

SOLVING SUPPORT VECTOR MACHINE CLASSIFICATION PROBLEMS AND THEIR

APPLICATIONS TO SUPPLIER SELECTION

by

GITAE KIM

B.S., Hanyang University, 1998

M.S., Seoul National University, 2000

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department Of Industrial & Manufacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2011

Abstract

Recently, interdisciplinary (management, engineering, science, and economics)

collaboration research has been growing to achieve the synergy and to reinforce the weakness of

each discipline. Along this trend, this research combines three topics: mathematical

programming, data mining, and supply chain management. A new pegging algorithm is

developed for solving the continuous nonlinear knapsack problem. An efficient solving approach

is proposed for solving the -support vector machine for classification problem in the field of

data mining. The new pegging algorithm is used to solve the subproblem of the support vector

machine problem. For the supply chain management, this research proposes an efficient

integrated solving approach for the supplier selection problem. The support vector machine is

applied to solve the problem of selecting potential supplies in the procedure of the integrated

solving approach.

In the first part of this research, a new pegging algorithm solves the continuous nonlinear

knapsack problem with box constraints. The problem is to minimize a convex and differentiable

nonlinear function with one equality constraint and box constraints. Pegging algorithm needs to

calculate primal variables to check bounds on variables at each iteration, which frequently is a

time-consuming task. The newly proposed dual bound algorithm checks the bounds of Lagrange

multipliers without calculating primal variables explicitly at each iteration. In addition, the

calculation of the dual solution at each iteration can be reduced by a proposed new method for

updating the solution.

In the second part, this research proposes several streamlined solution procedures of -

support vector machine for the classification. The main solving procedure is the matrix splitting

method. The proposed method in this research is a specified matrix splitting method combined

with the gradient projection method, line search technique, and the incomplete Cholesky

decomposition method. The method proposed can use a variety of methods for line search and

parameter updating. Moreover, large scale problems are solved with the incomplete Cholesky

decomposition and some efficient implementation techniques.

To apply the research findings in real-world problems, this research developed an

efficient integrated approach for supplier selection problems using the support vector machine

and the mixed integer programming. Supplier selection is an essential step in the procurement

processes. For companies considering maximizing their profits and reducing costs, supplier

selection requires seeking satisfactory suppliers and allocating proper orders to the selected

suppliers. In the early stage of supplier selection, a company can use the support vector machine

classification to choose potential qualified suppliers using specific criteria. However, the

company may not need to purchase from all qualified suppliers. Once the company determines

the amount of raw materials and components to purchase, the company then selects final

suppliers from which to order optimal order quantities at the final stage of the process. Mixed

integer programming model is then used to determine final suppliers and allocates optimal orders

at this stage.

SOLVING SUPPORT VECTOR MACHINE CLASSIFICATION PROBLEMS AND THEIR

APPLICATIONS TO SUPPLIER SELECTION

by

GITAE KIM

B.A., Hanyang University, 1998

M.S., Seoul National University, 2000

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Industrial & Manuafacturing Systems Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2011

Approved by:

Major Professor

Chih-Hang (John) Wu

Abstract

Recently, interdisciplinary (management, engineering, science, and economics)

collaboration research has been growing to achieve the synergy and to reinforce the weakness of

each discipline. Along this trend, this research combines three topics: mathematical

programming, data mining, and supply chain management. A new pegging algorithm is

developed for solving the continuous nonlinear knapsack problem. An efficient solving approach

is proposed for solving the -support vector machine for classification problem in the field of

data mining. The new pegging algorithm is used to solve the subproblem of the support vector

machine problem. For the supply chain management, this research proposes an efficient

integrated solving approach for the supplier selection problem. The support vector machine is

applied to solve the problem of selecting potential supplies in the procedure of the integrated

solving approach.

In the first part of this research, a new pegging algorithm solves the continuous nonlinear

knapsack problem with box constraints. The problem is to minimize a convex and differentiable

nonlinear function with one equality constraint and box constraints. Pegging algorithm needs to

calculate primal variables to check bounds on variables at each iteration, which frequently is a

time-consuming task. The newly proposed dual bound algorithm checks the bounds of Lagrange

multipliers without calculating primal variables explicitly at each iteration. In addition, the

calculation of the dual solution at each iteration can be reduced by a proposed new method for

updating the solution.

In the second part, this research proposes several streamlined solution procedures of -

support vector machine for the classification. The main solving procedure is the matrix splitting

method. The proposed method in this research is a specified matrix splitting method combined

with the gradient projection method, line search technique, and the incomplete Cholesky

decomposition method. The method proposed can use a variety of methods for line search and

parameter updating. Moreover, large scale problems are solved with the incomplete Cholesky

decomposition and some efficient implementation techniques.

To apply the research findings in real-world problems, this research developed an

efficient integrated approach for supplier selection problems using the support vector machine

and the mixed integer programming. Supplier selection is an essential step in the procurement

processes. For companies considering maximizing their profits and reducing costs, supplier

selection requires seeking satisfactory suppliers and allocating proper orders to the selected

suppliers. In the early stage of supplier selection, a company can use the support vector machine

classification to choose potential qualified suppliers using specific criteria. However, the

company may not need to purchase from all qualified suppliers. Once the company determines

the amount of raw materials and components to purchase, the company then selects final

suppliers from which to order optimal order quantities at the final stage of the process. Mixed

integer programming model is then used to determine final suppliers and allocates optimal orders

at this stage.

 vii

Table of Contents

List of Figures .. ix

List of Tables .. x

Acknowledgements .. xi

Dedication ... xii

CHAPTER 1 - Introduction .. 1

1.1 Introduction ... 1

1.2 Research Motivations ... 2

1.3 Research Contributions ... 4

1.4 Dissertation Overview .. 7

CHAPTER 2 - Continuous Nonlinear Knapsack Problem ... 8

2.1 Introduction ... 8

2.2 The Bitran-Hax algorithm ... 14

2.3 The Dual Bound Algorithm (DBA) .. 17

2.4 Numerical Examples ... 22

2.5 Experimental results ... 30

2.5 Conclusions ... 35

CHAPTER 3 - -Support Vector Machine ... 38

3.1 Introduction ... 38

3.2 Support Vector Optimization .. 39

3.3 Solving approach for the -support vector machine ... 48

3.3.1 Matrix splitting with Gradient Projection method ... 51

3.3.2 Line search and update parameter  methods .. 54

3.3.3 Incomplete Cholesky decomposition ... 61

3.3.4 Implementation Issues.. 65

3.4 Experimental Results .. 70

3.5 Conclusions ... 74

CHAPTER 4 - Supplier Selection... 76

4.1 Supplier selection .. 76

4.1.1 Problem definition ... 77

 viii

4.1.2 Deciding on Criteria ... 77

4.1.3 Pre-selection ... 78

4.1.4 Final selection .. 80

4.2 Literature Review ... 81

4.2.1 Integrated approaches .. 82

4.2.2 Support vector machine in supply chain management... 83

4.3 Methodology ... 86

4.3.1 Pre-selection ... 88

4.3.2 Final selection .. 91

4.4 Experimental Results .. 93

4.5 Conclusions ... 95

CHAPTER 5 - Financial Problem using SVM ... 97

5.1 Company Credit Rating Classification ... 97

5.2 Experimental Results .. 98

5.3 Conclusions ... 99

CHAPTER 6 - Conclusions and Future Research .. 101

6.1 Conclusions ... 101

6.2 Future Research .. 103

References ... 105

 ix

List of Figures

Figure 2.1 Lagrange multiplier search method ... 10

Figure 2.2 Variable pegging method .. 10

Figure 2.3 Dual Bound algorithm ... 21

Figure 2.4 The gap of solution time between Bitran-Hax and Dual Bound 32

Figure 3.1 Solving Procedure for the ν-SVM ... 50

Figure 3.2 Incomplete Cholesky Decomposition.. 62

Figure 3.3 L matrix from the incomplete Cholesky decomposition ... 66

Figure 3.4 The method of storing L matrix... 67

Figure 4.1 Supplier Selection Procedure .. 86

Figure 4.2 Solution Procedure for Supplier Selection .. 87

Figure 4.3 Example of a Supplier Selection Problem ... 88

Figure 4.4 Applying SVM to Pre-selection .. 89

 x

List of Tables

Table 2.1 Problem size (500,000 variables) .. 30

Table 2.2 Problem size (1,000,000 variables) ... 31

Table 2.3 Problem size (2,000,000 variables) ... 31

Table 2.4 Computational Results for Quadratic Network Problems .. 33

Table 2.5 Computational Results for the Portfolio Optimization Problems 34

Table 3.1 SPGM method... 70

Table 3.2 GVPM method .. 71

Table 3.3 MSM method .. 71

Table 3.4 AA method .. 71

Table 3.5 Large-scale problems (MSM method) .. 72

Table 3.6 Large-scale problems (AA method) ... 72

Table 3.7 Sensitivity Analysis of ν for svmguide1 (GVPM method) ... 72

Table 3.8 Sensitivity Analysis of ν for mushrooms (GVPM method) .. 73

Table 3.9 Comparisons of Bitran-Hax and Dual Bound algorithm (AA method) 73

Table 4.1 Supply Chain Management with SVM ... 85

Table 4.2 Property of Data Set .. 93

Table 4.3 Experimental Results of Pre-selection using SVM ... 94

Table 5.1 Financial Ratios .. 98

Table 5.2 Classification of credit ratings into good (A~B) and bad (C~D) groups 98

Table 5.3 Classification of credit ratings into good (A) and bad (B~D) groups 99

 xi

Acknowledgements

I would like to express my deep-felt and sincere gratitude to my advisor, Dr. John Wu.

Throughout my research in PhD program at Kansas State University, he provided sound advice,

encouragement, thoughtful guidance, lots of good ideas. His broad knowledge and logical way of

thinking have been of great value for me. I could not have done my dissertation without his help.

I am deeply grateful to my other advisory committee members: Dr. Todd Easton, Dr. B.

Terry Beck, and Dr. Chwen Sheu, for their detailed and constructive comments. I wish to

specially thank to Dr. Orlen Grunewald for being my final examination outside chairperson.

I wish to warmly thank Dr. Bradley A. Kramer, Dr. E. Stanley Lee, Dr. David Ben-Arieh,

Dr. Shing I. Chang for their valuable encouragement and comments.

I am grateful to the department of Industrial & Manufacturing Systems Engineering for

giving me the opportunities, resources, and financial support to finish my research.

I owe my most loving thanks to my wife Mijung Lee, my daughters Youngji and

Youngsuh for their loving support, encouragement, and understanding during this work. I also

deeply thank my families in Korea for their constant support, encouragement, and advice.

 xii

Dedication

To my loving family,

 1

CHAPTER 1 - Introduction

1.1 Introduction

In real world applications, many decision problems have to be solved in daily operations.

Among them, classification is one of important class of decision problems. One may need to

classify the things that they did for a day as value added and non-value added tasks. Marketing

team may classify the company's markets into several different tiers or segments using pre-

defined criteria or performance metrics. Companies may classify their clients into important

customers and normal ones in terms of value added contributions to the company's revenue.

Companies may classify their suppliers into qualified or potential supplier groups based on

various supplier evaluation criteria. Countries may classify other countries into friendly-nations

(allies) and the others. When one makes a decision for any classification problem, intuitive

solutions to any classification problem are easy and simple. However, such solutions are

sometimes wrong because the decisions are too subjective. To avoid this happening, researchers

have suggested a variety of systematic methods for making decisions about problems in

classification.

One good scientific method for classification problems is the machine learning method in

the field of data mining (Vapnik, 1995). The classification problem is sometimes referred as the

pattern recognition problem. The support vector machine is a machine learning tool for

regression and classification problems. This dissertation focuses on the development of a

solution algorithm for the support vector machine (SVM) and its applications. Compared with

other statistical methods, the SVM does not require any parameters. Thus, the SVM is sometimes

called a non-parametric method. Moreover, the SVM can handle large-scale problems. Before

the SVM methods were proposed in 1995, machine learning method using neural networks are

the popular approaches for attacking classification problems. The neural network had two main

drawbacks of the generalization and the slow convergence because the performance of the neural

networks is data dependent and the method consumes a lot of memory and processing time to

run. The SVM has overcome these drawbacks in both theoretical and practical aspects.

In this research, an efficient solution approach for the SVM is proposed using symmetric

kernel method. The method consists of the matrix splitting method, the gradient projection

 2

method, and the incomplete Cholesky decomposition. The proposed method enables us to use

several options for both the line search and updating parameters.

In addition, this research proposes a solution algorithm for the subproblem of the SVM

and suggests an efficient solution procedure of the supplier selection problem using the SVM. In

solving a classification problem using SVM, a quadratic knapsack subproblem needs to be

solved repeatedly and they are frequently the most time consuming task in the solution

processes. A new pegging algorithm is proposed for solving the nonlinear knapsack subporblem

arising in the SVM. This newly proposed method for solving the continuous nonlinear knapsack

problem can significantly reduce the time consuming steps in the solution processes.

For applications to the classification problems using SVM, an efficient integrated

solution method is suggested for the supplier selection problem. The selection of qualified

suppliers is an important issue for many companies because it directly affects the quality of

products as well as the potential profits. The SVM can classify suppliers into two groups such as

the qualified suppliers and the potential suppliers. The final suppliers out of potential suppliers

are then selected based on other considerations such as the requirements products, due dates,

consolidations, and final costs. In section 2, the motivation of this research is described. The

contribution of this dissertation is presented in section 3. An overview of this dissertation is in

section 4.

1.2 Research Motivations

The motivation of this research started with the technical issues that arise in the SVM.

The SVM has been a popular machine learning method for about fifteen years now since many

studies (Bennett and Bredensteiner (1997), Suykens and Vandewalle (1999), Joachims (1999),

Platt (1999), Crisp and Burges (2000), Bennett and Bredensteiner (2000), Lee and Mangasarian

(2001), To et al. (2001), Zhou et al. (2002), Zhan and Shen (2005), Bach and Jordan (2005),

Kianmehr and Alhajj (2006), Mavroforakis and Theodoridis (2006), An et al. (2007), Alzate and

Suykens (2008)) have proved that the SVM is an efficient method both theoretically and

practically. Given its popularity, three types of major studies have focused on its use:

formulation, solving algorithm, and applications. One recent formulation of the SVM is the -

SVM, which is less sensitive to a regularization parameter than -SVM (Nehate, 2006). This

research focused on the -SVM. Most solving algorithms for the SVM have been proposed by

 3

using -SVM formulation. For large-scale data sets, the working set or the sequential minimal

optimization (SMO) type method is the only one that can solve problems. Other methods have

worked with small to medium sized problems. This motivated us to develop an efficient solving

algorithm for the -SVM for the typically large-scale classification problem using non-SMO

type methods. The advantage of the non-SMO type method is to use more algorithms that have

been already developed for quadratic or nonlinear programming problems. Some attempts have

used the non-SMO type method, but the size of the data set has been a major limitation.

Therefore, this research proposes a non-SMO type solution method for the -SVM classification

problem.

To solve the -SVM classification problem, a quadratic programming problem must be

solved. This problem has a quadratic objective function with a dense Hessian matrix, a single

linear constraint, and box constraints. The proposed solving algorithm in my research is an

iterative method. At each iteration, a subproblem with continuous quadratic objective function

and knapsack constraint needs to be solved which frequently is the most time consuming step in

the solution processes. If one can improve the algorithm to solve the continuous quadratic

knapsack problem, the SVM problem itself can be solved more efficiently. This motivates the

development of a new pegging algorithm for the continuous nonlinear knapsack problem. The

Bitran-Hax (1981) algorithm is the pegging algorithm used for the continuous nonlinear

knapsack problem. However, this research found that the Bitran-Hax algorithm has two time

consuming calculations at each iteration. First is the recalculation of the primal solutions after

each dual iteration and check their feasibilities. The other time consuming calculation is to

calculate the dual solution at each iteration. These two challenging issues are the main

motivation for the development of the dual bound pegging algorithm.

This research finally focuses on applying SVM. Many applications exist for the -SVM

classification problem. This research focuses on the supplier selection problem in supply chain

management (SCM). If a company selects non-qualified suppliers, then the quality of the product

could be out-of-controlled and the on time deliveries may not be fulfilled at the desired level.

This could very likely have significant impact the company's ultimate profit and reputation.

Therefore, the supplier selection problem is an important issue in many companies. If a company

can find a more efficient and accurate method for selecting suppliers, then the company could

easily gain more profits or market shares, which are the goals of most for-profit companies. This

 4

issue motivated us to propose an efficient solution approach for the supplier selection problem. It

is well-known that the supervised machine learning method is frequently more accurate and

more efficient than the unsupervised method through existing literatures. This research used the

SVM as a supervised machine learning method for selecting potential suppliers from all

suppliers considered. In case of that there exist the past data for the supplier selection of a

company, the SVM can solve the supplier selection problem better than unsupervised method.

Another application of SVM to financial area is the company credit ratings. Credit rating is a

very important factor for investing or loan to companies and also significant measurement of the

company. This research applies the newly proposed SVM algorithm to predict credit ratings of

companies in Korea.

1.3 Research Contributions

This research combines three major topics: mathematical programming, data mining, and

supply chain management. Therefore, the contributions of the research range from theoretical to

practical. One of the theoretical contributions is the development of a new pegging algorithm for

solving the continuous nonlinear knapsack problem. Another theoretical contribution is to

propose an efficient solving method for the -SVM classification problem. The practical

contribution in this research is to suggest a new integrated solving approach for the supplier

selection problem.

The Bitran-Hax algorithm is a famous pegging algorithm for the continuous nonlinear

knapsack problem. The algorithm is known to be simple and fast. This research aims to improve

on the Bitran-Hax algorithm. This research found that the algorithm does two time consuming

calculations at each iteration. These two tasks are the calculation of a dual solution and those of

the primal variables. The dual solution is calculated by the summation of the gradient of the

functions at each iteration. The new algorithm splits this calculation and reduces re-calculations.

Calculating primal variables is simple, but must be done for all free variables at each iteration.

The new algorithm uses a dual variable instead of all free primal variables. The reason the

Bitran-Hax algorithm calculates primal variables at each iteration is to check the feasibility of

each variable. The main idea of the new algorithm is to use the bounds of the dual variable

instead of the primal variables to check the feasibilities. The contributions of solving the

continuous nonlinear knapsack problem are as follows.

 5

 This research developed a new pegging algorithm for the continuous nonlinear

knapsack problem.

 The new algorithm has two advantages: it removes the calculations of primal variables

at each iteration and updates the dual solution instead of re-calculating.

 The solution time of the new algorithm is overall faster than the Bitran-Hax algorithm.

 The new algorithm is faster when the size of the problem is large.

The -SVM classification problem has a quadratic objective function, two linear

constraints, and box constraints. First, this research gets one of linear constraints on the objective

function using the augmented Lagrangian method. Then the problem becomes a singly linearly

constrained quadratic convex programming problem. The Hessian matrix is a dense positive

semi-definite matrix. The proposed method in this research splits the dense positive semi-definite

Hessian matrix as the sum of two matrices. The algorithm solves a subproblem with a simple

diagonal Hessian matrix, one of these two matrices, and can choose the Hessian matrix for the

subproblem with any simple and nonsingular matrix. The subproblem is a continuous quadratic

knapsack problem and can be solved by the new method proposed in this research. The current

solution and the solution of the subproblem are used for calculating the direction vector. In the

next step, the line search is conducted to find the best step size. Then the algorithm updates

solutions and a parameter. In the line search and updating parameter steps, the algorithm can take

advantage of several options like monotone or nonmonotone line search for the line search and

Barzilai & Borwein (BB) (1988) rule for updating a parameter. Even if the algorithm splits the

Hessian matrix, there are a few steps to calculate the Hessian matrix. To facilitate the calculation,

the incomplete Cholesky decomposition method is applied to decompose the Hessian matrix if

kernel method is applied. The contributions for the -SVM classification problem can be

summarized as follows:

 This research proposes a different approach for solving -SVM classification.

 The method is a combination of matrix splitting, gradient projection, and incomplete

Cholesky decomposition.

 The subproblem can be solved with an efficient solving algorithm such as dual bound

algorithm.

 The algorithm can use a variety of combinations of methods for line search and

parameter updating.

 6

The supplier selection problem is an important issue for a company purchasing raw

materials or some components for production from other companies. In the supplier selection

problem, three major issues contribute the decision: the definition of criteria, the quantification

of the criteria, and the selection method for potential suppliers and final suppliers. This research

focuses on the method for selecting suppliers. Most methods for selecting suppliers do not need

historical data for the selection. These methods use and check only the suppliers currently

considered. This method is the unsupervised method. On the other hand, if a company has

historical data for selecting suppliers, a supervised method like the SVM can be used. It is well

known the supervised method is more accurate than the unsupervised method. The main idea of

this research is to use SVM classification for selecting potential suppliers. The potential supplier

denotes a supplier eligible to contract with a company. The company selects the final suppliers

out of all potential suppliers. The potential suppliers can be considered the candidates for final

suppliers. Selecting potential suppliers is a classification problem, and the SVM classification

can be applied. To select the final suppliers, this research used a mixed integer programming

model. The summary of the contribution of the supplier selection problem is as follows:

 This research suggests an integrated solving approach for the supplier selection

problem.

 The SVM classification is used to select potential suppliers.

 A supervised method like the SVM is more accurate than an unsupervised method.

 The proposed method is simpler than other methods.

In the last part of this research, it applies the proposed method of SVM to a financial

problem. Banks or investment companies want to measure eligible companies with appropriate

and objective criteria. One well-known measurement is the company credit rating. The ratings

are A through D. This research classifies companies into qualified company and others using

SVM. Experimental results show that the newly proposed SVM solution method is good

potential method for predicting the company credit ratings.

 7

1.4 Dissertation Overview

In Chapter 2 of this dissertation, it describes the development of a new pegging algorithm

for the continuous nonlinear knapsack problem introducing the new concept of the dual bound.

The algorithm is compared with the Bitran-Hax algorithm because the new algorithm is an

extension of the Bitran-Hax algorithm. Experimental results are shown as well.

In Chapter 3, the solution method for -SVM classification problem is presented. This

research describes the history of SVM problems first and solving algorithms. Then, it proposes a

method consisting of several mathematical methods. The incomplete Cholesky decomposition

method and an efficient data storage method for a large scale lower triangular matrix are

introduced. Some options for the line search and the parameter updating method are shown with

some experimental results.

In Chapter 4, the supplier selection problem is described. The integrated solving approach

for the supplier selection problem combines the SVM classification method with mathematical

programming model for selecting suppliers. To compare with the SVM classification method, the

analytic hierarchy process (AHP) for selecting potential suppliers is described. A mixed integer

programming model is presented for selecting the final suppliers from the potential suppliers.

In Chapter 5, an application of financial problem using SVM is presented with the

prediction of company credit ratings with real company data. The overall conclusion and future

work of this research will be in the last Chapter 6.

 8

CHAPTER 2 - Continuous Nonlinear Knapsack Problem

In this chapter, this research proposes an efficient pegging algorithm for solving

continuous nonlinear knapsack problems with box constraints. The problem is to minimize a

convex and differentiable nonlinear function with one equality constraint and bounds on the

variables. One of the main approaches for solving this problem is the variable pegging method.

The Bitran-Hax algorithm is a well-known pegging algorithm that has been shown to be a

preferred choice especially when dealing with large-scale problems. However, it needs to

calculate an optimal dual variable and update all free primal variables at each iteration, which

frequently is the most time-consuming task. This research proposed a Dual Bound algorithm that

checks the box constraints implicitly using the bounds on the Lagrange multiplier without

explicitly calculating primal variables at each iteration and updating the dual solution in a more

efficient manner. The results from the computational experiments have shown that the proposed

new algorithm constantly outperforms the Bitran-Hax algorithm in all the baseline testing and

two real-time application models. The proposed algorithm shows significant potentials to be used

in practice for many other mathematical models in real-world applications with straight-forward

extensions.

2.1 Introduction

The knapsack problem, also known as the resource allocation problem, is that a

hitchhiker wants to pack his knapsack by selecting from among various possible objects those

which give him maximum comfort, which can be formulated by a mathematical model with the

objective function is to maximize the total comfort, one knapsack constraint of the capacity of

knapsack, and binary variables which are defined in Martello and Toth, (1980).

If its objective function is nonlinear, then the problem is a nonlinear knapsack problem.

There are some classes of the nonlinear knapsack problem and the review of these can be found

in Bretthauer and Shetty, (2002). This research is interested in the problem which has a convex,

differentiable, and nonlinear objective function, and box constraints for all variables, which is a

convex, separable, and continuous type of problem. There are many applications for problems of

this type which is described in Robinson et al. (1992) such as portfolio selection problem in

Markowitz (1952), multi-commodity network flow problem Ali et al. (1980), transportation

 9

problem in Ohuchi and Kaji (1984), support vector machine in Nehate (2006), production

planning in Tamir (1980), and convex quadratic programming in Dussault et al. (1986). The

problem also can be considered as a subproblem for many optimization models. Ibaraki and

Katoh (1988) discussed comprehensively the algorithmic aspects of resource allocation problem

and its variants in their book. Twenty years later, Patriksson (2008) surveyed the history and

applications of the problem as well as solving algorithms. Therefore these literatures are not

reviewed here.

This research considers a continuous nonlinear knapsack problem with box constraints as

follows.

(P1)

 (2.1)

 (2.2)

 (2.3)

where is a nonlinear, convex, and differentiable function, is linear referred as the

knapsack constraint in the rest of the thesis,

 for all ,

 and this research assumes all coefficients of are not zero and

 and

 is invertible.

The Lagrangian dual formulation of P1 by relaxing the knapsack constraint (2.2) is as

follows.

(D1) (2.4)

 where

 (2.5)

 (2.6)

and is the Lagrange multiplier corresponding to the knapsack constraint (2.2).

The nonlinear knapsack problem P1 is frequently solved via an iterative manner. There

are more than a handful of algorithms proposed to solve this problem and they can be generally

divided into two main categories (Patriksson, 2008): the Lagrange multiplier search method and

the variable pegging method. The basic ideas of these two methods are in the following pictures.

 10

Figure 2.1 Lagrange multiplier search method

Figure 2.2 Variable pegging method

In Figure 2.1 and 2.2, solid boxes denote a variable or variables explicitly used to find the

optimal solution in each algorithm and dashed boxes represent a variable or variables implicitly

optimized as the other variable or variables are explicitly optimized. As Bretthauer and Shetty

(2002) mentioned in their paper, while the Lagrange multiplier search method maintains all

Karush-Kuhn-Tucker (KKT) conditions during its iterations, except the one knapsack constraint

and its corresponding complementary slackness condition, the pegging method maintains all

KKT conditions during its iterations except box constraints. That means the multiplier search

method focuses on one dual variable achieving the optimal point, and the pegging method aims

to find the optimal solution satisfying the feasibility of all primal variables. In Figure 2.1, the

Lagrange multiplier search method uses the dual variable to find the optimal dual solution using

a search algorithm because there is only one dual variable in the dual problem D1 which is

described in Bazaraa et. al (1993) and Martello & Toth (1990). As the dual variable is optimized,

the corresponding primal variables are implicitly optimized as well. On the other hand, in Figure

2.2, the variable pegging method is a type of primal algorithm finds the optimal primal solution

by pegging some variables to their lower or upper bounds as their optimal value each iteration. In

this algorithm, the dual variable can be also optimized implicitly as well. In his literature review,

 11

Patriksson (2008) did not make clear which approach was better in terms of computational

complexity or average solution time. The biggest drawback of the pegging algorithm is that the

relaxed problem should have an optimal solution and its efficiency depends on whether the

optimal solution of the relaxed problem can be obtained in closed form. However, the pegging

algorithm requires the objective function to be convex at least for the linear explicit constraints

convergence of the method while the multiplier search method requires the objective function to

be strictly convex (Patriksson 2008). In addition, Bretthauer et al. (2003) mentioned that the

pegging algorithm was typically faster than the multiplier search algorithm when the relaxed

subproblem can be solved in closed form. This research focuses on the pegging method since it

has nicer finite convergence properties and has good potential to be streamlined for great

performances.

The pegging method utilized a relaxed problem of P1 by ignoring the box constraints in

(2.3), which has an optimal solution and the corresponding Lagrange multiplier can be solved in

a closed form. This relaxed problem can be used to develop an efficient procedure to improve the

solution efficiency. In addition, the pegging method generally guarantees a finite convergence.

One of the well-known pegging methods is the Bitran-Hax algorithm (1981). Bitran and Hax

(1981) developed the algorithm for solving continuous knapsack problem with a convex

separable objective function and the coefficients of the equality constraints in (2.2) are ones. The

Bitran-Hax algorithm has some very attractive features including the excellent convergence

behavior, easy to implement and generally very efficient. There have been many extensions of

this algorithm and the reviews of them are referred to (Patriksson, 2008).

In their research, Bitran and Hax (1981) introduced various resource allocation problems

that could be formulated with this type of P1 problem. Patriksson (2008) referred to many

extensions of this algorithm and reviews them.

Cottle at al. (1986) applied this algorithm to the constrained matrix problem. Eu (1991)

formulated the sampling resource allocation problem with the nonlinear knapsack problem and

solved the problem with the Bitran-Hax algorithm. Bretthauer et al. (1999) also studied the

stratified sampling problem with integer variables, which was solved by the branch and bound

algorithm for the main problem and the variable pegging algorithm for its subproblem.

 12

Extensions have been applied to more general problems. Ventura (1991) extended the

Bitran-Hax algorithm to a problem with non-unit coefficients in the knapsack constraint.

Kodialam and Luss (1998) developed the algorithm to solve a nonlinear knapsack problem with

non-negativity constraints on variables and a nonlinear convex knapsack constraint. The RELAX

algorithm they proposed only checks the lower bound for pegging. Bretthauer and Shetty (2002)

proposed a pegging branch and bound algorithm for more general problems with integer

variables and a nonlinear convex objective function and knapsack constraint. Bretthauer et al.

(2003) extended the pegging branch and bound algorithm to problems with additional block

diagonal constraints.

Using the relationship between the restricted projection problem and the nonlinear

knapsack problem, a projected pegging algorithm has been proposed. Robinson et al. (1992)

introduced a pegging algorithm incorporated with the restricted projection method. If the

objective function is the sum of squared variables and there are one linear knapsack constraint

and box constraints, then the problem is equivalent to a problem finding the orthogonal

projection of the origin on the feasible region. Robinson et al. (1992) used this projection method

in the pegging algorithm to calculate the primal solutions of a relaxed problem with only the

knapsack constraint and then checked the box constraints. Stefanov (2004) considered a problem

with the objective function as a sum of squared subtraction of two variables and also used the

concept of projection in the pegging algorithm and extended the algorithm that considered the

case of some zero coefficients in the knapsack constraint.

As the literature shows, most extensions of the pegging algorithm focused on improving

the calculation of the primal solution of the relaxed problem. On the other hand, the new

algorithm in this research does not use the primal solutions of the relaxed problem, using instead

the dual bound to check bound constraints.

This research presents another extension of the Bitran-Hax algorithm. Based on the

preliminary computational experiments, this research discovered the efficiency of the Bitran-Hax

algorithm suffers from two time consuming tasks. Firstly, in the Bitran-Hax algorithm, all primal

free variables have to be recalculated at each iteration, where a free variable means the unpegged

variable. Secondly, in the Bitran-Hax algorithm, the dual variable, , must be searched and

reevaluated several times to determine its optimal value. These are usually the two most time

 13

consuming procedures in the algorithm and they are the main motivations of this research. In the

Bitran-Hax, the algorithm checks the feasibility of the solution after it solves the relaxed problem

by ignoring the box constraints in (2.3) at each iteration. Solving the relaxed problem is the

calculation of a newly trial dual variable at each iteration. Then, the algorithm calculates the

primal variables again and then rechecks their box constraints for the feasibility. Basically, the

newly proposed algorithm establishes a set of bounds as the predicted range of the optimal dual

solution, which can be defined initially using only the input data. This is then used as the

criterion for feasibility instead of checking the feasibility of the primal variables at each iteration.

The dual bound is calculated only once initially and need not be updated during the solution

process. For calculating the optimal dual solution, the new algorithm divides the calculations of

the dual variables into several smaller components, and just updating the required components

during the pegging process.

The objective of this chapter is to develop a new pegging algorithm based on the

concepts of the Bitran-Hax algorithm to solve the continuous separable nonlinear knapsack

problem with one linear equality knapsack constraint and box constraints. In the newly proposed

algorithm, the new algorithm introduces the concept of the dual bound and how the dual bound

can speed up the solution process. The computational results on randomly generated problems

and applications embedded test models show that the new algorithm consistently outperforms the

Bitran-Hax algorithm.

In the rest of the chapter, the concept of the Bitran-Hax algorithm as a current state-of-

the-art pegging method is described in section 2. The new pegging algorithm for continuous

nonlinear knapsack problem is presented in section 3. The new algorithm applies to the

continuous quadratic knapsack problem as a special case of the nonlinear knapsack problem and

the experimental results are shown in section 4. In the conclusion, the contributions of this

research are reviewed.

 14

2.2 The Bitran-Hax algorithm

This section presents the Bitran-Hax Algorithm to solve the problem P1. The problem P1

is a convex problem with linear constraints, so the following Karush-Kuhn-Turker (KKT)

conditions are necessary and sufficient for the optimality as described in Mangasarian (1969).

The Karush-Kuhn-Turker (KKT) conditions of the problem P1 are

 , for all (2.7)

 , for all (2.8)

 , for all (2.9)

 , (2.10)

 , for all (2.11)

 , for all (2.12)

where is the Lagrange multiplier for the knapsack constraint (2.2), and , for all

 are the Lagrange multiplier for the lower and upper bounds in (2.3), respectively.

If one relaxed the box constraint in (2.3) in the problem P1, the equation (2.7) becomes

 , for all and and can be solved in closed form. Since

 is linear, its gradient
 is merely a constant defined as . Assuming

 , for all

 , is invertible, can be calculated as,

 , for all (2.13)

where
 denotes the inverse of

 , the gradient of objective function , and the

Lagrange multiplier corresponding to the knapsack constraint in (2.2) can be obtained from the

KKT conditions of P1 without the box constraints

 (2.14)

If the solution in (2.13) satisfies the box constraints (2.3) in P1, then it is also optimal to

P1. If not, then one can set for some to their upper or lower bounds and then the value of

can be recalculated. To determine which variables are to be fixed at their bounds, one defines

following two terms as the sums of over and under limits, respectively.

 , where (2.15)

 15

 Q , where (2.16)

where is defined in (2.13). and are used for choosing which set of variables

(variables in and) to be pegged in the algorithm. The following theorem describes how to

choose the pegging variables.

Theorem 2.2.1

 , for all (2.17)

 , for all (2.18)

 , for all (2.19)

 , for all ,

 , for all (2.20)

where
 is the optimal solution of the problem P1.

Proof

This theorem can be proved using Bitran and Hax's (1981) work. The proof uses the KKT

condition of the problem (P1). The Lemma 1, Lemma 2, Theorem 1, and Theorem 2 in Bitran

and Hax (1981) described that each case of and in (2.17) ~ (2.20) is related with the

inequalities among the first derivatives
 , for all i=1,…,n (See details in Bitran and Hax

(1981)). Using this result and the KKT condition, Theorem 3 in their paper showed that setting

the optimal value at each case at the upper bound or the lower bound or the optimal value as

obtained by (2.13) in the relaxed problem is optimal in the original problem (P1). Ventura (1992)

also showed the relationship of these cases at Theorem 6 in his paper.

The related computational experiments can be found in Wu (1993). The detail steps of

Bitran-Hax algorithm are as follows.

Bitran-Hax Algorithm

Step 0 (Initialization)

 Let , ,

Step 1 (Calculating Dual Solution and Primal Solution)

 16

 Compute

 ,

 Calculate

 for all

Step 2 (Check feasibility)

 For all
 .

 If
 for all

 , then it is optimal and go to Step 6.

 Otherwise, go to Step 3.

Step 3 (Calculate Pegging Sums & Check Stopping Criterion)

 Compute and

 , where

 .

 Q
 , where

 .

 If and are empty,

 then it is optimal and calculate
 for all from (13) and go to Step 6.

Step 4 (Pegging Variables)

 If , then

set for all ,

let and .

 If , then

set for all ,

let and .

 If , then

set for all , set for all ,

let and .

Step 5 (Check Stopping Criterion)

 If , then go to Step 6.

 17

 Else, set and go to Step 1.

Step 6 (Optimum Found)

 Set
 for all as the optimal solution and terminate.

The Bitran-Hax Algorithm guarantees that at least one variable is pegged (or fixed) at

each iteration since if there is no variable to be pegged at the current iteration, then the current

solution on hand is optimal. Therefore, the algorithm can reduce the dimension of the problem as

it progresses, and thus, guarantee the finite convergence. For the solution time, Wu (1993) has

shown that the Bitran-Hax algorithm outperforms the Helgason et al.'s sequential line search and

the random search by 25%~48% for quadratic network flow problems. It is, however,

significantly slower than these two methods during the later stage of the solution process. With

these empirical insights, this research has discovered several unnecessary procedures in the

Bitran-Hax algorithm, which means the algorithm can be further streamlined. The calculation of

a dual solution and its corresponding primal free variables at each iteration in Step 1 are the two

most time consuming tasks, and these are the main foci to be improved in this research. In the

next section, this research will show how to streamline these tasks.

2.3 The Dual Bound Algorithm (DBA)

In this section, a new pegging algorithm for continuous nonlinear knapsack problem with

box constraints is proposed. The following a definition and two theorems demonstrate the basic

ideas of the new algorithm.

Definition 2.3.1

The dual bound is the set of upper and lower bound of Lagrange multiplier corresponding

to the solution of the relaxed problem, where the relaxed problem is the problem P1 ignoring the

box constraint in (2.3).

Theorem 2.3.1

 , for , from (2.13) is a solution of the relaxed P1 problem if it satisfies

its box constraint if and only if is within the dual bound corresponding to the

variable as follows:

, for , where .

 18

Proof

The optimal solution of the relaxed P1 problem is
 , for

 , from (2.13). If one replaces by
 , then the box constraint of

P1 , for become
 , for .

Hence, the bounds on the Lagrange multiplier according to the box constraint can be described

by:

, for .

Conversely, if one solves

 for

 , then one can get

 which is the same as bound constraint of the variable .

Theorem 2.3.1 provides a novel perspective to check the box constraint in (2.3) using the

dual bound and shows that the box constraint in the primal problem can be replaced by the dual

bound as defined in Definition 2.3.1. Each primal variable
 has its box constraint, and it

can be transformed into the dual bound corresponding to each
 . In the knapsack problem,

the coefficient of the knapsack constraint in (2.3) denotes the weight of the each item. Therefore,

if one of coefficients is zero, then the corresponding does not need to be taken into account the

knapsack constraint and it can be fixed to its upper bound, which is the reason this research can

assume , for all . As stated in Theorem 2.3.1, the calculation of the dual

bound only requires the input values: , and , which are known parameters. This property

implies one does not have to update the dual bound at each iteration after it has been calculated

initially.

Theorem 2.3.2

The solution , for , obtained from (2.13) is an optimal solution of the

problem P1 for a given dual solution to D1, if the following inequality holds true:

 .

Proof

In the Bitran-Hax algorithm, if the solution obtained from using the equation (2.13)

satisfies the box constraints (2.3) of P1, then the solution is also optimal to P1. That is, if

 19

 , for all , then is also the optimal solution of the problem P1.

From the Theorem 2.3.1, one can easily replace all inequalities of , for all

 with the following:

 .

Theorem 2.3.2 shows if the dual solution satisfies all the dual bounds, then the current

solution is then optimal. The primal solution
 for all satisfies all box

constraints in the Bitran-Hax algorithm is the same that the dual solution satisfies all dual

bounds in the new algorithm. From these properties, the new algorithm is called Dual Bound

algorithm (DBA). The DBA uses a correction value at each iteration when the algorithm

calculates the values of and , so these values are the same as the values in the

Bitran-Hax algorithm. Therefore, DBA and Bitran-Hax algorithm select the same variables to be

pegged at each iteration. The pseudo-code of the proposed algorithm is now summarized below.

Dual Bound Algorithm (DBA)

Step 0 Initialization

Let , ,

Step 1 Calculating Dual Bounds

For all
 .

Compute

Calculate

 and

Step 2 Update Dual Variable

Compute

Step 3 Calculate Pegging Sums & Check Stopping Criterion

Compute and

 ,

 20

where
 and is correction value.

Let

 ,

Q ,

where
 and is correction value.

Let

 ,

If and are empty, then it is optimal,

and calculate
 for all from (2.13) and go to Step 6.

Step 4 Pegging Variables

If , then

 set for all ,

 let and .

 update

 ,

 .

If , then

 set for all ,

 let and .

 update

 ,

 .

If , then

 set for all , set for all ,

 let and .

 update

 ,

 .

Step 5 Check Stopping Criterion

If , then go to Step 6.

Else, set and go to Step 2.

Step 6 Optimum Found

Set
 for all is the optimal solution and terminate.

The above proposed DBA has two main potential advantages for improving the solution

times: (1) eliminating the calculations of all the primal variables
 in every iteration and (2)

 21

only update instead of recalculation of . Compared with Bitran-Hax algorithm in the

previous section, while the loop of Bitran-Hax algorithm is Step 1 to Step 5, the DBA loop is

Step 2 to Step 5. The DBA loop does not include the calculation of dual bounds and primal

variables. The algorithm uses the dual bounds on (i.e., calculated in Step 1 to check the

feasibility of box constraints implicitly instead of calculating the primal variable

explicitly in Step 3. Although the algorithm should calculate dual bounds for each , for

in Step 1, it is not necessary to the update dual bounds at each iteration because calculations of

the dual bounds requires only the input data. Furthermore, in the DBA, the update of is

divided into two parts, updating of
 and

 which are calculated once in Step 1 and their

values are updated in Step 4. The decrement of
 and

 are calculated in Step 3 with
 and

 or

 and
 . When some variables are gradually pegged in Step 4, the values of

 and

 are updated since the number of free variables in decreases at least by one at each

iteration. In Step 3, the term is multiplied to make the values of and in the

similar manner as those of the Bitran-Hax algorithm. Therefore, the values of and

in the DBA have the similar effects as those of the Bitran-Hax Algorithm. The DBA can get the

same solution and the number of iteration as the Bitran-Hax algorithm. The only difference of

the results between the Bitran-Hax and the DBA is the solution time. The basic idea of the Dual

Bound algorithm is the following picture.

Figure 2.3 Dual Bound algorithm

Although the DBA does not calculate primal variables in every iteration, at least one

primal variable is pegged at each iteration. Therefore, in the DBA, both primal and dual variables

are optimized implicitly as illustrated Figure 2.3.

 22

For the original Bitran-Hax algorithm, in the worst case, only one variable is set to its

upper or lower bound at each iteration. The computational complexity of this process is . In

addition, there are two calculations of the primal variables and the dual variable at each iteration

and the evaluation of the feasibility for all remaining free variables. The computational

complexity of this process is . Therefore, the overall computational complexity of the

Bitran-Hax algorithm is . In the DBA, the pegging procedure has the same complexity

 as the Bitran-Hax algorithm and there is the evaluation of the feasibility of all remaining

free variables at each iteration of which is the calculation of pegging sums and and

its complexity is . The overall computational complexity of the DBA seems to be similar to

the Bitran-Hax algorithm. However, except the pegging process, the DBA has only the

evaluation of the feasibility process and does not have two calculations of the primal variables

and the dual variable. For instance, let us consider the worst case problem that only one variable

is pegged at each iteration. In the Bitran-Hax algorithm, the calculation of the primal variables in

(2.13) is at each iteration and the overall calculation is the same as the calculation of

the sum of to because the number of iteration is (the worst case), that is,

. The

calculation of the dual variable in (2.14) is also

. The total variable updating effort can be

as bad as . On the other hand, the DBA only needs to calculate the dual bounds for all

variables initially, that is, , but does not need to calculate two

. In this respect, it is

obvious that the DBA could be more efficient than the Bitran-Hax algorithm unless the problem

has only one or two iterations to get the optimum. In the next section, the computational

experiments show the practical performance of the DBA.

2.4 Numerical Examples

This section shows the Dual Bound Algorithm for a continuous quadratic knapsack

problem as a special case of nonlinear knapsack problem as follows.

(P2)

 (2.21)

 (2.22)

 (2.23)

 23

where

 for all , and this

research assumes for all and

 .

To simplify the implementation, a variable transformation is first performed to let all the

coefficients of the equality constraint become one. This requires the following change of

variables.

Let , for all and the bounds become

 , for all (2.24)

 , for all (2.25)

The problem is reformulated as

(P3)

 (2.26)

 (2.27)

 , for all (2.28)

The Karush Kuhn Turker (KKT) conditions of the problem P3 are

 , for all (2.29)

 , for all (2.30)

 , for all (2.31)

 , (2.32)

 , for all (2.33)

 , for all (2.34)

With this equation, the variable is calculated as follows:

 , for all (2.35)

where is obtained from the KKT conditions of P2 without the bound constraints

 (2.36)

 24

The equations (2.35) and (2.36) are corresponding to (2.13) and (2.14) respectively. The

detail algorithm of Dual Bound is as follows:

Algorithm (Dual Bound : Quadratic Knapsack Problem)

Step 0 Initialization

Let , ,

Transform into and compute and for all from (2.24) and (2.25).

Step 1 Calculating Dual Bounds

Compute dual bounds for all , for .

Calculate

 and

Step 2 Update Dual Variable

Compute

Step 3 Calculate Pegging Sums & Check Stopping Criterion

Compute and

 ,

where

let

 ,

Q

 ,

where

let

 ,

If and are empty, then it is optimal,

and calculate
 for all from (2.35) and go to Step 6.

 25

Step 4 Pegging Variables

Pegging variables

If , then set for all ,

 let and .

 update

 ,

 .

If , then set for all ,

 let and .

 update

 ,

 .

If , then set for all , set for all ,

 let and .

 update

 ,

 .

Step 5 Check Stopping Criterion

If , then go to Step 6.

Else, set and go to Step 2.

Step 6 Optimum Found

Set

 for all is the optimal solution and terminate.

In the above algorithm,
 is the

 in the previous section. The term

 in step

3 is the which makes and Q the same as those of Bitran-Hax algorithm. This

section provides a simple example to show how the algorithm proposed in this research works.

The simple example is solved with the methods of both the Bitran-Hax and the Dual Bound.

Example 4.1

 26

By the formulation,

< Bitran-Hax Algorithm >

- Iteration 1

Step 0

 , ,

 , ,

Step 1

Step 2

 : Yes

 : No

Step 3

 27

Step 4

Since ,

Step 5

Since , set , go to Step 1

- Iteration 2

Step 1

Step 2

 : Yes

Go to Step 6.

Step 6

Set

 ,

Therefore,
 is optimal.

Next, the Dual Bound Algorithm is used to solve this problem.

< Dual Bound Algorithm >

- Iteration 1

Step 0

 , ,

 28

 , ,

Step 1

Step 2

Step 3

 , is empty.

Q

,

 ,

Step 4

Since ,

Step 5

Since , set , go to Step 2

- Iteration 2

Step 2

 29

Step 3

 , is empty.

Q

 , is empty.

It is optimal.

Calculate

and go to Step 6.

Step 6

Set

 ,

Therefore,
 is optimal.

From this numerical example, two methods have the same optimal solution and the

number of iteration. The Bitran-Hax Algorithm calculates and in step 1 at every

iteration. On the other hand, The Dual Bound Algorithm calculates dual bounds at the beginning

and calculates three components of calculation in step 1. The loop of the Dual Bound

Algorithm starts from step 2. The Dual Bound Algorithm does not calculate at every

iteration. Furthermore, the Dual Bound Algorithm updates two components of calculation (
 ,

 , and) instead of calculating all it again. In this simple problem, the Dual Bound Algorithm

is not much attractive. However, if the size of the problem or the number of iteration is

increasing, the solution time would be different. Some experimental results for various large

scale problems are shown in the next section.

 30

2.5 Experimental results

In this section, the computational experiments for both the Dual Bound algorithm (DBA)

and the Bitran-Hax algorithm are conducted on randomly generated problems with different

sizes, and then tested on different types of applications with common data sets. Both algorithms

are implemented in C programming language, complied using gcc and ran on a Fedora 7, 64 bit

Red Hat Linux machine with 2 GB memory and Intel Duo Core
TM

 2 CPU running 2.66 GHz.

Experiments on different types of problems demonstrated a comparison between the Dual Bound

and the Bitran-Hax algorithms.

In the first round of tests, the continuous quadratic knapsack test problems with various

sizes were randomly generated to establish a baseline comparison between the Bitran-Hax

algorithm and the DBA.

First, for testing the continuous quadratic knapsack problem, data sets were randomly

generated with the following distribution: , , and

 , where denotes the uniform distribution with range from to . For

generating the bound values, two values are generated from and this research puts

the larger value to and the smaller one to to satisfy the inequality . The value in

(22) is generated by

 . The experimental results are as follows.

Table 2.1 Problem size (500,000 variables)

Solution time (seconds)

 500k DBA Bitran-Hax Improved (%)

1 1.05 1.13 7.07

2 1.08 1.17 7.69

3 1.04 1.15 9.56

4 1.05 1.12 6.25

5 1.06 1.19 10.92

6 1.05 1.15 8.70

7 1.08 1.17 7.69

8 1.03 1.12 8.04

9 1.04 1.16 10.34

10 1.06 1.16 8.62

Average 8.49%

 31

Table 2.2 Problem size (1,000,000 variables)

Solution time (seconds)

 1000k DBA Bitran-Hax Improved (%)

1 2.10 2.35 10.64

2 2.09 2.28 8.33

3 2.13 2.34 8.97

4 2.08 2.27 8.37

5 2.13 2.34 8.97

6 2.14 2.40 10.83

7 2.12 2.34 9.40

8 2.11 2.35 10.21

9 2.09 2.30 9.13

10 2.12 2.36 10.17

Average 9.5%

Table 2.3 Problem size (2,000,000 variables)

Solution time (seconds)

 2000k DBA Bitran-Hax Improved (%)

1 4.20 4.61 8.89

2 4.22 4.67 9.63

3 4.20 4.85 13.40

4 4.26 4.66 8.58

5 4.27 4.82 11.41

6 4.26 4.82 11.62

7 4.28 4.83 11.39

8 4.19 4.67 10.28

9 4.26 4.75 10.36

10 4.18 4.68 10.68

Average 10.62%

The experimental results from Tables 2.1 to 2.3 have shown that the DBA outperforms

the Bitran-Hax algorithm by 8 ~ 10%. In this set of test problems, around 30~40% of the

remaining free variables (i.e., variables having their optimal values strictly between their bounds)

are in the optimal solution.

The next set of test problems were randomly generated with the following distributions:

 , , , and .

 32

Figure 2.4 The gap of solution time between Bitran-Hax and Dual Bound

In Figure 2.4, the horizontal axis denotes the problem sizes ranging from 5,000 to

2,000,000 variables. From the results illustrated in Figure 2.4, this research discovered that when

the problem size increases, the gap of the solution times between the Bitran-Hax and the DBA

also increases. When the problem size is small (i.e., ranging from 5,000 to 100,000 variables),

the gap of the solution time is small. On the other hand, for the large size problems (i.e., from

500,000 variables and beyond), the gap is large. The percentages of free variables at the achieved

optimal solution are about 70% in these test problems. The percentages of free variables at the

final optimal solution are larger than the previous experimental results in Tables 2.1~3.

However, the improvements on solution times are not much different (i.e., around 8~10% of

improvement) because the number of iteration in the results of Figure 2.4 is less than those

presented in Tables 2.1~3. Therefore, the DBA outperforms the Bitran-Hax algorithm regardless

the number of optimal free variables or required total number of iterations to achieve the optimal

solutions.

Second, this research examined the test cases for the some real-world applications having

embedded convex knapsack problems in its optimization problems. Two types of optimization

problems: quadratic network flow problem and portfolio optimization problem have been tested

0.008 0.018 0.11 0.218

1.119

2.238

4.492

0.007 0.02 0.12 0.239

1.225

2.451

4.979

5k 10k 50k 100k 500k 1000k 2000k

Solution time gap between two algorithms

Dual bound Bitran-Hax

Solution time (sec.)

 33

to assess the effeteness of the DBA. The quadratic network flow problems were randomly

generated using a modified version of the generator NETGEN in Klingman et al. (1974) to

generate nonlinear separable cost functions. The quadratic and linear cost coefficients are

distributed by . The detail information for this data set and solving algorithm is in

(Arasu, 2000). The algorithm framework for solving this data set is a hybrid dual algorithm

which combined the conjugate gradient and the dual preflow algorithms in Arasu (2000). The

quadratic knapsack problem is a well-known line-search subproblem using in this algorithm. The

computational results are presented in Table 2.4. Table 2.4 reports the problem sizes tested

(denoted by the numbers of nodes and arcs in the tested networks), and solution times for the

Bitran-Hax algorithm and the DBA in seconds.

Table 2.4 Computational Results for Quadratic Network Problems

Problem Sizes Solution time (seconds)

of nodes # of arcs Bitran-Hax DBA Improved (%)

200 400 0.16 0.13 18.75

200 1000 0.07 0.05 28.57

250 1000 0.11 0.07 36.36

300 600 0.21 0.15 28.57

400 800 0.72 0.50 30.56

400 2000 0.19 0.16 15.79

400 2400 0.33 0.17 48.48

450 2400 0.40 0.23 42.50

500 1000 0.55 0.49 10.91

500 2000 0.31 0.19 38.71

500 2400 0.39 0.28 28.21

500 2500 0.41 0.34 17.07

1000 40000 5.51 3.67 33.39

4000 20000 9.77 5.46 44.11

4500 50000 11.89 6.71 43.57

5000 50000 11.71 6.60 43.64

The percentage of improving solution time is around 10~48%. It can be also seen from

Table 2.4 that the speedups of the solution times between the Bitran-Hax algorithm and the DBA

increases as the problem size increases.

 34

The tested financial problems in this research are the stochastic portfolio optimization

problems. These problems have been modeled as the two-stage stochastic programming

problems. These problems were solved using progressive hedging algorithm with potential

reduction function (Arasu, 2000). The detail information of the data set and the progressive

hedging algorithm can be found in Arasu (2000). The results are summarized in Table 2.5 below.

Table 2.5 Computational Results for the Portfolio Optimization Problems

Problem Sizes Solution time (seconds)

Asset Periods Scenarios Bitran-Hax DBA Improved (%)

15 8 18 2.74 2.14 21.90

15 6 52 7.80 5.96 23.59

15 8 80 7.17 5.53 22.87

15 8 72 11.14 8.43 24.33

15 4 70 3.02 2.34 22.52

15 8 48 7.60 5.79 23.82

15 8 40 6.53 4.95 24.24

15 8 60 10.14 7.62 24.85

15 8 100 8.79 6.83 22.30

15 8 120 10.59 8.21 22.47

15 8 124 11.00 8.45 23.18

15 8 125 11.34 8.68 23.46

15 8 200 17.87 13.85 22.50

15 8 250 22.35 17.21 23.00

15 8 400 35.88 27.58 23.13

15 8 500 44.71 34.73 22.32

This financial problem has a line-search subproblem in the similar format to the quadratic

network flow problem, which is also a quadratic knapsack problem. In this case, the continuous

quadratic knapsack problem is the subproblem of the subproblem of the progressive hedging

algorithm as Arasu (2000) referred the problem as two-stage stochastic network model. From

this round of the computational experiments, the solution times can be improved around 21~25%

if the DBA is used. From the results depicted in Table 2.4 and 2.5, if the continuous quadratic

knapsack problem is a subproblem of other optimization problems and the size of these

optimization problems is large and the number of iteration in solution procedure is large, then the

DBA is more attractive than the Bitran-Hax algorithm.

 35

The differences in practical computations for the two algorithms follow. The DBA should

calculate the dual bounds for all variables once at the initial step and does not calculate them

again during iterations. At the last iteration, the DBA should calculate the remaining primal free

variables. On the other hand, the Bitran-Hax algorithm does not calculate the dual bounds, but it

should calculate all primal free variables not pegged at the iteration during each iteration.

Therefore, even if the problem is large, the Bitran-Hax algorithm would be faster than the DBA

when the number of iterations is small and the calculations of the dual bounds and the final

remaining free variables in DBA are larger than the calculations of free variables during

iterations in the Bitran-Hax algorithm. In the experiments, the results of the quadratic network

and financial optimization problems are more improved than the quadratic knapsack problem.

The reason is that the number of iterations in Tables 2.4 and 2.5 is larger than that in Table 2.1~3

even though the size of the problem in Table 2.1~3 is larger. The average number of iterations in

the quadratic knapsack problems is 8. On the other hand, the quadratic network problems have

approximately 110 iterations for the main problem, which means algorithm calls the quadratic

knapsack problem as a subproblem 110 times during the solving process. Thus, the total number

of iterations for the quadratic knapsack problem in the quadratic network problem is

approximately 110 times the average number of iterations of a quadratic knapsack problem. In

summary, the DBA is more attractive if three conditions are met: the size of the problem is large,

the number of iteration is large, and the number of free variables is large.

2.5 Conclusions

This chapter proposed a new pegging algorithm, the Dual Bound algorithm, to solve the

separable continuous nonlinear knapsack problem with box constraints. The nonlinear knapsack

problem has many real-world applications and is frequently embedded as a subproblem in many

large-scale mathematical models. The main motivation of the new algorithm is to reduce the time

consuming variable updating procedures in the Bitran-Hax algorithm to improve the overall

efficiency. The Bitran-Hax algorithm must recalculate the dual variable and primal variables at

each iteration, which is frequently the most computationally involved procedure. In the Dual

Bound algorithm (DBA), once dual bounds are initially calculated, they can be used throughout

the solution procedure while the Bitran-Hax algorithm must recalculate all remaining free primal

variables at each iteration. To update the dual variable , the DBA divides the calculation of

 36

into several smaller components and updates the each component, individually only when

necessary.

The results of the two types of experiments with quadratic objective functions show that

the DBA can solve such problems faster than the Bitran-Hax algorithm. The first type of

experiment used randomly generated, continuous quadratic knapsack problems with sizes

ranging from 500 to 2,000,000 variables. The computational results revealed that the DBA

improves the average solution times by approximately 8~10% over the Bitran-Hax algorithm

while obtaining the same optimal solutions. When problem sizes increased, the solution time of

the DBA became even faster than the Bitran-Hax algorithm. The second type of experiment

involved the continuous quadratic knapsack problem as a subproblem of other optimization

models. The quadratic network flow problems and the portfolio optimization problems were

tested in this round of computational comparisons. The quadratic network flow problem has a

line-search subproblem as a continuous quadratic knapsack problem and the portfolio

management problem is modeled by two-stage stochastic network problem with a similar line-

search routine. The results of these problem sets show that the DBA can achieve approximately

10~48% faster results for the quadratic network flow problems and 21-25% faster results for the

portfolio optimization problems than the Bitran-Hax algorithm. The results of the extensive

computational experiments reveal that the DBA is an attractive alternative for the Bitran-Hax

algorithm for large-scale problems. In addition, the computational experiments suggest the DBA

provides an edge when used to solve an embedded subproblem, in which a large number of

nonlinear knapsack problems are repeatedly resolved with possible warm-starts and when

significantly large number of variables are bounded at the optimum.

In the future, the DBA can be extended to handle broader problems such as the non-

separable objective functions with a dense Hessian matrix or problems with generalized upper-

bounding constraints. The DBA optimizes both primal variables and a dual variable implicitly

and using smaller components updates to achieve the maximal efficiency. With these concepts,

more efficient algorithms could be possible because checking feasibility uses only one dual

variable instead of all the primal variables. If the dual variable could initially be chosen or

estimated with better insight, the number of iterations would be significantly reduced. This

algorithm also can be applied to more complicated, larger problems in the real-life applications.

 37

The problem in this chapter is separable, convex, continuous, and bounded nonlinear

knapsack problem. The separable problem denotes the Hessian matrix is a diagonal matrix. In the

next chapter, the problem arising in support vector machine has nonseparable Hessian matrix.

The solution algorithm for the nonseparable problem is different from separable case in this

chapter. However, the method in chapter 3 will split the Hessian matrix into sum of simple

diagonal matrices and solve a separable nonlinear knapsack problem iteratively. Thus, the

nonlinear knapsack problem in this chapter will be a subproblem of the problem in the next

chapter and be solved iteratively.

 38

CHAPTER 3 - -Support Vector Machine

This chapter proposes a solving approach for the ν-support vector machine (SVM) for

classification problems using the modified matrix splitting method and incomplete Cholesky

decomposition. The SVM problem is solved by solving its dual problem because there is only

one dual variable. Using the augmented Lagrange method, the dual formulation of the ν-SVM

classification becomes a singly linearly constrained convex quadratic program with box

constraints. The Kernel Hessian matrix of the SVM problem is dense and large. The matrix

splitting method combined with the projection gradient method solves the subproblem with a

diagonal Hessian matrix iteratively until the solution reaches the optimum. The subproblem is a

nonlinear knapsack problem with a diagonal Hessian matrix described in chapter 2. Thus, the

Bitran-Hax or Dual Bound algorithm is used for solving this subproblem. The method can

choose one of several line search and updating alpha method in the projection gradient method.

The incomplete Cholesky decomposition is used for the calculation of the large scale Hessian

and vectors. The experimental results show that the newly proposed method has a potential for

the alternative of the solution method for the -SVM classification problem even if the size of

the problem is medium or large.

Section 1 introduces a brief history of machine learning and SVM. In section 2, the

solving algorithm for the -SVM is described. The decomposition method and the data structure

of Hessian matrix are showed in section 3. Section 4 presents the experimental results. In the

conclusion, the contributions of this chapter are reviewed.

3.1 Introduction

The machine learning truly began with Rosenblatt's perceptron from the research of

neurodynamics in Rosenblatt (1962). Rosenblatt constructed the perceptron to solve pattern

recognition problems and described the concept can be generalized. The problem was to find a

rule to separate data into two groups using given examples. The learning theory aims to find the

rule from data observed to predict the future. Finding the rule is to find the pattern of the data.

For example, let us assume that there are training data set , ..., , where

and
 for all . If the pattern of the data set is known, one can estimate the

response
 , ...,

 for
 , ...,

 . To find the rule, the perceptron uses the hierarchical network

 39

with the data set on the bottom of the network and the result on the top of the network. There are

arcs between the layers. The arcs have weights. The perceptron aims to find the weights which

perfectly explain how to get the results. The artificial intelligence group also got involved in this

research in 1980s. The name of percepton was changed into neural network. The neural network

has been used to find the rule in the learning theory. However, the neural network method was

dependent on the data set and it took much time to find the weights in the large scale problem. In

1986, there was the second breakthrough in learning theory. The backpropagation method was

introduced by A and B independently. The backpropagation method significantly increased the

speed of finding the weights in neural network. The backpropagation neural network has been a

popular method since then. However, the backpropagation neural network still had two

problems: slow convergence and less generalization. In 1995, Vapnik introduced the SVM that

has been a popular method of learning theory so far. The SVM based on the concept of the

structural risk minimization principle have gained popularity with many attractive features such

as statistical background, good generalization, and promising performance. This research focuses

on the solving algorithm for the SVM for the classification problem.

The SVM maps the data set into another space called a feature space and classifies or

does a regression the data set using separating hyperplane. Using the SVM, it is necessary to

solve a quadratic programming problem that has a dense Hessian matrix. In this chapter, this

research proposes an approach to solve the SVM for classification problems. The matrix splitting

method with the nonmonotone line search technique is used to solve the quadratic programming

problem and a penalty method is used to move one of constraints to the objective function.

Bitran-Hax or Dual Bound algorithm in chapter 2 is used for solving the subproblem that is a

quadratic nonlinear knapsack problem. This research also uses an incomplete Cholesky

decomposition method for the dense Hessian matrix for large scale problems.

3.2 Support Vector Optimization

The SVM originally was developed for classification problems also called pattern

recognitions and extended for regression problems. This research focuses on the classification

problem. When one wants to classify certain data into two groups, one can think three possible

cases. The first case is that the two groups are known and can be separated trivially. For

example, there are ten pets: five dogs and five cats. One knows the information of two groups:

 40

dog group and cat group. Then one can easily classify ten pets into two groups. The second case

is that the two groups are known, but can not be separated trivially. For example, there are ten

dogs. One wants to classify the dogs into two groups: biting a thief or not when the dog

confronts a thief. One knows the information of the two groups: biting group and not biting

group. However, one can not classify the group of dogs trivially. The last case is that the two

groups are unknown and cannot be separated trivially. For example, there are ten dogs. One

wants to classify the dogs, but one does not know how to classify the dogs and do not have any

information of the groups. The second and the third case can be considered in the field of

learning theory. The supervised learning is related to the second case and the unsupervised

learning is the third case. The SVM is one of supervised learning methods. Thus, it is assumed

that the information of group and the data of history are known in the SVM.

Let us assume there are two groups and sample data. The training data is a vector

and its result is which denotes two groups. If it assumes that there are training data,

then the pairs of training data are
 , for . The goal of this

research is to find the pattern of the data using these pairs of training data. Suppose is an

unknown probability distribution of data set and is defined a mapping from input to

output . The function is referred to hypothesis and the set of functions is

called the hypothesis space denoted by . The parameter is an adjustable parameter and

specifies a particular function in the hypothesis space. The symbol denotes an index set. The

expected risk or expected error is

 (3.1)

However, cannot be calculated exactly because the probability distribution is

unknown. Instead one calculates the bound of the expected risk. If one has data observed, the

empirical risk is defined as

 (3.2)

If one assumes the confidence level is , then Vapnik introduced the bound

of the expected risk is

 (3.3)

where is defined the VC dimension for the hypothesis space. Therefore, if one minimizes the

right hand side, the bound of the expected risk, then the bound is close to the original expected

 41

risk. The second term of the bound denotes the confidence term. When one minimizes the

empirical risk, the confidence term is increased. Similarly, the empirical risk increases if one

reduces the confidence term. Therefore, one should have a tradeoff between the empirical risk

and the confidence term. However, it is hard to get an appropriate VC dimension and to

minimize the problem. The structural risk minimization (SRM) principle is to minimize the risk

functional with respect to both the empirical risk and the confidence term, where the functional is

a function of which variables are functions. In the above inequality, the first term of the right

hand side means how the data chosen is good and the second term is for the complexity of the

model. There are two approaches to minimize the right hand side of the inequality: neural

network and SVM. The neural network keeps the confidence term fixed and minimizes the

empirical risk. On the other hand, the SVM keeps the value of empirical risk fixed and

minimizes the confidence term.

To minimize the empirical risk functional, a set of linear indicator functions is defined as

follows.

 , (3.4)

where denotes an inner product between vectors and .

Assuming the number of data is , the goal is to find the coefficient that minimize the

empirical risk functional

 (3.5)

If the training set is separable without error which means the empirical risk can become

zero, there exists a finite step procedure to find the vector . On the other hand, if the training

set is not separable, the problem becomes NP-complete. Furthermore, one cannot use the regular

gradient based method since the gradient of the functional is either equal to zero or undefined.

With these facts, one needs to approximate the indicator functions so called sigmoid function as

follows.

 (3.6)

where is a smooth monotonic function as follows.

 , (3.7)

The neural network approach has some problems. The quality of the solution depends on

many factors, in particular on the initialization of weight matrices. The convergence of the

 42

method is slow. The choice of the scaling factor in the sigmoid function is a trade-off between

the quality of approximation of indicator function and the rate of convergence.

The SVM approach uses an optimal separating hyperplane as described in Vapnik and

Chervonenkis (1974), Vapnik (1979) which separates the data with maximum distance (margin)

between the data and the hyperplane.

Suppose that there are the training data

 , ..., , where and (3.8)

The data has two classes: the one is the class the target value is -1 and the other class is

the target value is 1. The separating hyperplane is defined as

 , where and (3.9)

The decision function is

). (3.10)

When the input data are separable, the hyperplane has the following conditions

 , if (3.11)

 , if . (3.12)

These two constraints (3.11) and (3.12) can be combined as

 (3.13)

The distance between the data and the hyperplane is

, where denotes the norm of

the vector. The optimal separating hyperplane is the hyperplane with the maximum distance.

Therefore, to obtain the optimal separating hyperplane, one needs to solve the following

problem:

 (3.14)

 , (3.15)

In this model, variables are and while and are input data. One can consider the

dual problem of this problem to solve it efficiently. The Lagrangian dual with multiplier is as

follows.

 (3.16)

where

 .

 43

The Lagrange function is convex. With the strong duality condition, the primal

and the dual optimal solution is the same in this case. One can solve this dual problem instead of

the primal. For formulating the dual problem, the derivatives of the Lagrangian function are

follows.

 leads to

 , (3.17)

 leads to

 (3.18)

 The dual problem can be written as follows.

 (3.19)

 , (3.20)

 , (3.21)

The decision function is

 (3.22)

The problem is a quadratic programming problem with one equality constraint. The

solution of this problem specifies the training patterns. The vectors corresponding to the

non-zero elements of are called support vectors which only effects to form the separating

hyperplane, which also means a subset of constraints in the primal problem play a role to make

the classifier.

In the SVM, the input data is mapped to a higher dimensional space called as the feature

space. A nonlinear mapping function maps the input data to the feature space. The kernel

function is defined as follows. . All kernel functions can be expressed

with dot products of . Therefore, the dual problem can be rewritten as follows.

 (3.23)

 , (3.33)

 , (3.34)

Then, the decision function becomes

 . There are

several types of kernel function used in the SVM:

 Linear kernel :

 Polynomial kernel :

 Radial basis function (RBF) kernel :

 44

 Two layer neural network kernel : .

These kernels are expressed as the dot product between two vectors. Using the kernel

function, one does not need to worry about the high dimensionality of the feature space. The

input data is implicitly mapped to the feature space. Therefore, the dimension of the kernel

Hessian matrix in the objective function is the same dimension as the linear kernel even if other

kernels are used.

In the real world, the input data may not be separable with the separating hyperplane

because the data can be inconsistent, missing, incomplete, noisy, and so on. To fix the non-

separable case, one can introduce additional slack variables in the primal problem:

 , (3.35)

The primal problem becomes

 (3.36)

 , (3.37)

 , (3.38)

In this problem,

 represents the model complexity because it shows how much the

classifier is accurate.

 denotes the measure of the training errors, which can be seen as the

empirical risk . The constant controls the trade-off between the complexity and the

training errors. Since the slack variables make the margin smooth, the margin is called as the

soft margin and the problem is called as support vector classification (-SVC). The dual

problem of this problem is as follows.

 (3.39)

 , (3.40)

 , (3.41)

The only difference from the separable case is that the dual problem has box constraints

for all variables. However, this -SVC has two broad range of the parameter and the solution

is very sensitive to the value . To fix these problems, Schölkopf et al. (2000) proposed another

model so called -support vector classification (-SVC) or -support vector machine (-SVM).

 -SVC uses a new parameter instead of . The parameter has a range of zero to one, that is

 , and provides the lower bound of the fraction of the support vectors and the upper

 45

bound of the fraction of the margin errors. The primal problem of -SVC or -SVM is as

follows.

 (3.42)

 , (3.43)

 , (3.44)

 (3.45)

To see the function of the additional variable , if the variable equals zero, then the

margin becomes

 instead of

. The Lagrangian function with additional multipliers and

is as follows.

 (3.46)

With partial derivatives, one can get the following conditions:

 (3.47)

 (3.48)

 (3.49)

 (3.50)

Therefore, the dual problem of the -SVC or -SVM is as follows.

 (3.51)

 , (3.52)

, (3.53)

 , (3.54)

Comparing with -SVC, the objective function does not have the first order term

and there is additional constraint. The decision function is the same as the previous one (3.22):

 (3.55)

For the calculation of and , one can use a KKT condition of the -SVC. One of KKT

condition is as follows.

 , (3.56)

By (3.48), the equation (3.56) can be rewritten as

 , (3.57)

 46

At the optimal solution, if , then

 should be

zero. Since , the slack variable . The remaining term

should be also zero. One can consider two cases of . Then two equalities are

obtained as follows.

 (3.58)

 (3.59)

Therefore,

 (3.60)

 (3.61)

To solve SVM problems, it is necessary to solve the quadratic programming problem to

find the decision function. However, in the SVM problems, Hessian matrix in the quadratic

programming problem is dense and the size of the problem is large. Therefore, traditional

optimization methods cannot be applied directly. Nonetheless, there are many approaches

proposed so far for solving SVM problems.

Suykens and Vandewalle (1999) proposed the least squares support vector machine (LS-

SVM) which is a function estimation problem. LS-SVM solves a set of linear system from Kuhn

Tucker condition for training the data instead of solving a quadratic programming problem. Lee

and Mangasarian (2001) proposed the reduced support vector machine (RSVM) that uses the

reduced data set (about 1% out of the data) for training the data. The reduced data is chosen by

the way that the distance between the data exceeded a certain tolerance. Zhan and Shen (2005)

proposed an iterative method to reduce the size of support vectors so that the calculations of

testing can be reduced. Kianmehr and Alhajj (2006) suggested an integrated method for the

classification using the association rule based method and the SVM. The association rule based

method generates the best set of rules from the data with the form that can be used in the support

vector machine. The SVM is then used to classify the data.

Gradient projection based approaches are used to solve the SVM problems. To et al.

(2001) proposed a method for solving SVM problem using space transformation method based

on surjective space transformation introduced in Evtushenko and Zhadan (1994) and steepest

descent method for solving the transformed problem. Serafini et al. (2005) proposed the

 47

generalized variable projection method which has a new step length rules. Dai and Fletcher

(2006) suggested an efficient projected gradient algorithm to solve the singly linearly constrained

quadratic programs with box constraints and tested some medium scale quadratic programs

arising in the training the SVM.

A geometric approach also has been studied by Mavroforakis and Theodoridis (2006),

Bennett and Bredensteiner (2000), Crisp and Burges (2000), Bennett and Bredensteiner (1997),

and Zhou et al. (2002). In the geometric approach, if the data are separable, one can find two

convex hulls for two classes of the data and the minimum distance line between two convex

hulls. The separating hyperplane can be found as the hyperplane passing through the mid point of

the minimum distance line and being orthogonal to the line. If the data are not separable, one can

reduce the two convex hulls until they are separable, which is called as a reduced convex hull.

One of important issues in solving SVM problem is to solve a quadratic programming

problem with dense Hessian matrix which is a positive semi-definite matrix. Due to the dense

Hessian matrix, the decomposition method is essential to solve large scale problems in SVM. For

example, if the problem has one thousand data points, then one need to have a storage of the

matrix of which means one million bytes size of units are required when one

solves the problem with a computer program. Osuna et al. (1997) introduced a decomposition

method that one solves smaller sized subproblems sequentially with some selected variables until

the KKT condition of the original problem is satisfied. The set of variables selected in this type

of approach is called as a working set. Joachims (1999) proposed an efficient decomposition

method to shrink the size of the problem by fixing some variables to their optimal values. Platt

(1999) described a new algorithm for training the SVM called Sequential Minimal Optimization

(SMO). The size of the working set in SMO is only two. Since the working set is small, the

algorithm does not require any quadratic programming solvers to solve the subproblem of the

working set. In addition to that, it requires less matrix storage. Platt showed the SMO does

particularly well for the sparse data sets. The SMO has been a popular method for the SVM.

Another approach to decompose this problem is to decompose the kernel Hessian matrix.

The most concerning computational issue in solving the SVM problem is how to handle the

dense kernel Hessian matrix. While SMO type method is trying to reduce the dimension of the

problem and to solve subproblems with smaller variables, the matrix decomposition approach is

trying to decompose the kernel Hessian matrix and to reduce computational burden with the

 48

same number of variables. There are various approaches for kernel matrix approximation such as

spectral decomposition, incomplete Cholesky decomposition, tridiagonalization, Nyström

method, and Fast Gauss Transform in Kashima et al. (2009).

In this chapter, this research focuses on the incomplete Cholesky decomposition (ICD)

method. The ICD is used in solving the SVM problem with several ways. Bach and Jordan

(2005), An et al. (2007), and Alzate and Suykens (2008) used the ICD for solving the LS-SVM

problem. The interior point method has been used in Fine and Scheinberg (2001), Ferris and

Munson (2003), and Goldfarb and Scheinberg (2008). The ICD has been used for solving the

normal equation in the interior point method. Lin and Saigal (2000) used the ICD as a

preconditioner in the SVM problem. Louradour et al. (2006) proposed a new kernel method

using the ICD. Debnath and Takahashi (2006) suggested a solving method for the SVM using the

second order cone programming and the ICD. Camps-Valls et al. (2009) used the ICD for

solving the semi-superviesd SVM.

This research uses the projected gradient approach for solving the SVM problem. In this

approach, the matrix splitting method is used for the projection and splitting the Hessian matrix.

The ICD is used for reducing the computational burden and storage. Since most problems of the

SVM have the dense Hessian matrix and are large scale, dimension reduction methods such as

working set method or SMO type method can be attractive. However, traditional methods like

Newton's method or gradient methods have advantages such as rapid local convergence. The

main drawback of traditional methods is the size of the problem. If one can remove or reduce the

curse of dimensionality, one may use advantages of traditional methods. With this motivation,

this research uses the matrix splitting method and the ICD for reducing the computational and

storage problem of handling the large scale problems. In addition, the Bitran-Hax or Dual Bound

algorithm is used for solving the subproblem iteratively after splitting the Hessian matrix.

3.3 Solving approach for the -support vector machine

This section provides a new solving approach for -SVM problem (-SVC). The basic

idea is to make the Hessian matrix simple using the matrix splitting method, and to solve the

problem with the projected gradient and incomplete Cholesky decomposition methods.

The dual problem of -SVM is as follows.

 (3.62)

 49

 , (3.63)

, (3.64)

 , (3.65)

Crisp and Burges (2000), Chang and Lin (2001) proved the constraint (3.65) can be

changed to an equality constraint. Changing the problem to a minimization problem, the problem

can be rewritten as follows.

 (3.66)

 , (3.67)

, (3.68)

 , (3.69)

The scaled and vector version of the problem is as follows.

 (3.70)

 , (3.71)

 , (3.72)

 (3.73)

This problem is a quadratic programming problem with two equality constraints and box

constraints on variables. If one removes the last equality constraint from this problem, the

problem becomes a singly linearly constrained convex quadratic problem which is well known to

be able to applied many practical applications introduced in Pardalos and Kovoor (1990), Dai

and Fletcher (2006), Lin et al. (2009). In this thesis, the augmented Lagrangian method is used to

remove the last constraint and put it on the objective function as follows.

 (3.74)

 , (3.75)

 (3.76)

The parameter and denote the Lagrangian multiplier and the penalty parameter

respectively. The problem can be reorganized as follows.

 (3.77)

 , (3.78)

 (3.79)

 50

where , is a matrix which all elements are one.

The constant term in the objective function can be removed because it

does not affect the solution. Now, the problem is a singly linearly constrained convex quadratic

problem. The Hessian matrix is dense, symmetric, and positive semi-definite matrix. Since the

Hessian matrix H is not diagonal and large in the SVM, a standard solving method for the

general quadratic programming problem can be applied to small or medium size problems.

Therefore, a specified method which can handle the dense Hessian matrix and the large scale

problem is essential for solving this problem. In this research, the algorithm uses matrix splitting

method with nonmonotone line search and gradient projection method. In addition, the

incomplete Cholesky decomposition method is used for handling large scale problems. The

structure of the solution procedure is as follows.

Solving Procedure

Figure 3.1 Solving Procedure for the ν-SVM

 51

The original problem becomes a singly linearly constrained convex quadratic problem

with Augmented Lagrangian method by putting one of constraints to the objective function. The

Hessian matrix is split into the sum of two matrices by the matrix splitting method. In addition to

that, the incomplete Cholesky decomposition is performed for the Hessian matrix to facilitate the

calculation of the Hessian matrix and the variable vectors. The method solves the subproblem

that has a simple Hessian matrix in procedure 3.

The Bitran-Hax or Dual bound method is used to solve this subproblem which is a

separable continuous quadratic knapsack problem. The direction vector is calculated with the

solution of the subproblem and the current solution. The line search technique finds the step

length along the direction in procedure 4. There is a type of scale parameter where the coefficient

of the linear term of the subproblem in procedure 3. The solution of the problem and the scale

parameter are updated in procedure 5. In procedure 6, the termination is checked with KKT

conditions. For the procedure 4 and 5, the algorithm can use several options that will be

described in the later section.

3.3.1 Matrix splitting with Gradient Projection method

In this section, the matrix splitting method is described. The problem (3.77) ~ (3.79) can

be rewritten as follows. For the convenience, this research uses the term instead of and

simple terms.

(MP)

 (3.80)

 , (3.81)

 (3.82)

where is a positive semi-definite matrix.

The matrix splitting method is an iterative method to solve the quadratic programming

problem. The most concern of the quadratic problem in the SVM is about the Hessian matrix.

The dense and large Hessian matrix needs a large space for the storage and a lot of burden for the

calculation. The matrix splitting method splits the Hessian matrix into the sum of two matrices

that have certain properties. The properties are based on the P-regular matrix splitting in Ortega

(1972), Keller (1965), Lin and Pang (1987) as follows.

 52

Definition 3.1

For a given matrix , a splitting with nonsingular is called P-regular

splitting if the matrix is positive definite. Then the splitting iterative method is

convergent: , where denotes the spectral radius of a matrix and is

called a complementarity matrix.

P-regular splitting has been used for solving the linear systems such as linear

complementarity problem (LCP). Pang (1982) proposed an iterative method for LCP using P-

regular splitting. Luo and Tseng (1992) established the linear convergence for the matrix

splitting method and analyzed error bound for the LCP problem. The matrix splitting method for

LCP requires solving a subproblem using successive overrelaxation (SOR) and calculates the

complementarity matrix at each iteration. Therefore, the matrix splitting method cannot be

directly applied to the SVM problem because the problem has a large and dense Hessian matrix.

In his dissertation, Nehate (2006) modified the matrix splitting method for the SVM problem.

The new method in this research is based on this modified matrix splitting method which

combines with the gradient projection method. In this method, the original Hessian matrix is

splitted into the sum of two matrices using P-regular splitting. The matrix is chosen to

be a simple nonsingular matrix. In this research, the identity matrix is used. Then a subproblem

is formulated with matrix as the Hessian. In the subproblem, the coefficient of the linear term

in the objective function is a little different, but the constraints are the same as the original

problem. The method solves the subproblem iteratively until it has the optimal solution. The

detail algorithm is as follows.

Main Algorithm

Step 1 Initialization

Let be a splitting of the Hessian matrix and

 be a feasible initial solution. Let be an identity matrix,

 , . Set .

Perform the Incomplete Cholesky decomposition for the Hessian matrix :

 , where is a lower triangular matrix.

Step 2 Solving the subproblem

Solve

 53

 ,

 where , .

Bitran-Hax algorithm or Dual bound algorithm is used.

Direction vector is calculated as .

Step 3 Line search

 , Find using line search techniques.

Step 4 Update solution

Update solution ,

Calculate using Brailai-Borwein (BB) type methods.

Step 5 Check termination

If some appropriate stopping rule is satisfied, stop.

else set and go to Step 2.

Compared with Nehate's method, the newly proposed solving algorithm uses the

incomplete Cholesky decomposition method for the Hessian matrix in step 1 and tries several

methods for the line search and the updating the parameter value in step 3 and 4. In step 2, the

parameter plays a role in this algorithm as Nehate (2006) described. The algorithm solves the

subproblem instead of the original problem at each iteration using the Bitran-Hax or Dual Bound

algorithm. The value of is changed iteratively. This parameter rescales the gradient and makes

the subproblem to be closer to the original problem. If , the algorithm is just the matrix

splitting method. If , then the algorithm is the combination of the matrix splitting method

and the gradient projection method. If the parameter increases, the algorithm is getting closer

to the gradient projection method.

The parameter can be obtained by solving a problem to minimize the gap between the

sequential gradients which are the th gradient and the th gradient. The at the th

iteration is derived as follows. The details for the derivation are in Nehate (2006).

 (3.83)

where , , is the gradient of the objective function.

 54

The equation (3.83) is called as the two point step size gradient method or Barzilai and

Borwein (BB) type rule. In this research, the new algorithm uses several other methods for

calculating .

The line search in step 3 determines the best step size to get the solution of the original

problem forward to the optimal solution. The new algorithm also uses several line search

methods. The next section describes the details for the methods in step 3 and 4.

3.3.2 Line search and update parameter  methods

This section presents some methods for the line search and updating in the algorithm

proposed in the previous section. The problem in this research is a singly linearly constrained

quadratic convex problem. Due to its numerous applications, there have been many studies for

this problem such as Pardalos and Kovoor (1990), Dai and Fletcher (2006), Lin et al. (2009), Fu

and Dai (2010), and so on. This research uses four methods that applied for the SVM problem.

The details for the methods are as follows.

3.3.2.1 SPGM (Spectral Projected Gradient Methods)

Birgin et al. (2000) proposed a solving algorithm which extended the classical projected

gradient method to use additional methods including the nonmonotone line search technique and

the spectral step length known as the BB type rule. The algorithm was proposed for the problem

of the minimization of differentiable functions on nonempty closed and convex sets. In their

paper, Birgin et al. (2000) proved the convergence of the algorithm and showed good

experimental results comparing to the LANCELOT package in Conn et al. (1988). The detail

algorithm for the line search and the updating method are as follows.

SPGM Algorithm

Step 1 Initialization

Calculate direction and set

Step 2 Set new value

Set

Step 3 Line search

If
 ,

 55

 then define , , , ,

 and go to step 4.

else define and set and go to step 2.

Step 4 Update parameter

Calculate

If , then set ,

else calculate and

The line search in step 3 is the nonmonotone line search which means the objective

function value is allowed to increase on some iterations. The calculation of is from one

dimensional quadratic interpolation. If the minimum of the one dimensional quadratic lies

outside , then the algorithm sets

 . The parameter and are fixed constants.

The method for updating is BB rule. Birgin et al. (2000) showed that the use of the parameter

 is more important than line search method to improve the performance of the algorithm in

their experimental results.

3.3.2.2 GVPM (Generalized Variable Projection method)

Serafini et al. (2005) proposed a generalized version of variable projection method

(GVPM) using a new adaptive steplength alternating rule. Their research has compared the

GVPM with SPGM described in the previous section. The GVPM focuses on the method of

updating parameter . The algorithm uses two steplength rules adaptively and a limited

minimization rule as a line search method. The two types of steplength rules are as follows.

 (3.84)

 (3.85)

The algorithm switches the rules (3.84) and (3.85) if certain criteria are satisfied. Let

 are fixed constants. The number denotes the number of iterations that use

the same steplength rule. There are two definitions for this algorithm as follows.

Definition 3.2

Let (feasible set) and and .

 56

If

 , then is called a separating steplength.

Definition 3.3

Let (feasible set) and , ,

and

.

Given two constants and such that , is called a bad descent

generator if one of following conditions is satisfied:

 and
 (3.86)

 and
 (3.87)

 The detail algorithm is as follows.

GVPM algorithm

Step 1 Initialization

Calculate direction

Step 2 Line search

Calculate ,

with given by

.

Step 3 Update parameter

If , then set ,

else calculate
 and

 from (3.78) and (3.79)

 If ,

 then if or is a separating steplength or a bad descent generator,

 then set , .

 Calculate

Set , and go to step 2

The key idea of this algorithm is to switch the steplength rules with certain criteria.

Serafini et al. (2005) showed that this adaptive steplength change played an important role to

perform well in the experimental results comparing with the SPGM and the VPM. For the SVM

 57

problem, Serafini et al. (2005) applied this algorithm for solving the subproblem of the large

scale SVM problems while the SVM problem was solved by the SMO type algorithm.

3.3.2.3 MSM (Matrix Splitting Method)

Nehate (2006) proposed several efficient solving algorithms for the SVM problems. One

of the algorithms uses the matrix splitting method combined with gradient projection method.

The parameter plays a role to focus on the algorithm forward either the matrix splitting or the

gradient projection method. Nehate (2006) used a simple line search and updating method in the

algorithm. The detail is as follows.

MSM algorithm

Step 1 Initialization

Calculate direction and set

Step 2 Set new value

Set

Step 3 Line search

If
 ,

 then define ,

else

 , .

Step 4 Update solution and parameter

 ,

 , ,

,

 .

Nehate (2006) showed that the use of the parameter speeds up the convergence of the

algorithm, but it makes the algorithm nonmonotone. Therefore the algorithm uses the

nonmonotone line search technique. In step 3, the line search simply assigns the value and

 58

uses the range of index from zero to two. This simple assignment is very useful to solve the

large scale problems. Nehate (2006) focuses on the SVM for regression problem. As the other

methods, the algorithm can solve up to medium sized SVM problems.

3.3.2.4 AA (Adaptive step size method and Alternate step length (alpha) method)

Dai and Zhang (2001) suggested an adaptive nonmonotone line search method. The

nonmonotone line search such as
 in SPGM

has a fixed integer . The performance of the algorithm depends on the choice of described in

Raydan (1997). To resolve this problem, Dai and Zhang (2001) uses a new method to change the

value of adaptively. Let be the current minimum objective value over all past iterations

and be the maximum objective value in recent iterations. These are denoted as follows.

 (3.88)

 (3.89)

The value denotes the number of iterations since the is obtained and is a fixed

constant. The value denotes the largest integer such that
 are accepted but

not and
 is the first trial step size at the th iteration and denotes a fixed constant.

The values and are fixed constants.

Dai and Fletcher (2006) proposed an efficient gradient projection method using a new

formula for updating the parameter. The algorithm uses the adaptive line search method

proposed by Dai and Zhang (2001). Dai and Fletcher (2006) introduced a new formula for

updating the . As the previous section defined, let , .

The BB rule can be as follows.

 (3.90)

This formula can be obtained by solving a one dimensional problem as follows.

 (3.91)

If one replaces the pair with for each integer , then the similar

formula can be obtained as follows as described in Friedlander et al. (1998).

 (3.92)

where and .

 59

In the formula (3.92), if , then the formula is the same as the BB rule in (3.90). Dai

and Fletcher (2006) found the best value of is 2 with their experimental results.

In this research, the algorithm combines the adaptive steplength algorithm from Dai and

Zhang (2001) with the alternative updating formula from Dai and Fletcher (2006) and calls this

method as AA (adaptive and alternative) algorithm. Combining these two algorithms, the line

search is the adaptive nonmonotone line search and the updating the parameter is the method

of alternative formula (3.92). The detail algorithm is as follows.

AA algorithm

Step 1 Initialization

Calculate direction and set ,

Set , ,

Step 2 Line search

Step 2.1 Reset reference value

 If ,

 then set and calculate

 If ,

 then calculate

Step 2.2 Test first trial step size

 If

 then let
 , , and go to step 2.4

 else

Step 2.3 Test other trial step sizes

 Set

 Calculate

 If

 ,

 then set and go to step 2.4

 else set and repeat step 2.3

 60

Step 2.4

 If ,

 then set and .

 else .

 If ,

 then set .

 Calculate from (3.83).

Step 3 Update parameter

 , ,

If ,

 then

else

The value of is obtained by a quadratic interpolation method in step 2.3. Dai and

Fletcher (2006) tested some medium sized SVM problem with their new algorithm and obtaining

good results.

From these sections 3.3.2.1 ~ 3.3.2.4, four different line search and updating methods

were reviewed for the gradient method. The new solving algorithm can take one of the methods

for step 3 and 4 in the main algorithm in section 3.3.1. As it can be seen in these four methods,

since the test problems are limited to the medium size for the SVM problems, the methods

cannot be directly applied to the large scale problems. In these four algorithms, the SMO type or

other methods should be used for large scale problems and the four methods are used for solving

the subproblem within the solution procedure. To overcome this issue, this research proposes a

new solving approach to apply these algorithms directly to large scale problems. The method

proposed in this research is the incomplete Cholesky decomposition method. The details will be

described in the next section.

 61

3.3.3 Incomplete Cholesky decomposition

Cholesky A. developed a method for solving a linear system in 1910. The method has

been published by Jensen H. in 1944. The Cholesky factorization or decomposition named after

his name. More than sixty years now, the Cholesky decomposition method has been an attractive

method for solving large scale systems. If a matrix is a symmetric and positive definite, then

can be expressed as and is a lower triangular matrix with positive diagonal elements.

The elements of are called as Cholesky factors. The Cholesky factors can be obtained as a

simple way of the following example.

Let

 ,

 , and

 .

By the definition of the Cholesky decomposition ,

 (3.93)

Therefore,

 from
 , (3.94)

 from , (3.95)

 from

 . (3.96)

Practically, the Cholesky decomposition is implemented by the way of the above

example. The linear system can be solved by using the Cholesky decomposition. The

problem can be rewritten as . Two substitutions are needed to solve this system. The

forward substitution is calculated first. Then the backward substitution is

calculated. However, this solving procedure can be used only if the matrix is symmetric and

positive definite. If the matrix is a symmetric and positive semi-definite, some of diagonal

values of are zero. If any diagonal elements of are zero, the rest of Cholesky factors cannot

be calculated any more. In the above example, if in (3.94), cannot be calculated in

(3.95) because the denominator is zero. In this case, the incomplete Cholesky

decomposition method can be used.

The incomplete Cholesky decomposition is the method for the symmetric and positive

semi-definite matrix. During the Cholesky decomposition procedure, when one encounters a

diagonal element of that is zero, the procedure cannot progress. The idea of the incomplete

Cholesky decomposition is that a permutation is performed to move the largest diagonal element

 62

on the active pivot position so that the decomposition procedure can stop when the largest

diagonal element is zero. First, the algorithm finds the largest diagonal element. Then a

permutation is performed to move the largest diagonal element on the active position in which

column is working on calculating the Cholesky factors. This permutation process is called as a

pivot. After the incomplete Cholesky decomposition, some of columns of the lower triangular

matrix are all zeros. Therefore, the matrix is decomposed as which is an

approximation of the matrix . Let . Then there is an approximation error .

If the approximation error is bounded by a certain value and the difference between the optimal

values of the original and approximated problem is small, then the decomposition can be

acceptable. Higham (1990) also showed the incomplete Cholesky decomposition is a stable

method. Fine and Scheinberg (2001) derived the bound of the approximation error and showed

the error bound is acceptable in the SVM problem.

The SVM problem MP considered in this dissertation in section 3.3.1 has the Hessian

matrix which is a symmetric and positive semi-definite. The incomplete Cholesky decomposition

method is applied to that system. The Hessian matrix in the SVM problem is too dense and large.

Even if the incomplete Cholesky decomposition is applied to the problem, the calculation of

and the space of memory to store the matrix is still a burden. Fortunately, however, the rank of

the Hessian matrix is significantly smaller than its size.

Figure 3.2 Incomplete Cholesky Decomposition

 63

In Figure 3.2, the mark denotes a non-zero element. This research considers the

column-wise decomposition. During the decomposition, the largest diagonal element of the

Cholesky factor is moved to the active column. For example, the algorithm calculates all

diagonal elements of the matrix which are the Cholesky factors and finds the largest one. The

largest diagonal elements are moved to the first column using a permutation. Then the rest of the

elements in the first column are calculated. That is the end of the first iteration or pivoting. The

next iteration is for the second column of the . At the iteration, if the largest diagonal

element is zero, then the procedure of is stopped. Therefore the values of diagonal elements are

 . In this case, the rank of the Hessian matrix is . In Figure 3.2, the rank of

the Hessian matrix is two. The incomplete Cholesky decomposition method is sometimes used

as a way to calculate the rank of a matrix. The rank in the SVM problem is significantly

smaller than the size of the Hessian matrix . This property is advantageous for the calculation in

the new algorithm because the algorithm needs to calculate the product between the matrix and

the vector and the computer memory space to store the matrix . The incomplete Cholesky

decomposition in this research is based on the method in Fine and Scheinberg (2001). The

algorithm uses the symmetric permutation which is known as symmetric pivoting introduced in

Golub and Van Loan (1996). The detail algorithm is as follows.

Incomplete Cholesky Decomposition

for : Column-wise decomposition

< Step 1 : Calculate all remaining diagonal Cholesky factors >

 for

 for

 end

 end

 if

 : Check the positiveness of the diagonal factor

< Step 2 : Find the largest diagonal factor >

 64

 find such that

< Step 3 : Swap the largest one and current active element >

 for : Column

 end

 for : Row

 end

 Swap the permutation matrix

< Step 4 : Calculate the rest of Cholesky factors in the active column >

 for

 for

 end

 end

 for

 end

 else

< Step 5 : Finish the decomposition >

 break

 end

end

 65

The elements of are separately stored into diagonal elements and the others for

the convenience of the calculation. denotes an element in the Hessian matrix and is a

permutation matrix. The first step is to calculate all remaining diagonal Cholesky factors so that

the algorithm can find the largest diagonal element among them. If the diagonal element is

positive, then the algorithm finds the largest diagonal element and permutes the element and the

active element for both the column and the row. Then, the method calculates the rest of the

elements of the column. The algorithm goes to the next column and continues this process. If the

diagonal element is not a positive or less than a certain tolerance, then the algorithm is stopped

and the current number of column is the rank of the Hessian matrix.

If one takes an attention to the access to the original matrix , the diagonal elements of

are only frequently accessed more than once through the decomposition process in step 1, but the

others are accessed only once in step 3. This property is a great advantage for the SVM problem.

The access to the Hessian matrix in the SVM problem means to calculate the kernel functions

because the Hessian matrix is a kernel matrix as the (3.23) in section 3.2. Therefore one needs to

calculate whenever the algorithm accesses the Hessian matrix during

the decomposition procedure. The incomplete Cholesky decomposition is the most time

consuming calculation in the proposed solving procedure and the less calculation of kernel

functions is very helpful to the amount of calculations. Moreover, the Hessian matrix does not

need to be stored explicitly. Instead, one only needs to store the lower triangular matrix . The

algorithm can save the memory space with the amount of . There are several

other issues for the implementation for the new algorithm as will be shown in the next section.

3.3.4 Implementation Issues

This section describes the implementation issues for the new solving procedure in the

computer programming. The C programming language is used to implement the algorithm in a

Linux system. The most time consuming calculations are related to the incomplete Cholesky

decomposition and the calculation of the multiplication between the Hessian matrix and the

variable vector . Another issue is to store the lower triangular matrix . The details are in the

next sections.

 66

3.3.4.1 Storing the lower triangular matrix

Using the incomplete Cholesky decomposition, the memory space is significantly

reduced. Let the Hessian matrix be a matrix and the matrix from the incomplete

Cholesky decomposition be . In the SVM, is significantly larger than . For example, if

 and , then the amount of saving space is

 . If is larger, then one can save more space. Nevertheless, the matrix needs a big

memory space for a large scale problem. Sometimes, the rank of the Hessian matrix in the SVM

problem is a little large up to about ten percent of the size of Hessian matrix. In this case, if

 , then . then (ten million) memory space is required. If one

uses an array to store this matrix in C programming language, then it is not efficient and ends up

the program with a core dump.

Figure 3.3 L matrix from the incomplete Cholesky decomposition

Another way one may consider is to store only non-zero elements out of the matrix .

However, the zero elements are only ones at the upper diagonal side because the matrix is too

dense. Since there are only a few zero elements in the matrix as can be seen in Figure 3.3, this

method is not very beneficial.

Therefore, this research proposes a simple and efficient method to store the matrix . The

idea is to store the elements of into several single dimensional arrays.

 67

Figure 3.4 The method of storing L matrix

Figure 3.4 describes the way to store the matrix . If is too big to be stored in a

single array, the method can put them into two arrays separately. Let the size of or matrix

be which is not so big. The details for storing are as follows.

Insert or Refer the Cholesky factors

Step 1 Calculate the refer number

Step 2 Find the position to insert or refer the element

If ,

 insert or refer the Cholesky factor to th position in the array

else

 insert or refer the Cholesky factor to th position in the array

For example, one assumes that the element should be referred in Figure 3.4. The refer

number is calculated as . Since , the position is th

 68

position in array . There is one calculation for the refer number and one comparison for the

size of the value to find the array or . The method can use more than three matrices such

as , , , . In this case, this technique can handle larger scale problems, but the efficiency

would be down because the method needs more comparing operations to find the array. This

research uses two arrays and .

3.3.4.2 Calculation of

In the main algorithm in section 3.3.1, the calculation of the coefficient of linear term of

the objective function in step 2 is a little complicated. The algorithm needs to solve this

subproblem at every iteration. The calculation should be frequently conducted

during the solving procedure. The Hessian matrix is decomposed by in step 1. The

calculation is the most time consuming task for calculating the coefficient.

Let be a matrix. is a matrix and is a column vector with the size . It

is better to calculate the multiplication between a matrix and a vector than between two matrices.

First, one calculates . The dimension of calculation is . Let

 be a vector with the size . The elements are

 ,

 , ,

 . The next calculation is and the dimension is

 . There are two cases in this calculation. If , the final value

 ,

where is an element of . If , the value

 .

This type of calculation is frequently used in this solving procedure. This research

uses that calculation to find and values in (3.60) and (3.61). The BB rule for updating

parameter also uses the calculation of where is the direction vector. The objective

function value also needs to use this calculation.

During the line search procedure, is updated by to find the best .

Every time the variable is updated, the algorithm checks the objective function value. Then the

calculation needs to be repeated for new values. To avoid this burden, one can use an

efficient way. At each iteration, the method already has the calculation for the coefficient

of linear term and for the BB rule. If the algorithm needs to calculate , the

variables can be separated as follows.

 (3.97)

 Using (3.97), the algorithm does not need to calculate for all different values.

 69

3.3.4.3 Calculation of new and initial solution

In SPGM and AA, the methods used a one dimensional quadratic interpolation method to

find a new . One dimensional optimization method has two different types: search and

approximation in Antoniou and Lu (2007). The quadratic interpolation method is an

approximation method in one dimensional optimization. While a linear interpolation needs two

points because two coefficients need to be calculated, a quadratic interpolation usually needs

three points to find three coefficients. Let us consider a one dimensional optimization problem

such as . One can approximate a polynomial function
 .

Let
 . If one knows three different points

 and their function values , then all coefficients can be obtained

by solving three simultaneous equations. By the approximation, the minimum value of is

close to the original minimum value of .

In the SVM problem, Only two points are known such as and in the line

search method and try to find a point , where , between the two points. There

is a quadratic interpolation method with two points if there is information about two points and a

first derivative of the function. Let
 denote the first derivative, two points known, and

 be a minimum value. Then, the algorithm has three equations: , , and

 .

Solving these equations, the minimum value is as follows. The details are in Antoniou

and Lu (2007).

 (3.98)

In the new solving algorithm, , , and
 . Therefore, one can

obtain the new value of as follows.

 (3.99)

Another issue is to set up an initial feasible solution. Two constraints are used for finding

an initial solution. The two constraints are (3.71) and (3.73) : and . The value

 has only one of two values and . Let be a number of 's and be a number of 's.

From the constraint , let for all and for all

 . Then two constraints can be rewritten as follows.

 70

 (3.100)

 (3.101)

Solving these two equations, one can obtain and as follows.

 and

 (3.102)

Once one gets the number of and values for , if , then the initial

,

and otherwise

.

3.4 Experimental Results

This research has conducted some experiments with the way of combination of matrix

splitting with gradient projection method, Incomplete Cholesky, and some options for the line

search and the updating alpha methods. The data are from LIBSVM data collections. The

algorithm is implemented in C programming language, complied using gcc and ran on a Fedora

13, 64 bit Red Hat Linux machine with 4 GB memory and Intel i7 QuadCore Bloomfield CPU

running 2675 MHz. This research has compared four different methods for the line search and

updating parameter method in the newly proposed main algorithm.

Table 3.1 SPGM method

Problem Data Feature Kernel Rank SV BSV Training error Time (second)

Splice
1,000 60 Polynomial 979 1,000 0 7.10% 3.72

1,000 60 Gaussian 979 1,000 0 0% 3.88

Svmguide1 3,089 4 Polynomial 1,846 3,089 0 35.25% 58.29

Adult 4 4,781 123 Polynomial 1,193 4,781 0 24.26% 38.19

Mushrooms 8,124 112 Polynomial 701 8,124 0 10.91% 80.5

Table 3.1 shows the results for SPGM method described in section 3.3.2.1. The problems

are medium sized. The algorithm uses polynomial or Gaussian kernel function. The rank denotes

the rank of the Hessian matrix derived from the incomplete Cholesky decomposition. In this

result, though the testing errors and the solution time are not bad, the number of support vectors

is too large, which is not efficient because one should use all data point to test other problems.

 71

Table 3.2 GVPM method

Problem Data Feature Kernel Rank SV BSV Training error Time (second)

Splice
1,000 60 Polynomial 979 1,000 0 7.10% 4.12

1,000 60 Gaussian 979 1,000 0 0% 4.05

Svmguide1 3,089 4 Polynomial 28 2,887 663 6.53% 0.3

Adult 4 4,781 123 Polynomial 1,193 2,378 717 24.84% 38.75

Mushrooms 8,124 112 Polynomial 701 8,124 0 10.85% 85.2

Table 3.2 presents the results of the GVPM method. The training errors and solution

times are similar to the SPGM method. The number of support vectors is much smaller than that

of SPGM method in two problems such as svmguide1 and adult4.

Table 3.3 MSM method

Problem Data Feature Kernel Rank SV BSV Training error Time (second)

Splice
1,000 60 Polynomial 979 1,000 0 6.60% 4.08

1,000 60 Gaussian 979 1,000 0 0% 4.13

Svmguide1 3,089 4 Polynomial 28 495 417 4.14% 2.56

Adult 4 4,781 123 Polynomial 1,193 2,533 267 24.84% 23.33

Mushrooms 8,124 112 Polynomial 701 5,969 190 1.32% 80.03

The MSM method has better results than the previous two methods. Though the solution

time is similar to GVPM method, the training errors are much better than other methods. The

number of support vectors is also smaller than others.

Table 3.4 AA method

Problem Data Feature Kernel Rank SV BSV Training error Time (second)

Splice
1,000 60 Polynomial 979 1,000 0 6.40% 4.17

1,000 60 Gaussian 979 1,000 0 0% 3.97

Svmguide1 3,089 4 Polynomial 28 495 429 4.14% 3.14

Adult 4 4,781 123 Polynomial 1,193 2,133 1342 22.63% 41.03

Mushrooms 8,124 112 Polynomial 701 4,922 568 1.13% 84.83

Table 3.4 describes the results of the AA method. The results are very similar to the

MSM method. The number of support vectors is also small and the training error has good

results.

 72

From these results, the MSM and AA method have better results than other two methods

in terms of the training error and the number of support vectors.

Table 3.5 Large-scale problems (MSM method)

Problem Data Feature Kernel Rank SV BSV Training error Time (second)

Adult 6 11,220 123 Polynomial 510 5,713 549 23.99% 60.69

Adult 7 16,100 123 Polynomial 487 4,686 4,047 24.33% 75.63

Table 3.5 shows the results of two large scale problems. One usually says the problem of

which size is larger than 10,000 is a large scale problem in SVM. This result has good training

errors and especially the number of support vector is significantly smaller than the size of the

problem.

Table 3.6 Large-scale problems (AA method)

Problem Data Feature Kernel Rank SV BSV Training error Time (second)

Adult 6 11,220 123 Polynomial 510 5,713 549 23.99% 60.69

Adult 7 16,100 123 Polynomial 472 3,140 2,466 24.33% 73.08

Adult 8 22,696 123 Polynomial 467 4,377 3,831 24.25% 81.01

ijcnn1 49,990 22 Polynomial 202 49,990 0 9.70% 61.87

Table 3.6 represents the results for large scale problems using AA method.

In the -SVM problem, the range of is . The next experiments show the

changes of the training error and the number of support vectors as the parameter changes.

Table 3.7 Sensitivity Analysis of ν for svmguide1 (GVPM method)

Problem Data Feature nu SV BSV training error time (sec.)

Svmguide1 3089 4 0.3 2,101 144 7.02% 0.35

0.4 2,887 663 6.53% 0.3

0.5 2,121 328 8.02% 0.35

0.6 1,676 1148 7.64% 0.33

0.7 2,178 1420 10.65% 0.39

As the parameter increases, the training error increases and the number of support

vectors is a little changed. The number of bound support vectors increases.

 73

Table 3.8 Sensitivity Analysis of ν for mushrooms (GVPM method)

Problem Data Feature nu (ν) SV BSV training error time (sec.)

Mushrooms 8124 112 0.2 4,922 568 1.13% 84.83

0.3 8,115 219 1.64% 91.08

0.4 6,741 0 2.90% 89.21

0.5 7,735 152 6.40% 87.72

0.6 6,570 947 9.90% 84.81

0.7 6,571 4,266 10.36% 85.44

0.8 6,980 5,658 10.42% 89.1

Table 3.8 shows the results of the sensitivity analysis of for mushrooms. The result is

similar to the result of Table 3.7. As the parameter increase, the training error increases and the

number of support vectors and bound support vectors increase.

Table 3.9 Comparisons of Bitran-Hax and Dual Bound algorithm (AA method)

Problem Data Feature Kernel Method Time (Second)

Adult 1 1,605 123 Polynomial
Bitran-Hax 19.73

Dual Bound 20.44

Adult 2 2,265 123 Gaussian
Bitran-Hax 77.68

Dual Bound 78.1

Adult 3 3,185 123 Gaussian
Bitran-Hax 48.84

Dual Bound 48.99

Adult 4 4,781 123 Polynomial
Bitran-Hax 31.99

Dual Bound 31.54

Adult 5 6,414 123 Polynomial
Bitran-Hax 45.21

Dual Bound 43.05

Adult 6 11,220 123 Polynomial
Bitran-Hax 60.62

Dual Bound 59.8

The SVM problem has a subproblem as the quadratic knapsack problem. Table 3.9

compares the Dual Bound and the Bitran-Hax algorithm. Like the results in chapter 3, the Bitran-

Hax algorithm works a little better than the Dual Bound when the size of the problem is small.

As the size of the problem increases, the Dual Bound algorithm gets better solution time.

The experimental results showed that the four different methods have different results for

the line search and updating the parameter method. The SPGM and GVPM have good results for

the training error and the solution time, but the large number of support vectors is a problem. On

 74

the other hand, the MSM and AA method have better results for the training and the solution

time than the other two methods. The number of support vectors is also much smaller than the

other two ones. This research also has good results for large scale problem with the newly

proposed decomposition approach. The results in the last two tables showed the properties of -

SVM problem well.

3.5 Conclusions

In this chapter, this research proposed a new solving approach for the -SVM

classification problem. The solution of the -SVM problem is obtained by solving a quadratic

programming problem with linear constraints and box constraints. The quadratic programming

problem is a singly linearly constrained quadratic convex problem with box constraints. The

SVM problem has a huge and dense Hessian matrix that is hard to solve with a traditional

method for the quadratic program.

The newly proposed method uses a matrix splitting and gradient projection method with

the incomplete Cholesky decomposition method. The matrix splitting method decomposes the

Hessian matrix into a sum of two simple matrices and makes a subproblem with the simple

Hessian matrix that is a nonlinear knapsack problem. The algorithm solves the subproblem

iteratively using the Bitran-Hax or Dual Bound algorithm until the optimal solution is obtained.

During the procedure, the new algorithm uses a similar gradient projection method including the

line search and using a parameter . However, this method can be only used to solve medium

sized problems. For the large scale problems, new algorithm uses the incomplete Cholesky

decomposition method. The incomplete Cholesky decomposition method is well known as a

simple, stable, and accurate. Moreover, the algorithm took advantage of solving a singly linearly

constrained quadratic convex problem by using some other methods for the line search and

updating parameter methods.

The algorithm proposed in this research has a solving procedure as a combination of the

matrix splitting method, gradient projection method, and the incomplete Cholesky

decomposition. With this frame of methodology, the methods of the line search and updating

parameter such as BB type rule are open to be used from the research of a singly linearly

constrained quadratic convex problems. In addition to that, the subproblem resulted from the

 75

matrix splitting is a quadratic knapsack problem. The Dual Bound algorithm or Bitran-Hax

algorithm introduced in chapter 2 can be used to solve the problem.

Some experimental results have shown that new algorithm solved medium sized

problems and large scale problems as well. Although the results have not shown a significant

improving or accuracy comparing with other well known software, the algorithm has performed

well in the medium and large scale problems. That can be seen as a great potential and promising

solving algorithm for the -SVM problem. Furthermore, many methods for the line search and

updating parameter can be plugged in new algorithm to be extended or improved. This

methodology can be an alternative and another direction of solving the SVM problem.

 76

CHAPTER 4 - Supplier Selection

In this chapter, this research applies the SVM classification to the supplier selection

problem. Supplier selection is one of important issues in supply chain companies that need to

purchase raw materials or components from upstream suppliers in order to produce finished

goods. The SVM classification is used to select qualified suppliers out from all potential

suppliers. Among the qualified suppliers obtained by the SVM, the final suppliers are selected by

solving a mathematical programming problem. The procedure of these two steps is called an

integrated approach for supplier selection. This research proposes an efficient integrated method

for the supplier selection problem using SVM classification and the mixed integer programming

model.

The motivation for the research in this chapter is to handle high dimensional supplier

selection problems and to develop an efficient and fast method for solving those problems.

Industries continue to expend, to become more interactive and complicated. Supplier selection is

also becoming a high dimensional problem. Qualitative methods successfully handle large

amount of intangible information and find the best solution for each case. However, qualitative

methods are limited by dimension and generalization. For this reason, a number of quantitative

methods have been proposed for solving the supplier selection. The quantitative methods can

solve problems of higher dimension, but the methods require the numerical information from

qualitative methods. Therefore, the integrated approach of the qualitative and quantitative

methods has become the focus of research in recent years. This chapter proposes an efficient

approach, integrating the SVM and the mathematical programming to solve the supplier

selection problem that may be a large scale problem.

4.1 Supplier selection

As product complexity has increased, manufacturing companies depend more on

outsourcing or purchasing parts of a product or materials for the production from other

companies. These upstream companies are suppliers. Procurement in a manufacturing company

has become an important issue because it directly affects the quality of product, on-time delivery,

inventory control, and production planning. Moreover, the procurement plays an important role

 77

in determining the cost structure of a product which largely relies on which suppliers the

company has worked with.

The supplier selection is a problem that selects the best suppliers that meet the

requirement of the buyer company. Aissaoui et al. (2007) described types of supplier selection

problems, focusing especially on number of suppliers and criteria. This research considers the

multiple suppliers and multiple criteria. The multiple suppliers, also known as multiple sourcing,

can avert product shortages and keep competition among eligible suppliers. The multiple criteria

can help in making better decisions. A company cannot change suppliers every day, so once a

company selects suppliers to work with, formal contracts usually are signed to ensure the terms

and conditions of the procurement requirements and to govern the supply chain coalition,

therefore, the company would keep purchasing from the suppliers for a while because frequently

changing suppliers is costly and time consuming task. This is a reason that supplier selection is

important and should be prudent in many companies. Moreover, the criteria for selecting

suppliers have conflicts with each other. For example, a supplier with good quality or service

may not be the supplier has lowest prices. Therefore, the supplier selection requires compromise

among the criteria. The criteria have both tangible and intangible factors such as prices and

services. The decision on suppliers requires accommodating subjective standards even if a

quantitative, systematic method is used for selecting suppliers. However, the qualitative factors

cannot be directly factored into mechanical solution procedure, but they are instead transformed

into numerical scores. The four steps of selecting suppliers are in the following subsections as

described in De Boer et al. (2001) and Aissaoui et al. (2007).

4.1.1 Problem definition

The problem definition requires a company to establish a goal for purchasing materials or

components from suppliers. The company may expect an improvement in the quality of the

product, a better service for customers, a lower pricing strategy, and so on. Depending on how

the decision maker defines the problem, the rest of the selection steps change. This step depends

on the decision maker's opinion.

4.1.2 Deciding on Criteria

The company should decide which criteria are used for selecting suppliers. The criteria

denote the measurement of the value of suppliers. There are many factors in establishing the

 78

supplier selection criteria describing the values of a supplier such as price, service, delivery

accuracy, quality, and so on. Once a company defines the goal of procurement, the criteria are

determined to achieve the goal. These criteria could be different from one company to another

because their procurement goals are different from each other. Decisions on criteria are also

subjective as the same as the previous step. A company may choose only one criterion. However,

the multiple criteria are usually preferred because the company's decision would be driven by

more than one objective.

The factors can be divided into two types such as quantitative and qualitative. For the

convenience of measuring, the qualitative factors are expressed in numbers. Dickson (1966)

surveyed many companies for supplier selection issues and introduced 23 factors for the criteria.

Weber et al. (1991) presented 74 factors with the same way of Dickson's study. The majority

factors for the supplier selection problem are covered by these factors until today. The factors

often correlate with each other. For example, if the supplier's price is low, then the quality may

be low as well. Since there are some interactions between factors, a compromised solution

becomes necessary. The large number of factors is not always better than the small number of

factors because using too many factors makes the goal of procurement meaningless and is

difficult to collect data. The decision of the criteria is totally up to the environment of the

company. For additional information, see Aissaoui et al. (2007).

4.1.3 Pre-selection

Once the criteria are determined, the company should collect data on suppliers for all

criteria to help in evaluating supplies. The company can then select suppliers who meet these

criteria. In this step, the company selects qualified suppliers from all potential suppliers. In fact,

before the pre-selection step, the company should collect the data of suppliers for all factors

because the data are necessary for evaluating suppliers. This research assumes the collection of

the data has finished at the end of the decision of the criteria. The qualified supplier denotes the

potential supplier that satisfies a certain level of the criteria and has possibility to be the final

supplier to contract with the buyer. If the company selects the final suppliers with the criteria

without the pre-selection, that seems to be simple. However, using two steps for the selection can

get better selection than single step. It is the same reason the recruiting procedure usually uses

the screening first and then does the interview. This strategy reduces the failure rate of the

 79

selection. The pre-selection step also called as the pre-qualification divides the suppliers into

qualified suppliers and the others. The other suppliers would not be considered for the final

suppliers. The selection of qualified suppliers is a binary classification problem that classifies

suppliers into two groups. Any one of several quantitative methods can be used in this step. The

literature reviews for the methods can be found in De Boer (2001), Aissaoui et al. (2007), and Ho

et al. (2010).

Qualitative methods have been used for pre-selection. Wright (1975) suggested a

lexicographic rule that evaluates all suppliers with the most important criterion first and then

checks the other criteria sequentially. Crow et al. (1980) proposed a conjunctive rule that uses

the minimum threshold for each criterion and selects only suppliers that satisfy all minimum

thresholds. The categorical method was introduced by Timmerman (1986). Using the criteria, the

method categorizes suppliers into three groups: good, neutral, and bad.

Data Envelopment Analysis (DEA) is a method to use the ratio of multiple inputs and

outputs. The DEA can classify suppliers into efficient and inefficient groups in Weber and

Ellram (1993), Weber and Desai (1996), Weber et al. (1998), Papagapiou et al. (1997), and Liu

et al. (2000). The DEA is a method for analysis of the system that has multiple inputs and

outputs. Thus, the supplier selection, with its multiple criteria, can be solved with DEA.

However, the main drawback of DEA is the difficulty of model specification, because results are

very sensitive to the selection of inputs and outputs.

Data mining is anther approach that could be used for the pre-selection problem. Cluster

analysis (CA) minimizes the differences between values within a group while it maximizes the

differences between values from different groups. Hinkle et al. (1969) and Holt (1998) applied

the CA to classify the suppliers. However, this method has no mechanism for differentiating

between relevant and irrelevant variables and is an unsupervised learning method which has

lower accuracy than the supervised method.

Case based reasoning (CBR) is also used for this problem. The CBR uses the previous

decision history or similar results. Ng et al. (1995) developed a CBR system for the pre-selection

problem.

 80

4.1.4 Final selection

The last step of the supplier selection is to determine the final suppliers to make contracts

and assign the order quantities to them. The final suppliers are selected out of the list of qualified

suppliers which were selected in the pre-selection step. There are two problems in this step. First,

the company should select the final suppliers from the qualified suppliers. This problem is the

same as the pre-selection problem. Therefore, the methods in the previous section can be also

used for this problem. Next, the final suppliers are allocated the orders. This is an allocation

problem with certain capacity constraints. The combination of two methods can be used for this

step.

This research considers a multiple sourcing problem that has one more suppliers. In

addition, this research considers the number of items or materials can be supplied by a supplier.

If the material is a single unit, each supplier has only one material, which is a simple case. On the

other hand, if the material is a multiple type, then each supplier can produce or provide two or

more materials. In this case, the procurement decision can consolidate the purchase to obtain the

quantity discount from suppliers. The supplier and the buyer company may also reduce the

ordering and logistic cost. For discount, the ordering may change, which affects the inventory

management factors for the buyer company. This complicates the problem, making it harder to

solve as described in Aissaoui et al. (2007). In addition to considering the multiple material

types, the time period can be considered in the supplier selection. Most studies and methods for

the supplier selection are dealing with the single period. On the other hand, some studies have

considered the supplier selection problem with multiple time periods such as Aissaoui et al.

(2007). Such multiple period models must consider the inventory management and the lot sizing

rule. Furthermore, other studies like Rosenblatt et al. (1998), Ghodsypour and O'Brien (2001),

Liao and Kuhn (2004) have identified the economic order quantity (EOQ) concept as useful in

selecting suppliers under these conditions. The lot sizing rule is also considered in Buffa and

Jackson (1983), Bender et al. (1985), Tempelmeier (2002), Hong et al. (2005).

The mathematical programming approach has been widely used for solving this step such

as linear programming, integer programming, nonlinear programming, stochastic programming,

goal programming, multi-objective programming, and so on are discussed in De Boer (2001),

Aissaoui et al. (2007), and Ho et al. (2010). The objective function of the mathematical model is

formulated to minimize costs or maximize profits. The constraints are the capacity of the

 81

supplier and tolerances of the factors the company considers. The most advantage of the

mathematical programming method is the ability to assign the order quantities to the final

suppliers if decision variables are defined as the amount of order quantity for each final supplier.

This ability means that the mathematical programming method can be used in combination with

other methods. For example, a classification method selects the final suppliers and then the

mathematical programming method assigns the order quantity. This approach is called as an

integrated approach.

The total cost of ownership (TCO) model uses the total cost, including all relevant costs

of purchasing, to select suppliers. Ellram (1995) introduced this method, but TCO has been

combined with rating system in Monczka and Trecha (1988) and Smytka and Clemens (1993)

and with mathematical programming in Degraeve et al. (2004). Although finding all relevant

costs can be difficult, the method uses more detailed information to select suppliers.

The integrated approach is useful in this step because the problem has two issues such as

selecting and assigning. Mathematical programming is a common assigning method. Among

many selecting methods are the methods mentioned in the pre-selection step and the analytical

hierarchy process (AHP), a popular analytical tool that provides the scores for all suppliers

derived by pair-wise comparisons between suppliers. AHP can be used for the multiple criteria

problems and directly handle both quantitative and qualitative factors. One of integrated

approaches has the AHP selects the final suppliers and the mathematical programming assign

order quantities to them. The fuzzy set theory and DEA are also used for the final selection in

combination with mathematical programming.

4.2 Literature Review

Supplier selection is an important issue in companies because it directly affects the

profits and combines with other functions such as production, sales, finance, and so on. In this

respect, extensive studies have been proposed to solve this problem. Depending on what the

company prefers, an individual or integrated approach may be used to select suppliers. For

example, a company might use only the AHP method, but another company may use an

integrated approach with both the AHP and the mathematical programming method. This

research focuses on the integrated method because the supplier selection occurs in two major

steps such as selecting and assigning, and these two steps each need a solution. The idea in this

 82

research is to use the support vector machine (SVM) for the pre-selection step. This section

reviews the literature of the integrated approaches for the supplier selection and using SVM in

the supply chain management.

4.2.1 Integrated approaches

The integrated approach to select suppliers uses more than two methods. Most integrated

approaches use two methods for the two different steps. In this case, the first step selects

qualified suppliers and the second step selects the final suppliers and allocates orders to the final

suppliers. The mathematical programming method is usually used for the second step while one

of many classification methods is used for the first step.

Ghodsypour and O'brien (1998) proposed an integrated method of the supplier selection

using the AHP and the linear programming method. AHP uses both tangible and intangible

factors and find the final scores of suppliers. The final scores is the coefficient of the objective

function of linear programming in the next step. The linear programming model maximizes the

total value of purchasing (TVP) and the solutions provide the order quantities for the final

suppliers.

Weber et al. (1998) suggested a little different approach, using the mathematical

programming first. The multi-objective programming (MOP) method selects suppliers first. With

the optimal solution from MOP, the method then finds a selection path which improves the MOP

criteria performance so that some non-selected suppliers can be included in a specific MOP

solution. One of three methods they proposed to find the selection path is the data envelopment

analysis (DEA).

Cebi and Bayraktar (2003) used a combination of AHP and the lexicographic goal

programming (LGP) to solve the supplier selection problem. AHP finds the scores for all

objective functions and the LGP assigns orders to the suppliers. Wang et al. (2004) proposed an

integrated method using AHP and preemptive goal programming (PGP). The AHP method

selects the suppliers and PGP assigns the order quantities to the suppliers.

Hong et al. (2005) introduced a method using the meaning period unit (MPU) and mixed

integer programming. They considered multiple period problems. The method divides the total

period into several MPUs and identifies the procurement condition by MPU in the pre-

qualification step. Mixed integer programming is used in the final selection step. Sarfaraz and

 83

Balu (2006) suggested a method combining the quality function deployment (QFD), AHP, and

PGP. QFD helps make criteria measurable. AHP then selects suppliers meeting the criteria, and

PGP then assigns orders. Tseng et al. (2006) used the rough set theory (RST) to manipulate the

data, make weight and decision rules for factors, and identify significant features. The method

uses the RST iteratively until the data are appropriate for the selection. Then, the support vector

machine (SVM) selects suppliers. This method integrates an individual approach (RST) and a

population based approach (SVM). Ting and Cho (2008) proposed an integrated approach using

AHP and multi-objective linear programming (MOLP). AHP selects qualified suppliers and the

MOLP assigns orders to the suppliers.

Demirtas and Ü stün (2008) used the analytic network process (ANP) for selecting

qualified suppliers and the multi-objective mixed integer linear programming (MOMILP) for the

final selection. Kumar et al. (2004) and Azadeh et al. (2010) suggested an integrated approach of

the AHP and fuzzy linear programming. Kokangul and Susuz (2009) proposed a method of

combination of the AHP and nonlinear integer multi-objective programming. Che and Wang

(2008) used the genetic algorithm (GA) and mathematical model for supplier selection and

production planning. Kuo et al. (2010) introduced a method that integrated particle swarm

optimization (PSO), fuzzy neural network (FNN), and artificial neural network (ANN). FNN

collects the qualitative data, and PSO provides the initial weights for the FNN model. The ANN

selects suppliers using the qualitative data from FNN and quantitative data from the ERP or

database system. Their method takes the advantages of machine learning like the artificial neural

network. As Kuo et al. (2010) mentioned, the ANN type method has strengths that do not need

complex formulation, but can handle large scale data and uncertainty. However, the neural

network has drawbacks: slow convergence, lack of generalization, and lack of theoretical basis.

On the other hand, the support vector machine (SVM), another machine learning method,

overcomes these problems. This research uses the support vector machine for selecting potential

suppliers using past data.

4.2.2 Support vector machine in supply chain management

Supply chain management (SCM) becomes an important issue in both industries and

academia. The SCM aims to achieve the optimal condition for all related sectors such as the

buyer, supplier, transportation, customer, and so on. Support vector machine (SVM) is a new

 84

supervised learning method for regression and classification which overcomes drawbacks of

neural network method theoretically and practically. There does not seem to be any relationship

between the SCM and the SVM.

However, in recent years, some researchers have tried to connect SCM with SVM. SCM

can be one of applications of SVM. On the one hand, SVM can be one of methodologies of

SCM. SVM is used in SCM in such a way of supplier selection, demand forecasting, and the

others. For the literature of supplier selection, Sun et al. (2005) proposes a supplier selection

model based on support vector machine for classification problem and presents the supplier

selection criteria and quantitative methods using fuzzy and pairwise comparison. Wen and Li

(2006) establish a set of index system which uses multi-layer SVM classifier to assess the credit

grade of suppliers. Hsu et al. (2007) applies the SVM to build the supplier evaluation classifier

and uses the Likert and Fuzzy for scaling data. Guosheng and Guohong (2008) use the SVM for

regression problem to predict the credit index of suppliers. Cai et al. (2008) divides the supplier

selection stage into two stages; primary election and well-chosen. SVM for classification

problem is applied in supplier primary election stage. Next, for the demand forecasting,

Carbonneau et al. (2008) uses the SVM for regression problem to forecast distorted demand

signal with high noise in the context of supply chain. Shouquan and Zhiwen (2007) forecast the

demand of multi-echelon of the supply chain based on SVM for regression problem which aims

to alleviate the bullwhip effect and to improve the supply chain performance. Yue et al. (2007)

employs the technique of SVM for regression problem to forecast the demand of beers for

retailers. Carbonneau et al. (2008) compares several machine learning techniques including SVM

for regression problem to forecast the distorted demand at the end of a supply chain. At last, for

the other trials, Li et al. (2005) considers SVM as a reasoning method to find an effective

solution of collaborative identification of coordination questions in supply chain. Wan et al.

(2005) applies the simulation optimization with surrogate model to SCM. The Least Square

Support Vector Machine (LSSVM) captures the casual relations embedded in simulation results.

Xiaohui et al. (2007) uses the recognition and regression forecasting function of the support

vector machine to put forward the order forecasting model.

 85

Table 4.1 Supply Chain Management with SVM

Application Type Authors Year Software Data Input Output Comparisons

Supplier

Selection

Classification Sun et al. 2005 N/A Simple ex. 7 3 FS

Classification Wen & Li 2006 N/A Simple ex. 13 4 BPNN

Classification Hsu et al. 2007 LIBSVM Questionnaire 5 3 SLF

Regression
Guosheng &

Guohong
2008 N/A Simple ex. 5 index BPNN

Classification Cai et al. 2008 WINSVM Simple ex. 7 2 3 Kernels

Classification Guo et al. 2009 N/A Real data 30 7 SVM

Demand

Forecast

 Regression
Carbonneau

et al.
2007 mySVM ERP(real) D D ANN/RNN

 Regression
Shouquan &

Zhiwen
2007 N/A Logistics(real) 6 D ANN

 Regression Yue et al. 2007 LIBSVM Retailer's(real) 7 D

Statistical

method,

Winder model,

RBFNN

 Regression
Carbonneau

et al.
2008 LS-SVM Real data D D NN, RNN

 Regression Wu 2010 N/A Real data 6 D v-SVM

Lead time

Forecast
Regression

de Cos Juez

et al.
2010 N/A Aerospace 12

Lead

time
Cox model

Collaborative

Identification
Classification Li et al. 2005 LIBSVM Simple ex. 7 2 N/A

Simulation

Optimization
 Regression Wan et al. 2005 N/A Simple ex. N/A N/A N/A

Order

Prediction
 Regression Xiaohui et al. 2007 LIBSVM Simple ex. 6 7 BPNN

Table 4.1 shows the literature of using the SVM in the supply chain management. The

two major applications are the supplier selection and the demand forecast. The SVM

classification is applied to the supplier selection and the regression is for the demand forecast.

The software column describes the well-known software used in that research and 'N/A' means

that the authors implemented the algorithm. In the input and output columns, the D denotes the

demand. The number in the input column denotes the index or factor. For example, 7 represents

the 7 factors. The number in the output column represents the class or grade. The 'Simple ex' in

the data column denotes a simple example. The last column for the comparisons is the method

compared with the SVM in the literature. The methods in the last column are abbreviated as

follows. FS is for the fuzzy synthetical evaluation. BPNN is for the back propagation neural

network. LSF is for the scaling by Likert and fuzzy. ANN is for the artificial neural network.

RNN is for the recurrent neural network. RBFNN is for the radius basis function neural network.

 86

4.3 Methodology

As it can be seen in the section 4.1, a variety of methods can be used for each step of the

supplier selection solving procedure. Although the first two steps such as the problem definition

and the criteria decision are important, they are heavily dependent on the experience and

knowledge of experts. Therefore, the qualitative methods are used to solve those problems. On

the other hand, the last two steps such as the pre-selection and the final selection are complicated

to solve with the qualitative methods. If the number of suppliers and factors are large, the

problem gets more complicated. For the high complexity problems, the quantitative methods can

be more attractive than the qualitative methods. This research focuses on the pre-selection step

using the SVM and the final supplier selection using the mathematical programming. This

research assumes the problem with multiple sourcing and a single period. If one assumes the first

two steps are already determined, the selection procedure of simple version is as follows

(Aissaoui et al., 2007).

Figure 4.1 Supplier Selection Procedure

The interest in this research is the last two steps as can be seen in Figure 4.1. The pre-

selection step is a classification problem and the final selection is an assignment problem. This

research proposes an integrated method for solving these two steps. If the company has the

history data for suppliers, the SVM can be used to select the potential suppliers because the SVM

needs to use the history data for finding the pattern of the data. After the potential suppliers are

 87

selected with the SVM, the mathematical programming finds the final suppliers and assigns the

order quantities. The procedure of solving method is as follows.

Figure 4.2 Solution Procedure for Supplier Selection

Figure 4.2 presents the solving procedure proposed in this research. The SVM is used to

select the qualified suppliers. The dotted circles described the criteria and the history data given.

After training with the history data, the SVM finds the pattern of the data and makes the decision

function. The data for all potential suppliers are examined by the decision function. The decision

function can determine each supplier is appropriate for the qualified supplier or not. Depending

 88

on the needs or the status of the qualified suppliers, the final suppliers are selected with the order

quantities in the final step using the mathematical programming model. The next two subsections

describe the two steps respectively.

4.3.1 Pre-selection

The pre-selection is to select the potential suppliers out of all eligible suppliers. The

company should predict two things in this step. The simple example of the supplier selection is

as follows.

Figure 4.3 Example of a Supplier Selection Problem

Figure 4.3 shows an example of the pre-selection. The factors in the first row are the

criteria defined at the second step. In this example, the factors are price, quality, lead time, and

service. The company has the information on suppliers for these criteria, but the company

doesn’t know how the suppliers will perform after selecting. And the company also wants to

know which criterion is the most important, the second most, and so on, which are the weights

for the factors. Therefore, the company wants to predict these performances of suppliers after

finding the weights for the criteria. The pre-selection problem is to find the weights and to

predict the performance of the suppliers to contract with.

This research uses the SVM for this problem. The goal for finding the weights and

predicting the performance is to classify the supplier group into the qualified suppliers and the

 89

others. The machine learning method has two types. The one is a supervised method and the

other is an unsupervised method. These two types are distinguished by what data used in the

training phases. The supervised learning method such as the neural network and the SVM uses

the data with the input and the output. In Figure 4.3, the factors are the input and the

performance is the output. On the other hand, the unsupervised method such as clustering

analysis using only input data. In Figure 4.3, the unsupervised method can be directly used

because there are the input data and the performance is unknown. However, this research uses

the SVM in the pre-selection processes. How can one use the SVM? As mentioned earlier, this

research assumes that the history data can be given with the performance. Even if the company

does not have the history data, the company can get the data after one more experience of the

supplier selection.

Figure 4.4 Applying SVM to Pre-selection

Figure 4.4 shows how to apply the SVM for the pre-selection problem. From Figure 4.4,

the training data have the input and the output information. The training data is the history data

given. The procedure that the SVM finds the pattern of the data denotes the training phase. The

pattern of the data is expressed by the support vectors which can be considered as the weights for

the factors in Figure 4.4. With the pattern found from the training phase, the SVM tests the

 90

suppliers and classifies them into two groups such as qualified suppliers and the others. The

details for the SVM are in the Chapter 3.

The advantages of the SVM for the pre-selection are as follows.

(1) The method has a high accuracy. The SVM as a supervised method is more accurate

than the clustering analysis as an unsupervised method.

(2) The method can handle large-scale problems. If the number of factors and the data

size are large scale, the AHP or statistical methods would have difficulties to arrive to

a meaningful solution within the reasonable amount of time.

(3) If the company has the history data, the solution time is minimal. The training and

testing tasks take several seconds or minutes even if the size of data is more than

10,000. On the contrary, using the AHP approaches for solving the pre-selection

problem could be a tedious and prolonged task. For example, the purchasing team

members and the experts would get the questionnaire for asking the pair-wise

comparisons by all factors and then another questionnaire for the comparisons by all

suppliers for each factor. After the collection of the results of the two surveys, the

summary matrix is made with those results and the final weights are calculated. Then

the method checks the consistency of the result. If the consistency is less than a

certain tolerance, the survey is repeated until the consistency is higher than the

tolerance. Though the AHP method has a lot of advantages, there are some

disadvantages. The method may take too long if there is no consensus and it could be

subjective based on the members surveyed.

(4) The current testing data would be the training data in the next period. After testing the

data of suppliers, the results would be the history data in the next time. With larger

training data, the training can be more accurate.

(5) The method does not need a complicated formulation. Regardless of the type of

problem, the SVM only needs to solve a quadratic programming problem.

(6) The method allows some missing data. The SVM can solve the problem even if some

data are missing.

(7) The method is objective and non-parametric. Since the SVM finds a pattern of the

data, the method is more objective than other methods. Unlike statistical methods, the

SVM as a machine learning method does not have parameters.

 91

4.3.2 Final selection

The final selection step is to find the final suppliers among the potential suppliers and to

allocate the order quantities to the final suppliers. In fact, if one solves the assignment problem,

the final suppliers are automatically selected because the suppliers which have positive order

quantities at the optimal solution are the final suppliers. The mathematical programming is a

useful tool for the allocation problem. The decision variable in the mathematical programming

can be defined the amount or fraction of each assignment so that the optimal solution is the final

allocation. This research uses a mixed integer linear programming model for the final selection.

The objective function and constraints for the final selection model are dependent on the

procurement strategies used by the company. For instance, if the company focuses on the quality

of the product, the objective function may maximize the quality of the product and one of

constraints is to restrict the minimum level of the quality. If another company may be interested

in other factors, then the objective function and constraints would be changed according to the

strategy and factors. Therefore, the objective function and constraints in the mathematical

programming model for the final selection may be different by each company.

Ho et al. (2010) showed the most popular factors in the literature are quality, delivery,

and price. This research considers price, quality, delivery, and service. The mathematical model

in this research is based on the model proposed by Pan (1989). Pan (1989) proposed a simple

linear programming model for the supplier selection problem. The decision variables are

fractions of order quantities for the final suppliers. He et al. (2009) suggested an integrated

method of the chance constrained programming model and the genetic algorithm. He et al.

(2009) used Pan's linear programming model and the experimental results showed the solution

tended to be extreme values. For instance, only a few suppliers are assigned to orders. To avoid

these fragmented solutions, He et al. (2009) introduced a tight constraint in the model, but the

results have not been different. In this respect, this research modified the Pan's model into a

mixed integer linear programming. The details are as follows.

Definitions

Set

 : number of the potential suppliers

Variables

 : order quantity for the supplier ,

 92

 : if the supplier is given any order and otherwise,

Define parameters

 : level of quality to achieve (%)

 : level of lead time to achieve (days)

 : level of service to achieve (%)

 : demand from production

 : value of quality of the supplier ,

 : value of lead time of the supplier ,

 : value of service of the supplier ,

 : value of price of the supplier ,

 : value of capacity of the supplier ,

 : ordering cost of the supplier ,

Mathematical Model

(FSP) (4.1)

 (4.2)

 (4.3)

 (4.4)

 (4.5)

 , for all (4.6)

 , for all (4.7)

 , for all (4.8)

The final selection model is a mixed integer linear programming problem. The objective

function is to minimize the aggregated prices and the ordering costs. The constraints (4.2~4)

denote the company should get higher levels of quality, lead time, and service from the final

suppliers. The constraint (4.5) shows the amount of orders should satisfy the demand from

production site. The constraint (4.6) is the capacity constraint that the maximum unit from the

supplier is . The amount of order cannot be negative value in (4.7) and the variable is a

binary in (4.8).

 93

4.4 Experimental Results

This section shows the experimental results for the supplier selection. This research

randomly generated some data for the pre-selection. The sample problems are based on the

examples in Pan (1989) and He et al. (2009). The data are randomly generated from the uniform

distribution with the ranges as follows.

Table 4.2 Property of Data Set

Factors Distributions Required level

Price U[10.0. 11.5] -

Quality (%) U[91, 99] >= 95

Lead time (days) U[22, 30] <= 25

Service (%) U[87, 97] >= 90

These values in Table 4.2 are generated for each supplier and the response value so called

the label is generated as well. The response value denotes the result of the supplier. If the

supplier is successful, the response value is . If the supplier is not successful, the response value

is . First, the values of the four factors are randomly generated. These values are checked if

each supplier satisfies the required level. Among the suppliers that satisfy the requirement, it is

randomly assigned 20% of the suppliers as the successful suppliers. The size of instances is from

 to .

The algorithm was implemented in C programming language, complied using gcc and

run on a Fedora 13, 64 bit Red Hat Linux machine with 4 GB memory and Intel i7 QuadCore

Bloomfield CPU running 2675 MHz. Four different training data were trained with the SVM and

six different testing data were tested with the decision function of the SVM.

 94

Table 4.3 Experimental Results of Pre-selection using SVM

Training data size Testing data size Accuracy (%) Training time (second)

500

30 86.67

0.04

100 84.00

500 67.00

1000 85.80

3000 85.30

5000 85.56

1000

30 86.67

2.46

100 88.00

500 66.60

1000 86.20

3000 86.00

5000 85.86

3000

30 86.67

18.54

100 88.00

500 67.00

1000 86.50

3000 86.44

5000 86.28

5000

30 86.67

37.18

100 88.00

500 66.60

1000 86.70

3000 86.27

5000 85.92

Table 4.3 shows the results of experiments for the pre-selection. When the size of the

training data is or , the accuracies are a little better than smaller ones. The method of

the experiments is AA method described in Chapter 3. The kernel function is the Gaussian

function and the value of is . The data generated by the rules of Table 4.2 need to be

normalized. The normalization in the SVM improves the performance significantly described in

Ali and Smith-Miles (2006). This research uses the Min-Max normalization method as follows.

 (4.9)

(4.9) is the formulation of the Min-Max normalization. denotes the value of the

supplier for a certain factor.
 is the normalized value. and are the minimum

 95

and the maximum value of the column. and are the upper and lower bound. This research

uses and for the lower and upper bound.

The results show there is only a little difference for the accuracy among different sizes of

the training data. The accuracy in the results is appropriate because the response values of the

suppliers are randomly generated out of the suppliers which satisfy the minimum levels of the

requirements. Therefore, the data may have an exact pattern or not. The training time is from

 to seconds. The testing time takes only a few seconds. If the AHP was used to the

problem, it takes more time than the SVM because the AHP needs to do several surveys and

make a consensus. Though the SVM can be applied to the only case the data of all suppliers are

available, the SVM can be an attractive alternative for solving the pre-selection problem if the

company has the history data for suppliers.

4.5 Conclusions

The supplier selection is an important issue in many companies that should purchase

materials or components from supplier companies. The problem is directly related with the

quality of product and the profits. This chapter focuses on the two steps: the pre-selection and the

final selection among the procedure of the supplier selection. The pre-selection step is a

classification problem while the final selection step is an assignment problem. This chapter

proposed an integrated solving approach that is the combination of the SVM and the mixed

integer programming. Once a company selects suppliers to make contracts, the company wants

to work with the suppliers for a while because the company could spend additional time and

money for re-evaluating other suppliers. Therefore, the company should select suppliers

carefully. In this respect, the integrated solving approach can be more attractive than single

approach.

The SVM is applied for the pre-selection step. The SVM classifies all potential suppliers

into the qualified suppliers and the others. Using the SVM, the history data including the

response values are needed. Companies may have the history data or can have their history data

from their previous transactions and selections. The SVM as a supervised learning method has

some advantages such as good accuracy, handling large scale and missing data, and so on. With

the supplier's data, the SVM finds the pattern of the data which can be considered as the weights

for the factors. The pattern of the data can be expressed as a model that consists of some vectors

 96

called as support vectors. The decision function uses the model of the data pattern and tests other

suppliers to be classified. After the classification, the results can be added to the history data for

the suppliers and used to the next pre-selection problem.

In the final selection step, this research formulated a mixed integer programming model.

The decision variable is the amount of materials or components to purchase from each supplier.

The constraints are the requirements of quality, lead time, demand, and service that are the levels

satisfaction of the company. In the optimal solution, the suppliers corresponding to the variables

that have non-zero values are the final suppliers and the other suppliers are not selected for the

final suppliers. The solution provides both the final suppliers and their order quantities.

The experimental results showed the SVM for the pre-selection step can handle large

scale problems and have an appropriate accuracy if there is the history data for suppliers. The

accuracies for most instances are more than %. Once the history data was trained to find the

pattern, the decision function from the training can be applied to any size of the test problems.

The solution time is very reasonable to practical applications.

The chapter showed the SVM has a great potential for solving the pre-selection problem

as a classification problem. The supplier selection is one of essential issues in many companies.

The history data are necessary for using the SVM in the supplier selection problem. The data for

some new suppliers may not exist and cannot be applied to the SVM. However, the selections

with other methods would be the history data for those suppliers and could be applied to the

SVM in the future.

 97

CHAPTER 5 - Financial Problem using SVM

5.1 Company Credit Rating Classification

In this chapter, SVM solution method is applied to a real world problem. The credit

prediction of the company is an essential part of the decision procedure for a loan or an

investment in banks or financial companies. This research uses the data of Korean companies.

The main factors have been chosen by a statistical method to be used for the SVM training. The

SVM finds the pattern of the data and classify the companies into financially healthy ones and

the others. The experimental results show that the newly proposed method has a great potential

to become a good alternative solving approach for large-scale SVM problems.

The credit rating of a company is important for investors as well as the company itself

because it is a crucial measure of the decision of the investment or loan to the company. If the

evaluation of the credit rating is wrong, investors and the company may have a big loss. The

accurate evaluation or prediction of the credit rating can provide the information of the proper

companies to invest and the indication of bankruptcy as well. Investors may adopt the credit

ratings from external credit rating agencies or try to estimate their internal ratings. In both cases,

the method of rating is important. The financial data of the company are closely related to the

credit rating. Many analytical methods from statistics, mathematical model, and data mining

have been applied to find the main factors to affect the credit rating and the interactions between

the factors. The SVM as a supervised machine learning method has been a popular classification

tool which recognizes the pattern from the data itself. This research uses the SVM to predict the

credit ratings of companies to classify them into two groups.

The data is provided by Korea Small Business Institute in Korea and has the financial

ratios of small and medium sized companies in Korea. Min et al. (2006) used four feature subsets

out of 32 financial ratios categorized by stability, profitability, growth, activity, and cash flow.

On the other hand, this research considered the two types of features such as profitability and

stability as following table.

 98

Table 5.1 Financial Ratios

Type Ratios Calculation

Profitability Return on equity ordinary income Ordinary income / total capitals

 Return on Sales Net income / sales

 Return on equity Net income / total capitals

 Equity turnover ratio Sales / total capitals

 Fixed asset turnover ratio Sales / fixed assets

Stability Equity ratio Total capitals / total assets

 Fixed asset ratio Fixed assets / total capitals

 Debt ratio Total liabilities / total capitals

 Current ratio Fixed assets / current liabilities

The data consists of nine financial ratios of companies and their credit ratings in 2008

fiscal year. The credit rating starts from the best 'AA+' to the worst 'D'.

5.2 Experimental Results

The application to the real world problem has been conducted to classify the credit

ratings of companies in Korea. Three sizes of data are considered such as 6324, 3302, and 1057.

In each size of data, 60% of companies arbitrarily selected are used for training and 40% of

companies are used for testing. Two classes are defined as good and bad groups by credit ratings

to be classified. Features are nine financial ratios and the label is one of two classes. Each

financial ratio is scaled from zero to one. The experimental results are as follows.

Table 5.2 Classification of credit ratings into good (A~B) and bad (C~D) groups

Size
Feature nu Kernel

Accuracy (%)

Training Testing Training Testing

3795 2529 9 0.5 Polynomial 89.54 89.57

1982 1320 9 0.5 Gaussian 90.47 90.46

635 422 9 0.3 Polynomial 90.71 90.76

Table 5.2 shows the results of classification when the credit ratings are classified into two

groups with good (A, B) and bad (C, D). Polynomial and Gaussian kernel functions are used.

The results have good performances about 90% of accuracy.

 99

Table 5.3 Classification of credit ratings into good (A) and bad (B~D) groups

Size
Feature nu Kernel

Accuracy (%)

Training Testing Training Testing

3795 2529 9 0.4 Gaussian 94.89 94.90

1982 1320 9 0.4 Polynomial 92.79 92.81

635 422 9 0.4 Polynomial 84.10 85.55

Table 5.3 presents the results of different grouping, which classifies the companies into

good (A) and bad (B, C, D) groups. If the kernel and the value of ν are different, the accuracies

are changed. The experiments have done with some combinations of the value of and the

kernel function and found the best values. The results show that the combinations of the kernel

function and the value of are different by the size of data and the type of classification. The

experimental results showed that the new algorithm has performed very well in the real world

problem. The experiments have considered nine financial ratios to classify the companies into

two groups such as good and bad.

5.3 Conclusions

This chapter proposed an alternative method for assessing companies with company

credit ratings using SVM. Assessing companies is critical in many cases. Banks or investment

companies require the measurement as accurate as possible. Individual investors also want to get

more convinced information about the company to be invested. The company itself who is

assessed also wants to know its current status. Thus, systematic method has become a preferable

method for the measurement of company credit ratings because the assessment directly affects

profits or losses.

This research used real data of small size companies in Korea. The factors considered in

this research are nine financial ratios represented companies' profitability and stability status.

The data include company credit ratings, so it is used 40% of data for training and 60% for

testing using SVM. This research compared credit ratings in data set with predicted credit ratings

from out testing. Experimental results showed that the accuracy in most cases is more than 90%,

which proves the new method is viable.

Some may argue why the credit ratings need to be predicted again because the data

already have all the results from an institution like Moody's that determines and announces the

 100

credit ratings for most companies. There are three reasons. First, credit ratings do not come out

every month or week from the institution. Banks or investors may want to get credit ratings of

companies whenever they need. Second, banks or investors can have different factors from

Moody's to assess companies. Third, Moody's cannot assess all companies, but investors want to

the other companies or small sized companies that are not assessed by Moody's.

Future work of this research is to extend the proposed model using additional factors

including other financial factors and non-financial factors. The study for finding appropriate

factors is also another interesting issue for this problem. While this research used the SVM

classification technique, the SVM regression model can be used for this problem in the future.

SVM is a statistical supervised machine learning method and a quantitative method. One may

consider a solution approach combining SVM and other qualitative or techniques.

 101

CHAPTER 6 - Conclusions and Future Research

6.1 Conclusions

The nonlinear knapsack problem, the support vector machine (SVM), and supplier

selection are all interesting and important topics for researchers and industries. The SVM has

long been a popular tool with many applications. Started from research on the SVM algorithm,

this research has suggested a new solution algorithm of the subproblem of the SVM as well as an

application for supply chain management (SCM). In addition to an efficient approach for solving

the -SVM classification problem, this dissertation has proposed a new algorithm for solving the

continuous separable nonlinear knapsack problem and an integrated approach for the supplier

selection problem using the SVM in discussion ranging from theory to application with the

nonlinear knapsack problem in Chapter 2 and the SVM and the supplier selection described in

Chapter 3 and 4.

An efficient pegging algorithm was proposed for the nonlinear knapsack problem. The

problem is separable, continuous, and convex with box constraints on variables. The pegging

algorithm is an iterative method that fixes some variables into their optimal values at each

iteration until the solution reaches the optimal. The newly developed method, the Dual Bound

algorithm, is based on the Bitran-Hax algorithm, a popular pegging method. The motivation for

developing this algorithm was the two time consuming calculations in the Bitran-Hax algorithm.

The Dual Bound algorithm introduced the new concept of the dual bound. The dual bound can

check the feasibility of each variable instead of the bound of the primal variable because all

primal variables have dual bounds. Using the dual bound instead of the bounds of primal

variables provides two advantages. One, the algorithm must consider only one dual variable

because the primal problem has only one constraint. Two, the calculation of the dual bound does

not depend on the iteration; thus it need not be calculated at each iteration. The experimental

results showed the Dual Bound algorithm performed better than the Bitran-Hax algorithm as the

size of the problem increased.

In Chapter 3, this research focused on the -SVM classification problem. The quadratic

programming problem should be solved to find the decision function of the SVM. The quadratic

programming problem referred to the singly linearly constrained quadratic convex problem with

box constraints, which has a dense Hessian matrix, one linear equality constraint, and box

 102

constraints. It has a large and dense Hessian matrix, so the SVM problem requires a special

solution approach. The sequential minimal optimization (SMO) has been a popular method for

solving the SVM problems. The SMO solves smaller problems instead of solving the original

problem sequentially. Though the SMO can handle large scale problems, reducing the number of

iterations and developing a good method to find the smaller problems are still challenging issues.

On the other hand, because the SVM problem is a convex quadratic programming problem, some

studies of the SVM use the gradient or projection type methods. However, those methods can

handle only small or medium scale problems even if the methods converge quickly. Therefore,

the decomposition is necessary for the SVM. This research proposed using the matrix splitting

method and the incomplete Cholesky composition for the -SVM classification problem. The

original problem has a quadratic objective function, two linear constraints, and box constraints.

Applying the augmented Lagrangian method, the original problem becomes the singly linearly

constrained quadratic convex problem with box constraints. The overall solving procedure of the

new method is based on the matrix splitting method. Several different options have been used for

the line search and for updating . The direction is found by solving a subproblem. The Dual

Bound algorithm described in Chapter 2 is used to solve the subproblem. The Hessian matrix is

decomposed by the incomplete Cholesky decomposition method, which is suitable because the

Hessian matrix of the SVM is dense and has low rank. The experimental results showed the

method performed well and solved large scale problems. The method in this research has great

potential for extension because other methods for line search and updating can be used.

An integrated approach for the supplier selection was proposed in Chapter 4. This

research focused on the pre-selection and the final selection steps among the supplier selection

procedure. The -SVM classification solves the pre-selection step and the mixed integer

programming model is used for the final selection. The biggest contribution of the method in this

research is in using the SVM for pre-selection. Pre-selection chooses the potential suppliers out

of all eligible suppliers. Only potential suppliers can become final suppliers. In this step, the

company needs only to classify the suppliers into two groups: potential suppliers and others,

which is a classification problem. In previous methods, such as the analytic hierarchy process

(AHP) or cluster analysis (CA), information about the performance of suppliers has not been

used because these methods are unsupervised methods and are thus subjective and require

lengthy calculations to get the results. On the other hand, the SVM is objective and fast. As a

 103

supervised method, the SVM requires performance information for suppliers. The SVM cannot

apply to the problem without historical data. However, the SVM is more attractive than other

methods if the history data are available.

This dissertation has examined three challenging issues. The nonlinear knapsack problem

has many applications and can occur as a subproblem in many optimization algorithms. Thus, the

new pegging algorithm, which is fast and efficient, is a significant contribution. The SVM

classification, which has been a popular tool in many different areas, can be modified using

matrix splitting method, several options of line search and updating , and the incomplete

Cholesky decomposition to solve SVM problems with large and dense Hessian matrices. The

importance of the supplier selection has increased in the company because products have become

more complicated and change so rapidly that outsourcing has become a necessary part of

production. This research uses the SVM for pre-selecting such suppliers, which is a significant

contribution to the field. In summary, this dissertation combines three different areas:

mathematical programming, data mining, and supply chain management.

6.2 Future Research

The Dual Bound algorithm for the nonlinear knapsack problem uses the dual bound

instead of the primal variables to check feasibility. In other words, checking feasibility requires

only one dual variable instead of all primal variables. Moreover, calculating the dual bound is

not in the loop of the iteration. Therefore, if one could calculate the dual variable that can peg the

largest number of variables first, then the computations could be still more reduced because the

algorithm would only check the remaining variables from the next iterations. If one can also

calculate the range of the dual variable or the direction of the dual variable, then the algorithm

can peg still more variables and significantly reduce the number of iterations. The concept of the

dual bound can be applied to other optimization algorithms when they need to check feasibility.

The Dual Bound algorithm can be combined with the fuzzy theory or stochastic programming

algorithm when the problem contains uncertainties. The Dual Bound algorithm also can be

applied to other problems and applications.

The new method for the -SVM classification problem is a flexible algorithm because a

variety of different line searches and ways of updating can be used in this algorithm. Finding

the best combination of methods is the challenge. The performance of the method depends on the

 104

combination of the line search and updating methods. This research used four different

combinations of the following methods: SPGM, GVPM, MSM, and AA. Other combinations

could be tested. In the final solution, the number of support vectors is a little large. It needs to

find a way to reduce the number of support vectors in the future. For implementation, the

proposed algorithm must have an efficient data structure to store the large incomplete lower

triangular matrix for the incomplete Cholesky decomposition. If the rank of the Hessian matrix

can be calculated before the incomplete Cholesky decomposition, the exact amount of memory

needed for the triangular matrix can be allocated in advance.

The data for pre-selecting suppliers were randomly generated. The new integrated

approach should be applied to real problems. In reality, the suppliers may have new proposals

that would differ from historical data. The company can also negotiate with suppliers. The

negotiation or relationship with suppliers can be included in the new solution approach. The

environmental or social factors and effects can also be considered in new model. The problem

considered in this research focuses on a single time period. The newly proposed integrated

approach can, however, be extended to problems covering multiple time periods and some

uncertainties. Because the AHP works well for selecting suppliers without historical data and the

SVM performs well to select suppliers while using historical data, future research could consider

integrating the AHP and the SVM for pre-selection.

 105

References

Aissaoui, N., Haouari, M., & Hassini, E. (2007). Supplier selection and order lot sizing

modeling: A review. Computers and Operations Research, 34(12), 3516-3540.

Ali, A., Helgason, R., Kennington, J., & H., L. (1980). Computational comparison among three

multicommodity network flow algorithms. Operations Research, 28(4), 995-1000.

Ali, S., & Smith-Miles, K. A. (2006). Improved support vector machine generalization using

normalized input space. AI 2006: Advances in Artificial Intelligence, Lecture Notes in

Artificial Intelligence 4304, 362-371.

Alzate, C., & Suykens, J. (2008). Sparse Kernel Models for Spectral Clustering Using the

Incomplete Cholesky Decomposition. Paper presented at the 2008 IEEE International

Joint Conference on Neural Networks (IEEE World Congress on Computational

Intelligence), Hong Kong.

Alzate, C., & Suykens, J. A. K. (2008). A regularized kernel CCA contrast function for ICA.

Neural Networks, 21(2-3), 170-181.

An, S. J., Liu, W. Q., & Venkatesh, S. (2007). Fast cross-validation algorithms for least squares

support vector machine and kernel ridge regression. Pattern Recognition, 40(8), 2154-

2162.

Antoniou, A., & Lu, W. S. (2007). Practical Optimization: Algorithms and Engineering

Applications (1 ed.): Springer.

Arasu, U. (2000). Solving Large-Scale Nonlinear Stochastic Network Problems. Kansas State

University.

Azadeh, A., Saberi, M., & Anvari, M. (2010). An integrated artificial neural network algorithm

for performance assessment and optimization of decision making units. Expert Systems

with Applications, 37(8), 5688-5697.

Bach, F. R., & Jordan, M. I. (2005). Predictive low-rank decomposition for kernel methods.

Paper presented at the the 22nd International Conference on Machine Learning.

Barzilai, J., & Borwein, J. M. (1988). Two-point step size gradient methods. IMA Journal of

Numerical Analysis, 8(1), 141-148.

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear Programming : Theory and

Algorithms (2 ed.). New York: John Wiley & Sons.

Bender, P. S., Brown, R. W., Isaac, M. H., & Shapiro, J. F. (1985). Improving Purchasing

Productivity at Ibm with a Normative Decision Support System. Interfaces, 15(3), 106-

115.

Bennett, K. P., & Bredensteiner, E. J. (1997). A Parametric Optimization Method for Machine

Learning. INFOMS Journal on Computing, 9(3), 311-318.

Bennett, K. P., & Bredensteiner, E. J. (2000). Duality and Geometry in SVM Classifiers. Paper

presented at the the Seventeenth International Conference on Machine Learning, San

Francisco.

Birgin, E. G., Martinez, J. M., & Raydan, M. (2000). Nonmonotone spectral projected gradient

methods on convex sets. Siam Journal on Optimization, 10(4), 1196-1211.

Bitran, G. R., & Hax, A. C. (1981). Disaggregation and Resource-Allocation Using Convex

Knapsack-Problems with Bounded Variables. Management Science, 27(4), 431-441.

 106

Bretthauer, K. M., Ross, A., & Shetty, B. (1999). Nonlinear integer programming for optimal

allocation in stratified sampling. European Journal of Operational Research, 116(3),

667-680.

Bretthauer, K. M., & Shetty, B. (2002). The nonlinear knapsack problem - algorithms and

applications. European Journal of Operational Research, 138(3), 459-472.

Bretthauer, K. M., Shetty, B., & Syam, S. (2003). A specially structured nonlinear integer

resource allocation problem. Naval Research Logistics, 50(7), 770-792.

Buffa, F. P., & Jackson, W. M. (1983). A Goal Programming Model for Purchase Planning.

Journal of Purchasing and Materials Management, 19(3), 27-34.

Cai, L., Song, F., & Yuan, D. (2008). Study on the application of SVM in supplier primary

election. Paper presented at the 1st International Workshop on Knowledge Discovery and

Data Mining, WKDD, Adelaide, SA, Australia.

Camps-Valls, G., Munoz-Mari, J., Gomez-Chova, L., Richter, K., & Calpe-Maravilla, J. (2009).

Biophysical Parameter Estimation With a Semisupervised Support Vector Machine. Ieee

Geoscience and Remote Sensing Letters, 6(2), 248-252.

Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning

techniques for supply chain demand forecasting. European Journal of Operational

Research, 184(3), 1140-1154.

Ç ebi, F., & Bayraktar, D. (2003). An integrated approach for supplier selection. Logistics

Information Management, 16(6), 395 - 400.

Chang, C. C., & Lin, C. J. (2001). Training nu-support vector classifiers: Theory and algorithms.

Neural Computation, 13(9), 2119-2147.

Che, Z. H., & Wang, H. S. (2008). Supplier selection and supply quantity allocation of common

and non-common parts with multiple criteria under multiple products. Computers &

Industrial Engineering, 55(1), 110-133.

Conn, A. R., Gould, N. I. M., & Toint, P. L. (1988). Global Convergence of a Class of Trust

Region Algorithms for Optimization with Simple Bounds. Siam Journal on Numerical

Analysis, 25(2), 433-460.

Cottle, R. W., Duvall, S. G., & Zikan, K. (1986). A Lagrangean Relaxation Algorithm for the

Constrained Matrix Problem. Naval Research Logistics, 33(1), 55-76.

Crisp, D. J., & Burges, C. J. C. (2000). A Geometric Interpretation of v-SVM Classifiers. Paper

presented at the Neural Information Processing Systems (NIPS).

Crow, L. E., Olshavsky, R. W., & Summers, J. O. (1980). Industrial Buyers Choice Strategies - a

Protocol Analysis. Journal of Marketing Research, 17(1), 34-44.

Dai, Y. H., & Fletcher, R. (2006). New algorithms for singly linearly constrained quadratic

programs subject to lower and upper bounds. Mathematical Programming, 106(3), 403-

421.

Dai, Y. H., & Zhang, H. C. (2001). Adaptive two-point stepsize gradient algorithm. Numerical

Algorithms, 27(4), 377-385.

de Boer, L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier

selection. European Journal of Purchasing & Supply Management, 7(2), 75-89.

Debnath, R., & Takahashi, H. (2006). SVM training: Second-order cone programming versus

quadratic programming. Paper presented at the IEEE International Conference on Neural

Networks.

 107

Degraeve, Z., Labro, E., & Roodhooft, H. (2004). Total cost of ownership purchasing of a

service: The case of airline selection at Alcatel Bell. European Journal of Operational

Research, 156(1), 23-40.

Demirtas, E. A., & Ü stün, Ö . (2008). An integrated multiobjective decision making process for

supplier selection and order allocation. Omega, 36(1), 76-90.

Dickson, G. W. (1966). An analysis of vendor selection: systems and decisions. Journal of

Purchasing, 2(1), 5-17.

Dussault, J. P., Ferland, J. A., & Lemaire, B. (1986). Convex Quadratic-Programming with One

Constraint and Bounded Variables. Mathematical Programming, 36(1), 90-104.

Ellram, L. M. (1995). Total cost of ownership: an analysis approach for purchasing.

International Journal of Physical Distribution & Logistics Management, 25(8), 4-23.

Eu, J. H. (1991). The Sampling Resource-Allocation Problem. Ieee Transactions on

Communications, 39(9), 1277-1279.

Evtushenko, Y. G., & Zhadan, V. G. (1994). Barrier-Projective Methods for Nonlinear

Programming. Computational Mathematics and Mathematical Physics, 34(5), 579-590.

Ferris, M. C., & Munson, T. S. (2003). Interior-point methods or massive support vector

machines. Siam Journal on Optimization, 13(3), 783-804.

Fine, S., & Scheinberg, K. (2001). Efficient SVM training using lower rank kernal

representations. Journal of Machine Learning Research, 2, 243-264.

Friedlander, A., Martinez, J. M., Molina, B., & Raydan, M. (1998). Gradient method with retards

and generalizations. Siam Journal on Numerical Analysis, 36(1), 275-289.

Fu, Y. S., & Dai, Y. H. (2010). Improved Projected Gradient Algorithms for Singly Linearly

Constrained Quadratic Programs Subject to Lower and Upper Bounds. Asia-Pacific

Journal of Operational Research, 27(1), 71-84.

Ghodsypour, S. H., & O'Brien, C. (1998). A decision support system for supplier selection using

an integrated analytic hierarchy process and linear programming. International Journal of

Production Economics, 56-7, 199-212.

Ghodsypour, S. H., & O'Brien, C. (2001). The total cost of logistics in supplier selection, under

conditions of multiple sourcing, multiple criteria and capacity constraint. International

Journal of Production Economics, 73(1), 15-27.

Goldfarb, D., & Scheinberg, K. (2008). Numerically stable LDLT factorizations in interior point

methods for convex quadratic programming. Ima Journal of Numerical Analysis, 28(4),

806-826.

Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (3rd ed.): The Johns Hopkins

University Press.

Guosheng, H., & Guohong, Z. (2008). Comparison on neural networks and support vector

machines in suppliers' selection. Journal of Systems Engineering and Electronics, 19(2),

316-320.

He, S. W., Chaudhry, S. S., Lei, Z. L., & Wang, B. H. (2009). Stochastic vendor selection

problem: chance-constrained model and genetic algorithms. Annals of Operations

Research, 168(1), 169-179.

Higham, N. J. (1990). Analysis of the Cholesky decomposition of a semi-definite matrix Reliable

Numerical Computation (pp. 161-185): Oxford University Press.

Hinkle, C. L., Robinson, P. J., & Green, P. E. (1969). Vendor Evaluation Using Cluster Analysis.

Journal of Purchasing, 5, 49-58.

 108

Ho, W., Xu, X. W., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier

evaluation and selection: A literature review. European Journal of Operational Research,

202(1), 16-24.

Holt, G. D. (1998). Which contractor selection methodology? International Journal of Project

Management, 16(3), 153-164.

Hong, G. H., Park, S. C., Jang, D. S., & Rho, H. M. (2005). An effective supplier selection

method for constructing a competitive supply-relationship. Expert Systems with

Applications, 28(4), 629-639.

Hsu, C. F., Chang, B., & Hung, H. F. (2007). Applying SVM to build supplier evaluation model -

comparing likert scale and fuzzy scale. Paper presented at the IEEE International

Conference on Industrial Engineering and Engineering Management.

Ibaraki, T., & Katoh, N. (1988). Resource Allocation Problems : Algorithmic Approaches.

Cambridge: MIT Press.

Joachims, T. (1999). Making large-scale support vector machine learning practical Advances in

kernel methods: support vector learning (pp. 169-184). Cambridge: MIT Press.

Kashima, H., Ide, T., Kato, T., & Sugiyama, M. (2009). Recent Advances and Trends in Large-

Scale Kernel Methods. Ieice Transactions on Information and Systems, E92d(7), 1338-

1353.

Keller, H. B. (1965). On the Solution of Singular and Semidefinite Linear Systems by Iteration.

SIAM Journal of Numerical Analysis, 2(2), 281-290.

Kianmehr, K., & Alhajj, R. (2006). Support Vector Machine Approach for Fast Classification.

Paper presented at the the International Conference on Data Warehouse and Knowledge

Discovery, Poland.

Klingman, D., Napier, A., & Stutz, J. (1974). Netgen - Program for Generating Large-Scale

Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems.

Management Science Series a-Theory, 20(5), 814-821.

Kodialam, M. S., & Luss, H. (1998). Algorithms for separable nonlinear resource allocation

problems. Operations Research, 46(2), 272-284.

Kokangul, A., & Susuz, Z. (2009). Integrated analytical hierarch process and mathematical

programming to supplier selection problem with quantity discount. Applied Mathematical

Modelling, 33(3), 1417-1429.

Kumar, M., Vrat, P., & Shankar, R. (2004). A fuzzy goal programming approach for vendor

selection problem in a supply chain. Computers & Industrial Engineering, 46(1), 69-85.

Kuo, R. J., Hong, S. Y., & Huang, Y. C. (2010). Integration of particle swarm optimization-

based fuzzy neural network and artificial neural network for supplier selection. Applied

Mathematical Modelling, 34(12), 3976-3990.

Lee, Y. J., & Mangasarian, O. L. (2001). RSVM: Reduced support vector machines. Paper

presented at the First SIAM International Conference on Data Mining, Chicago.

Li, X. Y., Li, H., & Zhou, Y. C. (2005). Collaborative identification of coordination questions in

supply chain based on support vector machines. Paper presented at the 2005 International

Conference on Machine Learning and Cybernetics, ICMLC 2005, Guangzhou, China.

Liao, Z., & Kuhn, A. (2004). Operational integration of supplier selection and procurement lot

sizing in supply chain. Paper presented at the Global project and manufacturing

management symposium, Siegen, Germany.

 109

Lin, C. J., Lucidi, S., Palagi, L., Risi, A., & Sciandrone, M. (2009). Decomposition Algorithm

Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds.

Journal of Optimization Theory and Applications, 141(1), 107-126.

Lin, C. J., & Saigal, R. (2000). An incomplete Cholesky factorization for dense symmetric

positive definite matrices. Bit, 40(3), 536-558.

Lin, Y. Y., & Pang, J. S. (1987). Iterative Methods for Large Convex Quadratic Programs - a

Survey. Siam Journal on Control and Optimization, 25(2), 383-411.

Liu, J., Ding, F. Y., & Lall, V. (2000). Using data envelopment analysis to compare suppliers for

supplier selection and performance improvement. Supply Chain Management: An

International Journal, 5(3), 143-150.

Louradour, J., Daoudi, K., & Bach, F. (2006). SVM speaker verification using an incomplete

cholesky decomposition seqeunce kernel. Paper presented at the IEEE Odyssey.

Luo, Z., & Tseng, P. (1992). Error bound and convergence analysis of matrix splitting algorithms

for the affine variational inequality problem. SIAM Journal of Optimization, 2(1), 43-54.

Mangasarian, O., L. (1969). Nonlinear Programming. New York: McGraw-Hill.

Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77-91.

Martello, S., & Toth, P. (1990). Knapsack Problems : Algorithms and Computer

Implementations. New York: John Wiley & Sons.

Mavroforakis, M. E., & Theodoridis, S. (2006). A geometric approach to support vector machine

(SVM) classification. Ieee Transactions on Neural Networks, 17(3), 671-682.

Min, S. H., Lee, J., & Han, I. (2006). Hybrid genetic algorithms and support vector machines for

bankruptcy prediction. Expert Systems with Applications, 31(3), 652-660.

Monczka, R. M., & Trecha, S. J. (1988). Cost-Based Supplier Performance Evaluation. Journal

of Purchasing & Materials Management, 24(1), 2-7.

Nehate, G. (2006). Solving Large Scale Support Vector Machine Problems using Matrix Splitting

and Decomposition methods. Kansas State University.

Ng, S. T., Smith, N. J., & Skidmore, R. M. (1995). Case-based reasoning for contractor

prequalification a feasibility study. Developments in Artificial Intelligence for Civil and

Structural Engineering, 61-66.

Ohuchi, A., & Kaji, I. (1984). Lagrangian Dual Coordinatewise Maximization Algorithm for

Network Transportation Problems with Quadratic Costs. Networks, 14(4), 515-530.

Ortega, J. M. (1972). Numerical analysis; a second course. New York: Academic Press.

Osuna, E., Freud, R., & Girosi, F. (1997). An improved training algorithm for support vector

machines. Paper presented at the IEEE Workshop, New York.

Pan, A. C. (1989). Allocation of order quantity among suppliers. Journal of Purchasing and

Materials Management, 25, 36-39.

Pang, J. S. (1982). On the Convergence of a Basic Iterative Method for the Implicit

Complementarity-Problem. Journal of Optimization Theory and Applications, 37(2), 149-

162.

Papagapiou, A., Mingers, J., & Thanassoulis, E. (1997). Would you buy a used car with DEA?

OR Insight, 10(1), 13-19.

Pardalos, P. M., & Kovoor, N. (1990). An Algorithm for a Singly Constrained Class of Quadratic

Programs Subject to Upper and Lower Bounds. Mathematical Programming, 46(3), 321-

328.

Patriksson, M. (2008). A survey on the continuous nonlinear resource allocation problem.

European Journal of Operational Research, 185(1), 1-46.

 110

Platt, J. C. (1999). Fast training of support vector machines using sequential minimal

optimization Advances in kernel methods: support vector learning (pp. 185-208).

Cambridge: MIT Press.

Raydan, M. (1997). The Barzilai and Borwein gradient method for the large scale unconstrained

minimization problem. Siam Journal on Optimization, 7(1), 26-33.

Robinson, A. G., Jiang, N., & Lerme, C. S. (1992). On the Continuous Quadratic Knapsack-

Problem. Mathematical Programming, 55(1), 99-108.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms: Spartan Books.

Rosenblatt, M. J., Herer, Y. T., & Hefter, I. (1998). Note. An acquisition policy for a single item

multi-supplier system. Management Science, 44(11), S96-S100.

Sarfaraz, A. R., & Balu, R. (2006). An Integrated Approach for Supplier Selection. Paper

presented at the Industrial Informatics, 2006 IEEE International Conference, Singapore.

Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support vector

algorithms. Neural Computation, 12(5), 1207-1245.

Serafini, T., Zanghirati, G., & L., Z. (2005). Gradient projection methods for quadratic programs

and applications in training support vector machines. Optimization Methods and

Software, 20(2-3), 353-378.

Shouquan, L., & Zhiwen, Z. (2007). Multi-echelon supply chain demand forecast based on

support vector machines. Paper presented at the International Conference on

Transportation Engineering 2007, ICTE 2007.

Smytka, D. L., & Clemens, M. W. (1993). Total Cost Supplier Selection Model: A Case Study.

Journal of Supply Chain Management, 29(1), 42-49.

Stefanov, S. M. (2004). Polynomial algorithms for projecting a point onto a region defined by a

linear constraint and box constraints. Journal of Applied Mathematics, 2004(5), 409-431.

Sun, H. L., Xie, J. Y., & Xue, Y. F. (2005). An SVM-based model for supplier selection using

fuzzy and pairwise comparison. Paper presented at the 2005 International Conference on

Machine Learning and Cybernetics, Guangzhou, China.

Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers.

Neural Processing Letters, 9(3), 293-300.

Tamir, A. (1980). Efficient Algorithms for a Selection Problem with Nested Constraints and Its

Application to a Production-Sales Planning-Model. Siam Journal on Control and

Optimization, 18(3), 282-287.

Tempelmeier, H. (2002). A simple heuristic for dynamic order sizing and supplier selection with

time-varying data. Production and Operations Management, 11(4), 499-515.

Timmerman, E. (1986). An Approach to Vendor Performance Evaluation. Purchasing and

Materials Management, 22(4), 1-7.

Ting, S. G., & Cho, D. I. (2008). An integrated approach for supplier selection and purchasing

decisions. Supply Chain Management-an International Journal, 13(2), 116-127.

To, K. N., Lim, C. C., Teo, K. L., & Liebelt, M. J. (2001). Support vector learning with quadratic

programming and adaptive step size barrier-projection. Nonlinear Analysis-Theory

Methods and Applications, 47(8), 5623-5633.

Tseng, T. L., Huang, C. C., Jiang, F., & Ho, J. C. (2006). Applying a hybrid data-mining

approach to prediction problems: a case of preferred suppliers prediction. International

Journal of Production Research, 44(14), 2935-2954.

Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data. Moscow: Nauka.

 111

Vapnik, V., & Chervonenkis, A. (1974). Theory of Pattern Recognition. Moscow: Nauka.

Ventura, J. A. (1991). Computational Development of a Lagrangian Dual Approach for

Quadratic Networks. Networks, 21(4), 469-485.

Wan, X. T., Pekny, J. F., & Reklaitis, G. V. (2005). Simulation-based optimization with

surrogate models - Application to supply chain management. Computers & Chemical

Engineering, 29(6), 1317-1328.

Wang, G., Huang, S. H., & Dismukes, J. P. (2004). Product-driven supply chain selection using

integrated multi-criteria decision-making methodology. International Journal of

Production Economics, 91(1), 1-15.

Weber, C. A., Current, J. R., & Benton, W. C. (1991). Vendor Selection Criteria and Methods.

European Journal of Operational Research, 50(1), 2-18.

Weber, C. A., Current, J. R., & Desai, A. (1998). Non-cooperative negotiation strategies for

vendor selection. European Journal of Operational Research, 108(1), 208-223.

Weber, C. A., & Desai, A. (1996). Determination of paths to vendor market efficiency using

parallel coordinates representation: A negotiation tool for buyers. European Journal of

Operational Research, 90(1), 142-155.

Weber, C. A., & Ellram, L. M. (1993). Supplier selection using multi-objective programming: a

decision support system approach. International Journal of Physical Distribution &

Logistics Management, 23(2), 3-14.

Wen, L., & Li, J. (2006). Research of Credit Grade Assessment for Suppliers Based on Multi-

Layer SVM Classifier. Paper presented at the Sixth International Conference on

Intelligent Systems Design and Applications (ISDA'06), Jinan, China.

Wright, P. (1975). Consumer Choice Strategies - Simplifying Vs Optimizing. Journal of

Marketing Research, 12(1), 60-67.

Wu, C. H. (1993). Solving large-scale nonlinear network problems with relaxation and

decomposition algorithms. Pennsylvania State University.

Xiaohui, H., Xiuxia, Y., & Hu, Y. (2007). The model of order prediction based on SVM. Paper

presented at the The 7th International Conference on Intelligent Systems Design and

Applications, ISDA 2007, Rio de Janeiro, Brazil.

Yue, L., Yafeng, Y., Junjun, G., & Chongli, T. (2007). Demand forecasting by using support

vector machine. Paper presented at the Third International Conference on Natural

Computation, ICNC 2007, Haikou, China.

Zhan, Y., & Shen, D. (2005). Design efficient support vector machine for fast classification.

Pattern Recognition, 38(1), 157-161.

Zhou, W. D., Zhang, L., & Jiao, L. C. (2002). Linear programming support vector machines.

Pattern Recognition, 35(12), 2927-2936.

