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Abstract 

Recently, interdisciplinary (management, engineering, science, and economics) 

collaboration research has been growing to achieve the synergy and to reinforce the weakness of 

each discipline. Along this trend, this research combines three topics: mathematical 

programming, data mining, and supply chain management. A new pegging algorithm is 

developed for solving the continuous nonlinear knapsack problem. An efficient solving approach 

is proposed for solving the  -support vector machine for classification problem in the field of 

data mining. The new pegging algorithm is used to solve the subproblem of the support vector 

machine problem. For the supply chain management, this research proposes an efficient 

integrated solving approach for the supplier selection problem. The support vector machine is 

applied to solve the problem of selecting potential supplies in the procedure of the integrated 

solving approach. 

In the first part of this research, a new pegging algorithm solves the continuous nonlinear 

knapsack problem with box constraints. The problem is to minimize a convex and differentiable 

nonlinear function with one equality constraint and box constraints. Pegging algorithm needs to 

calculate primal variables to check bounds on variables at each iteration, which frequently is a 

time-consuming task. The newly proposed dual bound algorithm checks the bounds of Lagrange 

multipliers without calculating primal variables explicitly at each iteration. In addition, the 

calculation of the dual solution at each iteration can be reduced by a proposed new method for 

updating the solution. 

In the second part, this research proposes several streamlined solution procedures of  -

support vector machine for the classification. The main solving procedure is the matrix splitting 

method. The proposed method in this research is a specified matrix splitting method combined 

with the gradient projection method, line search technique, and the incomplete Cholesky 

decomposition method. The method proposed can use a variety of methods for line search and 

parameter updating. Moreover, large scale problems are solved with the incomplete Cholesky 

decomposition and some efficient implementation techniques. 

To apply the research findings in real-world problems, this research developed an 

efficient integrated approach for supplier selection problems using the support vector machine 

and the mixed integer programming. Supplier selection is an essential step in the procurement 



 

processes. For companies considering maximizing their profits and reducing costs, supplier 

selection requires seeking satisfactory suppliers and allocating proper orders to the selected 

suppliers. In the early stage of supplier selection, a company can use the support vector machine 

classification to choose potential qualified suppliers using specific criteria. However, the 

company may not need to purchase from all qualified suppliers. Once the company determines 

the amount of raw materials and components to purchase, the company then selects final 

suppliers from which to order optimal order quantities at the final stage of the process. Mixed 

integer programming model is then used to determine final suppliers and allocates optimal orders 

at this stage. 
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CHAPTER 1 - Introduction 

1.1 Introduction 

In real world applications, many decision problems have to be solved in daily operations. 

Among them, classification is one of important class of decision problems. One may need to 

classify the things that they did for a day as value added and non-value added tasks. Marketing 

team may classify the company's markets into several different tiers or segments using pre-

defined criteria or performance metrics. Companies may classify their clients into important 

customers and normal ones in terms of value added contributions to the company's revenue. 

Companies may classify their suppliers into qualified or potential supplier groups based on 

various supplier evaluation criteria. Countries may classify other countries into friendly-nations 

(allies) and the others. When one makes a decision for any classification problem, intuitive 

solutions to any classification problem are easy and simple. However, such solutions are 

sometimes wrong because the decisions are too subjective. To avoid this happening, researchers 

have suggested a variety of systematic methods for making decisions about problems in 

classification.  

One good scientific method for classification problems is the machine learning method in 

the field of data mining (Vapnik, 1995). The classification problem is sometimes referred as the 

pattern recognition problem. The support vector machine is a machine learning tool for 

regression and classification problems. This dissertation focuses on the development of a 

solution algorithm for the support vector machine (SVM) and its applications. Compared with 

other statistical methods, the SVM does not require any parameters. Thus, the SVM is sometimes 

called a non-parametric method. Moreover, the SVM can handle large-scale problems. Before 

the SVM methods were proposed in 1995, machine learning method using neural networks are 

the popular approaches for attacking classification problems. The neural network had two main 

drawbacks of the generalization and the slow convergence because the performance of the neural 

networks is data dependent and the method consumes a lot of memory and processing time to 

run. The SVM has overcome these drawbacks in both theoretical and practical aspects.  

In this research, an efficient solution approach for the SVM is proposed using symmetric 

kernel method. The method consists of the matrix splitting method, the gradient projection 
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method, and the incomplete Cholesky decomposition. The proposed method enables us to use 

several options for both the line search and updating parameters.  

In addition, this research proposes a solution algorithm for the subproblem of the SVM 

and suggests an efficient solution procedure of the supplier selection problem using the SVM. In 

solving a classification problem using SVM, a quadratic knapsack subproblem needs to be 

solved repeatedly and they are frequently the most time consuming task in the solution 

processes. A new pegging algorithm is proposed for solving the nonlinear knapsack subporblem 

arising in the SVM. This newly proposed method for solving the continuous nonlinear knapsack 

problem can significantly reduce the time consuming steps in the solution processes.  

For applications to the classification problems using SVM, an efficient integrated 

solution method is suggested for the supplier selection problem. The selection of qualified 

suppliers is an important issue for many companies because it directly affects the quality of 

products as well as the potential profits. The SVM can classify suppliers into two groups such as 

the qualified suppliers and the potential suppliers. The final suppliers out of potential suppliers 

are then selected based on other considerations such as the requirements products, due dates, 

consolidations, and final costs. In section 2, the motivation of this research is described. The 

contribution of this dissertation is presented in section 3. An overview of this dissertation is in 

section 4. 

1.2 Research Motivations 

The motivation of this research started with the technical issues that arise in the SVM. 

The SVM has been a popular machine learning method for about fifteen years now since many 

studies (Bennett and Bredensteiner (1997), Suykens and Vandewalle (1999), Joachims (1999), 

Platt (1999), Crisp and Burges (2000), Bennett and Bredensteiner (2000), Lee and Mangasarian 

(2001), To et al. (2001), Zhou et al. (2002), Zhan and Shen (2005), Bach and Jordan (2005), 

Kianmehr and Alhajj (2006), Mavroforakis and Theodoridis (2006), An et al. (2007), Alzate and 

Suykens (2008)) have proved that the SVM is an efficient method both theoretically and 

practically. Given its popularity, three types of major studies have focused on its use: 

formulation, solving algorithm, and applications. One recent formulation of the SVM is the  -

SVM, which is less sensitive to a regularization parameter   than  -SVM (Nehate, 2006). This 

research focused on the  -SVM. Most solving algorithms for the SVM have been proposed by 
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using  -SVM formulation. For large-scale data sets, the working set or the sequential minimal 

optimization (SMO) type method is the only one that can solve problems. Other methods have 

worked with small to medium sized problems. This motivated us to develop an efficient solving 

algorithm for the  -SVM for the typically large-scale classification problem using non-SMO 

type methods. The advantage of the non-SMO type method is to use more algorithms that have 

been already developed for quadratic or nonlinear programming problems. Some attempts have 

used the non-SMO type method, but the size of the data set has been a major limitation. 

Therefore, this research proposes a non-SMO type solution method for the  -SVM classification 

problem.  

To solve the  -SVM classification problem, a quadratic programming problem must be 

solved. This problem has a quadratic objective function with a dense Hessian matrix, a single 

linear constraint, and box constraints. The proposed solving algorithm in my research is an 

iterative method. At each iteration, a subproblem with continuous quadratic objective function 

and knapsack constraint needs to be solved which frequently  is the most time consuming step in 

the solution processes. If one can improve the algorithm to solve the continuous quadratic 

knapsack problem, the SVM problem itself can be solved more efficiently. This motivates the 

development of a new pegging algorithm for the continuous nonlinear knapsack problem. The 

Bitran-Hax (1981) algorithm is the pegging algorithm used for the continuous nonlinear 

knapsack problem. However, this research found that the Bitran-Hax algorithm has two time 

consuming calculations at each iteration. First is the recalculation of the primal solutions after 

each dual iteration and check their feasibilities. The other time consuming calculation is to 

calculate the dual solution at each iteration. These two challenging issues are the main 

motivation for the development of the dual bound pegging algorithm. 

This research finally focuses on applying SVM. Many applications exist for the  -SVM 

classification problem. This research focuses on the supplier selection problem in supply chain 

management (SCM). If a company selects non-qualified suppliers, then the quality of the product 

could be out-of-controlled and the on time deliveries may not be fulfilled at the desired level. 

This could very likely have significant impact the company's ultimate profit and reputation. 

Therefore, the supplier selection problem is an important issue in many companies. If a company 

can find a more efficient and accurate method for selecting suppliers, then the company could 

easily gain more profits or market shares, which are the goals of most for-profit companies. This 
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issue motivated us to propose an efficient solution approach for the supplier selection problem. It 

is well-known that the supervised machine learning method is frequently more accurate and 

more efficient than the unsupervised method through existing literatures. This research used the 

SVM as a supervised machine learning method for selecting potential suppliers from all 

suppliers considered. In case of that there exist the past data for the supplier selection of a 

company, the SVM can solve the supplier selection problem better than unsupervised method. 

Another application of SVM to financial area is the company credit ratings. Credit rating is a 

very important factor for investing or loan to companies and also significant measurement of the 

company. This research applies the newly proposed SVM algorithm to predict credit ratings of 

companies in Korea. 

1.3 Research Contributions 

This research combines three major topics: mathematical programming, data mining, and 

supply chain management. Therefore, the contributions of the research range from theoretical to 

practical. One of the theoretical contributions is the development of a new pegging algorithm for 

solving the continuous nonlinear knapsack problem. Another theoretical contribution is to 

propose an efficient solving method for the  -SVM classification problem. The practical 

contribution in this research is to suggest a new integrated solving approach for the supplier 

selection problem. 

The Bitran-Hax algorithm is a famous pegging algorithm for the continuous nonlinear 

knapsack problem. The algorithm is known to be simple and fast. This research aims to improve 

on the Bitran-Hax algorithm. This research found that the algorithm does two time consuming 

calculations at each iteration. These two tasks are the calculation of a dual solution and those of 

the primal variables. The dual solution is calculated by the summation of the gradient of the 

functions at each iteration. The new algorithm splits this calculation and reduces re-calculations. 

Calculating primal variables is simple, but must be done for all free variables at each iteration. 

The new algorithm uses a dual variable instead of all free primal variables. The reason the 

Bitran-Hax algorithm calculates primal variables at each iteration is to check the feasibility of 

each variable. The main idea of the new algorithm is to use the bounds of the dual variable 

instead of the primal variables to check the feasibilities. The contributions of solving the 

continuous nonlinear knapsack problem are as follows. 
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 This research developed a new pegging algorithm for the continuous nonlinear 

knapsack problem. 

  The new algorithm has two advantages: it removes the calculations of primal variables   

at each iteration and updates the dual solution instead of re-calculating. 

  The solution time of the new algorithm is overall faster than the Bitran-Hax algorithm. 

  The new algorithm is faster when the size of the problem is large. 

The  -SVM classification problem has a quadratic objective function, two linear 

constraints, and box constraints. First, this research gets one of linear constraints on the objective 

function using the augmented Lagrangian method. Then the problem becomes a singly linearly 

constrained quadratic convex programming problem. The Hessian matrix is a dense positive 

semi-definite matrix. The proposed method in this research splits the dense positive semi-definite 

Hessian matrix as the sum of two matrices. The algorithm solves a subproblem with a simple 

diagonal Hessian matrix, one of these two matrices, and can choose the Hessian matrix for the 

subproblem with any simple and nonsingular matrix. The subproblem is a continuous quadratic 

knapsack problem and can be solved by the new method proposed in this research. The current 

solution and the solution of the subproblem are used for calculating the direction vector. In the 

next step, the line search is conducted to find the best step size. Then the algorithm updates 

solutions and a parameter. In the line search and updating parameter steps, the algorithm can take 

advantage of several options like monotone or nonmonotone line search for the line search and 

Barzilai & Borwein (BB) (1988) rule for updating a parameter. Even if the algorithm splits the 

Hessian matrix, there are a few steps to calculate the Hessian matrix. To facilitate the calculation, 

the incomplete Cholesky decomposition method is applied to decompose the Hessian matrix if 

kernel method is applied. The contributions for the  -SVM classification problem can be 

summarized as follows: 

  This research proposes a different approach for solving  -SVM classification. 

  The method is a combination of matrix splitting, gradient projection, and incomplete 

Cholesky decomposition. 

  The subproblem can be solved with an efficient solving algorithm such as dual bound 

algorithm. 

 The algorithm can use a variety of combinations of methods for line search and 

parameter updating. 
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The supplier selection problem is an important issue for a company purchasing raw 

materials or some components for production from other companies. In the supplier selection 

problem, three major issues contribute the decision: the definition of criteria, the quantification 

of the criteria, and the selection method for potential suppliers and final suppliers. This research 

focuses on the method for selecting suppliers. Most methods for selecting suppliers do not need 

historical data for the selection. These methods use and check only the suppliers currently 

considered. This method is the unsupervised method. On the other hand, if a company has 

historical data for selecting suppliers, a supervised method like the SVM can be used. It is well 

known the supervised method is more accurate than the unsupervised method. The main idea of 

this research is to use SVM classification for selecting potential suppliers. The potential supplier 

denotes a supplier eligible to contract with a company. The company selects the final suppliers 

out of all potential suppliers. The potential suppliers can be considered the candidates for final 

suppliers. Selecting potential suppliers is a classification problem, and the SVM classification 

can be applied. To select the final suppliers, this research used a mixed integer programming 

model. The summary of the contribution of the supplier selection problem is as follows: 

 This research suggests an integrated solving approach for the supplier selection 

problem. 

  The SVM classification is used to select potential suppliers. 

  A supervised method like the SVM is more accurate than an unsupervised method. 

  The proposed method is simpler than other methods. 

In the last part of this research, it applies the proposed method of SVM to a financial 

problem. Banks or investment companies want to measure eligible companies with appropriate 

and objective criteria. One well-known measurement is the company credit rating. The ratings 

are A through D. This research classifies companies into qualified company and others using 

SVM. Experimental results show that the newly proposed SVM solution method is good 

potential method for predicting the company credit ratings. 
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1.4 Dissertation Overview 

In Chapter 2 of this dissertation, it describes the development of a new pegging algorithm 

for the continuous nonlinear knapsack problem introducing the new concept of the dual bound. 

The algorithm is compared with the Bitran-Hax algorithm because the new algorithm is an 

extension of the Bitran-Hax algorithm. Experimental results are shown as well. 

In Chapter 3, the solution method for  -SVM classification problem is presented. This 

research describes the history of SVM problems first and solving algorithms. Then, it proposes a 

method consisting of several mathematical methods. The incomplete Cholesky decomposition 

method and an efficient data storage method for a large scale lower triangular matrix are 

introduced. Some options for the line search and the parameter updating method are shown with 

some experimental results. 

In Chapter 4, the supplier selection problem is described. The integrated solving approach 

for the supplier selection problem combines the SVM classification method with mathematical 

programming model for selecting suppliers. To compare with the SVM classification method, the 

analytic hierarchy process (AHP) for selecting potential suppliers is described. A mixed integer 

programming model is presented for selecting the final suppliers from the potential suppliers.  

In Chapter 5, an application of financial problem using SVM is presented with the 

prediction of company credit ratings with real company data. The overall conclusion and future 

work of this research will be in the last Chapter 6. 
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CHAPTER 2 - Continuous Nonlinear Knapsack Problem 

In this chapter, this research proposes an efficient pegging algorithm for solving 

continuous nonlinear knapsack problems with box constraints. The problem is to minimize a 

convex and differentiable nonlinear function with one equality constraint and bounds on the 

variables. One of the main approaches for solving this problem is the variable pegging method. 

The Bitran-Hax algorithm is a well-known pegging algorithm that has been shown to be a 

preferred choice especially when dealing with large-scale problems. However, it needs to 

calculate an optimal dual variable and update all free primal variables at each iteration, which 

frequently is the most time-consuming task. This research proposed a Dual Bound algorithm that 

checks the box constraints implicitly using the bounds on the Lagrange multiplier without 

explicitly calculating primal variables at each iteration and updating the dual solution in a more 

efficient manner. The results from the computational experiments have shown that the proposed 

new algorithm constantly outperforms the Bitran-Hax algorithm in all the baseline testing and 

two real-time application models. The proposed algorithm shows significant potentials to be used 

in practice for many other mathematical models in real-world applications with straight-forward 

extensions. 

2.1 Introduction 

The knapsack problem, also known as the resource allocation problem, is that a 

hitchhiker wants to pack his knapsack by selecting from among various possible objects those 

which give him maximum comfort, which can be formulated by a mathematical model with the 

objective function is to maximize the total comfort, one knapsack constraint of the capacity of 

knapsack, and binary variables which are defined in Martello and Toth, (1980).  

If its objective function is nonlinear, then the problem is a nonlinear knapsack problem. 

There are some classes of the nonlinear knapsack problem and the review of these can be found 

in Bretthauer and Shetty, (2002). This research is interested in the problem which has a convex, 

differentiable, and nonlinear objective function, and box constraints for all variables, which is a 

convex, separable, and continuous type of problem. There are many applications for problems of 

this type which is described in Robinson et al. (1992) such as portfolio selection problem in 

Markowitz (1952), multi-commodity network flow problem Ali et al. (1980), transportation 
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problem in Ohuchi and Kaji (1984), support vector machine in Nehate (2006), production 

planning in Tamir (1980), and convex quadratic programming in Dussault et al. (1986). The 

problem also can be considered as a subproblem for many optimization models. Ibaraki and 

Katoh (1988) discussed comprehensively the algorithmic aspects of resource allocation problem 

and its variants in their book. Twenty years later, Patriksson (2008) surveyed the history and 

applications of the problem as well as solving algorithms. Therefore these literatures are not 

reviewed here. 

This research considers a continuous nonlinear knapsack problem with box constraints as 

follows. 

(P1)               
 
     (2.1) 

                 
 
       (2.2) 

                                   (2.3) 

where        is a nonlinear, convex, and differentiable function,        is linear referred as the 

knapsack constraint in the rest of the thesis,      
      

      
  for all        , 

     and this research assumes all coefficients of        are not zero and        
 
      

       
 
    and   

      is invertible. 

The Lagrangian dual formulation of P1 by relaxing the knapsack constraint (2.2) is as 

follows. 

(D1)             (2.4) 

 where                      
 
             

 
        (2.5) 

                                                             (2.6) 

and       is the Lagrange multiplier corresponding to the knapsack constraint (2.2).  

The nonlinear knapsack problem P1 is frequently solved via an iterative manner. There 

are more than a handful of algorithms proposed to solve this problem and they can be generally 

divided into two main categories (Patriksson, 2008): the Lagrange multiplier search method and 

the variable pegging method. The basic ideas of these two methods are in the following pictures. 
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Figure 2.1 Lagrange multiplier search method 

 

 

Figure 2.2 Variable pegging method 

 

 

In Figure 2.1 and 2.2, solid boxes denote a variable or variables explicitly used to find the 

optimal solution in each algorithm and dashed boxes represent a variable or variables implicitly 

optimized as the other variable or variables are explicitly optimized. As Bretthauer and Shetty 

(2002) mentioned in their paper, while the Lagrange multiplier search method maintains all 

Karush-Kuhn-Tucker (KKT) conditions during its iterations, except the one knapsack constraint 

and its corresponding complementary slackness condition, the pegging method maintains all 

KKT conditions during its iterations except box constraints. That means the multiplier search 

method focuses on one dual variable achieving the optimal point, and the pegging method aims 

to find the optimal solution satisfying the feasibility of all primal variables. In Figure 2.1, the 

Lagrange multiplier search method uses the dual variable to find the optimal dual solution using 

a search algorithm because there is only one dual variable in the dual problem D1 which is 

described in Bazaraa et. al (1993) and Martello & Toth (1990). As the dual variable is optimized, 

the corresponding primal variables are implicitly optimized as well. On the other hand, in Figure 

2.2, the variable pegging method is a type of primal algorithm finds the optimal primal solution 

by pegging some variables to their lower or upper bounds as their optimal value each iteration. In 

this algorithm, the dual variable can be also optimized implicitly as well. In his literature review, 
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Patriksson (2008) did not make clear which approach was better in terms of computational 

complexity or average solution time. The biggest drawback of the pegging algorithm is that the 

relaxed problem should have an optimal solution and its efficiency depends on whether the 

optimal solution of the relaxed problem can be obtained in closed form. However, the pegging 

algorithm requires the objective function to be convex at least for the linear explicit constraints 

convergence of the method while the multiplier search method requires the objective function to 

be strictly convex (Patriksson 2008). In addition, Bretthauer et al. (2003) mentioned that the 

pegging algorithm was typically faster than the multiplier search algorithm when the relaxed 

subproblem can be solved in closed form. This research focuses on the pegging method since it 

has nicer finite convergence properties and has good potential to be streamlined for great 

performances. 

The pegging method utilized a relaxed problem of P1 by ignoring the box constraints in 

(2.3), which has an optimal solution and the corresponding Lagrange multiplier can be solved in 

a closed form. This relaxed problem can be used to develop an efficient procedure to improve the 

solution efficiency. In addition, the pegging method generally guarantees a finite convergence. 

One of the well-known pegging methods is the Bitran-Hax algorithm (1981). Bitran and Hax 

(1981) developed the algorithm for solving continuous knapsack problem with a convex 

separable objective function and the coefficients of the equality constraints in (2.2) are ones. The 

Bitran-Hax algorithm has some very attractive features including the excellent convergence 

behavior, easy to implement and generally very efficient. There have been many extensions of 

this algorithm and the reviews of them are referred to (Patriksson, 2008).  

In their research, Bitran and Hax (1981) introduced various resource allocation problems 

that could be formulated with this type of P1 problem. Patriksson (2008) referred to many 

extensions of this algorithm and reviews them. 

Cottle at al. (1986) applied this algorithm to the constrained matrix problem. Eu (1991) 

formulated the sampling resource allocation problem with the nonlinear knapsack problem and 

solved the problem with the Bitran-Hax algorithm. Bretthauer et al. (1999) also studied the 

stratified sampling problem with integer variables, which was solved by the branch and bound 

algorithm for the main problem and the variable pegging algorithm for its subproblem. 
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Extensions have been applied to more general problems. Ventura (1991) extended the 

Bitran-Hax algorithm to a problem with non-unit coefficients in the knapsack constraint. 

Kodialam and Luss (1998) developed the algorithm to solve a nonlinear knapsack problem with 

non-negativity constraints on variables and a nonlinear convex knapsack constraint. The RELAX 

algorithm they proposed only checks the lower bound for pegging. Bretthauer and Shetty (2002) 

proposed a pegging branch and bound algorithm for more general problems with integer 

variables and a nonlinear convex objective function and knapsack constraint. Bretthauer et al. 

(2003) extended the pegging branch and bound algorithm to problems with additional block 

diagonal constraints. 

Using the relationship between the restricted projection problem and the nonlinear 

knapsack problem, a projected pegging algorithm has been proposed. Robinson et al. (1992) 

introduced a pegging algorithm incorporated with the restricted projection method. If the 

objective function is the sum of squared variables and there are one linear knapsack constraint 

and box constraints, then the problem is equivalent to a problem finding the orthogonal 

projection of the origin on the feasible region. Robinson et al. (1992) used this projection method 

in the pegging algorithm to calculate the primal solutions of a relaxed problem with only the 

knapsack constraint and then checked the box constraints. Stefanov (2004) considered a problem 

with the objective function as a sum of squared subtraction of two variables and also used the 

concept of projection in the pegging algorithm and extended the algorithm that considered the 

case of some zero coefficients in the knapsack constraint. 

As the literature shows, most extensions of the pegging algorithm focused on improving 

the calculation of the primal solution of the relaxed problem. On the other hand, the new 

algorithm in this research does not use the primal solutions of the relaxed problem, using instead 

the dual bound to check bound constraints. 

This research presents another extension of the Bitran-Hax algorithm. Based on the 

preliminary computational experiments, this research discovered the efficiency of the Bitran-Hax 

algorithm suffers from two time consuming tasks. Firstly, in the Bitran-Hax algorithm, all primal 

free variables have to be recalculated at each iteration, where a free variable means the unpegged 

variable. Secondly, in the Bitran-Hax algorithm, the dual variable,  , must be searched and 

reevaluated several times to determine its optimal value. These are usually the two most time 
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consuming procedures in the algorithm and they are the main motivations of this research. In the 

Bitran-Hax, the algorithm checks the feasibility of the solution after it solves the relaxed problem 

by ignoring the box constraints in (2.3) at each iteration. Solving the relaxed problem is the 

calculation of a newly trial dual variable at each iteration. Then, the algorithm calculates the 

primal variables again and then rechecks their box constraints for the feasibility. Basically, the 

newly proposed algorithm establishes a set of bounds as the predicted range of the optimal dual 

solution, which can be defined initially using only the input data. This is then used as the 

criterion for feasibility instead of checking the feasibility of the primal variables at each iteration. 

The dual bound is calculated only once initially and need not be updated during the solution 

process. For calculating the optimal dual solution, the new algorithm divides the calculations of 

the dual variables into several smaller components, and just updating the required components 

during the pegging process.   

The objective of this chapter is to develop a new pegging algorithm based on the 

concepts of the Bitran-Hax algorithm to solve the continuous separable nonlinear knapsack 

problem with one linear equality knapsack constraint and box constraints. In the newly proposed 

algorithm, the new algorithm introduces the concept of the dual bound and how the dual bound 

can speed up the solution process. The computational results on randomly generated problems 

and applications embedded test models show that the new algorithm consistently outperforms the 

Bitran-Hax algorithm.  

In the rest of the chapter, the concept of the Bitran-Hax algorithm as a current state-of-

the-art pegging method is described in section 2. The new pegging algorithm for continuous 

nonlinear knapsack problem is presented in section 3. The new algorithm applies to the 

continuous quadratic knapsack problem as a special case of the nonlinear knapsack problem and 

the experimental results are shown in section 4. In the conclusion, the contributions of this 

research are reviewed. 
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2.2 The Bitran-Hax algorithm 

This section presents the Bitran-Hax Algorithm to solve the problem P1. The problem P1 

is a convex problem with linear constraints, so the following Karush-Kuhn-Turker (KKT) 

conditions are necessary and sufficient for the optimality as described in Mangasarian (1969). 

The Karush-Kuhn-Turker (KKT) conditions of the problem P1 are   

   
         

             , for all          (2.7) 

            , for all          (2.8) 

            , for all          (2.9) 

        
 
     , (2.10) 

         , for all          (2.11) 

          , for all          (2.12) 

where   is the Lagrange multiplier for the knapsack constraint (2.2),    and   , for all   

      are the Lagrange multiplier for the lower and upper bounds in (2.3), respectively. 

If one relaxed the box constraint in (2.3) in the problem P1, the equation (2.7) becomes 

  
         

       , for all         and    and   can be solved in closed form. Since 

       is linear, its gradient   
      is merely a constant defined as    . Assuming   

     , for all 

       , is invertible,    can be calculated as,  

           
            , for all          (2.13) 

where    
     denotes the inverse of   

 , the gradient of   objective function   , and   the 

Lagrange multiplier corresponding to the knapsack constraint in (2.2) can be obtained from the 

KKT conditions of P1 without the box constraints 

    
   

     
 
   

   
     

 
   

  
   

     
 
   

    
 
   

  (2.14) 

If the solution in (2.13) satisfies the box constraints (2.3) in P1, then it is also optimal to 

P1. If not, then one can set    for some   to their upper or lower bounds and then the value of   

can be recalculated. To determine which variables are to be fixed at their bounds, one defines 

following two terms as the sums of over and under limits, respectively. 

                        , where                                     (2.15) 
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    Q                   , where                                     (2.16) 

where       is defined in (2.13).      and      are used for choosing which set of variables 

(variables in   and  ) to be pegged in the algorithm. The following theorem describes how to 

choose the pegging variables. 

Theorem 2.2.1 

                                   
       , for all          (2.17) 

                                         
    , for all      (2.18) 

                                         
    , for all      (2.19) 

                                   
    , for all    ,   

    , for all      (2.20) 

where   
  is the optimal solution of the problem P1. 

Proof  

This theorem can be proved using Bitran and Hax's (1981) work. The proof uses the KKT 

condition of the problem (P1). The Lemma 1, Lemma 2, Theorem 1, and Theorem 2 in Bitran 

and Hax (1981) described that each case of      and      in (2.17) ~ (2.20) is related with the 

inequalities among the first derivatives   
     , for all i=1,…,n (See details in Bitran and Hax 

(1981)). Using this result and the KKT condition, Theorem 3 in their paper showed that setting 

the optimal value at each case at the upper bound or the lower bound or the optimal value as 

obtained by (2.13) in the relaxed problem is optimal in the original problem (P1). Ventura (1992) 

also showed the relationship of these cases at Theorem 6 in his paper.   

The related computational experiments can be found in Wu (1993). The detail steps of 

Bitran-Hax algorithm are as follows.  

 

Bitran-Hax Algorithm 

Step 0 (Initialization) 

   Let                  ,      ,       

Step 1 (Calculating Dual Solution and Primal Solution) 
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   Compute     
   

     
 
   

   
 
   

 , 

   Calculate      
       

           for all     
  

Step 2 (Check feasibility) 

   For all     
 . 

   If         
       for all     

 , then it is optimal and go to Step 6.  

   Otherwise, go to Step 3. 

Step 3 (Calculate Pegging Sums & Check Stopping Criterion) 

   Compute       and       

               
          , where            

         
  . 

   Q              
       , where            

         
  . 

   If    and    are empty,  

      then it is optimal and calculate     
    for all      from (13) and go to Step 6. 

Step 4 (Pegging Variables) 

   If            , then  

set         for all     ,  

let             and                 . 

   If            , then  

set         for all     ,  

let             and                 . 

   If               , then  

set         for all     , set         for all     , 

let                  and                         . 

Step 5 (Check Stopping Criterion) 

   If       , then go to Step 6. 
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   Else, set        and go to Step 1. 

Step 6 (Optimum Found) 

   Set     
   for all     as the optimal solution and terminate. 

 

The Bitran-Hax Algorithm guarantees that at least one variable is pegged (or fixed) at 

each iteration since if there is no variable to be pegged at the current iteration, then the current 

solution on hand is optimal. Therefore, the algorithm can reduce the dimension of the problem as 

it progresses, and thus, guarantee the finite convergence. For the solution time, Wu (1993) has 

shown that the Bitran-Hax algorithm outperforms the Helgason et al.'s sequential line search and 

the random search by 25%~48% for quadratic network flow problems. It is, however, 

significantly slower than these two methods during the later stage of the solution process. With 

these empirical insights, this research has discovered several unnecessary procedures in the 

Bitran-Hax algorithm, which means the algorithm can be further streamlined. The calculation of 

a dual solution and its corresponding primal free variables at each iteration in Step 1 are the two 

most time consuming tasks, and these are the main foci to be improved in this research. In the 

next section, this research will show how to streamline these tasks. 

2.3 The Dual Bound Algorithm (DBA) 

In this section, a new pegging algorithm for continuous nonlinear knapsack problem with 

box constraints is proposed. The following a definition and two theorems demonstrate the basic 

ideas of the new algorithm. 

Definition 2.3.1 

The dual bound is the set of upper and lower bound of Lagrange multiplier corresponding 

to the solution of the relaxed problem, where the relaxed problem is the problem P1 ignoring the 

box constraint in (2.3). 

Theorem 2.3.1 

     , for          , from (2.13) is a solution of the relaxed P1 problem if it satisfies 

its box constraint             if and only if   is within the dual bound corresponding to the 

variable    as follows:  
  
     

   
    

  
     

   
, for          , where      . 
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Proof 

The optimal solution of the relaxed P1 problem is           
           , for 

         , from (2.13). If one replaces       by     
           , then the box constraint of 

P1            , for           become        
              , for          . 

Hence, the bounds on the Lagrange multiplier   according to the box constraint can be described 

by:  

   
  
     

   
    

  
     

   
, for          .  

Conversely, if one solves  
  
     

   
    

  
     

   
  for     

           , then one can get   

       
                  which is the same as bound constraint of the variable    .    

Theorem 2.3.1 provides a novel perspective to check the box constraint in (2.3) using the 

dual bound and shows that the box constraint in the primal problem can be replaced by the dual 

bound as defined in Definition 2.3.1. Each primal variable     
   has its box constraint, and it 

can be transformed into the dual bound corresponding to each     
  . In the knapsack problem, 

the coefficient of the knapsack constraint in (2.3) denotes the weight of the each item. Therefore, 

if one of coefficients is zero, then the corresponding    does not need to be taken into account the 

knapsack constraint and it can be fixed to its upper bound, which is the reason this research can 

assume      , for all          . As stated in Theorem 2.3.1, the calculation of the dual 

bound only requires the input values:       , and   , which are known parameters. This property 

implies one does not have to update the dual bound at each iteration after it has been calculated 

initially.  

Theorem 2.3.2 

The solution      , for        , obtained from (2.13) is an optimal solution of the 

problem P1 for a given dual solution   to D1, if the following inequality holds true:  

      
  
     

   
                   

  
     

   
           . 

Proof 

In the Bitran-Hax algorithm, if the solution obtained from using the equation (2.13) 

satisfies the box constraints (2.3) of P1, then the solution is also optimal to P1. That is, if 
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           , for all        , then       is also the optimal solution of the problem P1. 

From the Theorem 2.3.1, one can easily replace all   inequalities of            , for all 

        with the following: 

     
  
     

   
                   

  
     

   
           .   

Theorem 2.3.2 shows if the dual solution   satisfies all the dual bounds, then the current 

solution is then optimal. The primal solution     
   for all         satisfies all box 

constraints in the Bitran-Hax algorithm is the same that the dual solution   satisfies all dual 

bounds in the new algorithm. From these properties, the new algorithm is called Dual Bound 

algorithm (DBA). The DBA uses a correction value    at each iteration when the algorithm 

calculates the values of       and      , so these values are the same as the values in the 

Bitran-Hax algorithm. Therefore, DBA and Bitran-Hax algorithm select the same variables to be 

pegged at each iteration. The pseudo-code of the proposed algorithm is now summarized below. 

 

Dual Bound Algorithm (DBA) 

Step 0 Initialization 

Let                  ,      ,       

Step 1 Calculating Dual Bounds 

For all     
 . 

Compute             
  
     

   
  

  
     

   
  

Calculate    
     

           and     
           

Step 2 Update Dual Variable 

Compute 

     
  
 

  
   

Step 3 Calculate Pegging Sums & Check Stopping Criterion 

Compute       and       

                       ,  
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where                  
   and    is correction value. 

Let    
     

         ,     
           

Q                      ,  

where                  
   and    is correction value. 

Let    
     

         ,     
           

If    and    are empty, then it is optimal, 

and calculate     
    for all      from (2.13) and go to Step 6. 

Step 4 Pegging Variables 

If            , then  

 set         for all     ,  

 let             and                 . 

 update   
      

     
 ,    

      
     

 . 

If            , then  

 set         for all     ,  

 let             and                 . 

 update   
      

     
 ,    

      
     

 . 

If               , then  

 set         for all     , set         for all     , 

 let                  and                         . 

 update   
      

     
     

 ,    
      

     
     

 . 

Step 5 Check Stopping Criterion 

If       , then go to Step 6. 

Else, set        and go to Step 2. 

Step 6 Optimum Found 

Set     
   for all     is the optimal solution and terminate. 

 

The above proposed DBA has two main potential advantages for improving the solution 

times: (1) eliminating the calculations of all the primal variables     
   in every iteration and (2) 
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only update    instead of recalculation of   . Compared with Bitran-Hax algorithm in the 

previous section, while the loop of Bitran-Hax algorithm is Step 1 to Step 5, the DBA loop is 

Step 2 to Step 5. The DBA loop does not include the calculation of dual bounds and primal 

variables. The algorithm uses the dual bounds on    (i.e., calculated in Step 1 to check the 

feasibility of box constraints implicitly instead of calculating the primal variable     
   

explicitly in Step 3. Although the algorithm should calculate dual bounds for each   , for      

in Step 1, it is not necessary to the update dual bounds at each iteration because calculations of 

the dual bounds requires only the input data. Furthermore, in the DBA, the update of    is 

divided into two parts, updating of   
  and   

  which are calculated once in Step 1 and their 

values are updated in Step 4. The decrement of   
  and   

  are calculated in Step 3 with    
  and 

   
  or    

  and    
 . When some variables are gradually pegged in Step 4, the values of   

  and 

  
  are updated since the number of free variables in    decreases at least by one at each 

iteration. In Step 3, the term    is multiplied to make the values of       and       in the 

similar manner as those of the Bitran-Hax algorithm. Therefore, the values of       and       

in the DBA have the similar effects as those of the Bitran-Hax Algorithm. The DBA can get the 

same solution and the number of iteration as the Bitran-Hax algorithm. The only difference of 

the results between the Bitran-Hax and the DBA is the solution time. The basic idea of the Dual 

Bound algorithm is the following picture. 

 

Figure 2.3 Dual Bound algorithm 

 

 

Although the DBA does not calculate primal variables in every iteration, at least one 

primal variable is pegged at each iteration. Therefore, in the DBA, both primal and dual variables 

are optimized implicitly as illustrated Figure 2.3.  
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For the original Bitran-Hax algorithm, in the worst case, only one variable is set to its 

upper or lower bound at each iteration. The computational complexity of this process is     . In 

addition, there are two calculations of the primal variables and the dual variable at each iteration 

and the evaluation of the feasibility for all remaining free variables. The computational 

complexity of this process is     . Therefore, the overall computational complexity of the 

Bitran-Hax algorithm is      . In the DBA, the pegging procedure has the same complexity 

     as the Bitran-Hax algorithm and there is the evaluation of the feasibility of all remaining 

free variables at each iteration of which is the calculation of pegging sums       and       and 

its complexity is     . The overall computational complexity of the DBA seems to be similar to 

the Bitran-Hax algorithm. However, except the pegging process, the DBA has only the 

evaluation of the feasibility process and does not have two calculations of the primal variables 

and the dual variable. For instance, let us consider the worst case problem that only one variable 

is pegged at each iteration. In the Bitran-Hax algorithm, the calculation of the primal variables in 

(2.13) is       at each iteration and the overall calculation is the same as the calculation of 

the sum of   to   because the number of iteration is   (the worst case), that is, 
      

 
. The 

calculation of the dual variable in (2.14) is also 
      

 
. The total variable updating effort can be 

as bad as       . On the other hand, the DBA only needs to calculate the dual bounds for all 

variables initially, that is,  , but does not need to calculate two 
      

 
. In this respect, it is 

obvious that the DBA could be more efficient than the Bitran-Hax algorithm unless the problem 

has only one or two iterations to get the optimum. In the next section, the computational 

experiments show the practical performance of the DBA. 

2.4 Numerical Examples 

This section shows the Dual Bound Algorithm for a continuous quadratic knapsack 

problem as a special case of nonlinear knapsack problem as follows. 

(P2)        
 

 
     

  
         

 
     (2.21) 

               
 
       (2.22) 

                                   (2.23) 



 23 

where             
      

      
      

  for all        ,      and this 

research assumes      for all         and      
 
           

 
   . 

To simplify the implementation, a variable transformation is first performed to let all the 

coefficients of the equality constraint become one. This requires the following change of 

variables. 

Let          ,  for all          and the bounds become 

     
                  
                  

    ,    for all          (2.24) 

     
                  
                  

   ,    for all          (2.25) 

The problem is reformulated as 

(P3)        
 

 
  

    
 

  
 

 
     

    

  

 
     (2.26)  

             
 
       (2.27)             

                      , for all          (2.28)  

The Karush Kuhn Turker (KKT) conditions of the problem P3 are   

              
      

      
   , for all         (2.29)  

            , for all          (2.30)  

            , for all          (2.31) 

    
 
     , (2.32) 

         , for all          (2.33) 

          , for all          (2.34) 

With this equation, the variable    is calculated as follows:  

                
       

  

  
 , for all          (2.35) 

where   is obtained from the KKT conditions of P2 without the bound constraints 

    
 

    
  

 
     

 
  
 

  

 
   

  (2.36) 
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The equations (2.35) and (2.36) are corresponding to (2.13) and (2.14) respectively. The 

detail algorithm of Dual Bound is as follows: 

 

Algorithm (Dual Bound : Quadratic Knapsack Problem) 

Step 0 Initialization 

Let                  ,      ,       

Transform    into          and compute    and    for all      from (2.24) and (2.25). 

Step 1 Calculating Dual Bounds 

Compute dual bounds for all   , for    . 

             
    

  
  

    

  
     

    

  
  

    

  
    

Calculate     
   

    

  
      and     

   
  
 

  
     

Step 2 Update Dual Variable 

Compute     

    
   
    

  
   

Step 3 Calculate Pegging Sums & Check Stopping Criterion 

Compute       and       

                
  
 

  
         

    

  
 

  
 

  
          ,  

where                  
   

let    
   

    

  
    ,     

   
  
 

  
     

Q               
  
 

  
           

    

  
 

  
 

  
       ,  

where                  
   

let    
   

    

  
    ,     

   
  
 

  
     

If    and    are empty, then it is optimal, 

and calculate     
    for all      from (2.35) and go to Step 6. 
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Step 4 Pegging Variables 

Pegging variables 

If            , then set         for all     ,  

 let             and                 . 

 update    
       

     
 ,    

      
     

 . 

If            , then set         for all     ,  

 let             and                 . 

 update    
       

     
 ,    

      
     

 . 

If               , then set         for all     , set         for all     , 

 let                  and                         . 

 update    
       

     
     

 ,    
      

     
     

 . 

Step 5 Check Stopping Criterion 

If       , then go to Step 6. 

Else, set        and go to Step 2. 

Step 6 Optimum Found 

Set     
       

       for all     is the optimal solution and terminate. 

 

In the above algorithm,    
     is the   

  in the previous section. The term  
  
 

  
   in step 

3 is the    which makes       and Q     the same as those of Bitran-Hax algorithm. This 

section provides a simple example to show how the algorithm proposed in this research works. 

The simple example is solved with the methods of both the Bitran-Hax and the Dual Bound.  

 

Example 4.1 
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By the formulation,                             

                                                            

 

< Bitran-Hax Algorithm > 

- Iteration 1 

Step 0 

           ,          ,      

                         ,          ,                          

Step 1 

     
 

    
         

 
  
 

      

  
      

 
 
   

 
  

 

 
 
 

 

  
  

 
  

 

  
  

  
 

          
    

       
  

  
  

           
  

  
 

 
   

  

  
 

  

  
 

          
    

       
  

  
  

        
  

  
 

 
    

  

  
  

  

  
 

Step 2 

     
  

  
      :  Yes 

      
  

  
      :  No 

Step 3 
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Step 4 

Since            ,                        

                                   

Step 5 

Since     , set         , go to Step 1 

 

- Iteration 2 

Step 1 

     
 

    
         

 
  
 

      

  
      

 
  

 

 

   

          
    

       
   

  
  

          

 
   

Step 2 

            :  Yes 

Go to Step 6. 

Step 6 

Set       
   

     

  
 

 

 
  ,       

   
     

  
 

 

 
   

Therefore,        
         is optimal. 

 

Next, the Dual Bound Algorithm is used to solve this problem. 

< Dual Bound Algorithm > 

- Iteration 1 

Step 0 

           ,          ,      
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                         ,          ,                          

Step 1 

              
    

  
  

    

  
     

    

  
  

    

  
    

     
     

 
 

   

 
    

     

 
 

   

 
          

              
    

  
  

    

  
     

    

  
  

    

  
    

     
   

 
 

   

 
    

   

 
 

   

 
        

 

 
  

    
   

    

  
     

      

 
 

   

 
 

 

 
 

   
   

  
 

  
     

 

 
 

 

 
  

  

 
 

Step 2 

     
   
    

  
   

 

 
  

  

 

  
  

 
  

 

  
  

  
 

Step 3 

         
    

  
 

  
 

  
            ,    is empty. 

Q          
    

  
 

  
 

  
          

   

 
 

 

 
  

  

  
  

  

  
,        

   
   

    

  
     

  

 
  ,     

   
  
 

  
      

  

  
 

Step 4 

Since            ,                            

   
     

     
                                      

Step 5 

Since     , set         , go to Step 2 

- Iteration 2 

Step 2 
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Step 3 

          
    

  
 

  
 

  
            ,    is empty. 

Q           
    

  
 

  
 

  
         ,     is empty. 

It is optimal. 

Calculate             
       

  

  
  

          

 
   

and go to Step 6. 

Step 6 

Set         
    

  
 

 

 
  ,         

    

  
 

 

 
   

Therefore,        
         is optimal. 

 

From this numerical example, two methods have the same optimal solution and the 

number of iteration. The Bitran-Hax Algorithm calculates   and       in step 1 at every 

iteration. On the other hand, The Dual Bound Algorithm calculates dual bounds at the beginning 

and calculates three components of   calculation in step 1. The loop of the Dual Bound 

Algorithm starts from step 2. The Dual Bound Algorithm does not calculate       at every 

iteration. Furthermore, the Dual Bound Algorithm updates two components of   calculation (  
 , 

   
 , and   ) instead of calculating all it again. In this simple problem, the Dual Bound Algorithm 

is not much attractive. However, if the size of the problem or the number of iteration is 

increasing, the solution time would be different. Some experimental results for various large 

scale problems are shown in the next section.  
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2.5 Experimental results 

In this section, the computational experiments for both the Dual Bound algorithm (DBA) 

and the Bitran-Hax algorithm are conducted on randomly generated problems with different 

sizes, and then tested on different types of applications with common data sets. Both algorithms 

are implemented in C programming language, complied using gcc and ran on a Fedora 7, 64 bit 

Red Hat Linux machine with 2 GB memory and Intel Duo Core
TM

 2 CPU running 2.66 GHz. 

Experiments on different types of problems demonstrated a comparison between the Dual Bound 

and the Bitran-Hax algorithms. 

In the first round of tests, the continuous quadratic knapsack test problems with various 

sizes were randomly generated to establish a baseline comparison between the Bitran-Hax 

algorithm and the DBA.  

First, for testing the continuous quadratic knapsack problem, data sets were randomly 

generated with the following distribution:               ,             , and 

                , where        denotes the uniform distribution with range from   to  . For 

generating the bound values, two values are generated from            and this research puts 

the larger value to    and the smaller one to    to satisfy the inequality       . The   value in 

(22) is generated by          
 
         

 
    . The experimental results are as follows. 

 

Table 2.1 Problem size (500,000 variables) 

 
Solution time (seconds) 

 500k DBA Bitran-Hax Improved (%) 

1 1.05 1.13 7.07 

2 1.08 1.17 7.69 

3 1.04 1.15 9.56 

4 1.05 1.12 6.25 

5 1.06 1.19 10.92 

6 1.05 1.15 8.70 

7 1.08 1.17 7.69 

8 1.03 1.12 8.04 

9 1.04 1.16 10.34 

10 1.06 1.16 8.62 

  
Average 8.49% 
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Table 2.2 Problem size (1,000,000 variables) 

 
Solution time (seconds) 

 1000k DBA Bitran-Hax Improved (%) 

1 2.10 2.35 10.64 

2 2.09 2.28 8.33 

3 2.13 2.34 8.97 

4 2.08 2.27 8.37 

5 2.13 2.34 8.97 

6 2.14 2.40 10.83 

7 2.12 2.34 9.40 

8 2.11 2.35 10.21 

9 2.09 2.30 9.13 

10 2.12 2.36 10.17 

  
Average 9.5% 

 

Table 2.3 Problem size (2,000,000 variables) 

 
Solution time (seconds) 

 2000k DBA Bitran-Hax Improved (%) 

1 4.20 4.61 8.89 

2 4.22 4.67 9.63 

3 4.20 4.85 13.40 

4 4.26 4.66 8.58 

5 4.27 4.82 11.41 

6 4.26 4.82 11.62 

7 4.28 4.83 11.39 

8 4.19 4.67 10.28 

9 4.26 4.75 10.36 

10 4.18 4.68 10.68 

  
Average 10.62% 

 

The experimental results from Tables 2.1 to 2.3 have shown that the DBA outperforms 

the Bitran-Hax algorithm by 8 ~ 10%. In this set of test problems, around 30~40% of the 

remaining free variables (i.e., variables having their optimal values strictly between their bounds) 

are in the optimal solution.  

The next set of test problems were randomly generated with the following distributions: 

                ,              ,                , and              . 
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Figure 2.4 The gap of solution time between Bitran-Hax and Dual Bound 

 

 

In Figure 2.4, the horizontal axis denotes the problem sizes ranging from 5,000 to 

2,000,000 variables. From the results illustrated in Figure 2.4, this research discovered that when 

the problem size increases, the gap of the solution times between the Bitran-Hax and the DBA 

also increases. When the problem size is small (i.e., ranging from 5,000 to 100,000 variables), 

the gap of the solution time is small. On the other hand, for the large size problems (i.e., from 

500,000 variables and beyond), the gap is large. The percentages of free variables at the achieved 

optimal solution are about 70% in these test problems. The percentages of free variables at the 

final optimal solution are larger than the previous experimental results in Tables 2.1~3. 

However, the improvements on solution times are not much different (i.e., around 8~10% of 

improvement) because the number of iteration in the results of Figure 2.4 is less than those 

presented in Tables 2.1~3. Therefore, the DBA outperforms the Bitran-Hax algorithm regardless 

the number of optimal free variables or required total number of iterations to achieve the optimal 

solutions.  

Second, this research examined the test cases for the some real-world applications having 

embedded convex knapsack problems in its optimization problems. Two types of optimization 

problems: quadratic network flow problem and portfolio optimization problem have been tested 
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to assess the effeteness of the DBA. The quadratic network flow problems were randomly 

generated using a modified version of the generator NETGEN in Klingman et al. (1974) to 

generate nonlinear separable cost functions. The quadratic and linear cost coefficients are 

distributed by           . The detail information for this data set and solving algorithm is in 

(Arasu, 2000). The algorithm framework for solving this data set is a hybrid dual algorithm 

which combined the conjugate gradient and the dual preflow algorithms in Arasu (2000). The 

quadratic knapsack problem is a well-known line-search subproblem using in this algorithm. The 

computational results are presented in Table 2.4. Table 2.4 reports the problem sizes tested 

(denoted by the numbers of nodes and arcs in the tested networks), and solution times for the 

Bitran-Hax algorithm and the DBA in seconds. 

 

Table 2.4 Computational Results for Quadratic Network Problems 

Problem Sizes Solution time (seconds) 

# of nodes # of arcs Bitran-Hax DBA Improved (%) 

200 400 0.16 0.13 18.75 

200 1000 0.07 0.05 28.57 

250 1000 0.11 0.07 36.36 

300 600 0.21 0.15 28.57 

400 800 0.72 0.50 30.56 

400 2000 0.19 0.16 15.79 

400 2400 0.33 0.17 48.48 

450 2400 0.40 0.23 42.50 

500 1000 0.55 0.49 10.91 

500 2000 0.31 0.19 38.71 

500 2400 0.39 0.28 28.21 

500 2500 0.41 0.34 17.07 

1000 40000 5.51 3.67 33.39 

4000 20000 9.77 5.46 44.11 

4500 50000 11.89 6.71 43.57 

5000 50000 11.71 6.60 43.64 

 

The percentage of improving solution time is around 10~48%. It can be also seen from 

Table 2.4 that the speedups of the solution times between the Bitran-Hax algorithm and the DBA 

increases as the problem size increases. 
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The tested financial problems in this research are the stochastic portfolio optimization 

problems. These problems have been modeled as the two-stage stochastic programming 

problems. These problems were solved using progressive hedging algorithm with potential 

reduction function (Arasu, 2000). The detail information of the data set and the progressive 

hedging algorithm can be found in Arasu (2000). The results are summarized in Table 2.5 below. 

 

Table 2.5 Computational Results for the Portfolio Optimization Problems 

Problem Sizes Solution time (seconds) 

Asset Periods Scenarios Bitran-Hax DBA Improved (%) 

15 8 18 2.74 2.14 21.90 

15 6 52 7.80 5.96 23.59 

15 8 80 7.17 5.53 22.87 

15 8 72 11.14 8.43 24.33 

15 4 70 3.02 2.34 22.52 

15 8 48 7.60 5.79 23.82 

15 8 40 6.53 4.95 24.24 

15 8 60 10.14 7.62 24.85 

15 8 100 8.79 6.83 22.30 

15 8 120 10.59 8.21 22.47 

15 8 124 11.00 8.45 23.18 

15 8 125 11.34 8.68 23.46 

15 8 200 17.87 13.85 22.50 

15 8 250 22.35 17.21 23.00 

15 8 400 35.88 27.58 23.13 

15 8 500 44.71 34.73 22.32 
 

This financial problem has a line-search subproblem in the similar format to the quadratic 

network flow problem, which is also a quadratic knapsack problem. In this case, the continuous 

quadratic knapsack problem is the subproblem of the subproblem of the progressive hedging 

algorithm as Arasu (2000) referred the problem as two-stage stochastic network model. From 

this round of the computational experiments, the solution times can be improved around 21~25% 

if the DBA is used. From the results depicted in Table 2.4 and 2.5, if the continuous quadratic 

knapsack problem is a subproblem of other optimization problems and the size of these 

optimization problems is large and the number of iteration in solution procedure is large, then the 

DBA is more attractive than the Bitran-Hax algorithm. 
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The differences in practical computations for the two algorithms follow. The DBA should 

calculate the dual bounds for all variables once at the initial step and does not calculate them 

again during iterations. At the last iteration, the DBA should calculate the remaining primal free 

variables. On the other hand, the Bitran-Hax algorithm does not calculate the dual bounds, but it 

should calculate all primal free variables not pegged at the iteration during each iteration. 

Therefore, even if the problem is large, the Bitran-Hax algorithm would be faster than the DBA 

when the number of iterations is small and the calculations of the dual bounds and the final 

remaining free variables in DBA are larger than the calculations of free variables during 

iterations in the Bitran-Hax algorithm. In the experiments, the results of the quadratic network 

and financial optimization problems are more improved than the quadratic knapsack problem. 

The reason is that the number of iterations in Tables 2.4 and 2.5 is larger than that in Table 2.1~3 

even though the size of the problem in Table 2.1~3 is larger. The average number of iterations in 

the quadratic knapsack problems is 8. On the other hand, the quadratic network problems have 

approximately 110 iterations for the main problem, which means algorithm calls the quadratic 

knapsack problem as a subproblem 110 times during the solving process. Thus, the total number 

of iterations for the quadratic knapsack problem in the quadratic network problem is 

approximately 110 times the average number of iterations of a quadratic knapsack problem. In 

summary, the DBA is more attractive if three conditions are met: the size of the problem is large, 

the number of iteration is large, and the number of free variables is large. 

2.5 Conclusions 

This chapter proposed a new pegging algorithm, the Dual Bound algorithm, to solve the 

separable continuous nonlinear knapsack problem with box constraints. The nonlinear knapsack 

problem has many real-world applications and is frequently embedded as a subproblem in many 

large-scale mathematical models. The main motivation of the new algorithm is to reduce the time 

consuming variable updating procedures in the Bitran-Hax algorithm to improve the overall 

efficiency. The Bitran-Hax algorithm must recalculate the dual variable and primal variables at 

each iteration, which is frequently the most computationally involved procedure. In the Dual 

Bound algorithm (DBA), once dual bounds are initially calculated, they can be used throughout 

the solution procedure while the Bitran-Hax algorithm must recalculate all remaining free primal 

variables at each iteration. To update the dual variable  , the DBA divides the calculation of   
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into several smaller components and updates the each component, individually only when 

necessary. 

The results of the two types of experiments with quadratic objective functions show that 

the DBA can solve such problems faster than the Bitran-Hax algorithm. The first type of 

experiment used randomly generated, continuous quadratic knapsack problems with sizes 

ranging from 500 to 2,000,000 variables. The computational results revealed that the DBA 

improves the average solution times by approximately 8~10% over the Bitran-Hax algorithm 

while obtaining the same optimal solutions. When problem sizes increased, the solution time of 

the DBA became even faster than the Bitran-Hax algorithm. The second type of experiment 

involved the continuous quadratic knapsack problem as a subproblem of other optimization 

models. The quadratic network flow problems and the portfolio optimization problems were 

tested in this round of computational comparisons. The quadratic network flow problem has a 

line-search subproblem as a continuous quadratic knapsack problem and the portfolio 

management problem is modeled by two-stage stochastic network problem with a similar line-

search routine. The results of these problem sets show that the DBA can achieve approximately 

10~48% faster results for the quadratic network flow problems and 21-25% faster results for the 

portfolio optimization problems than the Bitran-Hax algorithm. The results of the extensive 

computational experiments reveal that the DBA is an attractive alternative for the Bitran-Hax 

algorithm for large-scale problems. In addition, the computational experiments suggest the DBA 

provides an edge when used to solve an embedded subproblem, in which a large number of 

nonlinear knapsack problems are repeatedly resolved with possible warm-starts and when 

significantly large number of variables are bounded at the optimum.  

In the future, the DBA can be extended to handle broader problems such as the non-

separable objective functions with a dense Hessian matrix or problems with generalized upper-

bounding constraints. The DBA optimizes both primal variables and a dual variable implicitly 

and using smaller components updates to achieve the maximal efficiency. With these concepts, 

more efficient algorithms could be possible because checking feasibility uses only one dual 

variable instead of all the primal variables. If the dual variable could initially be chosen or 

estimated with better insight, the number of iterations would be significantly reduced. This 

algorithm also can be applied to more complicated, larger problems in the real-life applications. 
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The problem in this chapter is separable, convex, continuous, and bounded nonlinear 

knapsack problem. The separable problem denotes the Hessian matrix is a diagonal matrix. In the 

next chapter, the problem arising in support vector machine has nonseparable Hessian matrix. 

The solution algorithm for the nonseparable problem is different from separable case in this 

chapter. However, the method in chapter 3 will split the Hessian matrix into sum of simple 

diagonal matrices and solve a separable nonlinear knapsack problem iteratively. Thus, the 

nonlinear knapsack problem in this chapter will be a subproblem of the problem in the next 

chapter and be solved iteratively. 
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CHAPTER 3 -  -Support Vector Machine 

This chapter proposes a solving approach for the ν-support vector machine (SVM) for 

classification problems using the modified matrix splitting method and incomplete Cholesky 

decomposition. The SVM problem is solved by solving its dual problem because there is only 

one dual variable. Using the augmented Lagrange method, the dual formulation of the ν-SVM 

classification becomes a singly linearly constrained convex quadratic program with box 

constraints. The Kernel Hessian matrix of the SVM problem is dense and large. The matrix 

splitting method combined with the projection gradient method solves the subproblem with a 

diagonal Hessian matrix iteratively until the solution reaches the optimum. The subproblem is a 

nonlinear knapsack problem with a diagonal Hessian matrix described in chapter 2. Thus, the 

Bitran-Hax or Dual Bound algorithm is used for solving this subproblem. The method can 

choose one of several line search and updating alpha method in the projection gradient method. 

The incomplete Cholesky decomposition is used for the calculation of the large scale Hessian 

and vectors. The experimental results show that the newly proposed method has a potential for 

the alternative of the solution method for the  -SVM classification problem even if the size of 

the problem is medium or large. 

Section 1 introduces a brief history of machine learning and SVM. In section 2, the 

solving algorithm for the  -SVM is described. The decomposition method and the data structure 

of Hessian matrix are showed in section 3. Section 4 presents the experimental results. In the 

conclusion, the contributions of this chapter are reviewed. 

3.1 Introduction 

The machine learning truly began with Rosenblatt's perceptron from the research of 

neurodynamics in Rosenblatt (1962). Rosenblatt constructed the perceptron to solve pattern 

recognition problems and described the concept can be generalized. The problem was to find a 

rule to separate data into two groups using given examples. The learning theory aims to find the 

rule from data observed to predict the future. Finding the rule is to find the pattern of the data. 

For example, let us assume that there are training data set        , ...,        , where     
  

and     
  for all        . If the pattern of the data set is known, one can estimate the 

response   
 , ...,   

  for   
 , ...,   

 . To find the rule, the perceptron uses the hierarchical network 
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with the data set on the bottom of the network and the result on the top of the network. There are 

arcs between the layers. The arcs have weights. The perceptron aims to find the weights which 

perfectly explain how to get the results. The artificial intelligence group also got involved in this 

research in 1980s. The name of percepton was changed into neural network. The neural network 

has been used to find the rule in the learning theory. However, the neural network method was 

dependent on the data set and it took much time to find the weights in the large scale problem. In 

1986, there was the second breakthrough in learning theory. The backpropagation method was 

introduced by A and B independently. The backpropagation method significantly increased the 

speed of finding the weights in neural network. The backpropagation neural network has been a 

popular method since then. However, the backpropagation neural network still had two 

problems: slow convergence and less generalization. In 1995, Vapnik introduced the SVM that 

has been a popular method of learning theory so far. The SVM based on the concept of the 

structural risk minimization principle have gained popularity with many attractive features such 

as statistical background, good generalization, and promising performance. This research focuses 

on the solving algorithm for the SVM for the classification problem. 

The SVM maps the data set into another space called a feature space and classifies or 

does a regression the data set using separating hyperplane. Using the SVM, it is necessary to 

solve a quadratic programming problem that has a dense Hessian matrix. In this chapter, this 

research proposes an approach to solve the SVM for classification problems. The matrix splitting 

method with the nonmonotone line search technique is used to solve the quadratic programming 

problem and a penalty method is used to move one of constraints to the objective function. 

Bitran-Hax or Dual Bound algorithm in chapter 2 is used for solving the subproblem that is a 

quadratic nonlinear knapsack problem. This research also uses an incomplete Cholesky 

decomposition method for the dense Hessian matrix for large scale problems. 

3.2 Support Vector Optimization 

The SVM originally was developed for classification problems also called pattern 

recognitions and extended for regression problems. This research focuses on the classification 

problem. When one wants to classify certain data into two groups, one can think three possible 

cases. The first case is that the two groups are known and can be separated trivially. For 

example, there are ten pets: five dogs and five cats. One knows the information of two groups: 
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dog group and cat group. Then one can easily classify ten pets into two groups. The second case 

is that the two groups are known, but can not be separated trivially. For example, there are ten 

dogs. One wants to classify the dogs into two groups: biting a thief or not when the dog 

confronts a thief. One knows the information of the two groups: biting group and not biting 

group. However, one can not classify the group of dogs trivially. The last case is that the two 

groups are unknown and cannot be separated trivially. For example, there are ten dogs. One 

wants to classify the dogs, but one does not know how to classify the dogs and do not have any 

information of the groups. The second and the third case can be considered in the field of 

learning theory. The supervised learning is related to the second case and the unsupervised 

learning is the third case. The SVM is one of supervised learning methods. Thus, it is assumed 

that the information of group and the data of history are known in the SVM.  

Let us assume there are two groups and sample data. The training data      is a vector 

and its result is          which denotes two groups. If it assumes that there are   training data, 

then the pairs of training data are          
          , for        . The goal of this 

research is to find the pattern of the data using these pairs of training data. Suppose        is an 

unknown probability distribution of data set and        is defined a mapping from input   to 

output  . The function      is referred to hypothesis and the set of functions             is 

called the hypothesis space denoted by  . The parameter   is an adjustable parameter and 

specifies a particular function in the hypothesis space. The symbol   denotes an index set. The 

expected risk or expected error is 

       
 

 
                    (3.1) 

However,      cannot be calculated exactly because the probability distribution is 

unknown. Instead one calculates the bound of the expected risk. If one has   data observed, the 

empirical risk is defined as 

         
 

  
                

 
    (3.2) 

If one assumes the confidence level is         , then Vapnik introduced the bound 

of the expected risk is 

                     
  

 
         

 

 
 

 
 (3.3) 

where   is defined the VC dimension for the hypothesis space. Therefore, if one minimizes the 

right hand side, the bound of the expected risk, then the bound is close to the original expected 
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risk. The second term of the bound denotes the confidence term. When one minimizes the 

empirical risk, the confidence term is increased. Similarly, the empirical risk increases if one 

reduces the confidence term. Therefore, one should have a tradeoff between the empirical risk 

and the confidence term. However, it is hard to get an appropriate VC dimension and to 

minimize the problem. The structural risk minimization (SRM) principle is to minimize the risk 

functional with respect to both the empirical risk and the confidence term, where the functional is 

a function of which variables are functions. In the above inequality, the first term of the right 

hand side means how the data chosen is good and the second term is for the complexity of the 

model. There are two approaches to minimize the right hand side of the inequality: neural 

network and SVM. The neural network keeps the confidence term fixed and minimizes the 

empirical risk. On the other hand, the SVM keeps the value of empirical risk fixed and 

minimizes the confidence term. 

To minimize the empirical risk functional, a set of linear indicator functions is defined as 

follows. 

                   ,       (3.4) 

where       denotes an inner product between vectors   and  . 

Assuming the number of data is  , the goal is to find the coefficient    that minimize the 

empirical risk functional 

         
 

 
             

  
    (3.5) 

If the training set is separable without error which means the empirical risk can become 

zero, there exists a finite step procedure to find the vector  . On the other hand, if the training 

set is not separable, the problem becomes NP-complete. Furthermore, one cannot use the regular 

gradient based method since the gradient of the functional is either equal to zero or undefined. 

With these facts, one needs to approximate the indicator functions so called sigmoid function as 

follows. 

                  (3.6) 

where      is a smooth monotonic function as follows. 

         ,        (3.7) 

The neural network approach has some problems. The quality of the solution depends on 

many factors, in particular on the initialization of weight matrices. The convergence of the 
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method is slow. The choice of the scaling factor in the sigmoid function is a trade-off between 

the quality of approximation of indicator function and the rate of convergence. 

The SVM approach uses an optimal separating hyperplane as described in Vapnik and 

Chervonenkis (1974), Vapnik (1979) which separates the data with maximum distance (margin) 

between the data and the hyperplane.  

Suppose that there are the training data 

        , ...,        ,  where      and          (3.8) 

The data has two classes: the one is the class the target value   is -1 and the other class is 

the target value   is 1. The separating hyperplane is defined as 

          ,  where      and     (3.9) 

The decision function      is  

                   ). (3.10) 

When the input data are separable, the hyperplane has the following conditions 

           ,       if      (3.11) 

            ,    if      . (3.12) 

These two constraints (3.11) and (3.12) can be combined as  

                (3.13) 

The distance between the data and the hyperplane is 
 

   
, where     denotes the norm of 

the vector. The optimal separating hyperplane is the hyperplane with the maximum distance. 

Therefore, to obtain the optimal separating hyperplane, one needs to solve the following 

problem: 

        
 

 
     (3.14) 

                        ,          (3.15) 

In this model, variables are    and   while    and    are input data. One can consider the 

dual problem of this problem to solve it efficiently. The Lagrangian dual with multiplier   is as 

follows. 

                      (3.16) 

where          
 

 
                         

   . 
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The Lagrange function          is convex. With the strong duality condition, the primal 

and the dual optimal solution is the same in this case. One can solve this dual problem instead of 

the primal. For formulating the dual problem, the derivatives of the Lagrangian function are 

follows. 

 
         

  
   leads to      

 
     , (3.17) 

 
         

  
   leads to          

 
     (3.18) 

 The dual problem can be written as follows. 

      
 

 
                 

 
   

 
              

 
    (3.19) 

                
 
     ,         (3.20) 

                 ,         (3.21) 

The decision function is 

                      
 
       (3.22) 

The problem is a quadratic programming problem with one equality constraint. The 

solution   of this problem specifies the training patterns. The vectors   corresponding to the 

non-zero elements of   are called support vectors which only effects to form the separating 

hyperplane, which also means a subset of constraints in the primal problem play a role to make 

the classifier. 

In the SVM, the input data is mapped to a higher dimensional space called as the feature 

space. A nonlinear mapping function      maps the input data to the feature space. The kernel 

function is defined as follows.                      . All kernel functions can be expressed 

with dot products of        . Therefore, the dual problem can be rewritten as follows. 

      
 

 
                          

 
   

 
       

 
    (3.23) 

                 
 
     ,         (3.33) 

                  ,         (3.34) 

Then, the decision function becomes                       
 
      . There are 

several types of kernel function used in the SVM: 

 Linear kernel :            

 Polynomial kernel :                 

 Radial basis function (RBF) kernel :               
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 Two layer neural network kernel :                    . 

These kernels are expressed as the dot product between two vectors. Using the kernel 

function, one does not need to worry about the high dimensionality of the feature space. The 

input data is implicitly mapped to the feature space. Therefore, the dimension of the kernel 

Hessian matrix in the objective function is the same dimension as the linear kernel even if other 

kernels are used. 

In the real world, the input data may not be separable with the separating hyperplane 

because the data can be inconsistent, missing, incomplete, noisy, and so on. To fix the non-

separable case, one can introduce additional slack variables   in the primal problem: 

                  ,         (3.35) 

The primal problem becomes 

         
 

 
         

 
    (3.36) 

                             ,         (3.37) 

                  ,         (3.38) 

In this problem, 
 

 
     represents the model complexity because it shows how much the 

classifier is accurate.     
 
    denotes the measure of the training errors, which can be seen as the 

empirical risk        .  The constant   controls the trade-off between the complexity and the 

training errors. Since the slack variables   make the margin smooth, the margin is called as the 

soft margin and the problem is called as   support vector classification ( -SVC). The dual 

problem of this problem is as follows. 

      
 

 
                          

 
   

 
       

 
    (3.39) 

                 
 
     ,         (3.40) 

                    ,         (3.41) 

The only difference from the separable case is that the dual problem has box constraints 

for all variables. However, this  -SVC has two broad range of the parameter   and the solution 

is very sensitive to the value  . To fix these problems, Schölkopf et al. (2000) proposed another 

model so called  -support vector classification ( -SVC) or  -support vector machine ( -SVM). 

 -SVC uses a new parameter   instead of  . The parameter   has a range of zero to one, that is 

       , and provides the lower bound of the fraction of the support vectors and the upper 
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bound of the fraction of the margin errors. The primal problem of  -SVC or  -SVM is as 

follows. 

           
 

 
        

 

 
   
 
    (3.42) 

                             ,         (3.43) 

                  ,         (3.44) 

                  (3.45) 

To see the function of the additional variable  , if the variable    equals zero, then the 

margin becomes 
  

   
 instead of 

 

   
. The Lagrangian function with additional multipliers   and   

is as follows. 

          
 

 
                           

 
         

 
       (3.46) 

With partial derivatives, one can get the following conditions: 

       
 
       (3.47) 

           
 
    (3.48) 

        
 

 
 (3.49) 

     
 
        (3.50) 

Therefore, the dual problem of the  -SVC or  -SVM is as follows. 

      
 

 
                          

 
   

 
    (3.51) 

                 
 
     ,         (3.52) 

                   
 

 
,         (3.53) 

                 
 
     ,         (3.54) 

Comparing with  -SVC, the objective function does not have the first order term    
 
    

and there is additional constraint. The decision function is the same as the previous one (3.22): 

                        
 
       (3.55) 

For the calculation of   and  , one can use a KKT condition of the  -SVC. One of KKT 

condition is as follows. 

                        ,         (3.56) 

By (3.48), the equation (3.56) can be rewritten as 

                  
 
              ,         (3.57) 
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At the optimal solution, if     , then               
 
            should be 

zero. Since     , the slack variable     . The remaining term               
 
         

should be also zero. One can consider two cases of          . Then two equalities are 

obtained as follows. 

                          
 (3.58) 

                           
 (3.59) 

Therefore, 

   
                     

                       

 
 (3.60) 

   
                      

                      

 
 (3.61) 

To solve SVM problems, it is necessary to solve the quadratic programming problem to 

find the decision function. However, in the SVM problems, Hessian matrix in the quadratic 

programming problem is dense and the size of the problem is large. Therefore, traditional 

optimization methods cannot be applied directly. Nonetheless, there are many approaches 

proposed so far for solving SVM problems.  

Suykens and Vandewalle (1999) proposed the least squares support vector machine (LS-

SVM) which is a function estimation problem. LS-SVM solves a set of linear system from Kuhn 

Tucker condition for training the data instead of solving a quadratic programming problem. Lee 

and Mangasarian (2001) proposed the reduced support vector machine (RSVM) that uses the 

reduced data set (about 1% out of the data) for training the data. The reduced data is chosen by 

the way that the distance between the data exceeded a certain tolerance. Zhan and Shen (2005) 

proposed an iterative method to reduce the size of support vectors so that the calculations of 

testing can be reduced. Kianmehr and Alhajj (2006) suggested an integrated method for the 

classification using the association rule based method and the SVM. The association rule based 

method generates the best set of rules from the data with the form that can be used in the support 

vector machine. The SVM is then used to classify the data. 

Gradient projection based approaches are used to solve the SVM problems. To et al. 

(2001) proposed a method for solving SVM problem using space transformation method based 

on surjective space transformation introduced in Evtushenko and Zhadan (1994) and steepest 

descent method for solving the transformed problem. Serafini et al. (2005) proposed the 
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generalized variable projection method which has a new step length rules. Dai and Fletcher 

(2006) suggested an efficient projected gradient algorithm to solve the singly linearly constrained 

quadratic programs with box constraints and tested some medium scale quadratic programs 

arising in the training the SVM. 

A geometric approach also has been studied by Mavroforakis and Theodoridis (2006), 

Bennett and Bredensteiner (2000), Crisp and Burges (2000), Bennett and Bredensteiner (1997), 

and Zhou et al. (2002). In the geometric approach, if the data are separable, one can find two 

convex hulls for two classes of the data and the minimum distance line between two convex 

hulls. The separating hyperplane can be found as the hyperplane passing through the mid point of 

the minimum distance line and being orthogonal to the line. If the data are not separable, one can 

reduce the two convex hulls until they are separable, which is called as a reduced convex hull. 

One of important issues in solving SVM problem is to solve a quadratic programming 

problem with dense Hessian matrix which is a positive semi-definite matrix. Due to the dense 

Hessian matrix, the decomposition method is essential to solve large scale problems in SVM. For 

example, if the problem has one thousand data points, then one need to have a storage of the 

matrix of             which means one million bytes size of units are required when one 

solves the problem with a computer program. Osuna et al. (1997) introduced a decomposition 

method that one solves smaller sized subproblems sequentially with some selected variables until 

the KKT condition of the original problem is satisfied. The set of variables selected in this type 

of approach is called as a working set. Joachims (1999) proposed an efficient decomposition 

method to shrink the size of the problem by fixing some variables to their optimal values. Platt 

(1999) described a new algorithm for training the SVM called Sequential Minimal Optimization 

(SMO). The size of the working set in SMO is only two. Since the working set is small, the 

algorithm does not require any quadratic programming solvers to solve the subproblem of the 

working set. In addition to that, it requires less matrix storage. Platt showed the SMO does 

particularly well for the sparse data sets. The SMO has been a popular method for the SVM. 

Another approach to decompose this problem is to decompose the kernel Hessian matrix. 

The most concerning computational issue in solving the SVM problem is how to handle the 

dense kernel Hessian matrix. While SMO type method is trying to reduce the dimension of the 

problem and to solve subproblems with smaller variables, the matrix decomposition approach is 

trying to decompose the kernel Hessian matrix and to reduce computational burden with the 
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same number of variables. There are various approaches for kernel matrix approximation such as 

spectral decomposition, incomplete Cholesky decomposition, tridiagonalization, Nyström 

method, and Fast Gauss Transform in Kashima et al. (2009).  

In this chapter, this research focuses on the incomplete Cholesky decomposition (ICD) 

method. The ICD is used in solving the SVM problem with several ways. Bach and Jordan 

(2005), An et al. (2007), and Alzate and Suykens (2008) used the ICD for solving the LS-SVM 

problem. The interior point method has been used in Fine and Scheinberg (2001), Ferris and 

Munson (2003), and Goldfarb and Scheinberg (2008). The ICD has been used for solving the 

normal equation in the interior point method. Lin and Saigal (2000) used the ICD as a 

preconditioner in the SVM problem. Louradour et al. (2006) proposed a new kernel method 

using the ICD. Debnath and Takahashi (2006) suggested a solving method for the SVM using the 

second order cone programming and the ICD. Camps-Valls et al. (2009) used the ICD for 

solving the semi-superviesd SVM.  

This research uses the projected gradient approach for solving the SVM problem. In this 

approach, the matrix splitting method is used for the projection and splitting the Hessian matrix. 

The ICD is used for reducing the computational burden and storage. Since most problems of the 

SVM have the dense Hessian matrix and are large scale, dimension reduction methods such as 

working set method or SMO type method can be attractive. However, traditional methods like 

Newton's method or gradient methods have advantages such as rapid local convergence. The 

main drawback of traditional methods is the size of the problem. If one can remove or reduce the 

curse of dimensionality, one may use advantages of traditional methods. With this motivation, 

this research uses the matrix splitting method and the ICD for reducing the computational and 

storage problem of handling the large scale problems. In addition, the Bitran-Hax or Dual Bound 

algorithm is used for solving the subproblem iteratively after splitting the Hessian matrix. 

3.3 Solving approach for the  -support vector machine 

This section provides a new solving approach for  -SVM problem ( -SVC). The basic 

idea is to make the Hessian matrix simple using the matrix splitting method, and to solve the 

problem with the projected gradient and incomplete Cholesky decomposition methods.  

The dual problem of  -SVM is as follows. 

      
 

 
                          

 
   

 
    (3.62) 
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     ,         (3.63) 

                   
 

 
,         (3.64) 

                 
 
     ,         (3.65) 

Crisp and Burges (2000), Chang and Lin (2001) proved the constraint (3.65) can be 

changed to an equality constraint. Changing the problem to a minimization problem, the problem 

can be rewritten as follows. 

     
 

 
                          

 
   

 
    (3.66) 

                
 
     ,         (3.67) 

                  
 

 
,         (3.68) 

                
 
     ,         (3.69) 

The scaled and vector version of the problem is as follows. 

      
 

 
     (3.70) 

               ,  (3.71) 

                 , (3.72) 

                   (3.73) 

This problem is a quadratic programming problem with two equality constraints and box 

constraints on variables. If one removes the last equality constraint from this problem, the 

problem becomes a singly linearly constrained convex quadratic problem which is well known to 

be able to applied many practical applications introduced in Pardalos and Kovoor (1990), Dai 

and Fletcher (2006), Lin et al. (2009). In this thesis, the augmented Lagrangian method is used to 

remove the last constraint and put it on the objective function as follows. 

     
 

 
                          (3.74) 

              ,  (3.75) 

                 (3.76) 

The parameter   and   denote the Lagrangian multiplier and the penalty parameter 

respectively. The problem can be reorganized as follows. 

     
 

 
                 (3.77) 

              ,  (3.78) 

                 (3.79) 
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where       ,   is a     matrix which all elements are one. 

The constant term            in the objective function can be removed because it 

does not affect the solution. Now, the problem is a singly linearly constrained convex quadratic 

problem. The Hessian matrix   is dense, symmetric, and positive semi-definite matrix. Since the 

Hessian matrix H is not diagonal and large in the SVM, a standard solving method for the 

general quadratic programming problem can be applied to small or medium size problems. 

Therefore, a specified method which can handle the dense Hessian matrix and the large scale 

problem is essential for solving this problem. In this research, the algorithm uses matrix splitting 

method with nonmonotone line search and gradient projection method. In addition, the 

incomplete Cholesky decomposition method is used for handling large scale problems. The 

structure of the solution procedure is as follows. 

 

Solving Procedure 

Figure 3.1 Solving Procedure for the ν-SVM 
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The original problem becomes a singly linearly constrained convex quadratic problem 

with Augmented Lagrangian method by putting one of constraints to the objective function. The 

Hessian matrix is split into the sum of two matrices by the matrix splitting method. In addition to 

that, the incomplete Cholesky decomposition is performed for the Hessian matrix to facilitate the 

calculation of the Hessian matrix and the variable vectors. The method solves the subproblem 

that has a simple Hessian matrix in procedure 3.  

The Bitran-Hax or Dual bound method is used to solve this subproblem which is a 

separable continuous quadratic knapsack problem. The direction vector is calculated with the 

solution of the subproblem and the current solution. The line search technique finds the step 

length along the direction in procedure 4. There is a type of scale parameter where the coefficient 

of the linear term of the subproblem in procedure 3. The solution of the problem and the scale 

parameter are updated in procedure 5. In procedure 6, the termination is checked with KKT 

conditions. For the procedure 4 and 5, the algorithm can use several options that will be 

described in the later section. 

3.3.1 Matrix splitting with Gradient Projection method 

In this section, the matrix splitting method is described. The problem (3.77) ~ (3.79) can 

be rewritten as follows. For the convenience, this research uses the term   instead of   and 

simple terms. 

(MP)     
 

 
         (3.80) 

              ,  (3.81) 

                 (3.82) 

where   is a     positive semi-definite matrix.  

The matrix splitting method is an iterative method to solve the quadratic programming 

problem. The most concern of the quadratic problem in the SVM is about the Hessian matrix. 

The dense and large Hessian matrix needs a large space for the storage and a lot of burden for the 

calculation. The matrix splitting method splits the Hessian matrix into the sum of two matrices 

that have certain properties. The properties are based on the P-regular matrix splitting in Ortega 

(1972), Keller (1965), Lin and Pang (1987) as follows. 
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Definition 3.1 

For a given matrix  , a splitting       with   nonsingular is called P-regular 

splitting if the matrix     is positive definite. Then the splitting iterative method is 

convergent:          , where      denotes the spectral radius of a matrix   and      is 

called a complementarity matrix. 

P-regular splitting has been used for solving the linear systems such as linear 

complementarity problem (LCP). Pang (1982) proposed an iterative method for LCP using P-

regular splitting. Luo and Tseng (1992) established the linear convergence for the matrix 

splitting method and analyzed error bound for the LCP problem. The matrix splitting method for 

LCP requires solving a subproblem using successive overrelaxation (SOR) and calculates the 

complementarity matrix at each iteration. Therefore, the matrix splitting method cannot be 

directly applied to the SVM problem because the problem has a large and dense Hessian matrix. 

In his dissertation, Nehate (2006) modified the matrix splitting method for the SVM problem. 

The new method in this research is based on this modified matrix splitting method which 

combines with the gradient projection method. In this method, the original Hessian matrix   is 

splitted into the sum of two matrices       using P-regular splitting. The matrix   is chosen to 

be a simple nonsingular matrix. In this research, the identity matrix is used. Then a subproblem 

is formulated with   matrix as the Hessian. In the subproblem, the coefficient of the linear term 

in the objective function is a little different, but the constraints are the same as the original 

problem. The method solves the subproblem iteratively until it has the optimal solution. The 

detail algorithm is as follows. 

 

Main Algorithm 

Step 1  Initialization 

Let         be a splitting of the Hessian matrix   and  

   be a feasible initial solution. Let   be an identity matrix, 

           ,               . Set    . 

Perform the Incomplete Cholesky decomposition for the Hessian matrix : 

     , where   is a lower triangular matrix. 

Step 2  Solving the subproblem 

Solve  
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                ,  

                   

  where            ,            . 

Bitran-Hax algorithm or Dual bound algorithm is used. 

Direction vector is calculated as       . 

Step 3  Line search 

            , Find    using line search techniques. 

Step 4  Update solution 

Update solution             ,  

Calculate      using Brailai-Borwein (BB) type methods. 

Step 5  Check termination 

If some appropriate stopping rule is satisfied, stop. 

else set        and go to Step 2. 

 

Compared with Nehate's method, the newly proposed solving algorithm uses the 

incomplete Cholesky decomposition method for the Hessian matrix in step 1 and tries several 

methods for the line search and the updating the parameter value in step 3 and 4. In step 2, the 

parameter   plays a role in this algorithm as Nehate (2006) described. The algorithm solves the 

subproblem instead of the original problem at each iteration using the Bitran-Hax or Dual Bound 

algorithm. The value of   is changed iteratively. This parameter rescales the gradient and makes 

the subproblem to be closer to the original problem. If    , the algorithm is just the matrix 

splitting method. If    , then the algorithm is the combination of the matrix splitting method 

and the gradient projection method. If the parameter   increases, the algorithm is getting closer 

to the gradient projection method. 

The parameter   can be obtained by solving a problem to minimize the gap between the 

sequential gradients which are the  th gradient and the    th gradient. The   at the  th 

iteration is derived as follows. The details for the derivation are in Nehate (2006). 

    
    

 
   

    
 
  

 (3.83) 

where           ,                 ,      is the gradient of the objective function. 
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The equation (3.83) is called as the two point step size gradient method or Barzilai and 

Borwein (BB) type rule. In this research, the new algorithm uses several other methods for 

calculating   . 

The line search in step 3 determines the best step size   to get the solution of the original 

problem forward to the optimal solution. The new algorithm also uses several line search 

methods. The next section describes the details for the methods in step 3 and 4. 

3.3.2 Line search and update parameter  methods 

This section presents some methods for the line search and updating   in the algorithm 

proposed in the previous section. The problem in this research is a singly linearly constrained 

quadratic convex problem. Due to its numerous applications, there have been many studies for 

this problem such as Pardalos and Kovoor (1990), Dai and Fletcher (2006), Lin et al. (2009), Fu 

and Dai (2010), and so on. This research uses four methods that applied for the SVM problem. 

The details for the methods are as follows. 

3.3.2.1 SPGM (Spectral Projected Gradient Methods) 

Birgin et al. (2000) proposed a solving algorithm which extended the classical projected 

gradient method to use additional methods including the nonmonotone line search technique and 

the spectral step length known as the BB type rule. The algorithm was proposed for the problem 

of the minimization of differentiable functions on nonempty closed and convex sets. In their 

paper, Birgin et al. (2000) proved the convergence of the algorithm and showed good 

experimental results comparing to the LANCELOT package in Conn et al. (1988). The detail 

algorithm for the line search and the updating method are as follows. 

 

SPGM Algorithm 

Step 1  Initialization 

Calculate direction    and set      

Step 2  Set new value  

Set           

Step 3  Line search  

If                           
                , 
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    then define     ,        ,           ,                 ,  

    and go to step 4. 

else define                and set        and go to step 2. 

Step 4 Update parameter 

Calculate            

If     , then set          , 

else calculate            and                        
  

  
   

The line search in step 3 is the nonmonotone line search which means the objective 

function value is allowed to increase on some iterations. The calculation of      is from one 

dimensional quadratic interpolation. If the minimum of the one dimensional quadratic lies 

outside          , then the algorithm sets   
 

 
 . The parameter    and    are fixed constants. 

The method for updating    is BB rule. Birgin et al. (2000) showed that the use of the parameter 

   is more important than line search method to improve the performance of the algorithm in 

their experimental results. 

3.3.2.2 GVPM (Generalized Variable Projection method) 

Serafini et al. (2005) proposed a generalized version of variable projection method 

(GVPM) using a new adaptive steplength alternating rule. Their research has compared the 

GVPM with SPGM described in the previous section. The GVPM focuses on the method of 

updating parameter   . The algorithm uses two steplength rules adaptively and a limited 

minimization rule as a line search method. The two types of steplength rules are as follows. 

     
  

    
 
  

    
 
   

  (3.84) 

     
  

    
 
   

    
 
    

 (3.85) 

The algorithm switches the rules (3.84) and (3.85) if certain criteria are satisfied. Let 

            are fixed constants. The number    denotes the number of iterations that use 

the same steplength rule. There are two definitions for this algorithm as follows. 

Definition 3.2 

Let     (feasible set) and            and               . 
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If     
         

 , then    is called a separating steplength. 

Definition 3.3 

Let     (feasible set) and           ,               , 

and            
       

          
        

 
  

    
 
   

. 

Given two constants    and    such that          ,    is called a bad descent 

generator if one of following conditions is satisfied: 

         and        
  (3.86) 

         and        
  (3.87) 

 The detail algorithm is as follows. 

 

GVPM algorithm 

Step 1  Initialization 

Calculate direction     

Step 2  Line search  

Calculate             ,          

with    given by          
       

          
        

 
  

    
 
   

. 

Step 3 Update parameter 

If           , then set          , 

else calculate     
   and     

  from (3.78) and (3.79) 

     If        ,  

          then if         or    is a separating steplength or a bad descent generator, 

               then set               ,     . 

     Calculate                            
     

Set      ,         and go to step 2 

 

The key idea of this algorithm is to switch the steplength rules with certain criteria. 

Serafini et al. (2005) showed that this adaptive steplength change played an important role to 

perform well in the experimental results comparing with the SPGM and the VPM. For the SVM 
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problem, Serafini et al. (2005) applied this algorithm for solving the subproblem of the large 

scale SVM problems while the SVM problem was solved by the SMO type algorithm. 

3.3.2.3 MSM (Matrix Splitting Method) 

Nehate (2006) proposed several efficient solving algorithms for the SVM problems. One 

of the algorithms uses the matrix splitting method combined with gradient projection method. 

The parameter    plays a role to focus on the algorithm forward either the matrix splitting or the 

gradient projection method. Nehate (2006) used a simple line search and updating method in the 

algorithm. The detail is as follows. 

 

MSM algorithm 

Step 1  Initialization 

Calculate direction    and set      

Step 2  Set new value  

Set           

Step 3  Line search  

If                  
                , 

    then define     ,  

else    
        

 
  

     
 
    

       
       

         ,       . 

Step 4 Update solution and parameter 

           , 

          ,                 , 

     
    

 
   

    
 
  

,  

                       
  

  
  . 

 

Nehate (2006) showed that the use of the parameter    speeds up the convergence of the 

algorithm, but it makes the algorithm nonmonotone. Therefore the algorithm uses the 

nonmonotone line search technique. In step 3, the line search simply assigns the    value and 
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uses the range of index   from zero to two. This simple assignment is very useful to solve the 

large scale problems. Nehate (2006) focuses on the SVM for regression problem. As the other 

methods, the algorithm can solve up to medium sized SVM problems.  

3.3.2.4 AA (Adaptive step size method and Alternate step length (alpha) method) 

Dai and Zhang (2001) suggested an adaptive nonmonotone line search method. The 

nonmonotone line search such as                           
                 in SPGM 

has a fixed integer  . The performance of the algorithm depends on the choice of   described in 

Raydan (1997). To resolve this problem, Dai and Zhang (2001) uses a new method to change the 

value of   adaptively. Let      be the current minimum objective value over all past iterations 

and      be the maximum objective value in recent   iterations. These are denoted as follows. 

                    (3.88) 

                               (3.89) 

The value   denotes the number of iterations since the      is obtained and   is a fixed 

constant. The value   denotes the largest integer such that    
              are accepted but 

  
     

not and   
  is the first trial step size at the  th iteration and   denotes a fixed constant. 

The values      and      are fixed constants. 

Dai and Fletcher (2006) proposed an efficient gradient projection method using a new 

formula for updating the parameter. The algorithm uses the adaptive line search method 

proposed by Dai and Zhang (2001). Dai and Fletcher (2006) introduced a new formula for 

updating the   . As the previous section defined, let           ,                 . 

The BB rule can be as follows. 

      
    

 
  

    
 
  

 (3.90) 

This formula can be obtained by solving a one dimensional problem as follows. 

         
          (3.91) 

If one replaces the pair         with             for each integer    , then the similar 

formula can be obtained as follows as described in Friedlander et al. (1998). 

      
    

 
  

    
 
  
 

       
 
       

   

       
 
       

   

 (3.92) 

where                         and                        . 
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In the formula (3.92), if    , then the formula is the same as the BB rule in (3.90). Dai 

and Fletcher (2006) found the best value of   is 2 with their experimental results.  

In this research, the algorithm combines the adaptive steplength algorithm from Dai and 

Zhang (2001) with the alternative updating formula from Dai and Fletcher (2006) and calls this 

method as AA (adaptive and alternative) algorithm. Combining these two algorithms, the line 

search is the adaptive nonmonotone line search and the updating the parameter    is the method 

of alternative formula (3.92). The detail algorithm is as follows. 

 

AA algorithm 

Step 1  Initialization 

Calculate direction    and set    , 

Set    ,    ,                   

Step 2  Line search  

Step 2.1  Reset reference value 

    If    ,  

        then set     and calculate     
            

         

       
   

                           

  

    If    , 

        then calculate     
                           

      
  

          
   

                                                                     

  

Step 2.2  Test first trial step size 

    If        
           

            

        then let      
 ,      , and go to step 2.4 

    else     

Step 2.3  Test other trial step sizes 

    Set        
  

    Calculate                      

    If           
                       

        , 

        then set         and go to step 2.4 

    else set           and repeat step 2.3 
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Step 2.4 

    If             ,  

        then set                 and    . 

    else      . 

    If           , 

        then set           . 

    Calculate      from (3.83). 

Step 3 Update parameter 

          ,                 , 

If          ,  

    then           

else                        
       

 
       

   

       
 
       

   

    

 

The value of      is obtained by a quadratic interpolation method in step 2.3. Dai and 

Fletcher (2006) tested some medium sized SVM problem with their new algorithm and obtaining 

good results. 

From these sections 3.3.2.1 ~ 3.3.2.4, four different line search and updating methods 

were reviewed for the gradient method. The new solving algorithm can take one of the methods 

for step 3 and 4 in the main algorithm in section 3.3.1. As it can be seen in these four methods, 

since the test problems are limited to the medium size for the SVM problems, the methods 

cannot be directly applied to the large scale problems. In these four algorithms, the SMO type or 

other methods should be used for large scale problems and the four methods are used for solving 

the subproblem within the solution procedure. To overcome this issue, this research proposes a 

new solving approach to apply these algorithms directly to large scale problems. The method 

proposed in this research is the incomplete Cholesky decomposition method. The details will be 

described in the next section. 
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3.3.3 Incomplete Cholesky decomposition 

Cholesky A. developed a method for solving a linear system in 1910. The method has 

been published by Jensen H. in 1944. The Cholesky factorization or decomposition named after 

his name. More than sixty years now, the Cholesky decomposition method has been an attractive 

method for solving large scale systems. If a matrix   is a symmetric and positive definite, then   

can be expressed as       and   is a lower triangular matrix with positive diagonal elements. 

The elements of   are called as Cholesky factors. The Cholesky factors can be obtained as a 

simple way of the following example. 

Let    
      
      

 ,    
    
      

 , and     
      
    

 . 

By the definition of the Cholesky decomposition      ,  

  
      
      

   
    
      

  
      
    

   
     

       
           

       
   (3.93) 

Therefore, 

             from             
 , (3.94) 

                 from              , (3.95) 

                        from             
       

 . (3.96) 

Practically, the Cholesky decomposition is implemented by the way of the above 

example. The linear system      can be solved by using the Cholesky decomposition. The 

problem can be rewritten as       . Two substitutions are needed to solve this system. The 

forward substitution      is calculated first. Then the backward substitution       is 

calculated. However, this solving procedure can be used only if the matrix   is symmetric and 

positive definite. If the matrix   is a symmetric and positive semi-definite, some of diagonal 

values of   are zero. If any diagonal elements of   are zero, the rest of Cholesky factors cannot 

be calculated any more. In the above example, if       in (3.94),     cannot be calculated in 

(3.95) because the denominator      is zero. In this case, the incomplete Cholesky 

decomposition method can be used. 

The incomplete Cholesky decomposition is the method for the symmetric and positive 

semi-definite matrix. During the Cholesky decomposition procedure, when one encounters a 

diagonal element of   that is zero, the procedure cannot progress. The idea of the incomplete 

Cholesky decomposition is that a permutation is performed to move the largest diagonal element 
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on the active pivot position so that the decomposition procedure can stop when the largest 

diagonal element is zero. First, the algorithm finds the largest diagonal element. Then a 

permutation is performed to move the largest diagonal element on the active position in which 

column is working on calculating the Cholesky factors. This permutation process is called as a 

pivot. After the incomplete Cholesky decomposition, some of columns of the lower triangular 

matrix   are all zeros. Therefore, the matrix   is decomposed as       which is an 

approximation of the matrix  . Let       . Then there is an approximation error        . 

If the approximation error is bounded by a certain value and the difference between the optimal 

values of the original and approximated problem is small, then the decomposition can be 

acceptable. Higham (1990) also showed the incomplete Cholesky decomposition is a stable 

method. Fine and Scheinberg (2001) derived the bound of the approximation error and showed 

the error bound is acceptable in the SVM problem. 

The SVM problem MP considered in this dissertation in section 3.3.1 has the Hessian 

matrix which is a symmetric and positive semi-definite. The incomplete Cholesky decomposition 

method is applied to that system. The Hessian matrix in the SVM problem is too dense and large. 

Even if the incomplete Cholesky decomposition is applied to the problem, the calculation of     

and the space of memory to store the matrix   is still a burden. Fortunately, however, the rank of 

the Hessian matrix is significantly smaller than its size. 

 

Figure 3.2 Incomplete Cholesky Decomposition 
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In Figure 3.2, the mark   denotes a non-zero element. This research considers the 

column-wise decomposition. During the decomposition, the largest diagonal element of the 

Cholesky factor is moved to the active column. For example, the algorithm calculates all 

diagonal elements of the   matrix which are the Cholesky factors and finds the largest one. The 

largest diagonal elements are moved to the first column using a permutation. Then the rest of the 

elements in the first column are calculated. That is the end of the first iteration or pivoting. The 

next iteration is for the second column of the  . At the     iteration, if the largest diagonal 

element is zero, then the procedure of is stopped. Therefore the values of diagonal elements are 

              . In this case, the rank of the Hessian matrix is  . In Figure 3.2, the rank of 

the Hessian matrix   is two. The incomplete Cholesky decomposition method is sometimes used 

as a way to calculate the rank of a matrix. The rank   in the SVM problem is significantly 

smaller than the size of the Hessian matrix  . This property is advantageous for the calculation in 

the new algorithm because the algorithm needs to calculate the product between the   matrix and 

the   vector and the computer memory space to store the matrix  . The incomplete Cholesky 

decomposition in this research is based on the method in Fine and Scheinberg (2001). The 

algorithm uses the symmetric permutation which is known as symmetric pivoting introduced in 

Golub and Van Loan (1996). The detail algorithm is as follows. 

 

Incomplete Cholesky Decomposition 

for        : Column-wise decomposition 

< Step 1 : Calculate all remaining diagonal Cholesky factors > 

    for       

                

        for       

                        

        end 

    end 

 

    if      
 
          : Check the positiveness of the diagonal factor 

< Step 2 : Find the largest diagonal factor > 
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        find    such that                   

 

< Step 3 : Swap the largest one and current active element > 

        for        : Column 

                     

        end 

        for          : Row 

                     

                     

                      

        end 

        Swap the permutation matrix   

 

< Step 4 : Calculate the rest of Cholesky factors in the active column > 

        for         

            for       

                                

            end 

        end 

                 

        for         

                        

        end 

    else 

< Step 5 : Finish the decomposition > 

                

        break 

    end 

end 
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The elements of   are separately stored into diagonal elements     and the others     for 

the convenience of the calculation.     denotes an element in the Hessian matrix   and   is a 

permutation matrix. The first step is to calculate all remaining diagonal Cholesky factors so that 

the algorithm can find the largest diagonal element among them. If the diagonal element is 

positive, then the algorithm finds the largest diagonal element and permutes the element and the 

active element for both the column and the row. Then, the method calculates the rest of the 

elements of the column. The algorithm goes to the next column and continues this process. If the 

diagonal element is not a positive or less than a certain tolerance, then the algorithm is stopped 

and the current number of column is the rank of the Hessian matrix.  

If one takes an attention to the access to the original matrix  , the diagonal elements of   

are only frequently accessed more than once through the decomposition process in step 1, but the 

others are accessed only once in step 3. This property is a great advantage for the SVM problem. 

The access to the Hessian matrix in the SVM problem means to calculate the kernel functions 

because the Hessian matrix is a kernel matrix as the (3.23) in section 3.2. Therefore one needs to 

calculate                      whenever the algorithm accesses the Hessian matrix during 

the decomposition procedure. The incomplete Cholesky decomposition is the most time 

consuming calculation in the proposed solving procedure and the less calculation of kernel 

functions is very helpful to the amount of calculations. Moreover, the Hessian matrix does not 

need to be stored explicitly. Instead, one only needs to store the lower triangular matrix  . The 

algorithm can save the memory space with the amount of            . There are several 

other issues for the implementation for the new algorithm as will be shown in the next section. 

3.3.4 Implementation Issues 

This section describes the implementation issues for the new solving procedure in the 

computer programming. The C programming language is used to implement the algorithm in a 

Linux system. The most time consuming calculations are related to the incomplete Cholesky 

decomposition and the calculation of the multiplication between the Hessian matrix   and the 

variable vector  . Another issue is to store the lower triangular matrix  . The details are in the 

next sections. 
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3.3.4.1 Storing the lower triangular matrix    

Using the incomplete Cholesky decomposition, the memory space is significantly 

reduced. Let the Hessian matrix   be a     matrix and the matrix   from the incomplete 

Cholesky decomposition be    . In the SVM,   is significantly larger than  . For example, if 

        and     , then the amount of saving space is                       

       . If   is larger, then one can save more space. Nevertheless, the matrix   needs a big 

memory space for a large scale problem. Sometimes, the rank of the Hessian matrix in the SVM 

problem is a little large up to about ten percent of the size of Hessian matrix. In this case, if 

        , then       . then            (ten million) memory space is required. If one 

uses an array to store this matrix in C programming language, then it is not efficient and ends up 

the program with a core dump.  

 

Figure 3.3 L matrix from the incomplete Cholesky decomposition 

 

 

Another way one may consider is to store only non-zero elements out of the matrix  . 

However, the zero elements are only ones at the upper diagonal side because the matrix is too 

dense. Since there are only a few zero elements in the matrix   as can be seen in Figure 3.3, this 

method is not very beneficial.  

Therefore, this research proposes a simple and efficient method to store the matrix  . The 

idea is to store the elements of   into several single dimensional arrays. 
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Figure 3.4 The method of storing L matrix 

 

 

Figure 3.4 describes the way to store the matrix  . If     is too big to be stored in a 

single array, the method can put them into two arrays separately. Let the size of    or    matrix 

be   which is not so big. The details for storing are as follows. 

 

Insert or Refer the Cholesky factors 

Step 1 Calculate the refer number 

                                        

Step 2 Find the position to insert or refer the element 

If    ,  

    insert or refer the Cholesky factor to  th position in the array    

else  

    insert or refer the Cholesky factor to      th position in the array    

 

For example, one assumes that the element     should be referred in Figure 3.4. The refer 

number is calculated as                  . Since    , the position is      th 
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position in array   . There is one calculation for the refer number and one comparison for the 

size of the value to find the array    or   . The method can use more than three matrices such 

as   ,   ,   ,  . In this case, this technique can handle larger scale problems, but the efficiency 

would be down because the method needs more comparing operations to find the array. This 

research uses two arrays    and   . 

3.3.4.2 Calculation of    

In the main algorithm in section 3.3.1, the calculation of the coefficient of linear term of 

the objective function in step 2 is a little complicated. The algorithm needs to solve this 

subproblem at every iteration. The calculation            should be frequently conducted 

during the solving procedure. The Hessian matrix is decomposed by       in step 1. The 

calculation       is the most time consuming task for calculating the coefficient. 

Let   be a     matrix.    is a     matrix and    is a column vector with the size  . It 

is better to calculate the multiplication between a matrix and a vector than between two matrices. 

First, one calculates     . The dimension of calculation is                  . Let 

    be a vector with the size  . The elements are            
 
   ,            

 
   ,  , 

           
 
   . The next calculation is      and the dimension is             

     . There are two cases in this calculation. If    , the final value             
 
   , 

where     is an element of   . If    , the value             
 
   . 

This type of calculation       is frequently used in this solving procedure. This research 

uses that calculation to find   and   values in (3.60) and (3.61). The BB rule for updating 

parameter also uses the calculation of      where   is the direction vector. The objective 

function value also needs to use this calculation. 

During the line search procedure,    is updated by             to find the best  . 

Every time the variable is updated, the algorithm checks the objective function value. Then the 

calculation       needs to be repeated for new   values. To avoid this burden, one can use an 

efficient way. At each iteration, the method already has the calculation       for the coefficient 

of linear term and       for the BB rule. If the algorithm needs to calculate        , the 

variables can be separated as follows. 

                                  (3.97) 

 Using (3.97), the algorithm does not need to calculate         for all different   values. 
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3.3.4.3 Calculation of new   and initial solution 

In SPGM and AA, the methods used a one dimensional quadratic interpolation method to 

find a new  . One dimensional optimization method has two different types: search and 

approximation in Antoniou and Lu (2007). The quadratic interpolation method is an 

approximation method in one dimensional optimization. While a linear interpolation needs two 

points because two coefficients need to be calculated, a quadratic interpolation usually needs 

three points to find three coefficients. Let us consider a one dimensional optimization problem 

such as        . One can approximate      a polynomial function         
        . 

Let         
                . If one knows three different points 

           and their function values           , then all coefficients            can be obtained 

by solving three simultaneous equations. By the approximation, the minimum value of      is 

close to the original minimum value of     . 

In the SVM problem, Only two points are known such as    and      in the line 

search method and try to find a point      , where      , between the two points. There 

is a quadratic interpolation method with two points if there is information about two points and a 

first derivative of the function. Let   
  denote the first derivative, two points         known, and 

   be a minimum value. Then, the algorithm has three equations:         ,         , and 

         
 . 

Solving these equations, the minimum value is as follows. The details are in Antoniou 

and Lu (2007). 

       
  
        

 

          
         

 (3.98) 

In the new solving algorithm,      ,      , and   
            . Therefore, one can 

obtain the new value of   as follows. 

   
          

                   
 (3.99) 

Another issue is to set up an initial feasible solution. Two constraints are used for finding 

an initial solution. The two constraints are (3.71) and (3.73) :       and       . The value 

   has only one of two values   and   . Let   be a number of  's and   be a number of   's. 

From the constraint      , let       for all            and       for all   

        . Then two constraints can be rewritten as follows. 
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           (3.100) 

            (3.101) 

Solving these two equations, one can obtain    and    as follows. 

    
  

  
 and    

  

  
  (3.102) 

Once one gets the number of   and    values for  , if     , then the initial    
  

  
, 

and otherwise    
  

  
. 

3.4 Experimental Results 

This research has conducted some experiments with the way of combination of matrix 

splitting with gradient projection method, Incomplete Cholesky, and some options for the line 

search and the updating alpha methods. The data are from LIBSVM data collections. The 

algorithm is implemented in C programming language, complied using gcc and ran on a Fedora 

13, 64 bit Red Hat Linux machine with 4 GB memory and Intel i7 QuadCore Bloomfield CPU 

running 2675 MHz. This research has compared four different methods for the line search and 

updating parameter method in the newly proposed main algorithm. 

 

Table 3.1 SPGM method 

Problem Data Feature Kernel Rank SV BSV Training error Time (second) 

Splice 
1,000 60 Polynomial 979 1,000 0 7.10% 3.72 

1,000 60 Gaussian 979 1,000 0 0% 3.88 

Svmguide1 3,089 4 Polynomial 1,846 3,089 0 35.25% 58.29 

Adult 4 4,781 123 Polynomial 1,193 4,781 0 24.26% 38.19 

Mushrooms 8,124 112 Polynomial 701 8,124 0 10.91% 80.5 

 

Table 3.1 shows the results for SPGM method described in section 3.3.2.1. The problems 

are medium sized. The algorithm uses polynomial or Gaussian kernel function. The rank denotes 

the rank of the Hessian matrix derived from the incomplete Cholesky decomposition. In this 

result, though the testing errors and the solution time are not bad, the number of support vectors 

is too large, which is not efficient because one should use all data point to test other problems. 
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Table 3.2 GVPM method 

Problem Data Feature Kernel Rank SV BSV Training error Time (second) 

Splice 
1,000 60 Polynomial 979 1,000 0 7.10% 4.12 

1,000 60 Gaussian 979 1,000 0 0% 4.05 

Svmguide1 3,089 4 Polynomial 28 2,887 663 6.53% 0.3 

Adult 4 4,781 123 Polynomial 1,193 2,378 717 24.84% 38.75 

Mushrooms 8,124 112 Polynomial 701 8,124 0 10.85% 85.2 

 

Table 3.2 presents the results of the GVPM method. The training errors and solution 

times are similar to the SPGM method. The number of support vectors is much smaller than that 

of SPGM method in two problems such as svmguide1 and adult4. 

 

Table 3.3 MSM method 

Problem Data Feature Kernel Rank SV BSV Training error Time (second) 

Splice 
1,000 60 Polynomial 979 1,000 0 6.60% 4.08 

1,000 60 Gaussian 979 1,000 0 0% 4.13 

Svmguide1 3,089 4 Polynomial 28 495 417 4.14% 2.56 

Adult 4 4,781 123 Polynomial 1,193 2,533 267 24.84% 23.33 

Mushrooms 8,124 112 Polynomial 701 5,969 190 1.32% 80.03 

 

The MSM method has better results than the previous two methods. Though the solution 

time is similar to GVPM method, the training errors are much better than other methods. The 

number of support vectors is also smaller than others. 

 

Table 3.4 AA method 

Problem Data Feature Kernel Rank SV BSV Training error Time (second) 

Splice 
1,000 60 Polynomial 979 1,000 0 6.40% 4.17 

1,000 60 Gaussian 979 1,000 0 0% 3.97 

Svmguide1 3,089 4 Polynomial 28 495 429 4.14% 3.14 

Adult 4 4,781 123 Polynomial 1,193 2,133 1342 22.63% 41.03 

Mushrooms 8,124 112 Polynomial 701 4,922 568 1.13% 84.83 

 

Table 3.4 describes the results of the AA method. The results are very similar to the 

MSM method. The number of support vectors is also small and the training error has good 

results. 
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From these results, the MSM and AA method have better results than other two methods 

in terms of the training error and the number of support vectors. 

 

Table 3.5 Large-scale problems (MSM method) 

Problem Data Feature Kernel Rank SV BSV Training error Time (second) 

Adult 6 11,220 123 Polynomial 510 5,713 549 23.99% 60.69 

Adult 7 16,100 123 Polynomial 487 4,686 4,047 24.33% 75.63 

 

Table 3.5 shows the results of two large scale problems. One usually says the problem of 

which size is larger than 10,000 is a large scale problem in SVM. This result has good training 

errors and especially the number of support vector is significantly smaller than the size of the 

problem. 

 

Table 3.6 Large-scale problems (AA method) 

Problem Data Feature Kernel Rank SV BSV Training error Time (second) 

Adult 6 11,220 123 Polynomial 510 5,713 549 23.99% 60.69 

Adult 7 16,100 123 Polynomial 472 3,140 2,466 24.33% 73.08 

Adult 8 22,696 123 Polynomial 467 4,377 3,831 24.25% 81.01 

ijcnn1 49,990 22 Polynomial 202 49,990 0 9.70% 61.87 

 

Table 3.6 represents the results for large scale problems using AA method.  

In the  -SVM problem, the range of   is      . The next experiments show the 

changes of the training error and the number of support vectors as the parameter   changes. 

 

Table 3.7 Sensitivity Analysis of ν for svmguide1 (GVPM method) 

Problem Data Feature nu SV BSV training error time (sec.) 

Svmguide1 3089 4 0.3 2,101 144 7.02% 0.35 

   
0.4 2,887 663 6.53% 0.3 

   
0.5 2,121 328 8.02% 0.35 

   
0.6 1,676 1148 7.64% 0.33 

   
0.7 2,178 1420 10.65% 0.39 

 

As the parameter   increases, the training error increases and the number of support 

vectors is a little changed. The number of bound support vectors increases. 

 



 73 

Table 3.8 Sensitivity Analysis of ν for mushrooms (GVPM method) 

Problem Data Feature nu (ν) SV BSV training error time (sec.) 

Mushrooms 8124 112 0.2 4,922 568 1.13% 84.83 

   
0.3 8,115 219 1.64% 91.08 

   
0.4 6,741 0 2.90% 89.21 

   
0.5 7,735 152 6.40% 87.72 

   
0.6 6,570 947 9.90% 84.81 

   
0.7 6,571 4,266 10.36% 85.44 

   
0.8 6,980 5,658 10.42% 89.1 

 

Table 3.8 shows the results of the sensitivity analysis of   for mushrooms. The result is 

similar to the result of Table 3.7. As the parameter   increase, the training error increases and the 

number of support vectors and bound support vectors increase.  

 

Table 3.9 Comparisons of Bitran-Hax and Dual Bound algorithm (AA method) 

Problem Data Feature Kernel Method Time (Second) 

Adult 1 1,605 123 Polynomial 
Bitran-Hax 19.73 

Dual Bound 20.44 

Adult 2 2,265 123 Gaussian 
Bitran-Hax 77.68 

Dual Bound 78.1 

Adult 3 3,185 123 Gaussian 
Bitran-Hax 48.84 

Dual Bound 48.99 

Adult 4 4,781 123 Polynomial 
Bitran-Hax 31.99 

Dual Bound 31.54 

Adult 5 6,414 123 Polynomial 
Bitran-Hax 45.21 

Dual Bound 43.05 

Adult 6 11,220 123 Polynomial 
Bitran-Hax 60.62 

Dual Bound 59.8 

 

The SVM problem has a subproblem as the quadratic knapsack problem. Table 3.9 

compares the Dual Bound and the Bitran-Hax algorithm. Like the results in chapter 3, the Bitran-

Hax algorithm works a little better than the Dual Bound when the size of the problem is small. 

As the size of the problem increases, the Dual Bound algorithm gets better solution time. 

The experimental results showed that the four different methods have different results for 

the line search and updating the parameter method. The SPGM and GVPM have good results for 

the training error and the solution time, but the large number of support vectors is a problem. On 
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the other hand, the MSM and AA method have better results for the training and the solution 

time than the other two methods. The number of support vectors is also much smaller than the 

other two ones. This research also has good results for large scale problem with the newly 

proposed decomposition approach. The results in the last two tables showed the properties of  -

SVM problem well. 

3.5 Conclusions 

In this chapter, this research proposed a new solving approach for the  -SVM 

classification problem. The solution of the  -SVM problem is obtained by solving a quadratic 

programming problem with linear constraints and box constraints. The quadratic programming 

problem is a singly linearly constrained quadratic convex problem with box constraints. The 

SVM problem has a huge and dense Hessian matrix that is hard to solve with a traditional 

method for the quadratic program. 

The newly proposed method uses a matrix splitting and gradient projection method with 

the incomplete Cholesky decomposition method. The matrix splitting method decomposes the 

Hessian matrix into a sum of two simple matrices and makes a subproblem with the simple 

Hessian matrix that is a nonlinear knapsack problem. The algorithm solves the subproblem 

iteratively using the Bitran-Hax or Dual Bound algorithm until the optimal solution is obtained. 

During the procedure, the new algorithm uses a similar gradient projection method including the 

line search and using a parameter  . However, this method can be only used to solve medium 

sized problems. For the large scale problems, new algorithm uses the incomplete Cholesky 

decomposition method. The incomplete Cholesky decomposition method is well known as a 

simple, stable, and accurate. Moreover, the algorithm took advantage of solving a singly linearly 

constrained quadratic convex problem by using some other methods for the line search and 

updating parameter methods. 

The algorithm proposed in this research has a solving procedure as a combination of the 

matrix splitting method, gradient projection method, and the incomplete Cholesky 

decomposition. With this frame of methodology, the methods of the line search and updating 

parameter   such as BB type rule are open to be used from the research of a singly linearly 

constrained quadratic convex problems. In addition to that, the subproblem resulted from the 
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matrix splitting is a quadratic knapsack problem. The Dual Bound algorithm or Bitran-Hax 

algorithm introduced in chapter 2 can be used to solve the problem. 

Some experimental results have shown that new algorithm solved medium sized 

problems and large scale problems as well. Although the results have not shown a significant 

improving or accuracy comparing with other well known software, the algorithm has performed 

well in the medium and large scale problems. That can be seen as a great potential and promising 

solving algorithm for the  -SVM problem. Furthermore, many methods for the line search and 

updating parameter can be plugged in new algorithm to be extended or improved. This 

methodology can be an alternative and another direction of solving the SVM problem. 
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CHAPTER 4 - Supplier Selection 

In this chapter, this research applies the SVM classification to the supplier selection 

problem. Supplier selection is one of important issues in supply chain companies that need to 

purchase raw materials or components from upstream suppliers in order to produce finished 

goods. The SVM classification is used to select qualified suppliers out from all potential 

suppliers. Among the qualified suppliers obtained by the SVM, the final suppliers are selected by 

solving a mathematical programming problem. The procedure of these two steps is called an 

integrated approach for supplier selection. This research proposes an efficient integrated method 

for the supplier selection problem using SVM classification and the mixed integer programming 

model. 

The motivation for the research in this chapter is to handle high dimensional supplier 

selection problems and to develop an efficient and fast method for solving those problems. 

Industries continue to expend, to become more interactive and complicated. Supplier selection is 

also becoming a high dimensional problem. Qualitative methods successfully handle large 

amount of intangible information and find the best solution for each case. However, qualitative 

methods are limited by dimension and generalization. For this reason, a number of quantitative 

methods have been proposed for solving the supplier selection. The quantitative methods can 

solve problems of higher dimension, but the methods require the numerical information from 

qualitative methods. Therefore, the integrated approach of the qualitative and quantitative 

methods has become the focus of research in recent years. This chapter proposes an efficient 

approach, integrating the SVM and the mathematical programming to solve the supplier 

selection problem that may be a large scale problem. 

4.1 Supplier selection 

As product complexity has increased, manufacturing companies depend more on 

outsourcing or purchasing parts of a product or materials for the production from other 

companies. These upstream companies are suppliers. Procurement in a manufacturing company 

has become an important issue because it directly affects the quality of product, on-time delivery, 

inventory control, and production planning. Moreover, the procurement plays an important role 
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in determining the cost structure of a product which largely relies on which suppliers the 

company has worked with. 

The supplier selection is a problem that selects the best suppliers that meet the 

requirement of the buyer company. Aissaoui et al. (2007) described types of supplier selection 

problems, focusing especially on number of suppliers and criteria. This research considers the 

multiple suppliers and multiple criteria. The multiple suppliers, also known as multiple sourcing, 

can avert product shortages and keep competition among eligible suppliers. The multiple criteria 

can help in making better decisions. A company cannot change suppliers every day, so once a 

company selects suppliers to work with, formal contracts usually are signed to ensure the terms 

and conditions of the procurement requirements and to govern the supply chain coalition, 

therefore, the company would keep purchasing from the suppliers for a while because frequently 

changing suppliers is costly and time consuming task. This is a reason that supplier selection is 

important and should be prudent in many companies. Moreover, the criteria for selecting 

suppliers have conflicts with each other. For example, a supplier with good quality or service 

may not be the supplier has lowest prices. Therefore, the supplier selection requires compromise 

among the criteria. The criteria have both tangible and intangible factors such as prices and 

services. The decision on suppliers requires accommodating subjective standards even if a 

quantitative, systematic method is used for selecting suppliers. However, the qualitative factors 

cannot be directly factored into mechanical solution procedure, but they are instead transformed 

into numerical scores. The four steps of selecting suppliers are in the following subsections as 

described in De Boer et al. (2001) and Aissaoui et al. (2007). 

4.1.1 Problem definition 

The problem definition requires a company to establish a goal for purchasing materials or 

components from suppliers. The company may expect an improvement in the quality of the 

product, a better service for customers, a lower pricing strategy, and so on. Depending on how 

the decision maker defines the problem, the rest of the selection steps change. This step depends 

on the decision maker's opinion.  

4.1.2 Deciding on Criteria 

The company should decide which criteria are used for selecting suppliers. The criteria 

denote the measurement of the value of suppliers. There are many factors in establishing the 
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supplier selection criteria describing the values of a supplier such as price, service, delivery 

accuracy, quality, and so on. Once a company defines the goal of procurement, the criteria are 

determined to achieve the goal. These criteria could be different from one company to another 

because their procurement goals are different from each other. Decisions on criteria are also 

subjective as the same as the previous step. A company may choose only one criterion. However, 

the multiple criteria are usually preferred because the company's decision would be driven by 

more than one objective.  

The factors can be divided into two types such as quantitative and qualitative. For the 

convenience of measuring, the qualitative factors are expressed in numbers. Dickson (1966) 

surveyed many companies for supplier selection issues and introduced 23 factors for the criteria. 

Weber et al. (1991) presented 74 factors with the same way of Dickson's study. The majority 

factors for the supplier selection problem are covered by these factors until today. The factors 

often correlate with each other. For example, if the supplier's price is low, then the quality may 

be low as well. Since there are some interactions between factors, a compromised solution 

becomes necessary. The large number of factors is not always better than the small number of 

factors because using too many factors makes the goal of procurement meaningless and is 

difficult to collect data. The decision of the criteria is totally up to the environment of the 

company. For additional information, see Aissaoui et al. (2007). 

4.1.3 Pre-selection 

Once the criteria are determined, the company should collect data on suppliers for all 

criteria to help in evaluating supplies. The company can then select suppliers who meet these 

criteria. In this step, the company selects qualified suppliers from all potential suppliers. In fact, 

before the pre-selection step, the company should collect the data of suppliers for all factors 

because the data are necessary for evaluating suppliers. This research assumes the collection of 

the data has finished at the end of the decision of the criteria. The qualified supplier denotes the 

potential supplier that satisfies a certain level of the criteria and has possibility to be the final 

supplier to contract with the buyer. If the company selects the final suppliers with the criteria 

without the pre-selection, that seems to be simple. However, using two steps for the selection can 

get better selection than single step. It is the same reason the recruiting procedure usually uses 

the screening first and then does the interview. This strategy reduces the failure rate of the 
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selection. The pre-selection step also called as the pre-qualification divides the suppliers into 

qualified suppliers and the others. The other suppliers would not be considered for the final 

suppliers. The selection of qualified suppliers is a binary classification problem that classifies 

suppliers into two groups. Any one of several quantitative methods can be used in this step. The 

literature reviews for the methods can be found in De Boer (2001), Aissaoui et al. (2007), and Ho 

et al. (2010). 

Qualitative methods have been used for pre-selection. Wright (1975) suggested a 

lexicographic rule that evaluates all suppliers with the most important criterion first and then 

checks the other criteria sequentially. Crow et al. (1980) proposed a conjunctive rule that uses 

the minimum threshold for each criterion and selects only suppliers that satisfy all minimum 

thresholds. The categorical method was introduced by Timmerman (1986). Using the criteria, the 

method categorizes suppliers into three groups: good, neutral, and bad.  

Data Envelopment Analysis (DEA) is a method to use the ratio of multiple inputs and 

outputs. The DEA can classify suppliers into efficient and inefficient groups in Weber and 

Ellram (1993), Weber and Desai (1996), Weber et al. (1998), Papagapiou et al. (1997), and Liu 

et al. (2000). The DEA is a method for analysis of the system that has multiple inputs and 

outputs. Thus, the supplier selection, with its multiple criteria, can be solved with DEA. 

However, the main drawback of DEA is the difficulty of model specification, because results are 

very sensitive to the selection of inputs and outputs. 

Data mining is anther approach that could be used for the pre-selection problem. Cluster 

analysis (CA) minimizes the differences between values within a group while it maximizes the 

differences between values from different groups. Hinkle et al. (1969) and Holt (1998) applied 

the CA to classify the suppliers. However, this method has no mechanism for differentiating 

between relevant and irrelevant variables and is an unsupervised learning method which has 

lower accuracy than the supervised method. 

Case based reasoning (CBR) is also used for this problem. The CBR uses the previous 

decision history or similar results. Ng et al. (1995) developed a CBR system for the pre-selection 

problem.  
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4.1.4 Final selection 

The last step of the supplier selection is to determine the final suppliers to make contracts 

and assign the order quantities to them. The final suppliers are selected out of the list of qualified 

suppliers which were selected in the pre-selection step. There are two problems in this step. First, 

the company should select the final suppliers from the qualified suppliers. This problem is the 

same as the pre-selection problem. Therefore, the methods in the previous section can be also 

used for this problem. Next, the final suppliers are allocated the orders. This is an allocation 

problem with certain capacity constraints. The combination of two methods can be used for this 

step. 

This research considers a multiple sourcing problem that has one more suppliers. In 

addition, this research considers the number of items or materials can be supplied by a supplier. 

If the material is a single unit, each supplier has only one material, which is a simple case. On the 

other hand, if the material is a multiple type, then each supplier can produce or provide two or 

more materials. In this case, the procurement decision can consolidate the purchase to obtain the 

quantity discount from suppliers. The supplier and the buyer company may also reduce the 

ordering and logistic cost. For discount, the ordering may change, which affects the inventory 

management factors for the buyer company. This complicates the problem, making it harder to 

solve as described in Aissaoui et al. (2007). In addition to considering the multiple material 

types, the time period can be considered in the supplier selection. Most studies and methods for 

the supplier selection are dealing with the single period. On the other hand, some studies have 

considered the supplier selection problem with multiple time periods such as Aissaoui et al. 

(2007). Such multiple period models must consider the inventory management and the lot sizing 

rule. Furthermore, other studies like Rosenblatt et al. (1998), Ghodsypour and O'Brien (2001), 

Liao and Kuhn (2004) have identified the economic order quantity (EOQ) concept as useful in 

selecting suppliers under these conditions. The lot sizing rule is also considered in Buffa and 

Jackson (1983), Bender et al. (1985), Tempelmeier (2002), Hong et al. (2005). 

The mathematical programming approach has been widely used for solving this step such 

as linear programming, integer programming, nonlinear programming, stochastic programming, 

goal programming, multi-objective programming, and so on are discussed in De Boer (2001), 

Aissaoui et al. (2007), and Ho et al. (2010). The objective function of the mathematical model is 

formulated to minimize costs or maximize profits. The constraints are the capacity of the 
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supplier and tolerances of the factors the company considers. The most advantage of the 

mathematical programming method is the ability to assign the order quantities to the final 

suppliers if decision variables are defined as the amount of order quantity for each final supplier. 

This ability means that the mathematical programming method can be used in combination with 

other methods. For example, a classification method selects the final suppliers and then the 

mathematical programming method assigns the order quantity. This approach is called as an 

integrated approach. 

The total cost of ownership (TCO) model uses the total cost, including all relevant costs 

of purchasing, to select suppliers. Ellram (1995) introduced this method, but TCO has been 

combined with rating system in Monczka and Trecha (1988) and Smytka and Clemens (1993) 

and with mathematical programming in Degraeve et al. (2004). Although finding all relevant 

costs can be difficult, the method uses more detailed information to select suppliers. 

The integrated approach is useful in this step because the problem has two issues such as 

selecting and assigning. Mathematical programming is a common assigning method. Among 

many selecting methods are the methods mentioned in the pre-selection step and the analytical 

hierarchy process (AHP), a popular analytical tool that provides the scores for all suppliers 

derived by pair-wise comparisons between suppliers. AHP can be used for the multiple criteria 

problems and directly handle both quantitative and qualitative factors. One of integrated 

approaches has the AHP selects the final suppliers and the mathematical programming assign 

order quantities to them. The fuzzy set theory and DEA are also used for the final selection in 

combination with mathematical programming. 

4.2 Literature Review 

Supplier selection is an important issue in companies because it directly affects the 

profits and combines with other functions such as production, sales, finance, and so on. In this 

respect, extensive studies have been proposed to solve this problem. Depending on what the 

company prefers, an individual or integrated approach may be used to select suppliers. For 

example, a company might use only the AHP method, but another company may use an 

integrated approach with both the AHP and the mathematical programming method. This 

research focuses on the integrated method because the supplier selection occurs in two major 

steps such as selecting and assigning, and these two steps each need a solution. The idea in this 
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research is to use the support vector machine (SVM) for the pre-selection step. This section 

reviews the literature of the integrated approaches for the supplier selection and using SVM in 

the supply chain management. 

4.2.1 Integrated approaches 

The integrated approach to select suppliers uses more than two methods. Most integrated 

approaches use two methods for the two different steps. In this case, the first step selects 

qualified suppliers and the second step selects the final suppliers and allocates orders to the final 

suppliers. The mathematical programming method is usually used for the second step while one 

of many classification methods is used for the first step. 

Ghodsypour and O'brien (1998) proposed an integrated method of the supplier selection 

using the AHP and the linear programming method. AHP uses both tangible and intangible 

factors and find the final scores of suppliers. The final scores is the coefficient of the objective 

function of linear programming in the next step. The linear programming model maximizes the 

total value of purchasing (TVP) and the solutions provide the order quantities for the final 

suppliers.  

Weber et al. (1998) suggested a little different approach, using the mathematical 

programming first. The multi-objective programming (MOP) method selects suppliers first. With 

the optimal solution from MOP, the method then finds a selection path which improves the MOP 

criteria performance so that some non-selected suppliers can be included in a specific MOP 

solution. One of three methods they proposed to find the selection path is the data envelopment 

analysis (DEA).  

Cebi and Bayraktar (2003) used a combination of AHP and the lexicographic goal 

programming (LGP) to solve the supplier selection problem. AHP finds the scores for all 

objective functions and the LGP assigns orders to the suppliers. Wang et al. (2004) proposed an 

integrated method using AHP and preemptive goal programming (PGP). The AHP method 

selects the suppliers and PGP assigns the order quantities to the suppliers.  

Hong et al. (2005) introduced a method using the meaning period unit (MPU) and mixed 

integer programming. They considered multiple period problems. The method divides the total 

period into several MPUs and identifies the procurement condition by MPU in the pre-

qualification step. Mixed integer programming is used in the final selection step. Sarfaraz and 
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Balu (2006) suggested a method combining the quality function deployment (QFD), AHP, and 

PGP. QFD helps make criteria measurable. AHP then selects suppliers meeting the criteria, and 

PGP then assigns orders. Tseng et al. (2006) used the rough set theory (RST) to manipulate the 

data, make weight and decision rules for factors, and identify significant features. The method 

uses the RST iteratively until the data are appropriate for the selection. Then, the support vector 

machine (SVM) selects suppliers. This method integrates an individual approach (RST) and a 

population based approach (SVM). Ting and Cho (2008) proposed an integrated approach using 

AHP and multi-objective linear programming (MOLP). AHP selects qualified suppliers and the 

MOLP assigns orders to the suppliers.  

Demirtas and Ü stün (2008) used the analytic network process (ANP) for selecting 

qualified suppliers and the multi-objective mixed integer linear programming (MOMILP) for the 

final selection. Kumar et al. (2004) and Azadeh et al. (2010) suggested an integrated approach of 

the AHP and fuzzy linear programming. Kokangul and Susuz (2009) proposed a method of 

combination of the AHP and nonlinear integer multi-objective programming. Che and Wang 

(2008) used the genetic algorithm (GA) and mathematical model for supplier selection and 

production planning. Kuo et al. (2010) introduced a method that integrated particle swarm 

optimization (PSO), fuzzy neural network (FNN), and artificial neural network (ANN). FNN 

collects the qualitative data, and PSO provides the initial weights for the FNN model. The ANN 

selects suppliers using the qualitative data from FNN and quantitative data from the ERP or 

database system. Their method takes the advantages of machine learning like the artificial neural 

network. As Kuo et al. (2010) mentioned, the ANN type method has strengths that do not need 

complex formulation, but can handle large scale data and uncertainty. However, the neural 

network has drawbacks: slow convergence, lack of generalization, and lack of theoretical basis.  

On the other hand, the support vector machine (SVM), another machine learning method, 

overcomes these problems. This research uses the support vector machine for selecting potential 

suppliers using past data. 

4.2.2 Support vector machine in supply chain management 

Supply chain management (SCM) becomes an important issue in both industries and 

academia. The SCM aims to achieve the optimal condition for all related sectors such as the 

buyer, supplier, transportation, customer, and so on. Support vector machine (SVM) is a new 
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supervised learning method for regression and classification which overcomes drawbacks of 

neural network method theoretically and practically. There does not seem to be any relationship 

between the SCM and the SVM. 

However, in recent years, some researchers have tried to connect SCM with SVM. SCM 

can be one of applications of SVM. On the one hand, SVM can be one of methodologies of 

SCM. SVM is used in SCM in such a way of supplier selection, demand forecasting, and the 

others. For the literature of supplier selection, Sun et al. (2005) proposes a supplier selection 

model based on support vector machine for classification problem and presents the supplier 

selection criteria and quantitative methods using fuzzy and pairwise comparison. Wen and Li 

(2006) establish a set of index system which uses multi-layer SVM classifier to assess the credit 

grade of suppliers. Hsu et al. (2007) applies the SVM to build the supplier evaluation classifier 

and uses the Likert and Fuzzy for scaling data. Guosheng and Guohong (2008) use the SVM for 

regression problem to predict the credit index of suppliers. Cai et al. (2008) divides the supplier 

selection stage into two stages; primary election and well-chosen. SVM for classification 

problem is applied in supplier primary election stage. Next, for the demand forecasting, 

Carbonneau et al. (2008) uses the SVM for regression problem to forecast distorted demand 

signal with high noise in the context of supply chain. Shouquan and Zhiwen (2007) forecast the 

demand of multi-echelon of the supply chain based on SVM for regression problem which aims 

to alleviate the bullwhip effect and to improve the supply chain performance. Yue et al. (2007) 

employs the technique of SVM for regression problem to forecast the demand of beers for 

retailers. Carbonneau et al. (2008) compares several machine learning techniques including SVM 

for regression problem to forecast the distorted demand at the end of a supply chain. At last, for 

the other trials, Li et al. (2005) considers SVM as a reasoning method to find an effective 

solution of collaborative identification of coordination questions in supply chain. Wan et al. 

(2005) applies the simulation optimization with surrogate model to SCM. The Least Square 

Support Vector Machine (LSSVM) captures the casual relations embedded in simulation results. 

Xiaohui et al. (2007) uses the recognition and regression forecasting function of the support 

vector machine to put forward the order forecasting model. 
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Table 4.1 Supply Chain Management with SVM 

Application Type Authors  Year Software  Data  Input  Output  Comparisons  

Supplier 

Selection 

Classification Sun et al. 2005  N/A Simple ex. 7  3  FS 

Classification Wen & Li 2006  N/A Simple ex. 13  4 BPNN 

Classification Hsu et al. 2007  LIBSVM Questionnaire 5  3 SLF 

Regression 
Guosheng & 

Guohong 
2008  N/A Simple ex. 5  index BPNN 

Classification Cai et al. 2008  WINSVM Simple ex. 7  2 3 Kernels 

Classification Guo et al. 2009 N/A Real data 30 7 SVM 

Demand 

Forecast 

 Regression 
Carbonneau 

et al. 
2007  mySVM ERP(real) D D ANN/RNN 

 Regression 
Shouquan & 

Zhiwen 
2007  N/A Logistics(real) 6 D ANN 

 Regression Yue et al.  2007  LIBSVM Retailer's(real) 7 D 

Statistical 

method, 

Winder model, 

RBFNN 

 Regression 
Carbonneau 

et al. 
2008  LS-SVM Real data D D NN, RNN 

 Regression Wu 2010 N/A Real data 6 D v-SVM 

Lead time 

Forecast 
Regression 

de Cos Juez 

et al. 
2010 N/A Aerospace 12 

Lead 

time 
Cox model 

Collaborative 

Identification 
Classification Li et al. 2005  LIBSVM Simple ex. 7  2 N/A  

Simulation 

Optimization 
 Regression Wan et al. 2005  N/A Simple ex. N/A  N/A N/A 

Order 

Prediction 
 Regression Xiaohui et al. 2007  LIBSVM Simple ex. 6 7 BPNN 

 

Table 4.1 shows the literature of using the SVM in the supply chain management. The 

two major applications are the supplier selection and the demand forecast. The SVM 

classification is applied to the supplier selection and the regression is for the demand forecast. 

The software column describes the well-known software used in that research and 'N/A' means 

that the authors implemented the algorithm. In the input and output columns, the D denotes the 

demand. The number in the input column denotes the index or factor. For example, 7 represents 

the 7 factors. The number in the output column represents the class or grade. The 'Simple ex' in 

the data column denotes a simple example. The last column for the comparisons is the method 

compared with the SVM in the literature. The methods in the last column are abbreviated as 

follows. FS is for the fuzzy synthetical evaluation.  BPNN is for the back propagation neural 

network. LSF is for the scaling by Likert and fuzzy. ANN is for the artificial neural network. 

RNN is for the recurrent neural network. RBFNN is for the radius basis function neural network. 
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4.3 Methodology 

As it can be seen in the section 4.1, a variety of methods can be used for each step of the 

supplier selection solving procedure. Although the first two steps such as the problem definition 

and the criteria decision are important, they are heavily dependent on the experience and 

knowledge of experts. Therefore, the qualitative methods are used to solve those problems. On 

the other hand, the last two steps such as the pre-selection and the final selection are complicated 

to solve with the qualitative methods. If the number of suppliers and factors are large, the 

problem gets more complicated. For the high complexity problems, the quantitative methods can 

be more attractive than the qualitative methods. This research focuses on the pre-selection step 

using the SVM and the final supplier selection using the mathematical programming. This 

research assumes the problem with multiple sourcing and a single period. If one assumes the first 

two steps are already determined, the selection procedure of simple version is as follows 

(Aissaoui et al., 2007). 

 

Figure 4.1 Supplier Selection Procedure 

 

 

The interest in this research is the last two steps as can be seen in Figure 4.1. The pre-

selection step is a classification problem and the final selection is an assignment problem. This 

research proposes an integrated method for solving these two steps. If the company has the 

history data for suppliers, the SVM can be used to select the potential suppliers because the SVM 

needs to use the history data for finding the pattern of the data. After the potential suppliers are 
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selected with the SVM, the mathematical programming finds the final suppliers and assigns the 

order quantities. The procedure of solving method is as follows. 

 

Figure 4.2 Solution Procedure for Supplier Selection 

 

 

Figure 4.2 presents the solving procedure proposed in this research. The SVM is used to 

select the qualified suppliers. The dotted circles described the criteria and the history data given. 

After training with the history data, the SVM finds the pattern of the data and makes the decision 

function. The data for all potential suppliers are examined by the decision function. The decision 

function can determine each supplier is appropriate for the qualified supplier or not. Depending 



 88 

on the needs or the status of the qualified suppliers, the final suppliers are selected with the order 

quantities in the final step using the mathematical programming model. The next two subsections 

describe the two steps respectively. 

4.3.1 Pre-selection 

The pre-selection is to select the potential suppliers out of all eligible suppliers. The 

company should predict two things in this step. The simple example of the supplier selection is 

as follows. 

 

Figure 4.3 Example of a Supplier Selection Problem 

 

 

Figure 4.3 shows an example of the pre-selection. The factors in the first row are the 

criteria defined at the second step. In this example, the factors are price, quality, lead time, and 

service. The company has the information on suppliers for these criteria, but the company 

doesn’t know how the suppliers will perform after selecting. And the company also wants to 

know which criterion is the most important, the second most, and so on, which are the weights 

for the factors. Therefore, the company wants to predict these performances of suppliers after 

finding the weights for the criteria. The pre-selection problem is to find the weights and to 

predict the performance of the suppliers to contract with. 

This research uses the SVM for this problem. The goal for finding the weights and 

predicting the performance is to classify the supplier group into the qualified suppliers and the 
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others. The machine learning method has two types. The one is a supervised method and the 

other is an unsupervised method. These two types are distinguished by what data used in the 

training phases. The supervised learning method such as the neural network and the SVM uses 

the data with the input and the output. In Figure 4.3, the factors are the input and the 

performance is the output. On the other hand, the unsupervised method such as clustering 

analysis using only input data. In Figure 4.3, the unsupervised method can be directly used 

because there are the input data and the performance is unknown. However, this research uses 

the SVM in the pre-selection processes. How can one use the SVM? As mentioned earlier, this 

research assumes that the history data can be given with the performance. Even if the company 

does not have the history data, the company can get the data after one more experience of the 

supplier selection.  

 

Figure 4.4 Applying SVM to Pre-selection 

 

 

Figure 4.4 shows how to apply the SVM for the pre-selection problem. From Figure 4.4, 

the training data have the input and the output information. The training data is the history data 

given. The procedure that the SVM finds the pattern of the data denotes the training phase. The 

pattern of the data is expressed by the support vectors which can be considered as the weights for 

the factors in Figure 4.4. With the pattern found from the training phase, the SVM tests the 
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suppliers and classifies them into two groups such as qualified suppliers and the others. The 

details for the SVM are in the Chapter 3. 

The advantages of the SVM for the pre-selection are as follows. 

(1) The method has a high accuracy. The SVM as a supervised method is more accurate 

than the clustering analysis as an unsupervised method. 

(2) The method can handle large-scale problems. If the number of factors and the data 

size are large scale, the AHP or statistical methods would have difficulties to arrive to 

a meaningful solution within the reasonable amount of time. 

(3) If the company has the history data, the solution time is minimal. The training and 

testing tasks take several seconds or minutes even if the size of data is more than 

10,000. On the contrary, using the AHP approaches for solving the pre-selection 

problem could be a tedious and prolonged task. For example, the purchasing team 

members and the experts would get the questionnaire for asking the pair-wise 

comparisons by all factors and then another questionnaire for the comparisons by all 

suppliers for each factor. After the collection of the results of the two surveys, the 

summary matrix is made with those results and the final weights are calculated. Then 

the method checks the consistency of the result. If the consistency is less than a 

certain tolerance, the survey is repeated until the consistency is higher than the 

tolerance. Though the AHP method has a lot of advantages, there are some 

disadvantages. The method may take too long if there is no consensus and it could be 

subjective based on the members surveyed.  

(4) The current testing data would be the training data in the next period. After testing the 

data of suppliers, the results would be the history data in the next time. With larger 

training data, the training can be more accurate.  

(5) The method does not need a complicated formulation. Regardless of the type of 

problem, the SVM only needs to solve a quadratic programming problem. 

(6) The method allows some missing data. The SVM can solve the problem even if some 

data are missing. 

(7) The method is objective and non-parametric. Since the SVM finds a pattern of the 

data, the method is more objective than other methods. Unlike statistical methods, the 

SVM as a machine learning method does not have parameters.  
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4.3.2 Final selection 

The final selection step is to find the final suppliers among the potential suppliers and to 

allocate the order quantities to the final suppliers. In fact, if one solves the assignment problem, 

the final suppliers are automatically selected because the suppliers which have positive order 

quantities at the optimal solution are the final suppliers. The mathematical programming is a 

useful tool for the allocation problem. The decision variable in the mathematical programming 

can be defined the amount or fraction of each assignment so that the optimal solution is the final 

allocation. This research uses a mixed integer linear programming model for the final selection. 

The objective function and constraints for the final selection model are dependent on the 

procurement strategies used by the company. For instance, if the company focuses on the quality 

of the product, the objective function may maximize the quality of the product and one of 

constraints is to restrict the minimum level of the quality. If another company may be interested 

in other factors, then the objective function and constraints would be changed according to the 

strategy and factors. Therefore, the objective function and constraints in the mathematical 

programming model for the final selection may be different by each company.  

Ho et al. (2010) showed the most popular factors in the literature are quality, delivery, 

and price. This research considers price, quality, delivery, and service. The mathematical model 

in this research is based on the model proposed by Pan (1989). Pan (1989) proposed a simple 

linear programming model for the supplier selection problem. The decision variables are 

fractions of order quantities for the final suppliers. He et al. (2009) suggested an integrated 

method of the chance constrained programming model and the genetic algorithm. He et al. 

(2009) used Pan's linear programming model and the experimental results showed the solution 

tended to be extreme values. For instance, only a few suppliers are assigned to orders. To avoid 

these fragmented solutions, He et al. (2009) introduced a tight constraint in the model, but the 

results have not been different. In this respect, this research modified the Pan's model into a 

mixed integer linear programming. The details are as follows. 

Definitions 

Set 

            : number of the potential suppliers 

Variables 

   : order quantity for the supplier  ,     
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   :   if the supplier   is given any order and   otherwise,     

Define parameters 

 : level of quality to achieve (%) 

 : level of lead time to achieve (days) 

 : level of service to achieve (%) 

 : demand from production 

   : value of quality of the supplier  ,     

   : value of lead time of the supplier  ,     

   : value of service of the supplier  ,     

   : value of price of the supplier  ,     

   : value of capacity of the supplier  ,     

   : ordering cost of the supplier  ,     

Mathematical Model 

(FSP)                       (4.1) 

                     (4.2) 

                       (4.3) 

                       (4.4) 

                     (4.5) 

                     , for all     (4.6) 

                , for all     (4.7) 

                    , for all     (4.8) 

 

The final selection model is a mixed integer linear programming problem. The objective 

function is to minimize the aggregated prices and the ordering costs. The constraints (4.2~4) 

denote the company should get higher levels of quality, lead time, and service from the final 

suppliers. The constraint (4.5) shows the amount of orders should satisfy the demand from 

production site. The constraint (4.6) is the capacity constraint that the maximum unit from the 

supplier   is   . The amount of order cannot be negative value in (4.7) and the variable    is a 

binary in (4.8). 
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4.4 Experimental Results 

This section shows the experimental results for the supplier selection. This research 

randomly generated some data for the pre-selection. The sample problems are based on the 

examples in Pan (1989) and He et al. (2009). The data are randomly generated from the uniform 

distribution with the ranges as follows. 

 

Table 4.2 Property of Data Set 

Factors Distributions Required level 

Price U[10.0. 11.5] - 

Quality (%) U[91, 99] >= 95 

Lead time (days) U[22, 30] <= 25 

Service (%) U[87, 97] >= 90 

 

These values in Table 4.2 are generated for each supplier and the response value so called 

the label is generated as well. The response value denotes the result of the supplier. If the 

supplier is successful, the response value is  . If the supplier is not successful, the response value 

is   . First, the values of the four factors are randomly generated. These values are checked if 

each supplier satisfies the required level. Among the suppliers that satisfy the requirement, it is 

randomly assigned 20% of the suppliers as the successful suppliers. The size of instances is from 

   to      . 

The algorithm was implemented in C programming language, complied using gcc and 

run on a Fedora 13, 64 bit Red Hat Linux machine with 4 GB memory and Intel i7 QuadCore 

Bloomfield CPU running 2675 MHz. Four different training data were trained with the SVM and 

six different testing data were tested with the decision function of the SVM. 
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Table 4.3 Experimental Results of Pre-selection using SVM 

Training data size Testing data size Accuracy (%) Training time (second) 

500 

30 86.67 

0.04 

100 84.00 

500 67.00 

1000 85.80 

3000 85.30 

5000 85.56 

1000 

30 86.67 

2.46 

100 88.00 

500 66.60 

1000 86.20 

3000 86.00 

5000 85.86 

3000 

30 86.67 

18.54 

100 88.00 

500 67.00 

1000 86.50 

3000 86.44 

5000 86.28 

5000 

30 86.67 

37.18 

100 88.00 

500 66.60 

1000 86.70 

3000 86.27 

5000 85.92 

 

Table 4.3 shows the results of experiments for the pre-selection. When the size of the 

training data is      or     , the accuracies are a little better than smaller ones. The method of 

the experiments is AA method described in Chapter 3. The kernel function is the Gaussian 

function and the value of   is    . The data generated by the rules of Table 4.2 need to be 

normalized. The normalization in the SVM improves the performance significantly described in 

Ali and Smith-Miles (2006). This research uses the Min-Max normalization method as follows. 

   
     

       

         
          (4.9) 

(4.9) is the formulation of the Min-Max normalization.    denotes the value of the 

supplier   for a certain factor.   
     is the normalized value.      and      are the minimum 
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and the maximum value of the column.   and   are the upper and lower bound. This research 

uses   and   for the lower and upper bound. 

The results show there is only a little difference for the accuracy among different sizes of 

the training data. The accuracy in the results is appropriate because the response values of the 

suppliers are randomly generated out of the suppliers which satisfy the minimum levels of the 

requirements. Therefore, the data may have an exact pattern or not. The training time is from 

     to       seconds. The testing time takes only a few seconds. If the AHP was used to the 

problem, it takes more time than the SVM because the AHP needs to do several surveys and 

make a consensus. Though the SVM can be applied to the only case the data of all suppliers are 

available, the SVM can be an attractive alternative for solving the pre-selection problem if the 

company has the history data for suppliers. 

4.5 Conclusions 

The supplier selection is an important issue in many companies that should purchase 

materials or components from supplier companies. The problem is directly related with the 

quality of product and the profits. This chapter focuses on the two steps: the pre-selection and the 

final selection among the procedure of the supplier selection. The pre-selection step is a 

classification problem while the final selection step is an assignment problem. This chapter 

proposed an integrated solving approach that is the combination of the SVM and the mixed 

integer programming. Once a company selects suppliers to make contracts, the company wants 

to work with the suppliers for a while because the company could spend additional time and 

money for re-evaluating other suppliers. Therefore, the company should select suppliers 

carefully. In this respect, the integrated solving approach can be more attractive than single 

approach. 

The SVM is applied for the pre-selection step. The SVM classifies all potential suppliers 

into the qualified suppliers and the others. Using the SVM, the history data including the 

response values are needed. Companies may have the history data or can have their history data 

from their previous transactions and selections. The SVM as a supervised learning method has 

some advantages such as good accuracy, handling large scale and missing data, and so on. With 

the supplier's data, the SVM finds the pattern of the data which can be considered as the weights 

for the factors. The pattern of the data can be expressed as a model that consists of some vectors 
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called as support vectors. The decision function uses the model of the data pattern and tests other 

suppliers to be classified. After the classification, the results can be added to the history data for 

the suppliers and used to the next pre-selection problem.  

In the final selection step, this research formulated a mixed integer programming model. 

The decision variable is the amount of materials or components to purchase from each supplier. 

The constraints are the requirements of quality, lead time, demand, and service that are the levels 

satisfaction of the company. In the optimal solution, the suppliers corresponding to the variables 

that have non-zero values are the final suppliers and the other suppliers are not selected for the 

final suppliers. The solution provides both the final suppliers and their order quantities. 

The experimental results showed the SVM for the pre-selection step can handle large 

scale problems and have an appropriate accuracy if there is the history data for suppliers. The 

accuracies for most instances are more than   %. Once the history data was trained to find the 

pattern, the decision function from the training can be applied to any size of the test problems. 

The solution time is very reasonable to practical applications.  

The chapter showed the SVM has a great potential for solving the pre-selection problem 

as a classification problem. The supplier selection is one of essential issues in many companies. 

The history data are necessary for using the SVM in the supplier selection problem. The data for 

some new suppliers may not exist and cannot be applied to the SVM. However, the selections 

with other methods would be the history data for those suppliers and could be applied to the 

SVM in the future. 
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CHAPTER 5 - Financial Problem using SVM 

5.1 Company Credit Rating Classification 

In this chapter, SVM solution method is applied to a real world problem. The credit 

prediction of the company is an essential part of the decision procedure for a loan or an 

investment in banks or financial companies. This research uses the data of Korean companies. 

The main factors have been chosen by a statistical method to be used for the SVM training. The 

SVM finds the pattern of the data and classify the companies into financially healthy ones and 

the others. The experimental results show that the newly proposed method has a great potential 

to become a good alternative solving approach for large-scale SVM problems. 

The credit rating of a company is important for investors as well as the company itself 

because it is a crucial measure of the decision of the investment or loan to the company. If the 

evaluation of the credit rating is wrong, investors and the company may have a big loss. The 

accurate evaluation or prediction of the credit rating can provide the information of the proper 

companies to invest and the indication of bankruptcy as well. Investors may adopt the credit 

ratings from external credit rating agencies or try to estimate their internal ratings. In both cases, 

the method of rating is important. The financial data of the company are closely related to the 

credit rating. Many analytical methods from statistics, mathematical model, and data mining 

have been applied to find the main factors to affect the credit rating and the interactions between 

the factors. The SVM as a supervised machine learning method has been a popular classification 

tool which recognizes the pattern from the data itself. This research uses the SVM to predict the 

credit ratings of companies to classify them into two groups. 

The data is provided by Korea Small Business Institute in Korea and has the financial 

ratios of small and medium sized companies in Korea. Min et al. (2006) used four feature subsets 

out of 32 financial ratios categorized by stability, profitability, growth, activity, and cash flow. 

On the other hand, this research considered the two types of features such as profitability and 

stability as following table. 
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Table 5.1 Financial Ratios 

Type Ratios Calculation 

Profitability Return on equity ordinary income Ordinary income / total capitals 

  Return on Sales Net income / sales 

  Return on equity Net income / total capitals 

  Equity turnover ratio Sales / total capitals 

  Fixed asset turnover ratio Sales / fixed assets 

Stability Equity ratio Total capitals / total assets 

  Fixed asset ratio Fixed assets / total capitals 

  Debt ratio Total liabilities / total capitals 

  Current ratio Fixed assets / current liabilities 

 

The data consists of nine financial ratios of companies and their credit ratings in 2008 

fiscal year. The credit rating starts from the best 'AA+' to the worst 'D'. 

5.2 Experimental Results 

The application to the real world problem has been conducted to classify the credit 

ratings of companies in Korea. Three sizes of data are considered such as 6324, 3302, and 1057. 

In each size of data, 60% of companies arbitrarily selected are used for training and 40% of 

companies are used for testing. Two classes are defined as good and bad groups by credit ratings 

to be classified. Features are nine financial ratios and the label is one of two classes. Each 

financial ratio is scaled from zero to one. The experimental results are as follows. 

 

Table 5.2 Classification of credit ratings into good (A~B) and bad (C~D) groups 

Size 
Feature nu Kernel 

Accuracy (%) 

Training Testing Training Testing 

3795 2529 9 0.5 Polynomial 89.54 89.57 

1982 1320 9 0.5 Gaussian 90.47 90.46 

635 422 9 0.3 Polynomial 90.71 90.76 

 

Table 5.2 shows the results of classification when the credit ratings are classified into two 

groups with good (A, B) and bad (C, D). Polynomial and Gaussian kernel functions are used. 

The results have good performances about 90% of accuracy. 
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Table 5.3 Classification of credit ratings into good (A) and bad (B~D) groups 

Size 
Feature nu Kernel 

Accuracy (%) 

Training Testing Training Testing 

3795 2529 9 0.4 Gaussian 94.89 94.90 

1982 1320 9 0.4 Polynomial 92.79 92.81 

635 422 9 0.4 Polynomial 84.10 85.55 

 

Table 5.3 presents the results of different grouping, which classifies the companies into 

good (A) and bad (B, C, D) groups. If the kernel and the value of ν are different, the accuracies 

are changed. The experiments have done with some combinations of the value of   and the 

kernel function and found the best values. The results show that the combinations of the kernel 

function and the value of   are different by the size of data and the type of classification. The 

experimental results showed that the new algorithm has performed very well in the real world 

problem. The experiments have considered nine financial ratios to classify the companies into 

two groups such as good and bad. 

5.3 Conclusions 

This chapter proposed an alternative method for assessing companies with company 

credit ratings using SVM. Assessing companies is critical in many cases. Banks or investment 

companies require the measurement as accurate as possible. Individual investors also want to get 

more convinced information about the company to be invested. The company itself who is 

assessed also wants to know its current status. Thus, systematic method has become a preferable 

method for the measurement of company credit ratings because the assessment directly affects 

profits or losses.  

This research used real data of small size companies in Korea. The factors considered in 

this research are nine financial ratios represented companies' profitability and stability status. 

The data include company credit ratings, so it is used 40% of data for training and 60% for 

testing using SVM. This research compared credit ratings in data set with predicted credit ratings 

from out testing. Experimental results showed that the accuracy in most cases is more than 90%, 

which proves the new method is viable. 

Some may argue why the credit ratings need to be predicted again because the data 

already have all the results from an institution like Moody's that determines and announces the 
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credit ratings for most companies. There are three reasons. First, credit ratings do not come out 

every month or week from the institution. Banks or investors may want to get credit ratings of 

companies whenever they need. Second, banks or investors can have different factors from 

Moody's to assess companies. Third, Moody's cannot assess all companies, but investors want to 

the other companies or small sized companies that are not assessed by Moody's.  

Future work of this research is to extend the proposed model using additional factors 

including other financial factors and non-financial factors. The study for finding appropriate 

factors is also another interesting issue for this problem. While this research used the SVM 

classification technique, the SVM regression model can be used for this problem in the future. 

SVM is a statistical supervised machine learning method and a quantitative method. One may 

consider a solution approach combining SVM and other qualitative or techniques. 
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CHAPTER 6 - Conclusions and Future Research 

6.1 Conclusions 

The nonlinear knapsack problem, the support vector machine (SVM), and supplier 

selection are all interesting and important topics for researchers and industries. The SVM has 

long been a popular tool with many applications. Started from research on the SVM algorithm, 

this research has suggested a new solution algorithm of the subproblem of the SVM as well as an 

application for supply chain management (SCM). In addition to an efficient approach for solving 

the  -SVM classification problem, this dissertation has proposed a new algorithm for solving the 

continuous separable nonlinear knapsack problem and an integrated approach for the supplier 

selection problem using the SVM in discussion ranging from theory to application with the 

nonlinear knapsack problem in Chapter 2 and the SVM and the supplier selection described in 

Chapter 3 and 4. 

An efficient pegging algorithm was proposed for the nonlinear knapsack problem. The 

problem is separable, continuous, and convex with box constraints on variables. The pegging 

algorithm is an iterative method that fixes some variables into their optimal values at each 

iteration until the solution reaches the optimal. The newly developed method, the Dual Bound 

algorithm, is based on the Bitran-Hax algorithm, a popular pegging method. The motivation for 

developing this algorithm was the two time consuming calculations in the Bitran-Hax algorithm. 

The Dual Bound algorithm introduced the new concept of the dual bound. The dual bound can 

check the feasibility of each variable instead of the bound of the primal variable because all 

primal variables have dual bounds. Using the dual bound instead of the bounds of primal 

variables provides two advantages. One, the algorithm must consider only one dual variable 

because the primal problem has only one constraint. Two, the calculation of the dual bound does 

not depend on the iteration; thus it need not be calculated at each iteration. The experimental 

results showed the Dual Bound algorithm performed better than the Bitran-Hax algorithm as the 

size of the problem increased. 

In Chapter 3, this research focused on the  -SVM classification problem. The quadratic 

programming problem should be solved to find the decision function of the SVM. The quadratic 

programming problem referred to the singly linearly constrained quadratic convex problem with 

box constraints, which has a dense Hessian matrix, one linear equality constraint, and box 
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constraints. It has a large and dense Hessian matrix, so the SVM problem requires a special 

solution approach. The sequential minimal optimization (SMO) has been a popular method for 

solving the SVM problems. The SMO solves smaller problems instead of solving the original 

problem sequentially. Though the SMO can handle large scale problems, reducing the number of 

iterations and developing a good method to find the smaller problems are still challenging issues. 

On the other hand, because the SVM problem is a convex quadratic programming problem, some 

studies of the SVM use the gradient or projection type methods. However, those methods can 

handle only small or medium scale problems even if the methods converge quickly. Therefore, 

the decomposition is necessary for the SVM. This research proposed using the matrix splitting 

method and the incomplete Cholesky composition for the  -SVM classification problem. The 

original problem has a quadratic objective function, two linear constraints, and box constraints. 

Applying the augmented Lagrangian method, the original problem becomes the singly linearly 

constrained quadratic convex problem with box constraints. The overall solving procedure of the 

new method is based on the matrix splitting method. Several different options have been used for 

the line search and for updating  . The direction is found by solving a subproblem. The Dual 

Bound algorithm described in Chapter 2 is used to solve the subproblem. The Hessian matrix is 

decomposed by the incomplete Cholesky decomposition method, which is suitable because the 

Hessian matrix of the SVM is dense and has low rank. The experimental results showed the 

method performed well and solved large scale problems. The method in this research has great 

potential for extension because other methods for line search and updating   can be used.  

An integrated approach for the supplier selection was proposed in Chapter 4. This 

research focused on the pre-selection and the final selection steps among the supplier selection 

procedure. The  -SVM classification solves the pre-selection step and the mixed integer 

programming model is used for the final selection. The biggest contribution of the method in this 

research is in using the SVM for pre-selection. Pre-selection chooses the potential suppliers out 

of all eligible suppliers. Only potential suppliers can become final suppliers. In this step, the 

company needs only to classify the suppliers into two groups: potential suppliers and others, 

which is a classification problem. In previous methods, such as the analytic hierarchy process 

(AHP) or cluster analysis (CA), information about the performance of suppliers has not been 

used because these methods are unsupervised methods and are thus subjective and require 

lengthy calculations to get the results. On the other hand, the SVM is objective and fast. As a 



 103 

supervised method, the SVM requires performance information for suppliers. The SVM cannot 

apply to the problem without historical data. However, the SVM is more attractive than other 

methods if the history data are available.  

This dissertation has examined three challenging issues. The nonlinear knapsack problem 

has many applications and can occur as a subproblem in many optimization algorithms. Thus, the 

new pegging algorithm, which is fast and efficient, is a significant contribution. The SVM 

classification, which has been a popular tool in many different areas, can be modified using 

matrix splitting method, several options of line search and updating  , and the incomplete 

Cholesky decomposition to solve SVM problems with large and dense Hessian matrices. The 

importance of the supplier selection has increased in the company because products have become 

more complicated and change so rapidly that outsourcing has become a necessary part of 

production. This research uses the SVM for pre-selecting such suppliers, which is a significant 

contribution to the field. In summary, this dissertation combines three different areas: 

mathematical programming, data mining, and supply chain management. 

6.2 Future Research 

The Dual Bound algorithm for the nonlinear knapsack problem uses the dual bound 

instead of the primal variables to check feasibility. In other words, checking feasibility requires 

only one dual variable instead of all primal variables. Moreover, calculating the dual bound is 

not in the loop of the iteration. Therefore, if one could calculate the dual variable that can peg the 

largest number of variables first, then the computations could be still more reduced because the 

algorithm would only check the remaining variables from the next iterations. If one can also 

calculate the range of the dual variable or the direction of the dual variable, then the algorithm 

can peg still more variables and significantly reduce the number of iterations. The concept of the 

dual bound can be applied to other optimization algorithms when they need to check feasibility. 

The Dual Bound algorithm can be combined with the fuzzy theory or stochastic programming 

algorithm when the problem contains uncertainties. The Dual Bound algorithm also can be 

applied to other problems and applications. 

The new method for the  -SVM classification problem is a flexible algorithm because a 

variety of different line searches and ways of updating   can be used in this algorithm. Finding 

the best combination of methods is the challenge. The performance of the method depends on the 
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combination of the line search and updating methods. This research used four different 

combinations of the following methods: SPGM, GVPM, MSM, and AA. Other combinations 

could be tested. In the final solution, the number of support vectors is a little large. It needs to 

find a way to reduce the number of support vectors in the future. For implementation, the 

proposed algorithm must have an efficient data structure to store the large incomplete lower 

triangular matrix for the incomplete Cholesky decomposition. If the rank of the Hessian matrix 

can be calculated before the incomplete Cholesky decomposition, the exact amount of memory 

needed for the triangular matrix can be allocated in advance. 

The data for pre-selecting suppliers were randomly generated. The new integrated 

approach should be applied to real problems. In reality, the suppliers may have new proposals 

that would differ from historical data. The company can also negotiate with suppliers. The 

negotiation or relationship with suppliers can be included in the new solution approach. The 

environmental or social factors and effects can also be considered in new model. The problem 

considered in this research focuses on a single time period. The newly proposed integrated 

approach can, however, be extended to problems covering multiple time periods and some 

uncertainties. Because the AHP works well for selecting suppliers without historical data and the 

SVM performs well to select suppliers while using historical data, future research could consider 

integrating the AHP and the SVM for pre-selection.  
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