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Abstract 

Seismic reservoir characterization and prospect evaluation based 3D seismic attributes 

analysis in Kansas has been successful in contributing to the tasks of building static and dynamic 

reservoir models and in identifying commercial hydrocarbon prospects. In some areas, reservoir 

heterogeneities introduce challenges, resulting in some wells with poor economics. Analysis of 

seismic attributes gives insight into hydrocarbon presence, fluid movement (in time lapse mode), 

porosity, and other factors used in evaluating reservoir potential. This study evaluates a 

producing lease using seismic attributes analysis of an area covered by a 2010 3D seismic survey 

in the Morrison Northeast field and Morrison field of Clark County, KS. The target horizon is the 

Viola Limestone, which continues to produce from seven of twelve wells completed within the 

survey area.  In order to understand reservoir heterogeneities, hydrocarbon entrapment settings 

and the implications for future development plans, a seismic attributes extraction and analysis, 

guided with geophysical well-logs, was conducted with emphasis on instantaneous attributes and 

amplitude anomalies.  Investigations into tuning effects were conducted in light of amplitude 

anomalies to gain insight into what seismic results led to the completion of the twelve wells in 

the area drilled based on the seismic survey results.  Further analysis was conducted to determine 

if the unsuccessful wells completed could have been avoided.  Finally the study attempts to 

present a set of 3D seismic attributes associated with the successful wells, which will assist in 

placing new wells in other locations within the two fields, as well as promote a consistent 

understanding of entrapment controls in this field. 
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Chapter 1 - Introduction 

 1.1 Summary 

 

3D seismic surveys are very useful in many exploration programs because of the high 

structural and stratigraphic resolution as well as the rock-properties trends that can be inferred 

based on seismic attributes.  Analysis of seismic attributes such as root mean squared (RMS) 

amplitude, relative acoustic impedance, average energy and attenuation can indicate good 

hydrocarbon reservoir properties due to identifying lithofacies, higher porosities, structural and 

stratigraphic controls as well as paleotopography.  Other, instantaneous attributes such as 

instantaneous phase, instantaneous frequency, thin bed indicator and normalized amplitude can 

aid in accurately tracking a horizon of interest throughout a seismic data volume, and in 

determining zones of hydrocarbon saturation.  Using independent attributes, or a combination of 

attributes, one can evaluate a hydrocarbon reservoir.  Relationships between attributes of seismic 

data and reservoir characterization and development have been recognized recently, for example, 

seismic amplitude, envelope, root mean square (RMS) amplitude, acoustic impedance and elastic 

impedance can all indicate changes in lithology, while layer thickness can be indicated by peak-

to-trough thickness, peak frequency and bandwidth (Chopra & Marfurt, 2008).  Spectral 

decomposition can aid in recognizing thinning and thickening beds by providing clear images of 

stratigraphic features that may not be discernable using just broadband data.  This is done by 

providing a way to examine a geologic feature at any frequency (Subrahmanyam & Rao, 2008). 

Thickening and thinning of strata can be recognized by animating through a series of frequencies 

along an interpreted horizon allowing an interpreter to identify where strata are thinning and 

thickening (Chopra & Marfurt, 2008).  Lateral continuity of events can be evaluated using 
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instantaneous attributes like instantaneous phase which is useful attribute in indicating lateral 

continuity of rock layers and making a detailed visualization of bedding configurations (IHS, 

2012), and it can make weakly coherent events more clear (Taner et al, 1977).  Normalized 

amplitude is also useful in confirming the lateral continuity of events and tracking horizons of 

interest by determining the direction of lateral continuity (IHS, 2012)  

In analyzing various seismic attributes, this study will aim to determine whether the main 

control on well productivity in the study area is related to paleotopography and/or lithological 

heterogeneities as entrapment controls.  The attributes analyzed will reflect this goal and an 

emphasis will be put on attributes that evaluate lithological heterogeneities and attributes that 

give insight into the thinning and thickening of layers generating paleotopographic traps.       

In December of 2010 Coral Coast Petroleum obtained a permit to begin drilling for 

hydrocarbons within the Morrison Northeast field and Morrison field in Clark County, KS.  The 

prospect within this field was based on a 3D seismic survey that predicted the presence of an 

economically viable hydrocarbon reservoir within the Viola limestone.  Following the successful 

completion of Stephens 1, eleven more wells were completed within the field.  Seven of the 

wells drilled are still producing oil and/or gas from the Viola limestone. One well (initially dry 

and abandoned in the Viola) produces from the Morrow, three wells were dry holes and a fifth 

unsuccessful well targeting the Viola within the survey also did not produce as predicted and was 

converted into a SWD well.  The survey also includes the location of the Harden 4 well 

originally drilled by Berexeco, Inc. in 2007 that was a dry hole.   

This study will aim to explain what attributes or seismic signatures led to the drilling of 

twelve wells in the area targeting the Viola.  The study will also attempt to determine if attributes 

unique to producing wells can be applied to other locations within the Viola Limestone.  Finally, 
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this study will attempt to determine if reprocessing seismic data could have avoided drilling the 

dry holes, and a poor producing well that was converted into a SWD well. 

 

 

 1.2 Study Area 

The study area lies within the Hugoton embayment of Kansas which is a northern shelf-

like extension of the Anadarko basin.  The Hugoton embayment is bounded by uplifted areas on 

the west by the Sierra Grande Arch, north by the Central Kansas Uplift, and east by the Pratt 

Anticline as seen in Figure 1-1(Ball 1991).  The area covered by the 3D seismic survey is located 

in Clark County, KS in the southwestern portion of the state as seen in Figure 1-2.  A 3D seismic 

survey that lead to the drilling of twelve wells within the study area in the Morrison Northeast 

field and Morrison field.  Figure 1-3 shows the location of the study in east-central Clark County.  

The twelve wells within the area covered by the seismic data volume drilled by Coral Coast 

Petroleum LC and one by Berexeco, Inc. are shown in Figure 1-4.   
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Figure 1-1 Anadarko Basin map.  Red star indicates approximate location of the study area 

within Clark County, KS. (Adjusted from Ball, 1991).  
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Figure 1-2 County map of Kansas. Yellow star indicates location of Clark County, KS. 

(Adjusted from www.kshs.org, 2015). 
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Figure 1-3 Southern Clark County KS map. The Morrison NE and Morrison fields where 

the wells were drilled are circled (KGS, 2014). 
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Figure 1-4 Study area within the southern portion of the Morrison NE and north east 

portion of the Morrison fields with the twelve wells drilled within the 3D seismic survey 

labeled (Adjusted from KGS, 2015).  Harden 4 was drilled by Berexeco, Inc., Stephens 1-

10, ‘A’ 1 and Harden 1 were drilled by Coral Coast Petroleum, LLC. 

 

 

 1.3 Field History 

The first well in the area was drilled in 1954 and produced oil from formations 

within the Morrowan stage (Figure 1-5).  From 1954 to 1966 19,734 barrels of oil were 

produced from the field.  Below is a chart of production since 1966 within the Morrison 

Northeast field of Clark County, Kansas, which the majority of the survey area is within 

(KGS, 2015).  Small amounts of oil and gas were produced between 1973 and 2011 with 

a spike in gas production from the mid 80’s through the early 90’s.  In 2011 Coral Coast 

Petroleum began production within the Viola limestone with great success. Seven wells 

drilled within the area covered by this seismic survey targeting the Viola were successful 
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oil and gas producing wells (Tables 1-1 & 1-2).  This success could lead to additional 

wells drilled into the Viola limestone throughout this 3D seismic survey area. 

 

Figure 1-5 Stratigraphic column of the Morrison NE field (KGS 2015). 
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Year  

Oil  Gas  

Production 

(bbls) 
Wells 

Cumulative 

(bbls) 

Production 

(mcf) 
Wells 

Cumulative 

(mcf) 

1966 2,152 2 19,734 - - 0 

1967 2,031 3 21,765 - - 0 

1968 1,411 2 23,176 3,224,056 3 3,224,056 

1969 1,498 2 24,674 54,952 2 3,279,008 

1970 1,411 2 26,085 62,871 2 3,341,879 

1971 982 2 27,067 8,935 2 3,350,814 

1972 - - 27,067 4,196 1 3,355,010 

1973 - - 27,067 - - 3,355,010 

1974 - - 27,067 - - 3,355,010 

1975 - - 27,067 - - 3,355,010 

1976 - - 27,067 - - 3,355,010 

1977 - - 27,067 - - 3,355,010 

1978 - - 27,067 - - 3,355,010 

1979 - - 27,067 - - 3,355,010 

1980 - - 27,067 - - 3,355,010 

1981 - - 27,067 - - 3,355,010 

1982 - - 27,067 - - 3,355,010 

1983 - - 27,067 7,120 1 3,362,130 

1984 127 1 27,194 78,740 1 3,440,870 

1985 - - 27,194 27,251 1 3,468,121 

1986 - - 27,194 17,916 1 3,486,037 

1987 - - 27,194 12,409 1 3,498,446 

1988 - - 27,194 24,276 1 3,522,722 

1989 - - 27,194 37,147 1 3,559,869 

1990 140 1 27,334 105,602 3 3,665,471 

1991 - - 27,334 114,727 2 3,780,198 

1992 51 1 27,385 266 1 3,780,464 

1993 - - 27,385 - - 3,780,464 

1994 - - 27,385 1,163 1 3,781,627 

1995 - - 27,385 - - 3,781,627 

1996 - - 27,385 - - 3,781,627 

1997 - - 27,385 - - 3,781,627 

1998 - - 27,385 - - 3,781,627 

1999 - - 27,385 - - 3,781,627 

2000 - - 27,385 - - 3,781,627 

2001 - - 27,385 - - 3,781,627 

2002 - - 27,385 - - 3,781,627 
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2003 - - 27,385 - - 3,781,627 

2004 - - 27,385 - - 3,781,627 

2005 - - 27,385 - - 3,781,627 

2006 - - 27,385 - - 3,781,627 

2007 - - 27,385 - - 3,781,627 

2008 - - 27,385 - - 3,781,627 

2009 - - 27,385 5,182 2 
3,786,809  

2010 - - 27,385 - - 3,786,809 

2011 47,065 2 74,450 34,163 2 3,820,972 

2012 105,605 5 180,055 121,659 4 3,942,631 

2013 68,568 6 248,623 179,069 5 4,121,700 

2014 30,148 6 278,732 92,610 5 4,214,310 

2015* 8,954 7 287,725 26,169 4 4,243,479 

*Through 7-2015    

Table 1-1 Production history of the Morrison NE field showing increase in activity 

following the completion of the 3D seismic survey (KGS 2015). 
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Well Year Oil Production (bbls) Gas Production (mcf) 

Stephens 1*** 2011 

2012 

2013 

2014 

2015 

44,694 

8,066  

2,081 

799 

478* 

34,163 

113,997 

109,555 

83,198 

25,240** 

Stephens 2*** 2011 

2012 

2013 

2014 

2015 

2,371 

42,803 

19,395 

6,312 

1,248** 

N/A 

Stephens 3 2011 D&A D&A 

Stephens 4*** 2012 

2013 

2014 

2015 

46,430 

18,113 

11,151 

2,286** 

N/A 

Stephens 5 2012 

2013 

3,992 

494-Converted to SWD 

2,648 

 

Stephens 6 2013 

2014 

2015 

6,701 

1,608 

306* 

10,938 

4,560 

1,709** 

Stephens 7 2013 

2014 

2015 

15,293 

636 

140**** 

21,465 

 

240** 

Stephens 8 2013 D&A D&A 

Stephens 9 2013 

2014 

2015 

 

124 

3,373 

155,408 

61,161** 

Stephens 10 2013 N/A N/A 

Stephens ‘A’1 2011 D&A D&A 

Harden 1 2012 

2013 

2014 

2015* 

4,384 

13,191 

1,265 

166 

5,014 

48,049 

639***** 

Harden 4 2007 D&A D&A 

*Through 5-2015, **Through 7-2015, ***Combined gas production of Stephens 1,2&4, 

****Through 2-2015, *****Through 8-2014, ******Through 5-2014. 

Table 1-2 Production data for the 13 wells drilled within the 3D seismic survey area (KGS 

2015). 
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 1.4 Paleotopographic Traps 

Viola production within the study area is not necessarily structurally controlled.  

Production is controlled by preservation of the upper Viola which lies below an erosional 

unconformity separating it from the Maquoketa above.  The upper Viola contains the porous 

dolomite that is associated with production.  The result of this erosional unconformity is that the 

Viola produces from a paleotopographic trap (Richardson, 2013).   

  

 1.5 Purpose 

The purpose of this study is to determine what specific seismic attributes successfully 

locate paleotopographic or stratigraphic traps within the Viola limestone and provide 

discriminating trends for the drilling results of the thirteen wells covered by the 3D seismic 

survey.  The study will also develop a prospect analysis based on drilling results, well log 

analysis, and 3D seismic attributes analysis.  This prospect analysis will aid in determining 

whether or not the controlling factor(s) in the success of wells targeting the Viola limestone in 

this field is simply paleogeographic heterogeneities within the field, lithological heterogeneities 

in the Morrison NE field or a combination of the two.  Determining the extent of the seismic 

attributes that indicate hydrocarbon reservoirs could benefit future operations in this area.  In 

addition, this study will attempt to determine if reprocessing the 3D seismic data could have 

avoided drilling the dry hole seen in Stephens 3, 8, ‘A’1, Harden 4 and the poor production that 

lead to Stephens 5 being converted into a SWD well.  
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Chapter 2- Literature Review 

 2.1 Geological Review 

The zone of interest in this study within the Morrison NE field includes Upper 

Ordovician Maquoketa limestone, the Middle Ordovician stage Viola and Simpson groups and 

the Lower Ordovician/Cambrian Arbuckle group.  These four formations are important to the 

study because the Maquoketa and the Simpson bound the Viola limestone above and below, and 

the Arbuckle forms an easy to recognize seismic reflection that aids in locating the horizons of 

interest.  The producing formation of the wells within the 3D seismic survey is the Middle 

Ordovician Viola limestone.  Recognizing these strata on well logs and in seismic sections is 

crucial in moving forward with this study to ensure horizons picked and attribute analysis is 

carried out at the correct time depth in the seismic section.  A stratigraphic column of the study 

area is displayed in Figure 2-1.    



 

14 

 

Figure 2-1 Stratigraphic column showing the formations of interest in the study area (Cole, 

1975) 

 

 2.1-1 Maquoketa Shale 

 The Upper Ordovician Maquoketa shale is a limestone in the study area that is a difficult 

to recognize but important unit with regard to Viola limestone production in the Morrison NE 

field.  This limestone serves as the seal above the Viola limestone in the study area.  The 

Maquoketa is a cream to light gray, dense limestone with no visible porosity and a thickness of 
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about 20 to 25 feet within the study area.  This dense non-porous rock makes an excellent seal 

for the petroleum system in the area (KGS, 2015). 

 

 2.1-2 Simpson Formation 

The Middle Ordovician Simpson formation marks the bottom of the Viola limestone and 

is divided into three parts, shale and limestone represent the top of the formation, below that is 

the upper Simpson sand followed by the lower Simpson sand.  The top portion of the Simpson 

formation consists of two hard and blocky shale deposits with a layer of soft, chalky fossiliferous 

limestone that has poor porosity in between the two shale layers.  This top portion is underlain by 

the upper Simpson sand which consists of a fine-grained, poorly sorted, sub-rounded sandstone 

consisting mostly of quartz with abundant shale inclusions.  The upper sand also contains a thick 

(~60 feet) shale layer similar to what is seen in the top portion of the Simpson formation.  The 

base of the Simpson formation consists of a medium-coarse grained, sub-rounded quartz 

sandstone that is about 15 feet thick throughout the study area (KGS, 2015). 

 

 2.1-3 Viola Limestone 

The producing formation of the wells within the 3D seismic survey is the Ordovician 

Viola limestone.  The Viola limestone was deposited in the middle Ordovician period in a warm 

tropical marine setting (Figure 2-3), and is a medium to coarse crystalline vuggy dolomite 

containing scattered chert throughout with a thickness of about 175 to 200 feet within the study 

area.  Vugs within the Viola exist mainly in the upper Viola and give it a good 

porosity/permeability which makes it an excellent reservoir rock for hydrocarbons to be stored 

(KGS, 2015).  The Viola sits below an erosional unconformity separating it from the overlying 
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Maquoketa/Kinderhook section representing about 20 Ma of no deposition and subaerial 

exposure contributing to the formation of vugs that give the Viola its good porosity/permeability.  

Subaerial exposure is also responsible for generating the paleogeographic highs and lows within 

the Viola.  Below this productive zone the Viola is more dense and crystalline showing no 

productive porosity/permeability (“C” zone).  A model of a paleotopographic trap as shown in 

Figure 2-2 within the Viola is the result of this erosional unconformity (Richardson, 2013).  

 

Figure 2-2 Idealized north-south cross section showing paleotopographic traps in the Viola 

limestone (Richardson, 2013). 

 

 2.1-4 Arbuckle Group 

The lower Ordovician and Cambrian Arbuckle group is made up of dolomite, 

sandy/cherty dolomite and sandstone that exhibit high porosity and permeability.  Arbuckle 

group rocks that exhibit shale only exists directly beneath shaly beds in the Simpson (Cole, 

1975).  The Arbuckle group is important to this study because of its seismic signature which is 

easy to pick up in the seismic data volume.  This allows for accurate location and picking of 

other horizons of interest within the study area.  
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 2.1-5 Depositional Environment 

The Viola limestone was deposited during the Middle Ordovician period, a time period in 

which North America was located near the equator.  During this time period, much of what is 

now the state of Kansas, and the majority of the continent was covered by an extensive 

epicontinental sea (Figure 2-3) (Barnes, 2004).  Sedimentation during the Middle Ordovician 

was controlled by this epicontinental sea, as well as parts of the Transcontinental Arch that 

stretched across present day Kansas (Ross 1976 and St. Clair, 1981).  Kansas was split by the 

Central Kansas Arch, which is part of the Transcontinental Arch, from northwest to southeast 

during the time of Viola deposition (Figure 2-4) (St. Clair, 1981).  Uplifts, like the Central 

Kansas Arch created a shallow sea across the Southwest Kansas Basin, making an environment 

suitable for carbonate rocks to be deposited.  Due to being deposited in this type of environment, 

the Viola is considered to be a shelf carbonate deposit.  During the Middle Ordovician period, 

the epicontinental sea covering present day Kansas experienced two marine transgressions where 

sea level fell and rose again (Bornemann et al., 1982).  Subaerial exposure of the Viola during 

these allowed for dissolution to occur within the upper Viola limestone, allowing the secondary, 

vuggy porosity to develop within the upper Viola, as well as paleotopographic highs and lows to 

be generated within the Viola.   

 

 2.1-5 a) Vuggy Porosity 

Vuggy porosity can be defined as irregular holes that cut across grains and cement 

boundaries.  Vugs and vuggy porosity are very common descriptive terms for describing porosity 

in carbonate rocks.  Choquette and Pray (1970) describe a vug as a pore that is (1) somewhat 

equant, or not markedly elongated, (2) has a diameter greater than 1/16 mm and (3) is not fabric 
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selective.  Vuggy porosity is usually a secondary porosity that occurs due to dissolution of the 

preexisting rock.  

 
Figure 2-3 Shows a shallow epicontinental sea responsible for depositing the sediment that 

makes up the Middle Ordovician Viola in Kansas (Blakey, 2015). 

 

Figure 2-4 Structures present in Kansas during Viola deposition (from Merriam, 1963) 
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 2.2 Seismic Attributes 

Reflection seismology originated in the 1920’s and slowly developed into the 1950’s.  A 

major breakthrough occurred in the 1960’s and 1970’s with the advent of digital recording and 

processing as well as the common midpoint stacking method.  This is when reflection 

seismology became an important tool for the exploration geologist.  Through the 1980’s the 

quality of 2D seismic profiles increased but limitations in their ability to show complex 

structures posed a problem for interpretation.  This problem with 3D resolution was solved by 

the introduction of 3D seismic acquisition and processing in the late 1980’s.  3D seismic surveys 

have the ability to provide data that can be used to interpret stratigraphy, make detailed structural 

analysis and see fluid rock interactions (Cartwright & Huuse, 2005).   

Seismic exploration aims to map the geologic features that are associated with the 

deposition, generation, migration, and entrapment of hydrocarbons, while seismic exploitation 

characterizes static and dynamic characteristics of hydrocarbon reservoirs.  Seismic attributes 

measure characteristics of interest to petroleum exploration and exploitation.  Good seismic 

attributes can be directly sensitive to the geologic feature or reservoir property of interest, or 

allow structural analysis of depositional environment to be defined allowing features or 

properties of interest to be inferred (Chopra & Marfurt, 2005).   

Attributes analysis has been important to reflection seismology since the 1930’s when 

travel times to coherent reflections began to be picked by geophysicists on seismic field 

records.  As computer technology advanced, so did the evolution of seismic attributes.  The 

1960’s brought digital recording which improved measurements of seismic amplitude as well as 

correlating strong amplitudes with presence of hydrocarbon in rock pores (“bright spots”).  Early 

in the 1970’s color printers were able to display reflection strength, frequency, phase and interval 
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velocity over black and white seismic records.  Interpretation workstations provided interpreters 

in the 1980’s the ability to quickly interact with data, integrating seismic traces with other 

information like well logs.  With advances in computer technology, the 1990’s brought on the 

industry adoption of 3D seismic attribute extractions.  Associating attributes with 3D seismic 

sections moved attributes analysis away from seismic stratigraphy and more towards reservoir 

characterization and exploitation of hydrocarbon resources.  As time progressed 3D seismic 

attributes analysis and development in rock physics research allowed for the direct relation of 

attributes to rock properties.  Today large volumes of different data can be integrated and 

numerous seismic attributes can be calculated on a routine basis by seismic interpreters looking 

for geologic information from seismic data (Chopra & Marfurt. 2005).   

More than fifty distinct seismic attributes can be calculated from seismic data and 

subsequently applied to interpretation of geologic structure, stratigraphy and rock/pore fluid 

properties.  As seismic attributes continue to grow in number and variety, attempts have been 

made to classify them into families to better understand and apply them to hydrocarbon 

exploration and exploitation.  A most recent classification scheme divides seismic attributes into 

general and specific categories.  General attributes measure geometric, kinematic, dynamic, or 

statistical features from seismic data.  Attributes in the general category include reflector 

amplitude, reflector time, reflector dip and azimuth, complex amplitude and frequency, 

generalized Hilbert attributes, illumination, edge detection/coherence, AVO, and spectral 

decomposition.  General attributes are based on physical or morphological character of the data 

connected to lithology or geology thus they are ‘generally’ able to be applied from basin to basin 

all around the Earth.  Specific attributes may correlate to a geologic feature or to reservoir 

productivity in a specific basin, but these correlations don’t apply to other basins.  Hundreds of 
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specific attributes are cited in literature, but many are sums, products, or combinations of general 

attributes being applied to a specific basin (Chopra & Marfurt, 2005).  

Attributes are being used by geoscientists to map features on a scale as small as an 

individual reservoir to as large as an entire basin.  Relationships between attributes of seismic 

data and reservoir characterization/development have been recognized recently, for example, 

seismic amplitude, envelope, root mean square (RMS) amplitude, acoustic impedance and elastic 

impedance can all indicate changes in lithology, while layer thickness can be indicated by peak-

to-trough thickness, peak frequency and bandwidth.  This use of seismic attributes has been 

increasing in energy companies, geoscience contractors, and in universities when looking to 

improve workflows using these well-established attributes as well as looking at previously 

unrecognized or overlooked geologic features.   (Chopra & Marfurt, 2008).  

Generally interpreters work with amplitude character based on a single dominant 

frequency which can be modified by thin-bed tuning (Chopra & Marfurt, 2008).  Spectral 

decomposition can give clear images of stratigraphic feature that may not be discernable using 

just broadband data by providing a way to examine a geologic feature at any frequency 

(Subrahmanyam & Rao, 2008).  Using spectral decomposition replaces the single input trace 

with a gather of traces corresponding to the spectral decomposition of the input attribute.  The 

input to spectral decomposition is a seismic volume while the output is several volumes 

representing individual frequency bands.  Spectral decomposition allows for structures with 

different frequency bands to be illuminated to see if a particular frequency band gives better 

resolution.  Animating through a series of frequencies along an interpreted horizon allows an 

interpreted to identify where strata are thinning and thickening (Chopra & Marfurt, 2008).    
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 2.2-1 Complex Seismic Trace 

Processed seismic data is used to characterize reservoirs using both spatial and temporal 

variations in reflection amplitude, reflection phase and wavelet frequency.  A complex seismic 

trace is required for generating certain seismic attributes because it introduces the concepts of 

instantaneous seismic amplitude, phase and frequency allowing for the generation of 

instantaneous seismic attributes.  Instantaneous, when referring to seismic amplitude, phase and 

frequency, means that a value for each is calculated for every time sample along the seismic 

trace.  This trace is referred to as a complex seismic trace, not because it is mathematically 

complex, but because it is generated using two inputs (1) a real part (actual or real seismic trace) 

and (2) an imaginary part (quadrature or imaginary seismic trace).  The first input is a seismic 

trace which is the recorded curve from a seismograph, and is referred to as the actual seismic 

trace or real seismic trace (Taner et al, 1977).  This is the first input in generating what is known 

as the complex seismic trace that is required when generating seismic attributes.  The second 

input in generating the complex seismic trace is known as the quadrature trace or imaginary 

seismic trace (Taner et al, 1977).  The imaginary seismic trace is calculated using the Hilbert 

transform of the real seismic trace.  The Hilbert transform is a filter that is applied to stacked 

seismic data (real seismic trace) that rotates the phase angle by 90 degrees.  This rotation of 

phase angles cause what would be a zero-crossing on the real seismic trace to be either a peak or 

trough on the imaginary trace, while peaks and troughs on the real seismic trace will be zero-

crossings on the imaginary trace (Figure 2-5) (Partyka, 1999).  The real seismic trace and 

imaginary seismic trace are then combined to generate the complex seismic trace, which 

preserves the amplitude spectrum of both of the seismic traces and is displayed in 3D as a helical 
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spiral along the time axis with the real seismic trace on one axis and the imaginary seismic trace 

on the other (Figure 2-6) (Taner et. al, 1977). 

 

Figure 2-5 (a) Is the real seismic trace and (b) is the imaginary seismic trace.  The x-axis is 

amplitude and the y-axis is two-way travel time.  Note the zero-crossings in the real seismic 

trace result in peaks and troughs in the imaginary seismic trace, while peaks and troughs 

in the real seismic trace result in zero-crossings in the imaginary trace and vice versa.  The 

dotted line is reflection strength (Taner et. al, 1977). 
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Figure 

2-6 A diagram of a portion of an actual complex seismic trace showing the quadrature 

(imaginary) trace on the y-axis, the actual (real) seismic trace on the x-axis and the helical 

complex seismic trace on the time axis in 3D (BEG, 2015).   
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Chapter 3 - Data and Methods 

 

 3.1 Data Collected 

The first step in beginning this study was to collect all available data for the zone of 

interest within the study area.  Data collected included the 3D seismic survey, digital and paper 

well logs for the 12 wells drilled based off of the 3D seismic survey and the well drilled prior to 

the survey being completed within the area covered by the survey, details about each well (Table 

3-1) and production data for the Morrison NE field (Tables 1-1 & 1-2).  Coral Coast Petroleum 

acquired the seismic data in 2010, in the Morrison NE field, Clark County, Kansas and donated 

the survey for this study.  Well and production data was available from the Kansas Geological 

Survey website. 
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Well Name Elevation 

(ft) 

Total Depth 

(ft) 

Digital Logs Tops  Status 

Harden 1 2118 KB 6690  Yes No O&G 

Harden 4 2134 KB 6777 Yes No D&A 

Stephens 1 2050 GL 6840  Yes Yes O&G 

Stephens 2 2063 KB 6750  No Yes O&G 

Stephens 3 2065 KB 6760  Yes Yes D&A 

Stephens 4 2049 KB 6760 Yes Yes O&G 

Stephens 5 1988 KB 6675 Yes No SWD 

Stephens 6 2067 KB 6518 No No O&G 

Stephens 7 2044 KB 6610 Yes No O&G 

Stephens 8 1984 KB 6866 Yes No D&A 

Stephens 9 2122 KB 6812 Yes Yes O&G 

Stephens 10 2055 KB 6760 Yes Yes O&G (Morrow) 

Stephens ‘A’ 1 1997 KB 5340 Yes No D&A 

Table 3-1 Data available for each well. 

 

 3.2 Methodology 

 3.2-1 3D Seismic interpretation platform and Data Loading 

IHS Kingdom Suite and OpendTect software were used to complete this study.  Kingdom 

Suite is a PC-based software application that can cover a wide range of geological and seismic 

interpretation workflows.  Many companies of all different sizes use Kingdom Suite as their 

seismic interpretation software of choice.  To learn more about IHS Kingdom suite go to: 
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www.ihs.com.  OpendTect is an open source seismic interpretation software that is available for 

free.  More information on OpendTect can be found at www.opendtect.org.    

A 3D Seismic survey was uploaded into IHS Kingdom Suite software and a workflow 

was generated (Table 3-2).  The survey parameters include 320 inlines running west to east and 

380 crosslines running south to north with a bin spacing of 82.5 feet, covering an area of 

approximately seven and a half square miles.  The sampling rate for this survey was 

approximately 2.0 milliseconds or 500 Hz, with adequate sampling of up to 250 Hz (Nyquist 

frequency) and a cut off frequency of 125 Hz with the dominant frequency being about 60 Hz as 

seen in the amplitude spectrum shown in Figure 3-1.  The survey was uploaded as a SEGY file 

into Kingdom Suite using a seismic reference datum of 2200 feet and a replacement velocity of 

11,000 feet per second.  The projection system used for this survey was NAD 27, Southern 

Kansas, US foot.  Once the 3D seismic survey was loaded well locations, elevations, total depths, 

digital logs, tops data and well statuses were also loaded into Kingdom Suite.    

 

Step Method Description 

Step 1 Create new project and upload seismic survey and well data to Kingdom Suite 

Step 2 Generate synthetic seismograms: seismic modeling and synthetic-to-seismic tie 

Step 3 Seismic interpretation, horizon tracking and surface generation 

Step 4 Generate seismic attributes and spectral decomposition, quality check horizons 

with Kingdom Suite 

Step 5 Seismic attributes analysis in Kingdom Suite and OpendTect 

Step 6 Digital well log analysis 

Step 7 Multi-attributes space and cluster analysis in prospect evaluation 

Table 3-2 3D seismic interpretation workflow. 
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Figure 3-1 Amplitude spectrum for the Stephens Ranch 3D seismic survey. 

 

 3.2-2 1D Seismic modeling: Identifying stratigraphic seismic horizons 

Raw seismic data is of limited to use to a seismic interpreter.  Things like structure are 

possible to be interpreted using raw seismic data but no correlation to what formation is 

appearing at a particular time depth can be made using only raw seismic data.  To tie actual 

formations of interest to the seismic data synthetic seismograms need to be generated.  A 

synthetic seismogram produces seismic traces unique to specific layers or formations of interest 

in the subsurface when a seismic pulse is produced.  Synthetics also allow to correlate well log 

data, which is sampled in feet, with seismic data which is sampled in two-way travel time.  The 

main inputs for generating synthetic seismograms are seismic trace data at the borehole, time-

depth relationship charts, acoustic or sonic logs for the borehole, density logs for the borehole 

and seismic wavelets extracted from the trace data or theoretical seismic wavelets.  The well logs 

provide a smaller sampling interval outside of the vertical resolution of the seismic data when 

velocity and density are measured at the borehole.  Velocity and density information is taken 
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from the well logs and configured to produce acoustic impedance which is shown in the equation 

below: 

Z=ρ * υ 

where Z = acoustic impedance, ρ = density and υ = velocity within the layer of interest.  The 

acoustic impedance and velocity information combine to produce a reflection coefficient related 

to time.  To achieve a reflection coefficient, two assumptions are made. The first assumption is 

that the earth consists of horizontal layers with constant velocity, and the second is that the 

source of the seismic pulse generates a compressional plane wave that encounters layer 

boundaries at normal incidence producing no shear waves (Yilmaz, 1987).  The reflection 

coefficient is the change in velocity and density, or acoustic impedance, between two boundaries 

(boundaries 1 & 2) and is calculating using the equation: 

 e(t)= 
(𝒁𝟐−𝒁𝟏)𝟐

(𝒁𝟐+𝒁𝟏)𝟐   

where e(t) is the reflection coefficient, Z1 is acoustic impedance in medium one and Z2 is 

acoustic impedance in medium 2.  This reflection coefficient is the ratio of change in acoustic 

impedance to twice the average in acoustic impedance across two boundaries.  If Z2 is greater 

than Z1, then the reflection coefficient is positive.  If Z2 is less than Z1, then the reflection 

coefficient is negative.  After the reflection coefficient is calculated for all reflections in the 

seismic data, a seismic wavelet is extracted from the seismic trace data surrounding the borehole.  

This seismic wavelet is known as the source wavelet and it is assumed to be non-changing as it 

travels through the subsurface (Yilmaz, 1987).  This wavelet will replicate itself according to the 

reflection coefficient.  If the reflection coefficient is positive, the wavelet will exhibit positive 

polarity (a peak), and if the reflection coefficient is negative, the wavelet will exhibit negative or 
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reversed polarity (a trough).  The source wavelet that is produced is then convolved with the 

reflection coefficient to produce the synthetic seismogram for the well following the 

convolutional model below: 

 x(t) = w(t) * e(t) + n(t) 

where w(t) is the seismic wavelet, e(t) is the reflection coefficient, * signifies convolution, n(t) is 

random noise and x(t) is the synthetic seismogram.  Random noise is caused by several sources 

such as wind, environment noise (e.g. passing truck) or geophones not secured to the ground 

properly.  Two assumptions about the above equation must be made to generate a synthetic 

seismogram.  The first is that the noise component n(t) is zero and the second is that the source 

waveform w(t) is known (Yilmaz, 1987).  These assumptions produce the convolutional model 

for a seismogram that is free of noise below: 

 x(t) = w(t) * e(t) 

where w(t) is the seismic wavelet, e(t) is the reflection coefficient, * signifies convolution and 

x(t) is the synthetic seismogram.  Figure 3-2 gives a visual representation of the processes behind 

synthetic seismogram generation. 
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Figure 3-2 (SMT, 2013) Visual representation of the convolutional model for synthetic 

seismogram generation. 

  

Synthetic seismograms, or synthetics, were generated for each well with digital well logs 

within the 3D seismic survey area.  The synthetics were generated using digital density logs and 

sonic logs, time-depth charts, wavelets derived from the seismic data and seismic trace data 

around each well borehole with available digital well logs. Eight out of the thirteen wells within 

the area covered by the seismic survey resulted in acceptable synthetic seismograms.  The wells 

with acceptable synthetics are; Stephens 1, Stephens 3, Stephens 4, Stephens, 5, Stephens 6, 

Stephens 7, Stephens 8 and Stephens 9 (Figure 3-3). 
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  When generating synthetic seismograms, the initially generated synthetic does not 

match well to the seismic trace data well resulting in a poor correlation coefficient.  Due to this 

problem, a synthetic interpretation step is required to match the generated synthetic to the 

seismic trace data.  The first step in synthetic interpretation is the bulk shift.  The bulk shift 

operation shifts the entire synthetic either up or down which will change the correlation 

coefficient and replacement velocity.  It is important to be very careful when bulk shifting and 

observe all changes happening.  Once the maximum correlation coefficient achievable using the 

bulk shift operation is reached, stretching and squeezing of the synthetic can be done as well to 

further improve the correlation coefficient.  An acceptable correlation coefficient between 

seismic data at the borehole and synthetics is about 0.6 to 0.7 (Figure 3-3 a).  Stretching and 

Squeezing must be done conservatively, to maintain accuracy in the final synthetic seismogram 

(3-3 a & b).  Figure 3-3 also show the relationship between sonic logs, density logs, acoustic 

impedance values and reflectivity coefficients.  These values all contribute to the generation of a 

synthetic seismogram.   



 

33 

   

Figure 3-3 a) is a visual representation of synthetic generation using Kingdom Suite 

showing acoustic impedance as the product of velocity (DT) and density (RHOB) of 

particular horizons in the subsurface, reflection coefficients calculated from the ratio of the 

difference in acoustic impedance to twice the average acoustic impedance across two 

boundaries, reflection coefficient being convolved with the source wavelet, and individual 

wavelets being summed to generate a synthetic. Correlation coefficient value r=0.618 

represents an acceptable correlation coefficient. 
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Figure 3-3 b) Synthetic to seismic tie for the Stephens 1 well using OpendTect Software 

(same well as Figure 3-3 a).  This synthetic displays a good correlation between the 

generated synthetic and seismic trace data as well as the relationship between the sonic 

(DT) and density (RHOB) logs and the acoustic impedance (AI) and reflectivity values.  

Figure 3-3 Generation of Synthetic Seismograms. 

 

 3.2-3 Formation Tops and Horizon Tracking 

To determine where the formations of interest are present within the seismic data, 

formation top data has to be loaded into Kingdom Suite (Table 3-3).  Formation top data can then 

be lain over synthetic seismograms (Figure 3-3 a & b) which can be lain over the seismic trace 

data (Figure 3-4) (Appendix B) allowing for the formation tops to be picked manually and 
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tracked through the entire seismic section (Figure 3-5).  Auto picking of horizons in Kingdom is 

an option that allows horizons to be picked with greater speed but at the expense of high pick 

confidence (Figure 3-6).  Auto picking is a good method to track horizons quickly.  Examples of 

horizons that were easy to track in this study using auto picking are the Arbuckle and Simpson 

formations.  The Arbuckle and Simpson formations are seen on the seismic trace data as very 

consistent high amplitude peak or very consistent low amplitude trough throughout the survey 

respectively (Figure 3-7).  The Viola limestone formation is not a good candidate for auto 

picking due to changes in thickness/seismic resolution that result in inconsistent amplitudes 

marking its formation top within the seismic trace data.  When auto picking is used on the Viola, 

the strongest reflection is traced throughout the survey.  This reflection is the Viola ‘C’ zone 

which is not truncated by variations in paleotopography.  Auto picking of this zone is shown in 

Figure 3-6.  When the Viola limestone horizon is tracked manually and combined with 

instantaneous seismic attributes, a more accurate surface is generated.  
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Well Kinderhook Viola Simpson  Arbuckle 

Stephens ‘A’ 1 N/A N/A N/A N/A 

Stephens 1 6304 6383 6575 6697 

Stephens 2 6314 6387 6584 N/A 

Stephens 3 6314 6407 6572 6694 

Stephens 4 6284 6370 6560 6683 

Stephens 5 6190 6304 6482 6614 

Stephens 6 6324 6398 N/A N/A 

Stephens 7 N/A N/A N/A N/A 

Stephens 8 6236 6344 6508 N/A 

Stephens 9 6349 6458 6633 6764 

Stephens 10 6310 6480 6586 6710 

Harden 1 N/A N/A N/A N/A 

Harden 4 N/A N/A N/A N/A 

Table 3-3 Formation top data from logs.   
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Figure 3-4 Amplitude cross section of a synthetic seismogram in red and gamma ray log in 

blue lain over the seismic trace data. 
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Figure 3-5 Amplitude cross section picking the Arbuckle (red line) based off of synthetic 

seismogram laid over the seismic trace data. 
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Figure 3-6 Time structure horizon generated by auto tracking.  Generates a good idea for 

general structure of the Viola, but fails to recognize subtle changes in thickness that 

generate paleotopographic traps. Also, gaps are seen in the map as white space that must 

be manually interpreted. 
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Figure 3-7 The Arbuckle (red line) follows a very consistent amplitude peak throughout the 

survey, which can be seen as a black peak on the wiggle trace above. The Simpson (blue 

line) follows a very consistent amplitude trough, which can be seen as a gold trough on the 

wiggle trace above.  

 

 3.2-4 Tuning Analysis 

The shape of the reflection wavelet can vary when closely spaced reflecting interfaces 

interfere with each other.  This variation in shape is known as the tuning effect.  Tuning effects 

occur when the wavelength is greater than the bed thickness, causing the reflections to resonate 

and interfere (Hardage, 2009).  A wedge model can explain the effect of bed thickness on 

seismic amplitude (Figure 3-8).  As the wedge thins the lobes constructively interfere when the 

wedge thickness is one-quarter that of the effective source wavelet or one-half the thickness of 

the dominant period (Chopra & Marfurt, 2007).  This constructive interference is causing a 

positive amplitude anomaly on the left side of the Figure 3-8 wedge model.  Analysis of the 

effects of tuning can be done in the Kingdom Suite for each wavelet extracted at the borehole as 

well as for theoretical zero-phase wavelets (Figure 3-9)(Appendix A).  This tuning analysis gives 
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an idea of where to be careful with regard to amplitude anomalies caused by interference of thin 

beds.   

 

Figure 3-8 Example of wedge modeling on a seismic wiggle trace, tuning effects cause 

increased amplitude on left edge of the wedge model (IHS, 2012). 
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Figure 3-9 Tuning analysis chart for a theoretical Ricker wavelet of the above wedge model 

in Figure 3-8.  Maximum tuning effects occur at approximately 8 milliseconds on all 

extracted wavelets (Appendix A) and at 20 milliseconds on the Ricker wavelet above (IHS, 

2012). 

 

 

 3.2-5 Well Log Evaluation 

Digital well logs (LAS Logs) were available for 11 wells targeting the Viola limestone 

within the 3D seismic survey area (Table 3-4).  Within these digital well logs, sonic (DT) and 

density (RHOB) log values at all depths along the borehole were analyzed.  This analysis 
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compared density, sonic, porosity and acoustic impedance log values between all wells with 

particular attention to comparing producing wells with non-producing or poor-producing wells.  

Formation tops and thickness were also analyzed with emphasis on the Viola and the overlying 

Maquoketa formation.  Richardson, 2013 credits production in the Viola limestone to thinning 

within the Maquoketa and subsequent thickening in the Viola generating paleotopographic traps 

that preserve the productive porosity in the Viola (Figure 2-2). 

Well Gamma 

Ray (GR) 

Density 

(RHOB) 

Sonic (DT) Photoelectric 

Effect (PE) 

Resistivity 

Logs 

Porosity 

Logs 

Harden 1 Yes Yes Yes Yes Yes Yes 

Harden 4 Yes No Yes Yes Yes Yes 

Stephens 1 Yes Yes Yes Yes Yes Yes 

Stephens 2 No No No No No No 

Stephens 3 Yes Yes Yes Yes Yes Yes 

Stephens 4 Yes Yes Yes Yes Yes Yes 

Stephens 5 Yes Yes Yes Yes Yes Yes 

Stephens 6 No No No No No No 

Stephens 7 Yes Yes Yes Yes Yes Yes 

Stephens 8 Yes Yes Yes Yes Yes Yes 

Stephens 9 Yes Yes Yes Yes Yes Yes 

Stephens 

10 

Yes Yes Yes Yes Yes Yes 

Stephens 

‘A’ 1 

Yes Yes Yes Yes Yes Yes 

Table 3-4 Available LAS logs. 
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 3.2-6 Seismic Attributes 

 3.2-6 a) Instantaneous Phase 

Instantaneous phase is defined as the orientation angle of the amplitude vector at a 

particular time.  Instantaneous phase represents the phase of a vector of individual simple harmonic 

motions. While individual vectors usually rotate clockwise, their resultant vector may at some 

instances appear to turn in the opposite direction. This usually the effect of interference of two 

closely arriving wavelets (IHS, 2012).  A wave front is defined as a line of constant phase, which 

makes the phase attribute a physical attribute that can be used to describe geometrical shape 

(Taner, 2001).  This makes instantaneous phase a useful attribute in indicating lateral continuity 

of rock layers and making a detailed visualization of bedding configurations (IHS, 2012).  

Instantaneous phase can make weak coherent events more clear (Taner et al, 1977).  It is 

expressed by: 

Φ (t) = arc tan [y(z)/x(z)]  

where t is time (or depth) and y(z) and x(z)are the imaginary and real components of the complex 

seismic trace (Figure 3-10). 
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Figure 3-10 Close up of a complex seismic trace with the real seismic trace represented as 

x(t) on the x-axis and the imaginary seismic trace represented as y(t) on the y-axis.  

Instantaneous phase is represented as Φ(t) on the image. Instantaneous amplitude or 

envelope is also represented on the figure as a(t) (BEG, 2015). 

 

 

3.2-6 b) Normalized Amplitude 

Normalized amplitude is simply the cosine of the instantaneous phase angle.  All of the 

details of instantaneous phase will be preserved in the normalized amplitude attribute, but the 

jumps inherent to instantaneous phase are avoided using normalized amplitude.  Values of 

normalized amplitude will vary between -1 and +1.  Normalized amplitude is useful in 

determining the direction of lateral continuity (IHS, 2012).  

 

 3.2-6 c) Amplitude 

Amplitude data can be a useful attribute in hydrocarbon reservoir characterization.  This 

is the most common seismic attribute, and amplitude is often correlated with porosity and liquid 

saturation.  Amplitude is simply the height of a wave.  A negative amplitude indicates a trough 

and a positive amplitude indicates a peak in the seismic trace.  The bigger the peak or trough 

coincides with increasingly positive or negative amplitude values. 
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 3.26 d) Instantaneous frequency 

Instantaneous frequency is defined as the rate of change of phase over time (derivative of 

instantaneous phase).  Wave propagation and depositional environments can be related to 

instantaneous frequencies.  Uses of instantaneous frequency in this study are to indicate low 

impedance thin beds and relate those thin beds to tuning thicknesses (IHS, 2012).  In zones of 

decreasing amplitude instantaneous frequency will peak and a surge in instantaneous frequency 

values can be an indicator of hydrocarbon saturation (Raef, 2001).  Instantaneous frequency is 

calculated by the following equation: 

w(t) = 
𝒅|𝜱(𝒕)|

𝒅𝒕
 

where Φ (t) is instantaneous phase and t is time (or depth)(BEG,2015). 

 

 3.2-6 e) Thin Bed Indicator 

The thin bed indicator attribute shows interference zones in phase.  It is computed as the 

difference between instantaneous frequency and time averaged frequencies following the 

equation 

TBI = w(t) – 𝒘(𝒕)̅̅ ̅̅ ̅̅  

where w(t) is instantaneous frequency values.  Thin bed indicator can be used to indicate 

laterally continuous thin beds and give finer details of bedding patterns (IHS, 2012).   
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Table 3-5 Seismic attribute descriptions  

Attribute Definition Implication Figure 

Instantaneous 

Phase 

Orientation angle of 

the amplitude vector 

at a given time 

Indicates lateral 

continuity of rock 

layers, aids in creating 

a detailed 

visualization of 

bedding 

configurations and 

makes weakly 

coherent events more 

clear 

Figures 4-2 & 4-3 

Normalized 

Amplitude 

Cosine of the 

instantaneous phase 

angle 

Helpful in lateral 

continuity direction 

determination 

Figure 4-4 

Amplitude Height of a peak or 

trough in a wavelet, 

wavelets respond to 

changes in impedance 

Indicates low porosity 

zones and potential  

hydrocarbon presence  

Figures 4-1, 4-6, 4-

10 and 4-11 

Instantaneous 

Frequency 

Rate of change of 

phase over time 

(derivative of 

instantaneous phase) 
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Chapter 4 – Results and Discussions 

Seismic attributes workflows were run to be correlated with the geological data derived 

from the borehole, and to determine why certain wells that were drilled did not produce or why 

one well produced so poorly that it was abandoned and subsequently converted into a salt water 

disposal well.  Another objective of running seismic attributes workflows was to quality check 

the accuracy of the horizons of interest within the study area, most importantly the Viola 

limestone.  As mentioned above the Arbuckle and Simpson formations are associated with 

consistent signature amplitude peaks or troughs, but the Viola limestone presents a problem 

when picking.  Using a seismic attributes extraction solves this problem and can make the Viola 

horizon stand out.  Previous work by Richardson, 2013 explains varying thickness in the Viola as 

it relates to preserving a productive porosity in a paleotopographic trap.  These variations in 

thickness are subtle, and can be difficult to pick up on when visualizing broadband seismic 

amplitude data or wiggle traces but the variations in porosity as well as hydrocarbon presence 

can produce velocity anomalies that improve the resolution of the seismic data in potential 

productive zones.  A decrease in the velocity of the seismic wave front would result in a shorter 

dominant wavelength according the equation: 

λ=v/f 

where λ is the dominant wavelength, f is the dominant frequency and v is the dominant velocity.  

A shorter dominant wavelength will improve the vertical resolution of the seismic trace data 

(Yilmaz, 1987).   This more porous zone of the Viola limestone formation exist at the top of the 

formation increased seismic resolution should occur at the top of the Viola.  The synthetic 

seismograms show a doublet occurring at the Viola “C” zone horizon and Viola top horizon 
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(Figure 3-2).  This doublet is also seen in the wiggle trace displayed in Figure 4-1.  The doublet 

is indeed seen in the wiggle trace, but the doublet is quite subtle and difficult to pick up on.  

However, after an attributes extraction, particularly instantaneous attributes, the picture becomes 

clearer and proper horizon picks of the Viola on the seismic trace data can be made.  

Instantaneous phase and normalized amplitude can then be used to emphasize the lateral 

continuity of seismic events, which allows for accurate picking of the Viola horizon.  

 

 

Figure 4-1 Amplitude wiggle trace cross section with the Viola limestone horizon in green.  

Increased resolution associated with a velocity anomaly within the Viola is difficult to pick 

up on in broadband amplitude data, and the strongest reflection event still occurs below 

the top of the Viola.   
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 The instantaneous phase of a cross section through a well is shown in Figure 4-2.  Events 

that show up as weakly coherent in amplitude cross sections are emphasized and shown to be 

coherent based on a consistent phase angle.  Each color in the cross section represents a different 

degree of phase that relates to the propagation phase of the seismic wave front.  A consistent 

phase angle near 45 degrees indicates the lateral continuity of the Viola limestone.  The split in 

this phase angle value around the borehole location indicated the increased seismic resolution of 

the Viola which is interpreted as a velocity anomaly associated with increased porosity at the top 

of the Viola and/or the presence of hydrocarbons (Figure 4-3).   
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Figure 4-2 The above cross section shows the instantaneous phase without the picked 

horizons lain over it.  The Viola lies at a time depth between 1.000 and 1.020 (indicated by 

black arrow).  An instantaneous phase represented by a green horizon in this time range is 

interpreted as the Viola limestone, which thickens and splits at the Stephens 10 borehole 

representing a paleotopographic trap. 
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Figure 4-3 Instantaneous phase cross sections across Stephens 10 well.  The Viola limestone 

is displayed in black following a consistent instantaneous phase and the Arbuckle 

formation is displayed in white also following a consistent instantaneous phase.  Phase 

angles are represented by the color bar on the right.   
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Normalizing the amplitude of seismic trace data accurately shows the subtle changes in 

thickness at the top of the Viola limestone.  Instantaneous phase and normalized amplitude allow 

for a much better pick of the top of the Viola limestone than can be done using just raw 

broadband seismic amplitude.  A very pronounced doublet forms around borehole locations 

which implies a velocity anomaly associated with productive porosity and/or hydrocarbon 

presence at the top of the Viola (Figure 4-4).  In looking at the wiggle overlay in Figure 4-1 

which is just amplitude compared to the wiggle overlay in Figure 4-4, the usefulness of 

normalized amplitude in highlighting potentially productive zones within the Viola.  The doublet 

is formed on either side of the well forming what some interpreters may refer to as a “buried 

football” shape that is a signature of a velocity anomaly within the horizon of interest.  Doublets 

in the normalized amplitude cross section within the Viola have been interpreted as zones of 

increased porosity, and thus are targets for hydrocarbon exploration in Viola paleotopographic 

traps.   
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Figure 4-4 Normalized amplitude wiggle trace at the same location as Figure 3-6.  A 

doublet in the wiggle trace is easy to pick up using the normalized amplitude attribute 

making the Viola limestone horizon easier to pick with greater confidence. 

 

Figures 4-1, 4-2, 4-3 and 4-4 confirm a seismic doublet that forms around the borehole 

locations within the study area.  Wells within the survey are targeting the upper Viola which 

exhibits the productive dolomite porosity.  The productive porosity sits above the Viola “C” 

zone, deeming the Viola above the “A” and “B” zones (Richardson, 2013).  This is where 

porosity is present and hydrocarbon traps are located.  Figure 4-5 is a time structure map of the 

Viola “C” zone which shows no evidence of paleotopographic traps or velocity anomalies.  A 
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cross section of this pick can be seen in Figure 4-6.  On this cross section a doublet forms around 

the borehole location like the ones seen using instantaneous phase and normalized amplitude in 

the figures above (Figures 4-1, 4-2, 4-3 and 4-4).  The doublet that forms is interpreted as a low 

velocity anomaly due to either 1) higher porosity and/or 2) lower impedance due to the presence 

of hydrocarbon.  This low velocity anomaly improves the resolution of the seismic data allowing 

for the Viola to be more accurately picked as in Figures 4-7 and 4-8.  Figure 4-9 gives a 3D 

image of the Viola “C” zone compared to the Viola “C” zone with the Viola top overlain.  The 

3D image in Figure 4-9 demonstrates the difference between the two tops picked as it relates to 

well placement.  Picking the Viola top as opposed to the Viola “C” zone the introduced 

amplitude anomalies that correlated with well production.  
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Figure 4-5 Time structure map of the Viola “C” zone formation top.  No evidence of 

paleotopographic traps is seen when only the “C” zone is tracked. 
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Figure 4-6 Amplitude cross section showing the Viola “C” zone pick. 
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Figure 4-7 Time structure map of the Viola top showing paleotopographic traps, zones of 

productive porosity and/or hydrocarbon presence. 
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Figure 4-8 Amplitude cross section of the same inline as Figure 4-6 with the Viola top in 

purple lain over the Viola “C” zone in light blue.    
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Figure 4-9 Top image is a time structure image of the Viola “C” zone and the bottom image 

is a time structure image of the Viola top overlain on the Viola “C” zone. 
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 Attribute extraction was also carried out to evaluate well placement and to determine if 

attributes analysis could have avoided the completion of the dry holes in the survey and the well 

with poor economics seen in Stephens 5 (converted to SWD).  The most useful attribute in 

discerning producing wells from uneconomic wells was amplitude.  Amplitude maps were 

generate on both the Viola “C” zone and the Viola top horizon.  Differences in the two amplitude 

maps can be seen when comparing Figure 4-10 to Figure 4-11.  With the Viola top horizon 

marking the hydrocarbon bearing zone, amplitude anomalies within this horizon were of 

particular interest in this study.  Producing wells in the Viola limestone had consistently lower 

amplitude values than dry holes and the well that was converted to a SWD well on the amplitude 

map for the Viola top horizon (Figure 4-11).  These amplitude values are displayed on the graph 

in Figure 4-12.  Producing wells in the Viola, in green, have relatively lower amplitudes than the 

non-producing wells in blue. These low amplitude anomalies that are highlighting the 

hydrocarbon bearing zone make sense because the presence of hydrocarbons would decrease the 

variation in acoustic impedance between the Viola and the overlying horizon.  Tuning effects 

could explain the high amplitude anomalies seen in producing wells Stephens 1 and 4 as the peak 

to trough thickness of the wavelet at these locations was 8ms, which aligns with the maximum 

effect of tuning on amplitude for the wavelets extracted along the Stephens 1 and 4 (Figure 4-

13).  Further investigation into the effects of tuning thickness revealed that higher values of 

instantaneous frequency correlated with amplitudes near zero, specifically the amplitude values 

seen in the productive wells.  As mentioned in studies by Raef, 2001, instantaneous frequency 

peaks with tuning effects in zones of decreasing amplitudes like what we see in the Viola 

limestone, also a surge in instantaneous frequency can be an indicator of hydrocarbon saturation 

(Figure 4-14).  The thin bed indicator attribute was also applied to the 16ms time window at the 
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top of the Viola in Figure 4-14 to compliment the instantaneous frequency data.  Thin bed 

indicator peaks with instantaneous frequency further strengthening the case for tuning effects 

occurring within the zone of deceasing amplitude as well as displaying productive wells 

associated with particular thin bed indicator values and instantaneous frequency values.            

 

 

  

 

Figure 4-10 Amplitude map of the Viola “C” zone. 
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Figure 4-11 Amplitude map of the Viola top. 
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Figure 4-12 Amplitude values for the Viola top horizon at well locations with producing 

wells in the Viola green and non-producers are blue.  Wells are from left to right: Harden 

1, Harden 4, Stephens 1, Stephens 10, Stephens 2, Stephens 3, Stephens 4, Stephens 5, 

Stephens 6, Stephens 7, Stephens 8, Stephens 9 and Stephens “A”1. 

 

 

 

 

 

Figure 4-13 Tuning charts for Stephens 1, 4 and 10 showing maximum effects of tuning at 

approximately 8ms.  
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Figure 4-14 Map of a 16ms time-window within the upper Viola limestone showing effects 

of instantaneous frequency and thin bed indicator attributes.  Green boundaries on the 

charts below are displayed on the horizon above in green.  The chart on the left plots 

amplitude values on the y-axis against instantaneous frequency values on the x-axis.  The 

chart on the right plots thin bed indicator on the y-axis against instantaneous frequency on 

the x-axis.  Wells producing within the Viola are displayed in black, dry holes drilled in the 

Viola are displayed in red and the salt water disposal well is in blue, the purple well 

produces from the morrow formation and was originally a dry hole targeting the Viola.         
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Well log evaluation was conducted on both digital and raster logs.  When evaluating logs 

with regard to thicknesses within the formations of interest, thinning within the Maquoketa 

seemed to correlate directly with production in wells with geologs including the Maquoketa.  

Relatively thick Maquoketa resulted in no production while relatively thin Maquoketa resulted in 

productive wells (Table 4-1).  These Subtle changes in thickness are outside of the temporal 

resolution of the seismic survey so they cannot be noticed when prospecting using the seismic 

data. 

Evaluation of digital (LAS) logs was completed with focus on how acoustic impedance 

(density log * sonic log) and porosity relate to lithology.  This relationship was then correlated to 

well placement and production.  Various cross plots of these values are shown in figures 4-15, 4-

16, 4-17, 4-18 and 4-19.  Figure 4-15 shows spontaneous porosity (SPOR) decreasing with depth 

through the pay zone with a correlation coefficient of r=-0.5 along with gamma ray log (GR) 

values trending the opposite direction for the Stephens 1 producing well, indicating the highest 

porosity is located at the top of the Viola.  In figure 4-16 concentrated neutron porosity 

(CNPOR) and acoustic impedance is plotted against measured depth through the pay zone for 

Stephens 1.  This shows the highest porosity values aligning with the lowest acoustic impedance 

values at the top of the Viola.  Figure 4-17 emphasizes that conclusion drawn from figure 4-16 

showing the linear trend between acoustic impedance and CNPOR (porosity increases while 

acoustic impedance decreases) for Stephens 1.  In figure 4-18 and 4-19 the same well log values 

are evaluated, but for the dry hole Stephens 8.  Figure 4-18 plots the gamma ray log and density 

porosity against measured depth similar to the cross plot in figure 4-15.  The porosity log 

behaves similarly to the porosity log for Stephens 1 at depth (steadily increasing as depth 

decreases), but towards the top of the Viola, where the potential pay zone would be located, the 
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porosity values suddenly drops.  Figure 4-19 emphasizes the difference between productive wells 

and dry holes seen in comparing Figure 4-19 to Figure 4-17 plotting CNPOR and acoustic 

impedance against density porosity (DPOR).  This cross plot shows acoustic impedance increase 

as porosity decreases, but the two porosity logs don’t align for Stephens 8 as they did in the cross 

plots for Stephens 1.      

 

Well Maquoketa Thickness Well Status 

Stephens 1 17 ft. Producing 

Stephens 2 11 ft. Producing 

Stephens 3 29 ft. Dry Hole 

Stephens 4 22 ft. Producing 

Stephens 5 28 ft. Salt Water Disposal Well 

Stephens 6 11 ft. Producing 

Stephens 7 19 ft. Producing 

Stephens 8 34 ft. Dry Hole 

Stephens 9 14 ft. Producing 

Stephens 10 18 ft. Producing (Morrow) 

Harden 1 17 ft. Producing 

Harden 4 N/A Dry Hole 

Table 4-1 Maquoketa thickness correlated to well production.   
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Figure 4-15 Gamma Ray (GR) and sonic porosity (SPOR) plotted against depth (MD) 

through the Viola limestone for Stephens 1. 
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Figure 4-16 Concentrated neutron porosity (CNPOR) and acoustic impedance plotted 

against depth (MD) through the Viola limestone for Stephens 1. 
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Figure 4-17 Acoustic impedance plotted against concentrated neutron porosity (CNPOR) 

through the Viola limestone for Stephens 1. 
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Figure 4-18 Gamma ray (GR) and density porosity (DPOR) values plotted against depth 

through the Viola limestone for Stephens 8. 
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Figure 4-19 Acoustic impedance and concentrated neutron porosity (CNPOR) plotted 

against density porosity (DPOR) through the Viola limestone for Stephens 8. 
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Chapter 5 – Conclusions and Recommendation 

 Identification of potentially productive zones within the Viola limestone are based on 

instantaneous attributes analysis and amplitude anomalies.  Using the workflow presented by this 

study could benefit future development plans in the Morrison and Morrison NE fields of east-

central Clark County, KS as well as other locations in southwest and south-central Kansas.  

Identification of doublets forming at the top of the Viola imply a velocity anomaly associated 

with either the presence of hydrocarbons, the presence of more porous rock or a combination of 

the two.  Low velocity anomalies increase the resolution of the seismic data which results in the 

doublets observed in the seismic trace data.  Instantaneous phase and normalized amplitude 

attributes are helpful in identifying these velocity anomalies forming a doublet in the seismic 

trace data.  The purpose of generating instantaneous phase and normalized amplitude attributes 

was to identify zones with hydrocarbon producing potential.   

Amplitude was analyzed to identify a trend associating particular amplitudes with 

producing or non-producing wells in the study area.  Lower amplitudes were associated with 

producing wells, while higher amplitudes were associated with dry holes and uneconomical 

wells with the exception of wells with a peak to trough thickness aligned with the greatest effects 

of tuning thickness.   

The instantaneous frequency attribute when cross plotted with amplitude showed that 

high values in instantaneous frequency correlated with amplitude values associated with the 

wells completed in the survey area.  This surge of instantaneous frequency values associated 

with decreasing amplitude values indicates hydrocarbon saturation.  The thin bed indicator 

attribute compliments this point showing an increase in values as instantaneous frequency values 

increase.   
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Combining the attributes used in this study (amplitude, instantaneous phase, 

instantaneous frequency, normalized amplitude, and thin bed indicator) gives insight into the 

presence productive porosity and hydrocarbon saturation within the Viola limestone in the study 

area.  Instantaneous phase and normalized amplitude highlight the doublet forming at the top of 

the Viola that indicates the potentially productive porosity is present.  Amplitude anomalies 

correlate well with production, showing productive wells with amplitudes very low near zero 

while non-productive wells are associated with higher amplitudes.  Combining low amplitude 

anomalies associated with the wells in the survey with instantaneous frequency and thin bed 

indicator shows tuning effects associated with the productive wells.  This workflow demonstrates 

that hydrocarbon bearing zones in the Viola limestone within the study area behave as thin beds. 

 In future production plans within the field as well as other areas targeting the Viola 

limestone, combining instantaneous attributes for identification of zones of interest with 

amplitude analysis of these zones can lead to improved success in Viola limestone production by 

eliminating the completion of dry holes.  The southwest corner and west-central portions of the 

Stephens Ranch survey are of particular interest for future well placement within the area.  These 

two areas show the improved resolution seen in productive wells as well as the instantaneous 

frequency and thin bed indicator values associated with productive wells (Figure 5-1 & 5-2).   

Coral Coast Petroleum has already acquired more seismic surveys in the area which are 

being developed.  Exploration by Coral Coast could benefit from running this type of workflow 

at no extra cost.  As more well control becomes available in these surveys this workflow should 

be repeated and if similar results are obtained, the workflow presented could become a valuable 

asset to Viola exploration in the area surrounding Clark County, Kansas.  
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Figure 5-1 Viola Top modified from Figure 4-14.  Green on the map represents areas where 

instantaneous frequency are peaking with thin bed indicator an indicated by the cross plots 

below.  Circles represent potential future well placement areas.   
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Figure 5-2 Time structure map of the Viola top.  White circles represent areas for potential 

future well placement. 
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Appendix A - Tuning Thickness Charts 
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Figure A-1 Tuning thickness charts for wavelets extracted at each well within the survey 

area. 
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Appendix B - Synthetics on Seismic Trace Data 

Figure B-1 Synthetic seismogram for Stephens 1 lain over trace data with tops data.  Viola 

“C” zone in blue and Viola top in purple. 
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Figure B-2 Synthetic seismogram for Stephens 3 lain over trace data with tops data. Viola 

“C” zone in blue and Viola top in purple. 
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Figure B-3 Synthetic seismogram for Stephens 4 lain over trace data with tops data.  Viola 

“C” zone in blue and Viola top in purple. 

  

 

 

 



 

87 

Figure B-4 Synthetic seismogram for Stephens 5 lain over trace data with tops data.  Viola 

“C” zone in blue and Viola top in purple.
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Figure B-5 Synthetic seismogram for Stephens 8 lain over trace data with tops data.  Viola 

“C” zone in blue and Viola top in purple.
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Figure B-6 Synthetic seismogram for Stephens 9 lain over trace data with tops data.  Viola 

“C” zone in blue and Viola top in purple.
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Figure B-7 Synthetic seismogram for Stephens 10 lain over trace data with tops data.  Viola 

“C” zone in blue and Viola top in purple. 
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Figure B-8 Synthetic seismogram for Stephens ‘A’ 1 lain over trace data without tops data.  

Viola “C” zone in blue and Viola top in purple. 

 


