27

In discussing the general function activation and termina-
tion concepts, let us first illustrate the function call and
return of a function of one argument., At the point of function
call, according to ALGORITHM 3, we have, at the top of the
operator stack,

(rest of stack) t dt F 4F (top of stack)

where F and 4F are the internal name and the descriptor of
the function respectively;

t and dt are the internal name and the descriptor of
the argument repectively.

The algorithm is given in a PL/1-like language. The stack
operations and assignment operations used in the algorithm
can be easily replaced by microroutines. Before presenting
the algorithm, let us recall the intermal representation of
a function. It is

H N P DV S L R L1 bis Ln 0 B Sy +.- S, X'10000000"

T TT e e Tm

With this in mind, one can easily understand the algorithm.

28

ALGCRITHM 4 Function call of function with one argument

T?&S;
T1¢:§::S;
a &—c{T)+4;
do i=1 to 3;

S &=clcla));

c(cla)) «— X'4000"';
ag&— a +‘2;

end;

do while (c(a)~=X'0000"');
S &=c(cla));
c(ela)) €<—— X'4000"';
a&—a+ 2;

end;

eAT) + 8 &e—T

S &= FN;

S &= SN;

8 &= BW5;

S

N €—T;

S €=}

BWS €«—03

1’

NBe— a + 4;

(return to scanning routine)

Remove function name from the stack.
Remove argument from the stack.
header.

Address 'of S in function

Save o0ld values of result, argumént
and set new result and argument

te 'no value'.

Save 0ld values of local variables
and set new local variables to

'no value',

Set argument to new value.
Stor current status: function name;
statement numhber;
byte number and
marker.
Set new status: function name;
statement number;

hyte number,

Next byte to be scanned.

ALGORITHM 5 Return from a function with one argument

t&—clc(FN) + 4);

S&E—1t, c(t);

t &35;

if t+='#' then error;

BWS &—— S; -

SN &— S;

FN & S;

ac—c(FN) + clc(FN) + 2)*2 + 8;

a,«—a + 43

do i=1 to c(ec(FN) + 2);
cla)&— sS;
a &— a-2;

end;

Push internal name and
descriptor of result on stack.

Restore old status;

Address of last local variable
in the header.

End of header.
Restore old result, argument

and local variables.

:JB'é——-(a1 + 2) + c(ec(FN) + c(a1) + 2%(SN + 1)) +BWS

30

NB is the next byte to be
scanned. (a, + 2) is the end
of header. The other part at
the left hand side is the
offset of the statement SN

from the end of the header.

The procedure for the call of a function with 2 arguments is
almost the same and is given as ALGORITHM 6, Function return
is the same as ALGORITHM 5. In this case, at the time of
function call, at the top of the operator stack, we have,

t

; dty, F dF t, dt, (top of stack).

Because of the simplicity of operations involved in
these algorithms, the corresponding microroutine will be
very fast and efficient. In the algorithm of function return,
we ignore the deallocation of space used by the function.
This can be done by a memory management routine.

ALGORITHY 6 Fuction Call of funtion with. two arguments

7,5 5

T &= §;

T, &2 5

a<«—c(?) + 4;

do i=1 to 3;
8 & cle(a));
c(c(a)) «—X'4000';
aé— a + 2;

end;

do while (ec(a)—1=X'0000");
S &=cle(a));
c(c(a)) «<— X'4000"
a<—a + 2;

end;

c(T) + 8 &—ro Ts3

c(m) + 6)<———T1;

51

5 &= M

S == 5N

S & BWS;
) o}
FN «——T;

SN «—— 13
BWS ¢— 0O}
NBe—a + 4;

(return to scanning routine)

32

4, Execution of a Simple Cperator

There are many operators in APL., The design of execution
routines for all these operators is out of the scope of
this report. However, we give an example of the execution
of the operator, +, which is given by Hassitt(2).

Suppose we are at the stage where the operator stack is
null D dD + C d4C (top of stack)

where D is the two-byte internal name for D:
C is the two-byte internal name for C;

dD is the two-byte descriptor for D;

dC is the twe-byte descriptor for C.

The syntax analysis indicates that action(1) is required:

that is, execute a dyadic operation., The execution procedure
is shown in ALGORITHM 7. In the flowchart, we have to check
that the size of C conforms to size of D. The size rules

are: a scalar can be added to a scalar, a vector, or an array;
a one-element vector of one-element array obeys the same

rule as a scalar; vector plus array is not allowed; vector
plus vector is allowed if both have the same number of
elements; array plus array is allowed if each of their
dimensions matches. '

Even from the execution of such a simple operator, we
can see the time spent on type checking and apace management.
However, with the design discussed in this report, writing
microcode routines for these operators will not be difficult
because all necessary informations are well organized in
the internal representation of the program,

33

ALGOHIT}I!‘G 7

¢

Execution of a simple operator

no

L/
either C or
is real

>

hY
Enteger
ddition

real
addition

variable

put result on

stack

"4
‘put address
and descriptor

free space
used by

of result on
stack and go to
scan routine

/I | temporary
result

dC=X'4000", "\ _yes -
<<;.e., no value/ = @rror
{ap=x' 4000 >—Ye8 > error
y
<<?per2;ggigan be\\”“ == error
either C or D\ yes R
<;s character ~ > error
yes both C and DN___no
are scalar -
N

find type of result
real if either one is
real, otherwise integer,

iy
of (¢
gsize of D

check size
conforms to

[find size of result

1

f
Icall space managemen
!to allocate space fo
iresult

E]
!
; N
Po addition elemenfwisﬂ

, N
__seither C or D was a
< ¥ temporary result from
[a previous calculatio

f

\i/
'set up size vecior 1
lresult is an array

34

CONCLUSIONS

Since a complete design of the APL machine is beyond the
scope of this report, we do not look into the implementation
of each operator in APL. Writing these routines will be a
lengthy but not difficult job. With the design of this report,
the dynamic checking of types, size of vectors and arrays,
validity of operators and validity of function calls is entirely
possible. We have not investigated memory management carefully,
but we note that implementation of this machine in a virtual
memory environment is feasible.

A virtual memory system can be implemented within the APL
machine. The machine will execute in virtual locations. The set
of these locations is called the address space. The set of real
memory locations is called the memory space, What we need is
an address map, f, from the address space to the memory =space
as indicated in Fig. 4. ’

f
0 > 0]
1 1
> i
f{a)
a
Address space mMemory space

Fig. 4 The address map

For example, in a paging environment, f will be a page map.

At each address reference, the map is invoked to give the

real address. We notice that in the algorithms of our machine,
calculations involving addresses are often performed in order to
obtain information from a particular part of a data item., 3But
these do not invoke the address map. This is illustrated in the
following statements of ALGORITHM 4.

The right hand side of the statement,

aé—c(T)+4

calculates an address. The result, c¢(T)+4, will be regarded as
a value and stored to f(a), the corresponding location in the
memory space. We notice that the address is not invoked to
change c(T)+4 to an address in the memory sﬁace because it is

a value instead of a reference to a location. But we have to
invoke f to acquire the real address, f(a), of &, and store the
result c(t)+§ into it. Later in the statement,

S&—=cle(a))

We have to invoke f to obtain the contents of f(a) and then
the content of f(f(a)) in order to obtain the content of the
location in the right hand side. This example clarifies the
distinction between an address as a value and an address as
a location. This difference is critical when the system is

implemented within a virtual memory environment,

Section I of this report is in detail and ready for use
to build such a machine. Concepts in Section II are presented
clearly in a language which can be easily converted ‘to
microcode. It is hoped that this report can serve as the basis
for the actual microprogramming of an APL machine.

36

REFERENCES

-Gries, D. Compiler Construction for Digital Computer.
Wiley, 1971.

Hassitt,A., Lageschulte,J.W., and Lyon,L.E., Implementation
of a High Level Language Machine. CACM 4 (April 1973),
pp. 199-212. |

Merwin,R,E, Direct Microprogrammed Exection of the
Intermediate Text from a high-level language compiler.
SIGPLAN NOTICES Vol 9, 8(Aug. 1974), pp.145-153,

Zaks,R., Dynamic Memory Management for APL-like Languages.
SIGPLAN NOTICES Vol 9, 8(Aug. 1974), pp.130-138.
Knuth,D.E. The Art of Computiner Programming. Vol 1.

2nd edition.Addison Wesley, 1973.

Rosin, R.F. Contemporary Concepts of Microprogramming
and Emulation. Computer Surveys 1, 4(Dec. 1969),

pp. 197-212.

37

ON THE DESIGN OF AN APL MACHINE

by

WAI KEUNG CHAN

B.S5., THE CHINESE UNIVERSITY OF HONG KONG, 1972

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial'fulfillmént of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1975

ABSTRACT

Microprogramming may be used to translate a high level
language, e.g., APL, into an intermediate language which is
then executed directly (by the microprogram). A computer
microprogrammed in this way is a computer whose machine
language is a high-level language. This report presents a
partial design of such a machine. The high-level language
chosen is APL/360. It includes a detailed description of
the intermediate representation of an APL program and main
routines of execution (statement scan, syntax analysis,
function call and an example of the execution of an operator).

