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Corn Response to Nitrogen is Influenced by Soil Texture and Weather

Abstract

Soil properties and weather conditions are known to affect soil nitrogen (N) availability and
plant N uptake. However, studies examining N response as affected by soil and weather
sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment
effects in a series of experiments to explain the sources of heterogeneity. In this study, the
technique was used to examine the influence of soil and weather parameters on N responses of
corn (Zea mays L.) across 51 studies involving the same N rate treatments which were carried out
in a diversity of North American locations between 2006 and 2009. Results showed that corn
response to added N was significantly greater in fine-textured soils than in medium-textured
soils. Abundant and well-distributed rainfall and, to a lesser extent, accumulated corn heat units
enhanced N response. Corn yields increased by a factor of 1.6 (over the unfertilized control) in
medium-textured soils and 2.7 in fine-textured soils at high N rates. Subgroup analyses were
performed on the fine-textured soil class based on weather parameters. Rainfall patterns had an
important effect on N response in this soil texture class, with yields being increased 4.5-fold by
in-season N fertilization under conditions of “abundant and well-distributed rainfall.” These
findings could be useful for developing N fertilization algorithms that would allow for N
application at optimal rates taking into account rainfall pattern and soil texture, which would lead

to improved crop profitability and reduced environmental impacts.

Abbreviations: AWDR, Abundant and Well-Distributed Rainfall; CHU, corn heat units; P ,

ratio of between-studies variance to total variance; ISNR, in-season N rates; n,, number of days
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after sidedressing; n,, number of days before sidedressing; N-rich, rich N rate; NUE, nitrogen use
efficiency; PPT, cumulative precipitation; RR, response Ratio; SD, sidedressing; SDI, Shannon

diversity index.

Because natural soil nitrogen (N) availability and crop N uptake may vary considerably
with soil properties, weather conditions and interactions between these factors, optimal N rates
vary from year to year and field to field (Tremblay, 2004; Olfs et al., 2005; van Es et al., 2005;
Melkonian et al., 2007; Zhu et al., 2009). Owing to this uncertainty, producers tend to apply
additional N for insurance to protect against yield losses (Schroder et al., 2000; Shanahan et al.,
2008). The excess levels of N that are associated with low N use efficiency (NUE) result in
environmental contamination from denitrification, volatilization and nitrate N leaching to surface
and ground waters (Tremblay and Bélec, 2006).

Applying N at optimal rates has the potential to improve NUE, crop yield, and profitability
as well as to reduce environmental impacts (Kyveryga et al., 2009; Wang et al., 2003). However,
guidelines on adjusting optimal N rates based on soil and weather conditions are lacking
(Tremblay, 2004). Many current N management decisions disregard the effect of interannual
temperature and rainfall variations on soil N mineralization (Raun et al., 2005; Melkonian et al.,
2007; Shanahan et al., 2008). Weather is a major determinant of soil biological activity, including
the decomposition of soil organic matter, and climatic conditions can vary significantly in space
and time across North American regions (Bolinder et al., 2007; van Es et al., 2007; Lokupitiya et
al., 2010).

Crop growth models can be used to assess optimal N rates. However, the predictions are
fairly imprecise and vary substantially among these models (Kyveryga et al., 2007; Naud et al.,

2008). Under site-specific N fertilization strategies, some authors recommend applying more N to
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historically high yielding areas and less to low yielding areas, whereas others advocate the
opposite approach (James and Godwin, 2003). Producers typically apply rates of N fertilizer they
consider sufficient to support near maximum yields.

The influence of soil texture on N response is well documented but contradictory results
exist as well. In wet climates, yield is generally higher (and N response lower) in coarse-textured
soils than in fine-textured soils (Tremblay et al., 2011). In arid climates, higher crop yields are
often obtained in clayey soils (higher water-holding capacity) than in sandy soils (Armstrong et
al., 2009). Approaches based solely on yield maps do not provide robust information for the
determination of management zones (Kitchen et al., 2008). Topography, remote sensing, and soil
apparent electrical conductivity have also been used with varying degrees of success to delineate
zones of differential response to N rates (Cambouris et al., 2008; Shanahan et al., 2008; Tremblay
et al., 2011). However, these methodologies also disregard the effects of weather in determining
crop N fertilizer requirements.

Soil properties (including texture, water-holding capacity, and fertility) strongly affect soil
N availability and crop yield (Zhu et al., 2009; Armstrong et al., 2009). Some studies have
reported that corn N response is only marginally affected by soil texture and that yearly variation
has a more pronounced effect than soil spatial variability (van Es et al., 2005; Tremblay and
Bélec, 2006; Kyveryga et al., 2009). Precipitation and thermal units have been found to
significantly affect soil mineral N and thus corn response to N (Tremblay, 2004; Tremblay and
Bélec, 2006; Shanahan et al., 2008; Kyveryga et al., 2007). Shahandeh et al. (2011) showed that
corn grain yield was either negatively or positively related to clay content depending on
precipitation. Anwar et al. (2009) reported that crop growth is highly sensitive to factors that vary
in both space (soil properties) and time (rainfall and temperature). Interactions between these

factors control water and nutrient availability as well as N mineralization during the growing
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season (Schroder et al., 2000; Kay et al., 2006). It follows that proper N management should
consider soil texture as well as seasonal conditions of temperature and precipitation (Derby et al.,
2005; Shanahan et al., 2008; Sogbedji et al., 2001). Based on models for corn crop growth and N
uptake, soil N transformations and water and N transport, Melkonian et al. (2007) have developed
the Precision Nitrogen Management (PNM) model to improve N use efficiency and reduce N
losses. This model uses soil textural class, SOM, weather data and other information about
management practices such as tillage, plant density and rotations to determine in-season N
recommendations in northeast USA.

Before the 1990s, data from multiple studies were combined in a narrative review in which
a researcher would summarize the response curves of individual studies in order to reach a
conclusion. This approach assigns the same weight to each study and captures the solution as the
number of studies increases (Borenstein et al., 2009). Meta-analysis is a statistical method that
synthesizes the results of a set of studies. It is used in many fields of research such as medicine,
social science and ecology. Meta-analysis is commonly used to assess the consistency of
treatment effect (also called “effect size”) across a series of studies or experiments. If the
treatment effect varies from one study to the next (which is often the case for N fertilization
studies), meta-analysis can be applied to assess the levels of effects for subgroups and thus
identifies factors associated with the magnitude of the effect sizes (Borenstein et al., 2009). Meta-
analysis is a systematic method for combining the results from a series of studies and addressing
apparently conflicting findings by identifying potential explanatory variables (Olkin and Shaw,
1995). Meta-analysis is suitable for agronomic research in which several investigators have
examined similar problems and generated substantial information sometimes characterized by
heterogeneity and contradictions. Valkama et al. (2009) studied the response to phosphorus

fertilizer application rates in 400 experiments conducted over an 80-year period in Finland, and
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used plant groups, soil properties, and cultivation zones to explain the differences. Tonitto et al.
(2006) conducted a meta-analysis on experiments reported in the literature in order to compare
crop yield response to N fertilization and soil N status as affected by climate, soil texture and
management practices. Chivenge et al. (2011) conducted a meta-analysis of 57 studies
concerning smallholder farms in sub-Saharan Africa and found that corn response to added N is
higher in clay soils comparatively to loam and sand and also higher for higher annual
precipitations. Xia and Wan (2008) studied the response of 456 plant species to N additions in
their meta-analysis of a log-ratio of plant biomass and tissue from 304 published studies. The
authors used a mixed (random) model and a subgroup heterogeneity analysis and found that N
response increased with temperature and annual precipitation.

There is a need to learn more about the effect of soil properties and weather conditions on
soil N dynamics and crop response to N in order to develop algorithms that can be used to
recommend appropriate in-season N application rates (Khosla et al., 2002; Chang et al., 2003;
Franzen, 2004). With a better understanding of the spatial and temporal variability of N levels in
soil and plant N uptake, N management practices could be adjusted to ensure that both economic
and environmental objectives are met (Jemison and Fox, 1994; Shahandeh et al., 2011; Shanahan
et al., 2008). The high spatial and temporal variability in yield response to N fertilizer that is
observed in individual yield response trials leads to a high degree of uncertainty when estimating
economic optimum rates of N for a group of trials and when extrapolating these rates from one
location to another (Kyveryga et al., 2009). So far, no studies have quantified the effect on N
responses of combined soil and weather conditions over a number of years in a large geographic
area devoted to corn production in North America. Furthermore, it is difficult to have a uniform

dataset that considers identical treatments for a given region.
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The aim of this study was to quantify the effects of soil characteristics and weather
properties and the interactions between these factors on corn response to N applications. A meta-
analysis was conducted using mirror studies undertaken in several North American locations
between 2006 and 2009 with the same N treatments, in order to address the following questions:
(1) To what extent do soil and weather properties affect corn response to N fertilization? (2) How
significant are the relationships between corn response and N fertilization in homogeneous

classes of soil and weather properties?

MATERIALS AND METHODS
Site locations and soil properties

Experiments were conducted between 2006 and 2009 on experimental farms in the United
States, Mexico and Canada (Fig. 1) to cover a wide range of soil and climatic conditions. Each
site is described in Table 1.

Soil textures were first grouped into three categories in keeping with the approach used by
Tonitto et al. (2006): fine textures (clay + silty clay + silty clay loam + clay loam), medium
textures (loam + silt loam), and coarse textures (sandy loam/sandy clay loam + loamy fine sand +
fine sandy loam). However, since medium and coarse textures showed a similar N response
behavior (data not shown) only two classes were retained: (1) fine-textured soils, including clay,
silty clay, silty clay loam, and clay loam textures; and (2) medium/coarse textures (hereafter
called “medium” for greater simplicity), including loam, silt loam, sandy loam/sandy clay loam,
loamy fine sand, and fine sandy loam textures. Fifteen of the 51 studies involved fine-textured
soils and 36 involved medium-textured soils (Table 1). In this classification, the soil was

considered fine textured above a clay content threshold of 30%.
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Nitrogen treatments and replications

An important characteristic of this research was that the same N rates were applied in all 51
mirror studies. Nine N rate treatments were randomized within three or four blocks in each field.
The control treatment received 0 kg N ha ', Seven other treatments consisted of the same amount
of N as a starter (36 kg ha™") at sowing and increasing N rates at sidedressing (in-season N rates,
ISNR): 0, 27, 54, 80, 107, 134, and 161 kg ha™ applied according to local timing practices at
growing stages ranging from V4 to V10 (median: V7) with incidentally 10 pairs of studies with
growth stages V4 and V8 at sidedressing in Ohio at the same years and sites (Table 1). The last N
treatment consisted of 178 kg ha™' applied at sowing with no N fertilizer at sidedressing; it is
referred to as a rich N rate (N-rich). This treatment provided the opportunity to examine the effect

of weather on a high N rate applied early in the season.

Weather data and weather parameters

Daily rainfall (Rain) data and daily minimum and maximum temperatures (7, and T}uy)
were collected at each site-year. For practical reasons, these simple and easily available data were
selected to calculate corn heat units (CHU; Bootsma et al., 2005), cumulative precipitation (PPT),
and the Shannon diversity index (SDI; Bronikowski and Webb, 1996). The SDI was used to
assess the distribution of rainfall during a given period. These weather parameters were
calculated using the equations presented in Table 2. Cumulative CHU values were computed
using daily maximum and minimum temperatures; PPT and SDI were calculated from the daily

rainfall data (Table 2).

We also proposed a parameter representing optimal water availability (abundant rainfall,

well distributed in time). We define “Abundant and Well-Distributed Rainfall” (4 WDR) as:
7
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Four examples of weather data and derived parameters are given in Fig. 2. Water provided
as irrigation (NO;-N content not assessed) was considered equivalent to natural rainfall. This
assumption was validated by conducting a meta-analysis on the responses to N rate of irrigated
and non-irrigated sites under the same soil and rainfall conditions which revealed no significant
difference between the presence and the absence of irrigation (data not shown).

The time period covered by weather parameters overlapped the date of N sidedressing
(SD). In order to determine the period during which a weather parameter is most closely related
to the N response (or Response Ratio, RR = Yieldy,u/Yieldconror), the weather parameters were
tested for periods from n; days before SD to n, days after SD (with n; and n, varying between 1
and 35). The optimal period for any weather parameter was the one that maximized difference in

N response across N rates. Thus, for CHU, PPT, SDI, and AWDR, we had to find (n;, n,) that

maximized the contrast between the two classes of global effect size (?) across studies and N

rates. The global effect size is defined as follows:

17:% > > log(RR) 2]

all studies all Nrate

where K is the number of studies, andY is calculated for the high and low classes of each weather
parameter (CHU, PPT, SDI, and AWDR) and each (n, n,) pair. These low and high classes were
determined by histogram-based thresholding using the Otsu method (Otsu, 1979) which consists
in maximizing the between class variance (and minimizing the within class variance) to get the

optimum threshold separating both classes.
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In contrast with low CHU, high CHU before the SD period led to a higher ¥ (Fig. 3a). The
period ranging from 30 days before SD (n, = 30) to 15 days after SD (n, = 15) was therefore
selected. Rainfall properties (PPT, SDI, and their product, AWDR) were more crucial for long
periods after SD, while the period before SD was less important (Fig. 3b, 3¢, and 3d). For rainfall
properties, a critical period from n, = 15 to n, = 30 was selected. The testing of alternative
periods such as SD-30 to SD, SD to SD+30, SD-30 to SD+30, SD-20 to SD, SD to SD+20, SD-
20 to SD+20, SD-10 to SD, SD to SD+10 and SD-10 to SD+10 resulted in either not significant
or less significant differences between low and high classes (for CHU, PPT, SDI and AWDR)
than the ones obtained with the periods selected (n, = 30 to n, = 15 for CHU and n; = 15 to n, =
30 for PPT, SDI and AWDR).

CHU, PPT, SDI, and AWDR were separated into low and high classes for the periods of
maximum effect on N response for each weather parameter using the Otsu histogram
thresholding method. The thresholds between low and high classes are as follows: 1160 for CHU
(np = 30, n, = 15); 180 mm for PPT (np = 15, n, = 30); 0.55 for SDI (n, = 15, n, = 30); and 99 for
AWDR (n, = 15, n, = 30). Low AWDR could be considered as sub-optimal rainfall (rare and
sparse) and high AWDR as optimal rainfall (abundant and well distributed).

The distribution of studies in the (CHU, AWDR) space (Fig. 4) shows that several studies
with both fine- and medium-textured soils can be found for all combinations of CHU-AWDR
classes, except the "high AWDR-high CHU" subgroup, for which only one study was conducted
on a fine-textured soil.

Meta-analysis
The meta-analysis carried out in this research is based on the principles described in detail

by Borenstein et al. (2009) and summarized below.
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The effect size, Y, is a value that reflects the magnitude of the treatment effect. The
outcome (in our case, corn grain yield at 14.5% moisture in t ha™) is measured on a physical
scale, and the effect size is expressed as a RR, which is the ratio of the yield obtained for various
N rates (Yieldyya) to the yield measured for the N rate = 0 plots (Yield.onior). Thus, for each

study, i, and each N rate, 7:

Yield Nrate
Yleld control

Y,, =log( [3]

The overlines in equation 3 indicate the yields are averaged over the replicates. The log
scale is used to maintain symmetry (Tonitto et al., 2006) and allow for the addition of effect
sizes.

The replicates are also used to assign a weight to the trials in each study and to each N rate.
This weight is assumed to be inversely proportional to the variance Vy;, (within-study variance)
of the yields measured in replicates of any study, i, at any N rate, . Since two treatments are
involved in the definition of the effect size (treatment N rate and control), the variance of the

effect size is the pooled (combined) variance of these two groups (equations 4a and 4b).

1 1
Vyi,r = S;ooled( 2 + 2 ) [43]
Ao Yi€ld Nrae 1, Yield conrol
where:
SlZmOIEd — (nNrate — I)Var(Yleldete) + (ncontrol - I)Var(Yleldcontml) [4b]
nNrate + ncontrol - 2

And ny;qe and neono are the number of replicates (sample size) of the two groups.

10
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The weight, W;,, assigned to each study, i, for each N rate, 7, is inversely proportional to
variance as follows:

W, =—— 5]
, Vy[,r

This summary effect across studies is the weighted mean of effects as follows:
K K
u=Q WY ) QW) [6]
i=1

i i=1

where i is the study ID number and K, the number of studies. The weighted mean, y,, is

calculated for each N rate, r.

The analysis of the effect size requires a mathematical model. While the N treatment effect
Y can vary from one study to another depending (among other things) on N rate, soil properties
and weather conditions, a variable-effect (also called “random-effect””) model is used to consider
both within-study variance and between-studies variance. We consider the observed effect size,
Y;,, for a given study, i, at a given N rate, », which varies from the overall mean, y, by a
deviation, ¢;,, that reflects the variability of the effect size across the studies and a sampling error
&ir

Yz‘,r =H.tG,TE, [7]

Thus, for each N rate, r, the observed effect size Y;, varies from its true value 6;, = u,+&,
with an error ¢;,. The analysis of the heterogeneity of the studies (the magnitude of &;,) allows us
to identify subgroups characterized by the same treatment effects. This analysis is performed by
estimating the two components of the observed variance (Q): the between-studies variance (T’ =

Var(0)) and the within-study variance (Var(e)). For each N rate, r, the observed variance is

calculated by assigning a weight, W;,, to each study, i:

11
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i=1

Since W;, is the inverse of the variance of Y;,, O, is a standardized measure not affected by
the metric of Y;,. To partition the observed variance, O,, we assume that, at a given N rate, r, if
studies share the same effect size (&, = 0) and all variation is due to sampling errors, ¢;,, within
studies, the expected value of Q, is equal to the degree of freedom, df = K - 1 (i.e., Var(e) = df),
where K is the number of studies (central limit principle). The excess variation, Q,-df, reflects the
differences in the true effects from study to study. Borenstein et al. (2009) proposed two different
statistics that can be used to perform a heterogeneity test that is independent of the number of

studies (df): T°, the estimated variance of the true effect size given by:

T =(0,-df)/C, [9]

where C, = iWi,r - (i Wii)/(iW
i=1 i=1

i=1

and I”, the proportion of the between-studies variance relative to the total variance given by:

I’ _100x 2 =Y [10]
Q

The T statistic is expressed in the same metric as the effect size Y, while F is a ratio
independent of the metric and the number of studies.

With the variable-effect (random-effect) model, the between-studies variance should be
considered in calculating the weights, W¥;,, assuming that the total variance of a study is the sum

of the within-study variance, Vy;,, and the between-studies variance, T,2 :

* 1 1
W, =—= ; [11]
Vyi,r Vyi,r +Tr
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Wi, 1s replaced by W“ (equations 6, 8 and 9). The use of the weight W." avoids allocating an

L,r

excessive weight to any study, i, if its variance, VY, ., is too small, since T,2 is considered in the
definition of W, .

Meta-analysis is useful for quantifying the extent of the heterogeneity and understanding

the underlying causes. The method used to determine if the studies are heterogeneous is based on
I (proportion of between-studies variance) levels. For each N rate, 7, if I” is close to zero (or
negative), the groups are considered homogenous: the observed variance is random and due to
sampling error. On the other hand, if I is high, the causes of the variations should be

investigated by performing analyses on subgroups using potential explanatory factors. The values
0.25, 0.50, and 0.75 correspond to low, medium, and high P levels, respectively (Parent 2012,
personal communication). From this point in the paper, the index #> will be omitted and the I
symbol will be used for all N rates.

The above-described heterogeneity analysis on all the studies was used to assess:

- Subgroups of soil textures established from N response behavior across studies.

- Subgroups of weather conditions established from N response behavior across studies.

- Subgroups of combined soil textures and weather conditions.

The variance explained by the classification into subgroups is defined as the ratio of
explained variance and total variance (Borenstein et al., 2009). Since explained variance = total
variance - unexplained variance (within subgroups), the proportion of the variance explained is
given by:

2

T within subgroups
Rzzl——}z o [12]

all studies

13
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where Twz’ithin subgroups = Z(Q - df) / z C

all subgroups all subgroups

RESULTS
Raw yield data

Figure 5 shows corn grain yields (mean of replicates) in each study by N rate and the
corresponding information on soil texture and AWDR—-CHU classes. In fine-textured soils, yields
never exceeded 12.5 t ha™'. Very low yields were found in both medium- and fine-textured soils
at low N rates (e.g., studies 3 and 39) and at high N rates (e.g., studies 14 - 15 and 48 - 49). The
N-rich (178 kg ha™ all at sowing) produced a significantly lower yield (according to a  test) than
an equivalent split application (starter 36 + ISNR 134) in 15% of the cases when AWDR was low
(for both fine- and medium-textured soils); 33% of the cases for "medium texture—high AWDR"
class; and 63% of the cases for "fine texture—high AWDR" class. The N-rich gave significantly
higher yields than “starter 36 + ISNR 134 in only two studies (5 and 33) corresponding to the
"medium texture—low AWDR" condition. The control rate (ON) produced low yield particularly
under high AWDR, especially in fine-textured soils. Indeed, Yield,onor Was lower than 5 t ha! in
9% of the cases for "medium texture—low AWDR" class; 27% of the cases for "medium texture—
high AWDR" class; 14% of the cases for "fine texture—low AWDR" class; and 100% of the cases
for "fine texture—high AWDR" class. In the latter case, the low Yield oo Was likely due to N
losses, mainly by denitrification, caused by abundant precipitations in poorly drained soils (van
Es et al., 2007; Sogbed;ji et al., 2001).

Figure 5 also shows that both yields and yield response to N are highly variable among

studies, but it does not reveal clear relationships between yields, soil texture, and weather. It

14



10

11

12

13

14

15

16

17

18

19

20

21

22

23

illustrated the need for a meta-analysis in order to provide greater weights to more reliable studies
with a goal of building homogeneous subgroups with meaningful summary effect sizes.
Meta-analysis of subgroups

Meta-analysis provided a summary effect size for each subgroup by N rate (N rate = starter
+ ISNR, or N-rich). The F values indicated some heterogeneity when all studies were grouped
together (across N rates, except N rate at ISNR = 0) and justified subgroup analysis (Table 3).
Subgroups were formed for soil texture classes, weather parameter classes and texture—weather
class combinations. The I values were calculated for each subgroup and each N rate. Negative
values of I’ were not set to zero in order to give a better idea of the relative degree of
homogeneity of the subgroups.

The tree diagram of the meta-analysis is shown in Figs. 6a and 6b. The subgroups were
either combinations of soil texture and CHU (Fig. 6a) or combinations of soil texture and A WDR
(Fig. 6b). AWDR was considered to be more representative of rainfall conditions than PPT or SDI

taken alone (see section “Weather class”). The effect sizes, Y;, are indicated by circular points

with a size (surface) proportional to the weight W, . The error bars indicate the standard

deviation (+SEy), which is equal to the root square of V"

The Y; values are characterized by higher dispersion across studies for higher ISNR as well
as for N-rich rate (Figs. 6a and 6b). The I for N rate = 36 + 0 indicated high homogeneity in
almost all subgroups (Table 3). This was expected since a higher N rate leads to more variability
of the N response depending on the growing conditions in each study (Haberle et al., 2008).
However, this dispersion does not fully explain heterogeneity because it also depends on the
variance Vy; (experimental error, indicated by the error bars in figures). The heterogeneity of the

effect sizes described by the between-studies variance, I, reflected the dispersion of the ¥; values
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(Table 3). The weighted averages of ¥; indicated by dotted lines show the different levels of the
effect size in each subgroup (Figs. 6a and 6b). The subgroup "fine texture—high AWDR" shows a
higher effect size than the other subgroups across N rates. A more detailed subgroup analysis is
presented in the next section.

Soil texture classes

Soil texture class (fine or medium) determined N response to a large extent (Fig. 7). The
average (weighted mean) RR was higher in fine texture classes than in medium texture classes,
and this difference increased with the N rate. The RR also showed greater heterogeneity across
studies at higher N rates (Figs. 6a and 6b) as evidenced by higher I° values (Table 3) and larger
error bars (Fig. 7). The heterogeneity test (Table 3) showed that the effect size, Y, was
homogeneous in medium-textured soils (I* < 0.1) but heterogeneous in fine-textured soils
(medium to high /), except with N rate = 0.

Soils in the medium-textured class tended to show similar responses to added N, with yield
gains varying between 40% (RR = 1.4) and 65% (RR = 1.65) and marginal improvements above
134 kg N ha™ (Fig. 7). The fine-textured class was characterized by a much higher RR, reaching
2.7 at the highest N rate. However, there was too much heterogeneity (Table 3) to determine a
reliable summary effect size. The variance explained, R’, by soil texture subgrouping did not
exceed 10%, mainly because of a large component affecting the fine-textured class. Subgroup
analyses should also consider weather parameters.

Weather classes

Corn heat units (CHU), cumulative precipitation (PPT), Shannon diversity index (SDI) and
the proposed parameter, Abundant and Well-Distributed Rainfall (AWDR = PPT -~ SDI), can
influence N uptake, mineralization, leaching, and denitrification. This study considered the

following periods: 30 days before SD to 15 days after SD for CHU; and 15 days before SD to 30
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days after SD for PPT, SDI, and AWDR. This period was chosen because it showed the strongest
relationship with effect of in-season added N.

Twenty-eight of the 51 studies had low CHU values and 23 had high CHU values (Table
3). Responses (RR) were slightly higher at high CHU levels than at low CHU levels (Fig. 8a).
The difference was small and error bars overlapped, indicating that CHU alone could not explain
effect size variation. Low CHU subgroups were heterogeneous across most N rates (except ISNR
=0). Hence, CHU alone could not capture the response ratios.

The threshold used for cumulative precipitation yielded 28 studies in the low PPT class and
23 in the high PPT class. The high PPT group was characterized by higher response to added N
than the low PPT across N rates (Fig. 8b). The difference was proportional to added N. Overall,
the difference between high and low PPT classes was larger than in the case of the CHU classes
(Fig. 8a). Low PPT conditions were characterized by higher heterogeneity, except in the case of
ISNR = 0 (Table 3). The high PPT group was homogenous across most N rates.

The SDI was low in 30 trials and high in 21 trials (Table 3). Low SDI trials were
heterogeneous across N rates, except at ISNR = 0. The high SDI group was homogeneous for
most N rates, except ISNR = 107 kg ha™ and N-rich. Response ratios were higher in the high SDI
class than in the low SDI class (Fig. 8c). The difference was greater for higher N rates and was
comparable to that for PPT classes. The correlation between SDI and PPT was very low (0.24).
This is indicative of the fact that the spread of precipitation over time has an influence of its own
on response to N.

Since high PPT and SDI classes enhanced RR compared to low classes, their product
(AWDR = PPT * SDI) tended to further increase the difference (Fig. 8d). The increase in RR
associated with abundant and well-distributed rainfall (i.e., high AWDR) as compared to low

AWDR was very large and likewise proportional to the N rate. At the two highest N rates, RR
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increased from 1.6 at low AWDR to 2.6 at high AWDR. Moreover, the AWDR classes showed
lower heterogeneity compared with PPT or SDI (Table 3). Infrequent rain situations (low SDIJ)
are leading to dry soil conditions in which precipitation events, when they occur, are less likely to
impact N losses by leaching or denitrification. Frequent rain situations (high SDI/) tend to
preserve soil moisture, increase the likeliness of leaching and/or denitrification and therefore crop
response to N fertilization.

In summary, rainfall-based parameters and CHU (to a lesser extent) influenced RR.
However, the heterogeneity remaining in the effect sizes of the subgroups indicates that neither
factor can fully explain the variability in N response. The variance explained, R’, by CHU, PPT,
SDI or AWDR alone did not exceed 12%, 8%, 4% and 14%, respectively. It is therefore warranted
to combine soil texture and weather classes in order to obtain more homogeneous subgroups.

Combined soil texture and weather classes

Soil texture and weather classes were combined factorially into “texture—weather”
subgroups.

For CHU classes:

o fine texture—low CHU

o fine texture—high CHU

e medium texture—low CHU

e medium texture—high CHU

For rainfall classes:

o fine texture—low AWDR

o fine texture-high AWDR

e medium texture—low AWDR

18
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e medium texture-high AWDR

Medium-textured soils formed a homogeneous subgroup across N rates (Table 3).
Separating the medium-textured class into two CHU classes [medium texture—high CHU" (20
studies) and "medium texture-low CHU" (16 studies)] did not increase the homogeneity. The
trials classified into the "medium texture—high CHU" subgroup generally showed higher effect
size than those in the "medium texture—low CHU" subgroup (Fig. 9a). However, this difference
was of little significance because at higher N rates, RR increased from 1.6 in the low CHU
subgroup to 1.9 in the high CHU subgroup.

Separating the medium soil texture group into high and low AWDR subgroups improved
homogeneity slightly at most N rates (Table 3). The subgroup "medium texture—high AWDR"
showed higher RR than the "medium texture—low AWDR" subgroup (Fig. 9b). The difference was
greater at higher N rates, where RR increased from 1.6 at low AWDR to more than 2 at high
AWDR.

The effect size of studies involving fine-textured soils showed a high level of heterogeneity
that was reduced by subgroup analysis (Table 3). The "fine texture-high CHU" subgroup (3
studies) was generally homogeneous but the "fine texture-low CHU" subgroup (12 studies) was
not. Fig. 9c shows that RR weighted mean of "fine texture-high CHU" studies was lower than
that of "fine texture-low CHU" studies for ISNR > 134 kgha'. This difference was not
consistent since the subgroups were not homogeneous.

AWDR reduced the heterogeneity of effect size in the fine-textured soil class, especially for
the "fine texture-high AWDR" subgroup (7 studies) which had a considerably higher RR
(reaching 4.5 at high N rates) than the "fine texture—low A WDR" subgroup (Fig. 9d) and the other
texture—weather subgroups (Fig. 9a, 9b, and 9c). The difference increased with N rates. Hence,

rainfall patterns had an appreciable effect on N response in the fine-textured soil class.
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The variance explained, R’, was in the interval 10 to 18% for texture—CHU subgrouping
and in the interval 25 to 35% for texture—4 WDR subgrouping. No relationship between R’ and N
rates was observed.

Since heterogeneity was not observed among all weather subgroups for the fine soil texture
group, the subgroup analysis was refined by using combined CHU and AWDR classes as follows:

o fine texture—low AWDR—-low CHU (5 studies)

o fine texture—low AWDR-high CHU (2 studies)

o fine texture—high AWDR—low CHU (7 studies)

e fine texture—high AWDR-high CHU (1 study)

The subgroups were not consistently homogeneous, particularly at high N rates (Table 3).
Therefore, greater precision could be attained with this subgrouping of fine soil texture studies.
CHU classes produced different RR levels in both the high and the low AWDR subgroups (Fig.
10). The subgroup "fine texture-low A WDR-high CHU" gave a higher RR than "fine texture—low
AWDR-low CHU." However, for "fine texture-high AWDR", high CHU gave a lower RR than
low CHU for N rates > 80 kgha™'. This is likely due to the very high RR of studies #38 and #39
(Table 1; Figs. 6a and 6b) in the subgroup "fine texture—high AWDR—-low CHU" compared to
study #37, which alone made up the subgroup "fine texture—high AWDR-high CHU."” With so
few studies in these subgroups, it appeared reasonable to rely on previous findings, which simply
indicated that RR increased with high CHU. In general, in fine-textured soils, it is important to
combine CHU and rainfall conditions to better characterize the potential impact of in-season N

rates.
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The variance explained, R’, by subgroupings involving texture, AWDR and CHU was in the
range 42 — 60%. This level can be considered as very high in comparison with those reported by
Kyveryga et al. (2009) who found that the variance of corn yield response to N explained by year

did not exceed 25% and the one explained by soil properties did not exceed 16%.

Summary of corn response (RR) in homogeneous subgroups

In the medium-textured soil group, both weather parameters (CHU and A WDR) are helpful
for forming subgroups of N response. In the case of the fine-texture soil class, it was more
effective to use low AWDR and high AWDR classes (Fig. 10a).

The medium texture RR was < 2.2 and AWDR improved the RR as the N rate increased
(Fig. 10b). Splitting the medium texture group into low and high CHU improved the response
ratio to a level close to that observed for the AWDR classes.

In the fine soil texture group, low RR values were obtained when AWDR was low. The RR
in fine texture—low 4 WDR subgroup showed similar levels to those for the medium texture group.
In such circumstances, the N response behavior of fine soil textures is similar to that of medium
textures, at same CHU class.

The fine texture group showed high RR (from 3 to 4.5) when AWDR was high and N rate >
116 kg N ha (starter 36 + ISNR 80) (Fig. 10a). Our data suggest that CHU classes have an
inverse effect (high CHU gives lower RR than low CHU) for the subgroup "fine texture-high
AWDR" which contained only 1 study with high CHU. The fine texture—high AWDR subgroup
was homogeneous across the CHU classes, even though I reached 30% at some N rates (Table

3).
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DISCUSSION

Soil textures (fine or medium) determined N response to a large extent. Responses to added
N were more pronounced for fine texture groups (clay + silty clay + silty clay loam + clay loam)
than for medium texture groups (loam + silt loam + sandy loam/sandy clay loam + loamy fine
sand). It has been reported that corn is more responsive to N fertilization in clayey soils. For
instance, Ping et al. (2008) found that corn needed less N fertilizer in sandy soils than in clayey
soils. Shahandeh et al. (2011) showed that a higher soil N supply was associated with lower clay
content, and lower N supply with higher clay content, likely because of lower N mineralization in
clayey soils (Ros et al., 2011; Zhu et al., 2009). We found that corn yields increased by a factor
of 1.6 at high N rates in medium-textured soils, but by a factor of 2.7 in fine-textured soils.

The CHU parameter had an especially pronounced influence on N rate effects in the period
from 30 days before SD to 15 days after SD. The higher relative importance of CHU
accumulation before sidedressing than after sidedressing justifies its inclusion in a decision-
making system. Rainfall patterns (PPT, SDI, and their product AWDR) had a particularly
pronounced influence on size effects in the period from 15 days before SD to 30 days after SD.
According to van Es et al. (2007), if high rainfall occurs before SD when the corn plants are still
small, it tends to result in N losses, and therefore higher N response. If high rainfall occurs after
SD, it mostly allows for higher yields (no drought stress) and therefore greater N response as well
(Fox and Piekeliek, 1998). The greater influence of rainfall patterns following fertilizer N
application shows the interest for reliable precipitation forecasts in the prediction of crop N
demand. Anwar et al. (2009) expressed the same concern in relation to barley (Hordeum vulgare

L.), in order to predict seasons where the application of N fertilizer would be beneficial. This is
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less of a problem under irrigated conditions, given that, according to our observations, water
provided through irrigation has the same effect on N responses as water received as rainfall.

High CHU tended to enhance corn responses to added N. Higher heat accumulation may
lead to more N mineralization from the soil but also to more volatilization, growth and therefore
N uptake from the crop. Current recommendations in Ontario (OMAFRA Staff, 2012) suggest a
heat unit adjustment, since corn in the long season areas of the province require more nitrogen
than the short season areas. This may be due to greater moisture stress on the crop in areas with
higher average temperatures, which would decrease N use efficiency, or it could be related to
differences in soil organic matter content. The adjustment is approximately 1.8 kg N per 100
CHU above or below the base value of 2650. More importantly, higher N rates were more
beneficial as PPT increased and was evenly distributed over the season. AWDR was a powerful
integrated descriptor of precipitation amount and spread over time. High N rates increased yield
by a factor of 2.6 under high AWDR compared to only 1.6 under low AWDR. Ros et al. (2011)
explained that mineralizable N is closely related to temperature and moisture content. Xia and
Wan (2008) showed in their meta-analysis of 304 published studies that plant responses to N
increased with temperature and annual precipitation. According to Tremblay (2004), dry years
are characterized by poor response to N fertilization, and a greater response is observed in wet
years. Kyveryga et al. (2009) and Zhu et al. (2009) also found a greater response in years of
higher rainfall. Shahandeh et al. (2011) reported that in a wet year, corn response to 180 kg N ha™
almost doubled in medium-textured soils and tripled in fine-textured soils compared to drier
years. This difference was attributed to the decrease in residual soil NOs—N over time under
abundant rainfall regimes and to the increase in water available for growth.

In our study, the interactions between soil texture and weather conditions had the greatest

influence on response ratio. At the lower end of the spectrum were medium-textured soils and the
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CHU parameter; at the higher end, fine-textured soils under low or high AWDR conditions. N
applications may increase corn yield in fine-textured soil by a factor of 1.5 under low AWDR and
a factor of 4.5 under high AWDR conditions. In this particular case (fine texture—high AWDR),
lower (and not higher) CHU favored the higher response to N rate. Kravchenko et al. (2005)
found that spatial variability of corn yield response to added N can increase in high rainfall years.
In a meta-analysis of 57 experimental studies in sub-Saharan regions, Chivenge et al. (2011)
showed that N response was higher in clay soils than in loam or sand, and also higher at higher
annual precipitation levels. According to van Es et al. (2005) N response was greater in finer
textured soils in years with wet springs. Dharmakeerthi et al. (2006) reported that corn N uptake
differed at a landscape scale; the magnitude of the difference was greater in seasons with
abundant rainfall. The interaction between soil texture and rainfall is likely related to the drainage
capacity of soils (sand has a higher capacity, clay a lower capacity) (Taylor et al., 2003;
Shahandeh et al., 2011). Clay retains water for a longer time after precipitation compared to sand
(van Es et al., 2005). According to Armstrong et al. (2009), soil water and rainfall affect the
relationship between soil texture and the spatial variations in yield through two mechanisms: the
first is a complex relationship between subsoil physical-chemical constraints and soil water
availability affecting crop growth; the second relates to osmotic effects in the root zone, which
increase as soil water content decreases.

It is noteworthy that the application of N all-at-sowing tended to be less effective than split
applications under high AWDR both in fine-textured soils (Fig. 9d) and in medium-textured soils
(Fig. 9b). Thus, as mentioned by van Es et al. (2007), a highest precision in N management may
be achieved through in-season N applications that are based on information on late-spring
precipitation pattern. This allows to take into account the N losses (leaching or denitrification)

occurring due to possible excessive rainfall (Kay et al., 2006). It is worth mentioning that there
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was generally no influence of growth stages (V4 and V8) on the effectiveness of the application
of N fertilizer [Ohio studies ID : 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27, 28-29, 41—
42 and 43-44 (Table 1; Figures 6a, 6b)].

Meta-analysis allowed us to build homogeneous groups based on soil texture, rainfall
(AWDR), and CHU classes. Summary effect sizes were computed for each subgroup at each N
fertilization rate. The variance explained by this subgrouping reached 42 to 60% (across N rates),
which is high considering the large geographic and climatic zones covered by the database.
Residual variability within these subgroups is probably not attributable solely to experimental
error. Other parameters such as topography, soil organic matter content, previous crop, diseases,
insects, nitrate content of the irrigation water and drainage problems may be involved (Tremblay,
2004; Dharmakeerthi et al., 2006; van Es, et al., 2005). The rules derived from this study are
based on yield improvement and do not take environmental risks into account. However, it is
generally recognized that N rates resulting in significant yield increases do not lead to
unreasonable N losses, particularly when in-season applications are made (Olfs et al., 2005).

In summary, responses to applied N were found to be higher in sites with soils containing
more than 30% clay. In conditions of high temperatures during the period from 30 days before to
10 days after sidedress time, the differences should be greater, particularly for fine-textured soil
when seasonal rainfall is abundant and well distributed over time (high AWDR). The results may
be used for variable N rate management within and between fields and seasons. This study
provides guidelines for deriving optimal N rates adapted to local soil texture data and weather
conditions (both actual and forecast) both at the regional level and field level. The quantitative
information can be easily summarized in an Aided Decision System using a set of fuzzy inference
system rules from which optimal rates can be calculated, as shown by Tremblay et al. (2010) and

Bouroubi et al. (2011).
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CONCLUSIONS

Several authors have reported that differential N responses are due to spatial and temporal
variations in crop demand and soil N supply and losses; however, N responses have not been
quantified according to different soil and weather conditions. This meta-analysis study using a
uniform pan-American database provides an approach for deriving in-season N rates that are
adapted to soil and weather information. This approach appears particularly well suited to
answering questions that cannot easily be addressed using limited experimental data
encompassing different soil textures and/or weather conditions. Soil and weather properties were
found to have a fairly pronounced effect on corn response to N fertilization. Under certain soil-
weather conditions (AWDR—-CHU subgroups for fine-textured soils), accurate summary effect
sizes could not be obtained owing to the limited number of studies. Further studies are necessary
to establish reliable patterns for these soil-weather conditions. The measured effects of N rates in
relation to soil textures and temperature and precipitation data can be used to derive algorithms
permitting in-season N fertilization at levels that are both economical and environmentally
benign. If long-term weather forecasts become more reliable, it will be possible to make
adjustments not only for past weather conditions but also for those expected up to 30 days after N

sidedressing. In the meantime, decisions may be based mainly on historical weather information.
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3  Figurel

5  Figure 1. Geographic locations of the sites examined in this study.
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Figure 2. Examples of contrasting weather conditions among sites 30 days before and after

sidedressing (SD). (a): low PPT-low SDI before SD and low PPT—low SDI after SD; (b): low

PPT-high SDI before SD and high PPT-low SDI after SD; (c): high PPT-high SDI before SD

and high PPT-high SDI after SD; (d): high PPT-high SDI before SD and low PPT7-high SDI

after SD.
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Figure 6a. Tree diagram with the effect size (Y£SEy) for all studies grouped in fine- and medium-

textured soil classes combined with low and high CHU classes. The standard deviation SEy is the

square root of V'y. Dashed lines indicate weighted mean of Y; for each "texture—-CHU" subgroup.
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Figure 6b. Tree diagram with the effect size (Y=SEYy) for all studies grouped in fine- and medium-
textured soil classes combined with low and high AWDR classes. The standard deviation SEYy is
the root square of Vy. Dashed lines indicate weighted mean of Y; for each "texture-4 WDR"

subgroup.

39



1

2 Figure?7

[N

- —-- Fine texture

we Wedium texture R
O Merich rate % i

b2
o0
I

1) M
o] L]
T T
1
1

—t—

Weighted mean {RR)
® N
]
T

—_
o]
T

—=
Ta
T

—
[
T
1

50 100 150 200
3 N rate (kg ha"}
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Table 1. Studies ranked according to location and soil type with growth stage at sidedressing.
Medium soils are numbered from 1 to 36 and fine soils from 37 to 51. The abbreviation “irr.”
indicates irrigated sites; the abbreviation “SL/SCL” indicates sandy loam/sandy clay loam.

Surface soil Growth stage at
1D Study texture sidedressing
1 Missouri, Clarkton, 2006 (irr.) Loamy Fine Sand Vo6
2 Oklahoma, Stillwater, 2006 Fine sandy loam V8
3 Oklahoma, Stillwater, 2008 Fine sandy loam V8
4 Illinois, Dixon Springs 2006 Silt loam V5
5  Illinois, Dixon Springs, 2007 Silt loam V8
6 Kansas, Manhattan, 2006 Silt loam V9
7 Kansas, Manhattan, 2008 Silt loam V9
8  Missouri, Centralia, 2006 (irr.) Silt loam V10
9 Missouri, Miami, 2006 Silt loam V9
10 Missouri, Portageville, 2006 (irr.)  Silt loam Vo6
11  Missouri, Centralia, 2007 Silt loam V9
12 Missouri, Portageville, 2008 (irr.)  Silt loam V8
13 Nebraska, Shelton, 2006 (irr.) Silt loam V8
14 Ohio, Woosterl, 2006 Silt loam V4
15 Ohio, Wooster2, 2006 Silt loam V8
16 Ohio, Woosterl, 2007 Silt loam V4
17  Ohio, Wooster2, 2007 Silt loam V8
18 Ohio, Woosterl, 2008 Silt loam V4
19  Ohio, Wooster2, 2008 Silt loam V8
20  Ohio, Woosterl, 2009 Silt loam V4
21  Ohio, Wooster2, 2009 Silt loam V8
22 Ohio, Westernl, 2006 SL/SCL V4
23 Ohio, Western2, 2006 SL/SCL V8
24 Ohio, Westernl, 2007 SL/SCL V4
25 Ohio, Western2, 2007 SL/SCL V8
26  Ohio, Westernl, 2008 SL/SCL V4
27 Ohio, Western2, 2008 SL/SCL V8
28  Ohio, Westernl, 2009 SL/SCL V4
29  Ohio, Western2, 2009 SL/SCL V8
30 Virginia, Blacksburg, 2006 Loam Vo6
31 Virginia, ATD, 2007 Loam Vo6
32 Virginia, BHD, 2007 Loam Vo6
33 Virginia, MCD, 2007 Loam Vo6
34  Virginia, Varina, 2007 Loam V4
35 Quebec, L’Acadie, 2007 Loam V8
36 Quebec, L’Acadie 2007 (irr.) Loam V8
37 Quebec, L’Acadie, 2006 Clay loam V6
38 Quebec, L’Acadie, 2008 Clay loam V7
39  Quebec, L’Acadie, 2009 Clay loam V6
40  Ohio, Northwest1, 2006 Silty clay loam V8
41  Ohio, Northwestl1, 2007 Silty clay loam V4
42 Ohio, Northwest2, 2007 Silty clay loam V8
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43 Ohio, Northwest1, 2009 Silty clay loam V4
44 Ohio, Northwest2, 2009 Silty clay loam V8
45  Missouri, Wilton, 2006 Silty clay V10
46  Missouri, Rocheport, 2007 Silty clay V9
47  Mexico, Cd Obregon, 2007 Clay V7
48 Mexico, MC, 2007 Clay V7
49  Mexico, MP, 2007 Clay V7
50 Mexico, MC, 2008 Clay V7
51 Mexico, MP, 2008 Clay V7
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2 Table 2. Weather parameters used in the meta-analysis. The sum }’ is taken over daily data

during a given time period.

Weather parameters

Definitions

Corn heat units

(CHU)

Cumulative
precipitation (PPT)

Precipitation
evenness: Shannon
Diversity Index
(SDI)

CHU =% (Ymax T Ymin)/2

Yax and Y,,;, are the contributions to CHU from daily maximum (7,4, Up
to 30°C) and minimum (7,,;,) air temperatures, respectively:

Yiax = 3.33 (Tax - 10.0) - 0.084 (T - 10.0)2 5 (if Tyax < 10.0, Yypr = 0.0)
Yiin = 1.8 (Tin - 4.44) ; (if Tpin <4.44, Y,in = 0.0)

PPT = Rain, Rain is the daily rainfall (mm).

SDI = (=3 piln(pi))/In(n)

Where pi = Rain/PPT is the fraction of daily rainfall relative to the total
rainfall in a given time period and 7 is the number of days in that period.
An SDI equal to 1 implies complete evenness (i.e., equal amounts of
rainfall in each day of the period). An SDI equal to 0 implies complete
unevenness (i.e., all rain in 1 day).

W
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Table 3: Ratio of between-studies variance to total variance (I°). Nb is the number of studies in

each subgroup.

Subgroups of soil texture
and weather conditions

N rate (kg ha at sowing + ISNR)
36+0 36+27 36+54 36+80 36+107 36+134 36+161 (178)

N-rich

All textures, all weather 51

Fine texture 15
Medium texture 36
Low CHU 28
High CHU 23
Low PPT 28
High PPT 23
Low SDI 30
High SDI 21
Low AWDR 29
High AWDR 22

Fine texture-low CHU 12
Fine texture—high CHU 3
Medium texture—low 16
CHU

Medium texture—high 20
CHU

Fine texture—low AWDR 8

Fine texture-high 7
AWDR

Medium texture—low 21
AWDR

All studies together

-0.26 020 028 021 026  0.27
Subgroups for texture properties

-0.02 029 046 026 038  0.33
-043 0.07 0.01 -032 -0.07 0.11
Subgroups for weather properties

-0.02 031 040 033 039 037
0.01 0.18 032 -0.02 022 036
-0.37 0.15 031 030 027  0.30
-0.62 -0.12 -0.11 -0.61 0.02  0.09
-0.50 0.15 024 026 0.13 043
-0.33  0.03 0.03 -026 0.25 0.03
-0.50 0.01 0.13 0.07 0.11 0.25
-0.59 -0.09 -0.27 -0.68 0.09 -0.09

Subgroups for combined texture and weather properties

0.07 043 042 040 029 044
-0.12 0.16 -0.11 -046 044 -0.34
-0.13  -0.01 0.09 -0.13 0.06 -0.06
039 0.18 0.19 0.14 0.04 040
-0.16 0.08 026 028 0.10 0.25
-0.07  0.09 0.09 0.10 0.11 0.26
-0.66 -0.07 -0.04 -0.10 -0.01 0.14
-045 0.03 -037 -091 -0.27 -0.13

Medium texture—high 15
AWDR

Subgroups for rainfall and CHU for fine soil textures combined

Low AWDR-low CHU 5
Low AWDR-high CHU 2
High AWDR-low CHU 7
High AWDR-high CHU 1

-0.22 -0.06 026 0.03 0.19
-0.02 -0.11 0.00 -0.01 0.07
-0.15  0.09 0.07 0.14 025

0.11
-0.01
0.27

0.31

0.54
0.03

0.42
0.21

0.28
0.07
0.38
0.13

0.15
-0.03

0.51
-0.16
0.04
0.07

0.43
0.25

-0.06

-0.09

0.17
0.01
0.30

0.34

0.49
0.08

0.49
0.26
0.31
0.23
0.24
0.26
0.16
0.17

0.56
-0.40
0.13
0.17

0.47
0.16

-0.10

0.17

0.28
-0.02
0.06
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