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Abstract 

The motion of electrons in atoms, molecules, and solids in the presence of intense 

electromagnetic radiation is an important research topic in physics and physical chemistry because 

of its fundamental nature and numerous practical applications, ranging from precise machining of 

materials to optical control of chemical reactions and light-driven electronic devices. Mechanisms 

of light-matter interactions critically depend on the dimensions of the irradiated system and evolve 

significantly from single atoms or molecules to the macroscopic bulk. Nanoparticles provide the 

link between these two extremes. In this thesis, I take advantage of this bridge to study light-matter 

interactions as a function of nanoparticle size, shape, and composition. 

 I present here three discrete, but interconnected, experiments contributing to our 

knowledge of nanoparticle properties and their response to intense, short-pulsed light fields. First, 

I investigate how individual nanoparticles interact with each other in solution, studying their 

temperature-dependent solubility. The interaction potential between 5.5nm gold nanoparticles, 

ligated by an alkanethiol was found to be -0.165eV, in reasonable agreement with a 

phenomenological model.  The other two experiments explore ultrafast dynamics driven by intense 

femtosecond lasers in isolated, gas-phase metallic and dielectric nanoparticles. Photoelectron 

momentum imaging is applied to study the response of gold, silica, and gold-shell/silica-core 

nanoparticles (ranging from single to several hundred nanometers in size) with near-infrared 

(NIR), 25 fs laser pulses in the intensity range of 1011 - 1014 W/cm2. These measurements, which 

constitute the bulk of my graduate work, reveal the complex interplay between the external optical 

field and the induced near-field of the nanoparticle, resulting in the emission of very energetic 

electrons that are much faster than those emitted from isolated atoms or molecules exposed to the 

same light pulses. The highest photoelectron energies (“cutoffs”) were measured as a function of 



  

laser intensity, nanoparticle material and size.  We found that the energy cutoffs increase 

monotonically with laser intensity and nanoparticle size, except for the gold/silica hybrid where 

the plasmon resonance response modifies this behavior at low intensities.  The measured 

photoelectron spectra for metallic nanoparticles display a large energy enhancement over silica. 

Finally, the last part of this thesis explores the possibility to apply time-resolved x-ray 

scattering as a probe of the ultrafast dynamics in isolated nanoparticles driven by very intense 

(~1015 W/cm2) NIR laser radiation.  To do this, I developed and built a nanoparticle source capable 

of injecting single, gas-phase nanoparticles with a narrow size distribution into the laser focus.  We 

used femtosecond x-ray pulses from an x-ray free electron laser (XFEL) to map the evolution of 

the laser-irradiated nanoparticle.  The ultrafast dynamics were observed in the single-shot x-ray 

diffraction patterns measured as a function of delay between the NIR and x-ray pulses, which 

allows for femtosecond temporal and nanometer spatial resolution. We found that the intense IR 

laser pulse rapidly ionizes the nanoparticle, effectively turning it into a nanoplasma within less 

than a picosecond, and observed signatures of the nanoparticle surface softening on a few hundred-

femtosecond time scale. 
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I investigate how individual nanoparticles interact with each other in solution, studying their 

temperature-dependent solubility. The interaction potential between 5.5nm gold nanoparticles, 

ligated by an alkanethiol was found to be -0.165 eV, in reasonable agreement with a 

phenomenological model.  The other two experiments explore ultrafast dynamics driven by intense 

femtosecond lasers in isolated, gas-phase metallic and dielectric nanoparticles. Photoelectron 

momentum imaging is applied to study the response of gold, silica, and gold-shell/silica-core 

nanoparticles (ranging from single to several hundred nanometers in size) with near-infrared 

(NIR), 25 fs laser pulses in the intensity range of 1011 - 1014 W/cm2. These measurements, which 

constitute the bulk of my graduate work, reveal the complex interplay between the external optical 

field and the induced near-field of the nanoparticle, resulting in the emission of very energetic 

electrons that are much faster than those emitted from isolated atoms or molecules exposed to the 

same light pulses. The highest photoelectron energies (“cutoffs”) were measured as a function of 



  

laser intensity, nanoparticle material and size.  We found that the energy cutoffs increase 

monotonically with laser intensity and nanoparticle size, except for the gold/silica hybrid where 

the plasmon resonance response modifies this behavior at low intensities.  The measured 

photoelectron spectra for metallic nanoparticles display a large energy enhancement over silica. 

Finally, the last part of this thesis explores the possibility to apply time-resolved x-ray 

scattering as a probe of the ultrafast dynamics in isolated nanoparticles driven by very intense 

(~1015 W/cm2) NIR laser radiation.  To do this, I developed and built a nanoparticle source capable 

of injecting single, gas-phase nanoparticles with a narrow size distribution into the laser focus.  We 

used femtosecond x-ray pulses from an x-ray free electron laser (XFEL) to map the evolution of 

the laser-irradiated nanoparticle.  The ultrafast dynamics were observed in the single-shot x-ray 

diffraction patterns measured as a function of delay between the NIR and x-ray pulses, which 

allows for femtosecond temporal and nanometer spatial resolution. We found that the intense IR 

laser pulse rapidly ionizes the nanoparticle, effectively turning it into a nanoplasma within less 

than a picosecond, and observed signatures of the nanoparticle surface softening on a few hundred-

femtosecond time scale. 
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Chapter 1 - Introduction and Background 

- Science progresses not only because it helps to explain newly discovered facts, but 

also because it teaches us over and over again what the word ‘understanding’ may 

mean” 

- Werner Heisenberg 

 1.1 Motivation 

Human ambition to grasp the universe we inhabit begins with an awareness of simple 

observations.  These range from the childlike ‘Why is the sky blue?’ to the contemplative ‘How 

many stars in the night sky?’.  Each one of these questions is asking for an explanation of how our 

world interacts with itself.  How sunlight scatters off the atmosphere determines our blue skies and 

fiery red sunsets [1] while astronomers estimate 1024 (a trillion trillion) [2] stars in our universe.  

Fundamental questions lead to great advances in humanity’s collective knowledge and 

continuously open new frontiers of research. 

Science observes the interactions of the physical world and uses mathematical constructs 

to describe them.  Observations and patterns play a key role in exploring these interactions.  The 

use of light to see and understand physical matter is a vital part to scientific research.  Light can 

be used as a probe and a tool for investigating phenomena as wide-ranging as the study of 

subatomic particles to the history of the universe.  Here, I utilize light to further understand matter-

matter and light-matter interactions in nanoparticle systems. 

 

 1.1.1 Nanotechnology 

Nanoparticles (and the aptly called nanotechnology) are a form of matter with a size 

dimension on the order of 10-9 meters (nanometer).  They are a collection of atoms and/or 



2 

molecules that are larger than their individual constituents but are not yet reaching macroscopic 

dimensions.  For scale, a single gold atom has a radius of 0.135nm while a gold nanosphere with 

a 5nm diameter already has 4000 atoms.  Nanoparticles (and, in general, any nano-scale systems) 

are a hybrid form of matter between a macroscopic solid and an atomic system which allows for 

the study of the transition between these two extremes.  Their unique composition, size, and shape 

result in novel properties that have the potential to impact many areas of science.  Nanoscience is 

truly an ‘engineered’ science in that every aspect of the nanosystem can be fabricated and 

manipulated to exploit specific characteristics. 

Nanoparticles have been used by humanity for millennia dating back to the extraction and 

use of gold in the 5th Century B.C in Bulgaria, Egypt, and China [3].  Colloidal or ‘soluble’ gold 

was used for aesthetic and curative purposes such as coloring glass and ceramics, as seen in 

stained-glass windows.  One of the most famous example is the 4th century B.C. Roman ‘Lycurgus 

Cup’ as seen in Figure 1.1 which is a glass cup infused with gold and silver colloids [4].  The 

presence of the gold-silver alloy 

nanoparticles imparts the cup’s 

ability to look green in reflected 

light and ruby red in transmitted 

light.   

Michael Faraday conducted 

what could be considered the first 

scientific study on metal colloids, 

especially for gold [5].  A sample of 

his gold colloid (Figure 1.2) from 

Figure 1.1 4th century B.C. ‘Lycurgus Cup’. The 

presence of a gold-silver colloid in the glass results in 

the a) reflected green light and b) transmitted red 

light.  Image from [4]. 
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can still be seen over 150 years later and is a testament to Faraday’s 

work and the impressive stability of gold.  Gustav Mie in 1908 

explained the color of a gold colloid by applying Maxwell’s 

electromagnetic theory to provide a theoretical basis for light 

absorption and scattering by a spherical object [6].   

The last two decades of the 20th century opened the 

floodgates to the synthesis and quantification of nano-materials.  

Techniques such as transmission electron microscopy allow for the 

direct observation of nano-sized objects.  Improved spectroscopic methods greatly increased the 

ability to observe minute nanoparticle properties.  A beautiful example is that of quantum dots 

(QDs) which are single nanometer-sized semiconductor nanoparticles shown in Figure 1.3.  These 

QDs usually range from 2-6nm in 

diameter and their emission wavelength 

is highly dependent on their dimensions.  

These particles exhibit quantum 

confinement and the particle in the box 

model can be used to predict their energy 

levels [7].  A small ‘box’ will emit 

shorter wavelengths than a longer ‘box’ which is seen in the QD fluorescence emission.   Metallic 

nanoparticles are of great interest because of their optical properties, especially in the visual 

wavelength range.  They can also support surface plasmons which show great potential in the field 

of nanoplasmonics [8–12]. 

Figure 1.3 Different sized quantum dots.  QDs 

emit different wavelengths as a function of their size 

(left to right = small to large diameter). Photo from 

Wikipedia. 

Figure 1.2 Faraday’s 

gold colloid solution stable 

after 150 years. Photo from 

Royal Institution’s 

Faraday Museum. 
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Nanotechnology is the application of nanoscience.  There is a multitude of active research 

areas to use nanotechnology to better the world around us.  A short, incomplete list include solar 

cells, cancer treatments, ultrafast electronics, environmental waste clean-up, and 

computing [12,13].  The use of nanoparticles has become ingrained into our everyday lives and 

will only continue to change the way we live. 

 

 1.2 Nanoparticle interactions 

Nanoparticles present a new and unique scaffold for basic science research.  They provide 

ample avenues to study their fundamental properties through interactions with themselves or with 

ultrafast, intense laser sources.  My work ties together several promising research directions in 

both nanotechnology and ultrafast laser physics.  On one hand, an immense interest in perfecting 

synthetic techniques has led to the ability to perform first-of-its kind fundamental experimental 

studies probing into the interaction between individual nanoparticles.  On the other hand, the use 

of intense, femtosecond lasers in the optical and x-ray domains allows me to explore nanoparticle 

interactions with light on the femtosecond (10-15 sec) timescale and the natural nanometer length 

scale of isolated nanoparticles.  These two ideas are the central theme of the thesis presented here. 

 

 1.2.1 Solubility of nanoparticles 

Basic thermodynamic quantities such as chemical potential, entropy, and enthalpy are 

properties of a system that can be measured.  These values describe the state of a physical system, 

be it atoms, molecules, gases or bulk matter.  Entire handbooks are filled with such quantities (my 

82nd edition of the CRC Handbook of Chemistry and Physics is over 8cm thick) of almost every 
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material and their derivatives known to science.  These valuable resources are the aggregate of 

many decades of work and countless amounts of laboratory research. 

The field of nanoscience is rapidly synthesizing new and novel structures with incredible 

potential, yet basic thermodynamic properties for these systems is lacking.  A centralized 

‘handbook’ for nanoparticle properties would be an invaluable source for the large array of 

nanoparticle-themed research currently active.  Once the basic building blocks of a nano-system 

are understood, new and exciting possibilities are bound to transpire. 

Here, I advance the concept that a nanoparticle colloidal suspension is a solution with 

thermally reversible solubility phenomena [14].  A solution is traditionally seen as a single-phase 

homogeneous mixture of a solvent and a solute that cannot be separated.  However, using the 

definition of a solution as simply a homogenous mixture [15,16] applies well to a nanoparticle 

suspension with a narrow size distribution. Observations by our group and others have shown that 

nanoparticle suspensions show behaviors common to many molecular and ionic solutions [17–21] 

including the thermal reversibility of aggregation and nucleation phenomena.  These observations 

are dependent on having a monodisperse (narrow) size distribution which is precisely what 

digestive ripening is used for [22]. 

To quantify a thermodynamic property, it is useful that all the individual constituents 

(nanoparticle monomers) of the solute are almost the same.  Digestive ripening is similar to Oswalt 

ripening except that large nanoparticles ‘transfer’ some of their atoms to the smaller particles until 

a size equilibrium is found [22].  Once these self-similar nanoparticles are synthesized, the ability 

to extract thermodynamic properties becomes an intriguing experiment. 

A solution/suspension of monodisperse 5nm gold nanoparticles (AuNPs) dissolved in 

toluene exhibit thermally reversible solubility, show aggregation phenomena, and mimic 
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molecular and ionic behaviors.  Classical solution theory is extended to analyze the 

thermodynamic properties of a nanoparticle system. 

 

 1.3 Matter response to intense optical fields: from atoms to nanosystems 

 1.3.1 Merging nanotechnology and ultrafast laser science 

Nanoparticles occupy a unique position in science because of their recent arrival and 

interesting properties.  One of the most exciting areas for their application is the emerging field of 

ultrafast nanophotonics [100].  This rapidly developing branch of science is to a large extent based 

on the ability of modern nanotechnology to design and synthesize nanometer-sized structures with 

a tunable response to electromagnetic radiation, controllable on the femtosecond or sub-

femtosecond time scale [11,12,92,101,102].  A range of particular applications includes ultrafast 

computation and information storage on the nanoscale [103], the generation of extreme ultraviolet 

(XUV) frequency combs [104], plasmon-enhanced photo-processes in femtosecond 

photochemistry, light detection, and solar energy conversion [105].  This has caused an increasing 

interest in different scientific communities to have a detailed understanding of the behavior of 

nano-objects irradiated by short, intense laser pulses.  From the more fundamental point of view, 

nanoparticles bridge the gap between atomic/molecular and bulk matter and thus offers unique 

opportunities to study light interactions with complex systems as a function of their size, shape, 

composition, and electronic structure [23]. 

Experimental methods typically used to characterize the ultrafast response of nanoscale 

objects to intense laser radiation include techniques based on absorption measurements [106], 

detection of the fluorescent light emitted as a result of direct field-induced or secondary collisional 

excitations [107,108] or different types of charged particle spectroscopy [24-26,109-111]. The 
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latter include ion time-of-flight mass-spectrometry, energy- and angle-resolved ion measurements, 

and various photoelectron spectroscopy and imaging techniques. Photoelectron spectroscopy in a 

single-photon regime (“weak field” limit) makes use of the photoelectric effect to probe intrinsic 

properties of solids, gases or liquids by measuring the emitted electrons and has long been one of 

the most important sources of our knowledge of the electronic structure of matter [112]. It was 

also successfully utilized to characterize the interaction of atoms and molecules with more intense 

external fields, typically generated by pulsed laser sources [113]. In this case, the emission of an 

electron requires more than one photon, and, depending on the laser parameters, can be better 

described either within the multiphoton or tunneling ionization picture.  The extension of 

photoelectron spectroscopy and imaging techniques to isolated nanosystems exposed to intense 

laser pulses presents the prospect of probing nanoscale electron motion on a sub-laser cycle 

timescale and is currently an active area of research [24-26,114,115]. 

 

 1.3.2 Ionization of atoms by intense laser pulses 

Single electron emission from atoms exposed to intense short-pulse laser fields is one of 

the most fundamental and well-studied reaction channels in non-linear strong-field physics 

[113,116,117].  The intuitive view of such ionization processes for optical frequencies evolves 

from a “photon-based” picture at moderate laser intensities, to the interaction with an oscillating 

electromagnetic field in electron tunnelling or the complete suppression of its binding potential in 
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the high-intensity regime (see Figure 1.4). Somewhat more quantitatively, ionization is often 

considered as either a “multiphoton” or “tunnelling” process depending on the value of the so-

called Keldysh parameter γ [118] 

where UP is the ponderomotive potential (wiggling-energy of a free electron in an oscillating laser 

field) and Ip is the ionization potential.  Here, Up is defined as 

 

where e is the electron charge, Eo is the laser electric field, me is the electron mass, ω is the angular 

frequency of the laser, I is the intensity of the laser, and λ is the laser wavelength. 

For a given wavelength, the Keldysh parameter describes the ionization regime.  At high 

intensities where γ < 1, tunneling or classical over-the-barrier ionization is usually the dominant 

process.  For lower intensities where γ >> 1, multiphoton ionization provides a better simplified 

picture, where the absorption of n photons is required to overcome the binding potential (𝑛ℏ𝜔 > 

Ip). Theoretically, ionization processes in this regime can be adequately described by low-order 

perturbation theory [116]. In the intermediate regime, where γ ~ 1, mixed “field” and “photon” 

 𝜸 = √𝑰𝒑/𝟐𝑼𝑷 (1) 

 𝑼𝒑 [𝒆𝑽] =
𝒆𝟐𝑬𝟎

𝟐

𝟒𝒎𝒆𝝎𝟐
≈ 𝟗. 𝟑𝟒×𝟏𝟎−𝟐𝟎×(𝝀[𝒏𝒎])𝟐×𝑰 [𝑾 𝒄𝒎−𝟐] (2) 

Figure 1.4 Schematic representation of different ionization regimes 
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language is often used. Of particular importance here is the concept of above-threshold ionization 

(ATI), which is the extension of a multiphoton picture implying that more photons than the 

minimum number needed to overcome the binding energy of the electron is absorbed. This results 

in a series of discrete peaks in the photoelectron spectrum spaced by one photon energy [119,120].  

There are several theoretical approaches aimed at calculating absolute and differential 

ionization rates for high-order above-threshold and tunnel ionization. Most of them are based on 

the so-called “strong-field approximation”, which assumes that the acceleration of the electron 

after it is released from the atom is dominated by the external laser field [118,121,122]. This 

approximation provides the framework for a very intuitive model describing laser-atom 

interactions, often referred to as “three-step model” or “simple man model” [123,124]. The essence 

of this approach is sketched in Figure 1.5 for a linearly polarized field. The electron initially tunnels 

from an atom (step 1) and is then driven by the oscillating field of the laser (step 2).  Two general 

classes of electron trajectories in the 

field can be distinguished: those 

which return to the position of the 

atom, and those that leave the atom 

without return (“direct electrons”). 

The former group of trajectories 

results in the interaction between the 

electron and its parent ion known as 

“rescattering” or “recollision” (step 

3). The “recolliding” electron can either i) recombine and emit a high-energy photon (step 3a), ii) 

scatter inelastically resulting in an impact ionization or excitation of a second electron, iii) or 

Figure 1.5 Schematic of the ‘three-step model’ 

of laser-atom interaction. From [87] 
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scatter elastically and gain additional energy from the laser field (step 3b). Within this 

oversimplified picture, each of the above classes of interaction was found to be responsible for 

such important strong-field phenomena as high-harmonic generation [125], non-sequential double 

ionization [126] and high-energy above-threshold ionization [127], respectively. Because of the 

sub-optical cycle synchronization between the electron liberation and “recollision”, the latter 

process also provided the basis for modern attosecond science, in particular for attosecond light 

pulse generation [102,125]. 

Of importance for this work is the process of elastic rescattering, which allows an electron 

to gain energy from the field. Within the simple-man model outlined above, it can be easily shown 

that the maximum kinetic energy a “direct” electron can gain after a laser pulse (under the 

assumption that its envelope is considerably longer than one optical cycle), is equal to 2Up, where 

Up is the ponderomotive potential introduced above [123,128]. However, if the electron 

experiences a rescattering event, which changes its phase with respect to the oscillating driving 

field, it can gain considerably higher energy [127]. Within the three-step model, the largest energy 

an electron can gain from the field occurs when the electron trajectory is exactly backscattered 

upon recollision and is approximately 10Up.  A more precise expression, taking into account the 

effect of the atomic potential yields Emax = 10.0007Up + 0.538Ip [129]. 

 

 1.3.3 Nanoparticles in intense laser pulses 

Atomic ionization driven by strong external fields outlined in the previous section still 

represents a significant challenge for theory, with the exact ab initio treatment currently out of 

reach for systems larger then helium. However, countless exciting and novel applications involve 

interactions of such laser fields with much more complex systems involving thousands to millions 

of atoms [100]. Therefore, the development of theoretical methods and experimental techniques 
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aimed to unveil the strong-field response of large objects ranging from clusters of a few atoms to 

nanoscale systems and to macroscopic solids currently attract plenty of attention. Considerable 

work in this direction was done on metal and rare-gas clusters, which represent complex systems 

tunable in size from a few atoms to tens of nanometers.  The interplay of the individual atom 

response, buildup of large Coulombic potentials, distinction between “inner” and “outer” 

ionization and the role of collective effects have been studied as a function of cluster material and 

size as well as of driving laser parameters (wavelength, intensity, pulse duration etc.).  Reviews of 

most important work on clusters in intense laser fields can be found in [96,130]. 

Experimentally, the most impressive observation is the possibility of efficient coupling of 

the optical laser energy into clusters, resulting in the production of very energetic ions and 

electrons as well as the emission of high energy x-rays [108,109,111].  From the experimental 

point of view, apart from material and shape restrictions, the main limitation of clusters as model 

systems for detailed quantitative 

understanding of the mechanisms of laser-

matter interactions is their typically broad 

size distribution.  This limitation can be 

significantly relaxed with advances of 

modern nanotechnology, allowing for the 

synthesis of nanosystems with precisely 

controlled sizes, shapes and properties.  As 

a result, several recent studies focused on the 

response of well-defined spherical 

Figure 1.6 Localized, near-field 

enhancement of 300nm SiO2 

nanoparticle relative to incident field. 

Image from [87] 
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nanoparticles to intense, ultrashort laser pulses. 

The main features defining the nanoparticle’s response to a large external field are a local 

near-field enhancement (enhanced relative to incident field, see Figure 1.6) and related sub-

wavelength localizations of the effective field driving the electrons in the nanoparticle.  For metals, 

near-field enhancement is often described in terms of collective electronic excitations (plasmons). 

However, even dielectric particles without any pronounced dc-conductivity exhibit near-field 

enhancements at optical frequencies, quantitatively governed by the wavelength-dependent 

dielectric function [87,96,100]. For certain material properties, nanoparticles smaller than the 

incident wavelength can be imagined as an antenna for optical light, with its response leading to a 

pronounced near-field enhancement and resonant oscillations of the electronic polarization. 

Several studies of the photoelectron emission from dielectric nanospheres irradiated with 

few-cycle laser pulses demonstrated a dramatic increase in electron energies compared to atoms 

exposed to the same fields. [24-26,86].  Combined experimental and theoretical analysis 

highlighted the ability to understand and control electron emission [24,25].  In particular, phase-

stable few-cycle pulses incident on gas-phase SiO2 spherical nanoparticles in vacuum were utilized 

for precise control of electron motion on the attosecond timescale.  The dynamics of this interaction 

show some similarities to those of atoms and molecules under similar conditions but differ in 

noteworthy ways.  The nanoparticle response to the electric field of the laser pulse produces a 

localized near-field, which can have a larger amplitude than the incident field (see Figure 1.6).  

The trajectory of a photoelectron is dictated by the convolution of all the fields present, which 

includes the laser field, nanoparticle’s near-field, and the Coulomb interaction with other charges 

(ions and electrons) created in the nanoparticle.  This results in the emission of electrons with 

energies much higher than those for individual atoms.  The final photoelectron momentum and 
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angular distribution are determined by the interplay between these forces described above.  It was 

shown that the trajectories involving electron rescattering (discussed in the previous section for 

atoms), in such a combined effective field are responsible for the production of the electrons with 

highest energies [24-26,86]. 

Besides the phase-controlled emission of high-energy electrons, a deep insight into the 

dynamical evolution of the near-field enhancement in nanoparticles can be obtained by attosecond 

photoelectron streaking. This technique is based on the photoionization by an attosecond XUV 

pulse and the subsequent modulation of the electron energy by the oscillating laser field.  Its 

application to isolated atoms allowed for the first direct visualization of a few-cycle light wave 

[132] and sparked heated discussion on the time delays in photoionization [133]. For nanosystems, 

this approach holds promise for the time-resolved imaging of the dielectric response and plasmonic 

fields. It was successfully applied to study the electron propagation and screening effect in solid-

state samples. The applicability of attosecond streaking spectroscopy to the element-specific 

investigation of induced time-dependent electric fields near nanoparticle surfaces has also been 

recently demonstrated both, experimentally [135] and theoretically [89,90]. 

 

 1.3.2 Size and material effects 

Mechanisms of electron acceleration in isolated nanoparticles crucially depend on their 

size and composition.  Size-dependent properties can be readily analyzed by varying the diameter 

of the nanoparticles where the number of emitted photoelectrons, their kinetic energies, and 

angular distributions are all related to the nanoparticle’s dimensions.  In [25], size dependent 

energy and angular photoelectron distributions are measured and clearly show an increased energy 

cutoff (highest electron energy detectable) along with a propagation-induced directionality.  As 



14 

the dipole approximation breaks down for large particles (the particle diameter becomes 

comparable to the incident wavelength), the maximum near-field enhancement shifts away from 

the particle poles and towards the laser propagation direction (see Figure 1.6).  This shift becomes 

evident in the final photoelectron angular distribution. 

Nanoparticle material dependence also plays a significant role in understanding the 

particle’s response to intense laser light, electron emission mechanisms and final photoelectron 

spectra.  Intrinsic nanoparticle properties such as binding energies, permittivity, and field 

enhancement all can affect the electron acceleration process [26].  Theoretical predictions for 

localized near-field enhancements vary significantly as a function of the particle material and size 

[89-91]. It should be noted that in an intense laser field, a clear distinction between dielectric, 

semiconductor and metal nanoparticles becomes somewhat problematic because of the significant 

“inner” ionization [96,130] resulting in the presence of quasi-free electrons for any material. 

Therefore, the role of material properties in the laser-induced electron dynamics in nanostructures 

might evolve as a function of laser parameters, and in particular, laser peak intensity. 

Understanding basic mechanisms of size-, material- and intensity-dependent dynamics in gas-

phase nanoparticles is the central theme of the work presented in this thesis.  

 

 1.4 Time-resolved dynamics in nanoparticles using free electron lasers 

 1.4.1 X-ray free-electron lasers: novel probe of nanoscale structure and dynamics 

Most of the experimental techniques studying light-driven dynamics in nanoscale objects, 

discussed in the previous section, rely on the detection of charged particles, either ions or electrons. 

These charged-particle spectroscopies are very efficient for weak fields and work reasonably well 

at moderate laser intensities.  However, the large degree of ionization at high laser intensities 
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results in the creation of an enormous amount of charges where the space-charge effects strongly 

influence the experimental observables.  These difficulties caused significant interest in the 

development of photon-based techniques aimed to characterize light interactions such as high-

harmonic generation [135] or measurements of high-energy x-ray emission [109] from 

nanoparticles.  Another novel and promising approach for the direct imaging of light-driven 

nanoparticle dynamics is time-resolved scattering, enabled by the development of x-ray free-

electron lasers (XFELs). 

Many fundamental questions related to the structure of matter were answered with the use 

of x-rays.  X-ray diffraction on crystal structures (x-ray crystallography) has allowed for three-

dimensional reconstruction of biological objects with the resolution approaching the natural length 

scale of the atom.  X-ray diagnostics is indispensable for numerous medical applications.  

Countless advances in science such as the determination of the full structure of DNA were also 

made possible.  New sources of XFELs can deliver coherent x-ray bursts of femtosecond duration 

and unprecedentedly high intensities (containing 1012-1014 photons per pulse) that significantly 

broaden the range of applications of x-ray diffraction techniques [136].  The central concept here 

is the so-called “diffract-before-destroy” approach, which utilizes very intense and short x-ray 

pulses to catch a snapshot of the target structure before it gets modified and eventually destroyed 

by radiation damage [137]. This technique can obtain single-shot diffraction patterns from much 

smaller objects compared to conventional x-ray sources.  It makes it possible to use x-ray 

diffraction to study materials that were previously inaccessible.  One important example is the so-

called nanocrystallography, which allows for obtaining high-resolution structural information for 

objects for which large crystals cannot be grown [138]. Single-shot, single particle imaging of 

nanoscale objects also appears to be in reach [139,140]. 
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Because of their femtosecond pulse durations, XFELs can be efficiently applied to study 

the evolving structure of matter with high temporal resolution. This was impressively 

demonstrated on a number of molecular systems excited by the synchronized optical laser and 

probed by different types of x-ray spectroscopies [136]. Very recently, this approach was extended 

to study laser-driven dynamics in nanoscale systems [28]. 

 

 1.4.2 Rare gas clusters as model systems for time-resolved x-ray scattering 

Similar to the optical domain (see Section 1.3), early experiments at XFELs made use of 

rare-gas clusters as model objects for bringing the studies of light-matter interactions to the 

nanoscale [27–29].  These mesoscopic systems are easy to generate, have an adjustable mean size, 

and a large scattering and absorption cross-sections which make them a powerful “nano-lab” for 

many proof-of-principle experiments.  Nano-clusters in vacuum also provide a straightforward 

opportunity to study isolated systems, detached from any sort of substrate.  Single-shot x-ray 

diffraction using the XFEL source makes it possible to image one cluster at a time.  As this FEL 

pulse has a duration of femtoseconds, time-resolved experiments can also be performed.  Figure 

1.7 shows an x-ray diffraction image of a single Xe cluster which encodes information about the 

cluster size and scattering intensity.  As was shown in 

[27], the latter information can be extracted from the 

total number of scattered photons, and the former from 

the observed diffraction fringe spacing. 

Figure 1.7 X-ray scattering image 

from a 60nm Xe cluster. Image taken 

from [27]. 
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The ability to image isolated nano-clusters with a single shot enables the FEL beam to act 

as a camera ‘shutter’ to observe ultrafast dynamics.  This can be exploited to resolve, in real-time, 

laser-driven dynamics in nanosystems at rather high intensities, where techniques based on 

electron or ion detection experience difficulties because of space-charge effects.  A recent proof-

of-principle experiment on Xe clusters demonstrated the feasibility of this approach [28].  The 

main idea of this study is sketched in Figure 1.8.  Xe clusters of a few tens of nanometers in 

diameter were pumped with an intense (~1015 W/cm2) femtosecond optical laser.  Under these 

conditions, rapid ionization causes disintegration of the cluster, effectively turning it into 

expanding nanoplasma. The formation and evolution of the ion and electron densities in the created 

nanoplasma is deduced from a sequence of x-ray diffraction images created by an intense x-ray 

pulse arriving at variable, well-defined delays after the optical laser pulse.  The process of x-ray 

diffraction relies on the elastic scattering off the individual atom’s electron cloud density.  Any 

change in the arrangement of the electron density is seen in the small angle x-ray scattered image. 

 

 

Figure 1.8 Time-resolved x-ray scattering used to track the formation and evolution of a 

nanoplasma in a Xe nanocluster.  An optical (red) pulse initiates the dynamics, while the x-ray 

(purple) comes at a set time-delay later.  Image taken from [29]. 
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 1.4.3 FEL Adaptable Nanoparticle Sources (FANS) 

While the time-dependent dynamics of rare gas clusters is a milestone in the use of time-

resolved single-particle imaging, the clusters as a target have severe limitations for this kind of 

experiment.  First, the range of materials available for efficient cluster formation with a reasonable 

technical effort is rather limited.  Second, more importantly, cluster sources typically yield very 

broad size distributions, resulting in the averaging of all the experimental observables over 

particles with significantly different size-dependent responses. In single-shot, x-ray only 

experiments using clusters, imaging is an elegant way to overcome this difficulty, as demonstrated 

in [27].  There, the measured data included x-ray scattering images, fluorescence spectra and ion 

charge state distributions that were sorted according to the spacing of the diffraction patterns and 

their total number of photons, allowing one to recover the results for single-size, single x-ray 

intensity conditions.  However, this approach is not applicable to the studies of laser-driven 

dynamics since the spacing of the fringes might evolve as the cluster expands.  This places a 

requirement for the development of monodisperse nanoparticle sources. 

Several techniques were proposed to inject individual nanoscale objects into vacuum (see, 

e.g., [42-44]). Among them, some of the most successful techniques employed at XFEL facilities 

are based on aerodynamic-lens injectors [51,52, 141].  The development of such a FEL Adaptable 

Nanoparticle Source (FANS) [142] allows for a wide-ranging array of samples that that are 

potentially advantageous for many different FEL applications, including the injection of 

nanoparticle samples with a very narrow size distribution.  The main advantage of FANS over a 

rare gas cluster source is the sample quality and selection.  The samples to be studied are often 

prepared off-site and usually in a wet-synthetic method that can produce extremely pure and 

monodisperse particles.  The ability to precisely tailor the samples before injection into vacuum 
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and to maintain this narrow size distribution increases the reproducibility of the data and the 

amount of information which can be obtained from such an experiment. 

Metal and dielectric nanoparticles (e.g., Au, Ag, SiO2) can be synthesized with small size 

distributions (usually <10% dispersity) and with very defined surface features.  In a single-shot x-

ray imaging experiment, the diffraction fringes are the observable where the scattering information 

resides.  Reproducibility lies in the ability for each nanoparticle interaction with the laser to be 

nearly identical to the previous one.  A time-dependent ‘movie’ of the expansion of a nanoplasma 

on the surface of a nanoparticle can be made by performing an experiment where the conditions 

are all pre-optimized.  The near-sphere-like particles also produce very clean, clear diffraction 

patterns.  As statistics are crucial in following the time-dependent plasma evolution, FANS need 

to have the ability to produce a rather dense nanoparticle beam.  Overall, a nanoparticle sample 

can be synthesized which precisely meets the size and shape requirements to ensure excellent 

signal to noise in the scattering signal. 

 

 1.5 Thesis outline 

The overall theme of this thesis is understanding how nanoparticles interact with their 

surroundings, be it photons or matter.  The thesis presents novel technical developments in 

nanotechnology and report three different, yet closely related studies enabled by these technical 

progresses.  The results presented here were obtained at Kansas State University (KSU) and at the 

Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser.  

Beyond the motivation ideas and some background information presented above, the thesis 

is organized as follows: Chapter 2 describes experimental concepts and setups used for the studies 

of nanoparticle interactions.  After a brief overview in Section 2.1, the tools needed for synthesis 
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of nanoparticles and for the solubility studies are described in Section 2.2.  Section 2.3 is devoted 

to the design, development and characterization of the nanoparticle sources used throughout this 

work.  This is the main technical advance achieved in this work.  The design and specific 

requirements for the nanoparticle source also provide an important practical link between the 

photoelectron spectroscopy experiments and the FEL-based x-ray imaging.  Section 2.4 describes 

the detection setup used for photoelectron studies, centered around the so-called velocity map 

imaging (VMI) spectrometer.  Section 2.5 outlines the main features of intense, near-infrared 

femtosecond laser systems used at KSU and at the LCLS.  Finally, Section 2.6 provides an 

overview of main tools employed in the FEL-based study at the LCLS. 

Chapter 3 presents the results of the nanoparticle solubility studies.  A detailed and unique 

approach to measure and analyze the thermodynamic properties of nanoparticle systems provides 

first-of-its kind data.  Self-similar nano-systems exhibit behaviors analogous to molecular or ionic 

solution and present a method of determining inter-nanoparticle interaction potentials.  The 

temperature-dependent solubility of small gold nanoparticles provides experimental data to 

measure nanoparticle interactions. 

Chapter 4 describes the outcome of the experiments aimed to determine basic formation 

mechanisms of the photoelectron spectra from nanoparticles irradiated by moderately intense 

(~1011 – 1014 W/cm2), 25 fs NIR laser pulses.  After the introduction of a novel technique allowing 

one to avoid focal volume averaging (Section 4.1), Sections 4.2 and 4.3 present the size-dependent 

photoelectron data obtained for SiO2 and gold nanoparticles, respectively.  The results for both 

materials are compared and the basic factors determining the outcome of these experiments are 

discussed. The last part of the photoelectron chapter (Section 4.4) reports on similar studies 
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performed on silica core – Au shell nanoparticles tailored to have a resonant absorption peak at 

800 nm, close to the central wavelength of the laser used in this work.  

The results of the LCLS experiment on x-ray scattering imaging of the nanoparticles 

excited by intense (1015 W/cm2) femtosecond, NIR laser pulses are presented and discussed in 

Chapter 5.  Finally, Chapter 6 presents the summary of the work done and outlines some promising 

future directions. 
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Chapter 2 - Experimental Methods 

- Damn the torpedoes; Full steam ahead. 

- David Glasgow Farrogut,  

as often repeated by 

Christopher M. Sorensen 

 2.1 Experimental synopsis 

The experiments described in this thesis present an amalgamation of my background in 

science.  It is a mixing of physics and chemistry, a weave of condensed matter, physical chemistry 

and thermodynamics with ultrafast, strong field physics.  It orbits around a central theme of 

understanding the nanoscale world, one nanoparticle at a time. A diverse set of apparatus was 

employed in my research, ranging from state-of-the art free electron lasers to the humble UV-Vis 

spectrometer. 

Two discrete distinctions are made in how nanoparticles are investigated.  The first method 

comes from the viewpoint of nanoparticles in their more customary form; in solution as an 

ensemble of particles. The second is a true single particle, gas-phase, in-vacuum study of how 

ultrafast, intense light interacts with nanoparticles. The first employs simple absorption 

measurements (Section 2.2) while the latter is a unique blend of particle sources (Section 2.3), 

velocity map imaging spectrometer (Section 2.4), ultrafast NIR lasers (Section 2.5), and Free 

Electron Lasers (Section 2.6) 
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 2.2 Nanoparticle solubility 

 2.2.1 Monodisperse gold nanoparticles 

To study a macroscopic property that is dependent on the nanoscopic properties of the 

system, a consistent synthetic method is required.  Synthesizing monodisperse nanoparticles with 

a narrow size distribution (<15%) ensures that any bulk measurement can be extrapolated back to 

the single monomer entity of the system.  The temperature-dependent solubility of an in-solution 

gold nanoparticle (AuNP) system is associated to its enthalpy of dissolution, an intrinsic property 

of the ensemble of individual nanoparticles.  At the nanoscale, shape and size are fundamental 

properties.  

Through a novel process developed at Kansas State by the Sorensen and Klabunde group, 

including Sorensen’s previous student Xiao-Min Lin, called digestive ripening, a polydisperse gold 

nanoparticle system is transformed into a monodisperse solution [18,22].  The size and shape of 

all the nanoparticles become uniform, as seen in Figure 2.1. The exact mechanism is unknown, but 

it has become well-documented as a tool to produce 

particles of uniform dimensions [30–32].  An interest 

has been taken in understanding how digestive 

ripening differs from Oswalt ripening  [33,34].  Once 

we can look at a single monomer (single nanoparticle) 

and with reasonable certainty say that its colloidal 

neighbors are nearly identical, macroscopic 

measurements can be performed that give insight into 

how nanoparticles of a given size interact with their 

environment. 

Figure 2.1 AuNPs before (left) and 

after (right) digestive ripening.  The 

polydisperse colloid becomes a uniform 

shape and size. 
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 2.2.2 Enthalpy of dissolution 

A basic thermodynamic quantity is that of the enthalpy, H, of a system.  Enthalpy has 

dimensions of energy or energy per mole and is defined as 

where U is the internal energy of the system, p is the pressure, and V is the volume.  Thus, enthalpy 

is equal to the internal energy of the system plus the product of pressure and volume.  At constant 

pressure, the term pΔV is the expansion work done by the system to make room for the changing 

volume, ΔV.  Total enthalpy cannot be directly measured but only a change of energy within the 

system, ΔH  [35].  As the laboratory is at constant pressure, this is the most straightforward 

measure to watch a process (in our case dissolution of nanoparticles) and determine if it is 

endothermic or exothermic.  When one thinks of thermodynamic quantities, pictures of large 

ensembles of atoms and molecules interacting and reacting come to mind. Entire textbooks and 

handbooks are filled with such properties of every natural and synthetic chemical known to 

humanity. Everything from the simplest elements to the largest polymer is well-documented and 

analyzed.  Science has opened a new door consisting of nanoparticles and nanostructures.  These 

come in every size, composition, and shape imaginable [36–40] and each one with a diverse array 

of properties depending on said variables.  Fundamental thermodynamic measurements have yet 

to be done on the simplest of systems, namely an ensemble of nano-sized spheres suspended in a 

solvent.  This is where we can begin to understand the simplest of properties that can move science 

forward. 

 

 

 

 𝑯 = 𝑼 + 𝒑𝑽 (3) 
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 2.2.3 Temperature dependent solubility 

The enthalpy of dissolution is the enthalpy gained or lost during the dissolution of a solute 

into a solvent, at constant pressure.  The relative change in enthalpy can be found by measuring 

the change in solubility of the solute in the solvent by adjusting the temperature.  The solubility of 

a system is a measure of the number 

of nanoparticles that can be dissolved 

in a given volume of solvent at 

saturation.  Refer to Figure 2.2 as a 

representative nanoparticle phase 

diagram plotted as the total 

nanoparticle concentration vs 

temperature.  Above the phase 

boundary, the system resides in a 1-

phase regime where the solute is 

totally dissolved in the solvent at 

temperature T=TA and concentration 

C=CA.  The temperature is changed to 

TB and the phase boundary is crossed.  

The concentration of the supernatant 

will follow the phase boundary line and thus have a concentration C=CB, which is lower than CA.  

The excess solute will precipitate (2-phase system) out of solution until a new equilibrium is 

reached with the supernatant.  Another temperature adjustment to T=TC results in the supernatant 

concentration of C=CC and more solute will be precipitated.  The concentration of the supernatant, 

Figure 2.2 Example phase-diagram.  The 

sloped line is the phase boundary between 1-phase 

(totally dissolved) and 2-phase (solute in 

supernatant in equilibrium with precipitate). 
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in this example, decrease for every temperature drop below the saturation line.  The amount of 

energy it takes to transform the dissolved phase to solid phase, or vice-versa, in B and C can be 

measured as the enthalpy of dissolution. 

 

 2.2.4 UV-Vis spectrometer 

The workhorse of this experiment was the UV-Vis spectrometer (Ocean Optics USB 

4000+).  As seen in Figure 2.3a), this device produces a large spectrum of incoherent light ranging 

from 200nm to over 1000nm.  The light is transmitted through the sample and detected using a 

charge-coupled device (CCD) along with a diffraction grating.  The grating spatially spreads the 

‘white’ spectrum into its spectral components across the CCD array.  The primary function of this 

spectrometer is to measure the absorbance of a sample.  The total amount of light going into the 

sample is compared with the amount of light exiting the sample as a function of wavelength.  The 

absorbance spectrum is plotted as a function of wavelength where absorbance is defined as the log 

(base 10) of the ratio of the incident to transmitted power through a material, as seen in Figure 

2.3b) for a solution of 5nm gold nanoparticles. 

Figure 2.3 a) UV-Vis spectrometer spectral output between 200-1000nm b) UV-Vis 

absorbance spectra from a 5nm AuNP solution in toluene. 

b) a) 
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 2.2.5 Experimental apparatus 

To attain reliable temperature dependent solubility data from nanoparticles, a home-built 

device was constructed and subsequently modified throughout its lifetime, as shown in Figure 2.4.  

A commercial bench centrifuge (Eppendorf minispin+; 14500rpm/12000g) was transformed into 

a temperature controlled (-15°C to 100°C) centrifuge with a built-in UV-Vis spectrometer 

compatible rotor.  Two laboratory heating/chilling units piped an ethylene glycol/water solution 

through copper tubing surrounding the centrifuge rotor (center).  This allowed for precise 

temperature control over the entire experiment and greatly improved the reproducibility of the 

experiment.  A UV-Vis spectrometer head (consisting of the light output and input fiber optic 

cables) was constructed to snugly fit over the custom-built centrifuge rotor.  The rotor housed the 

nanoparticle sample and an absorbance reading could be taken without removing the sample from 

the centrifuge. 

One challenge was the ability to reuse the same nanoparticle sample through multiple 

temperature scans.  Toluene has a low vapor pressure and thus evaporates quickly.  Losing solvent 

Figure 2.4 Custom designed temperature-controlled centrifuge. On the left is an open-lid 

view of the system.  On the right is the custom-made rotor designed for a fitting that connects to 

the spectrometer via optical fibers. 
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means that the system concentration is changing as a function of time.  To eliminate this problem, 

I developed a technique to flame seal each nanoparticle sample in a glass ampule (EMS #63831-

10, borosilicate capillary micro glass slide).  This allowed for a small path length (0.8mm), small 

sample volume (100-150µl), and a sealed environment.  Each ampule was first flame sealed on the 

bottom, partially sealed on the top (leaving a small hole to add sample) and then oven annealed to 

relieve any heat-induced stress.  The nanoparticle sample was syringed into the ampule and quickly 

sealed.  This sealed nanoparticle sample is impervious to solvent loss and much more robust for 

multiple temperature scans. 

 

 2.2.6 Nanoparticle synthesis 

Nanoparticle synthesis was done within the Sorensen group by a tried-and-true inverse 

micelle method.  Coupled with the aforementioned digestive ripening, colloids of monodisperse 

gold nanoparticles are synthesized and quantified before use in the solubility experiments.   

AuNP are synthesized using the toluene-water-dodecyldimethylammonium bromide 

inverse micelle method  [22,41] followed by digestive ripening.  Briefly, 34mg of gold(III) 

chloride was dissolved in 10ml of 0.02M solution of dodecyldimethylammonium bromide 

(DDAB) in toluene.  The gold(III) was reduced by adding 40µl of an aqueous solution of 9.4M 

sodium borohydride followed by 30 minutes of stirring where a change in color is observed.  0.8ml 

of 1-dodecanethiol (DDT) was then added to the polydisperse colloid to displace the DDAB 

followed by 30 minutes of stirring.  The molar ratio of DDT:Au was 30:1.  A purification step of 

30ml of ethanol precipitates the nanoparticles while the supernatant was removed.  The AuNPs are 

reconstituted in 10ml of toluene and 30:1 DDT:Au ratio.  The solution was digestively ripened 
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(refluxed) under an argon atmosphere for 90 minutes.  A typical before and after TEM image is 

shown in Figure 2.1, nicely illustrating the near-monodisperse size and shape of the AuNPs. 

These as-prepared AuNPs are quite dilute, though they still strongly absorb light because 

of their plasmon resonance at ~525nm.  To produce a system that can cross the phase boundary (a 

saturated system), the solution was concentrated by a factor of 10.  The ligand (DDT) was also 

increased to 15% by volume as it was noted that the addition of excess ligand decreased the overall 

solubility of the AuNP. This observation still has not been explained as the surface of the AuNPs 

are coated with DDT and you would expect the AuNP:DDT particles to favor excess DDT.  My 

previous work shows a general trend of ‘like dissolves like’, though not in all cases [19].  Visible 

inspection showed that the nanoparticle sample was in two-phase equilibrium at room temperature 

as the AuNP precipitate could be observed on the bottom of the ampule. 

 

 2.2.7 Solubility procedure 

A specific procedure was developed over the course of many years that led to reproducible 

solubility data.  Here is an outline of the steps taken. 

• Sealed AuNP ampule is put in ultra-sonic bath for ~2 minutes to break up any precipitate 

and aggregates of the two-phase system and produce a homogenous suspension. 

• Ampule is placed in centrifuge rotor inside the temperature-controlled box set to a desired 

temperature.  The sample is left to ‘rest’ and come to an equilibrium for 15-30 minutes. 

• While holding a set temperature, the sample is centrifuged at 7000rpm (3300g) for 12 

minutes.  This ensures that any suspended aggregates in solution have sufficient time to 

spin to the bottom of the ampule.  Removal of the very fine precipitate (dimers, trimers, 

etc.) required a centrifuge. 
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• The sample is carefully removed from the rotor, inverted, and placed back into the holder.  

The inversion separates the precipitate from the supernatant. 

• UV-Vis absorbance reading of the supernatant is taken and saved. 

• Process repeats at another temperature setting. 

The temperature range of the measurements were defined by both hardware limitations and sample 

hardiness.  The chillers had a stable lower limit of -10°C while the AuNPs showed signs of damage 

beyond 35°C.  The use of the centrifuge is required as the very fine precipitate (dimers, trimers, 

etc.) will not separate from the supernatant without additional help.  The appearance of clusters in 

a nanoparticle sample shows up as a broadening and a red-shift in the plasmon resonance of the 

AuNP.  The speed and time of the centrifugation ensured that only monomers are present in 

solution. 

 

 2.3 Nanoparticle injector for gas-phase experiments 

To investigate how ultrafast, intense laser light interacts with a nanoparticle, a source that 

can supply such particles into vacuum was needed.  It must be able to produce isolated, gas-phase, 

single monomer nanoparticles at a rate conducive to the constraints of the laser system.  It must be 

able to have a nanoparticle flux that can maximize the probability of one nanoparticle in the focus 

per laser shot but minimize more than one.  Synthetic methods such as sputtering [42], laser-

ablation [43], or pyrolysis [44] can produce such gas-phase nanoparticles but they suffer from low 

yields and poor size and shape polydispersity.  Wet synthetic methods have much finer control of 

yield, size, and shape [22,42,45,46]; every attribute desired for a nanosource. 
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To bring these nanoparticles to the gas-phase (i.e., inject into vacuum), a clever blend of 

aerosol technology and particle focusing is employed.  The basic steps include 1) 

atomization/aerosolization 2) drying of aerosol and 3) aerodynamic particle focusing. 

 

 2.3.1 Atomization 

A nanoparticle aerosol is generated using a Collison-

type commercial atomizer (TSI, Model 3076).  Figure 2.5 

shows a cross-sectional view of the internal workings of the 

atomizer.  Compressed air expands through the orifice to 

create a high-velocity gas jet. This draws up the liquid 

sample into the gas stream where the sample is aerosolized 

by shear forces.  The backing pressure and sample flow rate 

each have a moderate effect on the properties of the aerosol.  

Large micron-sized droplets are impacted out on the 

opposite wall while the finer mist exits the top with the 

carrier gas. 

As mentioned above, the objective of the nanosource 

is to deliver one nanoparticle at a time to the laser focus at a practical rate.  To minimize the 

probability that multiple nanoparticles are contained in each aerosol droplet, the initial sample 

concentration was adjusted to a value ~5x1010 particles/ml.  A back of the envelope calculation 

(5×1010𝑁𝑃/cm3)−1 3⁄  gives an average distance between nanoparticles of 3µm.  A Poisson 

distribution analysis can also be used to calculate the probability of having 0,1, or 2 nanoparticles 

per droplet given the initial aerosol size distribution, though variables such as backing pressure 

Figure 2.5 Cross-section of 

Collison-type atomizer (picture 

courtesy of TSI, Inc) 



32 

and solvent directly affect the distribution. The 

sample concentration was empirically changed to 

ensure a dilute system.  Figure 2.6 shows a 

histogram of aerosol droplet size exiting the 

atomizer and clearly displays that most of the 

droplets are less than 1µm in diameter. A TSI 

Optical Particle Counter (OPS Model 3330) was 

used which as a minimum sizing diameter of 

500nm.  With most droplet sizes less than 1 µm, 

the probability of having more than one 

nanoparticle per aerosol droplet in a homogenous sample was minimized. 

 

 2.3.2 Aerosol drying 

The aerosol droplets must be dried to isolate the nanoparticles from the solvent and produce 

gas-phase nanoparticles suspended in its carrier gas. Initially, a diffusion dryer (TSI Model 3062) 

was used to dry the droplets.  Silica beads surrounding the aerosol flow path provide a dry 

environment for the evaporation of the solvent, leaving behind any material that was suspended or 

dissolved in the droplet.  This method was adequate but had some drawbacks.  Once the silica 

beads became saturated with water, they had to be removed, baked to remove absorbed water, and 

then replaced again.  This also means that the dry atmosphere inside the flow path gradually 

increased its relative humidity as the silica absorbed water.  Silica also is inefficient at removing 

solvents such as alcohol (ethanol or methanol) which means that aerosol droplets of these solvents 

would enter the vacuum chamber not sufficiently dried. 

Figure 2.6 Optical Particle 

Counter histogram of aerosol droplet 

size exiting TSI atomizer as a function 

of backing pressure. Note the log scale. 
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The diffusion dryer was replaced by a far superior product called a Nafion™ dryer (MD-

700 Large Diameter Nafion™ Dryer; Perma Pure, LLC).  This innovation is a copolymer of 

tetrafluoroethylene (Teflon®) and perfluoro-3,6-dioxa-4-methyl-7-octene-sulfonic acid.  This is 

extensively used in the gas industry to dry and monitor sample compositions [47].  Like Teflon®, 

it is highly resistant to chemical attack, but its inner sulfonic acid group network gives it beneficial 

properties.  Sulfonic acid has a large waters-of-hydration where it can absorb 13 molecules of 

water for every sulfonic acid group or, equivalently, can absorb up to 22% of its weight in 

water [48,49].   

Nafion™ dryers directly remove anything that acts like a base and/or contains a hydroxyl 

(-OH) group.  This includes water, alcohols, and ammonia while leaving behind all hydrocarbons, 

gases such as nitrogen or oxygen, and most importantly, nanoparticles.  The absorption of water 

or alcohol occurs rapidly as a first-rate kinetic reaction, driven by a difference in vapor pressure 

between the inside (high relative humidity) and the outside (low relative humidity) of the drying 

tube.  This means that the aerosol droplets encounter a very dry atmosphere inside the dryer and 

evaporation and shrinkage of the droplet occurs.  As there is nothing to become saturated, a 

Nafion™ dryer can run indefinitely, given a supply of dry purge gas.  Another advantage over the 

diffusion dryer is its ability to also efficiently remove alcohol from the aerosol stream.  On a side 

note, many synthetic methods to produce SiO2 nanoparticles make use of ammonia, which can be 

effectively stripped from the aerosol stream to further reduce background contamination in 

vacuum. 

Figure 2.7 is a plot comparing the performance of the diffusion dryer to the Nafion™ dryer.   

A constant flow of aerosolized water droplets was input into each of the individual dryers, similar 

to experimental conditions. A Testo 605-H2 Humidity Stick with Wet-Bulb Calculation was used 
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to measure the exit relative humidity of 

each dryer as a function of time.  The 

newly dried silica in the diffusion dryer 

(black stars) initially starts off at 6% 

but quickly climbs into double digits 

and finally to 25% after 4 hours.  At this 

point, the dryer was shaken to mix the 

saturated silica beads on the inner part 

of the dryer with the dry silica towards 

the outside. The humidity drops under 

15% but starts to quickly increase.  This 

shows that more water is being allowed 

through the diffusion dryer as a function of run time. 

The Nafion™ dryer needs a supply of dry purge gas to properly function.  Using 4 SCFH 

(standard cubic feet per minute) (red squares) of dry N2 gas shows it is inadequately drying the 

aerosol flow. It begins at 13% and levels off at over 20%.  Increasing the purge gas to >10 SCFH 

(orange triangles) shows the true potential of the system.  Under the same conditions as the 

diffusion dryer, this dryer could achieve less than 10% relative humidity for over 4 hours of 

runtime.  This dryer will consistently remove the same amount of water from the system 

continually, if there is sufficient flow of dry purge gas.  This is a great advantage, especially if 

long scans are needed to account for low experimental statistics. 

 

 

Figure 2.7 Drying ability comparison of a 

diffusion dryer vs Nafion dryer. The diffusion 

dryer performance decrease as it absorbs more 

water. The Nafion dryer quickly reaches a 

steady-state and can run for extended periods 

of time. 
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 2.3.3 Aerodynamic lens 

The current configuration of the aerodynamic lens was first developed in 1995 by a 

research group from the University of Minnesota [50,51] to produce highly collimated and tightly 

focused particle beams.  An aerodynamic lens works on the principle of axi-symmetric flow 

contractions and expansions through a nozzle or aperture, driven by a difference in pressure. A 

series of progressively smaller apertures effectively drives the particles towards the center and 

increases the local particle density. The term ‘aerodynamic lensing’ comes from the use of multiple 

apertures to tighten and ‘focus’ the particle beam through aerodynamic forces.  Figure 2.8 shows 

how the gas flow, including particles, 

behave when encountering an 

aperture [52].  This shows a single 

trajectory of a particle (solid line) vs the 

bulk gas flow (dashed line).  Upon 

contraction through the aperture, the 

particle will stay closer to the center of the 

lens system because of its higher moment 

of inertia compared to the gas. The gas 

flow will again expand while the particle 

has gained momentum parallel to the lens.  This is repeated multiple times through small openings, 

thus confining the particle beam tighter.  Figure 2.9 shows a schematic of the inside of the 

aerodynamic lens.  On the left is where the gas-phase aerosol enters the vacuum chamber through 

a 150µm glass orifice.  This is called the ‘critical orifice’ as it regulates how much gas flow enters 

Figure 2.8 Simulated working principle of an 

aerodynamic lens. A particle in the gas flow incident 

upon an aperture moves toward the middle while the 

gas again expands afterwards. Image taken from [52]. 
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the system which depends on the pressure difference between the two sides. The critical orifice 

allows a pressure drop from atmosphere to a few Torr which is a typical running condition for this 

lens design.  This critical orifice was custom-made by a glassblower where a smooth inside taper 

was crafted, starting with an inner diameter of 3mm and having a smooth, funnel-like taper to 

150µm.  This helps the gas flow transition to an even, laminar flow more quickly inside the lens. 

There are many variables that can affect how an aerodynamic lens systems functions.  

Complex computational fluid dynamics (CFD) have been used to analyze many different lens 

parameters including operating pressure, gas flow rate, particle size, and aperture size and 

spacing [53].  Table 2.1 shows the dimensions of the aerodynamic lens systems that was used for 

all the gas-phase nanoparticle experiments contained in this thesis.  Experiments were performed 

on SiO2, gold, and nanoshell nanoparticles ranging from 5nm to 750nm, all with the same lens 

system.  Even though the lens was not optimized for all these sizes (resulting in different 

nanoparticle beam densities for different sizes), sufficient statistics could be accumulated for all 

sizes and materials.  Further work to optimize focusing ability is currently in progress. 

 

 

 

Figure 2.9 Aerodynamic lens schematic. The nanoparticle aerosol (green spheres) 

enter from the left at atmosphere through a 150µm glass orifice under vacuum.  It 

encounters a series of smaller lenses (apertures) which focus the particle beam.  This is 

not to scale and is only a representation. 
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Table 2.1 Dimensions of aerodynamic lens system 

Orifice Orifice Diameter (mm) Length between  

apertures (mm) 

Critical orifice 0.150  

First aperture 5.3 49.5 

Second aperture 5.0 50.5 

Third aperture 4.7 50.5 

Fourth aperture 4.4 50.5 

Fifth aperture 4.24 60 

Sixth aperture 4.0 75 

 

 2.3.4 Differential pumping 

A sizeable volume of carrier gas is drawn through the critical orifice and used to focus the 

particle beam. To keep sufficient vacuum (at least low 10-5 Torr) for the VMI system to be safely 

operated, the aerodynamic lens must be differentially pumped to remove excess gas.  This concept 

is relatively simple.  The exit of the particle beam contains the collimated nanoparticles along with 

a quickly diverging gas stream.  This enters a separate chamber that has its own roughing vacuum 

pump that is at relatively high pressure (~10-1 or 10-2 Torr) but can remove sufficient quantities of 

gas.  A ‘skimmer’, consisting of a plate with a centered small hole, is placed between the first and 

second chamber.  The skimmer is aligned to let the particle beam pass but limit the amount of gas 

entering the next chamber.  The next chamber now has a turbomolecular pump operating at a lower 

pressure (10-3 Torr) to again remove more carrier gas.  A third pumping chamber with another 

turbomolecular pump reduces the pressure to ~10-5 Torr before the particle beam exits through a 

last skimmer into the main experimental chamber. The main chamber can now sufficiently 

maintain high vacuum for the electron detector to safely run. Of note, the skimmer hole diameters 

used was 3mm, 4mm, and 3mm, from the first to the third pumping stage, respectively. 



38 

Figure 2.10 shows a cut-

away view of the fully 

assembled NanoSource.  The 

nanoparticle aerosol enters the 

aerodynamic lens from the right 

where it encounters the 

differential pumping stages.  

The nanoparticle beam enters 

the main VMI chamber on the 

far left and intersects the laser 

focus at the center of the 

spectrometer. 

 

 2.3.5 NanoSource sample characterization 

Of upmost importance to gas-phase nanoparticles experiments is the purity of the sample.  

The aerosolization and subsequent drying of the nanoparticle sample inherently demands an 

extremely pure initial sample.  Each aerosol droplet contains the solvent, nanosample, and any 

dissolved chemicals, usually leftover from the synthesis or added for particle stabilization.  This 

could be salts, surfactants, or ligands that are not directly attached to the nanoparticle but are 

dissolved in solution.  These materials will not evaporate with the solvent and therefore will deposit 

on or encapsulate the nanoparticle, thus ‘contaminating’ the pure nanosample.  Assuming the 

initial contamination in the bulk sample is homogenous, every droplet with have the same 

concentration.  The aerosol droplet size distribution (see Figure 2.6) is quite broad (and the droplet 

Figure 2.10 Cut-away view of assembled NanoSource 

connected to VMI chamber.  Nanoparticle aerosol enters from 

right into aerodynamic lens. Particle flow indicated by arrow. 



39 

volume by extension) which means that the mass of contamination per droplet will widely vary.  

Instead of a clean gas-phase sample, the particle beam is awash with different ‘islands’ of leftover 

impurities.  Depending on the actual amount, the contamination can be larger than the nanoparticle 

itself, especially for small sizes. 

A few things can be done to ensure initial sample purity.  Repeated washings of the 

samples, usually through centrifugation and removal of the leftover solvent, works well for very 

stable particles such as SiO2 and polystyrene that can handle high g-forces without agglomeration.  

Metallic nanoparticles, on the other hand, are much more challenging to clean.  These 

nanoparticles have a much larger Hamaker constant [54] than dielectric particles and thus are 

easily attracted to each other by a large van der Waals force.  Surface modification by ligands 

provides enough steric and/or charge separation to prevent agglomeration, or sintering. The 

addition of a surfactant greatly increases the stability of metal nanoparticles to withstand 

centrifugation or large temperature swings.  Some ligands, such as polyvinylpyrrolidone (PVP) 

are notoriously hard to remove from solution, a good reason to avoid them altogether [55]. 

The first indication that my particle beam was contaminated came while analyzing some 

early photoelectron data.  A reference background scan of the pure solvent was always run but this 

was supplemented with a centrifuged sample background scan.  Centrifuging the sample removed 

all of the nanoparticles but left behind anything dissolved in the solvent.  When comparing the 

scans with nanoparticles present vs no-nanoparticles centrifuged sample, they were almost 

identical.  Comparing this to a known clean sample of SiO2, I could clearly see that the particle 

beam was contaminated. 
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To test this, I constructed a way to sample what the 

particle beam looked like in-vacuum at the interaction 

region.  Figure 2.11 is a picture of the custom transmission 

electron microscopy (TEM) grid holder that allowed a 

detailed look at the non-irradiated particle beam where the 

laser focus would be located.  The TEM grid (FCF300-Cu) 

is a small copper mesh coated with a layer of formvar resin 

and is the copper-color disk in the center of the nut.  The 

grid holder is mounted on a manipulator perpendicular to 

the incident particle beam.  A transmission electron 

microscope was used for precise analysis of the contents of 

the particle beam. Some concern has been noted that the 

particle beam will pass through the resin and thus I would not see a representative particle beam 

sample.  I used a transmission electron microscope (Philips CM-100) with an accelerating voltage 

of 100kV capable of easily resolving less than 10nm.  A tear or break in the formvar mesh is easily 

seen at the appropriate magnification and there is no evidence that the particle beam penetrates the 

mesh.  The particles have a probability to also bounce off the grid and there was not a way to 

definitely rule this out. 

Figure 2.11 Custom TEM-grid 

jig to test particle beam in-vacuum.  

TEM grid (copper-colored) inside 

hole in holder. 
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As mentioned above, metallic nanoparticles require a robust way to stabilize them in the 

form of strong ligands and the addition of surfactants.  Standard commercial gold nanoparticles 

come with a surfactant, typically something like polysorbate 20 (Tween 20), added at the rate of 

0.025% by volume for added stability.  Now let’s analyze a simple scenario.  A 1µm size droplet 

of the nanoparticle/surfactant/water sample has been generated.  Assuming a 100nm nanoparticle, 

the volume fraction taken up by the particle is 1:1000.  The surfactant is 0.25 parts in 1,000.  The 

droplet is dried completely, leaving only the nanoparticle and the surfactant.  The diameter has 

decreased by a factor of 10, meaning the volume also decreased by 103.  This means that the 

volume fraction of surfactant is now 1000 times greater, or 0.025% *1000=25%.  This is exactly 

the reason that in-situ, in-vacuum testing is a much more accurate way to ensure a clean 

experiment.  To verify this, the TEM grids were analyzed by looking at the particle beam with and 

without the surfactant added.  

The 70nm AuNP sample (Figure 

2.12) with surfactant clearly 

shows the evidence of 

contamination. There are large 

‘islands’ of surfactant (lighter 

colored material) which are most 

likely aggregates of smaller ones 

that coalesced upon impact with 

the TEM grid surface.  The 

nanoparticles (dark circular 

spots) seem to have migrated to 

Figure 2.12 TEM image of 70nm AuNP with surfactant. 

The scale bar is 600nm.  The dark circles are the 

nanoparticles while the large, lighter colored islands are 

residual surfactant. 
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the edges of the large ‘islands’.  The handful of individual surfactant-free nanoparticles come from 

the droplets that were on the small end of the size distribution and therefore did not contain as 

much surfactant.  This level of contamination in the particle beam is not acceptable for the study 

of isolated nanoparticles.  

A sample of 120nm AuNPs was used that was verified to be 99% pure of residual reactants 

(later experiments were improved by another 10X purification step).  Under the exact conditions 

of Figure 2.12, the cleaned 120nm AuNPs were also analyzed.  The background of Figure 2.13 is 

mainly free from any surfactant or contamination and only contains nanoparticles.  This is in stark 

contrast to the previous image where the background contribution dominated.  The large 

nanoparticle in the upper left corner is a large SiO2 nanoparticle from a previous run.  The focusing 

of the aerodynamic lens also is affected by the size of particle, meaning a contaminated particle 

beam will focus differently than 

a clean one. 

One side effect of using 

ultra-clean metallic 

nanoparticles is that they 

become much more fragile.  

Great care must be taken to 

avoid the nanoparticles from 

irreversibly aggregating.  They 

cannot be put in an ultrasonic 

bath or centrifuged beyond a 

certain g-force limit. Over the 

Figure 2.13 TEM image of 120nm AuNP without surfactant. 

The scale bar is 1000nm. The largest dark figure (upper left) is 

source cross-contamination with the previous run of 600nm 

SiO2. The lack of surfactant contamination shows a 

significantly cleaner sample. 
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course of a few months, even under optimal conditions, the nanoparticles will eventually aggregate 

and settle out of solution with no way to use them. A process as aggressive as atomization is not 

conducive to metallic nanoparticle stability.  Within minutes, the use of the traditional atomizer in 

recirculation mode (the excess sample that is drawn up is recycled back into the bulk solution) 

causes the particles to irreversibly aggregate and the sample becomes unusable.  This was the main 

reason that surfactant was initially added as this greatly improved their resilience during the 

atomization process.  One solution made use of a syringe pump coupled with the atomizer in non-

recirculation mode.  The syringe pump meters in a fixed sample rate to the atomizer and any excess 

(non-aerosolized) sample is removed to a separate flask.  The rate at which metallic nanoparticles 

are used (as they are not being recycled) was much greater than for SiO2 but this ensures that the 

experiment was performed with an uncontaminated particle beam and allowing the dynamics of 

clean, gas-phase nanoparticles to be studied. 
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 2.4 Velocity map imaging setup for photoelectron measurements 

As discussed in Section 1.3, one of the most efficient ways to study light interaction with 

isolated nanosystems is the detection of the emitted electrons, along with the measurement of their 

energy and angular distributions.  To obtain this information, this work utilizes the so-called 

velocity map imaging technique. 

The entire experimental setup for the nanoparticle photoemission experiment is shown in 

Figure 2.14.  The NanoSource 

aerosolizes and dries a 

nanoparticle colloid before 

injecting it into the high-

energy VMI chamber.  An 

aerodynamic lens in vacuum 

collimates and focuses the 

gas-phase nanoparticles for 

increased particle jet density.  

A laser beam is focused onto 

the nanoparticle beam by a 

500mm focal length lens to 

the center of the VMI 

spectrometer. The created 

photoelectrons are projected 

onto the MCP detector 

equipped with a phosphor 

Figure 2.14 Experimental setup for photoelectron 

spectroscopy on laser-irradiated nanoparticles. A nanoparticle 

colloid is aerosolized (green spheres) and dried before being 

injection into vacuum to be focused.  The laser beam propagating 

perpendicular to the particle jet is focused to the center of the 

VMI spectrometer.  The VMI projects all the created electrons 

onto a MCP/phosphor screen detector assembly, and the image is 

captured by a single-shot camera. 
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screen. A single-shot camera captures the spatial distribution of the photoelectron on the phosphor 

(“VMI image”) for individual laser shots. Below, the individual elements of this setup are 

described. 

 

 2.4.1 Velocity map imaging spectrometers 

The concept and the design of a modern velocity map imaging (VMI) setup was presented 

by Eppink and Parker in 1997 [56], following some early work on photofragment imaging [143].  

A charged particle (ion or electron) placed into an electrostatic field can be projected onto a 

position sensitive detector.  A VMI technique usually relies on spatial information obtained from 

the measured 2D photoelectron image, which is essentially a 2D projection of the initial 3D 

momentum distribution.  This is different from other photoelectron detection techniques which 

often rely on the time-of-flight information to calculate the kinetic energies of the detected 

electrons. VMI is typically capable of detecting charged particles emitted in a full solid angle of 

4π and is well-suited for experiments based with a rather high count rate.  The VMI is an efficient 

tool for gas-phase nanoparticle 

experiments based on its the ability to 

efficiently image hundreds of electrons per 

laser shot.  A typical VMI spectrometer 

can be often driven as an ion TOF 

spectrometer if a somewhat different set of 

voltages (of opposite polarity) is used. Figure 2.15 Original VMI configuration. 

R=repeller, E=extractor, and G=ground. 

Schematic from [56] 
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The central idea of a VMI is the use of an inhomogeneous electric field as a ‘lens’ to guide 

and focus charged particles.  I will focus on electrons though only a change in electric field polarity 

is needed to switch to ion imaging.  The first and simplest VMI setup consisted of 3 circular 

electrodes as seen in Figure 2.15.  The source of the charged particles (cross-over of a particle 

beam with laser focus in the interaction region) is centered between the repeller and extractor plates 

which are held at a biased voltage, relative to the third plate at ground.  The extractor and ground 

plates are flat plates with a hole in the middle for the charged particles to fly.  By correctly choosing 

the voltages on the repeller and extractor, the non-uniform electric fields can be set to focus the 

particles to a detector surface.  This voltage tuning changes how the VMI spectrometer focuses.  

The goal is to map all the charged particles with equal initial momentum to the same position on 

the detector.  This is nicely shown in the 

groundbreaking initial publication 

describing the new ‘velocity map imaging’ 

device by Eppink and Park [56] seen in 

Figure 2.16.  Irrespective of the starting 

position in a gas jet or laser focus, the VMI 

will map the charged particles with the same 

momentum to the same detector position, 

greatly increasing the resolution. 

By assuming that the initial kinetic 

energy of the particle is small compared to 

the energy imparted by the electric field of 

Figure 2.16 Schematic of simple VMI 

spectrometer setup a) showing electric fields 

lines and electron trajectories while b-d) show 

close-up images of how the VMI maps any 

charged particle, regardless of initial position, 

to the same detector position, assuming equal 

initial momentum. Schematic from [56] 
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the spectrometer, the radial position of the charged particle on the detector is approximated by [57] 

 where Er is the electron kinetic energy, N is the unique magnification factor of the spectrometer 

and repeller/extractor voltages, L is the length of the spectrometer, q is the charge of the particle, 

and V is the accelerating potential.  Looking at only the terms coming from the initial charged 

particle production, their radial position can be expressed as 

where Z is the charge number of the particle.  Here we see that the radial position of the particle 

on the detector is proportional to the square root of its kinetic energy divided by charge, where the 

charge becomes important if looking at higher ionic charge states.  For ion detection, care must be 

taken to distinguish which charge states are being collected which can be done easily using a time 

of flight gate on the detector to temporally separate different ionic charge states.  Gating can also 

be useful for electron imaging by allowing one to reject stray electrons not synchronized to the 

laser pulse and improve the signal to noise ratio. 

 

 2.4.2 High energy VMI 

The VMI used in this work was modified to make it conducive for the detection of high 

energy electrons and was aptly named the ‘High Energy VMI’.  In general, for a given set of 

voltages, the performance of the VMI-type spectrometer represents a compromise between 

achieving reasonable energy resolution and ensuring 4π collection efficiency for electrons with 

high kinetic energies.  This VMI is a modified version of the one proposed by Kling et al. of a so-

 𝑹 ≈ 𝑵𝑳√
𝑬𝒓

𝒒𝑽
  , (4) 

 𝑹 ∝ √
𝑬𝒓

𝒁
  , (5) 
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called ‘thick-lens’ design that makes use of numerous plates of different voltages in the extractor 

region [58].  The modifications aimed to 

ensure the 4π collection of the electrons 

up to 1keV in energy as the 

photoelectrons emitted from 

nanoparticles under intense laser fields 

are expected to be very energetic.  High 

energy resolution is typically not needed 

for such experiments.  Correspondingly, 

the spectrometer was designed for 

voltages up to 30kV.  However, during 

this work the highest voltage used was 

restricted to 8kV which was sufficient to 

ensure collection of all electrons up to 

400eV.  At higher voltages, static-field 

ionization of the nanoparticle beam starts to contribute to the background signal. 

This high energy VMI (Figure 2.17) consists of a repeller plate with a diffusive jet in the 

center to allow for gas input as an effusive atomic beam, a 6-lens extractor along with a ground 

plate, and a field-free drift tube.  The voltage on the extractor array was applied to the first plate 

nearest the repeller and each successive plate was linked by a chain of 10MΩ resistors which 

stepped the voltage gradually down to ground on the last plate.  Voltage on the repeller was applied 

through the gas line attached to the diffusive jet.  Each plate of the extractor is spaced 6mm apart 

and has a wider central hole than the previous plate to maximize the maximum acceptance energy 

Figure 2.17  Schematic of my VMI spectrometer 

configuration.  Diffusive gas jet orifice is seen in the bottom 

(repeller) plate.  The extractor and field-free region are 

shown below the MCP/phosphor detector at the top.  The 

spectrometer is shielded from outside magnetic fields by the 

µ-metal shield. 
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of the electrons in the focusing field.  The interaction region is placed halfway between the repeller 

and extractor (6mm away from each).  The field-free flight region is 55mm.  The entire 

spectrometer is surrounded by a µ-metal shield to block any outside fields from interfering with 

the electron flight path.  All electrodes were constructed from stainless steel. 

 

 2.4.3 SIMION simulations 

 SIMION is a computer program that can simulate electron trajectories for specific 

spectrometer geometries and input parameters.  Figure 2.18a) is a SIMION representation of the 

electric field lines using the geometry of my VMI spectrometer.  Electrons will experience a force 

equal to the amplitude of the local field times their charge and thus be accelerated towards the 

detector.  As SIMION can simulate electron trajectories using the input VMI geometry and 

voltages, it can be used as a tool to test design parameters, input voltages, and acceptance energies.  

Figure 2.18 SIMION simulation. a) SIMION simulation of electric field lines in 

my experimental VMI spectrometer.  Bottom is the repeller and top is the detector. 

b) Trajectories of electrons with initial energy 50,100, and 200eV at repeller voltage 

-4kV c) Trajectories of electrons with initial energy 50,100, 250, 500, 750, and 

1000eV at repeller voltage -30kV.     Highest energy electrons will be impact the 

‘detector’ on the outside, or largest radius.      The detector diameter is 80mm. 

c) b) a) 
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Figure 2.18b-c) show different electron trajectories of my VMI as a function of spectrometer 

voltage, up to 1keV electrons at a voltage of -30kV. 

The typical mode of operation used voltages between (-)4kV to (-)8kV on the repeller and 

97% of this value on the first extractor plate.  Though SIMION can help approximate the voltage 

ratio between the repeller and extractor, this value was found empirically.  To verify proper 

focusing conditions, xenon photoelectrons were imaged with a laser polarization perpendicular to 

the plane of the detector, ideally showing a projection of a sphere.  If the projection is asymmetric, 

the voltage ratio is not optimized and needs to be fine-tuned.  This VMI has an acceptance electron 

energy up to approximately 200eV at -4kV and up to 400eV at -8kV.  The spectrometer voltage 

was chosen as a function of the sample going to be studied; primarily dielectric or metallic 

nanoparticles.  A sufficient voltage was needed to ensure that the highest energy photoelectrons 

are well within the acceptance limit of the spectrometer. 

This spectrometer was vacuum-tested with voltages up to 27kV.  To achieve such high 

voltage, great care had to be taken to ensure that all components are extremely clean.  Arcing will 

occur in high-vacuum first across the surface of contaminated elements in the spectrometer, mainly 

ceramic spacers where ‘track’ marks will be seen.  All non-electrode elements were composed of 

ceramic, glass or plastic and cleaned in an ultra-sonic bath before assembly.  Voltage connections 

to the electrodes were soldered and made to be as flat as possible to avoid any sharp peaks or 

edges.  Though rated and tested up to 30kV, actual experiments used smaller voltages of no more 

than 8kV as the electron energies of the samples studied did not necessitate a higher acceptance 

value.  Plans to use this VMI on electron energies up to 1keV photoelectrons are in the pipeline 

and will make use of this VMI’s full potential. 
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 2.4.4 Detector 

All electrons are detected using a microchannel plate (MCP) connected to a phosphor 

screen.  The MCP (Hammamatsu F2226-24P218) consists of two plates in a chevron configuration 

and biased up to 2.0kV on the rear while grounded on the front.  An incident electron to the MCP 

front causes an exponential cascade of electrons with a gain up to 106.  The back end of the MCP 

is coupled to a phosphor screen biased at 5.5kV to accelerate electrons from the MCP.  The 

phosphor fluoresces in the visible spectrum at 510nm with a lifetime of about 300ns (P46 type).  

While a P43 type phosphor has three times the relative energy efficiency, it has a lifetime of 1ms 

which is too long for a 10kHz laser system.  The location of a ‘bright’ spot 

on the phosphor is directly correlated to where the electron was incident on 

the MCP and thus contains momentum information. 

A camera is used to gather the light emitted from the phosphor 

screen.  The choice of camera depends on the sample being studied.  For the 

study of photoelectrons or photo-ions from gases, a Peltier-cooled camera 

with high sensitivity but long exposures are best suited.  This stems from the 

fact that the shot-to-shot dynamics of gases are consistent and the number 

of events per laser shot is steady.  A gas-phase nanoparticle experiment 

requires a different approach that is a compromise of sensitivity and 

exposure time.  A triggered, CMOS camera (Mikrotron EoSens 3CXP) is 

capable of 566 fps at 3Mpixels resolution with a 2 µs exposure time.  At a 

resolution of 960x960 pixels, there is an increase to 1666 fps.  With a  10kHz 

laser system, the frame rate of the camera had to be balanced versus the size 

of the phosphor screen image on the camera sensor.  The addition of a large 

Figure 2.19 Single 

shot camera (top) 

along with collection 

lens (bottom) 
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5” plano-convex lens with a 500mm focal length to the output vacuum window of the 

MCP/phosphor assembly increased the amount of light entering a fast f/0.95 (Schneider) camera 

lens as shown in Figure 2.19. 

 

 2.4.5 Hit finder 

The MCP was gated (~200-400ns gate width; 1.2kV base MCP voltage, 700V gate 

increase) and synchronized to the laser while the camera was triggered with a 2µs exposure.  This 

ensured that the MCP and camera were sensitive only in a short window during the laser pulse and 

effectively reduced background contributions from stray light and electronic noise.  Moreover, this 

also reduced to a negligible level the residual ionization from the nanoparticle jet by the static VMI 

field, which does not correlate with the laser pulse. 

The Mikrotron camera uses a 4-channel CoaxPress interface capable of 6.25 Gbit/s per 

channel in conjunction with a frame grabber (Bitflow Cyton Quad Channel CoaxPress).  Even at 

the reduced resolution of 960x960 pixels, there is over 12 Gbit/s of camera data input.  Therefore, 

storing full raw images for subsequent offline processing would significantly reduce the data 

acquisition rate.  An online hit-finding solution which allows storing only the real events (charged 

particle hits) is therefore highly desirable.  It also provides quick online feedback on the outcome 

of the experiment.  In this work, an online hit-finding algorithm developed in [59,60] is 

implemented.  This allows almost immediate feedback and decreases the stored file size by orders 

of magnitude. 
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Briefly, a LabView program was used that could distinguish individual events while 

discriminating from the background noise.  A centroid-finding routine is used to analyze a raw 

camera image to look for pixel/s above a manually set threshold.  Any event considered a ‘hit’ is 

indexed with its x and y coordinate values.  The total ‘hits’ per camera image is saved while the 

raw image file is discarded.  This process can be done very quickly with a sufficiently powerful 

desktop workstation (HP Z-820 with dual 12-core Xeon processors at 2.7GHz and 64GB of RAM).  

Each laser shot can be recalled and reconstructed using the indexed ‘hit’ coordinates. Figure 2.20 

compares the raw camera image to the reconstructed image and only shows ‘hit’ locations that are 

above the set threshold.  This allows for rapid feedback during the experiment and a complete 

shot-by-shot record for off-line analysis.  Figure 2.21 illustrates the quality of images that can be 

produced with a single-shot camera and hit-finder routine.  This is an integrated (1x106 laser shots) 

Figure 2.20 Single camera frame of a VMI image before and after analysis by the hit-finder 

algorithm.  Image on the right is reconstructed only from the saved locations where a ‘hit’ was 

detected.  Each ‘hit’ in this case corresponds to a detected electron. Image from [59]. 
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raw VMI image of Xe photoelectrons where an average of 10 

electrons every laser shot were detected. 

For the gas-phase nanoparticle experiment, a low particle 

density means that less than 1% of the laser shots contain a 

nanoparticle in the focus.  Most laser shots (and corresponding 

camera frames) will only contain background electrons from the 

carrier gas.  A typical scan consists of 2.5 million laser shots of 

which ~99% are background only.  Using an integrating camera 

(exposure times on the order of milliseconds and not synchronized 

to the laser) will produce an image dominated by the background.  However, using a single-shot 

camera allows the analysis of each laser shot individually to determine if a nanoparticle was 

present.  To determine this threshold, a simple hit histogram was used.  On average, the number 

of photoelectrons counted by the algorithm when a nanoparticle is present is much higher than 

with only background gas.  The number of 

emitted photoelectrons depend on the 

nanoparticle size and composition (SiO2, Au, 

etc.) and incident laser intensity. Figure 2.22 is 

a hit histogram which shows how many 

camera frames (laser shots) with a given 

number of electrons were recorded.  

Overlapping this with a background scan of 

solvent only, it is clear where the deviation 

from the background occurs.  The histogram is 

Figure 2.22     Hit histogram of a single 

95nm SiO2 scan compared to background 

(solvent only). Notice the deviation from 

background indicating a nanoparticle was 

present. 

Figure 2.21 Xe ATI image 

reconstructed from single-

shot camera. 1x106 single-

shot images are integrated in 

this non-inverted figure. 
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used to analyze only the camera frames that contain more than a background threshold (in this case 

~150 electrons/frame.).  Note the log-normal scale where the majority of the laser shots are 

contained within the background.  The width of the histogram arises from the fact that the 

nanoparticle beam is much larger than the laser focus dimensions, thus the entire focal volume of 

the laser focus is sampled.  Theoretically, the yield of photoelectrons from nanoparticles show 

nearly-linear behavior with intensity [61], so contributions from different focal regions lead to a 

different number of electrons emitted.  The ‘tail’ where the histogram falls to single digit values is 

the region where the nanoparticles experienced the highest laser intensity, or equivalently the 

center of the laser focus.  The center of a Gaussian-like focus contains the smallest volume and 

thus the smallest probability of a nanoparticle interaction. 

 

 2.4.6 Energy calibration 

The energy spectra from above-threshold ionization of rare gas atoms such as Xe (see 

Figure 2.23) provides a practical way to calibrate 

the VMI spectrometer. The spectrometer focuses 

the photoelectrons as a function of the applied 

repeller and extractor voltages and thus small 

input voltage deviations result in different 

focusing conditions.  By knowing that the spacing 

between consecutive ATI peaks in Figure 2.24 

must correspond to the central incident photon 

energy, this information can be used to properly 

calibrate the raw VMI images.  The VMI images 

Figure 2.23 Raw VMI image of Xe ATI. 

This is a sample image taken with an 

integrating camera for better resolution. 
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show velocity and angular 

dependent electron positions 

which need to be transformed 

into energy.  Eqn. 3 shows how 

the radius of the images is 

related to the kinetic energy. The 

electron charge and 

spectrometer voltage are known 

while another factor, the 

‘calibration constant’ is introduced to account for the magnification factor and electron flight 

length and was found empirically.  The calibration constant is then used for subsequent analysis 

of scans from nanoparticles that do not have a defining feature such as ATI peaks for reference 

and allows for proper and consistent energy calibration. 

 

 2.4.7 Inversion of VMI images 

The VMI records a 2D projection of the initial 3D photoelectron (or photo-ion) angular 

distribution (PAD).  Several well-known techniques have been developed to recover either a slice 

or the full 3D PAD [57].  If VMI images exhibit cylindrical symmetry in the plane of the detector, 

usually along the laser polarization, an Abel transform can be applied.  An Abel transform makes 

use of this cylindrical symmetry to reconstruct the full 3D momentum distribution.  Other 

inversions methods include the so-called onion-peeling [144] and Fourier-Hankel algorithm [145].  

The iterative inversion technique is a different approach that creates a trial 3D velocity distribution 

based on the 2D experimental radial and angular distributions without the introduction of 

Figure 2.24 Energy distribution of ATI from Xe. 
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noise [57,62].  The differences between the calculated and experimental projections are evaluated 

and a correction factor is applied for the next ‘iteration’.  This is repeated until the differences 

between them are minimal.  Finding the center of the experimental projection is critical before the 

inversion process.  This inversion procedure was used if an inverted spectrum was required for 

proper analysis. 

As cylindrical symmetry is required for the inversion procedure, this condition is in general 

not always met in the PAD from nanoparticles.  Photoelectron images from spherical nanoparticles 

less than ~150nm diameter do appear to be symmetric with respect to the polarization axis.  Larger 

particles begin to clearly exhibit asymmetric propagation effects as the particle diameter 

approaches the incident wavelength.  The VMI images from small nanoparticles can thus be 

inverted to obtain the full 3D momentum distribution, whereas this approach is not valid for larger 

particles.  As the primary focus of the photoelectron measurements performed in this work was 

determining and comparing the cutoff energies (i.e., the highest energies of the emitted electrons) 

for different nanoparticle sizes, non-inverted radial distributions had to be used.  In accordance 

with the expectations based on the nature of the inversion procedure, tests confirmed that while 

inverting the nanoparticle VMI images did change the shape of the energy distribution compared 

to the spectrum reconstructed from the raw radial distribution, no change in electron cutoff energy 

was observed. 

   

 2.5 Near-infrared ultrafast lasers 

In this work two different femtosecond systems were used: one used for the photoelectron 

spectroscopy studies at KSU, and another one employed as a “pump” for time-resolved x-ray 

scattering experiments at LCLS.  Both of these lasers are chirped-pulse amplification-based 
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Ti:Sapphire system capable of delivering mJ level pulse energies.  Such systems are a mainstay in 

countless laser labs around the world and the technology behind them is extensively covered in 

literature [63–66]. 

 

 2.5.1 Ti:Sapphire laser system 

The Prairie Ultrafast Light Source for Attosecond Research (PULSAR) used for the 

experiments performed in the James R. Macdonald Laboratory (JRML) at KSU is a customized 

version of the KMLabs “Red Dragon” design. It is based on the Kerr-lens mode-locked 

Ti:Sapphire oscillator generating pulses with central wavelength of 790nm with about 80 nm 

bandwidth at a repetition rate of 75.2 MHz and average power of about 300mW (which 

corresponds to 4 nJ pulse energy). Dispersion-compensating prisms in the oscillator reduce the 

pulse duration to 10 fs. Before amplification, the pulses are stretched to tens of ps by a pair of 

diffraction gratings to avoid amplifier crystal damage. After the stretcher, the repetition rate is 

reduced to 10 kHz using a Pockels cell. The PULSAR has two multi-pass amplification stages 

with a diode-laser pumped Ti:Sapphire gain medium, with the final output pulse energy of ~3 mJ. 

After the amplification, the pulses are sent through a grating-based compressor that reverses the 

stretching process, resulting in 21-23 fs pulses of ~2 mJ maximum pulse energy. The typical pulse 

duration in the interaction region was 25-27 fs. 

The NIR laser in the AMO hutch at LCLS is a chirped-pulse regenerative amplified 

Ti:Sapphire system producing ∼3 mJ, 35 nm bandwidth pulses. The still chirped but amplified 

output is relay-imaged through an evacuated tube to the experimental hutch, which is located on a 

different floor and split into two branches. The main branch containing nearly all of the pulse 

energy is compressed to ∼40-50 fs and then used in the experiment. The secondary branch is 
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independently compressed and used for direct, in situ cross-correlation measurement of the relative 

arrival time between the x-ray and the optical pulses [146] (see section 2.6). The system is running 

at 120Hz to match the repetition rate of the FEL [147]. 

 

 2.5.2 Intensity calibration 

In most experiments, especially in ultrafast, strong field physics, knowing the precise value 

of the incident peak laser intensity is critical. However, a precise determination of the absolute 

value of peak intensity from the optical beam parameters represents a significant challenge for 

intense femtosecond pulses, mainly because of the difficulties in the exact characterization of the 

spatial profile of the laser beam in the interaction region.  If, however, the absolute value of the 

intensity is known for a given pulse energy (or power), it can be scaled for all measured values of 

the pulse energy (power).  A power meter measures the optical power, which is a measure of the 

pulse energy of the laser (i.e. a 10kHz laser system with 20W of maximum power will have up to 

2mJ per laser pulse). A change in input pulse energy is linear with intensity, meaning that by 

doubling the pulse energy, the intensity also doubles.  This assumes that no other optical elements 

in the beam path have been changed.  Therefore, the peak value of laser intensity is often 

determined “in-situ” from the experimental observables stemming from the interaction region, and 

then scaled according to the measured pulse power. 

Several methods for such “in-situ” calibration of laser intensity have been proposed [148-

151].  In my experiment, I make use of the photoelectron spectra resulting from above-threshold 

ionization (ATI) of Xe atoms, which evolve as a function of intensity.  As discussed in Section 

1.3.2, ATI is a highly non-linear process where an integer number of photons are absorbed (per 

atom/molecule) until the ‘threshold’, aka the ionization potential, is met and the atom/molecule is 
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ionized.  The same atom, however, can also absorb more photons than the minimum needed to be 

ionized, so it is ‘above-threshold’.  The emitted photoelectron, therefore, following energy 

conservation, will carry the energy corresponding to the number of photons absorbed.  This gives 

rise to the very nice periodic peak structure in Figure 2.24 where the spacing between successive 

peaks must be the incident photon energy.  Using 25fs pulses indicates that the laser pulse 

inherently has bandwidth, typically 70nm for PULSAR, with a center wavelength around 780nm.  

This gives photon energies between 1.5-1.65eV and is one reason for the width of the ATI peaks. 

 Once the electron is in the continuum, it will interact with the oscillating electric field of 

the laser pulse.  The energy associated with this interaction is the ponderomotive potential, Up, 

(see Eqn. 2) which is defined as the cycle-averaged quiver energy of the free electron in the laser 

field [67].  The ponderomotive potential grows linearly with increasing laser intensity. This 

essentially means that at higher intensities more energy needs to be provided from the field to 

release the electron. Correspondingly, the expression for the kinetic energy of the electron emitted 

after the absorption of n photons 

needs to be modified to account for this change:  

This results in a shift of a comb of photoelectron peaks towards lower energies as the intensity 

grows and is known as a “ponderomotive shift”.  This shift is evident in Figure 2.25, where the 

measured photoelectron spectra from the ATI of Xe are shown for three different values of the 

laser power.  Notice how the peak position of the same ATI order shifts to lower energy as the 

input power increases. The absolute value of this shift is dependent on the difference in intensity 

 𝑬𝒆𝒍𝒆𝒄𝒕 = 𝒏ℏ𝝎 − 𝑰𝒑 (6) 

 𝑬𝒆𝒍𝒆𝒄𝒕 = 𝒏ℏ𝝎 − 𝑰𝒑 − 𝑼𝒑 (7) 
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between the two scans, all else being 

constant. Eqn. 7 can then be used to 

estimate the intensity needed to cause 

the measured ponderomotive shift. 

The intensity can then be 

reconstructed either from the value of 

the ponderomotive shift, or from the 

absolute positions of the photoelectron 

peaks at a given intensity.  The 

ionization potential (Ip) of Xe is 

12.13eV, so at minimum 8 photons of 

1.59eV each are needed (1.59eV/photon * 8 photons = 12.72eV). The excess kinetic energy 

(12.72eV-12.13eV=0.59eV) must also include the ponderomotive shift. Subtracting the absolute 

peak position from this excess energy then gives the ponderomotive energy at that particular input 

power and can be converted to intensity using Eqn. 7. 

 

 2.6 Free Electron Laser 

 2.6.1 Linac Coherent Light Source (LCLS) 

The concept of a free electron laser (FEL) was introduced in 1971 by John Madey at 

Stanford University who predicted that this idea may be used to generate powerful coherent 

radiation from far infrared to the hard x-ray domain [152].  A few years later, Madey and 

coworkers reported the first functioning FEL device radiating in the mid-infrared [153]. The 

Figure 2.25 Xe ATI energy distribution 

as a function of incident power.                                

300mW = 5x1012 W/cm2  ≥  0.28eV = Up 
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development of this concept paved a path to modern facilities such as the Linear Coherent Light 

Source (LCLS) at the SLAC National Accelerator Laboratory. 

The basic 

principle of a free 

electron laser is the use 

of periodic magnetic 

structures to ‘wiggle’ 

electrons whereas the 

emitted radiation self-

amplifies [154].  A 

linear accelerator is used 

to accelerate the 

electron produced by a 

photocathode radio 

frequency electron gun to relativistic velocities. These electrons then travel into an undulator as 

seen in Figure 2.26.  The undulator is a periodic set of dipole magnets with a period λu that uses 

the Lorentz force to transversely wiggle the electrons. Because of this induced transverse 

acceleration, the electrons spontaneously emit so-called synchrotron radiation. As the electrons are 

traveling near the speed of light, relativistic contraction of λu along with the Doppler effect lead to 

light emission in the x-ray regime.  As the spatial extension of the electron bunch is larger than the 

wavelength of the radiation, their interaction leads to modulations in the electron density called 

microbunching. The electrons become concentrated at the positions where the energy transfer to 

the radiation field has a maximum, which, in turn, enables the electrons to radiate in phase, thus 

Figure 2.26 Schematic of an undulator.  This consists of a 

periodic arrangement of dipole magnets with a static magnetic field 

that alternate polarity (green and red).  This spacing defines the 

undulator period, λu. A beam of electrons traveling into the magnetic 

field of the undulator will oscillate and emit radiation. Figure from 

[29]. 
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drastically increasing the radiation power. This phenomenon is known as self-amplified 

spontaneous emission (SASE), which starts with initially incoherent (random phase) emission, and 

produces coherent (phases constructively interfere) radiation at the end of the undulator.  As SASE 

is essentially a stochastic process, the parameters and the exact generation point of the SASE-FEL 

pulses can vary significantly shot-to-shot, and a robust single shot measurement of key parameters 

such as wavelengths, pulse energy and electron bunch length is mandatory. 

While many of the important SASE-FEL concepts were tested at the Free Electron LASer 

in Hamburg (FLASH), which covered the range of photon energy from extreme ultraviolet (XUV) 

to soft x-ray domain (up to ~ 300 eV, i.e. ~4 nm wavelength) [155], the LCLS became the world’s 

first FEL to produce ultrabright, coherent x-rays of sub-nm wavelengths [156]. The LCLS has a 

132m undulator with a λu of 3cm that uses 3.5-15 GeV electrons to produce x-rays between 0.15 

and 4 nm, pulse durations of a few to several hundred femtoseconds, and 1011 to 1013 photons per 

pulse running at 120Hz [68].  This outshines any synchrotron x-ray sources by up to ten orders of 

magnitude in peak brightness and enables three orders reduction in pulse duration.  The LCLS 

radiation in the standard SASE mode has a very high degree of transverse coherence and is partially 

coherent longitudinally [156]. 

 

 2.6.2 LAMP instrument 

The experiments described here were performed at the Atomic, Molecular, and Optical 

(AMO) beamline of LCLS using the LAMP instrument [147,157,158]. LAMP is the second-

generation multipurpose end station at the AMO-LCLS beamline, which is an advanced version 

of the CFEL ASG Multi-Purpose instrument (CAMP) [69].  The basic idea of both CAMP and 

LAMP setups is to make the most efficient use of limited and valuable XFEL machine time by 
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simultaneous detection of ions, electrons and photons.  Figure 2.27 shows a schematic of the 

experimental configuration of the x-ray, NIR, and nanoparticle beams.  The x-ray and NIR beams 

are spatially and temporally overlapped and focused perpendicular to the nanoparticle jet.  The 

LCLS beam is focused onto the sample by two bendable parabolic-curved grazing incident 

Kirkpatrick-Baez (KB) silicon mirrors with a boron-carbide coating, resulting in a focal spot size 

of a few μm2. 

The setup used in this work is essentially similar to that used by Gorkhover et al. to study 

the dynamics of nanoplasma formation and expansion in laser-irradiated rare gas clusters [28].  To 

build on the results of that study, a transition from clusters to monodisperse nanoparticle samples 

is a natural next step, as was discussed in section 1.4.3.  Therefore, a new particle source was 

needed. Its properties and implementation into the LAMP setup is discussed below. Because of its 

rather large dimensions, the new nanoparticle injector was not compatible with the standard LAMP 

imaging spectrometers for charged particles. Therefore, a compact time-of-flight (TOF) 

Figure 2.27      Schematic of the configuration of the nanoparticle source in the LAMP endstation 

at LCLS.  The x-ray and NIR beams are spatially and temporally overlapped and focused 

perpendicular to the nanoparticle beam. X-ray detectors gather small-angle scattered light in the 

forward direction. A time-of-flight (TOF) collected emitted ions from the interaction region. 



65 

spectrometer for ions placed directly across from 

the particle source was employed in this work.   The 

internal arrangement of the LAMP setup for this 

experiment is depicted in Figure 2.28.  This 

spectrometer was used to distinguish when a 

nanoparticle was in the FEL focus, mainly by total 

signal yield.  It also provided data for the NIR laser 

intensity calibration and helped to determine “time-

zero” which is the position of exact temporal overlap of the NIR and x-ray beams extracted from 

the TOF spectra from two-color fragmentation of N2 molecules [159]. Shot-to-shot fluctuations 

between the arrival times of both NIR and x-ray pulses were monitored and corrected for using an 

x-ray – optical cross-correlator described in [146]. 

 

 2.6.3 pnCCD detectors 

For the detection of scattered x-ray photons, LAMP uses pn-junction charge coupled 

devices (pnCCDs) similar to those employed in CAMP [69].  These detectors are based on those 

developed for the x-ray satellite mission XMM-Newton [69,70].  They are large-area pnCCDs 

with 8 x 8 cm2 (1024 x 1024 pixels) with a pixel size of 75µm x 75µm.  They are ideal for x-ray 

imaging at soft x-ray FELs as they have low signal noise allowing for single-photon detection, 

high quantum efficiency at these wavelengths, energy resolution to (at least, partly) distinguish 

scattered signal from the fluorescent signal, and a reasonably high dynamic range.  They also can 

read-out on a shot by shot basis.  They are separated into two halves on adjustable stages which 

Figure 2.28 Internal arrangement of 

the LAMP setup. 



66 

allows for the laser beam to pass through the center.  Extensive stray-light suppression techniques 

are used to prevent stray light from interfering with pnCCD images. 

 

 2.6.4 FEL Adaptable Nanoparticle Source (FANS) at LCLS 

Building on my knowledge of designing and using nanoparticle sources, I was tasked with 

constructing a compatible NanoSource for LAMP.  The initial requirements called for the ability 

to produce a nanoparticle beam of sufficient particle density capable of handling dielectric and 

metallic nanoparticles.  As detailed in Section 2.3, a nanoparticle colloid is aerosolized, dried, and 

focused before entering the main vacuum chamber.  One big advantage was the use of the Nafion 

aerosol dryer as the AMO end station cannot be occupied when the FEL beam ON and the dryer 

allowed for continuous source operation.  Figure 2.29a) is a schematic of the newly designed 

NanoSource that is compatible with the LAMP end station.  A negative flange was used to 

Figure 2.29 LAMP-compatible NanoSource. a) NanoSource as designed to fit into LAMP 

to minimize distance to interaction region while having sufficient differential pumping b) 

Inserted NanoSource with differential pumping cans showing the maximum scattering angle 

possible (~8°). The pnCCD detectors are on the right c) Actual NanoSource used at LAMP 

at LCLS. On top is an XYZ manipulator to move nanoparticle jet relative to the fixed 

skimmers. 
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minimize the distance between the nanoparticle jet and the interaction region.  As this source needs 

to be differentially pumped to remove the excess carrier gas, the three stages are constructed to 

make use of the empty space in the negative flange.  The first stage (roughing vacuum supplied by 

Roots blower) uses the aerodynamic lens outer vacuum housing.  The second and third stages use 

turbomolecular pumps to remove additional carrier gas as the particle beam transits through the 

respective skimmers.  Figure 2.29b) is a close-up of the source inside the LAMP chamber and 

inserted the maximum distance possible as to not obstruct any scattered x-rays incident on the x-

ray detector on the right.  The third image is the actual NanoSource used at LCLS with an XYZ 

manipulator on top that is used to move the particle jet relative to the fixed skimmers for optimum 

alignment in the NIR and x-ray beams. 

As the facilities at LCLS included the use of a “FEL Simulator”, our group tested the 

NanoSource before the beamtime started.  This allowed for testing and troubleshooting of the 

source before time became a critical issue.  An essential detail that was tested was the alignment 

of the particle jet with the skimmers.  The use of gel paks (GelPak AD-22T-00-X0) allowed for 

the nanoparticle jet to be seen on a substrate.  A single gel pak was mounted in vacuum at the same 

distance as the interaction region.  By testing the nanoparticle throughput as a function of X, Y, 

Figure 2.30 SiO2 nanoparticles incident on a gel pak slide. Each XYZ position of the 

manipulator was analyzed for total particle throughput to align the source with the 

skimmers. On the right is a magnified image of the individual scan on the gel pak.  The 

circular aspect is the particle beam being cut by the last skimmer.  
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and Z positions, the optimum location was found to maximize particle throughput.  The three 

skimmer diameters used here that worked the best to balance particle throughput with carrier gas 

removal was 2mm, 2mm, and 2mm.  Larger and smaller skimmers were tested.  The circular nature 

of the particle profile on the gel pak (Figure 2.30) show that the jet was cut by the last skimmer.  

The diameter of the circles on the gel pak were about 3mm, indicating that the nanoparticle jet is 

diverging as the last skimmer only had a 2mm diameter. 

 

 2.6.5 Nanoparticle samples 

To give ourselves the best chance of success, the nanoparticle sample with the smallest size 

distribution with a reasonable diameter was chosen.  The primary sample was SiO2 with a diameter 

of 127nm ±2% suspended in ethanol.  Samples of polystyrene and gold nanoparticles of similar 

sizes were also available to be used.  Silica (SiO2) nanoparticles are more stable in a high 

concentration and prefer ethanol over water.  Most gas-phase experiments dilute silica samples 

with excess ethanol before an experiment.  The initial dilutions of the silica particles were done 

using ultrapure water while later scans used ethanol. During post-beamtime analysis, the scans 

where ethanol was used to dilute the silica particles showed a correlation to the lack of damage 

seen on scattering images in contrast to the scans where water was used.  A working theory is that 

a layer of ethanol was left on the particles (the Nafion dryer more efficiently removes water than 

ethanol [48]) which acted as an ablation layer in the interaction region and therefore the particle 

was not destroyed.  Therefore, only the data where water was the solvent was used for the final 

analysis of time-dependent x-ray images from SiO2 nanoparticles. 

A few short scans using gold nanoparticles were performed but the lack of sufficient 

scattering images forced the experiment back to silica.  As explained in Section 2.3.5, the use of 
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surfactants contaminates the particle jet.  The supplied gold particles could not be used in the 

atomizer without the addition of surfactant as the particles would irreversibly aggregate within 

minutes.  As clean, isolated nanoparticles are needed in this experiment, this contaminated particle 

jet was not suitable. 

This source is designed to be a versatile piece of hardware.  The work presented in this 

thesis limited the NanoSource to producing particle beams from SiO2, AuNPs, and polystyrene to 

be used to study the time-resolved dynamics of an expanding nanoplasma.  This source is capable 

of producing particle beams of almost any nano-sample that can be synthesized and delivering 

them for FEL studies.  This is in slight contrast to rare-gas cluster studies which rely on a high-

pressure, pulsed gas source to produce small, polydisperse clusters.  Few modifications need to be 

done to quickly shift the size or composition of the nanoparticle samples.  The density and quality 

of the particle beam is dictated mostly by the initial particle sample which is highly advantageous 

over cluster or sputtering sources. 
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Chapter 3 - Temperature Dependent Solubility of Gold Nanoparticle 

Suspensions/Solutions 

- What do you get when you cut your gold wedding ring in half? 

- Christopher M. Sorensen 
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 3.1 Nanoparticles colloidal suspensions as solutions 

Traditionally, a solution consisting of a solvent and a solute meant a homogenous, single-

phase mixture [71].  Dissolving sodium chloride in water is a classic example.  Interactions 

between the solute and solvent can be energetically favorable or unfavorable.  As all solutions 

have a positive entropy of mixing, a saturated solution occurs when the energy penalty from the 

interactions outweighs the entropy gain of dissolving more solute into the solvent.  This balance 

of entropy gain vs energy loss is dependent on thermodynamic parameters such as temperature, 

pressure, and volume and thus solubility will shift accordingly.  A phase diagram is used to 

illustrate the co-existence curves of the dissolved solute with the precipitated solute. 

Gold nanoparticle (AuNP) synthesis has progressed from the Turkevich method [72] to the 

Brust-Schriffin method [73] to digestive ripening [18,22,41] in terms of the ability to produce 
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extremely narrow size distributions.  This work proposes to consider a system of small 5nm 

diameter spherical gold nanoparticles dissolved in a solvent to be a solution, as it is a homogenous 

mixture [15,16]. There is debate as to call such a system a suspension or a solution mainly because 

of the nanoparticle’s large size compared to atomic or molecular entities. 

One characteristic that works in favor of a ‘solution’ description is the fact that this system 

of gold nanoparticles exhibits temperature dependent solubility.  An analogy is best suited here.  

Think of sugar (long axis diameter ≈ 1nm [74]) dissolving in water as compared to dissolving 5nm 

gold nanoparticles in toluene, a solvent.  Adding solid sugar to water causes the inter-molecular 

sucrose bonds to break and each molecule will be surrounded by water, aka dissolved.  This will 

happen until saturation occurs, or more precisely a phase boundary (red line) has been crossed as 

shown in Figure 3.1.  A saturated sugar solution resides in the two-phase regime where the 

dissolved sugar is in equilibrium with the solid sugar.  A temperature change will shift the position 

(vertical) on the phase boundary line and a new equilibrium will be formed by either precipitation 

of sugar (cooling) or more solid 

dissolving into solution (heating).  

Our gold nanoparticles are the 

‘sugar’ in this scenario and we find 

that they act very similar to that of 

the molecular sugar.  Our gold 

nanoparticles dissolved in toluene 

show thermally reversibility where 

an increase in temperature 

dissolves more into solution while 
Figure 3.1 Phase diagram of sucrose in 

water. Red line is the phase boundary. 

1-phase 

2-phase 
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a decrease in temperature will cause precipitation.  A similar phase diagram to Figure 3.1 can be 

constructed for gold nanoparticles with experimental data that map the dissolved (1-phase) with 

the dissolved + solid (2-phase). 

A colloidal suspension of gold nanoparticle monomers is thermally reversible, show 

aggregation phenomena, and mimic common molecular and ionic behaviors.  The extension of a 

nanoparticle colloid as a solution is therefore made. 

 

 3.2 Experimental methods 

As described in detail in Section 2.2, a 

monodisperse 5.5nm AuNP sample is synthesized and 

digestively ripened.  The particles are ligated with an 

alkane-thiol and dissolved in toluene.  The size 

distribution is verified with the use of a TEM as seen in 

Figure 3.2.  Analogous to traditional solutions, a two-

phase system is produced by the addition of solid AuNPs 

to the solvent.  The particles will dissolve into solution 

(and single monomers will not precipitate by themselves 

under earth’s gravity because of their small size) until a 

solubility limit is reached and the solution is saturated.  Any excess AuNPs added after this will 

not dissolve but settle to the bottom as a solid precipitate.  This solubility limit is highly dependent 

on not only the outside environment such as temperature and solvent but by internal variables such 

as particle composition, size, and ligand shell.  This experiment needed a high degree of 

reproducibility to get precise measurements for a specific nanoparticle system. 

Figure 3.2 Representative TEM 

micrograph of 5.5nm AuNPs. Scale 

bar is 20nm. Figure from [14]. 
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This precision came from the use of sealed sample ampules.  This isolates the AuNP 

solution from outside influences and allowed the same sample to be used for an entire temperature 

scan.  Figure 3.3 is a simple but effective schematic showing a sealed AuNP sample.  The two-

phase system consists of single gold nanoparticles (monomers) and the precipitate (aggregates).  

An ultrasonic bath disperses the system by breaking up any large aggregates and producing a more 

homogenous starting point.  The sample is inserted into the centrifuge rotor set to a fixed 

temperature.  The sample quickly comes to thermal equilibrium because of its small volume during 

which time the two-phase system begins to relax to a new equilibrium.  Equilibrium in this case is 

defined as the systems existing in a steady state with no net change between the dissolved state 

and the aggregated state.  High-speed centrifugation is needed to accelerate the separation of the 

aggregates from the monomers.  The absorbance of the supernatant is then measured with a UV-

Vis spectrometer.  As concentration is proportional to absorbance, the amount of AuNP dissolved 

Figure 3.3 Schematic of an AuNP sample in a sealed ampule.  A two-phase system is 

evident with the single monomers in equilibrium with the precipitate (aggregated 

monomers).  Centrifugation after aggregation speeds the process of separating the 

monomers from the aggregates.  Photo taken from [14]. 
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in the supernatant was obtained. This process is repeated for temperature values ranging from -

0°C to 35°C. 

 

 3.3 Absorption measurements 

A key aspect in this experiment entails the ability to properly measure the dissolved 

concentration of AuNPs [19,75].  An absorption feature that is particularly useful in noble metal 

nanoparticles is the presence of a localized surface plasmon resonance at visible wavelengths.  This 

is the origin of the beautiful array of colors seen in the coinage metal nanoparticles of gold, silver, 

and copper.  The origin of the surface plasmon resonance is the resonant oscillation of the 

conduction electrons (in metals), oscillating relative to the ion lattice.  The electric field of the 

incident light is the driving force of the conduction electrons [8] where the exact response of the 

nanoparticle is dictated mainly by its relative permittivity, shape and size.  In metallic 

nanoparticles, this effect is highly localized to the particle surface and thus is very sensitive to any 

local changes.  The precise resonance spectra are dependent on the nanoparticle composition, size, 

shape, and permittivity.  A change in nanoparticle size will redshift the resonant wavelength for 

larger sizes while a change in shape (such as a nanorod) can lead to two independent plasmon 

resonances [76]. 

The obvious use of the plasmon resonance is to have a defining feature to find the relative 

absorbance changes between different temperature scans.  The shape of the plasmon resonance 

also gives insight into the local aggregation state of the nanoparticles.  For small 5nm AuNP 

dissolved in toluene, the plasmon resonance is centered at 524nm with a FWHM of 60nm.  In a 

two-phase system, the monomers are in equilibrium with the monomer aggregates (precipitate).  

As these aggregates can be very fine (dimers, trimers, etc.), they will stay suspended in the solvent.  
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Figure 3.4 shows clear evidence of the sensitivity of the plasmon resonance to the shape and size 

of the AuNP sample.  The red dashed line shows a quenched sample (temperature reduced) and 

the formation of aggregates.  The ensemble absorbance measurement is now a summation of 

plasmon resonances from the monomers and their aggregates.  The large aggregates redshift the 

peak and produce a ‘shoulder’.  

The same sample is then 

centrifuged at 3300g to remove 

the aggregates from the 

supernatant.  The black solid line 

shows the true monomer 

resonance without any influence 

from the precipitate.  This is the 

spectrum that ensures that only 

the monomer absorbance is 

taken. 

The plasmon can be used 

to verify that the supernatant phase contains only monomers and no aggregates and simultaneously 

measure the concentration of AuNP monomers.  A UV-Vis spectrometer uses a bright, incoherent 

light source with wavelengths ranging from 180nm-900nm to measure the absorbance of the 

nanoparticle sample.  Absorption is governed by the Beer-Lambert Law 

 

 𝑰(𝒛) = 𝑰(𝟎)𝐞𝐱𝐩(−𝝉𝒛) (8) 

Figure 3.4 UV-Vis absorbance spectra of 5nm AuNPs.  

The dashed line is the sample before centrifugation is done to 

remove any aggregates from the supernatant.  The solid line 

is after centrifugation and only monomers are present. 
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where I(z) is the intensity of light after having passed through a distance z of the solution.  The 

turbidity τ = Cext*n where Cext is the extinction cross section and n is the particle number 

concentration.  Cext is constant for a given average particle size and for small AuNPs is dominated 

by the absorption cross section, while scattered light becomes more important with larger-sized 

particles. The UV-Vis spectrometer measures I(z) and I(0) and calculates an absorbance A given 

by Eqn. 9 

This shows a direct proportionality to the absorbance measured by the UV-Vis and the supernatant 

concentration.  AuNP samples of known absorbance were sent to Gailbraith Laboratories and 

analyzed for total gold content.  Knowing the density of gold is 19.34 g/cm3 and the average AuNP 

sphere diameter was 5.5nm verified by TEM, the number of nanoparticle monomers per unit 

volume was calculated.  This allowed 

for a calibrated absorbance spectrum 

where the concentration of the AuNP 

supernatant could be found by 

measuring the plasmon peak 

absorption value.  The mole fraction 

of AuNPs in the supernatant can then 

be calculated. The absorbance (and 

subsequently the concentration and 

mole fraction) of the AuNPs is 

measured as a function of 

 𝑨 = 𝐥𝐨𝐠𝟏𝟎 [
𝑰(𝟎)

𝑰(𝒛)
] = 𝟎. 𝟒𝟑𝑪𝒆𝒙𝒕𝒛𝒏 (9) 

Figure 3.5 Absorbance spectra of AuNPs as a 

function of temperature. A temperature change shifts 

the plasmon absorbance peak which is proportional to 

the number of dissolved nanoparticles. Feature at 

660nm is a light source artifact. Figure taken from [14]. 
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temperature.  Figure 3.5 is the absorbance spectrum of a single sample of AuNPs for four different 

temperatures.  The peak and width of the plasmon resonance stays the same for each run indicating 

an aggregate-free supernatant.  The height of the peak is proportional to the concentration of 

AuNPs dissolved in the solvent at the given temperature.  It is clearly seen how the amount of 

AuNPs dissolved quickly decreases with temperature. 

 

 3.4 Results and analysis 

 3.4.1 Enthalpy of dissolution 

Three different AuNP samples were synthesized by the same synthetic method and studied 

for completeness.  Each one was separately made and analyzed for average particle diameter.  Each 

separate sample vial was re-used throughout the entire temperature scan done over the course of 

approximately a week to avoid any possible long-term stability issues.  The only variable changed 

in each of these scans (other than having three different samples) was the temperature.  Each scan 

followed the precise procedure outlined in Section 2.2 which greatly increased the reproducibility 

of this experiment.  Multiple, independent temperature scans were done to ensure an accurate 

representation of the temperature-dependent solubility of each sample. 

 Figure 3.6 is a plot of the actual experimental data with the three AuNP samples with 

average diameters of 5.2nm, 5.5nm, and 5.8nm.  The absorbance data is converted to concentration 

and then to AuNP mole fraction x which is then plotted ln(x) vs 1/T.  According to thermodynamic 

theory [77], the solid phase – dissolved phase equilibrium solute mole fraction x  

at a temperature T is given by Eqn. 10. 

 𝒍𝒏 𝒙 =
−𝜟𝑯𝒅

𝑹
(

𝟏

𝑻
−

𝟏

𝑻𝒎

) − 𝒍𝒏 𝜸 (10) 
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where ΔHd is the enthalpy of dissolution, Tm is the solid phase solute melting temperature, γ is the 

activity coefficient for the dissolved solute and R is the ideal gas constant.  This also assumes that 

the enthalpy of dissolution is equal to the enthalpy of fusion, ΔHd = ΔHf, of the solute.  The 

enthalpy of dissolution is the enthalpy change associated with the dissolution of the AuNPs in the 

solvent and the relevant quantity that this experiment measures. 

Figure 3.6 is plotted as ln(x) vs 1/T to use the form of Eqn. 10.  The slope of this graph 

gives the enthalpy of dissolution for each sample, seen here to be endothermic (positive slope) 

with values of 19.1 kJ/mol, 21 kJ/mol, and 23 kJ/mol for the 5.2nm, 5.5nm, and 5.8nm samples, 

Figure 3.6  Log mole fraction of dissolved AuNPs in the 

supernatant vs the inverse temperature. The slope of this graph gives 

the enthalpy of dissolution for each of the three samples.  Photo taken 

from [14]. 
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respectively.  This is a measure of the amount of energy needed to dissolve a mole of nanoparticles 

in this solvent (toluene).  Converting to eV/AuNP, an average value of 0.22 eV/AuNP is found.  

This is directly related to the potential well depth that each particle experiences in the nanoparticle 

solid and the amount of energy needed for each particle to be dissolved. 

 

 3.4.2 van der Waals solid 

 Due to the novelty of this measurement, there is a lack of empirical or theoretical support.  

Little is known about the formation of the nanoparticle solid as this precipitate is in dynamic 

equilibrium with the dissolved supernatant.  The precipitate could be forming superlattices [22], 

fractal aggregates [54] or a combination of short-range lattices assembled in a large fractal pattern.  

The precipitate structure can give clues into the dynamics of such systems as the coordination 

number of the nanoparticle solid affects such values as the cohesive energy of the nanoparticle 

solid, hence the enthalpy of dissolution.  As the exact morphology of the precipitate is unknown 

(a topic of future work), we make a reasonable model for the solid.  Gold nanoparticle superlattices 

viewed on the surface of electron microscope grids has shown twelve-fold coordination [41].  With 

this said, and given the roughly spherical nature of these particles, their lack of significant charge 

if assumed to be identical, and the van der Waals force that exists when they are far apart, we 

propose that these AuNP solids can be visualized as a van der Waals solid similar to those formed 

by inert gases [78,79].  For argon, the lattice cohesive energy is a factor of 6.5 larger than the latent 

heat of fusion which is similar to other inert gases [80].  Following the analogy of a van der Waals 

solid, these 5.5nm AuNP solids have an average ΔHd = 21 kJ/mol and thus Ucoh = 6.5 x ΔHd = 136 

kJ/mol.  The melting temperature of a van der Waals solid is empirically described by Tm = Ucoh 

/103(J mol-1 K-1) which yields a predicted Tm = 1300 K for a van der Waals solid of nanoparticles.  
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This melting temperature seems rather large as the melting point of bulk gold is 1337 K, implying 

that the extension of a van der Waals solid for nanoparticles is weak from this perspective. 

 Previous work by the Sorensen and Chakrabarti groups developed a phenomenological 

nanoparticle-nanoparticle pair potential model looking at alkane-thiol ligated AuNPs [54].  The 

model simulated the local environment where NP-NP interactions occur which includes the 

interactions between the gold cores, ligand-shell, and solvent.  These all play a role in determining 

the overall local potential and dictate how NP solids 

are formed and dissolved in solution.  Included in the 

potential was the van der Waals interaction between 

the gold cores with the ligands treated as elastic, 

flexible polymer chains.  Figure 3.7 shows a diagram 

of how the ligand shell can be compressed and 

provides an additional free energy of mixing term in 

the potential.  The ligand (in this case an alkane-thiol) 

are ligated to the AuNP surface and form a shell.  This 

provides steric stability and prevents ‘sintering’ of 

two gold cores together.  Another possible scenario is 

where the ligands between different AuNPs do not interpenetrate (mix) but are only compressed 

in a process known as ‘denting’ [81].  The comparison of the interaction potentials of these various 

scenarios allows for insight into experimental results. 

Figure 3.7 Schematic drawing 

alkane ligands on the surface of 5nm 

AuNP. a) Two isolated NP with non-

interacting ligand shells. b) Cartoon of 

interacting ligands showing 

interpenetration and compression. 

Figure taken from [54]. 



81 

 This phenomenological model was successful at predicting the separation distance of 

nanoparticles at the potential minimum compared to experimental superlattice constants of various 

ligand lengths.  The results of this model in Figure 3.8 plot the nanoparticle effective potential V(x) 

as a function of nanoparticle center to center separation r divided by the particle diameter d for d 

= 5.5nm.  This shape is the familiar addition of attractive and repulsive forces including van der 

Waals, ligand mixing, and elastic compression.  The two lines are different effective potentials 

which take into the account the 

different approach to how the 

ligands interact with each other.  

The ‘denting’ (black) potential is 

the situation where no mixing 

occurs but just ligand 

compression.  The ligand mixing 

(red) potential lets the ligands 

inter-digitate while also 

compressing.   

 The minimum potentials found from Figure 3.8 show a potential well depth, ε, to be                

ε = -0.10eV and ε = -0.13eV for ligand mixing and ligand denting scenarios, respectively.  The 

added free energy of mixing potential in the ligand denting situation clearly shifts the minimum 

effective potential to a shallower well depth and shows the effect even small changes in the ligand 

interactions can produce. 

 An interparticle potential minimum, ε, can also be found with the experimental results by 

again returning to the analogy of the van der Waals solid.  The total lattice cohesive energy, Ucoh 

Figure 3.8 Nanoparticle interparticle potential V(x) in 

eV vs nanoparticle center to center separation r divided by 

the NP diameter d for d = 5.5nm.  Graph taken from [54]. 
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= 8.6Nε, where N is the total number of atoms or NPs [80], directly relates to the interparticle 

potential minimum.  The NP superlattice energy, Ucoh = 136 kJ/mol is derived from the calculated 

enthalpy of dissolution using the van der Waals solid assumption, and finds the experimental value 

of ε = -0.165 eV.  This compares favorably to the values found in the phenomenological model, 

even with the amount of assumptions made. 

 The use of the van der Waals solid model did not give a reasonable estimating for the 

melting point of the AuNP solid but did show modest agreement for the interparticle potential well 

minimum.  More work is being done to investigate a more rigorous model to better understand the 

complex interactions in nanoparticles with each other, the ligands, and the solvent.  This basic 

understanding will be key to the use of nanoparticles in real-world applications [82–84]. 

 

 3.4.3 Activity coefficient 

The activity coefficient is a measure of the deviation from ideal solution behavior when 

mixing substances.  Two substances that are very similar chemically (methanol mixing in ethanol) 

will form an almost ideal mixture.  Departure from this ideality makes the use of an activity 

coefficient factor, analogous to the fugacity coefficient for gases. 

When the temperature-dependent solubility data is plotted as seen in Figure 3.6, the vertical 

shift is the measure of the deviation from an ideal solution, or the activity coefficient, γ.  For an 

ideal solution, the ln x = 0 intercept occurs at the solute melting temperature, Tm.  Here, Figure 3.9 

is the same experimental data as shown in Figure 3.6 but with expanded axes to extrapolate the 

slope.  The collective data is shown in the lower right-hand corner.  The extrapolated slope shows 

a negative x-intercept inferring a negative temperature for Tm.  Looking back to Eqn. 10, the 
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intercepts at 1/T = 0 and ln x = 0 yield the same relation between ln γ and Tm.  This relation is 

roughly given as 

 This is one equation with two unknowns which currently have no way of being measured 

independently.  The value of Tm was attempted in the lab to look for the melting of the AuNP solid 

where the nanoparticle-nanoparticle bonds are breaking but not the gold core melting.  The results 

were poorly reproduced as the ligand 

shell decomposed at high temperature 

but a reasonable guess of 400K is being 

made in this case.  For a Tm = 400 K, an 

activity coefficient of γ = 1.5 x 106 is 

obtained which is a very large value.  

The van der Waals solid estimation of 

Tm = 1300 K gives γ = 2 x 105.  As T → 

∞, γ = 3000 which is still a very 

sizeable activity coefficient. 

 Another approach to gain 

insight to the activity coefficient of 

gold nanoparticle solutions uses Scatchard-Hildebrand theory [77].  The activity coefficient is 

calculated for regular solutions, defined as a solution for which there is no excess entropy of 

mixing.  Regular solution theory applies when the solute and the solvent are similar.  This is not 

exactly the case for small AuNPs dissolved in a molecular solvent, though the ligand shell which 

directly interacts with the solvent molecules (1-dodecanethiol and toluene) are relatively soluble 

 𝐥𝐧𝜸 = 𝟖 +
𝟐𝟓𝟎𝟎

𝑻𝒎

 (11) 

Figure 3.9 Log mole fraction of AuNPs vs the 

inverse temperature on expanded scale.  Lower right 

hand is the same data from Figure 3.6.  Figure from 

[14]. 
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in one another.  As a solid theoretical framework is lacking, the Scatchard-Hildebrand approach is 

continued.  The activity coefficient for the solute is predicted to be [77] 

where R is the gas constant, T is the temperature, ν is the molar volume of the solute, Φsolv is the 

volume fraction of the solvent and δ and δsolv represent the solubility parameters of the solute and 

solvent, respectively.  The expected failure of the Scatchard-Hildebrand theory for AuNP solutions 

is seen when substituting Eqn. 12 into Eqn. 10 that a negative temperature is not possible.  The 

experimental data clearly shows an extrapolation to a negative temperature. 

Some insight is gained as Eqn. 12 does hint at the origin of a very large activity coefficient 

as the molar volume ν for AuNPs is enormous, approximately 160 liters (assuming an Au core 

plus ligand shell of combined diameter of 8nm).  An interesting question can be asked at this point.  

An equal molar solution consists of equal moles of solute and solvent.  In the case of a AuNP 

solution dissolved in toluene, an equal molar solution will have approximately 160 liters of AuNPs 

and 0.1 liters of toluene.  100ml of toluene cannot possible dissolve that quantity of AuNPs and 

therefore it is not physically possible to have molar solutions close to unity.  Equal volumes of 

toluene and AuNP gives a mole fraction of AuNP to be 6.6 x 10-4.  The large molar volume of 

nanoparticles inherently will lead to large activity coefficients. 

 

 3.5 Conclusion 

I have presented what appears to be the first measurements of the temperature dependence 

of thermally reversible solubility for a nanoparticle suspension/solution.  Extending standard 

thermodynamic solution theory to a 5.5nm AuNP solution yields an average enthalpy of 

dissolution of ΔHd = 20.9 kJ/mol NP.  A lack of theoretical support to serve as a backbone of 

 𝑹𝑻 𝐥𝐧 𝜸 = 𝝂𝜱𝒔𝒐𝒍𝒗
𝟐 (𝜹 − 𝜹𝐬𝐨𝐥𝐯)𝟐 (12) 
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understanding complex nanoparticle-nanoparticle and nanoparticle-solvent interactions lead to 

various assumptions made to gain a better understanding of the experimental results.  The 

extension of the concept of a van der Waals solid to a AuNP solid lead to unrealistically high 

melting temperatures.  However, under the same assumption, the minimum of the interparticle 

potential derived from the data agreed fairly well with a phenomenological model of this same 

system.  The dissolution of AuNPs in toluene is a non-ideal solution meaning it has an activity 

coefficient.  The activity coefficient could not be determined due to a lack of a reliable known 

melting temperature for AuNP solids, though any finite temperature implied a very large activity.  

This is consistent with the thermodynamic measurement that extrapolates to a negative 

temperature at AuNP mole fraction equal to one.  The application of Scatchard-Hildebrand theory 

gave some insight into the very large activity as a result of the very large molar volume of the 

AuNPs.  It is clear that much work needs to be done to sufficiently interpret this novel experimental 

data. 
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Chapter 4 - Photoelectron Spectroscopy from Nanoparticles in 

Intense Fields 

- “The most exciting phrase to hear in science, the one that heralds new discoveries, is 

not ‘Eureka!’ but ‘That’s funny…” 

- Isaac Asimov 

  4.1 Photoelectron imaging avoiding focal volume averaging 

The parameters of a nanoscale target can be well defined in a gas-phase experiment where 

no more than one particle contribute to the measured observables.  A key factor in determining 

mechanisms and subtleties of the electron emission is the effective driving laser intensity.  The 

spatial distribution of the target is usually non-negligible (and much larger) compared to the 

dimensions of the laser focus which causes the irradiated object to experience different intensities 

depending on its position in the focus.  Therefore, the measured photoelectron energy and angular 

distributions are effectively averaged over the spatial intensity distribution of the laser field which 

can complicate their interpretation and comparison to theory. 

In isolated atoms and molecules in a multiphoton or tunneling regime, the intensity 

distribution of the laser focus is often less critical because of the highly non-linear dependence of 

the ionization probability (and thus the photoelectron yield).  The vast majority of the events 

contributing to the observed spectra originate from the small volume corresponding to the peak 

intensity value.  In contrast, for a nanoscale system, the dependence of the number of emitted 

electrons on the laser intensity often might be nearly linear [26,27], and the resulting spectra might 

directly reflect the spatial profile of the laser focus, heavily favoring the regions with lower 

intensities which have a larger focal volume. 
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 4.1.1 ‘Binning’ technique for near-single intensity observables 

Here we present an experimental technique aimed to study intensity- and size-dependent 

photoelectron emission patterns from gas-phase nanoparticles, while avoiding focal volume 

averaging.  The method is based on using the number of emitted photoelectrons per laser shot for 

a given nanoparticle size as a relative measure of the local laser intensity (i.e. the particle’s position 

within the laser focus).  By sorting results according to this observable, accurate energy- and angle-

resolved photoelectron spectra corresponding to a particular laser intensity range are obtained.  

This technique is used to study size-dependent electron emission from SiO2 (silica) and gold 

nanoparticles (AuNPs) driven by an intense, femtosecond near-infrared laser field.  Photoelectron 

energy cutoffs and angular distributions are obtained from the measured data. 

A simple histogram 

plotting a nanoparticle scan vs a 

background scan (solvent only; no 

nanoparticles in solution) shows 

where an appropriate demarcation 

limit should be placed as the 

nanoparticle contribution diverges 

from the background.  Figure 4.1 

clearly shows the divergence of the 

nanoparticle contribution from the 

background scan.  This sets the 

lower threshold to properly 

segregate the background from the nanoparticle contribution.  By scanning the laser intensity from 

Figure 4.1 Hit histogram from 95nm SiO2 of 

number of photoelectrons per laser shot.  

Nanoparticle scan (red) compared vs solvent-only 

background scan (black).  Here 2.5 x 106 laser shots 

were recorded at 6 x 1013 W/cm2. 
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2 x 1013 W/cm2 to 8 x 1013 W/cm2 for the same sample (Figure 4.2), the histogram shows a clear 

shift in the maximum number of electrons per laser shot observed. 

The number of photoelectrons emitted from a single, isolated nanoparticle is determined 

by the nanoparticle composition, shape, and size while also sensitive to laser parameters such as 

wavelength and intensity [26,27].  Referring to the histogram in Figure 4.1, the above-background 

values between 75-450 electrons per laser shot are a microscopic probe of the focal volume of the 

laser.  Each nanoparticle is 

incident on a random area of the 

laser focus as the nanoparticle 

beam is much larger than the 

laser focus.  Thus, the intensity 

seen by that particular particle 

will be determined by its spatial 

position in the Gaussian-like 

distribution of the laser focus. 

The width of the 

histogram arises from the 

nanoparticle contribution as a 

function of incident laser intensity.  The limit where a nanoparticle only sees one laser intensity 

would transform this histogram into a delta function-like spectrum as there would be no 

Figure 4.2 Hit histogram of 95nm SiO2 

nanoparticles at different laser intensities. The 

largest number of electrons per laser shot shifts to 

larger values as the laser intensity increases. 100mW 

= 2x1013 W/cm2. 
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convolution of laser 

intensities.  As the predicted 

photoelectron yield is nearly 

linear as a function of 

intensity [61] (at least in the 

intensity range in this study), 

the number of electrons per 

laser shot can be used as a 

coarse guide for near-single 

intensity sampling of the 

nanoparticle interaction.  In 

the actual experiment, 

detection efficiencies prevent 

a true representation of the 

total emitted electrons, 

especially at high intensity and/or large particle sizes.  A ‘bin’ is defined as a portion of the hit 

histogram that corresponds to near-single intensity nanoparticle contributions as seen in the grey 

shaded regions of Figure 4.3.  The upper-right corner of this figure is a cross-section schematic of 

a Gaussian laser focus.  The laser intensity is maximum in the center and decreases as a function 

of distance away from the middle, while the focal volume is a minimum at the center and increases 

towards the focal ‘wings’.  The placement of the ‘bins’ a), b), and c) correspond to the lowest to 

highest intensity the nanoparticle sample experienced, respectively.  Bin c) is defined as the 

maximum number of electrons per laser shot as it corresponds to the peak laser intensity. 

Figure 4.3 Nanoparticle hit histogram with ‘binning’ 

technique.  Only laser shots containing the number of 

electrons within a specified bin-width are analyzed to 

produce near-single intensity photoelectron VMI images.  

The upper-right corner is a simple cross-section 

representation of a Gaussian laser focus.  The center has 

the highest intensity but smallest focal volume. Moving 

spatially outwards the intensity decreases but volume 

increases. a) Smallest ‘bin’ with the least number of 

electrons per laser shot and thus the smallest incident 

intensity. b) Intermediate laser intensity c) Largest 

number of electrons per laser shot and the peak laser 

intensity at center of focus. 

a) 

b) 

c) 
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This ‘binning’ technique essentially avoids focal volume averaging, or volumetric 

weighting effects where the contribution from the low intensity ‘wings’ of the laser focus can 

dominate the overall nanoparticle angular and energy spectrum and allows accurate single-

intensity analysis.  This in in contrast to an integrated spectrum which include all the laser shots 

above the background level regardless of local laser intensity.  As there are contributions from 

many different intensities, intensity-dependent features can be washed out, most notably angular 

distributions in VMI images. 

The corresponding laser shots within each selected ‘bin’ are combined to produce a raw 

VMI photoelectron image.  Figure 4.4 illustrates the ‘binning’ technique on several different peak 

Figure 4.4 VMI images sorted by their respective ‘bins’, defined as the number of electrons 

per laser shot.  Each row is a scan at a fixed peak intensity. The progression from left to right on 

a row shows the different nanoparticle spectra resulting from different intensities within the laser 

focus, as compared to the integrated image (far right). The photoelectron momenta get larger as 

the number of electrons per laser shot (‘bin’) increases.  The angular distribution also is clearly 

intensity dependent.  These scans were done with 95nm SiO2 with Io = 2 x 1013 W/cm2. The log 

color scale has red=max counts and blue=background level. 
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laser intensities for the same sample.  From left to right, there is an obvious difference between 

different ‘bins’ as the photoelectron spectra depend on the local laser intensity, including the 

elongation along the polarization axis and the increased photoelectron momenta.  The far-right 

images show the integrated, focal volume-averaged, VMI images which are the sum of all possible 

bins from the background level to the maximum number of electrons per laser shot. 

The advantages of having single-intensity photoelectron spectra include the ability to better 

resolve the angular distribution.  Prominent features such as the elongation along the polarization 

axis can be seen in the integrated images but ‘binning’ can help distinguish minute changes.  The 

near-single intensity images seen in Figure 4.4 shows the evolution of the angular distribution as 

a function of intensity.  An isotropic, circular distribution at low intensities stretches along the 

polarization axis as the intensity increases.  The spectra from ‘bin 451-550’ begins to show a 

figure-eight shape that is not seen in the ‘binned’ images at lower intensities or in the integrated 

spectra.  Simulations of nanoparticle electron emission also show this characteristic shape at 

similar intensities [86] but experimental focal volume averaged images of the same data can wash 

out angular distribution features, as seen in the integrated image from Figure 4.4b). 

To analyze the photoelectron emission patterns more quantitatively, the radial distribution 

of a VMI image is rescaled to energy units.  If an inversion of the 2D VMI projection would be 

done, a full energy distribution can be found.  However, as discussed in Section 2.4.7, this relies 

on having an axis of symmetry and thus could not be applied to all of the samples studied in this 

work.  Therefore, non-inverted radial distributions (in energy units) are used as a “replacement” 

for the true photoelectron kinetic energy spectra. This did not cause any substantial loss of 

information since determining the exact form of the energy or angular distributions was not the 
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goal of this work. Direct comparison of inverted and non-inverted VMI data will be presented in 

the next section. 

The radial distribution of each ‘bin’ is obtained by taking a 30° full-opening angle slice 

along the polarization direction of the VMI image.  After calibration, the radial distribution 

displays the photoelectron spectra scaled in energy units.  Figure 4.5 is the radial distribution of a 

single nanoparticle scan at a fixed peak intensity.  The positive shift in energy as the ‘bin’ increases 

mimics what is seen in the raw VMI images from Figure 4.4 and quantitatively shows the different 

intensity regions with the laser focus.  Notice how the integrated radial distribution (red curve) has 

a slightly lower energy (shifted to the left) than the largest ‘bin’ (cyan).  As the integrated spectra 

has all laser intensity 

contributions present, it 

can wash out the small 

contribution from the peak 

intensity region (largest 

‘bin’) and thus, slightly 

underestimate the actual 

peak photoelectron energy.  

The overall shape of the 

energy distribution also 

varies as a function of ‘bin’ 

or integrated spectra.  The 

‘binning’ technique 

successfully portrays the 

Figure 4.5 Nanoparticle radial distribution as a 

function of ‘bin’. The radial distribution of each ‘bin’ in 

one nanoparticle scan at a fixed peak intensity.  The 

increase in energy with bin size shows the different 

intensity regions within the laser focus.      300mW ≈ 6x1013 

W/cm2 in this plot. 
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changing morphology of the intensity-dependent energy distribution that is convoluted in the 

integrated distribution. 

It is important to realize that the hit histograms presented in Figure 4.1-Figure 4.3 do not 

provide the real number of the electrons emitted from a nanoparticle.  First, the detection efficiency 

of the MCP detector/phosphor screen arrangement, i.e., the probability to register an electron 

hitting the MCP, is considerably smaller than unity (~0.4-0.5), therefore reducing the number of 

measured electrons.  Under ideal conditions, this would provide a constant scaling factor for all 

data sets.  However, a second, more critical issue stems from detector saturation effects.  If a large 

number of electrons impinge on a particular area of the detector (most likely the center), the 

detection efficiency for this area is reduced and becomes negligibly small for certain threshold 

values of the electron hit density.  This can be seen in the reduction of the low-energy photoelectron 

contributions in Figure 4.5 as the number of electrons per laser shot (‘bin’) increases.  Therefore, 

for higher intensities and large particle sizes where more electrons are emitted, the detection 

efficiency decreases, and the measured number of electrons are less likely to reflect the actual 

number of emitted electrons.  Accordingly, even if the exact relation between the local peak laser 

intensity and the number of emitted electrons would be known, the technique presented here is not 

capable of reconstructing the exact spatial profile of the laser focus and, thus, assigning the exact 

intensity value to each bin using the current detection technology. It can become capable of 

achieving this goal if detectors with larger dynamic ranges will become available. However, 

already now this technique can be efficiently used to separate low-intensity contributions to the 

photoelectron data and effectively approach single-intensity conditions. 
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 4.1.2 Determination of photoelectron cutoff 

A robust method for systematically finding experimental photoelectron cutoffs provides a 

way to systematize the role of different parameters such as nanoparticle size and laser intensity.  

A cutoff is defined as the maximum observed photoelectron energy.  Each VMI image, either 

‘binned’ or integrated, has a characteristic cutoff determined by the photoelectron spectra within 

each image.  Such cutoffs are important observables for atomic ionization and have been used to 

determine peak laser intensities [148]. However, the cutoff determination is by far not a 

straightforward procedure since it strongly depends on signal to noise ratio. The VMI technique is 

not ideal for this purpose since the electronic noise and dark counts of a single shot camera are 

typically non-negligible compared to the rather low electron yield in the cutoff region.  Two 

different empirical approaches are often used to find the highest energy for which the photoelectron 

yield is non-zero.  The first one relies on a signal reduction to a given fraction (e.g., three orders 

of magnitude) compared to the energy of maximum abundance (which, for experiments with high 

intensities, corresponds to electrons with nearly zero energies).  This technique implies certain 

knowledge of the shape of the spectrum and is hardly applicable if the low-energy region is 

saturated, which is often the case for the experiments on nanoparticles.  Therefore, many recent 

experiments on nanosystems which utilized few-cycle laser pulses with stable carrier-envelope 

phase (CEP) relied on the evolution of the CEP-dependent asymmetries to determine the cutoff 

values [24,25,86].  Since longer, ~25 fs pulses without CEP stabilization were employed in this 

work, this approach could not be applied here. 

To systematically quantify the energy cutoffs in nanoparticle data obtained in this work, a 

‘background matching’ procedure was found to be the most effective.  The use of a reference scan 

enables the comparison of a nanoparticle spectra to its corresponding background radial 
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distribution.  The hit histogram in Figure 4.3 illustrates how the background contributions is 

separated from the nanoparticles by comparison to the solvent-only scan.  The background laser 

shots (all the laser shots in the red line that overlap the black, solvent-only scan) are designated as 

the reference distribution.  As the reference scan are laser shots taken concurrently to the 

nanoparticle scan, it is a true representation of the background.  It includes all the background 

contributions: the events coming from the ionization of residual gas, any stray laser light incident 

on the detector, and camera noise, all in the exact conditions of the obtained nanoparticle data. 

Figure 4.6 shows a typical radial distribution using the ‘background matching’ method.  

The two spectra shown are taken from a single scan at a fixed peak intensity where the background 

(black) ‘bin’ is compared to the 

integrated signal.  The nanoparticle 

integrated signal (red) is shifted 

vertically to overlap and ‘match’ the 

background spectra.  The location 

where the two spectra intersect means 

that the nanoparticle signal has fallen 

into the background and thus has no 

photoelectron contribution from the 

particle itself past this crossover.  This 

is defined as the photoelectron energy 

cutoff. 

Figure 4.6 Radial distribution of 120nm SiO2.  

The integrated nanoparticle signal (red) has been 

shifted vertically to overlap the background 

signal (black). The legend is showing the number 

of electrons per laser shot to determine the 

background and nanoparticle signal. Data taken 

at 1.3x1013 W/cm2. 



96 

It is useful to make the comparison between a photoelectron radial distribution and an 

energy distribution.  The radial distribution makes use of the 2D VMI projection to show a 

spectrum scaled in energy units while the energy distribution is calculated from the full 3D 

momentum components.  An inversion procedure makes use of a symmetry axis to produce the 

energy distribution.  As discussed in Section 2.4.7, this can be done for small nanoparticles such 

as those seen for 50nm SiO2 in Figure 4.7 as their photoelectron distribution is symmetric along 

the polarization axis.  The radial distribution (left) is compared to the energy distribution (right) to 

show that the cutoff is not significantly different between the two spectrums.  There is a noticeable 

change in the overall shape of the energy distribution (seen between 10-40eV) where the full 

energy distribution of the inverted spectra more effectively depicts the initial 3D momentum 

distribution (Newton sphere [57]) of the nanoparticle photoelectrons.  However, for the purpose 

of determining the energy cutoff, a non-inverted radial distribution is equivalent to the inverted 

energy spectrum.  This essentially should be expected since the 2D projection on the detector 

Figure 4.7 Non-inverted radial distribution compared to inverted energy distribution from 

50nm SiO2.  On left is the radial distribution (non-inverted) while on the right is the energy 

distribution (inverted).  The energy cutoff between the two spectrums is not significantly 

different.  Peak intensity = 1.8 x 1013 W/cm2. 
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plane, which is the non-inverted VMI image, should have the same upper boundaries as the full 

3D momentum sphere. 

The final test of the ‘background matching’ method for determining photoelectron cutoffs 

is shown in Figure 4.8 where the radial distributions of the integrated spectra is plotted as a function 

of laser intensity.  The respective backgrounds (black) for each intensity scan overlaps the 

nanoparticle distribution where the cutoff value is found.  Colored arrows indicate where the 

energy cutoff is placed for each of the scans.  The increased momentum distribution of the 

integrated raw VMI images seen in Figure 4.4 can now be fully quantified and a cutoff value 

obtained. 

Figure 4.8     Integrated photoelectron radial distributions as a function of intensity. The cutoff 

energy is found by overlapping the respective background (black) with the nanoparticle 

distribution.  Arrows show the measured cutoff energy of each intensity scan for 120nm SiO2 

found to be 28, 43 and 58eV, for Io, 1.5Io, and 2Io, respectively.         Io = 8.8 x 1012 W/cm2 
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 4.2 Size- and intensity-dependent photoelectron spectra from SiO2 

nanoparticles 

 4.2.1 VMI images and radial distributions 

SiO2 nanoparticles with diameters of 20nm, 50nm, 80nm, 120nm, 200nm, 400nm, and 

750nm (Nanocomposix, Inc) were studied with laser intensities ranging from 8.8 x 1012 W/cm2 to 

1.8 x 1013 W/cm2.  A 95nm SiO2 sample was studied at higher intensities from 2 x 1013 W/cm2 to 

8 x 1013 W/cm2.  Each scan consisted of 2.5 million laser shots to ensure sufficient statistics for 

this ‘binning’ method in determining photoelectron energy and angular distributions. 

Figure 4.9 illustrates size-dependent hit histograms at a constant laser intensity of 8.8 x 

1012 W/cm2.  The trend clearly indicates a monotonic increase in the maximum electrons per laser 

shot as a function of increasing particle diameter.  The smallest sample on the left figure emits 

considerably less electrons per laser shot than the largest on the right.  Figure 4.2 is representative 

intensity-dependent histogram showing how the peak laser intensity shifts the maximum electrons 

per laser shot.  Each of these size and intensity dependent scans have a corresponding integrated 

Figure 4.9     Histogram of different sized SiO2 nanoparticles at constant intensity of 

8.8x1012 W/cm2.  On the left is for <100nm particles while on the right is for >100nm.  

The trend shows that for the same peak laser intensity of 8.8 x 1012 W/cm2, the upper 

electrons per laser shot limit increasing as a function of particle size. 
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raw VMI images showing the photoelectron energy and angular distribution, although focal-

volume averaged.  Raw, integrated VMI images give the first glimpse into how particle size and 

laser intensity effects the photoelectron distribution as seen in Figure 4.10.  Rows a), b), and c) 

correspond to 20nm, 120nm, and 400nm SiO2 samples, respectively, at three different peak 

intensity values.  The influence of sample diameter and laser intensity can be seen in the increased 

Figure 4.10 Collection of integrated VMI images as a function of size and laser intensity.  

Units of momentum (a.u.) are shown.  Io = 8.8 x 1012 W/cm2. Horizontal rows are same 

nanoparticle diameter with increasing intensity. a) 20nm SiO2 b) 120nm SiO2 c) 400nm SiO2            

Color bar in log scale. 
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electron momentum cutoff and the changing angular distribution.  The images elongate in the 

vertical direction as the photoelectrons are driven the strongest along the plane of polarization.  A 

substantial asymmetry along the propagation direction is seen for the large nanoparticles as the 

particle diameter begins to approach the incident wavelength.  The asymmetry is accurately 

described by the Mie solution where the excitation of higher order multipole modes leads to 

propagation-induced near-field deformation [85].  The vertical columns in Figure 4.10 are a size 

scan at a fixed intensity.  This directly compares the photoemission from nanoparticles as a 

function of particle diameter and demonstrates the major role of the nanoparticle dimensions on 

the overall electron distribution. 

As all the VMI images in Figure 4.10 are focal-volume averaged, the ‘binning’ technique 

described in the previous section is advantageous for purposes of probing near-single intensity 

angular and energy distributions.  Figure 4.11 is a clear representation of the different intensity 

regions found with the laser focus of a 120nm particle at the peak intensity of 1.8 x 1013 W/cm2.  

Figures a-c) are ‘binned’ images corresponding to intensity regions from the outer focal ‘wings’ 

to its center.  This mimics the integrated intensity-dependent (rows) images seen in Figure 4.10, 

Figure 4.11 ‘Binned’ VMI images from 120nm SiO2 at 1.8 x 1013 W/cm2.  a) 125-135 

electrons/shot b) 175-190 c) 250-300 d) 101-360 (integrated image).  ‘Binned’ images a-c) 

are contrasted to integrated image d) to show the contributions from different intensity 

regions within the focus.  Color bar in log scale. Color bar for d) seen to its immediate right.  
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except ‘binning’ produces a near-single intensity spectra.  Using Figure 4.11a) as an example, the 

‘bin’ was set between 125-135 electrons per laser shot.  As total photoelectron emission from 

nanoparticles theoretically show a nearly-linear dependence on laser intensity, a ‘bin’ width of 

only 10 electrons necessitates that laser shots within that ‘bin’ had to be from a narrow region of 

laser intensities.  The corresponding spectra from this bin therefore is an accurate representation 

of the photoelectron distribution originating from a single-intensity value. 

Once the ‘bins’ are chosen for each nanoparticle scan, radial distributions for each are 

found.  The radial distribution of an individual ‘bin’ provide single-intensity information on the 

shape of the distribution and its cutoff, both of which are size- and- intensity dependent properties.  

Figure 4.12 shows collection of different ‘binned’ radial distributions at a fixed peak intensity 

compared to the integrated (red dashed line) spectra.  The ‘bins’ are chosen to show the 

characteristic focal regions from the minimum to the maximum intensity.  The shape of the 

‘binned’ distribution varies compared to the integrated, with the most prominent difference being 

in the largest ‘bin’ containing the peak intensity contributions.   The integrated distribution also 

slightly underestimates the cutoff compared to the largest ‘bin’ (green). 

 

Figure 4.12 Size-dependent ‘binned’ radial distribution.  Colored lines indicate the radial 

distribution for that particular ‘bin’ (number of electrons per laser shot) as referenced to the 

background.  Red dashed spectra are the integrated distribution. Data was smoothed for better 

comparison.    Peak laser intensity = 1.8 x 1013 W/cm2. 
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 4.2.2 Size-dependent photoelectron cutoffs for SiO2 

The determination of the size- and intensity-dependent photoelectron cutoffs gives insight 

into the underlying physics of the light/matter interaction.  The photoelectrons contain a wealth of 

information about their excursion from the nanoparticle to the continuum, specifically their kinetic 

energy and angular distribution.  Photoelectron spectroscopy of nanoparticles allows the electron 

to be a sensitive probe to the environment around the nanoparticle during its interaction with the 

ultrafast laser pulse.  The measured photoelectron cutoff as a function of nanoparticle diameter is 

plotted in Figure 4.13, both in electron volts and scaled to the ponderomotive energy, Up.  The 

overall trend indicates a monotonic increase of absolute cutoff energy for both increasing diameter 

and incident laser intensity.  Expressing the cutoff values in units of Up allows one to eliminate 

intensity-dependence and focus on size-dependent effects as Up scales linearly with intensity. 

Beyond the physical dimensions of the particles, the interaction with the laser pulse dictates 

the physics of the emitted photoelectrons.  The ultrafast intense laser pulse, which consists of an 

alternating electric field of ~10 cycles (25fs FWHM envelope / 2.6fs/cycle), encounters an isolated 

nanoparticle in vacuum.  At sufficiently high intensities, ionization of the nanoparticle occurs, and 

the liberated electron propagates within the effective field of the laser pulse and dielectric response 

of the particle.  As was discussed in Section 1.3, the important features controlling this process are 

the Coulomb potential of the ionized nanoparticle, near-field enhancement, and rescattering off 

the parent particle. 
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Figure 4.13 SiO2 nanoparticle size vs cutoff energy.  Upper graph shows cutoff 

value in eV while the bottom graph is scaled to the ponderomotive energy, Up.  The 

cutoff increases with nanoparticle diameter.  The normalization by Up gives a 

constant cutoff value as Up scales linearly with intensity. Io = 8.8 x 1012 W/cm2. 
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 According to the Keldysh parameter, the intensity regime (~1013 W/cm2) at NIR 

wavelengths corresponds to the transition between multiphoton and tunneling ionization regimes 

(see Section 1.3).  However, by taking into account the significant near-field enhancements, 

tunneling provides a more intuitive picture of the nanoparticle ionization at these intensities, with 

the greatest probability of ionization from the particle surface.  Once the incident electric field is 

sufficiently strong enough to bend the potential barrier of the surface atoms, an electron can tunnel 

through the barrier into the continuum.  Once ionization of the nanoparticle surface begins, a 

Coulomb potential is formed on the surface defined by the number of photoelectrons lost.  Once a 

sufficient potential well depth is formed, subsequent ionization events require that the electron 

must have kinetic energy greater than this potential or they will be trapped and only ‘quasi-free’.  

This will efficiently dampen (quench) the ionization rate quickly, usually within a few laser cycles 

[26]. 

The photoelectrons that are in the continuum can be modeled as an electron propagating in 

a classical field.  The total force acting on the electron is the sum of the local fields, consisting of 

the Coulomb field trapping potential and the near-field contributions generated by the laser field 

and the nanoparticle.  As previously mentioned, the near-field of the nanoparticle is the dielectric 

response to the incident laser field and is calculated by Mie solutions to Maxwell’s equations that 

solve for the fields inside and outside the particle.  Field enhancement occurs where the 

nanoparticle response is localized and is defined as the ratio of the induced field to the incident 

field.  Figure 4.14top) shows the calculated fields of 100nm diameter dielectric and metallic 
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nanoparticle where R<< λ 

with its characteristic dipolar 

shape.  The bottom row is for 

a 300nm SiO2 particle where 

R becomes none-negligible 

compared to λ and 

asymmetries caused by 

propagation effects are seen.  

Depending on the spatial and 

temporal ‘birth’ of the 

photoelectron relative to the 

laser pulse, the electron will 

feel this enhanced field and 

be influenced by it.  For dielectrics, the maximum field enhancement reaches a limiting value of 

three when the permittivity of the nanoparticle becomes much larger than the medium, effectively 

shielding the interior of the nanoparticle from the incident field [87]. This enhancement can be 

higher for metals because of a negative relative permittivity stemming from a complex index of 

refraction. 

The free electron propagating in the field is driven by the alternating direction of the laser 

field.  Analogous to the atomic case, photoelectrons from nanoparticles can return to the surface 

and be rescattered elastically or inelastically.  The electron on this return trip will again be 

influenced by the effective field from the trapping potential, nanoparticle near-field, and the laser 

field.  The highest energy electrons are what is defined as the cutoff in the VMI radial distributions.  

Figure 4.14 Field distributions from nanoparticles in 

response to electromagnetic wave. Top row) 

Radius=50nm << λ showing dipolar shape of particles 

near field response. Bottom row) 300nm diameter SiO2 

where R<< λ begins to not hold and propagation effects 

occur. Polarization is vertical, and propagation is to right. 

Image from [87]. 
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These electrons are those that have been preferentially backscattered multiple times, gaining 

momentum from the effective field for each trip.  This effective field will be at a maximum (and 

thus the largest momentum gain) where the field distribution of the nanoparticle is the greatest.  

This is a size-dependent property that can clearly be seen in Figure 4.10c) in the asymmetry in the 

propagation direction of the 400nm SiO2. 

Electron-electron Coulomb interactions also play a crucial role in the final momentum 

distribution of the photoelectron spectrum.  The escaping electron ‘bunch’ consists of all the free 

photoelectrons that have left the nanoparticle, including direct emission and rescattered electrons.  

As seen in Figure 4.9, the number of detected electrons increases monotonically with nanoparticle 

size.  For large particles, the total number is usually hundreds, up to a thousand, of electrons per 

laser shot, before factoring in the 40-50% detection efficiency of the MCP.  The space-charge 

repulsion felt by this electron ‘bunch’ enhances the final photoelectron cutoff energy of the 

nanoparticles, especially for the larger sizes [25,86,87]. 

 

 4.2.3 Comparison to earlier results obtained with few-cycle pulses 

The joint experimental and theoretical work by Süßman et al. [25] used few-cycle (4fs) 

laser pulses along with stable carrier-envelope phase (CEP) to study and control photoemission 

from SiO2 nanospheres.  They demonstrate the propagation-induced directionality of electron 

emission and analyze how the measured photoelectron cutoffs and angular distributions are 

dictated by the size of the particle and nicely show the propagation induced asymmetry.  As 

electron backscattering dominates the high-energy electron emission at these intensities (~1013 

W/cm2), a closer look at this process sheds light on the scattering process.  In a few-cycle pulse, 



107 

the first half-cycle produces most of the ionization before the growing Coulombic trapping 

potential effectively quenches further electron emission.  The free electrons are subsequently 

propagated in the effective field dictated by the laser field and nanoparticle near-field, plus the 

surface trapping potential.  A few-cycle pulse only has one or two more cycles to interact with the 

electrons, thus limiting the number opportunities to effectively backscatter any electrons.  

However, in the many-cycle, 25fs pulse duration case, an electron is much more likely to be 

rescattered multiple times, including backscattering where the electron gains the maximum 

momentum from the field. 

Figure 4.15 Size dependent cutoff energy values from SiO2 compared vs pulse 

duration.  Cutoff values from 25fs pulses (colored) vs 4fs (black) as a function of 

particle diameter scaled to the free space ponderomotive potential, Up.  Io = 8.8 

x 1012 W/cm2 while 4fs data taken at 3 x 1013 W/cm2.  4 fs data taken from [25]. 
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Figure 4.15 shows a comparison of energy cutoffs as a function of SiO2 particle size for 

my data (25fs) and from literature (4fs) [25].  The cutoff values are scaled to the free energy 

ponderomotive potential, Up, to directly compare the cutoffs as a function of pulse duration.  The 

few-cycle data (black squares) nicely matches the many-cycle data (colored circles) at particle 

sizes up to approximately 200nm.  For larger sizes, the cutoffs for the 25fs data quickly diverge to 

much larger values. 

An in-depth analysis of the role of single collisions (scattering) compared to double 

collisions show a fundamental difference in the scattering mechanism and on the overall 

contribution from each process [61].  The multiple scattering contribution increases as a function 

of nanoparticle size as shown in Figure 4.16, eventually becoming more energetic than the single 

scattering spectra.  Here, electrons with n = 0,1, and 2 scattering events correspond to the direct, 

single, and double scattered events, respectively.  At small sizes, the single scattered electrons 

dominate the high energy cutoff.  As the particle size increases, the overall cutoff energy also 

Figure 4.16 Rescattered energy spectra as a function of size.  The cutoff 

energy is calculated for each nanoparticle size as a function of the direct (grey), 

single scattering (black), and double (red) rescattered electrons.  At small sizes, 

the single scattering electrons dominate the cutoff region. With large sizes, 

double rescattering becomes more prominent and are more energetic than the 

single scattered electrons. Figure taken and adapted from [61]. 



109 

increases but the contribution from the double rescattered electrons matches and even exceeds the 

maximum energy from the single-scattering events. 

The trajectory of a single-scattered electron is ‘born’ at the classical tunnel exit, undergoes 

a large radial excursion and recollision (rescattering) with respect to the particle’s surface.  The 

electron is accelerated while approaching the surface and increases velocity after elastic scattering, 

thus gaining a larger kinetic energy.  This condition depends on the ‘birth’ time of the electron and 

its phase relative to the driving field.  When an electron is scattered more than once from the 

particle’s surface, a different acceleration mechanism is seen.  The trajectory has a smaller radial 

excursion compared to single scattering, but a much greater tangential component.  The near-field 

is the particle’s dielectric response to the incident laser field.  As seen in Figure 4.14 for the large 

SiO2 particles, the near-field distribution cannot be approximated as a dipole and thus introduces 

a tangential component to the near-field.  The doubly-scattered electrons take advantage of the 

tangential field components for large particle sizes and gain energy when its own tangential 

components are maximum, namely when it is first approaching the surface (first scattering event) 

and between the first and second collisions.  The larger the near-field tangential components, the 

larger the energy gain for these multiple scattered electrons [61]. 

  The mechanism for the enhanced energy cutoff from doubly-scattered electrons can be 

extended for more collisions.  The near-field tangential fields are present for each cycle and 

presents another opportunity for an electron to rescatter off the nanoparticle surface many times 

while simultaneously gaining energy for each scattering event.  The tangential components of the 

near-field only begin contributing significantly for large particles, so the cutoff enhancement from 

multiple-scattering in a many-cycle pulse can only be observed for rather large systems. This effect 

starts to be clearly seen for particles larger than 500nm as observed in the simulation in Figure 
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4.16 where only the first and second scattering events are considered.  The cutoff deviation in 

Figure 4.15 is observed already for ~400nm particles where the contributions of later recollision 

events in a multicycle 25fs pulse are the most likely cause.  The larger cutoff values observed for 

the 25fs pulse vs 4fs at large sizes thus appears to be a sensitive probe of the number of rescattering 

events contributing to the energy gain of the highest energy photoelectrons (in the cutoff region). 

 

 4.3 Size- and intensity-dependent photoelectron spectra from gold 

nanoparticles 

Gold nanoparticles (AuNPs) with diameters of 5nm, 30nm, 70nm, 120nm, 200nm, and 

400nm (Cytodiagnostics, Inc) were studied under laser fields ranging from 8.3 x 1012 W/cm2 to 

1.7 x 1013 W/cm2.  Since the data for the two largest particle sizes were hindered by space-charge 

effects and detector saturation, for 200nm AuNP an additional set of measurements at lower 

intensities of 2 x 1011 W/cm2 to 2.5 x 1012 W/cm2 has been performed.  Analogous to the SiO2 

study, the photoelectron spectra from AuNPs was investigated as a function of size and laser 

intensity.  To my knowledge, the successful study of clean, isolated, gas-phase gold nanoparticles 

has not been done, though attempts have been made [55,87].  The ability to properly prepare 

metallic nanoparticles to be free from contamination and at sufficient particle concentrations is a 

major roadblock to experiments.  Untainted samples were the key to being able to distinguish gold 

nanoparticle-dependent properties such as photoelectron cutoffs and energy distributions. 
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AuNPs were chosen as the representative metallic 

nanoparticle sample because of their ability to be synthesized over 

a wide range of sizes and with a high degree of monodispersity.  

They are stable in water at room temperature for extended periods 

of time (months) and are not sensitive to light (unlike silver 

nanoparticles) or oxidation (unlike copper nanoparticles) and thus 

are the logical choice among the coinage metals.  The smallest 

particle (5nm) contains only about 3900 gold atoms in contrast to a 400nm AuNP with over a 

billion atoms.  This spans the size spectrum from the small cluster-like to the large bulk-like 

nanoparticles.  The skin depth for AuNPs at optical and NIR wavelengths have been approximated 

between 15-25nm [11,160].  This is defined as where the incident electromagnetic field strength 

diminishes by a factor of 1/e inside the metal.  Though the field can penetrate into the AuNP, the 

greatest probability of ionization still will occur where the field strength is the greatest, which is 

the surface.  This means the number of atoms on the surface of the particle is also relevant, with 

only ~800 atoms for 5nm AuNP but 5 million for 400nm AuNP. 

The properties of gold are fundamentally different than for a dielectric such as silica.  Most 

notable is that as a metal and a conductor, its conduction band is already populated and can be 

modeled as a delocalized sea of electrons (free electron gas).  Electrical conductivity in metals, 

both direct current (dc) and alternating current (ac), are a result of these delocalized electrons in 

the conduction band.  The interaction of a metallic nanoparticle with optical wavelengths freely 

drives these electrons, moving them relative to a static ion core.  A resonance occurs when the 

driving frequency matches the characteristic electron motion and is the cause for the striking colors 

due to light adsorption by the plasmon in metallic nanoparticles. 

Figure 4.17 TEM image of 

commercially available 

400nm (±20nm) AuNPs. Scale 

bar is 200nm. 
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Metals have a complex index of refraction where the imaginary part takes into account 

extinction.  This is related to the relative permittivity (dielectric constant) which, for the real part, 

is usually negative.  The dielectric response of a metal nanoparticle to the incident radiation is 

different than for an insulator such as silica.  This leads to larger field enhancements, along with 

the aforementioned plasmon resonances. 

As mentioned in Section 1.3.2, when irradiated by sufficiently intense optical light, any 

material will have significant amounts of free electrons, effectively undergoing light-induced 

metallization through strong inner ionization [96].  In this regime, the difference between the 

response of metallic and dielectric particles is expected to be washed out. The determination of the 

conditions needed for this effect is one of the general goals of this work. 

 

 4.3.1 Photoelectron spectra 

The method of analyzing the photoelectron spectra from gold nanoparticles was very similar to 

that of silica.  Figure 4.18 is a hit histogram of AuNPs, again showing the number of electrons 

detected per laser shot for the entire scan.  The background (~99% of laser shots with no 

nanoparticle present) are found at low values with a small number of electrons per laser shot.  

Figure 4.18a) shows the evolution of the hit histogram at a constant peak laser intensity, but with 

increasing AuNP diameter while b) presents a constant size but increasing peak intensity.  Similar 

to SiO2, the trends show a monotonic increase in the maximum number of electrons per laser shot 

with growing nanoparticle diameter and laser intensity.  Overall statistics compared to SiO2 are 

reduced as the AuNP particle concentrations are lower, though this also decreases the chance of 

particle clusters in the laser focus. 
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 The 2D images of the photoelectron emission from AuNPs as a function of size and peak 

intensity is shown in Figure 4.19.  These integrated images are again showing the focal volume 

averaged distribution and the momentum-space equivalent of the high-energy cutoff coming from 

the peak laser intensity is clearly seen increasing as a function of size and intensity.  The AuNP 

sizes for rows a-c) are 5nm, 30nm, and 70nm, respectively.  Each row shows a constant AuNP 

size with an increasing intensity while a vertical column portrays a constant intensity but changing 

diameter.  As λ >> R for these AuNP sizes, the photoelectron spectra are symmetric about the 

polarization and propagation axis.  Signatures of the characteristic elongation along the 

polarization axis is also seen. 

 To look at single-intensity spectra, each scan can again be ‘binned’ according to its 

respective hit histogram.  Figure 4.20 shows a typical ‘binned’ photoelectron spectra as a function 

of the number of electrons per laser shot.  Here, 120nm AuNP at 8.3 x 1012 W/cm2 are shown in 

Figure 4.18 Hit histograms of AuNPs. a) Size-dependent hit histogram showing the number 

of electrons detected per laser shot, as a function of AuNP size. Notice the increase of the 

maximum number of electrons with increasing size. 120nm (red) was multiplied by two for better 

contrast. Intensity = 8.3 x 1012 W/cm2.  b) Hit histogram of 5nm AuNPs as a function of peak 

intensity. The maximum total photoelectron emission increases as a function of peak laser 

intensity. Io= 8.3 x 1012 W/cm2. 

a) 
b) 
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‘bins’ a-c) and compared to the integrated spectra, d).   The lack of signal in the center of c) is the 

result of detector saturation where a large density of photoelectrons saturated the MCP and reduced 

its detection efficiency nearly to zero.  A ‘hole’ is not seen in d) as it is masked by the fact it is the 

sum of all the ‘bins’, i.e. integrated.  The different intensity contributions in the ‘binned’ data 

clearly show the evolution of the angular and energy distribution of these spectra.  The electron 

Figure 4.19     Collection of AuNP integrated VMI images as a function of size and laser 

intensity.  Units of momentum (a.u.) are shown.  Io = 8.3 x 1012 W/cm2. Horizontal rows are 

same nanoparticle diameter with increasing intensity a) 5nm AuNP  b) 30nm AuNP            

c) 70nm AuNP            Color bar in log scale. 
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radial energy distribution is obtained by angular integration over a 30° emission cone along the 

laser polarization axis for VMI spectra, such as those seen in Figure 4.19 and Figure 4.20.  Plotting 

the radial distribution of the ‘binned’ versus integrated spectra in Figure 4.21 for AuNPs as a 

function of size allows for the comparison of their respective cutoff energy and energy profiles.  

These radial distribution plots show how near-single intensity properties of the AuNPs can be 

extracted from a single run. 

Figure 4.20 ‘Binned’ VMI images from 120nm AuNP at 8.3 x 1012 W/cm2.  a) 20-50 

electrons/shot b) 250-300 c) 600-800 d) 13-800 (integrated image).  ‘Binned’ images a-c) are 

contrasted to integrated image d) to show the contributions from different intensity regions 

within the focus.  Color bar in log scale. Color bar for d) seen to its immediate right. Hole in c) 

due to detector saturation. 

Figure 4.21 Size-dependent ‘binned’ radial distribution.  Colored lines indicate the radial 

distribution for that particular ‘bin’ (number of electrons per laser shot) as referenced to the 

background.  Red dashed spectra are the integrated distribution. Blue line indicates a small 

(relative to green) ‘bin’ while green indicates the largest possible ‘bin’. Data was smoothed for 

better comparison.    Peak laser intensity = 8.3 x 1012 W/cm2. 
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 Comparing the scaled radial distributions for the photoelectrons from SiO2 and Au 

nanoparticles of the same size 

shown in Figure 4.22, one can see 

that the electrons emitted from 

AuNP are considerably more 

energetic. The photoelectron 

spectrum from AuNPs extend 

much beyond the cutoff value 

observed for SiO2 particles. To 

quantify this huge energy 

enhancement and to shed light on 

the mechanisms behind it, the 

cutoff values measured for both 

materials as a function of nanoparticle size are systematically compared in the next section. 

 

 4.3.2 Photoelectron cutoffs 

The gold nanoparticle data already shown has alluded to the fact that these AuNP samples 

emit considerably more photoelectrons and have much higher cutoff energies when compared to 

SiO2.  Comparing the hit histograms for AuNPs and silica (Figure 4.9 and Figure 4.18) at similar 

peak intensities, an 80nm SiO2 particle emits no more than 200 electrons per shot while a 70nm 

AuNP has a maximum of almost 500 electrons.  A cursory glance at the effective ionization 

potential is 9eV and 9.2ev for silica molecules and gold atoms, respectively.  However, metal 

Figure 4.22     Radial distribution of 120nm AuNP and 

120nm SiO2 at similar intensities around 8.5 x 1012 W/cm2.  

The AuNP cutoff is ~8 times larger than silica. AuNP data 

and corresponding background shifted in vertical direction 

for visual clarity. Data smoothed for visual clarity. 
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Figure 4.23 AuNP size vs cutoff energy.  Upper graph shows cutoff value in eV while 

the bottom graph is scaled to the ponderomotive energy, Up.  The normalization by Up 

gives a constant cutoff value as Up scales linearly with intensity. Io = 8.3 x 1012 W/cm2.  

200nm AuNP was measured between 2 x 1011 W/cm2 and 2.5 x 1012 W/cm2 as the VMI 

acceptance energy was insufficient to measure the cutoff at the higher intensities. 
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nanoparticles are a collection of thousands to billions of atoms and therefore, in the case of 

removing electrons from the particle, the work function of bulk gold instead of the ionization 

potential of an isolated atom is appropriate [88].  For SiO2 nanoparticles, the binding energy was 

found to be 8.5eV [161]. The work function of bulk gold is 5.1eV which allows AuNPs to be 

ionized much easier than for SiO2 nanoparticles and one explanation for the greater number of 

photoelectrons. 

The photoelectron cutoffs are plotted in Figure 4.23 for all the AuNP scans.  The cutoffs 

monotonically increase with particle size and laser intensity as also seen in the silica data.  The 

upper plot is the AuNP size vs cutoff plotted in electron volts.  The lower plot is normalized by               

the ponderomotive potential, Up, for direct cutoff comparison independent of intensity.  The cutoff 

energies of AuNPs are much higher than for silica, especially for larger sizes.  The largest silica 

cutoff was less than 200Up for a 750nm particle while a 70nm AuNP already has over 250Up.  The 

large cutoff values and detector saturation for the AuNPs limited the ability of the VMI to detect 

the fastest photoelectrons, especially for 120nm, 200nm, and 400nm as the acceptance energy of 

the VMI under the conditions of the experiment was insufficient to focus them.  One energy cutoff 

was measured for 120nm (see Figure 4.20) at 8.3 x 1012 W/cm2 while none were resolved for 

200nm or 400nm or 120nm at higher intensities.  Both panels of Figure 4.23 include cutoff values 

for 200nm which were measured in a separate, low-intensity scan between 2 x 1011 W/cm2 and 2.5 

x 1012 W/cm2. 

 A deeper look into the differences between SiO2 and AuNP is needed to begin to 

understand the cutoff values.  Section 4.2.1 outlines the trajectory of the cutoff photoelectrons in 

the local field of the nanoparticle and laser after nanoparticle ionization.  This local field includes 

the trapping potential, linear dielectric particle response (near-field), and space-charge effects.  
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Each of these fields are affected by the change in nanoparticle properties and thus, the overall 

cutoff values.  As seen in Figure 4.18, the maximum number of electrons emitted per laser shot 

increases for AuNP compared to SiO2, if particle size and laser intensity are kept constant.  The 

work function of gold (5.1 eV) is significantly lower than the binding energy of a SiO2 nanoparticle 

(8.5eV) which allows more electrons to be emitted and a larger trapping potential on the particle’s 

surface than for silica.  A greater number of electrons in the escaping free electron bunch from the 

AuNP also increases the space-charge effects of the electron-electron interaction and enhance the 

final cutoff energy.  However, a look at the effect of the near-field enhancement as a function of 

material and size also can shed light into the large cutoff disparity.   

 Figure 4.24 shows the cutoff values as a function of size plotted for AuNPs and SiO2, scaled 

to the ponderomotive 

potential, Up.  For all 

sizes, the cutoff energies 

for the AuNPs are much 

larger than for SiO2 of the 

same diameter, with the 

slope of the size-

dependence line also 

much steeper.  This 

reveals that a 

photoelectron emitted 

from a AuNP or silica 

particle experience 

Figure 4.24 Cutoff (Up) comparison between SiO2 and AuNP 

as a function of size. The scaled SiO2 cutoff is shown in the black 

stars and is found by squaring the ratio of the field enhancements 

from similar-sized AuNP and SiO2.  Io (AuNP) = 8.3 x 1012 W/cm2 

and Io (SiO2) = 8.8 x 1012 W/cm2.  
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extremely different field strengths.  As the electrons gain most of their momentum from the local 

field after ionization, understanding the individual local field contributions can provide some 

understanding.  Table 4.1 is a comparison of the cutoffs between AuNP and silica at similar sizes.  

The table also shows field enhancement factors, α, that are calculated by solving Mie’s solution to 

Maxwell’s equations for both AuNP and silica nanospheres of different sizes [87,89,90].  As the 

energy gain from the near-field is expected to depend on the intensity rather than the field strength, 

the field enhancement factor is squared to account for this.  This ratio of α2 thus indicates the ratio 

of local field intensities for AuNPs when compared to SiO2 under the same incident light intensity.  

Figure 4.24 also shows the scaled SiO2 energy cutoffs (black stars) which is found by multiplying 

the silica energy cutoff by the squared ratio of the field enhancements of AuNP and silica.  If only 

the near-field enhancement of the nanoparticles played a role in determining photoelectron cutoffs, 

the scaled-cutoff values for SiO2 should overlap those of the AuNPs.  It could be seen that even 

though the SiO2 values scaled with α2 ratio now come much closer to the measured values for 

Table 4.1     Ratio of Cutoffs (Up) and field enhancements (α) between AuNP and SiO2 of similar 

size.  Calculation of field enhancement factor used relative permittivity of (-22.6 + 1.35i) and 2.12 

for AuNPs and SiO2, respectively. 

Nanoparticle/Size Cutoff 
(Up) 

Ratio Cutoff 
(AuNP/SiO2) 

Field Enhancement 
Factor (α) (

𝜶𝑨𝒖𝑵𝑷

  𝜶𝑺𝒊𝑶𝟐

)

𝟐

 

AuNP 30nm 138 3.7 3.3 4.6 

SiO2 20nm 37 1.54 

AuNP 70nm 275 5.7 3.5 4.9 

SiO2 80nm 48 1.58 

AuNP 120nm 478 8.4 4 6.14 

SiO2 120nm 57 1.6 

AuNP 200nm 678 11.1 4.7 7.55 

SiO2 200nm 61 1.7 
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AuNPs, they do not perfectly coincide, and the slope of the AuNP curve is still steeper.  This most 

likely reflects different scaling of the charge interaction with size for both types of materials 

resulting from significantly larger number of emitted electrons for AuNPs. 

 A recent study by Rupp, et al [26] looked at the electron emission from isolated 

nanoparticles as a function of different materials.  They showed that the permittivity and binding 

energy of the material were the main parameters that determine the material’s contribution to the 

electron acceleration process.  The relative permittivity of a material determines the dielectric 

response (near-field) to the incident field and is much different for silica and AuNPs because of 

the complex index of refraction for gold.  This gives the real part of the relative permittivity for 

AuNPs to have a large, negative value and subsequently a bigger field enhancement versus silica.  

The binding energy influences the electron tunneling process, especially the ‘birth’ time at the 

tunnel exit.  This dictates the 

trajectory of the electron and 

its overall propagation 

pathway.  A lower binding 

energy directly effects the 

ionization rate, leading to 

more photoelectrons and a 

larger space-charge effect, but 

this same situation can also 

lead to a faster ‘quenching’ of 

the ionization rate by the large 

trapping potential of the 

Figure 4.25 Scaled cutoff energies (simulation) for 

different nanoparticle materials of approximately the 

same size. Here α2I is the dielectrically enhanced surface 

intensity.  Dashed lines are with the mean field turned ‘off’ 

meaning no charge interactions between electrons or ions. 

Solid lines include all charge interactions. Figure taken 

from [26]. 
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surface ions.  Figure 4.25 plots the scaled cutoff energies for different nanoparticles of 

approximately the same size to compare the contributions from the mean field.  The dashed lines 

show the cutoff energies when the mean field is turned ‘off’ meaning that there are no charge 

interactions between any photoelectrons or ions.  This leaves only the contribution from the field 

enhancement, α, which is normalized by the dielectrically enhanced surface intensity, α2I.  With 

no charge interaction, very little difference in cutoff energies is seen.  The solid lines show the full 

simulation with the charge interaction ‘on’ and shows the significant contribution it can have.  

Each material has a different binding energy, and therefore the increase in the scaled-cutoff is 

dependent on this property. 

 As mentioned, the binding energy for AuNPs (gold work function) is considerable lower 

than for silica particles.  The hit histograms showed that for the same size and intensity, more 

photoelectrons from gold are 

detected.  This can enhance the 

cutoff because of charge 

interactions, specifically electron-

electron.  The maximum number 

of detected electrons per laser shot 

for both AuNPs and SiO2 is shown 

in Figure 4.26.  As discussed 

before, this plot does not show the 

real electron yields as the 

probability to detect an electron is 

determined by multiple factors, 

Figure 4.26 Maximum number of detected 

electrons per laser shot for AuNPs and SiO2 as a 

function of diameter.  Intensity for SiO2 = 8.8 x 1012 

W/cm2 and AuNP = 8.3 x 1012 W/cm2. 
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including the MCP (~40-50% detection efficiency), single-shot camera response, and detector 

saturation (see Figure 4.20c), especially at large sizes and high intensities.  Theoretically, in our 

parameter range, the total yield of emitted electrons is expected to be roughly linear as a function 

of both size and laser intensity, but the slopes for different materials might be largely different [61].  

Here the number of emitted electrons for AuNPs increases much more rapidly than for silica, thus 

the charge interaction for large AuNP will be greater than for an equivalent sized silica.  The scaled 

SiO2 energy cutoffs (black stars) in Figure 4.24 show an increasing separation to the measured 

values for gold for larger particle sizes, which likely indicates the increasing contribution of the 

charge interactions for large AuNPs. 

 

 4.4 Photoelectron spectra from resonant gold nanoparticles 

The ability to synthesize and manipulate nanoparticles, especially metallic particles, leads 

to many useful novel properties [36].  Of particular interest are core-shell nanoparticles consisting 

of two different materials that are grown in layers, such as a dielectric (silica) core with a shell of 

gold on the surface.  These nanoshells have unique, geometrically tunable optical resonances, 

dictated by the collective electronic motion, or 

plasmon resonance.  Compared to solid metallic 

nanoparticles, the optical resonance of a 

nanoshell is extraordinarily sensitive to the inner 

and outer dimensions of the metallic 

shell [91,92].  This attractive property has the 

advantage of tuning the plasmon resonance to 

any optical wavelength, for example that of the 

Figure 4.27 Absorbance spectra 

of 800nm resonant gold nanoshells. 

Spectra courtesy of Nanocomposix, 

Inc. 
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laser light from a Ti:Sapphire laser at 800nm.  To study the role of resonant optical excitations in 

strong-field interactions with nanosystems, experiments on laser-induced photoemission from 

such Au shell – silica core nanoparticles tuned to have a resonant absorption peak at ~ 800 nm 

have been performed. 

Commercial nanoshells (Nanocomposix, Inc) were purchased consisting of a 120nm 

diameter silica core and a 16nm thick gold shell for a total diameter of 152nm.  The absorption of 

these particles peaks at 800nm, as seen in Figure 4.27 which gives the colloid a beautiful blue 

tinge.  Solid spherical AuNPs of the same diameter do not have a defined resonance peak and have 

a broad absorption spectrum in the near-IR region.  All the previous photoelectron spectra with 

nanoparticles have used off-resonant incident wavelengths but the unique nanoshell geometry 

allows a particle with similar shape and outer composition to simultaneously be resonant with the 

NIR Ti:Sapphire laser.  Solid spherical AuNPs essentially have a fixed frequency resonance with 

only relatively small shifts to longer wavelengths with increasing size.  Nanoshells, on the other 

hand, are an example of plasmon hybridization where the overall resonance is based on the 

interaction of plasmons (Figure 4.28) supported 

by basic elementary shapes, such as a sphere and 

a cavity [93].  The tuning of the ratio between the 

geometric dimensions, coupled to their overall 

size, allows for precise tuning of the optical 

absorbance. 

Figure 4.28 Example of plasmon 

hybridization for a nanoshell. 

Figure taken from [93]. 
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800nm resonant gold 

nanoshells were studied using the 

same 25fs Ti:Sapphire laser pulses 

with a central wavelength at 780nm 

as in the previous sections, but with 

intensities ranging from 5.5 x 1011 

W/cm2 to 2.2 x 1012 W/cm2.  Like in 

the experiments on 200nm AuNPs 

described in the previous section, 

the choice of these comparatively 

low intensities was dictated by large electron yields and cutoff energies.  Such measurements at 

higher intensities would suffer from saturation effects and insufficient energy acceptance of the 

VMI spectrometer.  The photoelectron spectra were measured to assess the role that a plasmon 

resonance may have in the overall nanoparticle electron emission and final cutoff energy, 

compared to its solid gold counterpart.  The histogram in Figure 4.29 shows the number of detected 

electrons per laser shot as a function of laser intensity.  An intensity scan was done up to 8.8 x 1012 

W/cm2 but the cutoff electron energies were beyond the acceptance energy of the VMI.  The 

corresponding integrated VMI images as a function of intensity are shown in Figure 4.31.  Electron 

emission is isotropic at these relatively low intensities and do not show the elongation along the 

polarization axis as seen in SiO2 and AuNPs at higher intensities.  No propagation effects are 

noticed as the overall diameter (152nm) is still small compared to the wavelength of light. 

Figure 4.29     Hit histogram of gold nanoshell 

particles. Total diameter = 152nm; Gold shell 

thickness = 16nm; Silica core = 120nm. Io = 5.5 

x 1011 W/cm2. 
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Scaling these integrated VMI images to energy units gives the radial distribution shown in 

Figure 4.30.  The background contribution at these low intensities is minimal and therefore not 

plotted in this figure.  The energy cutoffs are plotted in Figure 4.32 as a function of peak laser 

intensity, in both energy units 

(eV) and in units of the 

ponderomotive potential, Up.  The 

laser intensity decreases by a 

factor of four, while the cutoff 

only decreases by a factor of two, 

indicating a qualitative difference 

from what has been seen in all the 

previous nanoparticle data 

presented.  The energy cutoffs are 

Figure 4.31 Integrated VMI photoelectron spectra from 800nm resonant gold 

nanoshells. Electron emission is isotropic at these intensities. Io = 5.5 x 1011 W/cm2.   

Figure 4.30     Radial distribution of gold nanoshells 

as a function of intensity. Colored arrows indicate 

where the energy cutoff was measured using the 

‘background matching’ method.  The background 

contribution was excluded in this figure for the sake 

of readability. Io = 5.5 x 1011 W/cm2 
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again scaled by Up as it is linear with intensity and therefore an intuitive way to compare 

nanoparticle cutoffs, independent of the incident intensity.  The cutoffs for silica and AuNPs show 

an approximately constant cutoff for a specific diameter, regardless of the laser intensity, as shown 

in Figure 4.33.  This figure shows a representative sample of nanoparticle cutoffs, scaled by Up, 

and exhibiting a cutoff value independent of intensity.  This is not the case, however, for the gold-

silica nanoshells as a non-constant cutoff in units of Up is measured as a function of intensity.  This 

Figure 4.32 Laser intensity vs nanoshell energy cutoff.  a) Cutoff plotted in energy units. 

b) Cutoff scaled by ponderomotive potential.  Notice the cutoff in Up is not constant in this 

intensity range. 

b) a) 

Figure 4.33 Representative sample of cutoff energy (Up) vs laser intensity.  All the SiO2 

and AuNP cutoff show a constant cutoff value when scaled by Up.  In contrast, the nanoshell 

cutoff does not stay constant with laser intensity. Note different y-axis (cutoff) ranges. 
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is an indication that another mechanism is influencing the photoelectron emission for the resonant 

particles under our experimental conditions, resulting in deviations from the usual linear 

ponderomotive scaling seen for pure SiO2 and AuNPs. 

 Figure 4.34 compares the cutoff values, in units of Up, of the nanoshells to the solid AuNPs.  

The diameter of the spherical gold nanoshells used here is approximately 150nm with a 16nm thick 

gold shell.  Even though we did not perform the measurement for 150 nm pure AuNPs, we can 

roughly extrapolate its approximate cutoff value from the measured nearly-linear size dependence.  

At 2.2 x 1012 W/cm2, the cutoff value for nanoshell particles is comparable to where a cutoff for 

150nm pure AuNP would reside.  However, the values obtained for lower intensities expressed in 

units of Up are significantly higher. This is an indication that a new mechanism in the photoelectron 

spectrum formation plays 

an important role only at 

low intensities. 

Because the gold-

shell thickness is similar to 

the skin depth (15-25nm) 

for AuNPs [11,160], it is 

reasonable to assume that 

the total number of emitted 

photoelectrons for a pure 

AuNP and a gold nanoshell 

of the same diameter 

should be comparable.  

Figure 4.34 Cutoff energy (Up) for pure AuNPs 

(colored squares) and nanoshells (stars).  At the lowest 

intensity, the cutoff for the nanoshells dramatically 

increases while at four times this value, the cutoff matches 

where a pure AuNP of the same size would predicted to 

be. I0 = 5.5 x 1011 W/cm2. 
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Figure 4.35 shows histograms of 200nm AuNP and the 150nm gold nanoshells at low intensities.  

The maximum number of detected electrons per laser shot is similar when looking at comparable 

intensities.  Thus, the cutoff enhancement difference because of charge interaction must be 

minimal between the pure AuNP and the gold-nanoshell as this depends on the total number of 

photoelectrons and photoions created. 

 As seen in the comparison between the silica and AuNP cutoffs, the field enhancement 

factor, α, plays a significant role in determining the final cutoff energy.  Scaling the silica data 

using this field enhancement factor showed how important this material- and size-dependent factor 

is in influencing the photoelectron spectra.  Though the nanoshell surface is gold, the layered 

geometry, coupled with a dielectric core, greatly changes the overall relative permittivity of the 

nanoparticle for a given wavelength.  Mie theory is the solution of Maxwell’s equations in 

spherical coordinates with the appropriate boundary conditions and only relies on inputting the 

dielectric function of the particle and its surrounding medium to accurately calculate the 

absorbance spectra.  For a nanoshell, the boundary conditions are specified so that there is an 

Nanoshell 

Figure 4.35     Comparison of histograms for 200nm AuNP (left) and 150nm gold 

nanoshell (right). The overall maximum number of detected electrons per laser shot for 

similar intensities are comparable. Io (nanoshell) = 5.5 x 1011 W/cm2. 
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additional interface, with the appropriate dielectric constant, ε(ω,r).  This is responsible for 

changes in the electronic and optical properties as a function of wavelength and size [94]. 

While highly dependent on exact dimensions, material, and excitation wavelength, 

nanoshells have been shown to have large field enhancements for resonant conditions, much 

greater than solid AuNPs alone  [91,94,95].  The nanoshell particles used here have maximum 

light absorbance at 800nm (see the spectrum in Figure 4.27), close to the central laser wavelength.  

The exact decomposition of different factors contributing to the observed cutoff enhancement for 

resonant nanoshells requires a detailed theoretical analysis beyond the scope of this work.  It is 

reasonable, though, to assume that the plasmonically-enhanced light absorption is the main 

contributing factor to the significant wavelength-dependent increase of the near-field 

enhancement. 

The natural question here is why the resonant response plays a role only at the lowest 

intensities studied, whereas at sufficiently high intensities, the nanoshell behaves similar to a solid 

AuNP of the same size.  While a rigorous answer to this question again requires detailed theoretical 

modelling, a plausible qualitative explanation might be suggested based on the data shown in this 

section. While the nanoshell structures can be efficiently designed to meet the resonant condition 

for light absorption (e.g., at 800 nm, as seen in Figure 4.27), this response does not necessarily 

remain the same in the presence of a strong external field. One possible (though not the only) way 

in which the latter can modify the dielectric function of the nanoparticle is “inner” ionization by 

creating additional free charges. As described above, a rough estimate of the skin depth for gold 

at NIR wavelengths yields in the range of 15-25nm [11,160]. This means that in nanoshell with a 

16nm gold shell, significant inner ionization might occur near the Au-SiO2 interface, significantly 

changing the optical properties of the particle and “destroying” a resonance at high intensities. It 
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should be noted that the hit histograms shown in Figure 4.35 cannot be used as a measure of this 

effect since they represent only the electrons emitted in the continuum, i.e., “outer” and not “inner” 

ionization. Even though this simplified picture is only one possible explanation, which could not 

be rigorously verified in the framework of this thesis, the data in Figure 4.34 and Figure 4.35 

strongly suggest that at high intensities the resonant properties of the core-shell nanoparticles are 

significantly altered. 

Following the discussion of photoelectron spectra, their formation mechanisms and cutoff 

energies for different materials presented above, one general remark should be made. As can be 

seen from Figure 4.24, Figure 4.32, and Figure 4.34, the cutoff values expressed in units of Up 

yield extremely high values for all nanoparticles, approaching 1000 Up for gold nanoshell particles 

at very low intensity. These results might be extremely misleading if one interprets them in usual 

terms of strong-field physics, where Up is often considered as a direct measure of the electron 

acceleration by the field (either just the driving laser field for atoms or combined laser and near-

field for nanosystems). It should be clearly understood that the lowest intensities used in this work 

clearly correspond to the multiphoton regime, where such view is definitely not appropriate. 

Indeed, at 1012 W/cm2 at 800 nm, Up (0.06eV) is a tiny fraction of the photon energy (1.55eV) and 

just the second-order peak for ATI of atoms would mean the energy of ~ 25 -50 Up, in drastic 

disagreement with the predictions of a simple-man model derived for much higher intensities. 

Therefore, the representation of the cutoff energies in units of Up discussed here for low-intensity 

regime should be considered merely as a practical tool to visualize the linearity of the intensity 

dependence and not as a basis for simplified model pictures. 
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Chapter 5 - Real-time X-ray Imaging of Femtosecond Nanoplasma 

Dynamics 

- “Progress is made by trial and failure; the failures are generally a hundred times 

more numerous than the successes; yet they are usually left unchronicled.” 

- William Ramsay 

 

Subjected to intense femtosecond laser pulses, solid-density materials exhibit ultrafast 

collective and collisional electron dynamics, transform into highly ionized plasmas, and explode 

on the sub-picosecond timescale [96].  As shown in the previous chapter, the utilization of isolated, 

gas-phase nanoparticles offers a fundamental path to infer the physics of laser-driven many-

particle excitation and relaxation processes. 

As seen in chapter 4, photoelectron spectroscopy of IR driven nanoparticles begins to 

become difficult already at mid- to high 1013 W/cm2 because of the large electron kinetic energy 

coupled to the total amount of electrons per interaction.  Other methods such as ion imaging and 

spectroscopy [97] and electron stereo TOF [98] do offer some advantages but are still using final 

photo-ion or electron emission to infer the interaction dynamics, where effects such as space-

charge interactions can play a large role.  Thus, laser-driven processes in nanosystems at higher 

intensities, which showcase an even more extreme case of light-matter interaction, are difficult to 

access experimentally. 

The last part of my thesis describes an experiment designed to explore the ultrafast 

dynamics in isolated silica nanoparticles driven by very intense NIR laser radiation (~1015 W/cm2) 

using time-resolved, single-particle x-ray scattering as a probe.  These experiments became 

feasible with the advent of x-ray free electron lasers (XFELs). As discussed in Section 2.6.1, 
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XFELs deliver intense x-ray pulses of femtosecond duration that allow real-time, single-shot, x-

ray imaging using small-angle scattering.  This is a new way to characterize strong-field driven 

nanosystems where the femtosecond dynamics are imprinted in the x-ray scattering images that 

are sensitive to the changes in the particle’s evolving electron density.  The x-ray probe can give 

a ‘snapshot’ of the local electronic density of the nanoparticle at a given time delay after the initial 

IR pulse.  This photon-based technique, which does not rely on final ion or electron spectra, is not 

influenced by any post-interaction effects and thus enables direct measurements of the real-time 

processes.  Previous work has successfully demonstrated the feasibility of this novel approach in 

nanoscale samples – Xe clusters of 60nm diameter [27].  There, xenon clusters were subjected to 

an intense NIR pulse and then imaged by x-ray scattering after a set time delay.  However, as 

discussed in Section 1.4.3, the interpretation of the results of this impressive proof-of-principles 

experiment was hindered by a rather broad size distribution of the Xe cluster beam. Moreover, the 

time resolution of this study was limited to 200 fs by the inherent jitter between the SASE LCLS 

pulse and the synchronized NIR laser. 

In this work, a novel nanoparticle source described in Section 2.6.4 was applied to perform 

NIR pump / x-ray probe experiment on spherical 120 nm SiO2 nanoparticles with very narrow 

(±2%) size distribution.  The use of such a monodisperse sample ensures the delivery of a pristine 

and nearly identical nanoparticle for each individual laser interaction.  This significant 

improvement in size dispersity over the Xe cluster source allowed one to distinguish the diffraction 

fringe pattern evolving as a result of laser-nanoparticle interaction not effected by different initial 

sample sizes.  The use of an x-ray – optical cross-correlator for shot-to-shot correction of the arrival 

times of the x-ray and NIR pulses [154] enabled time-delays scans to improve the time- and length-

scale resolution of the experiment. 
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Any sample, either xenon or silica, will initially rapidly ionize in the presence of such large 

intensities (~1015 W/cm2), either through tunneling or over-the-barrier processes.  In nanoscale 

objects, electron recollision is a dominant mechanism, as shown in chapter four.  The large electron 

kinetic energy at such high intensities also drives subsequent electron impact avalanching.  The 

result of this nanoparticle interaction leads to the formation of a nanoplasma at the surface 

consisting of the ‘free’ photoelectrons and corresponding photo-ions.  The large Coulomb potential 

at the surface efficiently traps and confines most of the electrons to the surface.  At this point, the 

particle can be seen as a quasi-metal as it consists of ‘free’ electrons on the surface and the initial 

nanoparticle properties are not as important.  The Coulomb repulsion of the surface ions, coupled 

with the continuing electron impact avalanching, creates and propagates the plasma.  This entire 

process is initiated and driven by the IR pulse. 

 The ability to perform x-ray single shot imaging also gives the advantage of 

characterizing the nanoparticle sample for each interaction if no pump laser is used [27].  Though 

the silica nanoparticles have a small size dispersity, it will still contain a small number of non-

spherical particles along with a range of ±2% in diameter.  As discussed in section 2.3, there is 

also a finite probability that the nanoparticle source (FANS) will also produce cluster/s of 

individual nanoparticles.  In nanoparticle photoelectron experiments, there is no direct 

measurement of the shot-by-shot size and dimension of the sample and care must be taken to 

prevent nanoparticle clustering (by dilution of the sample).  In contrast, the use of x-ray scattering 

gives direct access to the physical size and shape of each nanoparticle being imaged by its unique 

diffraction pattern.  As the scattering image of a spherical nanoparticle is very different than that 

of a cluster, the diffraction pattern can be used as a powerful tool for sorting data.  This sensitivity 
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is seen in Figure 5.1 where a) is a single, spherical 120nm SiO2 nanoparticle with its characteristics 

hard-sphere diffraction pattern while a non-spherical ellipsoid seen in b) shows a left/right 

asymmetry.  The interference pattern in c) is most likely the result of a twin, i.e., two attached 

nanoparticles that were simultaneously imaged in the laser focus while d) is an aggregate (cluster) 

of at least a few nanoparticles.  A monodisperse nanoparticle sample coupled with a robust method 

of sorting monomer scattering images is the key to gathering sufficient statistics for each time step 

in this pump/probe experiment. 

To elucidate the time-dependent laser-driven nanoparticle dynamics, the SiO2 

nanoparticles were irradiated by ~50 fs, 1015 W/cm2 pulses from the LCLS NIR laser followed by 

~60 fs, ~ 1017 W/cm2 LCLS pulses at 800 eV photon energy (wavelength 1.55 nm). In order to 

produce a sequence of snapshots revealing of the state of the nanoparticle as a function of time, a 

series of delay scans were performed.  The exact position of the time-overlap between the NIR and 

x-ray pulses was determined using the ionic spectra from N2 fragmentation as described in [159]. 

Figure 5.1 Single-shot x-ray scattering images of silica nanoparticles. The x-ray is 

sensitive to nanoparticle size and shape, along with clustering. a) Single 120nm SiO2 

particle b) Non-spherical ellipsoid nanoparticle c) Interference pattern from two 

simultaneous, offset nanoparticles in x-ray focus d) Diffraction from a cluster of silica 

nanoparticles.                    All scattering images are x-ray only. 
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Figure 5.2 X-ray scattering images of 120nm SiO2 for various delay times between 

the IR pump and x-ray probe pulses. a) Unpumped image where x-ray pulse arrived 

first. b) IR and x-ray pulse arrive simultaneously c) IR pulse arrived 250fs before x-

ray and have dramatically changed the scattering signal.  d) At much longer times, 

the scattering signal cannot be resolved enough to extract information about the 

scatterer Positive delays correspond to x-ray pulse arrive first while negative means 

that NIR pulse arrives earlier. Blank stripe is result of pnCCD detector being opened 

to allow laser pulses to pass.  Images courtesy of Christian Peltz. 
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After this calibration, shot-to-shot variations of the relative NIR / x-ray arrival times were 

measured and corrected for by the cross-correlator setup described in [146] such that the temporal 

resolution of the experiment was mainly limited by both pulse durations. 

Figure 5.2 displays three representative x-ray scattering images at different time-delay 

steps showcasing the ability of the scattering images to resolve local nanoparticle changes.  

Positive delays indicate that the x-ray pulse preceded the NIR pulse while negative delays have 

the NIR pulse initiating the dynamics before being probed by the x-ray.  Here, a) is an example of 

a typical hard-sphere diffraction pattern from a single 120nm SiO2 nanoparticle that has not 

interacted with the NIR pulse and therefore is ‘unpumped’.  Next, b) shows both the IR and x-ray 

pulse arriving simultaneously at time t=0 while c) has the NIR pulse interacting with the 

nanoparticle 250fs before being imaged by the x-ray, therefore a ‘pumped’ particle.  The first two 

images look similar where the NIR pulse either has not interacted or has not been given sufficient 

time to initiate any dynamics.  Given sufficient time after the NIR pulse, the scattering image 

displays a very different picture of the nanoparticle. 

Analysis of the full delay scan is ongoing to fully understand the creation and evolution of 

the IR interaction, with particular focus on the delay region between t=0 to -250fs.  The fine-step 

time delays in this region along with the corrections from the cross-correlator data will provide 

detailed information of the nanoplasma formation and propagation through the nanoparticle with 

high temporal resolution. Figure 5.2d) shows a scattering image at the even longer delay of 380fs 

after the initial IR pulse.  Here, there are no discernible features to allow a reliable determination 

of the scattering body that produced this image.  This gives a limit on the length of time that the 

dynamics of the nanoparticle can be followed. 
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The data shown in Figure 5.2 are plotted as a radial integral of each scattering image.  

Figure 5.3 shows a log-normal scattering plot of the scattering wave vector, q, vs total signal 

Figure 5.3     Radial integral of time-delayed scattering images plotted vs q, 

the scattering wave vector. The experimental data (blue spectra) and best fit 

curve (red) are both plotted. Here, a) is unpumped, b) is IR and x-ray overlap 

and c) is pumped by IR at t=250fs. d) The loss of sufficient detected 

scattering signal at long delays limits the useful information extracted.     

Again, positive delays correspond to x-ray first and negative delays is IR 

first. Plotted as lognormal with vertical lines showing data where best fit 

parameters are taken from. 
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intensity (determined from the radial integral of the corresponding panels of Figure 5.2).  This 

allows for the fringe spacing to be determined as well as the characteristic slope for each delay.  

As the silica nanoparticles are well characterized in size, the fringe spacing is determined by the 

wavelength of the x-ray and the distance from the scattering body to the detector.  The radial 

integral of a scattering image, at a particular time-delay, can immediately be used to determine the 

fringe spacing and how fast the scattering signal decreases (slope).  X-ray scattering is sensitive to 

any laser-induced change in the nanoparticle that will be seen in the fringe spacing and/or the slope 

of the log-normal scattering intensity.  The experimental data (blue spectra) is overlapped with a 

best fit curve (red) using a sharpened Fermi distribution [99]. 

Figure 5.3d) does not show enough features to give information on the scattering entity.  

This image and corresponding radial integral most likely come from a pumped monomer, but there 

is also a chance it comes from an aggregate.  At this long time-delay, the pumped nanoparticle no 

longer can be quantitatively measured and thus gives an upper time limit to the tracking of the 

dynamics of the system. 

The most noticeable difference in the time-dependent scattering images is the loss the 

higher order diffraction fringes at large negative delays.  This is seen in the radial integral where 

the slope becomes steeper as compared to the unpumped or overlap-region spectra.  After the initial 

NIR interaction, rapid ionization and subsequent trapping of the electrons leads to the formation 

of a plasma at the nanoparticle surface consisting of the ‘free’ photoelectrons and corresponding 

photo-ions.  This “nanoplamsa” begins to expand and dilute the outer electron density.  This is the 

so-called surface softening where the electron density profile at the particle surface spreads as the 

plasma wave propagates.  The x-ray scattering image are sensitive to this change in electron density 

and can be used to trace the evolution of the expanding plasma as a function of time. 
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Figure 5.4     Nanoplasma evolution in xenon nanoclusters as function of time 

after initial IR pulse. a-d) show the respective density profile of the cluster at the 

delay time indicated.  As the nanoplasma propagates, more of the inner solid core 

is diluted by the expansion of the cluster as seen in b-d).  The corresponding x-ray 

scattering images show the evidence of the changing electronic density. Figure 

taken from [28]. 
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These dynamics could be better understood by considering the nanoplasma evolution reconstructed 

for laser-driven Xe nanoclusters in [28].  Figure 5.4 illustrates the nanoplasma formation as a 

function of time after the initial IR pulse.  The assumed density profile models the particle as a 

hard sphere before the interaction occurs.  For positive time delays (same as negative delays for 

my work), the structural dynamics are beginning to be seen.  As previously said, the initial 

ionization induces a surface plasma to form consisting of the trapped photoelectrons and surface 

ions.  The ions begin to Coulomb explode, therefore driving the expansion outward and diluting 

the outer cluster density profile but keeping much of the core intact.  With increasing time, the 

evolution of the nanoplasma is seen in the decreasing size of the solid core density. 

X-ray scattering provides a novel approach to studying the ultrafast dynamics in isolated 

nanoparticles driven by intense laser radiation.  The ability to track and resolve, both on the 

femtosecond- and nanometer scale, provide a powerful tool for studies of the interaction of intense 

NIR pulses with silica nanoparticles at high intensities.  The formation and propagation of a 

nanoplasma created on the nanoparticle was observed in the time-resolved x-ray scattering images. 

The loss of higher order diffraction rings visualizes how the expanding nanoplasma dilutes the 

surface electron density at large time delays after the NIR pulse where surface softening plays a 

dominant role.  The use of a well-characterized sample coupled with x-ray imaging gives direct 

access to the spatiotemporal dynamical evolution of the IR-nanoparticle interaction.  A more 

detailed analysis of the data from 0-250 fs delay region is underway and gives excellent prospects 

to infer the light-driven dynamics in SiO2 nanoparticles on a sub-100 fs time scale. 
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Chapter 6 - Conclusion and Outlook 

- “What the hell is this?” 

- Artem Rudenko 

 

 6.1 Conclusion 

The work presented in this thesis focused on several intriguing aspects of nanoscience and 

nanotechnology, with the common theme of nanoparticle interactions.  In the first part presented 

in Chapter 3, the solubility properties of gold nanoparticles have been studied.  Small nanoparticles 

that contain only a few thousand atoms, mostly residing on the surface, provide a transition from 

molecules to a small(ish) collection of atoms.  They were shown to have solution-like properties 

such as thermally reversible, temperature-dependent solubility and aggregation phenomena that 

are behaviors common to many molecular and ionic solutions.  The extension of solution theory 

to nanoparticle systems was done to extract thermodynamic quantities such as the enthalpy of 

dissolution from the experimental data.  Measured thermodynamic values showed reasonable 

agreement to a phenomenological model, though more comprehensive theoretical work is needed.  

This experiment can be repeated for numerous nanoparticle systems to begin to develop an 

intuitive understanding of the solution properties of nanoparticles and the role multiple parameters 

play.  Preliminary results from a system of 3nm spherical ZnS nanoparticles already have shown 

unusual behavior where the solubility of the system increases with decreasing temperature, 

opposite the trend seen in gold nanoparticles.  

In the second, most extensive part presented in Chapter 4, photoelectron spectroscopy was 

used to investigate the ultrafast dynamics in isolated, gas-phase nanoparticle driven by intense, 

femtosecond lasers.  These experiments are based on the optimized nanoparticle injector design 
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and new sample purification procedure to avoid contamination and excessive aggregation of 

metallic nanoparticles.  The highest photoelectron energies (“cutoffs”) were measured from silica, 

gold, and gold-shell/silica core nanoparticles as a function of particle size and laser intensity.  The 

cutoff values found were dependent on nanoparticle composition and size, as well as laser intensity 

and pulse duration.  Gold nanoparticles exhibited an enhanced energy cutoff when compared to 

silica.  This was attributed to the considerably larger near-field enhancement combined with 

stronger charge-interaction effects resulting from greater ionization yields, which, in turn, is due 

to the smaller electron binding energy for AuNPs as compared to SiO2.  The resonant core-shell 

nanoparticles manifested an even larger enhancement but only at low intensities, which is 

tentatively explained by the importance of resonant absorption and deterioration of the resonant 

conditions at higher intensities.  All the nanoparticles cutoff values were found to be much larger 

than those from atoms under similar conditions.  For large silica nanoparticles (above 200nm in 

diameter), the effects of multiple rescattering from a many-cycle (25fs) laser pulse are shown to 

increase the cutoff over a few-cycle (4fs) pulse at the same intensity. 

Finally, to probe a nanoparticle driven at a much higher laser intensity, an alternative 

technique to photoelectron spectroscopy was needed.  X-ray scattering provided a way to probe 

the femtosecond- and nanometer dynamics of a hard-driven isolated, gas-phase nanoparticle 

described in Chapter 5.  Using femtosecond x-ray pulses from an FEL, single-shot x-ray scattering 

was a much more versatile probe for the high-intensity regime than photoelectron spectroscopy.  

The formation and evolution of a nanoplasma initiated by the intense NIR pulse was tracked using 

delay scans in a NIR pump / x-ray probe technique.  The use of well-characterized nanoparticles 

injected by a source adapted, designed and built by me, coupled with the single-shot x-ray 

scattering, allowed for this precision.  Analysis of this data is ongoing but promising.  The effects 
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of surface softening on the laser-driven nanoparticle was clearly seen while other, more discrete 

phenomena are being investigated. 

 6.2 Outlook 

The use of XFEL light to probe IR driven dynamics in nanoparticles is now well-

established.  Future experiments include the use of FLASH at DESY (German Electron 

Synchrotron) which is another FEL located in Hamburg, Germany.  Though similar to LCLS, 

FLASH has 1/12th repetition rate and longer wavelengths (XUV).  For imaging nanoparticles, the 

longer wavelength means more scattering per unit area and a larger diffraction fringe spacing, as 

seen in Figure 6.1.  The pnCCD detectors only have a finite acceptance angle which means that 

the shorter the 

wavelength, the more 

fringes will be seen, 

but the faster the signal 

will fall.  At FLASH, 

the scattering signal 

will be able to be seen 

for longer delay scans 

and with increased 

signal compared to 

LCLS. 

Upcoming 

work at FLASH 

consists of looking at 

Figure 6.1 Calculated scattering signal from 120nm SiO2 

nanoparticle from LCLS (red) and FLASH (blue).  The longer 

wavelength at FLASH causes larger fringe spacing but less loss 

of signal over the same solid angle compared to LCLS.  The 

dotted lines show the decrease in signal strength after a particle 

has been pumped by an IR pulse. 
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the ultrafast dynamics of NIR and / or visible light-driven metallic nanoparticles.  As seen in the 

photoelectron spectroscopy experiments reported in Chapter 4, the electron recollision and near-

field enhancements of metallic particles are much different than for silica.  A comparison of these 

fundamentally different types of nanoparticles will study the impacts of material type, material 

density, ion mass, and nanoplasma formation. 

As metallic nanoparticles can support surface plasmon resonances, time-resolved x-ray (or 

XUV) scattering is a unique way to investigate how a nanoparticle driven at its plasmon resonance 

frequency will influence the overall ultrafast dynamics.  The second harmonic of the 800nm IR 

laser overlaps the plasmon resonance for 60nm spherical silver nanoparticles.  Delay scans at 

optical wavelengths on and off the resonance will allow the influence of the plasmon on the overall 

nanoplasma formation and propagation.  This couples nicely to the work in Chapter 4 showing 

how driving a metallic nanoparticle at its plasmon resonant frequency can enhance electron 

cutoffs. 

Single-shot x-ray scattering can also be coupled with ion spectroscopy.  Each laser 

interaction can be tagged with the appropriate x-ray scattering image along with the corresponding 

ion spectra.  This dual-mode analysis can be beneficial for many different applications. In fact, ion 

spectra were recorded during the measurement described in Chapter 5; however, since the 

operation of the ion spectrometer was not given high priority during the beamtime, the data quality 

for nanoparticle runs was rather low. 

Future photoelectron spectroscopy experiments might receive a new boost from 

technological developments. Employing detectors with larger dynamic range (currently under 

development in several laboratories world-wide) will reduce the problems related to the saturation 

effects and allow one to extend the studies reported here to higher intensities, bridging the gap 
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towards the LCLS experiment. It would also significantly extend the range of materials and sizes, 

in particular the ability to make large, nearly NIR-wavelength scale metal particles experimentally 

accessible. Furthermore, if combined with the latest developments of tunable, intense, 

femtosecond laser sources at mid- and far-infrared wavelengths (already available at JRML / 

KSU), the study, control and “design” of electron emission patterns over a very broad energy range 

can be investigated.  The key parameter of the present photoelectron analyses, the ponderomotive 

potential, scales quadratically with the laser wavelength and can provide a crosslink to different 

aspects of the rapidly developing ultrafast nanoplasmonics. Finally, many of the results obtained 

in this work might be linked to the outcome of attosecond streaking experiments and simulations, 

revealing different aspects of near-field configuration and charge dynamics in nanoscale systems. 
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Appendix A - Nanoparticle Characterization 

 The ability to synthesize large, monodisperse nanoparticles is a requirement to perform a 

size-dependent experiment as described in Chapter 4.  As previously explained in Section 2.3.5, 

the nanoparticle jet was characterized for contamination and was shown to be very sensitive to any 

dissolved substances in the initial nanoparticle colloid.  This characterization also showed evidence 

that under certain conditions clustering of the nanoparticles in the particle beam occurred.  By 

diluting the initial nanoparticle concentration, the probability of cluster formation was decreased.  

Table A.1 shows all the nanoparticle samples used along with the sample properties, including the 

dilution factor which was obtained immediately before the experiment was performed.  SiO2 and 

the gold nanoshell particles were purchased from Nanocomposix, Inc. and used as purchased, 

except for the final dilution.  AuNPs were purchased from Cytodiagnostics, Inc. from their 

‘Reactant Free’ stock, verified to be 99% free of residual reactants from manufacturing.  These 

particles were custom ordered for the smallest available dispersity, no added pH stabilizing buffer, 

and purified an extra 10X.  It was this combination of exceptional purity and monodispersity of 

the sample, coupled to the source modifications, that allowed these particles to be studied. 

Surface chemistry is the term 

used to define the molecules present 

on the surface of the nanoparticle. 

These molecules are usually present 

for stability purposes (either steric or 

charge stabilized) and to prevent 

irreversible aggregation of the 

nanoparticles.  Figure A.1 shows the 

molecular structure of the 

nanoparticle surfaces as given in 

Table A.1.  The surface of the silica 

nanoparticles was silanol, consisting 

mainly of hydroxyl groups and gives 

a very ‘clean’ surface.  Silica is 

generally stable in ethanol and water Figure A.1    Molecular structures of the surface of 

the nanoparticles outlined in Table A.1. 
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with limited contamination in solution.  For the AuNPs and gold nanoshells, the metallic surface 

needs different and usually larger molecules, generally called ligands to prevent aggregation.  For 

the nanoshells, the polymer ‘mPEG’ is used to make the particles water soluble and provide a 

robust surface bond to the gold surface with the thiol group.  These were also extensively washed 

by the manufacturer.  For 5nm AuNPs, tannic acid was used as it is a slighter stronger reducing 

agent and produces a stable colloid.  All the larger AuNPs used citric acid as the surface ligand.  

The hydroxyl groups on tannic and citric acid provide a relatively weak bond to the gold surface 

as compared to the thiol in the nanoshell.  This was one reason for the need to modify the 

nanosource to prevent aggregation of these gold nanoparticles. 

 

Table A.1     Nanoparticle samples used in the experiments outlined in Chapter 4.  These are 

properties of the individual nanoparticles along with as delivered concentrations.  The dilution 

factor (relative to the initial concentration) is the final concentration used for each sample. 

Material Size (nm) Dispersity 
(±nm) 

Surface 
Chemistry 

Concentration 
(NP/ml) 

Dilution 
factor 

AuNP 5 2 Tannic acid 5.5x1013 1/100 

AuNP 30 2 Citric acid 1.8x1011 1/10 

AuNP 70 3 Citric acid 1.2x1010 1 

AuNP 120 10 Citric acid 4.0x109 1 

AuNP 200 20 Citric acid 1.9x109 1 

AuNP 400 20 Citric acid 1.9x108 1 

Au 
shell/silica 
core 

151.3 

119.7 
core/16 
shell 

5.1 (total) 

7.4 (core) 

mPEG 5kDa 3.0x109 1 

      

SiO2 22.5 2.8 Silanol 4.0x1014 1/1000 

SiO2 47 3 Silanol 9.1x1013 1/1000 

SiO2 82.6 4.7 Silanol 1.5x1013 1/100 

SiO2 118.5 5.7 Silanol 5.6x1012 1/100 

SiO2 199 15.2 Silanol 1.1x1012 1/50 

SiO2 367 13 Silanol 1.9x109 1/10 

SiO2 753 34 Silanol 2.1x1010 1/10 
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The use of a transmission electron microscope gives details on the dimensions and surface 

features of nanoparticles.  Silica nanoparticles are amorphous and easier to synthesize as a sphere.  

Gold nanoparticles tend to grow along preferential facets and therefore are less spherical, on 

average, than for silica.  Figures A.2 and A.3 are TEM pictographs of the actual nanoparticles used 

in the experiments outlined in Chapter 4.  As the nanoparticles were assumed to be spherical in the 

analysis and discussion, these images give a sense of how spherical they actual were.  These images 

are only a very small subset of the entire ensemble of nanoparticles in a sample and should only 

be used to make rough observations. 

 

Figure A.2     Transmission electron microscope images of SiO2 nanoparticles used in the Chapter 4 

experiment.  Scale bars are on each picture.  TEM pictures provided here by Nanocomposix, Inc where each 

nanoparticle sample is analyzed after synthesis. 
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Figure A.3     TEM images of AuNPs and gold nanoshells. Scale bars 

included in images. 
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Appendix B - Photoelectron Spectroscopy 

Pixels to Energy Mapping 

The use of a Velocity Map Imaging (VMI) apparatus dictates that the velocity (proportional 

to momentum) of the photoelectron needs to be mapped energy.  The spectrometer focuses the 

electrons as a function of repeller and extractor voltages as described in Section 2.4.  An energy 

calibration needs to be performed for each different voltage.  The MCP/phosphor screen image is 

captured by the single-shot camera where the CCD image in pixels needs to be calibrated into units 

of energy.  Using the spacing of the ATI fringes allows for the determination of the calibration 

constant.  Shown in Figure B.1 are the plots of the camera pixels mapped to energy for a specific 

Figure B.1     Plots mapping camera pixels to electron energy. a) Repeller 

voltage at -4kV and extractor at 97% of this value. Corresponds to all SiO2 and 

gold nanoshell data. b) Repeller voltage of -6kV used for AuNP experiments, 

except for 200nm. c) Repeller voltage of -4kV used for low intensity 200nm 

AuNP scan. 
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set of VMI spectrometer voltages and camera settings during the SiO2 and AuNP experimental 

scans. 

 

Inversion of the VMI Data 

The raw VMI images are 2D projections of the full 3D momentum distribution of the 

photoelectrons.  Various techniques are used to retrieve the full distribution if cylindrical 

symmetry is satisfied.  Large nanoparticles have an asymmetric angular distribution and therefore 

will not satisfy symmetry requirements.  Thus, as discussed in Section 2.4.7, all the data presented 

in Chapter 4 were non-inverted results.  It was also shown that the highest energy photoelectrons, 

the ‘cutoff’ was the same for non-inverted and inverted data.  Shown in Figure B.2 is an example 

of raw and inverted VMI images, using the iterative inversion approach.  On top is the image from 

Xe at -500V on the spectrometer (hence the large size relative to the SiO2 image) and a moderately 

low intensity.  The image next to it is the same data after the inversion procedure to show the full 

energy and angular electron distribution.  This same procedure was done for a 50nm SiO2 

nanoparticle for which the photoelectron emission patterns manifest cylindrical symmetry.  The 

overall shape and cutoff do not appear to be dramatically changed, as was also shown in Figure 

4.7 comparing the radial distribution of the non-inverted 50nm SiO2 to the energy distribution of 

the same, but inverted, data. 
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Figure B.2     Comparison of raw VMI 2D projections to the inverted spectra.  On 

top is atomic Xe at 4.4 x 1012 W/cm2 and spectrometer voltage of -500V.  On bottom 

is the spectra from 50nm SiO2 nanoparticle, bin 200-300 (representing the largest 

bin and thus the peak intensity) at an intensity of 1.8 x 1013 W/cm2 and spectrometer 

voltage of -4kV. The raw VMI images were inverted using the iterative approach. 
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Hit Histograms 

 Hit histograms provide a look at the number of detected photoelectrons per laser shot as a 

function of laser intensity, nanoparticle size, and composition.  The detection efficiency for a 

MCP/phosphor detector is at most 40-50%.  This is also coupled with saturation issues where ta 

large local electron density incident upon the MCP will render the light output on the phosphor 

screen below the detection limit of the single-shot camera, thus producing the ‘hole’ as seen in 

Figure 4.20.  However, trends can still be established with these relative electron counts seen in 

the hit histograms.  Figure B.3 is the collection of hit histograms from all the nanoparticle scans 

obtained in Chapter 4.  This gives a more detailed look at how the number of electrons emitted 

varies with the experimental parameters. 
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Figure B.3     Hit histograms of SiO2 and AuNPs as a function of laser intensity and 

nanoparticle diameter.  Io = 8.8 x 1012 W/cm2 for SiO2 and 8.3 x 1012 W/cm2 for AuNPs. 
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Raw VMI Images 

 The raw VMI images shown in Chapter 4 were a selection of all the actual images acquired.  

All images consist of a vertical polarization direction with the laser propagation going from right 

to left.  To provide a more complete picture of the photoelectron momentum and angular 

distribution, Figure B.4 shows the raw VMI images from the entire SiO2 size range from 20nm to 

750nm.  The first two columns show a sample of the ‘binning’ technique where the different 

intensity regions of the focus have much different spectra.  The first column consists of a small 

‘bin’ that was chosen to be just above the background level and representative of the outer fringes 

of the focus.  It should be noted though that direct comparison between the small ‘bins’ as a 

function of size does not denote the same incident laser intensity.  The largest ‘bin’ in column two 

does come from the peak laser intensity as the largest number of electrons per laser shot 

corresponds to the center of the focus.  This column can be qualitatively compared between the 

different nanoparticle sizes.  The two right columns are the integrated images from Io and 2 Io that 

is useful to compare the overall change in electron momentum and shape of the distribution.  These 

images are in units of momentum as explicitly shown in Figure 4.10. 

 Figure B.5 are the raw VMI images from the size dependent AuNPs shown in the same 

manner as for the SiO2 images.  The AuNP images are done at a higher spectrometer voltage of -

6kV which corresponds to the momentum values shown in Figure 4.19. 

 Figure B.6 are the raw VMI images from the low intensity scans.  The cutoff energy from 

these nanoparticles were beyond the acceptance range of the VMI at the normally used intensity 

range.  The intensity values are specified in the captions.  The low intensity scans were done for 

200nm AuNP and the gold nanoshells. 

 Figure B.7 is a VMI image from 400nm AuNP.  This large size was not included in the 

thesis data as the cutoff electrons from all intensities were beyond the range of the VMI settings.  

However, as the nanoparticle probes the focal volume, there was some contribution from lower 

incident intensities.  This image is to highlight the propagation-direction asymmetry due to its 

large size, similar to that of large SiO2.  The images for 200nm AuNPs do not show an obvious 

asymmetry yet but it can be clearly seen for 400nm.  The crosshairs through the center of the image 

indicates the left/right asymmetry.  This feature also helps to underscore the cleanliness of the 

particle beam.  It is reasonable to assume that only a sufficiently clean nanoparticle would allow 

this asymmetry to be seen. 
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Figure B.4    Collection of SiO2 raw VMI images.  Smallest ‘bin’ column is first ‘bin’ above the 

background level but not necessarily at the same incident intensity for each size.  The largest ‘bin’ 

is chosen from the maximum number of electrons per laser shot and corresponds to the peak laser 

intensity. The right columns are the integrated images from Io and 2Io where Io=8.8x1012 W/cm2. 

The images are in units of momentum as seen in Figure 4.10 where the outside of the detector 

corresponds to ~4 a.u. The color bar is in log scale. 
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Figure B.5     Collection of raw AuNP VMI images.  Same configuration as in Figure B.4 except 

with AuNPs.  Spectrometer voltage at -6kV and Io=8.3x1012 W/cm2.  The images with no signal in 

the center is because of MCP saturation from too many incident electrons. Color bar is log scale. 
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Figure B.6     Collection of raw VMI images for low intensity scans. The 200nm AuNP was done 

with a spectrometer voltage of -4kV and Io=8.3x1011 W/cm2.  The gold nanoshell data was taken 

at -4kV with Io=5.5x1011 W/cm2.  The momentum axes are explicitly shown in Figure 4.31 that 

will apply to these scans. Color bar is log scale. 
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Near-field Enhancement 

The field enhancement values used in Chapter 4 were found using a free-to-use software 

package called ‘SPlaC v1.01 SERS and Plasmonics Codes package for Matlab’ [162].  This is a 

Mie solver that was used to solve for the ratio of the scattered field outside a nanoparticle to the 

incident field strength, the so-called near-field enhancement.  The maximum enhancement along 

with its spatial position relative to the nanoparticle can be calculated for any diameter spherical 

nanoparticle with its particular relative permittivity. The field enhancement as a function of 

nanoparticle diameter, composition, and wavelength is shown in Figure B.8.  The enhancement 

factor for AuNPs has a much more diverse size response than for silica.  The cutoff values shown 

in Figure 4.13 for size dependent SiO2 are influenced by this near-field.  Following the cutoff 

values and the near-field enhancement curve, there are definitely some similarities.  For AuNPs, 

no reliable data was taken above 200nm, though according to the AuNP enhancement plot, one 

would expect a noticeable cutoff change at sizes larger than 300nm. 

Also plotted is the angle of maximum field (blue line) which gives information as to where 

the largest enhancement is found for a nanoparticle of a given size and composition.  The angle is 

Figure B.7     Raw VMI image from 400nm AuNP. The crosshairs show the 

center of the image and highlight that asymmetry from the large nanoparticle. 

This scan was not included in the cutoff data as it was outside the range of the 

VMI energy acceptance.  This image is from the nanoparticle contributions of 

the ‘wings’ of the laser focus.  This asymmetry helps to show that the AuNP 

samples are indeed clean in the particle jet. 
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defined relative to the nanoparticle poles (0°) and a shift away from this position is seen as an 

increase of this angle. 

Figure B.8     Near-field enhancement (blue) of SiO2 and AuNP as a function of diameter at 

780nm wavelength.  Size range is from 5nm to 750nm.  Blue line indicates the angle where 

the maximum enhancement occurs with respect to the vertical (poles) of the nanoparticle. 
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