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ABSTRACT 

 Methane digesters are a potential investment for a dairy farm.  A digester can lower 

greenhouse gas emissions, manage manure waste, generate energy, provide fertilizer and 

recycle bedding.  The AgSTAR project of the Environment Protection Agency describes 

anaerobic digesters as a solution to a problem dairy farmers have always had to solve but 

that has become more acute with the innovation of larger scale, confined animal feeding 

operations developed in response to the growing food demands of the world’s larger and 

more prosperous middle class population – what to do with cow manure.  Digesters take 

cow manure and convert it into energy while also eliminating manure odor.  

 Energy is the primary economic benefit of a digester.  A dairy farmer can use the 

electricity or gas generated from the digester to fuel the energy needs of the farm.  Selling 

gas or electricity on the market is a revenue source that largely determines the level of 

profit from investing in a digester. 

 This thesis will explore the four economic factors required to make anaerobic 

digesters a viable economic investment for a 1,500 head cow herd in the United States.  It 

is imperative that farmers are able to obtain a return on the investment as soon as possible 

as many do not have the capital to invest in a nearly $1 million project.  Congress may need 

to provide additional incentives for farmers and utility companies to take waste and process 

to energy. 

 The future for methane digesters looks profitable when energy and carbon markets 

are available and allowed to trade competitively.  The federal government may consider 

focusing on incentives for the utility companies’ infrastructure to make purchases of 



 
 

renewable energy from a digester more economically attractive and efficient.  Today, an 

obstacle for increasing the number of digesters in the United States is the cost associated 

with moving the energy from the digester and into the national natural gas to grid. Natural 

gas companies may need to be compensated for that expense plus the potential difficulties 

of dealing with multiple suppliers or digester owners.         

  Electricity companies have a grid in place to power rural and urban communities.  

They have spent billions of dollars and decades to establish efficient routing of power to 

residents and businesses.  Manure digesters are mostly located in rural areas that would 

also require an investment in infrastructure to move the energy from the digester to the 

power grid.  Mandating net-metering would require energy companies to purchase 

renewable energy, but consumers may see an increase in their cost.   

 Therefore, the answer to increasing the number of manure digesters in the United 

States may be to direct the incentives to utility companies to invest in expanding 

infrastructure rather than increasing digester owner subsidies.  Although, the REAP grants 

are helpful for assisting farmers with startup installation costs, there may not be a need to 

increase that subsidy in the next farm bill if an energy bill includes incentives for energy 

companies to purchase renewable energy from digesters.  
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CHAPTER I: INTRODUCTION 

 Dairy cow manure, a waste product, can be used to make renewable energy through 

a process known as anaerobic digestion.  This is not a new technology.  As early as the 17th 

century, scientists documented flammable gas from sediments.  In the twentieth century, 

the Germans patented a holding tank that captured energy to power multiple sources 

converting biomass to gas (Imhoff Tank n.d.).  However, it wasn’t until the 1930s that 

anaerobic digesters became a recognized scientific process for renewable fuel.  A methane 

digester produces biogas as the renewable energy source.   

 A digester can be a very expensive startup investment. Given the initial cost with 

unpredictable financial returns, this creates a situation in which dairy farmers may be leery 

of investing in building anaerobic digesters and manure systems. 

 This thesis will explore whether federal public policy is required to make anaerobic 

digesters a viable economic investment for a 1,500 head cow herd in the United States.  It 

is imperative that farmers maximize their return on the investment.  Most do not have the 

capital to invest in a nearly $1 million project.  Congress may need to provide additional 

incentives for farmers to take waste and process to energy, as well as incentivize utility 

companies to purchase renewable energy from farms. 

 Methane digesters can be a good investment on a dairy farm.  A digester can lower 

greenhouse gas (GHG) emissions, manage manure waste, generate energy, provide 

fertilizer and recycle bedding.  The AgSTAR project of the Environment Protection 

Agency (EPA) describes anaerobic digesters as a solution to a problem dairy farmers have 

always had to solve but has become more acute with the innovation of larger scale, 

confined animal feeding operations (CAFOs) developed in response to the growing food 
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demands of the world’s larger and more prosperous middle class population – what to do 

with cow manure.  

 Energy is the primary economic driver of a digester.  A dairy farmer can use the 

electricity or gas generated from the digester to fuel the energy needs on the farm.  Selling 

gas or electricity on the market is a revenue source that largely determines the level of 

profit from investing in a digester.   

 However, there are other positive impacts with a digester.  An Informa Economics 

study for the Dairy Management Inc. concludes that anaerobic digesters may be a 

profitable, sustainable solution to both the environmental challenges of waste disposal as 

well as providing for renewable fertilizer nutrients and energy productions.   The disposal 

of manure is costly and environmentally complex on large confined animal feeding 

operations (CAFOs).  Dairy farms must be compliant with the Clean Water Act (water 

quality legislation).    

 AgSTAR analyzed the potential of 2,647 dairy farms with more than 500 head 

herds nationwide for energy production.  The study reported that those same 2,647 dairies 

could contribute more than $4.68 billion net revenue annually.  

1.1 How Methane Digesters Work 

 Digesters work best on confined animal feeding operations (CAFO) where manure 

is stored and farmers must manage large quantities of animal waste.  The basic 

fermentation process uses water and heat to transform solid waste into biogas.  The biogas 

captured in this anaerobic process, meaning without oxygen, produces approximately sixty 

percent methane (CH4) and nearly all of the remainder is carbon dioxide (CO2) (Key and 

Sneeringer 2011, 571).  The biogas can be processed into heat for local use, electricity to be 
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sold on the power grid or biomethane which can be scrubbed through a pipeline then used 

as natural gas or vehicle fuel. 

 Two following figures depict the anaerobic process from which animal waste is 

transformed to different renewable energy types: compressed natural gas, pipeline 

biomethane or electricity.  Figure 1.1 is used by The AgStar program at the U.S. 

Environmental Protection Agency (EPA).  AgStar is a collaborative program within the 

U.S. Department of Agriculture (USDA), U.S Department of Energy (DOE), and the EPA.  

AgStar is “an outreach program designed to reduce methane emissions from livestock 

waste management operations by promoting the use of biogas recovery systems (U.S. EPA, 

The AgStar Program 2012).” 

 Animal waste goes to the digester then can be separated for two processes.  The 

digester produces digestrate and biogas (Figure 1.1).  The digestrate can be separated 

further into liquid fertilizer, compost or bedding.  These are potential revenue sources for 

the anaerobic digester.  The biogas can either be converted to gas or electricity but not both.  

The energy produced by gas or electricity can be used to offset on farm energy use or sold 

to utility companies for natural gas, electricity or compressed gas.   
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Figure 1.1: Basic Anaerobic Digester System Flow Diagram  

 

(U.S. EPA, The AgStar Program 2012) 

 Figure 1.2 shows the same process but may be slightly easier to follow.  The two 

building structures represent heating and separation of the manure. The biogas is released 

between to the two houses. The solid is moved to the second house to be recycled as 

fertilizer or bedding.  
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Figure 1.2: Biogas Energy Systems Flow Chart for Manure to Energy 

 

(Biogas Energy Inc 2008)  

1.2 Cost of Building a Digester on Farms 

 There are three distinct types of methane digesters that may be used on a dairy 

operation: a covered lagoon, complete mix, and plug flow.  

  In 2009, AgSTAR hosted a national conference in Baltimore, Maryland, reporting  

the estimated capital cost for anaerobic digesters on a dairy farm.  The average project cost 

of all components was slightly over a million dollars for a complete mix digester.  

AgSTAR factored in the following input components: a mix tank, manure pumping and 

mixing equipment, piping, digester, digester effluent system, post-digestion solids 

separation system, engine-generator set and building, Hydrogen Sulfide treatment, 

installation labor, estimated utility charges, start-up fuel, contingencies, and engineering 

and site assistance.   

 A Dairy in New York built a plug flow digester for $252,000 for 1,000 cows 

(AgSTAR 2010).  The cost components for this plug flow digester system include: mix tax, 
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piping, digester, engine-generator set and building, estimated utility charges, contingencies, 

and engineering and site assistance.  AgSTAR awarded startup grants to farmers with 

covered lagoon digesters that cost from $95,000 to $300,000 depending on the size and 

complexity of the project. 

 While it is very difficult to determine the exact cost for each digester investment 

due to size, location and type of digester, AgSTAR developed an equation to assist in 

calculating an average capital cost from data from forty digesters including 13 Complete 

Mix, 19 Plug Flow and 8 Covered Lagoons.  The capital costs include the digester, engine-

generator set, installation, and engineering and site assistance.  Table 1.1 indicates the 

capital cost for a Complete Mix with a capital cost of $563 times the number of cows plus 

$320,864 costing a 1,000 cow dairy $883,864.  

Table 1.1: Formula for Average Capital Cost for the Three Digesters: Complete Mix, 
Plug Flow, and Covered Lagoon 

Digester System Type Capitol Cost Total Cost for 1,500 cows
Complete Mix ($563*no. cows)+$320,864 $1,165,364.00
Plug Flow ($617*no. cows)+$566,006 $1,491,566.00
Covered Lagoon ($400*no. cows)+$599,556 $1,199,556.00
Source: AgSTAR 2010 

 
 Figure 1.3 is the complete mix digester system.  This system requires an enclosed, 

heated tank with mechanical, hydraulic and gas mixing systems.  The complete mix system 

works best when waste water is mixed with the manure.   
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Figure 1.3: Complete Mix Digester System  

 

(U.S. EPA, The AgStar Program 2012)  

 A plug flow digester system is built partially or fully below ground as shown in 

Figure 1.4.  The manure is collected in a long, narrow concrete tank with a rigid or flexible 

cover.   This type of digester is mostly used on dairies that collect manure by scraping.  The 

Fair Oaks Farm digester in Indiana uses this system with 15,000 cows.     

Figure 1.4: Plug Flow Digester System  
 

 

(U.S. EPA, The AgStar Program 2012)  
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 Figure 1.5 is a covered lagoon digester system.  This is the most primitive model 

for a digester.  However, it isn’t necessarily the cheapest.  A lagoon or cell is filled with 

animal waste then it is sealed with a plastic or flexible cover.  The methane is captured 

under the cover and pressure pushes the gas through the biogas pipe. There may be one to 

two cells or lagoons used in this system.  

Figure 1.5: Covered Lagoon Digester System 

  

(U.S. EPA, The AgStar Program 2012)   

    

1.3 Financial Support from Federal Policy  

 There are some federal subsidies and tax support for digester investments.  

Currently, producers may apply for grants, loans, and tax credits to be used as production 

incentives.   

1.3.1 Rural energy grants and loans (REAP) 

 The Food, Conservation and Energy Act of 2008 reauthorized Section 9007, 

including the Rural Energy for America Program (REAP) to be used for grants or loans to 

farmers investing in digesters.  REAP is administered through the USDA Rural 

Development Agency offering grants, loans, or a combination of both for on-farm 

renewable energy.  Farmers in rural communities may apply for this federal assistance if 

they produce energy or fuel from solar, wind, geothermal or biomass sources; thus, 
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digesters qualify.  Applicants must receive 50% of their income from agricultural 

production (Committed to the Future of Rural Economies 2001).   

 This program authorized nearly $300 million in grants from 2009-2012 for 

renewable energy projects, with $70 million in 2012 directed to digesters.  These grants 

cannot exceed 25% of costs of production with a minimum of $2,500 grant and $500,000 

maximum funding (Committed to the Future of Rural Economies 2001).   

 Loan guarantees are also authorized through Section 9007.  The loan guarantee 

cannot exceed $25 million with a minimum of $5,000.  A combination of a loan and grant 

cannot exceed 75% of the cost (Committed to the Future of Rural Economies 2001). 

 REAP was not extended in the 2013 farm bill extension passed on January 1, 2013.  

However, when Congress passes a comprehensive farm bill, an energy title may be restored 

and reauthorized. 

1.3.2 Tax Credit (REPTC)  

 The Renewable Electricity Production Tax Credit (REPTC) is another financial 

incentive for farmers who generate electricity from livestock waste. The tax credit is equal 

to 1.1 cent per kilo-watt hour (AgSTAR, Federal Renewable Electricity Production Tax 

Credit 2012).  This program credit expires on December 31, 2013. 

1.4 Objectives  

 An economic feasibility model will be used to determine the level of support by the 

federal government to incentivize an increase in the construction of anaerobic digesters on 

dairy farms.  An economic feasibility model based on a spreadsheet provided by the 

University of Florida, Institute of Food and Agricultural Sciences (IFAS) Extension Dairy 

Science for dairy farmers considering investing in anaerobic digesters will be used in the 

analysis.  
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 The model will examine the financial impacts of increasing the Rural Energy for 

America Program (REAP) grants.  The current rate is 25% of the total project cost, or a 

minimum of $2,500 and a maximum of $500,000 (USDA Rural Development 2013). 

Farmers who were informally surveyed indicated their primary barrier to entry was 

securing the funding to invest in the project.  They asked that the National Milk Producers 

Federation consider lobbying to increase the REAP grant available per project and to 

increase the maximum allowable funding per grant.   

 The model will examine the tax credits currently offered to biomass renewable 

energy providers to also determine if this rate should be increased and to what level to be 

more attractive to the investor.  Another revenue source that will be factored into the model 

is the price that electric companies currently pay for renewable energy from digesters 

versus a more competitive market price to farmers for this electricity.    

 The fourth variable examined in the model will be carbon credits.  Methane gas 

released into the atmosphere becomes a greenhouse gas (GHG) that is 21 times more 

polluting than the same amount of carbon (Informa Economics 2012).  Methane digesters 

can be GHG offsets for urban sources of emissions known as “cap and trade” in legislation. 

There are some voluntary markets providing potential revenue for digester operations.  The 

markets trading carbon are occurring in the $1 per MT of carbon equivalent gas, although 

there have been instances of contracts higher than $10 per MT. 

 Digesters have a potentially profitable future.  Regardless of the outcome of this  

thesis model, hundreds of thousands of dollars are being invested into the research and 

technology for the construction of digesters in the United States.   
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 The key components to increase revenue for dairy farmer digester owners may be 

increased grants available for initial startup construction, aggressive carbon credit trading, 

greater tax credits for digesters comparable to wind energy credits, as well as requiring 

electric companies to purchase more on-farm renewable energy at a rate that is closely 

aligned with the market prices for electricity per kWh.   
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CHAPTER II: LITERATURE REVIEW 

The Innovation Center for U.S. Dairy has extensively studied the economic 

feasibility and sustainability of methane digesters on farms.  The Innovation Center is 

funded through Dairy Management Inc. (DMI) using dairy producer check-off dollars.  

This thesis draws on DMI’s documented resources online and staff to assist the study.  The 

Innovation Center refers to on-farm methane digesters as “Dairy Power” (Innovation 

Center for U.S. Dairy 2010-2012).  The Innovation Center has a goal of 1,300 operating 

digesters in the U.S. by 2020. 

In August 2012, Informa Economics released a private report prepared for the 

Innovation Center for U.S. Dairy to “identify the production possibilities and market value 

of the various products of the mature anaerobic digester industry based on large US dairy 

farms” (Informa Economics 2012).  This report looked at the value of all inputs and 

potential outputs on a state by state basis to determine the economic returns and the 

sustainability benefits of digesters.  The report quantifies the value of electricity, 

biomethane, compressed natural gas (CNG), eco-system market and nutrient production.  

The Innovation Center shared the data for this thesis project. 

The research determined anaerobic digesters are a solution to manage cow manure 

in large scale, confined animal feeding operations (CAFOs) while monetizing manure 

through the creation energy products, fertilizer nutrients, fiber, and eco-system products.  

The results are electricity that can be sold to utility companies from digesters at a current 

market value of $813 million.  The value of pipeline biomethane was estimated at $419 

million per year and compressed natural gas (CNG) had an estimated value of $747 million 

per year. 
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Informa Economics valued the nutrient stripping technology under development to 

allow for nitrogen and phosphorus to be separated into a storable or transportable form.  

The value of nitrogen is estimated to be $477 million and phosphorus at $331.5 million per 

year.  Fiber separated from the mass would be used for bedding or peat moss substitutes at 

a likely market value of $217 million per year.   

Eco-system markets are another potential strategy reported by Informa Economics 

for producers if and when government policies encourage cooperatives to reduce 

environmental contamination using trading systems for nutrients and emissions. Digesters 

could take advantage of subsidies from greenhouse gas (GHG) offset credits valued at $349 

million, Renewable Energy Credits (RECs) at $35.2 million, Renewable Identification 

Numbers (RINs) at $1.02 billion and Low Carbon Fuel Standards (LCFS) credits at $43.8 

million. 

Informa Economics reports that $598.6 million could be saved from tipping fees by 

monetizing organic substrates.  Tipping fees refer to the payment made to landfills for 

dumping waste.  If organic substrates are dumped into landfills versus going through 

anaerobic digester, the result is higher GHG emissions and potential contamination leakage 

from the landfill to water resources.  An estimated 20.7 million tons of organic substrate 

could be diverted from landfills to digesters lowering the tipping fees and increasing 

revenue from digesters. 

The results of running three different valuation scenarios show that if 2,647 dairy 

anaerobic digesters were built in the U.S. that in a low valuation scenario this would 

produce annual net revenue values of $1.35 billion, a mid-valuation scenario would 

produce annual net revenues of $2.9 billion and the highest valuation would produce net 
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revenues of $4.69 billion.  The results were all calculated by converting energy to 

electricity.    

The AgStar Program website, www.epa.gov/agstar, is a resource for determining 

competitive costs, startup support and best practices for managing manure for a profitable 

digester investment on the farm.  The AgStar Program is a coordinated and collaborated 

effort by the U.S. Department of Agriculture (USDA), U.S Environmental Protection 

Agency (EPA), and the U.S. Department of Energy (DOE).  AgStar provides a 

comprehensive agency for farmers, investors and researchers to apply for grants or loans, 

or learn about emerging technology.  

The Congressional Research Service (CRS) provides reports to congressional 

offices on any subject requested by Members of Congress or their staffs.  In 2011, the CRS 

published a report that highlighted the need for more federal support to make digesters 

profitable for dairy producers.  This thesis will be examining a couple of the obstacles 

mentioned in the report such as: “lack of economic return” and “identifying financial 

support” (Bracmort 2011).   

The CRS report concluded that Congress will consider legislation addressing clean 

energy and the environment.  The report specifies three points for Congress to consider: 

1. Identifying the primary benefit offered by digester systems.  Selecting a primary 

benefit (renewable energy generation or greenhouse gas emission reduction) 

may assist with determining a policy vehicle to support digester technology 

(e.g., energy legislation, climate change legislation, agricultural legislation).  A 

single message regarding the technology benefit may encourage farmers to 

invest in digesters. 
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2. Determining if the methane captured from the technology will be a carbon 

offset.  The climate change debate in previous Congresses included carbon 

offsets as a potential GHG emission reduction strategy.   

3. Identifying whether alternate sources of financial support for technology 

implementation are appropriate.  Most of the federal financial assistance are 

loans and grants.  A shorter payback period for a digester system may occur if 

producers receive a larger monetary sum for energy generated.  The report 

suggests additional tax credits or increasing the premiums from utilities 

companies for electricity rates.   

Another useful report, Carbon Markets and Methane Digesters: Potential 

Implications for the Dairy Sector (Key and Sneeringer 2011), provides data and 

background on a cost-benefit analysis using carbon markets with methane digesters.  The 

report by Key and Sneeringer uses net present value (NPV) to assess the profitability of a 

digester to predict adoption rates and revenue by size and region. The simulation indicates 

that a carbon offset market could increase the number of dairy producers willing to invest 

in a methane digester.  The results suggest that at a carbon price of $13/t approximately 934 

dairies would be profitable and that carbon offset sales would represent 62% of the present 

value of gross returns.   

The University of Florida Extension IFAS dairy extension specialists, de Vries, 

Giesy, Wilkie and Nordstedt, built an economic feasibility spreadsheet for Florida farmers.  

The Florida Dairy Extension’s “Solutions for Your Life” spreadsheet (de Vries, et al. 2012) 

was a base for this thesis to build an expanded model spreadsheet that can be modified with 
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potential federal policy scenarios.  The spreadsheet is designed to help inform and educate 

producers on the economic returns versus the investment cost for a digester. 

An issue for small dairy operations to consider is that a centralized digester shared 

by nearby farms could assist in reducing the construction and maintenance cost, increase 

marketing leverage in negotiating electricity sales, and improve access to financing, tax 

credits or grants.  The drawback to a centralized digester would be the cost of transporting 

manure which is bulky.  

The University of Wisconsin- Madison, Department of Agriculture and Applied 

Economics, Energy Analysis and Policy Program provided a great deal of insight into the 

economic feasibility for manure digesters on small and mid-size farms.  In 2002, Aashish 

Mehta published the report, “The Economics and Feasibility of Electricity Generation 

using Manure Digesters on Small and Mid-size Dairy Farms.” While it was determined that 

there was little economic incentive for dairy farmers to install a digester on farms, some of 

the technology has improved in the last decade.  The amount of electricity calculated per 

year in this research is determined by using 262 kwh/cow annual electricity consumption as 

reported in Mehta’s research (Mehta 2002).    
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CHAPTER III: THEORY 

The EPA has publically released analysis through AgSTAR reporting that there 

could be as many as 2,647 dairy farm digesters installed in the U.S.  EPA considers farms 

with 500 or more cows and includes the most basic digesters (U.S. EPA, The AgStar 

Program 2012).  

Currently, there are only 162 operating on-farm digesters.  In the 1970s, 100 on-

farm digesters were constructed with only a 20% success rate.  By 1995, only ten digesters 

were in operation.  By 2000, 100 digester systems were operating.  Kurt Roos, Agriculture 

Methane Program Team Leader for AgSTAR, reported in 2010 that the 2,600 digesters 

proposed by EPA would require a $2.6 billion investment and return $544 million per year 

in renewable energy revenue alone, assuming 8 cents/kilowatt hour (kWh) (Roos 2010). 

In 2010, the 162 on-farm digesters in the U.S. generated 453 million kWh of 

energy.  This is the equivalent of powering 25,000 average-sized homes.  By comparison, 

the EU subsidizes anaerobic digesters to produce biogas for energy converted from 

agriculture, industrial and municipal wastes.  Germany has approximately 6,800 large-scale 

digesters in operation (Figure 3.1).   
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Figure 3.1: The Number of Operating Digesters in European Countries 

 
 Source: Center for Climate and Energy Solutions 

 

 Given the digester industry in Europe, one may expect the U.S. to have many more 

than a hundred operating digesters.  During a three week visit in Germany touring mostly 

dairy farms, digesters were praised by German farmers and reported to be profitable by 

dairy farmers and government officials (personal communications).   

 Germany’s Green Party requires “green” energy or renewable fuel to be used within 

the country.  Their Parliament passed laws nearly two decades ago that pay farmers to 

produce methane to power the electricity grid.  The Renewable Energy Sources Act 

mandated electric companies to purchase this renewable energy at a rate that profits the 

farmer who also uses the energy to power the farm.  In 2011, more than 20 percent of 

Germany’s electric supply was produced from renewable sources and was expected to be 

35% by 2020. 
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 If U.S. farmers believed investing in digesters would be profitable and provide 

energy at a reduced cost to their farms, wouldn’t they be willing to construct on-farm 

digesters?  What are the real barriers of entry?  Why won’t U.S. electric companies 

purchase more renewable energy from farms?  Should Congress intervene with more public 

policy incentives for farmers, electric companies or consumers to encourage the investment 

in the digester industry?   

 This thesis will examine what incentive will make digesters profitable on farms.  

The key components to increased revenue may be increased grants and loans available for 

initial startup construction, greater tax credits for digesters comparable to wind energy 

credits, as well as requiring electric companies to purchase more on-farm renewable energy 

at a rate that is closely aligned with the market prices for electricity per kWh. 

 An Excel spreadsheet is used to calculate the economic feasibility of digesters on a 

dairy farm can determine the net revenue, the benefit-cost ratio and the internal rate of 

return. Adjusting the tax rate to assume higher tax credits for renewable fuels, Rural Energy 

for America Program (REAP) grants and loans, carbon credits and electricity retail price in 

the spreadsheet will affect the profitability.   

 A spreadsheet must include conversions for output of solids, methane (CH4), and 

electricity generated.  Building on the University of Florida feasibility model, the 

investment analysis will include a fixed current tax rate at 35%, discount rate of 8%, 10 

year duration, and minimum salvage value of $10,000 (de Vries, et al. 2012).  The natural 

gas price, electricity retail price and electricity used on the farm will be a national average 

for a 1,500 cow farm.  
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  The investment criteria for economic feasibility model includes net present value 

(NPV) for electricity and gas generation sales.  Net present value is the difference between 

the present value of cash inflows minus the required investment or present value of cash 

outflows.  The benefit-cost ratio will be calculated with the criteria of greater than 1. The 

internal rate of return (IRR) will be included as a profitability measure. IRR is defined as 

the rate of discount that makes NPV equal zero (Brealey, Myers and Allen 2011). 
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CHAPTER IV: METHODS 

  Building an economic feasibility spreadsheet to determine the net present value, 

(NPV), benefit-cost ratio, internal rate of return (IRR) and payback period required 

collecting data from the Dairy Management Inc. (DMI) and incorporating that with a 

spreadsheet designed by Dr. Albert de Vries, UF/IFAS Department of Animal Sciences.  

The objective is to determine the rate of return by changing the out-of-pocket expense by 

the farmer for building an on-farm methane digester.   

 A spreadsheet must include conversions for output of solids, methane (CH4), and 

electricity generated.  Building on the University of Florida feasibility model, the 

investment analysis used a fixed current tax rate at 35%, discount rate at 8%, 10 year 

duration, and a salvage value of $10,000 (de Vries, et al. 2012).  The natural gas price, 

electricity retail price and electricity used on the farm is the national average for a 1,500 

cow farm.  

  The investment criterion for the economic feasibility model calculates net present 

value (NPV) for electricity and gas generation sales.  Net present value is the difference 

between the present value of cash inflows minus the required investment or present value 

of cash outflows.  The benefit-cost ratio is calculated with the criteria of it being greater 

than 1. The internal rate of return (IRR) is also included as a profitability measure. IRR is 

defined as the rate of discount that makes NPV equal zero (Brealey, Myers and Allen 

2011). 

4.1 Manure 

The raw input material for creating energy from a digester system is manure.  The 

American Society of Agricultural Engineers estimates that a lactating cow produces 150 

pounds of manure per day.  The U.S. produces more than 100 million pounds of dairy cow 
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manure annually.  Dairy manure contains approximately 15% solids.  The percentage of 

solids is determined by the amount of water used to flush the barn.  Most digesters use 

manure that is between 1% and 13% solids (Krich, et al. 2005).  For this model, 200 

gallons of waste water per cow per day is used to determine the total waste volume per day 

as determined by the University of Florida (de Vries, et al. 2012).   This is an average for 

most dairy cows.  All calculations assume a 1,500 cow farming operation which provides a 

steady and abundant supply of manure to generate the digester.  

(4.1)  Number of cows x 200 gal/cow/d = total waste water volume. 

 

The amount of volatile solids is variable depending on the handling and moving of 

the manure from the barn to the holding facility.  Daily removal is preferred but some 

farms may only transfer the manure weekly.  In fresher manure, the solids are more volatile 

and return more energy.  Of the 15% solids in raw manure, 83% are volatile solids.  

Following the University of Florida model, this spreadsheet assumes 12 pounds of volatile 

solids are digested per cow per day (de Vries, et al. 2012). 

(4.2) Number of cows x 12 lbs/cow/d = volatile solids to digester per day 

 

4.2 Energy Generations  

 Changing volatile solids to methane or biogas requires conversion before 

marketable products are created.  Biogas is a mixture of methane and carbon dioxide that 

may be converted to power as electricity, pipeline biomethane, or compressed natural gas 

(CNG).   

 The spreadsheet calculates the annual amount of methane produced by a digester 

per cow.  It calculates the amount of electricity and natural gas produced, as well as the 
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amount of carbon dioxide reduced.  The amount of electricity and gas generated is 

calculated by using several standard constants for conversions such as 12 pounds of volatile 

solids (VS) per cow per day, 4 standard cubic feet (scf) of CH4 (methane) per pound of VS, 

1000 btu per cubic feet of Latent Heating Value (LHV) from CH4, 3412 btu/kwh electrical 

value constant times 25% determines kwh/day (de Vries, et al. 2012).  Table 4.1 is the 

conversion results for 1,500 cow dairy farm digester.  Each cow generates 3.52 kWh of 

electricity per day (de Vries, et al. 2012).   

Table 4.1: An Excel Spreadsheet Conversion for a 1,500 Dairy Farm Generating 
Electricity through Methane Digestion to Kilowatt-Hours  

 

Source: University of Florida, IFAS Extension (de Vries, et al. 2012) 

 

 Electricity is the most common form of energy generated from dairy waste 

digesters.  The price of electricity varies widely depending on the type and size of a 

digester.  The price is determined by state regulations, net metering agreements, or 

contracts between digester operators and the utility companies.  Informa Economics 

Calculation
Number of cows 1500
Waste water volume gal/cow/d 200
Waste water volume gal/d 300,000

Methane and Energy Generation
VS to digester lbs/cow/d 12.00
VS to digester lbs/d 18,000
Conversion factor VS to CH4 scf / lb VS 4.00
CH4 methane yield ft3/d 72,000
CH4 methane yield ft3/cow/d 48
Conversion factor LHV btu/ft3 1000
LHV (Latent Heating Value) btu/d 72,000,000
Electrical value constant btu/kwh 3412
LHV conversion efficiency % 25%
Electricity generated kwh/d 5,275
Electricity generated kwh/cow/d 3.52

Cows and Water Units
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determined on the low end, electricity may be valued as low as $0.03 per kWh.  On the 

high end, California pays an average of $0.11 per kWh for electricity. Table 4.2 shows the 

average retail price per state in 2012.   

Table 4.2: Average Electricity Price by State for 2012  

State 
Electricity Price 

($/kWh) 
 

Arizona 0.0658  
California 0.1101  
Colorado 0.0712  

Idaho 0.0516  
Michigan 0.0736  

New Mexico 0.0611  
New York 0.0780  

Texas 0.0634  
Washington 0.0397  
Wisconsin 0.0734  

Other 40 States 0.0660  
 (Informa Economics 2012) 

 To calculate potential electricity sales, the model subtracts the kWh/year needed to 

run the dairy from the total amount of electricity produced.  Assuming each cow’s 

electricity usage is 262 kWh per year, as reported for a 400 cow dairy farm by the 

University of Wisconsin (Mehta 2002), the annual electricity use cost would be $38,514.  

 The future retail price may be adjusted as future prices are predicted.  The future 

wholesale price is reported daily and also varies by region with California’s high price of 

$0.051/kWh and the Midwest’s lowest price of $0.028/kWh.  This model assumes retail 

prices could rise to $0.15 and the future wholesale price is $0.035/kWh.  

 The 1,500 cow digester produces 5,274 kWh per day totaling 1,925,557 kWh of 

electricity annually while only using 393,000 kWh, yielding a net of 1,532,557 kWh to be 

sold into the market.  For complete conversion results see Table 4.3. 
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Table 4.3: Spreadsheet Data for Value of Electricity from the 1,500 Dairy Cow 
Digester 
Electricity      Units Calculation  
Electricity 
used kwh/yr 393,000 
Electricity 
cost $/yr 38,514 
Current retail price $/kwh 0.098 
Future retail price $/kwh 0.150 
Future wholesale price $/kwh 0.035 
kwh used kwh/yr 393,000 
kwh made kwh/yr 1,925,557 
Net electricity balance kwh/yr 1,532,557  
% electricity needs produced % 490% 
Retail value kwh used $/yr 58,950 
Retail value kwh made $/yr 288,834 
Avoided electricity cost $/yr 58,950 
Wholesale value kwh made $/yr 67,394 
Electricity sales at wholesale price   $/yr 53,639 

Source: University of Florida, IFAS Extension (de Vries, et al. 2012) 

 
4.3 Gas Conversion 

 The commercial natural gas retail price average for 2013 as reported by the U.S. 

Energy Information Administration on February 12, 2013 was $9.04 per 1000 ft3. 

However, after surveying digester owners and operators it was determined that the 

wholesale price offered for digester gas is between $3.00 and $4.00 per 1000 ft3.  Fair Oaks 

Dairy Farms in Indiana reported receiving $3.90 per 1000 ft3 in March 2013.  The price for 

natural gas used in this model is $3.90 per 1000 ft3.  

 The addition of carbon credits was included because of the potential for future 

revenue if Congress enacts Climate Change legislation.  Methane digesters could be a 

carbon offset for emitters thus exchanging credits for revenue.  The formula for converting 

methane (CH4) to the carbon dioxide equivalent (CO2) is: 
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(4.3)  ((((Total CH4 /23.6) x 365 days) /2000 lbs) x 21).   

Source: AgStar (U.S. EPA, The AgStar Program 2012) 

  

 Ten years ago carbon credits were trading at $2.00 per MT.  In 2011, Key and 

Sneeringer ran a benefit-cost analysis using $13 and $26 per MT in anticipation that 

Congress would mandate carbon trading as part of any climate change legislation.  Because 

Congress did not pass that law, there was a collapse in the carbon trading market.  Table 

4.4 is the conversion for gas and carbon credit value.  In the model $0.00 will be the base 

with $2.00, $4.00, $10.00 and $16.00 per metric ton of CO2 being analyzed for potential 

value.   

Table 4.4: The Conversion for 1,500 Dairy Farm Values of Natural Gas and Potential 
Carbon Credits 

 

Source: University of Florida, IFAS Extension (de Vries, et al. 2012) 

 

4.4 Investment Data 

 In the economic model, the investment data for the following are used for all 

calculations:  

1. Current tax rate is 35% assuming annual income of over $388,350 for a 

married couple. 

Gas Units Calculation

Price natural gas $/1000 ft3 3.90
Value as natural gas $/d 281
Value as natural gas $/yr 102,492

CO2 equivalent Tons CO2/yr 11,692

CO2 equivalent Metric Tons CO2/yr 10,605

Carbon value $/Metric Ton CO2 2.00

Value of CO2 reduction (carbon credits) $/yr 21,210
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2. Annual discount rate is 8% using the same as the University of Florida from 

2005.  This rate may be adjusted to reflect different current rates.   

3. Operating and maintenance cost average 10% including one full time 

employee. 

4. Electric installation average cost is $500/cow, Gas installation average cost 

is $300/cow as reported by Informa Economics and AgriStar. 

5. Salvage value $10,000 for the scrap metal and other parts for resale at the 

low end.  

6. Duration of investment is 10 years.  Again, this was used in the original 

model by University of Florida and can be adjusted as the duration may be 

extended.  

4.5 Summary 

 The results are generated by comparing the farmer’s part of the investment cost at 

different percentages.  Most scenarios include maintaining the current law of 75% cost at 

owners expense assuming the Rural Energy Investment Project (REAP) grants cover 25% 

startup installation. Scenarios 12, 14 and 15 reduce the owners cost by an additional 5 

percent from the REAP grant to 70% cost to farmer and scenario 13 assumes no assistance 

or 100% owners cost.  

 Increasing the wholesale price from the electric companies will positively adjust the 

feasibility of investing in digesters.  The model will include electricity sales by Congress 

mandating electricity companies to purchase “green” energy at current wholesale price or 

$0.035/kwh. Mark Stoermann, digester manager at Fair Oaks Farms, and Mike McCloskey, 

owner of Fair Oak Farms reported to a group of 60 farmers in April 2013 that the Midwest 

receives approximately $0.03 per kWh but costs $0.05 to make electricity so they use the 
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electricity to power their farm.  They calculated that is would require electric companies to 

pay them $0.08-$0.09 per kWh to be profitable.  Therefore, this thesis used $0.035 as the 

baseline market price but included $0.037, $0.040, $0.05, and $0.09 per kWh in some of 

the scenarios.   

 If Congress passes laws to require carbon trading as offsets to global warming in 

climate change legislation, the value of CO2 reduction may increase the farmer’s revenues.  

Three levels of value assumed in the model will be a zero credit baseline, $2 credit per 

metric ton (MT) CO2, $4/MT CO2, $10/MT CO2 and $16/MT CO2.  The long-term 

equilibrium price for GHG offsets is $10/MT CO2 (Informa Economics 2012). 

 Tax credits are included as a profit contributing factor.  The Renewable Electricity 

Production Tax Credit (REPTC) is another financial incentive for farmers who generate 

electricity from livestock waste. The tax credit is equal to 1.1 cent per kilo-watt hour 

(AgSTAR, Federal Renewable Electricity Production Tax Credit 2012).  This program 

credit expires on December 31, 2013.  In the model, investment tax rates are adjusted from 

the 35% current rate to 34% in scenarios 10 and 14, and 33% in scenarios 11 and 15.  This 

is a simple reduction and may require considerable changes in tax laws by Congress. 

   The feasibility model for this thesis includes calculating the net-present value 

(NVP), benefit-cost ratio (B-C), internal rate of return (IRR), and payback period in years 

for each of the fifteen scenarios.  The NPV is the present value including the salvage value 

less the investment cost.   

(4.4)  NPV= - Initial Investment + (Cash Flow/((1 + Discount Rate)Time))) 

Source: Principles of Corporate Finance  

  



29 
 

 The benefit-cost ratio is a profitability index.  The higher the ratio the better.  

However, the benefit-cost ratio alone can be misleading and may not reflect the actual 

value of the return but only the index.  This is why the NPV and IRR are also considered 

when determining whether to invest in a methane digester project. 

 The internal rate of return is another profitability measure but the IRR depends 

solely on the amount and timing of the project cash flows (Brealey, Myers and Allen 2011).  

The higher the percentage of the IRR, the greater the return which increases the desirability 

of the project. 

(4.5)  0 = P0 + P1/(1+IRR) + P2/(1+IRR)2 + P3/(1+IRR)3 + . . . +Pn/(1+IRR)n 

where P0, P1, . . . Pn equals the cash flows in periods 1, 2, . . . n, respectively; and 

IRR equals the project's internal rate of return.  

Source: www.investinganswers.com 

 

     The payback period is the number of years required for the project to recover the initial 

investment (Brealey, Myers and Allen 2011).  The duration of the digester projects for this 

thesis is 10 years.  The lower the payback the quicker turnaround in profits.   

 One profitability index alone may not show the true potential project results.  Even 

if all four of these indexes are positive there may continue to be barriers to entry that would 

prohibit a farmer from investing in a digester.      
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CHAPTER V: RESULTS  

The results of 15 scenarios are compared to determine the affect of combinations of 

carbon credit, REAP grant, tax credit and net metering income on the profitability of 

digester investment.  The economic feasibility of each scenario is determined by 

calculating net present value (NPV), the benefit-cost ratio, Internal Rate of Return (IRR), 

and payback period.  For every scenario there are energy results and gas results.  A 

methane digester cannot produce gas and electricity simultaneously so the farmer must 

choose whether to sell gas or electricity. 

There are 15 scenarios in this analysis.  There are 4 factors that will be adjusted. 

The Carbon Credits factor includes rates of: 

 $0.00 carbon value per metric ton of Carbon Dioxide (CO2). 

 $2.00 carbon value per metric ton of Carbon Dioxide (CO2). 

 $4.00 carbon value per metric ton of Carbon Dioxide (CO2). 

 $10 carbon value per metric ton of Carbon Dioxide (CO2). 

The Net Metering implementation rates are: 

 $0.035 current wholesale price per kilowatt hour. 

 $0.037 per kilowatt hour. 

 $0.04 per kilowatt hour. 

 $0.05 per kilowatt hour. 

 $0.09 per kilowatt hour. 

The Renewable Electricity Production Tax Credit (REPTC) rates of: 

 35% current tax rate fixed or no tax credit. 

 34% tax rate that includes REPTC. 



31 
 

 33% tax rate with an increased REPTC that would be more comparable to 

wind and solar tax credits. 

The REAP Grants factor includes rates of: 

 100% installation cost paid by the farmers or no REAP grant.   

 75% installation cost paid by the farmer or the current REAP grant rate of 

25%. 

 70% installation cost paid by the farmer or an increase in the REAP grant 

by 5% to 30%.    

 Scenario 1 is the current market solution of $0.0 carbon credits, the net metering 

wholesale price of $0.03, the current tax rate of 35%, and 75% of the installation cost paid 

by the producer.   

 Scenario 13 is the worst market case scenario.  The worst case scenario has zero 

carbon trading, lowest electricity rate, highest tax rate and no REAP grant assistance.  This 

reflects no federal support should the REAP assistance fail to be reauthorized this year and 

no carbon trading markets in the future.   

 Scenario 15 is the optimistic scenario.  This scenario assumes a higher carbon credit 

trade, the electricity rate as suggested by Fair Oaks Farms, the lowest tax rate assuming an 

increase in renewable energy tax credits, and an increase in REAP grants by 5%.  Table 5.1 

shows the combination of all fifteen scenarios considered in this thesis. 

 Fifteen scenarios were chosen as the best representatives of current federal policy 

authority and future federal policy changes.  First, there are 5 different carbon trading 

prices that were compared in the model with the other three factors at current market value 

(Scenarios 1-5).  This was used to determine the significance of carbon trading.  The 113th 
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Congress may take up climate change legislation so this information was important to 

reflect the opportunities for farmers participating in carbon trading.  Net-metering is the 

next factor that could be influenced by federal policy.  There are five options for electricity 

to show the significance in electricity purchases from the farmer by the utility companies 

(Scenarios 1, and 6 through 9).  Only three tax credit variables were used- the current rate, 

1% below current rate and 2% below current rate (Scenarios 1, 10, and 11).  Given current 

federal budget deficit, it is most unlikely this Congress will agree to reduce tax rates for 

renewable energy.  Plus, the changes to tax credits weren’t as significant as the other 

factors.  Therefore, the model includes the tax rates of 33% and 34% in only four of the 

fifteen scenarios.  The REAP grant percentage was maintained at 75% for all but four 

scenarios (Scenarios 11, 12, 14, and 15).  Increasing the rate to 70% could be difficult due 

to the federal budget deficit.  Federal programs are reducing their spending as a result of 

sequestration.  It may not be possible to secure more funding for REAP but this model 

shows that maintaining the current rate of 75% with increases in carbon credits and the 

electricity is the most attractive scenarios with the best NPV.     
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Table 5.1: Fifteen Scenarios Comparing Carbon Credits, Electricity Rates, Tax Rates, 
and REAP Grant 

 Carbon Credit Electricity Rate Tax Rate REAP Grant
Scenario ($/MT CO2) ($/kwh) (%) (%)

1 0 0.035 35 75
2 2 0.035 35 75
3 4 0.035 35 75
4 10 0.035 35 75
5 16 0.035 35 75
6 0 0.037 35 75
7 0 0.040 35 75
8 0 0.050 35 75
9 0 0.090 35 75

10 0 0.035 34 75
11 0 0.035 33 75
12 0 0.035 35 70
13 0 0.035 35 100
14 2 0.050 34 70
15 16 0.090 33 70

 

 Table 5.2 shows the electricity NPV, Benefit-Cost Ratio, IRR and Payback for all 

15 scenarios.  Electricity generated from the digester sold at less than $0.05 per kwh has 

very low to negative NPV that would not likely attract farmers to invest in methane 

digesters under the current market situations.  The most positive NPV resulted from the 

$0.09 per kwh electricity sales (Scenarios 9 and 15).  Electric companies are not purchasing 

renewable electricity at a level except in Vermont.    
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Table 5.2: The Results for NPV, Benefit-Cost, IRR and Payback Period Data for 
Electricity 
Electricity
Scenarios NPV B-C ratio IRR (%) Payback (yr)

1 (11,659.00)$       0.097 7.31 7.01
2 (11,659.00)$       0.097 7.31 7.01
3 (11,659.00)$       0.097 7.31 7.01
4 (11,659.00)$       0.097 7.31 7.01
5 (11,659.00)$       0.097 7.31 7.01
6 1,709.00$          1.000 8.10 6.76
7 21,762.00$        1.060 9.25 6.42
8 88,606.00$        1.240 12.94 5.48
9 355,979.00$      1.950 26.09 3.46

10 (9,909.00)$         0.097 7.42 6.98
11 (8,158.00)$         0.980 7.52 6.95
12 7,469.00$          1.020 8.46 6.66
13 (107,303.00)$     0.790 3.03 8.65
14 111,195.00$      1.320 14.55 5.14
15 390,256.00$      2.120 28.92 3.19  

Figure 5.1 graphs the NPV for electricity in all 15 scenarios.  

Figure 5.1: Graph for Electricity NPV for Scenarios 1-15.  
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 Table 5.3 lists the results for natural gas.  All of the scenarios used a natural gas 

price of $3.90 per 1,000 ft3. The NPV, Benefit-Cost ratio, IRR and payback period show 

that natural gas would be the better of the two energy options in the most scenarios to 

produce and sell.    

Table 5.3: The Results for NPV, Benefit-Cost, IRR and Payback Period Data for Gas 
Gas

Scenarios NPV B-C ratio IRR (%) Payback (yr)
1 146,303.00$      1.650 20.74 4.12
2 238,811.00$      2.060 27.93 3.29
3 331,320.00$      2.470 34.77 2.74
4 608,845.00$      3.710 54.23 1.82
5 886,370.00$      4.940 73.01 1.36
6 146,303.00$      1.650 20.74 4.12
7 146,303.00$      1.650 20.74 4.12
8 146,303.00$      1.650 20.74 4.12
9 146,303.00$      1.650 20.74 4.12

10 149,735.00$      1.670 21.01 4.08
11 153,146.00$      1.680 21.29 4.04
12 157,780.00$      1.750 22.53 3.88
13 88,917.00$        1.300 14.12 5.24
14 255,234.00$      2.220 30.51 3.06
15 927,663.00$      5.420 80.19 1.24  

Figures 5.2 shows the NPV for natural gas for scenarios 1-15.   
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Figure 5.2: Graph for Gas NPV for Scenarios 1-15 
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 Figure 5.3 compares the benefit-cost ratio profitability index for electricity and 

natural gas.  Natural gas is higher than electricity in all scenarios except in the comparison 

of scenario 9.  Scenario 9 has the highest net-metering electricity price of $0.09/kWh with 

zero carbon credits.  The best benefit-cost ratios are scenarios 5 and 15 for natural gas.  

Those are the scenarios with the highest carbon credits of $16/MT CO2. 

Scenario 
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Figure 5.3: Comparison of the Benefit-Cost Ratio of Electricity and Natural Gas for 
Scenarios 1-15 

 

  Figure 5.4 compares the IRR for electricity and gas.  This graph is very similar to 

the benefit-cost ratio.  The IRR is less than 10% for 11 of the 15 scenarios.  Only twice 

does the IRR for electricity go above 25%.  An electricity only digester would not be as 

attractive to a farmer or a lender as an investment as a natural gas digester.  The IRR for 

natural gas tops 70% on scenario 5 and 15.  This shows the significance of carbon credit 

trading.   
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Figure 5.4: Comparison of the IRR between Electricity and Natural Gas for Scenarios 
1-15 
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 In all scenarios but number 9, producing and selling gas would be the most 

profitable method with the earliest payback period.  Figure 5.5 illustrates the payback 

period in years for scenarios 1-15.  Scenario 13 is the worst for both methods but gas still 

has a more favorable payback period than 12 of the electricity scenarios.      
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Figure 5.5: Comparison of the Payback Period for Electricity and Natural Gas for 
Scenarios 1-15 
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 The higher returns and shorter payback period are incentives for farmers to invest in 

methane digesters on their farms.  The most profitable factors that may increase 

construction of methane digesters are to mandate net-metering by electric companies to 

purchase more renewable energy and to open markets for carbon trading by passing “cap 

and trade” legislation.    
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CHAPTER VI: CONCLUSION 

 On January 7, 2013, the National Journal energy blogger reported that President 

Barak Obama said that “after the fiscal cliff, energy is the third-ranking policy priority for 

his next four years, after immigration and economic growth (Harder 2013).”  Christine 

Todd Whitman, Former EPA Administrator and New Jersey Governor, wrote “with 

domestic electricity demand scheduled to rise 22 percent by 2035, there is no better time 

for our country to lay the groundwork for sustainable energy future than now (Whitman 

2013).”  “Citizens support for clean, renewable energy – support that is strong and 

bipartisan as we know from consistent polling numbers – should mobilize political leaders 

to adopt long-term renewable energy legislation,” says Dennis McGinn, President of the 

American Council on Renewable Energy.  The American Biogas Council is hosting a 

conference in May 2013 to assist digester investors in ways to increase their revenue 

streams to make the investment viable.   

 Moving forward in the 113th Congress, energy policy could be one of the few 

bipartisan legislative efforts.  Dairy farmers may be able to secure increased funding for 

REAP grants to cover 30% of installation costs as shown to be a significant economic 

benefit for digester profitability.  The most aggressive and profitable approach may be to 

legislate carbon trading, renewable energy purchases, and higher tax credit for manure 

anaerobic digesters. 

 The electricity scenarios studied in indicate that the NPV ranges between a 

maximum value of $390,256 to a minimum value of negative $11,659.  The gas NPV 

ranges from $88,917 and $927,663.  Therefore, the results of subsidizing all four factors 

annually improve the electricity NPV by $401,915 and gas NPV by $838,746.   
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 The best results for a digester to reach the maximum revenues in the model are 

higher wholesale electricity payments or net-metering and carbon credit trading at $10 per 

metric ton or more.  The tax credit reductions in scenarios 10 and 11 did not result in 

increasing the NPV for electricity or natural gas to an attractive level for farmers.  The 

NPV for electricity remained negative.  

 Vermont incentivizes “Cow Power” by paying farmers for every kilowatt-hour 

requested by customers and provided by a Vermont farm.  Green Mountain Power pays the 

farmer for the energy at rates set by the state, plus the Cow Power charge of 4 cents for the 

environmental and renewable benefits of the generation (Green Mountain Power 2013).  

No other state offers this high rate of approximately $0.12 per kwh for electricity generated 

from a methane digester.  Since 2004, Green Mountain Power has partnered with 12 farms 

in Vermont for cow power. 

 The electricity rate in the Midwest for methane digester electricity is currently only 

$0.03 per kwh.  The model results show that $0.09/kwh in scenario 9 would have an IRR of 

26.09% with no other changes to other factors.  The electricity usage per year on the farm 

could be higher or lower for each digester and farm operation.  This estimate could be an 

input that may be undervalued in the model.  The electricity in this model was an average 

from data collected for working digesters from University of Wisconsin (Mehta 2002) and 

AgStar (Digester Performance Evaluations 2012). 

 Carbon credit trading is most profitable at the $10.00/MT CO2 and $16.00/MT CO2 

with IRRs of better than 54% and 73%, respectively.  Those rates are not unrealistic for 

future carbon trading should Congress pass “Cap and Trade” legislation.  In mid-April, the 
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Capitol Hill publication, Politico, reported the President’s budget supported cap-and-trade 

policy (Goode and Restuccia 2013). 

 The future for methane digesters looks profitable when energy and carbon markets 

are enacted.  The federal government may consider focusing on incentives for the utility 

companies’ infrastructure to make purchases of renewable energy from a digester more 

economically attractive and efficient.  Today, an obstacle for increasing the number of 

digesters in the United States is the cost associated with moving the energy from the 

digester and connecting that natural gas to a pipeline.  The natural gas companies would 

have to be compensated for that expense plus the potential difficulties of dealing with 

multiple suppliers or digesters owners.         

  The electricity companies have a grid in place to power rural and urban 

communities.  They have spent billions of dollars and decades to establish efficient routing 

of power to residents and business far and wide.  Manure digesters are mostly located in 

rural areas that would also require an investment in infrastructure to move the energy from 

the digester to the power grid.  Mandating net-metering would ensure energy companies of 

purchasing renewable energy but consumers may see an increase in their cost.   

 Therefore, the conclusion may be to direct the incentives to utility companies to 

invest in expanding infrastructure rather than increasing digester owner subsidies.  

Although, the REAP grants are certainly helpful for assisting farmers with startup 

installation costs, there may not be a need to increase that subsidy in the next farm bill if an 

energy bill includes incentives for energy companies to purchase renewable energy from 

digesters.   
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