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Abstract 

With the implementation of the Food and Drug Administration’s Food Safety 

Modernization Act, the food industry must scientifically verify that current production processes 

provide sufficient protection against pathogens. This study was conducted to validate a simulated 

commercial baking process for hamburger buns to control Salmonella spp. contamination and to 

determine the appropriateness of using non-pathogenic surrogates (Enterococcus faecium ATCC 

8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was 

separately inoculated (~6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport or 

Senftenberg) or E. faecium. Dough was formed, proofed, and baked to mimic commercial 

manufacturing conditions. Non-inoculated dough was used to evaluate S. cerevisiae (Baker’s 

yeast) survival during baking. Buns were baked for 9, 11 and 13 min in a conventional oven set 

at 218°C, with internal bun temperature profiles recorded. Salmonella serovars and S. cerevisiae 

were reduced by >6 log10 CFU/g after 9 min of baking. E. faecium was detected by direct plating 

after 11 min of baking but not after 13 min. After 13 min of baking, all three target organisms 

were eliminated (>6 log CFU/g reduction) in the buns. D- and z-values of Salmonella spp. (3-

serovar cocktail), E. faecium, and S. cerevisiae in bun dough were also determined. D-values of 

Salmonella spp. and E. faecium during heating of dough were 28.64 and 133.33, 7.61 and 55.67, 

and 3.14 and 14.72 min at 55, 58 and 61°C, respectivly; whereas, D-values of S. cerevisiae were 

18.73, 5.67 and 1.03 min at 52, 55 and 58°C, respectivly. The z-values of Salmonella spp., E. 

faecium and S. cerevisiae were 6.58, 6.25 and 4.74ºC, respectively. E. faecium demonstrated 

greater thermal resistance than Salmonella spp. and S. cerevisiae, making it an appropriate (and 

conservative) surrogate to establish thermal process lethality in the validation of commercial 



  

baking operations. The low thermal tolerance of S. cerevisiae relative to Salmonella limits its 

usefulness as a potential surrogate for process validations.
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Chapter 1 - Introduction 

While often taken for granted, baked goods are a staple of the American diet. The 

American Bakers Association (ABA) estimated the U.S. baking industry had a total economic 

output of about $294.9 billion, contributing to about 1.84% of U.S. GDP, and employed nearly 

1.87 million Americans (Fig. 1.1) in 2012 (ABA, 2013). Wages and taxes collected from these 

businesses and their employees were estimated at about $91.1 mil and $37.3 mil, respectively 

(ABA, 2013).  

 

Figure 1.1 Categorization of jobs dependent on the U.S. baking industry 

 

The diversity of baked goods on the market is also impressive. White, wheat, and rye 

breads predominate at about 40% of commercial bakery sales; “rolls, buns, muffins, bagels, and 

croissants” are the second largest category, making up 20% of sales, followed by soft cakes at 

10% (Bakery and Snacks, 2012). The “remaining sales [come] from pies, pastries, donuts, and 

sweet goods” (Bakery and Snacks, 2012). This distribution of products is displayed in Fig. 1.2  
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Figure 1.2 Distribution of bakery products by percent of U.S. sales 

 

To ensure that business continues to boom for the baking industry, processing facilities 

must remain in compliance with recent updates to federal food safety standards. With the formal 

signing of the Food Safety Modernization Act (FSMA) on January 4, 2011, facilities will soon 

be required to register with the U.S. Food and Drug Administration (FDA) (FDA, 2011). In order 

to remain a registered facility with the authority to distribute food products, each facility must 

develop “science-based mitigation strategies” for Hazard Analysis and Risk-based Preventative 

Controls (HARPC) (FDA, 2011)(Wayne Labs, 2014). To qualify, the following steps must be 

taken: (1) evaluate any hazards (biological, chemical, physical, radiological, or intentionally 

introduced), (2) establish preventative controls for each identified hazard, (3) verify controls 

effectively reduce hazards to an appropriate level of risk, (4) utilized corrective actions should 

the risk of hazard exceed the defined minimal level, and (5) document all processes (FDA, 

2011)(Wayne Labs, 2014).  

Unlike facilities operating under Hazard Analysis Critical Control Points (HACCP) 

regulations, many FDA processers, including bakeries, do not presently have explicit, published 
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guidelines quantifying what are or are not acceptable processing parameters (Wayne Labs, 

2014). This knowledge gap represents a vital hole which must be filled. 

Conducting in-plant validation research is necessary to verify that the systems in place 

are operating with the anticipated result (Jeong et al., 2011)(Kopit et al., 2014). Ideally, all 

pertinent organisms would be evaluated in these conditions, however, this is generally infeasible 

for pathogenic organisms as containment and decontamination of industrial equipment is not 

practicable (Jeong et al., 2011) (Kopit et al., 2014). It thus falls to laboratories to identify non-

pathogenic indicator organisms with similar or slightly elevated survival characteristics as 

surrogate species (Kopit et al., 2014). It is equally acceptable to choose surrogate species which 

are inherent to the food matrix of interest or to add an organism for evaluation (Kornacki, 2012).  

The most widely referenced surrogate for Salmonella spp. is Enterococcus faecium 

NRRL B-2354, which is a clonal relative of E. faecium ATCC 8459, sharing over 99% genome 

sequencing identity (Kopit et al., 2014). Despite recent concerns regarding its BSL-1 

classification, this strain has been used in the food industry for greater than 65 years as a non-

pathogenic surrogate during thermal processing (Kornacki, 2012). Operations and food matrices 

evaluated with E. faecium surrogates include pasteurization of milk, ice cream mix, and juice 

products; microwave processing of liquids; and dry heating of wheat-based products, ground 

beef, and almonds (Kopit et al., 2014)(Kornacki, 2012). Several strains of E. faecium are also 

commonly used as adjunct cultures added to fermented breads, cheeses, and other dairy products 

for flavor development, bacteriocin production, and competitive exclusion of pathogenic 

microflora (Giraffa, 2014)(Kopit et al., 2014)(Kornacki, 2012)(Tan et al., 2013).  

Although its use as a surrogate is not reported in the literature, Saccharomyces cerevisiae, 

which is standard ingredient in many baked products, has been of interest to bakers as an 
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indicator of thermal process control as they seek non-pathogenic microbial options for in-plant 

process verification activities.  
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Chapter 2 - Literature Review 

 Thermal Destruction of Microorganisms 

Thermal processing is the most widely used control method for elimination of pathogens 

in food products (Wu, 2014). Differences in the heat resistance of microorganisms have forced 

prolonged evaluation of the survival capabilities of individual microorganisms in diverse food 

matrices (Beney et al., 2003). Factors such as fat content, water activity, pH, and pressure have a 

combined influence on the relative hostility of the microenvironment in food products (Beney et 

al., 2003). Furthermore, microorganisms may display an array of responses to thermal stress. 

 Response to Heat Treatments 

Cells express varying responses to lethal heat ranging from survival to damage to death 

(Wu, 2014). Damaged cells fall into two categories: irreversibly damaged or sublethally 

damaged (Wu, 2014). Sublethally damaged cells are of particular concern because they are 

difficult to detect but may demonstrate complete recovery and restoration of virulence over time 

(Wu, 2014). While most cellular structures and functions are impaired by thermal treatments, 

damage to the outer membranes is typical and may impede protein production (Wu, 2014). 

Exposure to heat commonly results in degradation of the lipid components of cellular 

membranes, resulting in the leakage of substrates such as Mg2+, K+, amino acids, nucleic acids, 

or proteins (Wu, 2014). This leakage exacerbates the strain as Mg ions are needed for structural 

stability of ribosomes and is believed to inhibit the action of ribonuclease (Wu, 2014). These 

injured cells are much more fastidious than their healthy counterparts; additional nutrients and 

incubation time are often needed to detect and enumerate sublethally damaged microorganisms 

(Wu, 2014). 
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 Measures of Thermal Destruction 

With a constant exposure to heat, microorganisms are destroyed at a logarithmic rate 

which is proportionate to the quantity of organisms present (Goff, n.d.).  By expressing the 

thermal resistance of a microorganism in terms of its rate of destruction, comparisons can be 

made between species (CDC, 2009). In addition to the aforementioned criteria, the rate of 

destruction is of course heavily influenced by the temperature to which the microorganism in a 

given food matrix is exposed.  

 D-value 

An initial step to determine the thermal resistance of a microorganism is to calculate its 

D-value, or the time in minutes required to inactivate 1-log cycle, or 90%, of the population of 

the microorganism of interest (FDA, 2014)(Goff, n.d.)(Sperber, 2007). This is commonly done 

by inoculating the food matrix of concern with a known quantity of the microorganism, exposing 

the contaminated food product to a constant level of heat, and evaluating the surviving 

population at known time intervals. Graphing these data points such that time lies on the x-axis 

and the population of interest lies on the y-axis, the rate of thermal destruction can be calculated 

using the formula 𝐷 =
𝑡

𝑙𝑜𝑔N0−𝑙𝑜𝑔𝑁𝑡
 where t is the time in minutes of the sampling interval, N0 is 

the population present at the beginning of the interval, and Nt is the population surviving at the 

end of the interval (Fig. 2.1) (Goff, n.d.). Alternatively, the D-value can also be calculated as the 

absolute value of the inverse slope of the line of best fit through several data points taken at 

regular time intervals (Michael et al., 2014). This process is then repeated at a series of 

temperatures which either mimic operational limits or deficiencies for a process. For each 

temperature, the temperature treatment is denoted as a subscript (e.g. D58°C = 8 minutes) (CDC, 

2009)(FDA, 2014). Similarly, the term thermal death time is used to express the amount of time 
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required to destroy a specified quantity of the microorganism of interest in a particular food by 

thermal processing at a specified temperature (Goff, n.d.).  

 

Figure 2.1 Generalized D-value graph 

  

 z-value  

Following analysis of the rate of destruction at assorted temperatures for a given 

microorganism in a given food matrix, these data can be graphed with temperatures on the x-axis 

and D-values on the y-axis. The absolute value of the inverse slope of the line of best fit through 

these data points is referred to as the z-value (FDA, 2014)(Michael et al., 2014). Alternatively, if 

only two D-values are known, the following equation can be used: 𝑧 =  
𝑇1−𝑇2

𝑙𝑜𝑔𝐷1−𝑙𝑜𝑔𝐷2
 where T1 is 

the temperature at the first D-value (D1) and T2 is the temperature at the second D-value (D2) 

(Fig. 2.2) (Goff, n.d.). The z-value quantifies how much the temperature must be adjusted to alter 

known D-value(s) by a factor of 10 (Goff, n.d.)(Sperber, 2007). An increasingly large z-value 

denotes a depressed lethality to an increase in temperature (Goff, n.d.). z-values are commonly 

used to predict D-values at temperatures which were not experimentally evaluated (FDA, 2014). 
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Figure 2.2 Generalized z-value graph 

 

 F-value  

Knowledge of the D- and z-values of an organism in a particular food matrix allows for 

the determination of an F-value. F-values are used to describe the time required to destroy or 

inactivate a given quantity of a microorganism in a given food matrix under specified conditions; 

they are commonly used to derive the time required to yield a commercially sterile product 

(Goff, n.d.). As thermal death curves are a logarithmic function, food is considered commercially 

sterile when the probability of the survival of a microorganism is less than 10-6 (Goff, n.d.). As a 

result, most processing operations calculate F-values as a 12D process for the most thermally 

resilient pertinent microorganism (FDA, 2014). Convention also dictates that if parameters are 

not explicitly stated to assume the process describes a thermal exposure of 250°F and a z-value 

of 18°F (FDA, 2014). 
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 Burden of Foodborne Illness 

Food safety is a growing sector whose continued development stands to benefit millions 

of lives each year. Nearly half of the principle foodborne pathogens in the United States have 

been identified since the 1970s, substantiating concerns regarding the possibility of other species 

yet to be isolated and described (Tauxe, 2002). The prevalence of foodborne pathogens is a 

function of ecology and technology (Tauxe, 2002). While some species are likely relatively 

novel, other species are simply being attributed as the etiological agent for outbreaks in 

unprecedented food sources (Tauxe, 2002). Additionally, well-documented pathogens continue 

to evolve new mechanisms to bypass current intervention technologies (Tauxe, 2002). 

Globalization of the food trade aids the spread of these adaptations (Tauxe, 2002). In short, 

despite recent scientific breakthroughs, foodborne illness remains a concerning topic worthy of 

continued research.  

In order to make sound food safety policy decisions, several attempts have been made to 

estimate the economic and social costs of these preventable conditions (Scallan et al., 2011). In 

1995, the U.S. Centers for Disease Control and Prevention (CDC) began partnering with state 

and local health agencies to create the Foodborne Diseases Active Surveillance Network 

(FoodNet), a program used to monitor trends in the incidence of foodborne illness (CDC, 2015). 

Although FoodNet covers 15% of the U.S. population, several barriers remain to collecting 

accurate nation-wide estimates of foodborne illness (CDC, 2015). Most instances of foodborne 

illness result in relatively minor, non-specific symptoms of gastrointestinal distress, including 

stomach cramps, nausea, and diarrhea or vomiting, which clear without medical intervention 

(Behravesh et al., 2011)(Tauxe, 2002). As a result, many cases of foodborne illness likely go 

unreported or undiagnosed (Fig. 2.3) (Scallan et al., 2011). Additionally, it is often difficult to 

ascertain the origin of the etiological agent (Scallan et al., 2011). These challenges are 
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compounded in the case of pathogens, such as Listeria monocytogenes, which may display a long 

latent period before symptoms of infection become apparent. Nevertheless, these illnesses are not 

to be underestimated; cases of foodborne illness are relatively common, costing substantial 

losses due to missed workdays, and may result in lifelong complications or death, especially in 

persons with depressed immune systems (Behravesh et al., 2011)(Hoffman, 2012).  

 

 

Figure 2.3 Burden of illness pyramid  

(source: http://www.cdc.gov/foodnet/surveillance.html) 

 

The two methods of data recovery for foodborne illness include passive surveillance, in 

which diagnostic laboratories voluntarily report positive test results to public health agencies, 

and active surveillance, in which public health agencies regularly contact diagnostic laboratories 

regarding the incidence of positive test results. Scallan et al. (2011) includes data from both 

surveillance methods to estimate the overall incidence of foodborne illness across the United 

States. By combining data collected in relation to foodborne outbreaks with data from five 

surveillance programs [FoodNet, the National Notifiable Diseases Surveillance System 

(NNDSS), the Cholera and Other Vibrio Illness Surveillance (COVIS) System, the National 

Tuberculosis Surveillance System (NTSS), and the Foodborne Disease Outbreak Surveillance 
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System (FDOSS)], a mathematical model could be used to estimate the national average 

incidence of foodborne illness with 90% confidence intervals (Scallan et al., 2011). Thirty-one 

major pathogens were investigated (those with asterisks were identified as a foodborne pathogen 

since the early 1970s), including: Astrovirus*, Bacillus cereus, Brucella spp., Campylobacter 

spp.*, Clostridium botulinum, C. perfringens, Cryptosporidium spp.*, Cyclospora cayetanesis*, 

enterotoxigenic Escherichia coli (ETEC)*, Shiga toxin-producing E. coli (STEC)*, Giardia 

intestinalis, Hepatitis A virus, Listeria monocytogenes*, Mycobacterium bovis, Norovirus*, 

Rotavirus*, nontyphoidal Salmonella spp., Salmonella enterica serotype Tyhpi, Sapovirus, 

Shigella spp., Staphylococcus aureus, Streptococcus spp. group A, Toxoplasma gondii, 

Trichinella spp., Vibrio cholera*, V. vulnificus*, V. parahemolyticus*, other Vibrio spp.*, and 

Yesinia enterocolitica* (Scallan et al., 2011)(Tauxe, 2002).  

By comparing data for organisms which were reported to different networks which utilize 

different surveillance methods (passive or active), Scallan et al., (2011) were able to better 

estimate the effects of underreporting and underdiagnosis leading to the creation of pathogen-

specific multipliers and uncertainty distributions. Utilizing data collected from 2000 to 2008, 

Scallan et al. (2011) estimate an annual incidence of foodborne illness of 9.4 million cases with a 

90% confidence interval spanning from 6.6 to 12.7 million cases. These illnesses are distributed 

by pathogen type: 5.5 million (59%) caused by viruses, 3.6 million (39%) attributed to bacteria, 

and 0.2 million (2%) parasitic infections (Scallan et al.,2011).  

The severity of foodborne illness extends beyond mild malaise. Scallan et al. (2011) also 

investigated the frequency of hospitalizations and death due to consumption of contaminated 

food in the United States. Of the estimated 55,961 (90% CI 39,534-75,741) hospitalizations, 64% 

were associated with bacteria, 27% with viruses, and 9% with parasites (Scallan et al., 2011). 
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Mortality was estimated at 1,351 (90% CI 712-2,268) with 64% caused by bacteria, 25% by 

parasites, and 12% by viruses (Scallan et al., 2011). Nontyphoidal Salmonella spp. were the most 

common causative agents, resulting in 35% of hospitalizations and 28% of deaths (Scallan et al., 

2011). Recent FoodNet data suggest that the 2014 incidence of laboratory-confirmed 

nontyphoidal Salmonella spp. infections remains relatively unchanged at approximately 15.45 

cases per 100,000 (Gao et al., 2011)(MMWR, 2015). While these estimates may seem like a 

relatively small proportion of the national population, it is important to remember that these 

numbers represent people with families who suffered from potentially preventable illnesses.  

The true cost of foodborne illness exceeds monetary expenses for medical care and lost 

productivity. After the initial onset of disease, some pathogens have the potential to induce 

chronic sequelae. Quality-adjusted life years (QALYs) are one method for evaluation of the 

burden of qualitative disease outcomes, such as ability to perform normal daily activities and live 

a comfortable life (Hoffmann et al., 2012). By combining quantitative and qualitative measures 

of loss, a more complete picture is formed which can be used to more effectively compare the 

impacts of pathogens and direct food safety policy decisions (Hoffmann et al., 2012). Hoffmann, 

Batz, and Morris (2012) evaluated annual cost of illness and QALYs lost for fourteen foodborne 

pathogens which account for 95% of illnesses and hospitalizations and 98% of deaths identified 

by Scallan et al. in 2011. Hoffman et al. (2012) found the cost of foodborne illnesses in terms of 

2009 U.S. dollars to be about $14 billion (with an uncertainty ranging from $4.4 billion to $33.0 

billion) and a total loss of 61,000 QALY (with an uncertainty ranging from 19,000 to 145,000 

QALYs). Roughly 90% of these losses were caused by five pathogens, including over $3.3 

billion and 17,000 QALYs lost due to non-typhoidal Salmonella spp. infections (Hoffman et al., 

2012).  
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 Salmonella enterica 

Salmonella spp. have long been identified as a major threat to food safety and public 

health. Despite years of intense study, Salmonella spp. remain a complicated subject. Underneath 

the family Enterobacteriaceae, the genus Salmonella is presently divided into two species: S. 

enterica and S. bongori (Cooke et al., 2007). Of the seven subspecies, warm-blooded animals are 

susceptible to S. enterica subspecies enterica (Cooke et al., 2007). En total, approximately 2,600 

serovars have been identified thus far per the “presence or absence of capsular antigens, flagellar 

antigens, envelope antigens, or reactions to specific antisera” (Gray & Fedorka-Cray, 2002), 

2002)(Cooke et al., 2007). For simplicity, strains are usually referred to as genus Salmonella 

followed by the name of the serovar.  

Salmonella spp. are not fastidious and give the appearance of peritrichiously flagellated, 

Gram-negative rods (Gray & Fedorka-Cray, 2002). Salmonellae have the ability to utilize either 

citrate or D-glucose as sole sources of carbon (Guthrie, 1992). Growth of Salmonella spp. is 

inhibited at aw below 0.94, pH less than 3.8 or greater than 9.0, temperature less than 7°C or 

exceeding 45°C (Gray & Fedorka-Cray, 2002)(Guthrie, 1992). Although they do not form spores 

or microcysts, Salmonellae are known for their tolerance to salt and desiccation (Gray & 

Fedorka-Cray, 2002)(Guthrie, 1992). Due to their participation in bacterial conjugation, 

transferal of plasmids, which encode antibiotic resistance, between strains is of great concern 

(Guthrie, 1992).  As a facultative anaerobes, they are well equipped to survive in the gut 

(Guthrie, 1992). 

Transmission of Salmonella spp. commonly occurs through fecal contamination of food 

or water (Gurthrie, 1992).  Consumption of S. Typhi or S. Paratyhpi A, B, or C results in severe 

illness, termed enteric fever, which should be treated with appropriate antibiotics as it is a 

systematic infection (Cooke et al., 2007)(Gray & Fedorka-Cray, 2002). Consumption of non-
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typhoidal Samonella serovars typically results in self-limiting gastroenteritis, or salmonellosis, 

which should be treated with supportive therapy to avoid promotion of a prolonged carrier state 

(Gray & Fedorka-Cray, 2002)(Guthrie, 1992). Symptoms of salmonellosis develop within 12-72 

h and include headache, stomach cramps, nausea, vomiting, and/or diarrhea (which may or may 

not be bloody); these symptoms usually dissipate after 1-4 days (Guthrie, 1992)(Raffatellu et al., 

2007). Behravesh et al. (2011) analyzed data collected by FoodNet spanning from 1996 to 2005; 

they analyzed 121,536 reports of laboratory-confirmed bacterial infections and found 215 (39%) 

of these cases were the result of salmonellosis. While most infections caused by non-typhoidal 

Salmonella spp. are relatively mild, some cases of salmonellosis may result in bacteremia or 

focal infections, which require medical interventions (Guthrie, 1992). 

 Invasion 

Intracellular survival and proliferation is essential for infection and dissemination to other 

hosts (Boumart et al., 2014)(Raffatellu et al., 2007). Among Salmonella spp., the Trigger 

mechanism of invasion, utilizing type 3 secretion system 1 (T3SS-1) encoded by Salmonella 

pathogenicity island 1 (SPI-1), has long been associated with invasion of M-cells in the distal 

ileum (Boumart et al., 2014)(Morgan, 2007)(Raffatellu et al., 2007). However, Boumart, Velge 

and Wiedemann (2014) identify Salmonella spp. as the first to express the ability to utilize both 

the Trigger mechanism and the Zipper mechanism, which is moderated by Rck (an outer 

membrane invasin protein). Rck invasin is encoded by the rck gene which is found on the large 

virulence plasmid (Boumart et al., 2014). The rck gene is most frequent among the host impartial 

S. enterica serovars Enteritidis and Typhimrium, and can also be identified in some strains of S. 

Dublin (Boumart et al., 2014). Both of these mechanisms alter the structure of actin in the host 
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cell cytoskeleton and prompt the host cell to absorb bacterial cells (Boumart et al., 

2014)(Morgan, 2007)(Raffatellu et al., 2007).  

The majority of internalized Salmonella inhabit vacuoles (Boumart et al., 2014)(Morgan, 

2007)( Raffatellu et al., 2007). After encapsulation in a Salmonella-containing vacuole (SCV), 

bacterial effector proteins encoded on T3SS-1 must be suppressed to prevent host cell 

recognition, inflammatory response, and lysosomal targeting (Boumart et al., 2014)(Raffatellu et 

al., 2007). The next stages of SCV maturation, including formation of Salmonella-induced 

filaments (SIFs) for nutrient uptake and promotion of bacterial replication, are controlled by 

upregulation of type 3 secretion system 2 (T3SS-2) effector proteins encoded on Salmonella 

pathogenicity island 2 (SPI-2) (Boumart et al., 2014)(Morgan, 2007). Prior to release from the 

SCV, T3SS-1 dominance is reinstated to facilitate invasion into adjacent cells (Boumart et al., 

2014).  

It is now recognized that Salmonella also replicate in the cytosol of epithelial cells 

(Boumart et al., 2014). In approximately 20% of invasions, propagation of Salmonella in the 

intracellular fluid may exceed that of the SCV (Boumart et al., 2014). Termed hyper-replication, 

this bimodal propagation state may yield production of greater than 100 bacteria per host cell 

(Boumart et al., 2014). Death of these highly colonized cells results in release of virulent 

Salmonellae into the lumen of the gut and perpetuation of infection into deeper tissues (Boumart 

et al., 2014)(Gray & Fedorka-Cray, 2002)( Raffatellu et al., 2007). After gaining access to the 

lamina propria, Salmonellae may colonize macrophages, thereby avoiding immune response 

(Gray & Fedorka-Cray, 2002). Access to the lymph system aids in further dissemination 

throughout the host (Gray & Fedorka-Cray, 2002). Cells may travel to the liver and spleen where 
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proliferation continues, inducing systemic or focal infections, or they may be sequestered in the 

gall bladder, resulting in an asymptomatic carrier state (Gray & Fedorka-Cray, 2002).  

 Enterococcus faecium ATCC 8459 

Enterococcus faecium belongs to the lactic acid bacteria (LAB) group; they are 

ubiquitous, being commonly found in animal gastrointestinal tracts, food products of animal 

origin, such as fermented sausages and cheeses, and soil or plant material (Giraffa, 2014)(Tan et 

al., 2013). They are identified as “Gram-positive, oxidase-negative, catalase-negative, non-

spore-forming cocci that occur singly, in pairs, or in short chains” (Giraffa, 2014). As LAB, E. 

faecium are facultative anaerobes and convert carbohydrates to lactic acid (Giraffa, 2014). 

Enterococci are well known for their hardiness; cells will continue growth in the range of 5°C to 

50°C, from a pH of 4.6-9.9, in up to 6.5% NaCl, or up to 40% bile salts (Giraffa, 2014).  

Tolerance to inhospitable environments unfortunately extends to antimicrobial resistances 

among many enterococci (Giraffa, 2014)(Kopit et al., 2014)(Kornacki, 2012)(Tan et al., 2013). 

The possibility of the spread of antibiotic resistance from enterococci to other genera via 

bacterial conjugation serves as the foundation for debate concerning the continued use of E. 

faecium as a processing aid (Kornacki, 2012)(Kopit et al., 2014). Incidence of nosocomial 

infections caused by E. faecalis (80%) and E. faecium (20%) has been increasing over the past 

30 years (Kopit et al., 2014)(Kornacki, 2012). To quantify the perceived threat, Kopet et al. 

(2014) sequenced the genome of E. faecium NRRL B-2354, E. faecium ATCC 8459, and clinical 

strains TX0082 and 1,231,502. Surrogate E. faecum strains lacked, or contained nonfunctional 

copies of, virulence genes, and displayed reduced ability to form biofilms (Kopit et al., 2014). 

Surrogate strains were also more sensitive to antibiotics, displaying sensitivity to vancomycin, 

streptomycin, gentamicin, ampicillin, penicillin, cephalosporins (cefoxitin and cefazolin), 
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chloramphenicol, tetracycline, polymyxin b, and novobiocin (Kopit et al., 2014)(Kornacki, 

2012). To alleviate concerns regarding acute toxicity, Tan et al. (2013) orally administered 1011 

CFU E. faecium YF5, a potential probiotic isolated from sourdough, to mice for 8 days. No 

changes were observed in the animals’ activity, behavior, coat quality, or biopsied ceca from 

controls (Tan et al., 2013). These data support the continued use of E. faecium ATCC 8459 and 

NRRL B-2354 as processing aids. 

 Saccharomyces cerevisiae 

 Saccharomyces cerevisiae is a unicellular yeast; its dimensions range from 1 to 16 µm 

long by 1 to 8 µm wide (Pyler and Gorton, 2008). Yeast utilize alcohol fermentation, converting 

carbohydrates to carbon dioxide and ethanol, given the presence of nitrogen, sulfur, minerals, 

and nutrients (Pyler and Gorton, 2008). S. cerevisiae cells usually exist in haploid or diploid 

state, but may enter polyploidy states as well (Pyler and Gorton, 2008). In the presence of 

sufficient nutrients, any of the ploidy states may undergo asexual vegetative growth, termed 

budding, and form strands of pseudohyphae (Dickinson, 2004)(Pyler and Gorton, 2008). This is 

desirable for the formation of pure cultures demonstrating useful fermentative characteristics for 

baking (Pyler and Gorton, 2008).  

Yeast cells also have the ability to utilize sexual reproduction (Dickinson, 2004)(Pyler 

and Gorton, 2008). Meiosis yields four haploid spores, which are contained in a saclike structure 

called an ascus (Dickinson, 2004)(Pyler and Gorton, 2008). The cells contained in an ascus 

demonstrate the greatest level of stress tolerance over stationary phase yeast cells which in turn 

exceed log phase yeast cells (Dickinson, 2004)(Pyler and Gorton, 2008). Cellular damage 

following exposure to harsh environmental conditions may impede the ability of yeasts to 

reproduce regardless of the method of replication; exposure to high temperatures may disrupt 
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cellular membranes, degrade ribosomes, or deteriorate DNA resulting in loss of viability and 

cellular death (Dawes, 2004).  

 Salmonella spp. Contamination of Flour Products 

As pathogens become better understood, it is important to reevaluate standard food 

industry practices to ensure the threat is adequately controlled. In the event silo capacity is 

exceeded, unprocessed wheat may be stored at farm-level silos or on ground pads, which may 

become contaminated by birds, rodents, or other pest species (Eglezos, 2010)(Sperber et al., 

2007). Nonetheless, Berghofer et al. (2003) cite flour as “the cleanest end product of the milling 

process” as the majority of exterior grain kernel contaminants remain attached to the outer 

layers, such as the bran, germ, and pollard (Berghofer et al., 2003). Despite the removal of the 

exterior of the kernels, flour should not be classified as a ready-to-eat (RTE) food product. The 

low water activity (aw) of wheat during storage (aw 0.40-0.65) and processing (aw 0.68-0.70) 

inhibits the proliferation of pathogens, but does not guarantee their elimination, even after 

extended periods of storage for up to one year (Berghofer et al., 2003)(Eglozos, 2010) 

(McCallum et al., 2013). Additionally, moisture may condense in milling equipment along with 

accumulated flour residues (Berghofer et al., 2003)(Eglozos, 2010). Improperly cleaned facilities 

and equipment or aerosols generated when processing incoming grain may contaminate 

outbound flour (Berghofer et al., 2003).  

Production of vast quantities of flour, being a non-homogenous solid product, leads to 

impracticality in obtaining a representative sample for laboratory analyses. Simply put, flour is 

prone to sporadic pockets of contaminants instead of uniformly detectable contamination, and it 

is not realistic to expect regular microbial sampling to ensure food safety (Speber et al., 2007). 

Nevertheless, a few attempts have been made to quantify the incidence of flour contamination. A 
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survey of nine Australian flour mills across two harvest seasons found the incidence of 

Salmonella spp. contamination of wheat flour to be less than 0.5% in 412 samples (Berghofer et 

al., 2003). Another Australian study, conducted during the 2006-2007 wheat season, estimates 

the prevalence of Salmonella spp. in wheat flour to be less than 0.7% and a mean aerobic plate 

count (APC) of 4.2 log10 CFU/g (Eglezos, 2010). Similarly, a study of U.S. wheat published by 

Richter et al. in 1993 found the mean APC to vary from 103 to 104 CFU/g, depending on the 

variety of wheat, and the prevalence of Salmonella spp. contamination to be 1.32%. This work 

was followed by a review of North American milled grain samples taken from 2003-2005 which 

suggested that APC have remained relatively unchanged while incidence of Salmonella spp. 

contamination dropped to 0.14% (n= 4,358) (Sperber et al., 2007).  

Despite the low incidence of flour contamination, an increasing number of recalls and 

outbreaks have been attributed to Salmonella spp. in flour. The most recent recall of a flour 

product occurred on April 2, 2015. Navajo Pride (Farmington, NM) recalled 5-, 25-, and 50-

pound bags of bleached, all-purpose flour after routine screening of a 5-pound sample that tested 

positive for Salmonella spp. (FDA, 2015). A few months prior, on November 14, 2014, another 

positive routine test lead Lundberg Family Farms to recall 25-pound bags of brown rice flour 

(FDA, 2014). The affected lots were marketed in retail store bulk bins (FDA, 2014). Nearly 400 

tons of soybean flour, distributed over a 10-month period, were recalled on October 4, 2011 by 

Thumb Oilseed Producer’s Cooperative for possible Salmonella spp. contamination (FDA, 

2011). None of these recalls have been associated with human illness.  

Looking into the more distant past, however, flour was identified as the most likely 

source of Salmonella Paratyphi B phage type 1 which caused an outbreak in Australia in 1952 

(Berghofer et al., 2003)(Eglezos, 2010). S. Typhimurum phage type 42 (STM42) was implicated 
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in a 2008 salmonellosis outbreak in New Zealand (Eglezos, 2010)(McCallum et al., 2013). 

STM42 was successfully isolated from unopened bags of flour at estimated concentrations of one 

cell per 50 g to one cell per 300 g (McCallum et al., 2013). The event resulted in at least 67 

illnesses and 12 hospitalizations (McCallum et al., 2013). In the resulting investigation, cases 

were 12.5 times more likely to have consumed raw cake or pancake batter than controls 

(McCallum et al., 2013). 

In 2000, a multistate outbreak of S. Thompson was traced to commercially distributed 

hamburger buns (Kimura et al., 2005). At least 55 cases of salmonellosis were identified in 

relation to the event; nine people were hospitalized (Kimura et al., 2005). In order to maintain 

virulence, a sufficient quantity of cells must survive passage through the stomach (Eglezos, 

2010)(Kimura et al., 2005).  An increasing fat content seems to exert a sparing effect on bacterial 

cells, resulting in a diminished minimum infectious dose (Eglezos, 2010)(Kimura et al., 2005). 

In the case of a hamburger bun saturated with grease, the infectious dose of Salmonella spp. may 

drop from 1,000 cells to 100 cells or less (Eglezos, 2010)(Kimura et al., 2005). In this event, it 

was speculated that the buns were likely contaminated during slicing or packaging by an ill 

bakery worker, but, as the other symptomatic bakery worker predominantly mixed dough, it is 

important to verify that current industry standard baking parameters are providing adequate 

safety to consumers (Kimura et al., 2005). 

Variation in the thermal resistance among Salmonella serovars is well documented (Ng et 

al., 1969). While S. Senftenberg is generally regarded as the most heat tolerant serovar, the 

ordering of thermal resistance of Salmonella strains has been shown to be dependent on the food 

matrix being evaluated (Ng et al., 1969). Prior exposure to less hospitable environments, 
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including desiccation and reduced pH, may lead to increased resistance to thermal treatments 

(Beney et al., 2003)(Gruzdev et al., 2011).  
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Chapter 3 - Objectives 

The objectives of this study were centered on providing the baking industry with base-

line, quantifiable data for hamburger bun process validation and justification of baking 

parameters in regard to HARPC compliance.  

 The first phase of this research was to evaluate the potential survival of target 

microorganisms in the late phases of baking. In the event of a process control failure, it is 

important to have an understanding of the relative threat of pathogen survival. The primary 

source of biological hazards in hamburger bun manufacturing was determined to be 

contaminated raw ingredients. As such, goals for the baking study were: 1) Ensure a typical 

baking process for hamburger buns reduces the threat posed by Salmonella spp. contamination in 

raw ingredients to an acceptable level; 2) Evaluate the potential use of Enterococcus faecium 

ATCC 8459 as a surrogate for Salmonella spp. during in-plant process validations; and 3) 

Evaluate the potential use of Saccharomyces cerevisiae (Fleischmann’s Compressed Yeast) as a 

potential indicator for Salmonella spp. survival during baking.  

The second phase of this project was to quantify parameters necessary for thermal 

inactivation (D- and z-values) of Salmonella spp, E. faecium ATCC 8459, and S. cerevisiae 

(Fleischmann’s Compressed Yeast) in hamburger bun dough. This allows direct comparison of 

the relative thermal tolerance between the three target species and provides definitive 

justification supporting the use of surrogate indicator organisms. Additionally, calculation of D- 

and z-values in hamburger bun dough allows processors to determine equivalent time-

temperature lethality for similar hamburger bun processes. 
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Chapter 4 - Validation of Baking to Control Salmonella Serovars in 

Hamburger Bun Manufacturing, and Evaluation of Enterococcus 

faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic 

Surrogates for Thermal Process Validation 

 Introduction 

Approximately 2,800 commercial bakeries and 6,000 retail bakeries operate in the United 

States, with a market value of nearly $30 billion per year. Baked breads account for ~40% of 

commercial bakery sales followed by rolls, buns, muffins and bagels (~20% of sales) (Bakery 

and Snacks, 2012). The Food Safety Modernization Act (FSMA) mandates that the food industry 

focus on establishing preventative controls to proactively reduce food safety hazards. Title 1 

(Sec. 103) of FSMA calls for food processing facilities to conduct and document product or 

process-specific hazard analyses and institute risk-based preventative controls to ensure product 

safety (FSMA, 2011). In the baking industry, a wide array of items are manufactured, each with 

unique characteristics, processing parameters and compositional components. Scientific 

evaluation of associated pathogen risk factors and adequacy of processing steps to mitigate these 

risks is thus a necessity. 

Although not directly linked to improper production practices, there were 4,200 illnesses 

associated with bakery products reported in the U.S. between 1998 and 2011, with bread 

products linked to 30 of these outbreaks and 706 illnesses (CSPI, 2009). Salmonella spp. are 

commonly associated with foodborne illnesses attributed to low-water activity foods and 

ingredients, such as milk powders, powdered infant formula, dry seasonings and flour (Akins, 

2014). Salmonella spp. can be introduced into bakery products prior to thermal processing 

through ingredients such as eggs (Board, 1969)(FSIS, 2008), milk products (El-Gazzar & Marth, 
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1992)(Ahmed et al., 2000), flour (Dack, 1961)(Richter et al., 1993), milk chocolate (D’Aoust, 

1977), coconut (Goepfert, 1980), peanut butter (Scheil et al., 1998), fruits (Golden et al., 1993), 

spices (Hara- Kudo et al., 2006), and yeast flavorings (Joseph et al., 1991). Moreover, 

Salmonella cells that have survived desiccation (i.e. in stored dry ingredients) have been shown 

to exhibit greater thermal resistance during processing (Gruzdev et al., 2011). The Salmonella 

infective dose has been estimated to be less than a thousand cells for many strains (Blaser & 

Newman, 1982), and can be as low as one cell (FDA BBB, 2012), depending on age, health of 

the host, and serovar/strain differences among members of the same genus. Salmonella 

contamination levels as low as 0.04-0.05 CFU/g of food have been linked to outbreaks 

(Lehmacher et al., 1995). 

Historically, S. Senftenberg 775W has been reported to be a notable heat resistant 

serovar, particularly in high-moisture foods (Ng et al., 1969). According to the U.S. Centers for 

Disease Control and Prevention, S. Typhimurium has been the most prevalent pathogenic serovar 

since 1997, and S. Newport has been reported to be the third most common pathogenic serovar 

associated with foodborne outbreaks (CDC, 2013). Although Salmonella spp. cannot grow in 

foods or ingredients with a water activity <0.93 (such as in flour), it can survive for months and 

grow when favorable conditions become available, such as rehydration of flour (Eglezos, 2010). 

Between October 2008 and January 2009, 67 S. Typhimurium Phage Type 42 cases, including 12 

hospitalizations, were reported in New Zealand and were traced to consumption of a 

contaminated uncooked baking mixture containing flour (McCallum et al., 2013). 

In order to validate and/or verify in-plant food safety processes without risking facility 

contamination, surrogates for specific pathogens are often identified and characterized through 

laboratory studies. Surrogates should be non-pathogenic and demonstrate similar growth and 



25 

survival characteristics to the specific pathogen of interest (Kornacki, 2012). Enterococcus 

faecium NRRL B-2354 [deposited at the American Type Culture Collection (Manassas, VA) as 

the Biosafety Level-1 Micrococcus freudenreichii Guillebeau ATCC 8459] has been used by the 

food industry for over 60 years for a variety of purposes, including use as a surrogate for 

pathogenic Salmonella spp. in thermal processing (Kornacki, 2012). Kopit et al. (2014) reported 

that E. faecium NRRL B-2354 has relatively high acidic and thermal resistances, and does not 

possess virulence or antibiotic resistance genes, supporting its use for food process thermal 

validation studies. E. faecium NRRL B-2354 has been characterized for its thermal destruction 

parameters and survival characteristics during dry and moist roasting of almonds, and is 

recommended by the Almond Board of California for in-plant validation of thermal processes for 

almonds to control Salmonella spp. (ABC, 2014)(Jeong et al., 2011). 

Although most bakery products undergo a putative kill step at the point of production, 

such as baking or cooking, these control points generally lack published scientific validation. 

Hence, an attempt is made to develop a kill-step validation protocol that suits the needs of U.S. 

bakery industries. We used hamburger bun manufacturing as the model to develop a scientific 

validation protocol for bakery products in general. We chose hamburger buns, as this is one of 

the most popular bakery products consumed in the U.S. and in Canada. Thermal inactivation data 

for Salmonella spp. in dough and buns/bread is scarce in the literature. Therefore, the objectives 

of this study were to validate a simulated commercial baking process for hamburger buns to 

control Salmonella spp. contamination introduced via raw ingredients, determine the 

appropriateness of using non-pathogenic surrogates (E. faecium ATCC 8459 or Saccharomyces 

cerevisiae) for in-plant process validation studies, and determine thermal inactivation parameters 

(D- and z-values) of Salmonella spp. and potential surrogates in hamburger bun dough.  
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 Materials and Methods 

 Experimental design 

For the hamburger bun baking study, flour was inoculated individually with three 

Salmonella enterica serovars, or E. faecium, and used to make dough. The dough was divided 

into dough pieces of proper weight, formed into a flat disk and placed in a pan. S. cerevisiae 

(Baker’s yeast added as part of the standard dough formula) was similarly enumerated in non-

inoculated baking trials. After proofing, the pan was put into an oven and baked at 218.3°C for 

13 minutes. The equipment (Hobart A-200 stand mixer, McDuffee bowl, fork agitator, baking 

pan) was washed with detergent and wiped with 70% ethyl alcohol between the dough inoculated 

with different organisms to avoid cross contamination. Bun sampling times [9, 11 and 13 min of 

baking, and 13 min of baking followed by 30 min post-bake room temperature cooling (B+C)] 

were evaluated to determine target organism survival during the simulated commercial 

hamburger bun baking process. The 9 and 11 minutes baking times were included to represent 

the minimum baking process which still produced an acceptable product from a quality 

standpoint. Since the time-temperature criteria are most important for effective pathogen 

destruction, thermocouples were used to measure the internal temperature. This experiment was 

designed as a randomized complete block (replications being blocks) with seven treatments: 

flour, pre-proof dough, post-proof dough, 9 min bake, 11 min bake, 13 min bake, and B+C. 

Analysis of variance for the surviving target microbial populations (log10 CFU/g) was conducted 

using SAS version 9.3 (SAS Institute, Cary, NC). Three independent replications were conducted 

for each target organism, and all microbial enumerations were done in duplicate. 

For the D- and z-value study, flour inoculated with a 3-serovar cocktail of Salmonella 

enterica, or single strains of E. faecium and S. cerevisiae, was used to prepare dough. Dough was 
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placed in Whirl-Pak filter bags, heat sealed and heated in water baths set at 55, 58 and 61°C for 

Salmonella spp. and E. faecium, and at 52, 55 and 58°C for S. cerevisiae. A lower temperature 

was used for S. cerevisiae as a complete destruction of the inoculated population was observed 

during the come-up time for 61°C sampling, and D-value calculations were not possible. The D- 

and z-value study was designed as a randomized complete block, with replications as blocks. 

Three independent replications (as represented by new inoculum preparation, different lots of 

inoculated flour, and separate days of preparation/baking) were conducted and all microbial 

enumerations were done in duplicate. Linear regression graphs were plotted using Microsoft 

EXCEL, 2011, and the D- and z-values were calculated.  

 Inoculum preparation 

Salmonella enterica serovars [Typhimurium (ATCC 14028), Newport (ATCC 6962) and 

Senftenberg (ATCC 4385)] and Enterococcus faecium ATCC 8459 were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA). All bacterial cultures were 

propagated in tryptic soy broth (TSB; Becton Dickinson, Sparks, MD) and stored at -80°C on 

protectant beads in glycerol (Pro-Lab Diagnostics Microbank Bacterial Preservation System, 

Fisher Scientific). Working cultures were activated from frozen state by transferring one bead 

into 10 mL brain heart infusion broth (BHI; Oxoid Ltd., Basingstoke, Hampshire, England) and 

incubated for 24 h at 37°C.  Individual cultures from BHI broth were then propagated as lawns 

on BHI agar plates for 24 h at 37°C (eight plates per organism). Lawns were harvested by 

washing each plate twice with 1 mL 0.1% peptone water (PW), using a disposable L-spreader to 

dislodge cells from the agar surface, and pipetting the resultant fluid into a 50 mL conical vial 

(providing ~16 mL of concentrated inoculum). When Salmonella spp. was used as a cocktail in 
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the D- and z-value study, all three serovars were mixed in equal quantities before the inoculation 

procedure.  

 Inoculation of flour 

Flour (400 g) was evenly spread shallowly in a plastic tub (35.6 x 21.6 x 14.0 cm), which 

was placed within a large biohazard bag, and was mist inoculated inside a Class II Type A2 

biosafety cabinet with the respective cultures individually at 1 mL inoculum per 100 g flour (4 

mL total) to achieve a target of ~6 log CFU/g. Open tubs of inoculated flour were placed into a 

37°C incubator and allowed to dry until the original flour weight was achieved. Inoculated flour 

was transferred into 1gallon Ziploc bags, sealed and hand-mixed, and then stored at ambient 

temperature for 48 h prior to use. Final target bacterial concentrations of the flour were 

determined by direct plating immediately prior to dough preparation.  

 Dough preparation 

All activities involving inoculated dough preparation and baking were conducted in a 

Biosafety Level-2 pilot food processing laboratory at Kansas State University using approved 

personnel safety protocols. The study utilized a “no-time” dough recipe, defined as one that 

minimizes fermentation time, representative of commercial hamburger bun manufacturing. 

Ingredients and the dough recipe provided by AIB International (Manhattan, KS) are presented 

in Table 4.1. S. cerevisiae yeast cakes were purchased from Fleischmann’s AB Mauri 

(Fleischmann’s Compressed Yeast; Chesterfield, MO). Dough ingredients were added to a 20 qt. 

McDuffee bowl, and the bowl and mixer were covered with a large plastic bag to control 

biological aerosols. Ingredients were mixed with a Hobart A-20 stand mixer with fork agitator 

attachment for 1 min on low and then 12 min on medium speed. After mixing, the inoculated 
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dough was allowed to rest in the bowl for 5 min to allow aerosols to settle before the plastic 

cover was removed. 

 

Table 4.1 Dough recipe for hamburger buns 

Ingredient Quantity 

Dry:  

     Bread Flour, Bread 700 g 

     Sugar, Granulated 84 g 

     Salt 14 g 

     Sodium Stearoyl Lactylate 3.5 g 

     Calcium Propionate 1.8 g 

     Yeast Food, no oxidants 0.7 g 

     Shortening, all-purpose 42 g 

     Yeast, compressed 17 g 

Liquid:  

     Ascorbic Acid Solution (1.6%) 1.5 mL 

     Water 478.5 mL 

 

The dough was transferred onto a flour-dusted (non-inoculated) stainless steel table, and 

samples were obtained for the pre-proof target culture enumeration. The dough was hand rolled 

into balls (71 g ± 0.5 g) and allowed to rest for 10 min at room temperature. Dough balls were 

then molded into compartments of a standard greased bun pan (eight buns per pan). Pans with 

dough were placed into a proofing cabinet at 81% relative humidity and 43.3°C for 

approximately 60 min, or until the dough rose to a height of 32 mm above the top of the pan. 
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Upon achieving this height, the post-proof dough was sampled for enumeration of target 

microbial populations and then remaining buns were baked. 

 Oven selection and optimization to mimic industry standard 

The wholesale baking industry typically uses ovens that utilize a combination of heat 

transfer mechanisms (radiant, convection, and conduction) to bake hamburger buns. These ovens 

are well suited for large-scale production, as they accommodate up to several hundred full-sized 

pans at one time, with the large batch size leveling out the transfer of heat (232.2°C for 10 

minutes being a common industry practice). In this investigation, an electric oven (Model: 

ACR3130BAW0, Amana, Whirlpool Corp., Benton Harbor, MI) was chosen to bake hamburger 

buns. Industry standard steel hamburger bun pans (inner dimensions 4” top diameter, 3½” 

bottom diameter, 5/8” depth) were cut to fit inside the electric oven. Running a single modified 

pan in this type of system would produce an over-baked bun in minimal processing time. A 

series of hamburger bun baking trials were carried out at different temperature and time periods 

to determine the optimum hamburger bun bake profile simulating the common baking industry 

practice. The buns baked at 218.3°C (425°F) for 13 minutes were found to be optimum; 

matching the baking industry’s hamburger bun end use quality parameters such as crust color, 

appearance, size, texture and internal temperature. 

 Hamburger bun baking 

The temperature of the empty conventional oven was set at 218.3°C and confirmed using 

an 8-channel data logging system (Measurement Computing USB-TC with MCC DAQ Software, 

Norton, MA) and type T thermocouples (Fine Gauge Thermocouples, Omega Engineering Inc., 

Stamford, CT). One pan containing eight buns was used for each baking treatment replication for 

each target organism. Two of the eight numbered bun positions on the tray were randomly 
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assigned to each of the four sampling times (9, 11 and 13 min of baking, and B+C). Before 

placement of the pan into the oven, thermocouples were inserted into the geometric center of the 

two buns that were randomly designated to receive the B+C treatment, and one thermocouple 

was affixed to the side of the pan to monitor oven air temperature, with readings logged at 1s 

intervals over the defined baking periods. At each bake time, two buns were removed from the 

oven and analyzed as duplicate samples to determine surviving target organism population. One 

of the two buns allowed for B+C treatment was used to measure post-bake bun pH and water 

activity (aw), and the other was analyzed for surviving target bacterial population. At each 

sampling time, the oven door was opened and the two buns were quickly removed using 

sanitized tongs, placed into stomacher bags containing pre-chilled (4°C) PW, and hand-massaged 

to minimize further thermal lethality of the treatment. 

In a follow-up study to establish the time required at 218.3°C for pathogen lethality in 

hamburger buns, dough was inoculated, prepared, and baked as previously described except 

sampling times were shifted forward and more frequent. Baking treatments were evaluated at the 

following intervals: 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 min for S. Newport; 5.5, 6.0, 6.5, 7.0, 

7.5, 8.0, 8.5, and 9.0 min for S. Typhimurium and S. Senftenberg; 7.00, 7.75, 8.50, 9.25, 10.00, 

10.75, 11.50, and 12.25 min for E. faecium. 

 Microbiological analyses 

Duplicate 10-g samples of inoculated flour, pre-proof dough (10 g), post-proof dough (71 

g), and baked whole buns (71 g) in PW were homogenized for 1 min in a lab blender (AES 

CHEMUNEX Smasher™, bioMérieux Inc., Hazelwood, MO). Serial dilutions of each sample 

were spread plated on selective and injury-recovery media. For selective plating, Salmonella 

serovars were enumerated on xylose lysine desoxycholate agar (XLD; Difco, Becton Dickinson) 
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incubated at 37ºC for 24 h, E. faecium was enumerated on m-Enterococcus agar (m-EA; Difco, 

Becton Dickinson) incubated at 37°C for 48 h, and S. cerevisiae was enumerated on potato 

dextrose agar (PDA; Oxoid Ltd.) supplemented with 100 ppm of chloramphenicol (Oxoid Ltd.) 

incubated at 35°C for 48 h. To quantify sublethally injured Salmonella spp. and E. faecium 

populations, dilutions were also plated on non-selective BHI agar incubated for 6 h, overlaid 

with 10 mL of respective selective agar (at 50°C), and incubated for an additional 24 or 48 h for 

Salmonella spp. or E. faecium, respectively. Bags containing all homogenized samples were 

stored at 4°C until results were obtained from direct plating. In cases where no viable Salmonella 

or E. faecium were detected by direct plating, 25 mL of stored sample homogenate were 

transferred into 225 mL of BHI broth and incubated for 24 h at 37°C, followed by streaking the 

enriched broth sample onto an appropriate selective agar for qualitative detection of surviving 

populations below the detection limit (0.5 log CFU/g). 

 D- and z-values determinations 

Flour was inoculated with the 3-serovar Salmonella spp. cocktail or E. faecium ATCC 

8459 to achieve a target level of ~6 log CFU/g, and dough was prepared as described previously. 

Polyethylene Whirl-Pak filter bags (Catalog No.: 01-812-5, Fisher Scientific) were trimmed to 

13 x 20.5 cm and edges were sealed using a FoodSaver® Vacuum Sealing System (Sunbeam 

Products, Boca Raton, FL). Small lead fishing line weights were attached to the bottom edge of 

each sample bag in order to submerge samples in the hot water bath and ensure adequate water 

circulation space around all bags. After proofing, 25 g of inoculated dough was transferred into 

these prepared bags, the dough inside the bag was pressed to a uniform thickness of ~0.5 cm, and 

the bags were vacuum-sealed using the FoodSaver® Vacuum Sealing System. The 

aforementioned data logging system was used to monitor temperatures of the hot water baths and 
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the dough (measured by inserting probes in the center of sealed dough samples dedicated to 

temperature monitoring only). Once target time-temperature parameters were achieved in the 

dough, a sample bag was quickly removed from the water bath and submerged in ice water for 

rapid cooling. Sampling time intervals at 55, 58 and 61°C were 25, 6, and 2 min, respectively, 

for Salmonella spp., and 85, 23, and 10 min, respectively, for E. faecium. Sampling time 

intervals for S. cerevisiae at 52, 55 and 58°C were 10, 2.5 and 0.5 min, respectively. 

Heat-treated dough samples (25 g) were diluted with 75 mL of chilled PW, homogenized 

for 1 min using a lab blender, and serially diluted. For Salmonella spp. and E. faecium 

enumeration, dilutions were spread plated on selective agars (XLD or m-E, respectively) and 

injury-recovery agars (BHI overlaid with XLD or m-E, respectively, after 6 h incubation). For S. 

cerevisiae enumeration, dilutions were spread plated on PDA supplemented with 100 ppm of 

chloramphenicol. D- and z-values were calculated as described by Michael et al. (2014). D-

values were calculated as absolute values of the inverse of the slopes of the regression lines of 

the log of viable bacterial cells versus time; whereas, z-values were calculated as absolute values 

of the inverse of slopes of the regression lines of the log of D-values versus temperatures.  

 Physical/chemical analyses of hamburger buns 

For each replication, one bun from the B+C treatment was used to determine final 

product pH and aw. For pH measurements, 15-g of the interior bun crumb was added to 100 mL 

deionized water, and the mixture was stirred continuously with a spatula until a stable pH 

reading (Oakton Instruments, Vernon Hills, IL) was obtained. The aw of the crumb and crust of 

baked buns was determined separately using an AquaLab Series 4TEV water activity meter 

(Pullman, WA). Water activities were determined for pre- and post-proof dough, along with 

separate crumb and crust measurements during baking (2, 4, 6, 8, 10, 12, 14 min), and after 
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baking (14 min + 30 min cool time) buns. At each sampling point, within 10 sec of removal from 

the oven, the crumb and crust of buns were separated, placed in water activity cups and sealed 

with Parafilm M™ (American National Can, Chicago, IL) until analyzed (within 30 min). 

 Results and Discussion 

 Water activity and pH of hamburger buns 

The mean pH of fully baked hamburger buns was 5.46 ± 0.04. From 9 to 14 minutes of 

baking, the aw of the crumb remained constant (0.971 ±0.005) whereas the aw of the crust of buns 

decreased from 0.965 to 0.728 over this baking period (Fig. 4.1). After buns were cooled for 30 

min, however, the aw of the crust increased to 0.861 ± 0.026. These aw measurements of 

breadcrumb and crust were similar to those reported by Czuchajowska et al. (1989) for finished 

bread loaves. 

 

 

Figure 4.1 Water activity (aw) of hamburger buns during the baking process 
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The 0.97 aw of the crumb paired with the observed 5.46 pH suggests the opportunity for 

growth of Salmonella spp. inside the buns during storage at ambient temperature as Salmonella 

spp. may continue to grow at aw as low as 0.94 (Smith et al., 2004). This suggests that adequate 

thermal treatment during baking of buns is vital to eliminate the potential food safety risk of 

Salmonella spp. contamination in raw bun ingredients. 

 Validation of the bun baking process 

This study sought to verify that a standard hamburger bun baking process is capable of 

delivering a desired lethal effect to ensure destruction of pathogenic microorganisms that may be 

introduced via raw ingredients. The internal heating profile (average of 15 baking runs) of 

hamburger buns during 13 min of baking in a 218.3°C conventional oven, followed by 30 min of 

ambient temperature cooling, is shown in Fig. 4.2. Crumb temperatures increased to ~100°C 

during the first 8 min of baking, and remained at this temperature for the next 5 min while buns 

were in the oven and for ~1 min after removal from the oven. Internal bun temperatures 

decreased to 50°C during the first 9 min of ambient cooling. Population levels of Salmonella 

serovars, E. faecium, and S. cerevisiae during proofing, baking and cooling as enumerated on 

selective and injury-recovery/non-selective agars are presented in Figs. 4.3 and 4.4, respectively. 

Surviving Salmonella serovar populations were similar (P > 0.05) throughout the process at 

various sampling times, with no viable cells enumerated by direct plating on selective or injury-

recovery media (detection limit of 0.22 log CFU/g) after the minimum 9 min of baking. All 

samples that tested negative by direct plating were also negative for all three Salmonella serovars 

after enrichment (indicating >6 log CFU/g reductions) for all three serovars tested. In a similar 

study, Lathrop et al. (2014) inoculated peanut butter cookie dough with a 5-serovar cocktail of 
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Salmonella spp. (Tennessee FSL-R8-5221, Tornow FSL-R8-5222, Hartford FSL-R8-5223, 

Typhimurium FSL-WI-030 and Agona FSL-S5-517) and baked at 177°C for up to 15 min. They 

reported that Salmonella spp. was detectable in the peanut butter cookies (after the enrichment) 

when baked for 14 min; however, Salmonella spp. was not detected in the cookies after 15 min 

of baking. The longer Salmonella spp. inactivation time in Lathrop et al. (2014) study compared 

to this study (9 min) could be because of the differences in the food matrices used in the 

respective studies (peanut butter cookies vs. dough; and differences in fat content and water 

activity values) or the result of reduced baking temperatures. 

 

 

Figure 4.2 Mean internal temperature profile of hamburger buns during 13 min baking 

process (218°C) followed by 30 min of cooling 
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Figure 4.3 Survival of Salmonella serovars (S. Typhimurium, ST; S. Newport, SN; S. 

Senftenberg, SS), Enterococcus faecium (EF) and Saccharomyces cerevisiae (SC) in 

hamburger buns during baking at 218°C oven temperature; enumerated using selective 

media 

 

 

Figure 4.4 Survival of Salmonella serovars (S. Typhimurium, ST; S. Newport, SN; S. 

Senftenberg, SS), Enterococcus faecium (EF) and Saccharomyces cerevisiae (SC) in 

hamburger buns during baking at 218°C oven temperature; enumerated using injury-

recovery media 
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Enterococcus faecium demonstrated greater thermal resistance compared to the 

Salmonella serovars. Although the survival of Salmonella serovars and E. faecium were similar 

(P > 0.05) until post-proofing, survival of E. faecium on both selective and injury-recovery 

media was observed up to 11 min of baking compared to no detectable Salmonella serovars at 9 

min of baking. The S. cerevisiae population during the process was similar (P > 0.05) to that of 

Salmonella serovars (Fig. 4.3); however, this reflects similar population levels in pre-baked 

dough (~7 log CFU/g), and no viable organisms detected after 9 min of baking. It is likely that 

yeast were inactivated to populations below the detection level within a short baking time. 

A follow-up study was conducted to determine the time required at these processing 

parameters to reduce selected microbial populations to the detection limit; mean data for three 

replications are summarized for selective and injury-recovery media in Figs. 4.5 and 4.6, 

respectively. The survival of S. Newport was no longer detected in samples collected after 7.0 

min of baking on injury-recovery media. S. Senftenberg was reduced to a similar level by 8.0 

min of baking as determined by direct plating on injury-recovery media. S. Typhimurium 

demonstrated intermediate recovery on injury-recovery media until 9.0 min of baking. In 

accordance with the initial data, E. faecium displayed the greatest thermal resistance and 

survived at detectable levels on injury-recovery media until 11.50 min of baking. 
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Figure 4.5 Thermal inactivation of Salmonella spp. and E. faecium in hamburger bun 

dough: viable cells enumerated on selective media 

 

 

Figure 4.6 Thermal inactivation of Salmonella spp. and E. faecium in hamburger bun 

dough: viable cells enumerated on injury-recovery media 
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 Determination of D- and z-values in bun dough 

While S. Senftenberg is generally regarded as the most thermally resistant strain, a 

cocktail of relevant Salmonella spp. is often used to generate D- and z-values as it represents the 

range of contamination possibilities in the industry (Doyle & Mazzotta, 1999). Furthermore, 

some Salmonella spp. strains react to heat differently in different food matrices. For example, in 

most experiments with eggs, S. Enteritidis shows greater heat resistance than S. Typhimurium, 

while in molten milk chocolate S. Typhimurium had greater heat tolerance compared to S. 

Senftenberg (Doyle & Mazzotta, 1999). 

Salmonella spp. populations during the thermal inactivation of 3-serovar cocktail on 

selective and injury-recovery media are presented in Figs. 4.7 and 4.8, respectively; whereas, E. 

faecium populations on selective and injury-recovery media are presented in Figs. 4.9 and 4.10, 

respectively. The Salmonella spp. D55°C, D58°C, and D61°C values were 21.30 and 28.64, 7.53 and 

7.61, and 2.29 and 3.14 min on selective and injury-recovery media, respectively; and D55°C, 

D58°C and D61°C were 87.21 and 133.33, 45.33 and 55.67, and 6.14 and 14.72 min for E. faecium 

on selective and injury-recovery media, respectively (Table 4.2). The calculated z-values of 

Salmonella spp. were 6.22 and 6.58°C, and that of E. faecium were 5.20 and 6.25°C on selective 

and injury recovery media, respectively.  



41 

  

Figure 4.7 Thermal inactivation of Salmonella spp. at 55, 58 and 61°C in hamburger bun 

dough: viable cells enumerated on XLD agar 

 

 

Figure 4.8 Thermal inactivation of Salmonella spp. at 55, 58 and 61°C in hamburger bun 

dough: viable cells enumerated on BHI agar with XLD agar overlay 
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Figure 4.9 Thermal inactivation of E. faecium at 55, 58 and 61°C in hamburger bun dough: 

viable cells enumerated on m-E agar 

 

 

Figure 4.10 Thermal inactivation of E. faecium at 55, 58 and 61°C in hamburger bun 

dough: viable cells enumerated on BHI agar with m-E agar overlay 
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Table 4.2 D-values (min) and z-values (°C) of a 3-serovar Salmonella spp. cocktail, 

Enterococcus faecium ATCC 8459, and Saccharomyces cerevisiae during heating of 

hamburger bun dough 

  Salmonella spp. E. faecium S. cerevisiae 

 BHI/XLDa XLDb BHI/m-Ec m-Ed PDAe 

T
em

p
er

at
u

re
 

(°
C

) 

52 NDf ND ND ND 18.73 ± 0.72 

55 28.64 ± 5.19 21.30 ± 2.61 133.33 ± 0.00 87.21 ± 4.74 5.67 ± 1.51 

58 7.61 ± 0.61 7.53 ± 0.61 55.67 ± 9.00 45.33 ± 6.79 1.03 ± 0.21 

61 3.14 ± 0.32 2.29 ± 0.21 14.72 ± 4.11 6.14 ± 0.47 ND 

 z-value 6.58 ± 0.96 6.22 ± 0.32 6.25 ± 0.80 5.20 ± 0.05 4.74 ± 0.34 

a Injury-recovery media, Brain Heart Infusion (BHI) agar with Xylose Lysine Desoxycholate 

(XLD) agar overlay 
b Selective medium, XLD agar  
c Injury-recovery media, BHI agar with m-Enterococcus (m-E) agar overlay 
d Selective medium, m-Enterococcus agar 
e Potato Dextrose agar plus choramphenicol 
f ND: Not Determined 

 

The greater D- and z-values of Salmonella spp. and E. faecium on the injury recovery 

media compared to the corresponding D-values on the selective media, confirms that a sub-

population of injured bacterial cells is able to survive heating in dough at the three temperatures 

studied in the current study. Injured pathogenic cells can recover when favorable environmental 

conditions are available and may pose a foodborne illness risk. 

McCormick et al. (2003) reported the D-value of Salmonella Typhimurium in low-fat 

ready-to-eat turkey bologna as 4.63 and 0.95 min at 57 and 60°C, respectively. They also 

reported the z-value of S. Typhimurium as 5.56°C. D- and z-values reported by McCormick et 

al. (2003) are different than values determined in this study because of differences in the 

composition of bologna and bun dough, along with differences in Salmonella strains used. 

Bianchini et al. (2014) reported that during extrusion of balanced carbohydrate-protein meal, 

minimum temperature required to achieve a 5-log reduction for a 5-strain cocktail of Salmonella 
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enterica (Branderup NVSL 96-12528, Oranienburg NVSL 96-12608, Typhimurium ATCC 

14028, Enteritidis IV/NVSL 94-13062 and Hedelber/Sheldon 3347-1) was 60.6ºC compared to 

73.7ºC for Enterococcus faecium NRRL B-2354. The authors stated that E. faecium can be used 

for the in-plant thermal inactivation validation studies for Salmonella spp. during extrusion, as 

the inactivation temperature for E. faecium was higher compared to Salmonella spp.  

Populations of S. cerevisiae vs. time during thermal inactivation at 52, 55 and 58 °C are 

presented in Fig. 4.11. The D-values of S. cerevisiae in hamburger bun dough were 18.73, 5.67 

and 1.03 min at 52, 55 and 58°C, respectively, and the z-value of S. cerevisiae was 4.74 (Table 

4.2). These D and z values for S. cerevisiae were considerably lower than those for Salmonella 

spp. and E. faecium. In comparison, the D58°C values of the three microorganisms (7.61 ± 0.61 

for Salmonella, 55.67 ± 9.0 for E. faecium, and 1.03 ± 0.21 for S. cerevisiae) point out the 

challenges for using E. faecium or S. cerevisiae as surrogates for Salmonella spp. during baking 

validation studies. In such instances, the differences in D-values should be taken into 

consideration. López-Malo et al. (1999) reported that the D-values of S. cerevisiae in Sabouraud 

glucose 2% broth were 18.3, 4.8 and 2.7 at 50, 52.5 and 55ºC, respectively. The D-values 

reported by López-Malo et al. (1999) were lower than those reported in this study because of the 

differences in the heating medium (liquid vs. solid matrix). However, López-Malo et al. (1999) 

reported similar z-values (4.2°C) as those reported in the current study, indicating that the 

thermal sensitivity of S. cerevisiae to the change in the temperature were similar in Sabouraud 

broth and hamburger buns.  
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Figure 4.11 Thermal inactivation of S. cerevisiae in hamburger bun dough at 52, 55 and 

58°C as enumerated on PDA supplemented with 100 ppm chloramphenicol 
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Figure 4.12 Log D-value versus temperature for Salmonella spp. (SS) enumerated on XLD 

agar and BHI agar overlayed with XLD; E. faecium (EF) enumerated on m-E agar and 

BHI overlayed with m-E agar; S. cerevisiae (SC) enumerated on PDA supplemented with 

100 ppm chloramphenicol  
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Chapter 5 - Conclusions 

Hamburger bun dough exposed to an oven temperature and baking time typical of a 

commercial baking process was highly lethal to all three microbial populations studied. The high 

humidity of the forming crumb combined with internal temperatures approaching that of steam is 

an extremely destructive combination. While the aw of the crust decreases during baking, 

elevated peak temperature exposure ensures adequate lethality. The general hamburger bun 

baking process evaluated in these experiments is sufficient to reduce Salmonella spp. 

contamination in raw ingredients by > 6 log cycles. In the known incidents of Salmonella spp. 

contamination of flour, this level of lethality should be sufficient to yield a product which is safe 

for human consumption.  

Due to dramatic shifts in temperature during the baking process, Saccharomyces 

cerevisiae in hamburger bun dough were unable to survive any of the baking treatments 

examined. While it may be appealing for bakers to avoid addition of an artificial surrogate, the 

thermal tolerance of S. cerevisiae was poor compared to Salmonella spp.; therefore, a lack of 

recovery of S. cerevisiae cannot approximate the survival of Salmonella spp. making it an 

ineffective surrogate. 

Enterococcus faecium ATCC 8459, on the other hand, was recovered from hamburger 

buns that were under-baked while corresponding Salmonella spp. enrichments were negative. 

These data were further reinforced by calculation of the D-values in hamburger bun dough. E. 

faecium consistently outperformed Salmonella spp. in terms of survival at lethal temperatures. 

Work by other scientists confirms these findings in other food matrices and verifies the lack of 

virulence factors in E. faecium, lending further credibility to its use as a conservative surrogate 

for Salmonella spp. in hamburger bun baking validations. 
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These studies are meant to entice discussion regarding the survival characteristics of 

bacteria in bakery products. Only a small fraction of the baking industry is represented by this 

work. While it provides a starting point for justification of standard production guidelines, more 

research in this field is of critical importance. In order to comply with FSMA, these experiments 

need to be repeated across the broad range of diverse bakery products and also for other 

pathogenic bacteria which may contaminate raw ingredients. Furthermore, laboratory scale 

research can only serve to open the door for extensive commercial scale validations. What has 

been observed in a laboratory must be certified by in-plant analyses to continue to hold merit. 
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Appendix A - Images 

 

Figure A.1 Inoculation of flour was performed in a Class II Type A2 biosafety cabinet  
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Figure A.2 Ingredients were mixed with a Hobart A-20 stand mixer with fork agitator 

attachment in a Biosafety Level-2 pilot food processing laboratory 
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Figure A.3 Dough was hand rolled into balls prior to resting and proofing 
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Figure A.4 Dough balls were allowed to rest for 10 min at room temperature after rolling 
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Figure A.5 Dough balls were molded into compartments of a standard greased bun pan for 

proofing 
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Figure A.7 D- and z-value study configuration 

Figure A.6 Thermocouples were inserted into the geometric center of buns and one 

thermocouple was affixed to the side of the pan to monitor oven air temperature 


