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ABSTRACT 

 
 

Smoke flavored foods continue to be a popular choice among consumers.  In this 

study, a caramel-type flavor in whipped cream applications via Maillard reaction 

pathways was evaluated.  A highly refined liquid smoke fraction was developed using a 

delignified pulp wood source, and a patented activated carbon filtration process.  To 

maximize sensory and reactionary capabilities, a liquid smoke fraction with phenol and 

carbonyl concentrations of 0.07mg/ml and 12.9g/100ml, respectively, was developed.  

Heavy cream containing a 0.075% addition of the refined liquid smoke fraction was 

evaluated when reacted at 50, 63, and 72°C for 15 sec prior to chilling at 0°C for 12 h, 

and whipping for 8 min using a handheld mixer.  Sensory analysis showed the addition of 

liquid smoke increased whipped cream sweetness and caramel flavors, while imparting 

minimal off-flavors.  Probable Maillard pathways were predicted for the reaction taking 

place between the liquid smoke and the dairy proteins upon thermal processing.  This 

technology can be used to develop other foods which are not traditionally smoke 

flavored. 
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INTRODUCTION 

 The food industry is continually searching for new, innovative flavors and 

concepts to improve product marketing, quality, and labeling.  This type of research has 

generated much interest in the field of reactionary flavors, also known as process or 

thermal processing flavors.  A thermal process flavor is defined by International 

Organization of the Flavor Industry (IOFI) as:  

“a product prepared for its flavouring properties by heating food 
ingredient and/or ingredients which are permitted for use in foodstuffs or 
in process flavourings” (IOFI, 1989).   
 

Many current food markets are interested in reactionary flavors, particularly in the 

dairy industry, where a flavor additive may be used to increase sweetness, add interesting 

flavors via reactions, minimize sugar usage levels, and maintain a clean product label and 

ingredient declaration.     

 The Maillard reaction is a very important component of reactionary flavor 

chemistry.  The mechanisms of the Maillard reaction can be used to help illustrate the 

reactions taking place between the proteins present in dairy cream and the carbonyl 

components active in liquid smoke fractions, resulting in caramel-type flavors present in 

the final product.   

 Liquid smoke is a fairly common food additive used primarily in the meat 

industry because it functions as an antimicrobial agent, colorant, and flavor additive.  

Liquid smoke has been used for its browning agents in various applications, including 

meats, doughs, and cheese applications because they are a good source of carbonyls that 

contribute to Maillard browning reactions.   
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 Whipped cream has an adequate amount of proteins available for reaction, which 

are known to actively participate in the Maillard reaction mechanisms upon thermal 

processing. This makes heavy cream an excellent medium for researching the reactivity 

of liquid smoke carbonyls with dairy proteins.    

It is hypothesized that the liquid smoke carbonyls will react with the dairy 

proteins via Maillard reaction mechanisms to develop a sweet, caramel-type flavor in the 

final whipped cream product.  Specific objectives in this experiment were (1) to create a 

highly processed liquid smoke fraction that is concentrated in carbonyl content, yet low 

in phenol content, (2) to determine the amount of active ingredients present in the liquid 

smoke fraction that is available for reaction, (3) to determine the reactionary impact a 

liquid smoke fraction addition will have on heavy cream when added prior to thermal 

processing in the production of whipped cream, (4) to determine temperature 

requirements needed for the reaction to take place and yield the most effective and 

economical product, (5) to determine the threshold of active chemical components that 

will yield the most acceptable final product while minimizing smoke, chemical, and/or 

off-flavor notes.  Sensory studies will be utilized to determine how the liquid smoke 

affects the whipped cream flavor, and the temperature and concentration levels that are 

most likely to yield a consumer acceptable product. The main goal was to determine if 

liquid smoke would be an acceptable additive in dairy products that could prove affective 

for dairy markets and to justify this project by creating a product that is useful in these 

applications.   
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CHAPTER 1 – LITERATURE REVIEW 
BROWNING REACTIONS OF FOOD SYSTEMS 

 Food browning may be the result of many different reactions and via a multitude 

of mechanisms; however, the browning of food products may be generalized into two 

main reaction categories: oxidative and non-oxidative.  Oxidative, or enzymatic browning 

occurs when oxygen reacts with a phenolic substrate where polyphenol oxidase enzyme 

is acting as a catalyst.  This method of browning occurs in fruits and vegetables, 

including apples and lettuce when the tissues are exposed to air, but does not directly 

involve carbohydrates.  Enzymatic browning is often viewed as an unacceptable reaction, 

where non-enzymatic browning may be sometimes seen as a benefit in food applications.  

Non-oxidative, non-enzymatic browning is a reaction of proteins with carbohydrates, and 

may also include caramelization (Christen and Smith, 2000).   

 Browning is essential in developing food production and storage guidelines.  

While the fruit and vegetable industries concentrate on browning prevention, other food 

industries focus on the promotion of browning reactions, particularly in the meat and 

flavor businesses.   

In addition to the Maillard reaction, there are three types of non-enzymatic 

browning reactions known to occur in food applications.  The degradation of ascorbic 

acid, lipid peroxidation, and sugar-sugar caramelization reactions have all been identified 

as non-enzymatic browning mechanisms in the food industry (Davies and Labuza, 1997).  

Each of these pathways is in some way chemically related to the Maillard reaction. 

 The degradation of ascorbic acid is a type of non-enzymatic browning reaction 

that is chemically similar to that of sugars; however, amino acids are not required for 
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browning to occur.  Ascorbic acid is highly reactive, and degrades by two pathways.  

Both mechanisms proceed through dicarbonyl intermediates and eventually form 

browning compounds (Davies and Labuza, 1997). 

 Another form of non-enzymatic browning, lipid peroxidation occurs by way of 

oxygen on fatty acids, particularly unsaturated fatty acids.  Similar to the Maillard 

reaction, the oxidation forms ketones and aldehydes which consequently react with amino 

acids forming brown pigments.  It is believed that peroxidation products promote the 

browning reaction of the Amadori products, which are major intermediates in the 

Maillard reaction (Davies and Labuza, 1997).   

Sugar-sugar caramelization reactions are a form of non-enzymatic browning 

mechanisms that occur at high temperatures (> 80ºC) (Davies and Labuza, 1997).  The 

sugar-sugar interactions are highly complex, and may result in many intermediate 

compounds and end products similar to those associated with the Maillard reaction.   

 The primary method of browning in food systems is the Maillard reaction.  Non-

oxidative browning, or the Maillard reaction is a very complex system of reactions 

leading to the formation of several end-products, affecting colors, flavors, and aromas.  

For Maillard browning to take place, an amino compound (protein), a reducing sugar, and 

water must be present. (Christen and Smith, 2000). 

 

MAILLARD REACTION 

INTRODUCTION 

 The Maillard reaction was first discovered in 1908 by two Englishmen, Ling and 

Malting, who studied color formation in beer.  However, it was not until 1912 that Louis 
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Camille Maillard, a French chemist, described a browning reaction involving reducing 

sugars and amino groups.  This specific reaction is now attributed to Maillard, not 

because he was the first to report the reaction, but for realizing its significance in diverse 

fields, including geology, pathology, and medicine (Davies and Labuza, 1997).  While 

the discovery of the Maillard reaction was initially linked to a food application, there is a 

lack of direct research on the Maillard reaction in much of the food industry, including 

confectionary, meat, and beverage applications.  Today, a significant portion of research 

is concentrated on the medical applications of the reaction.  

 Adaptations of Hodge’s classical illustration of the Maillard reaction, as shown in 

Figure 1, are still used today to display the mechanism of this highly complicated 

reaction (Hodge, 1953).  Because of its complexity, the Maillard reaction is generally 

divided into three stages. The initial stage consists of sugar-amine condensation and 

Amadori rearrangement.  The reaction steps for this stage are the most well defined, but 

no actual browning occurs during these initial reactions.  The second phase involves 

sugar dehydration, and amino acid degradation via the Strecker reaction.  Toward the end 

of stage two, there is a possibility for flavor formation to occur, but this is not necessarily 

true for all applications.  The final stage is responsible for the formation of heterocyclic 

nitrogen compounds and browning (Davies and Labuza, 1997; Lee and Nagy, 1983; 

Mauron, 1981). 
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              Figure 1 ‐ Hodge diagram; Maillard browning pathways (Hodge, 1953). 
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STAGE 1 

 The Maillard browning reaction begins with a condensation reaction between the 

carbonyl group of a reducing sugar, and the free amino group of an amino acid yielding 

an N-substituted aldosylamine.  This is a nucleophilic reaction, where the amino acid 

NH2 group attacks the electrophilic carbonyl groups of the sugar compounds.  It is 

essentially an amine-assisted dehydration reaction of sugar.  As the condensation product 

forms, it quickly loses water and converts into a Schiff base.  This portion of the reaction 

is acid-base catalyzed and may be reversed.  The Schiff base then cycles into the 

aldosylamine.  This is followed by the Amadori rearrangement forming a ketosamine 

(Davies and Labuza, 1997).  When a ketose, such as fructose is reacted with an amine, an 

aminoaldose is formed via the Heyns reaction.  Imines are intermediates to the Heyns 

reaction.  The resulting aminoaldose is unstable and reacts readily to form Amadori 

compounds (Ledl and Schleicher, 1990).   An example of these initial steps is depicted in 

Figure 2 (Christen and Smith, 2000).  Glycosylamine is formed through the loss of water 

and a ring closure.  Then the resulting glycosylamine undergoes Amadori rearrangement 

to yield 1-amino-2-keto sugar (Christen and Smith, 2000).   

Figure 2 ‐ Early stage Maillard Reactions: formation of glycosylamine and the Amadori 
rearrangement of a glycosylamine to produce a 1‐amino‐2‐keto sugar (Christen and 
Smith, 2000). 
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STAGE 2 

 The second stage of the Maillard reaction involves the degradation of the 

Amadori product.  This occurs via one of three main pathways, depending on the specific 

situation and environment.   

1. The free hydrogen of the amino group of the Amadori product (ketosamine) 

may react with a second aldose molecule forming a diketosamine. The 

resulting compound is less stable than the monoketosamine and readily 

converts to yield a nitrogen-free carbonyl compound and a monofructosamine 

(Davies and Labuza, 1997).  

2. In acidic media, enolization of the Amadori product can occur via two distinct 

pathways, as seen in Figure 3 (Christen and Smith, 2000).  One pathway gives 

a 1,2-eneaminol after enolization and proceeds through a 3-deoxyosone, while 

the other yields a 1-amino-2,3-enediol after enolization and advances through 

methyl α-dicarbonyl compounds (Christen and Smith, 2000).  Both pathways 

result in the production of Maillard reaction end products (melanoidin 

pigments) that contain pyrazine and imidazole rings, as well as lower 

molecular weight compounds, including hydroxymethyl furfural (HMF) and 

reductones (Christen and Smith, 2000).  The 2,3-enolization mechanism is 

favored in neutral and weakly alkaline conditions (Feather, 1981).  

3. Another possible pathway is the Strecker degradation of amino acids.  This 

involves the oxidative degradation of amino acids via carbonyl compounds, 

which develop from the degradation of ketosamines.  Amino acids react to 

form Schiff bases, and then undergo acid-catalyzed decarboxylation in this 
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degradation reaction.  The newly formed Schiff base is easily hydrolyzed to 

yield an amine and an aldehyde (Davies and Labuza, 1997).  Strecker 

degradation is characterized by the formation of CO2.  The final result is a 

transamination reaction which is believed to be needed for the incorporation 

of nitrogen into melanoidins (Mauron, 1981).  
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Figure 3 ‐ Possible degradation pathways of the Amadori product to produce 
melanoidin pigments (Christen and Smith, 2000). 
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STAGE 3 

 The third stage of the Maillard reaction is characterized by the formation of 

melanoidins, brown-pigmented compounds, as well as roasted and toasted aromas and 

flavors.  The formation of melanoidins is the result of highly reactive intermediates that 

are formed during the Maillard reaction (Mauron, 1981).  The chemistry of those 

intermediates is not completely understood and their formation mechanisms remain 

unclear.  As browning reactions proceed, the molecular weight of the resulting 

compounds increases until they become insoluble (Davies and Labuza, 1997). 

 

LIQUID SMOKE FLAVORINGS 

INTRODUCTION 

 Food smoking is one of the oldest and most primitive food technologies.  Initially, 

food was hung over fires as a means of protection against competing predators.  In 

addition to physical protection, smoking also provided a special taste, aroma, and color to 

foods, while enhancing preservation via smoke’s natural dehydrating, bactericidal, 

antimicrobial, and antioxidant properties (Maga, 1988).  Although more modern methods 

such as pasteurization, cooling, and deep freezing have essentially replaced smoking as a 

preservation method, consumers have become accustomed to the reactionary functions of 

liquid smoke, including color and flavor.  Therefore, the main purpose of smoking food 

today is the ability to achieve a desired product flavor and an appealing product color.    

 The invention of liquid smoke is credited to E.H. Wright, a late 19th century 

Kansas pharmacist.  The product was initially used in a domestic setting for the curing of 

bacon and hams, as well as for the flavoring of products such as stews and baked beans.  
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Smoke flavors have been produced on a large scale since the 1970’s, and are now 

progressively replacing traditional smoking methods.  Liquid smoke methods have 

gained popularity over traditional methods due to several advantages: ease and speed of 

application, uniformity of product, final product reproducibility, functionality and 

reactionary properties, and cleanliness of application. Since its introduction into the food 

industry, liquid smoke has taken on several functionalities independent of smoking 

meats.  Via US Patent 5637339, liquid smoke may be fractionated, de-phenoled (de-

flavored), and further refined to yield a product applicable as a functional ingredient in a 

variety of food applications, including dairy, vegetable, coatings, and pastry industries 

(Moeller, 1997). 

PRODUCTION METHOD 

 Before the chemical composition of liquid smoke can be understood, one should 

have a basic comprehension of the production methods of liquid smoke flavorings.  

Smoke flavorings are produced as aqueous solutions, as well as oil based solutions and 

powders.  The smoke process begins with a drying stage in which sawdust is dried to a 

moisture content of approximately 2-3% and fed into a hopper, as detailed in US Patent 

4,298,435 (Ledford, 1981).  Next, the furnace stage consists of the pyrolysis of the 

sawdust, with the resulting smoke being absorbed into a water medium via a scrubbing 

operation.  The liquid smoke is fed to settling tanks where the polymerization of tar 

components is completed.  The tar is removed from the tanks, and the final product can 

then be sold, concentrated via evaporation, further refined, or blended to achieve the 

various product specifications.  
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 The liquid smoke production process begins at the time the dried sawdust is place 

in the hopper.  From the hopper, the sawdust is continuously fed to the indirect-heat 

calciner furnace via a screw conveyor.  The screw feeder extends into the retort where 

baffle extensions are spaced in order to convey the sawdust through the furnace. 

According to US Patent 4,298,435, the retort is heated to approximately 900°F (Ledford, 

1981).  The smoke vapor produced during the pyrolysis of the sawdust is drawn into a 

scrubber column filled with ceramic saddles.  As the smoke rises in the column, a 

counter-current stream of water absorbs the smoke components.  The smoke absorbed in 

the water exits the bottom of the scrubber column and enters a water fed makeup tank.  

From the makeup tank, the aqueous smoke solution is pumped through a plate and frame 

cooler and then sent back to the top of the scrubber column.  The temperature of the 

cooling water to the plate and frame exchanger is controlled to maintain the re-circulating 

smoke solution within a 140-150°F range.  The liquid smoke is then pumped to a holding 

tank where it is allowed to settle and precipitate tars.  After the tars and polymerized 

polyaromatic hydrocarbons are removed, the liquid smoke is ready for distribution or 

further processing.  

CHEMICAL COMPOSITION  

 The composition of wood smoke is directly related to the type of wood source.  

Generally, trees are composed of approximately 45% cellulose, 20-30% lignin 

(polyphenol), and 25-35% hemicellulose.  All wood sources yield smoke that is a very 

complex mixture of over 400 different compounds including alcohols, carbonyls, esters, 

furans, lactones, phenols, and others.  Fortunately for chemists, the identification of 

compounds present in wood smoke is possible through the use of gas 

13 
 



chromatography/mass spectrometry methods (Guillen and Ibargoitia, 1999).  Some of the 

over 400 volatiles identified in liquid smoke are summarized in Table 1 (Maga, 1988).  

This list includes only a few of the 48 acids, 22 alcohols, 131 carbonyls, 22 esters, 46 

furans, 16 lactones, 75 phenols, and 50 miscellaneous compounds known to exist in 

liquid smoke (Maga, 1988).   

Table 1. Compounds identified in wood smoke (Maga, 1988). 

Acids Alcohols Carbonyls Esters
Formic Methyl Methanal Methyl Formate
Acetic Ethyl Propanal Methyl Acetate

Glycolic Propyl Acetone Methyl Propionate
Propionic Isopropyl Acetol Methyl Butyrate
Isobutyric Isobutyl Diacetyl Methyl Crotonate
Benzoic Propan-2-on-ol Hydroxyacetaldehyde Ethyl Benzoate
Sorbic Cyclohexanol Pentanone Methyl Valerate

Isovaleric Benzylalcohol Cyclopentanone Methyl Isobutyrate
3-Butenoic Butan-2-on-1-ol Benzaldehyde Cresyl Acetate

Valeric Amyl Hexanal Methyl Palmitate
Furans Lactones Phenols Miscellaneous

Furfuryl Alcohol Butyrolactone 2,6-Xylenol Pyrazine
Furans Butenolide Cresol Pyrrole

2-Methylfuran Angelica Lactone Diethylphenol Pyridine
3-Acetylfuran Hydroxyvalerolactone 4-Butylphenol Maltol
Propylfuran 2-Methyl-2-Butenolide 4-Propylphenol Ethanediol
Amylfuran Methylvinyl-2-Butenolide 4-Vinylphenol Toluene
Benzofuran 2,3-Dimethyl-2-Butenolide 3-Methoxyphenol Styrene

2-Furoic Acid 2,3,4-Trimethyl-2-Butenolide Guaiacol Benzene
2-Furfural Crotonolactone Pyrocatechol Indene

5-Methylfurfural 4-Ethyl-2-Methyl-2-Butenolide Isoeugenol Naphthalene  

  

 From a logical perspective, it could be assumed that smoked food color results 

from the deposition of smoke particles directly on a food surface, rather than via a 

chemical reaction.  Because deposition of smoke particles on an organic surface yields a 

darker color than the same particles deposited on an inert surface, it is concluded that 

there is more involved than simple physical absorption of particulate matter.  This 

indicates that a chemical reaction has occurred (Maga, 1988).  This chemical reaction 
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involves the interaction of carbonyls in the smoke vapor phase with amino groups, 

derived from proteins in the food substrate, representing a series of non-enzymatic 

browning reactions similar to the Maillard reaction.  Although, based on temperature 

conditions, some of the present carbonyls may be more influential than others in the 

Maillard reaction browning process.  Of the compounds listed in Table 2 (Maga, 1988), 

the carbonyls known to be most reactive are glycoaldehyde, methylglyoxal, and glyoxal 

(Riha and Wendorff, 1993). 

 

Table 2 ‐ Carbonyls associated with the formation of color in smoked foods (Maga, 
1988). 

 
 

 

 

 

 

Formaldehyde 
Glycoaldehyde 

Glyoxal 
Acetone 

Hydroxyacetone 
Methylglyoxal 

Diacetyl 
Furfural 

 The idea that protein amino groups are involved in the browning reactions of 

liquid smoke has been clearly demonstrated by the use of chemically modified collagen.  

The modified collagen’s amino groups can be converted to hydroxyl groups where no 

color will develop during liquid smoke application, whereas with normal collagen, 

extensive color formation will result (Maga, 1988). 

 Specific phenols associated with the vapor phase of smoke are also believed to in 

color formation of smoked foods.  However, these phenols must be relatively high in 

molecular weight in order to possess an adequate number of hydroxyl groups to cross-

link proteins at multiple sites through hydrogen bonding mechanisms (Maga, 1988).  
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However, in most instances the concentration of high molecular weight polyphenols is 

rather low, particularly compared to the amount of carbonyls available for reaction.  The 

phenolic compounds are widely known to supply the traditional strong smoked flavors to 

the food substrate.  This information led to the knowledge that phenol removal would 

both minimize smoke flavor and concentrate the amount of reactive carbonyls present.  

Thus, a low phenol, high carbonyl liquid smoke fraction would present the most effective 

product for Maillard testing where smoke flavor is an undesirable attribute.   

 In order to develop a liquid smoke fraction suitable for reaction in whipped cream 

applications, processing and fractionation beyond basic liquid smoke production is 

required.  Base liquid smoke is naturally acidic, and therefore must be buffered with 

sodium bicarbonate in order to achieve an acceptable flavor profile.  Also, from a sensory 

standpoint it is necessary to remove a majority of the phenolic compounds present in the 

base liquid smoke product.  The phenolic compounds are removed via filtration using 

activated carbon as indicated in US Patent 5637339 (Moeller, 1997).  Base liquid smoke 

has an approximate phenolic content of 17mg/ml.  Through activated carbon filtration, a 

liquid smoke fraction of less than 0.08mg/ml phenol content was developed for this 

study.  In removing a significant portion of the phenolic compounds, multiple benefits are 

realized; a desirable flavor is achieved and the reactionary, carbonyl compounds are 

concentrated.  

SMOKE BROWNING REACTIONS 

Since carbonyl-amine reactions may yield numerous compounds, some research 

has been done to identify resulting pigmented compounds via simple model systems.  

Some of the model systems and resulting compounds known to contribute to color in 
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smoked foods are listed in Table 3 (Maga, 1988).  Several of the identified end products 

have the ability to be formed from multiple starting materials; therefore, the amount of 

final end product is theoretically increased (Maga, 1988). 

Table 3 ‐ Model system reactants in smoke that contribute to color (Maga, 1988). 

Glycolic aldehyde + aminoethanol → 1-hydroxyethyl-3-hydroxymethyl-2-pyrrolaldehyde
Glycolic aldehyde + aminoethanol + formaldehyde → 3-unsubstituted-1-hydroxymethyl-
2-pyrrolaldehyde 
Xylose + aminoethanol + formaldehyde → 3-unsubstituted-1-hydroxymethyl-2-
pyrrolaldehyde 
Methylglyoxal + methylamine → 1,5-dimethyl-4-hydroxy-2-pyrrolealdehyde 
Dihydroxyacetone + methylamine → 1,5-dimethyl-4-hydroxy-2-pyrrolealdehyde  

In comparing these end products with those obtained between aldose-amine 

reactions, as typical of the Maillard reaction, the basic mechanism is the same for the 

formation of color compounds in protein present systems: 1) the formation of conjugated 

unsaturated compounds: 2) the attachment of these compounds to hydroxyl groups: and 

3) the resulting products condensing into brown pigmented compounds (Maga, 1988).  

The most notable variance between the Maillard reaction and the smoke non-enzymatic 

browning reaction is that in the formation of smoke color, the initial carbohydrate 

degradation occurs in the smoke production process. Therefore, the resulting reactive 

compounds may be brought into direct contact with reactive amino groups at the food 

surface without further rearrangement, while in the Maillard reaction a significant amount 

of rearrangement occurs before the final reaction takes place (Maga, 1988).   
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DAIRY PROTEINS 

 “In 1877 O. Hammarsten distinguished three proteins in milk: casein, 
lactalbumin and lactoglobulin.  He also outlined a procedure for their 
separation: skim milk is diluted then acidified with acetic acid.  Casein 
flocculates, while the whey proteins stay in solution.  This established a 
specific property of casein: it is insoluble in weakly acidic media.  It was 
later revealed that the milk protein system is much more complex” (Belitz 
et al., 2004).   

 
In 1939, Mellander used electrophoresis to determine the three phases of casein: 

α−, β−, and γ-casein, which make up the main portion of critical milk proteins (Belitz et 

al., 2004).  Whey proteins, β-lactoglobulin A and B, and α-lactalbumin, can be 

differentiated genetically using various methods such as high-performance liquid 

chromatography and capillary electrophoresis (Bobe et al., 1998; Fairise and Cayot, 

1998). The milk proteins exist in a range of naturally occurring genetic variants that 

differ from each other by a few amino acid substitutions, and may be differentiated by 

identifying and separating the proteins by those variants (Bikker et al., 2000).  Clear 

separation of major whey proteins, β-lactoglobulin A and B, and α-lactalbumin, may be 

achieved by capillary electrophoresis (Fairise and Cayot, 1998).  The amino acid 

composition of casein and whey proteins of milk is presented in Table 4 (Belitz et al., 

2004).  These proteins, or at least a portion of them, are critical in initiating and 

promoting the Maillard reaction.  Specifically, glycine is known to readily react with 

liquid smoke carbonyls to produce Maillard end-products (Lappin and Clark, 1951). 
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Table 4 ‐ Amino acid composition (g AA/100g protein) of casein and whey protein of 
bovine milk (Belitz et al., 2004). 

Amino Acid  Whey   Casein 
 alanine 5.5 3.1 
 arginine 3.2 4.1 
 aspartic acid 11.0 7.0 
 cystine 3.0 0.3 
 glutamic acid 15.5 23.4 
 glycine 3.5 2.1 
 histidine  2.4 3.0 
 isoleucine  7.0 5.7 
 leucine  11.8    10.5 
 lysine  9.6 8.2 
 methionine  2.4 3.0 
 phenylalanine  4.2 5.1 
 proline 4.4 12.0 
 serine 5.5 5.5 
 threonine  8.5 4.4 
 tryptophan  2.1 1.5 
 tyrosine 4.2 6.1 
 valine  7.5 7.0 

 

WHIPPED CREAM 

 Heavy dairy cream is an emulsion with a fat content of 35-40%.  When a sample 

of heavy cream is whipped, the air bubbles that are created during agitation cause fat 

globules to begin to partially coalesce in chains around the air bubbles (Goff, 1995).  

 As seen in Figure 4, when the fat partially coalesces, it causes the fat-stabilized air 

bubbles to link together (Goff, 1995).  As the process progresses, chains of fat-stabilized 

air bubbles are formed.  Water, lactose, and proteins are bound in the open areas around 

the fat-stabilized air bubbles.  The crystalline fat content is essential for the fat globules 
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to partially coalesce into 3-dimensional structures, giving the whipped cream its stiff, 

smooth texture.  If the fat globules were allowed to fully coalesce into larger globules, 

structure-building would not be feasible.  Crystals, within the globules, cause the 

globules to stick together in chains and clusters, while allowing them to retain their 

individual identities and structures.  If whipped cream is whipped excessively, the fat will 

churn and butter will form (Goff, 1995). 

 
 

 

Figure 4 ‐ Structure during whipped cream formation (Goff, 1995). 
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CHAPTER 2  

UTILIZATION OF A LIQUID SMOKE FRACTION AS A 

REACTIONARY, CARAMEL-TYPE FLAVOR IN WHIPPED CREAM  

INTRODUCTION 

 Research shows liquid smoke and whipped cream to be very complex solo 

ingredients, comprised of a variety of reactive chemicals.  The blend of these two 

ingredients in the presence of thermal processing creates a complicated chemical 

environment that is believed to promote Maillard reactions.  Laboratory testing is 

required to create a more controlled environment for product development, and drawing 

conclusions regarding this application. 

 Two separate developments are required for this project: (1) development of a 

sensory acceptable, chemically reactive liquid smoke fraction (AM-10) and (2) 

development of a finished whipped cream/AM-10 product that develops a sweet flavor 

via thermal processing. There are several laboratory tests and evaluations needed to 

support the project objectives, including: (1) the carbonyl and phenolic content of the 

liquid smoke fraction (AM-10) must be controlled in order to optimize product 

development, (2) sensory testing is necessary to determine the level of liquid smoke 

flavor that may be added to the whipped cream to optimize the sweet, caramel-type notes 

while minimizing off-flavors, (3) sensory testing is needed to characterize and quantify 

the flavor differences between the control sample of whipped cream and the liquid smoke 

treated sample when thermally processed at different temperatures, (4) laboratory and 

research findings are needed to predict possible Maillard reaction pathways for this 

application, and (5) laboratory results are required to successfully design a focus group 
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session that will be useful in determining additional product development strategies, go-

to-market ideas, and further required research.  

 

MATERIALS AND METHODS 

AM-10 (liquid smoke fraction) product development 

Introduction 

 In developing a liquid smoke fraction suitable for this application, many factors 

were taken into consideration: (1) wood source, (2) concentration of carbonyls, (3) 

amount of phenolic compounds present, and (4) physical color of the product.  

Several wood sources are available for processing into liquid smoke flavors, 

including, but not limited to, hardwood, hickory, mesquite, alder, and beech.  However, 

due to the sensitive flavor requirements of this project, a special wood source was 

determined as the most efficient.  According to US Patent 6214395, delignified wood 

pulp may be used as a source for generating liquid smoke with high browning capabilities 

(Moeller and Ramakrishnan, 2001).  This source was chosen because the delignified pulp 

wood has an acceptable phenol to carbonyl ratio (low initial phenol content when 

compared to other wood sources).  This source is the most conducive to creating a low 

flavor, high carbonyl liquid smoke upon further refinement.  The carbonyl and phenol 

evaluations are done via wet laboratory analysis.  Following US Patents 6214395 and 

5637339, the liquid smoke fraction will be highly processed via filtration to achieve the 

most acceptable carbonyl and phenol levels possible (Moeller, 1997; Moeller and 

Ramakrishnan, 2001).  
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Carbonyl concentration in the liquid smoke fraction is a critical parameter.  High 

carbonyl content is required to ensure an adequate amount of components are available 

for reaction with the amino acids present in the whipped cream.  Particular care was taken 

in the liquid smoke refinement processes to ensure the highest carbonyl content was 

maintained.   

 Phenolic, or flavor content and physical color of the liquid smoke fraction are 

linked attributes.  The higher molecular weight phenolic compounds are responsible for 

the majority of the brown color associated with typical liquid smoke products.  Multiple 

carbon filtration steps were utilized to remove the phenolic compounds (color producing 

components) from the liquid smoke.  

Carbonyl content 

 A wet laboratory analysis method was utilized to determine the amount of 

carbonyl components present in the liquid smoke fraction that are available to participate 

in the Maillard reaction.  Detailed below is the method for analyzing carbonyl content of 

the liquid smoke fractions used in this study.  This is the standard industry method for 

determining carbonyl content as described in US Patents 4,594,251 and 4,876,108 

(Nicholson, 1986; Underwood and Graham 1989).  

Chemicals: 

 Chemicals needed for this wet laboratory analysis were carbonyl-free methanol 

(OmniSolv), 2,4-dinitrophenylhydrazine (97%, Aldrich, St. Louis, MO), potassium 

hydroxide (KOH, 45%(w/w aqueous solution), Ricca Chemical Company, Arlington, 

TX), distilled water, 2-butanone (Aldrich, Milwaukee, WI), concentrated hydrochloric 

acid (HCl, 37% (w/w), Mallinckrodt, Paris, KY). 
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Reagents: 

 The 2,4-dinitrophenylhydrazine solution was prepared by mixing 5g of 2,4-

dinitrophenylhydrazine and 250ml of carbonyl-free methanol to a 500ml beaker.  The 

beaker was placed in a 50°C oven (VWR, model 1330FM-2; 220 volt) for 1.5 h, and 

stirred every 30 min with a stir rod.   

 The potassium hydroxide solution was prepared by dissolving 10g of KOH into 

20ml of distilled water in a 100ml volumetric flask.  The flask was then diluted to volume 

with carbonyl-free methanol. 

 The 2-butanone standard was prepared by weighing 1.700g of 2-butanone into a 

10ml glass beaker.  This was then funneled into a 1000ml volumetric flask.  Any residual 

2-butanone was rinsed from the 10ml beaker using carbonyl-free methanol while filling 

the 1000ml volumetric flask with the carbonyl-free methanol. 

Procedure: 

 A standard curve was prepared by adding 10, 15, and 20ml (referred to as A, B, 

and C, respectively) of the 2-butanone standard solution to three separate 100ml 

volumetric flasks and diluting to volume with carbonyl-free methanol.  The test samples 

were prepared by placing 50µl of the liquid smoke sample in a 50ml volumetric flask and 

filling to volume with carbonyl-free methanol.  A 1.0ml addition of the 2,4-

dinitrophenylhydrazine reagent was added to seven separate graduated test tubes.  For the 

sample tubes (three tubes, as three separate lots were tested), a 1.0ml sample of the liquid 

smoke solution was added.  For the standard curve graduated test tubes, a 1.0ml sample 

of each of the 2-butanone standards was added.  A reagent blank graduated test tube was 

prepared by adding 1.0ml of carbonyl-free methanol.  An addition of 0.05ml of 
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concentrated HCl was added to all test tubes.  The tubes were mixed thoroughly using a 

vortex mixer, covered first with aluminum foil, and then covered additionally with 

parafilm.  All samples were placed in a 50˚C oven (VWR, model 1330FM-2; 220 volt) 

for 30 min.  The samples were removed from the oven and allowed to cool at room 

temperature for 2 min.  Five ml of KOH was added to each tube.  All graduated test tubes 

were diluted to 25ml with carbonyl-free methanol and mixed thoroughly using a vortex 

mixer.  Each sample was allowed to rest and react for 15 min.  The absorbance of each 

sample was read, using a 1 cm cuvette, at 480nm using a spectrophotometer (Spectronic, 

Genesis) after zeroing with the reagent blank sample.   

Phenol content 

 In developing a liquid smoke fraction that would be acceptable from a sensory 

prospective, the concentration of phenolic compounds was evaluated.  Based on the 

analysis results, the liquid smoke will be further processed until an acceptable level is 

achieved.  The procedure for the determination of the amount of phenol content is a 

modified JAOAC method for detecting the amount of phenols as 2,6-dimethoxyphenol 

(Tucker, 1942).  

Chemicals: 

 Chemicals needed for this wet laboratory analysis were distilled water, 2,6-

dimethoxyphenol (98%, Fluka, Steinheim, Germany), 2,6-dichloroquinone-4-chloroimide 

(95%, Aldrich, St. Louis, MO), sodium hydroxide pellets (NaOH, J.T. Baker, 

Phillipsburg, NJ), ethanol (anhydrous, denatured reagent grade, AAPER, Shelbyville, 

KY), granular potassium chloride (KCl, Reagents Inc., Charlotte, NC), granular boric 
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acid (Reagents Inc, Charlotte, NC), and 0.10N sodium hydroxide (NaOH, Mallinckrodt, 

Paris, KY). 

Reagents: 

The 8.3 pH buffer solution was prepared by adding 0.32g of granular NaOH, 

3.728g of granular KCl, and 3.20g of boric acid to a 1000ml volumetric flask and diluting 

to volume with distilled water.  The solution was allowed to mix thoroughly for 10 min 

using a stir bar and stir plate.  The pH of the solution was then tested.  If the pH was 

below 8.2, it was adjusted with NaOH.  If the pH was above 8.4, it was adjusted with 

boric acid.  Increments of 0.1g or less were used for adjustments until the desired 8.3 pH 

was achieved.   

 The color reagent solution was prepared by adding 0.25g of 2,6-dichloroquinone-

4-chloroimide to a 250ml glass beaker in a fume hood, and adding 30ml of denatured 

reagent grade ethanol.  Using a stir rod, the solution was thoroughly mixed.  This solution 

was stored in a refrigerator until time of use. 

 The 2,6-dimethoxyphenol solution was prepared by adding 1.0g of 2,6-

dimethoxyphenol to a 1000ml volumetric flask and diluted to volume with distilled 

water.  Using a stir bar and stir plate, the solution was thoroughly mixed for 20 min. 

Procedure: 

 A standard curve was prepared by adding 0.05, 0.10, and 0.15ml (A, B, and C, 

respectively) of the 2,6-dimethoxyphenol standard solution to three separate 100ml 

volumetric flasks and diluting to volume with distilled water.  The flasks were capped 

and inverted several times to mix thoroughly.  The liquid smoke test samples were 
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prepared by adding 1.0ml of liquid smoke to a 100ml volumetric flask and diluting to 

volume with distilled water.  The flask was capped and inverted several times to mix 

thoroughly.  Then 2.0ml of the diluted liquid smoke solution was added to a 50ml 

volumetric flask and diluted to volume with distilled water.  The flask was capped and 

inverted several times to mix thoroughly.  To 25ml test tubes, 5.0ml of the 8.3 pH buffer 

was added.  Seven test tubes were prepared; three for the liquid smoke test sample (as 

three separate lots were tested), three for the standard curve samples, and one for the 

reagent blank sample.  For the reagent blank sample, 5.0ml of distilled water was added 

to the 25ml test tube. For the standard curve samples, 5.0ml of each of the 2,6-

dimethoxyphenol standard solutions was added to 3 separate 25ml test tubes.  For the 

liquid smoke test samples, 5.0ml of the diluted liquid smoke solutions was added to three 

separate 25ml test tubes.  Each test tube was adjusted to a 9.8 pH by adding 1.0ml of 

0.10N NaOH to each sample.  A dilution of the 2,6-dichloroquinone-4-chloroimide color 

reagent was prepared by adding 2.0ml of the color reagent to 30ml of distilled water in a 

beaker.  One ml of the diluted 2,6-dichloroquinone-4-chloroimide solution was added to 

each test tube.  All test tubes were mixed thoroughly using a vortex mixer.  The samples 

were allowed to rest and react for 25 min.  All samples were read for absorbance using a 

1cm cuvette at 580nm using a spectrophotometer (Spectronic, Genesis) after zeroing with 

the reagent blank sample. 
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Whipped cream/AM-10 product development 

 

Preliminary testing: threshold and temperature evaluation 

The level of AM-10 to be added to the cream and the thermal processing 

temperatures were determined in a round table evaluation.  During this evaluation, 

panelists were familiarized with the product and agreed on attributes to be evaluated.  

Then, the panelists individually evaluated the intensities of each attributes.  Overall flavor 

was evaluated, along with four positive attributes and three negative attributes.  The 

positive attributes were creamy dairy, sweet, cooked, and caramelized; the negative 

attributes were chemical, cooked, and metallic.  The lexicon found in Table 11 illustrates 

how each attribute was defined by the panel. 

The initial screening consisted of samples with 0.5, 1.0, and 1.5% AM-10 which 

were heated to 50, 75, and 90°C for 15 s.  All samples were found to be high in 

smoky/chemical notes.  In the second screening, samples with 0.1% and 0.05% AM-10 

heated to 50°C were evaluated.  No significant difference was noted between the Control 

and the 0.05% samples while the 0.1% AM-10 samples still had noticeable 

smoky/chemical notes.  In the next evaluation, cream with 0.075% AM-10 heated to 50, 

75, and 90°C for 15 s were evaluated.  Slight differences were observed between the 

control and 50°C samples, but 75°C and 90°C samples were high in smoky/chemical 

notes.  Temperatures were, therefore, decreased to 63°C and 72°C for 15 s which are 

more representative of pasteurization temperatures used in the dairy industry.   
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Sensory evaluation 

A sensory test panel, consisting of eight trained panelists, was assembled to 

determine the impact of the selected liquid smoke fraction as reacted with heavy cream 

prior to whipping.  Each panelist was trained by completing a minimum of 50 h in the 

sensory evaluation of foods, with at least 20 h focused on dairy products, and has 

extensive experience (3-7 years) in descriptive analysis.   

 The sensory test objectives were to determine the effects of AM-10 added to 

whipped cream prior to thermal processing and whipping.  Also, sensory panels were 

used to determine what level of AM-10 added to whipped cream would result in sweet 

caramelized notes, rather than off-flavors.  This testing was designed to characterize and 

quantify sensory differences between control whipped cream and whipped cream treated 

with the AM-10 smoke fraction when heated to different temperatures. 

 Eight trained panelists evaluated individual product attributes using difference 

from 5, where the Control = 5, and the minimum and maximum deviations from the 

control are 1 and 9, respectively (Table 9).  Also, the aroma, appearance, flavor, 

aftertaste, and overall degree of difference from the control sample was represented by 

the Deviation from Reference (DFR) where the Control = 10, and the maximum deviation 

from the Control = 0 (Table 10).   

 The following samples were prepared for evaluation: Unheated cream (Great 

Value Heavy Whipping Cream, Expiration Date: Sept 24, 2008) chilled at 0°C for 12 h, 

and whipped using a handheld mixer on medium setting (Hamilton Beach Hand Held 

Mixer Model 62676) for 8 min; Cream (Great Value Heavy Whipping Cream, Expiration 

Date: Sept 24, 2008) heated to 50, 63, and 72°C, chilled at 0°C for 12 h, and whipped 

29 
 



using a handheld mixer on medium setting (Hamilton Beach Hand Held Mixer Model 

62676) for 8 min; and Cream (Great Value Heavy Whipping Cream, Expiration Date: 

Sept 24, 2008) with a 0.075% AM-10 addition, heated to 50, 63, and 72°C, chilled at 0°C 

for 12 h, and whipped using a handheld mixer on medium setting (Hamilton Beach Hand 

Held Mixer Model 62676) for 8 min.  All samples were prepared in 500g batches, in 

800ml beakers.  Each sample was heated after the addition of AM-10 (where applicable) 

to the desired temperature for 15 s using a hot plate (Pyro Multi Magnestir Lab-Line) and 

magnetic stir bar on medium setting.  Temperature endpoints were determined using a 

digital thermometer (Acurite), sampling at the center of the fluid paying close attention to 

avoid touching the thermometer to the bottom of the beaker. Approximately one ounce 

samples were served to the panelists in two ounce plastic soufflé cups with matching lids.  

The products were blind coded with three-digit numbers, and evaluated at approximately 

40°F under white lighting. Each panelist was given a ballot to complete (Figure 9.), and 

the panel results were averaged to yield final results.  

 

Possible Maillard reaction pathways 

Heating milk in a classical sterilization process results in Maillard reactions 

between lactose and amino groups, resulting in the formation of hydroxymethyl furfural 

(HMF) (Belitz et al., 2004).  With the addition of the liquid smoke fraction, and 

carbonyls available for reaction, the heated cream may take many Maillard reaction 

pathways yielding melanoidins.  

 By definition, the Maillard reaction is a complex mechanism, or set of 

mechanisms that result in the formation of melanoidins.  The pathway or pathways taken 
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by the cream/smoke fraction solution is dependent on many variables: pH, moisture 

content, temperature, and concentration of active components.  Due to the complexity of 

the reaction and the amount of variables, it is difficult to predict the specific mechanisms.  

It is also probable that multiple pathways could be followed in this application that would 

yield the same or similar Maillard end products.  Based on research of liquid smoke, 

dairy proteins, whipped cream, and the Maillard reaction, it is possible to predict 

favorable Maillard reaction pathways that may be followed in this application.   

 

Focus group 

 A focus group of 15 food people was assembled to determine possible market 

usages for this technology, as well as go-to-market strategies.  The 12 food scientists 

participating represented specialties in the following industries:  dairy, meat, coatings, 

reactionary flavors, sweet flavors, fruit flavors, ready to eat sauces, vegetables, sensory, 

liquid smoke flavors, food emulsifiers, and beverages.  Also, three people outside the 

food industry participated to voice the opinions and ideas of an average consumer. 

 Each focus group participant tasted the control whipped cream, the heated control 

whipped cream (50°C), and the 0.075% AM-10 whipped cream test sample (50°C).  The 

0.075% AM-10 sample thermally processed to 50°C was giving to the focus group 

because that sample was deemed most acceptable by sensory evaluation.  The task of the 

focus group was to identify any potential customers or markets for this application.  
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RESULTS AND DISCUSSION  

 

AM-10 (liquid smoke fraction) product development 

The following manufacturing steps were taken to develop the most effective 

liquid smoke fraction: (1) initial smoke manufacturing utilizing a delignified pulp wood 

source, (2) buffering of the liquid smoke using sodium bicarbonate to reach an acidity of 

less than 2%, and (3) multiple filtration steps utilizing activated carbon to achieve a wet 

laboratory result of less than 0.08mg/ml phenol content.  The wet laboratory results of the 

liquid smoke fraction (AM-10) at each manufacturing step are indicated in Table 5.   

Table 5 ‐ Wet laboratory results of AM‐10 at each manufacturing step. 

  
AM-10  prior to 

buffering 
AM-10 after 

buffering 
AM-10 final 

product 
Phenol (mg/ml) 2.1 1.9 0.07 
Carbonyl 
(g/100ml) 13.9 12.5 12.9 

 

Carbonyl content 

 The final AM-10 carbonyl results are reported as mg/100ml of 2-butanone (Table 

6).   All absorbance values and 2-butanone concentrations were graphed in Figure 5. 

Table 6 ‐ AM‐10 carbonyl results for three separate lots ( * mathematically determined 
values). 

Sample 
 2-butanone 
mg/100ml 

Absorbance 
(480nm) 

AM-10 (Lot 1) 13.0* 0.788 
AM-10 (Lot 2) 12.8* 0.776 
AM-10 (Lot 3) 12.9* 0.782 
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Carbonyl Content
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Figure 5 ‐ Carbonyl content results graph of AM‐10 liquid smoke fraction; carbonyl 
content of three separate lots in mg/100ml (represented as 2‐butanone versus 
absorbance at 480nm). 

 

The three AM-10 carbonyl values were averaged to get the reportable value of 

12.9mg/100ml of 2-butanone.  The 12.9mg/100ml carbonyl content allowed for an 

acceptable liquid smoke product, with high carbonyl content available for reaction to be 

utilized in this application.  A table of the carbonyl values at each processing step is 

presented in Table 5.  The effects of filtration and refinement processes on the AM-10 

carbonyl content are also represented in Table 5.  
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Phenol content 

 
The final AM-10 phenol results are reported as mg/ml of 2,6-dimethoxyphenol 

(Table 7).   All absorbance values and 2,6-dimethoxyphenol concentrations are graphed 

in Figure 6.   

Table 7 ‐ AM‐10 phenol results for three separate lots ( * mathematically determined 
values). 

Sample 
2,6-dimethoxyphenol 

(mg/ml) 
Absorbance 

(580nm) 
AM-10 (Lot 1) 0.072* 0.026 
AM-10 (Lot 2) 0.067* 0.024 
AM-10 (Lot 3) 0.075* 0.027 
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Figure 6 ‐ Phenol content results graph of AM‐10 liquid smoke fraction; phenol 
concentration of three separate lots in mg/ml (represented as 2,6‐dimethoxyphenol 
versus absorbance at 580nm). 
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The three AM-10 phenol values were averaged to get the reportable value of 

0.07mg/ml of 2,6-dimethoxyphenol.  A phenol content of 0.07mg/ml allowed for a 

product with a very low smoke flavor profile to be utilized in this process.  Liquid 

smokes used in conventional meat applications have a phenol range of approximately 6-

20mg/ml; therefore, a phenol value of 0.07mg/ml is extremely low by liquid smoke 

industry standards.  A chart of the phenol values at each processing step is presented in 

Table 5.  The effects of filtration and refinement processes on the AM-10 phenol content 

are also represented in Table 5. 

 

Whipped cream/AM-10 product development 

 

Sensory testing 
 

Eight trained sensory panelists found the addition of AM-10 to slightly enhance 

the sweetness of the whipped cream.  An increase in caramelized notes was also 

observed, but panelists associated this with cooked dairy notes and not necessarily 

browned sugar/caramel notes.  Both the control and 0.075% AM-10 cream solution 

heated to 72°C resulted in increased chemical and metallic notes, indicating heating alone 

causes the development of off-flavors.  Differences were noted in appearance and texture; 

however, additional work with a standardized method of whipping is needed to determine 

if there is any correlation to temperature and/or the addition of AM-10.    

The results of the attribute analysis are as follows:  Heating the control to 50°C 

resulted in a cooked flavor.  With the addition of AM-10, the sample had a similar 
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cooked flavor, but also showed slightly increased overall flavor, and additional 

creamy/dairy, sweet, and caramelized notes.  Heating the control to 63°C resulted in 

increased cooked flavor.  With the addition of AM-10, the sample was found to have 

increased overall aroma, overall flavor, creamy dairy, caramelized, and cooked notes.  

Heating the control to 72°C resulted in increased overall and cooked aroma and flavor.  

With the addition of AM-10, the sample showed increased overall and cooked aroma and 

flavor, along with increased sweet and caramelized flavor notes.  Also, color differences 

were observed between the control and the test samples; however, there was no clear 

correlation to the addition of AM-10 or temperature differences.  Controls heated to 50°C 

and 72°C were noted as slightly more yellow than the unheated control.  Very slight 

yellow color was also noted in all other samples except the 0.075% AM-10 treated 

sample that was heated to 72°C.    Texture differences were also observed.  In general, 

the heated samples did not whip as well as the unheated control.  The 0.075% AM-10 

sample heated to 72°C was the closest to the control in texture.  Controls heated to 50°C 

and 63°C were noted as being grainy.  All results are reported as averages of the panel 

results (Table 8 and Figure 7).  The standard deviations are represented in Table 12.   
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Table 8 ‐ Qualification and quantification of sensory descriptors. 

Sensory Attribute Reference 
Control 

50˚C 

0.075% 
AM10 
50˚C 

Control 
63˚C 

0.075% 
AM10 
63˚C 

Control 
72˚C 

0.075% 
AM10 
72˚C 

AROMA 
Overall Aroma 5.0 5.3 5.4 5.3 5.6 5.6 5.6
Creamy Dairy Aroma* 5.0 5.1 5.1 5.1 5.1 5.1 5.3
Cooked Aroma* 5.0 5.0 5.3 5.3 5.3 5.5 5.5
Chemical Aroma 5.0 5.1 5.0 5.0 5.3 5.4 5.3
FLAVOR 
Overall Flavor 5.0 5.4 5.8 5.0 5.9 5.9 5.6
Creamy Dairy*  5.0 4.8 5.7 5.4 5.6 5.4 5.4
Sweet* 5.0 5.4 5.7 5.0 5.4 5.2 5.7
Caramelized* 5.0 5.2 5.6 5.3 5.6 5.3 5.5
Cooked* 5.0 5.8 6.1 5.8 6.3 6.0 6.3
Metallic 5.0 5.3 5.2 5.0 5.2 5.3 5.3
Chemical 5.0 5.0 5.1 4.9 5.2 5.4 5.3
Smoky 5.0 5.1 5.2 5.0 5.2 5.2 5.3
DFR'S 
DFR Aroma 10.0 7.4 7.9 7.6 7.2 7.1 7.7
DFR Appearance 10.0 6.5 7.5 7.3 7.1 6.8 7.6
DFR Flavor 10.0 7.0 7.1 7.0 7.0 6.9 7.0
DFR Aftertaste 10.0 7.3 7.2 7.0 6.9 6.9 7.0
DFR Overall 10.0 6.9 7.2 7.0 6.9 6.9 7.1

 
 (DFR) Deviation from reference 
*Denotes positive attributes 
Aroma and Flavor descriptors are represented as deviation from reference where reference = 5 (Scale 1-9; where 1-4 is 
less intense than control with 1 having the least possible intensity, and 6-9 is more intense than control with 9 having 
the greatest possible intensity) 
DFR’s represented as deviation from reference where reference = 10 (Scale 10-0; with 10 being same as reference and 
0 differing completely from reference) 

  
 
 

 

37 
 



3.0

4.0

5.0

6.0

7.0
Overall Aroma

Creamy Dairy Aroma

Chemical Aroma

Cooked Aroma

Overall Flavor

Creamy Dairy 

Sweet

Caramelized

Metallic

Chemical

Smoky

Cooked

Reference Control 50C 0.075% AM10 50C Control 63C 0.075% AM10 63C

Figure 7 ‐ Qualification and quantification of sensory descriptors of whipped cream. The 
reference sample is heavy cream that was chilled at 0˚C for 12 h and whipped for 8 min using 
a handheld kitchen mixer. Control samples were heated to 50˚C, or 63˚C for 15 sec and then 
chilled (0˚C for 12 h) and whipped (8 min using a handheld kitchen mixer).  The 0.075% AM10 
samples were prepared by adding a 0.075% addition (by weight) of a liquid smoke fraction 
(AM10) to the heavy cream.  These samples were thermally processed (50˚C, or 63˚C for 15 
sec), chilled (0˚C for 12 h) and whipped (8 min using a handheld kitchen mixer).  All samples 
were evaluated by an eight member, trained sensory panel; and the results are reported as 
averages. 

 

Possible Maillard reaction pathways 

Based on the Hodge diagram represented in Figure 1, and the knowledge that 

heated milk yields hydroxymethyl furfural, two pathways may be viewed as the most 

probable in this application (Hodge, 1953).  The most likely pathways are illustrated in 

Figure 8 (Hodge, 1953). 
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Figure 8 ‐ Possible Maillard pathways for the heated cream and 0.075% AM‐10 liquid 
smoke fraction solution (Hodge, 1953).   

 
 

Focus group 

The focus group determined that there are many possible applications for this 

technology, particularly in the reactionary flavor, dairy, and pastry markets.  The most 

evident application – requiring the least research and development time at this point – 

was determined to be a whipped cream topping for coffee-type beverages, desserts, and 

as a retail product.  Another proposed usage for AM-10 was as an ingredient for the 

reactionary flavor industry; such as, roasted, toasted, beef, bacon, and grill-type flavors.  

AM-10 was indicated as a potentially useful product in pastry browning applications, 

with particular interest noted to the idea of using it to apply grill-type markings.  Also 
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proposed, and potentially the most promising concept was the utilization of AM-10 as a 

sweetener for a cream cheese filling to be used in a danish project.   

 Go-to-market concepts were discussed and many ideas presented.  The most 

feasible strategies are listed in order of predicted probability of success: 

1. In whipped cream as a coffee-type beverage topping 

2. As a cream cheese filling sweetener for danish application 

3. Retail sale of a reduced-sugar whipped cream 

4. Pastry browning 

5. Grill marks on pre-packaged panini and pocket sandwiches 

6. As an ingredient in reactionary flavors 

 

CONCLUSIONS 

A sensory acceptable, liquid smoke fraction was successfully developed.  Sweet 

and caramel-type flavors were noted in the final whipped cream product, and it was 

established (due to the lack of these flavors in the control samples) that the flavors were 

the result of a chemical reaction.  Although other chemical reactions may be taking place, 

research indicates that the Maillard reaction is probably a significant contributor to the 

sweet, caramel-type flavors.  The Maillard reaction is widely known as a complex 

reaction.  This reaction is not completely understood, and its pathways are not easily 

predicted.  Therefore, additional research to verify specific mechanisms may be 

necessary for this application; also, further laboratory and sensory testing may be 

beneficial in determining the most efficient reaction temperatures and AM-10 addition 

levels.   
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It is recommended that a standardized method for whipping be developed so that 

the AM-10 effect on the whipped cream color and texture may be more accurately 

qualified and quantified.  Also, further research and sensory testing may be utilized to 

determine if developing a concentrated AM-10 and heavy cream solution may be useful 

as an add-back flavor.  This would allow for the majority of the heavy cream to be 

exempt from the heating process which could possibly minimize off-flavors. 
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APPENDIX 
 
 

Table 9 ‐ Sensory difference from 5 point scale; where reference = 5 and scale range is 1‐9. 

 

LESS INTENSE THAN STANDARD/CONTROL Control MORE INTENSE THAN STANDARD/CONTROL 

1 2 3 4 5 6 7 8 9 

EXTREME LARGE MODERATE SLIGHT TARGET SLIGHT MODERATE LARGE EXTREME 

 
 
 
 
 

Table 10 – Sensory deviation from reference point scale; where control = 10, and scale range is 1‐
10. 

1 2 3 4 5 6 7 8 9 10 

Completely 
Different 

Extremely 
Different Very Different Moderately to 

Very Different
Moderately 

Different 

Slightly to 
Moderately 

Different 

Slightly 
Different 

Very Slightly 
Different 

Almost the 
Same as 
Control 

Same as 
Control 
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Table 11 – Sensory lexicon. 
Overall Combined strength of all flavor aromatics and basic tastes perceived in the sample 
    
Positive Attributes 
Creamy Dairy A sweet, dairy note associated with cream or other high fat dairy products 
    
Cooked A slightly brown, caramelized aromatic associated with heated milk 
    
Sweet Taste on the tongue stimulated by sugars and high potency sweeteners. 
    
Caramelized Sweet aromatic, characteristic of browned sugars and other carbohydrates 
    
Negative Attributes 

Metallic Aromatic associated with metals, tin, or iron 
    

Smoke 
Perception of any type of smoke flavor, whether it be hickory, apple, cherry, mesquite, or artificial; 
may be phenolic or tar-like 

    

Chemical 
A general term associated with many different compounds, such as solvents, cleaning 
compounds, and hydrocarbons 
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Sensory Ballot 

 
Name: ____________________ 
 
 

Whipped Cream 
 
Attribute Reference 279 334 420 845 157 618 
Aroma        

Overall  5       
Creamy Dairy 5       
Chemical 5       
Cooked 5       
        
Flavor        
Overall 5       
Creamy Dairy 5       
Sweet  5       
Caramelized 5       
Metallic 5       
Chemical 5       
Smoky 5       
        
DFR Aroma:  10       
DFR 
Appearance 

10       

DFR Flavor: 10       
DFR 
Aftertaste: 

10       

DFR Overall: 10       
 Figure 9 ‐ Sensory ballot. Samples were blind coded using three digit numbers. 
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Table 12 ‐ Sensory panel standard deviations. 

Standard Deviations 

Sensory Attribute 
Control 

50C 

0.075% 
AM10 
50C 

Control 
63C 

0.075% 
AM10 
63C 

Control 
72C 

0.075% 
AM10 
72C 

Overall Aroma 0.5 0.4 0.8 0.7 0.5 0.6
Creamy Dairy Aroma* 0.7 0.6 0.3 0.4 0.6 0.7
Cooked Aroma* 0.9 0.4 0.5 0.4 0.5 0.6
Chemical Aroma 0.4 0.0 0.0 0.7 0.5 0.6
              
Overall Flavor 0.8 0.7 0.5 0.8 0.7 0.7
Creamy Dairy*  0.9 0.6 0.7 0.5 1.0 0.7
Sweet* 0.8 0.8 0.5 0.6 1.0 0.4
Caramelized* 0.4 0.5 0.4 0.6 0.8 0.5
Cooked* 0.8 0.7 0.6 0.7 0.7 0.5
Metallic 0.6 0.3 0.5 0.4 0.7 0.6
Chemical 0.0 0.2 0.4 0.4 0.7 0.6
Smoky 0.2 0.4 0.5 0.4 0.4 0.7
              
DFR Aroma 0.6 0.7 1.1 0.8 0.7 1.6
DFR Appearance 0.8 0.8 0.9 0.2 0.6 0.7
DFR Flavor 0.6 0.7 0.5 0.5 0.5 0.8
DFR Aftertaste 0.9 0.8 0.7 0.6 0.3 0.9
DFR Overall 0.6 0.7 0.6 0.7 0.4 0.8

*denotes positive attributes.
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CARBONYL STANDARD CURVE AND LINEAR REGRESSION 

An analysis for carbonyl content was conducted for the AM-10 product.  The 

standard curve absorbance values were read at 480nm, and the results were recorded.  A 

graph of the absorbance values versus the known standard curve 2-butanone 

concentrations was plotted.  A trendline was created using these values.  The linear 

regression was performed, yielding a correlation factor of R2 = 0.9996 and y = 0.36x line 

formula. An acceptable correlation factor was achieved (0.998 or better), so the line 

formula was used to calculate the 2-butanone concentration present in the liquid smoke.   

Table 13 ‐ Carbonyl Standard Curve Results Table. 

Sample  2-butanone mg/100ml 
Absorbance 

(480nm) 
Blank 0.0 0.000 
A 10.0 0.591 
B  15.0 0.918 
C 20.0 1.212 

 

 

48 
 



Carbonyl Standard Curve
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Figure 10 ‐ Carbonyl Standard Curve Results Graph. 
 
 

The AM-10 samples were tested for carbonyl content using three separate lots 

[AM-10 (1), AM-10 (2), and AM-10 (3)].  The absorbance values were read at 480nm 

and recorded.  Using the y=0.0606x line formula derived from the standard curve 

analysis, the AM-10 absorbance values were used to mathematically calculate the 2-

butanone concentration.   

 
 

49 
 



PHENOL STANDARD CURVE AND LINEAR REGRESSION 
 
 An analysis for phenol content was conducted for the AM-10 product.  The 

standard curve absorbance values were read at 580nm, and the results were recorded.  A 

graph of the absorbance values versus the known standard curve 2,6-dimethoxyphenol 

concentrations was plotted.  A trendline was created using these values.  The linear 

regression was performed, yielding a correlation factor of R2 = 1 and y = 0.36x line 

formula.  An acceptable correlation factor was achieved (0.998 or better), so the line 

formula was used to calculate the 2,6-dimethoxyphenol concentration present in the 

liquid smoke.   

Table 14 ‐ Phenol Standard Curve Results Table. 

Sample 
2,6-dimethoxyphenol 

(mg/ml) 
Absorbance 

(580nm) 
Blank 0.000 0.000 
A 0.050 0.018 
B  0.100 0.036 
C 0.150 0.054 
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Phenol Standard Curve
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 Figure 11 ‐ Phenol Standard Curve Results Graph. 

 

The AM-10 samples were tested for phenol content using three separate lots [AM-

10 (1), AM-10 (2), and AM-10 (3)].  The absorbance values were read at 580nm and 

recorded.  Using the y = 0.36x line formula derived from the standard curve analysis, the 

AM-10 absorbance values were used to mathematically calculate the 2,6-

dimethoxyphenol concentration.   
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	Carbonyl concentration in the liquid smoke fraction is a critical parameter.  High carbonyl content is required to ensure an adequate amount of components are available for reaction with the amino acids present in the whipped cream.  Particular care was taken in the liquid smoke refinement processes to ensure the highest carbonyl content was maintained.  
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