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Abstract 

Systems that support or require human interaction are generally easier to learn, use, and 

remember when their organization is consistent with the user’s knowledge and experiences 

(Norman, 1983; Roske-Hofstrand & Paap, 1986). Thus, in order for interface designers to truly 

design for the user, they must first have a way of deriving a representation of what the user 

knows about the domain of interest. The current study evaluated three techniques for eliciting 

knowledge structures for how General Aviation pilots think about weather information. Weather 

was chosen because of its varying implications for pilots of different levels of experience. Two 

elicitation techniques (Relationship Judgment and Card Sort) asked pilots to explicitly consider 

the relationship between 15 weather-related information concepts. The third technique, Prime 

Recognition Task, used response times and priming to implicitly reflect the strength of 

relationship between concepts in semantic memory. Techniques were evaluated in terms of pilot 

performance, conceptual structure validity, and required resources for employment. Validity was 

assessed in terms of the extent to which each technique identified differences in organization of 

weather information among pilots of different experience levels. Multidimensional scaling was 

used to transform proximity data collected by each technique into conceptual structures 

representing the relationship between concepts.  

Results indicated that Card Sort was the technique that most consistently tapped into 

knowledge structure affected by experience. Only conceptual structures based on Card Sort 

data were able to be used to both discriminate between pilots of different experience levels and 

accurately classify experienced pilots as “experienced”. Additionally, Card Sort was the most 

efficient and effective technique to employ in terms of preparation time, time on task, flexibility, 

and face validity. The Card Sort provided opportunities for deliberation, revision, and visual 

feedback that allowed the pilots to engage in a deeper level of processing at which experience 

may play a stronger role. Relationship Judgment and Prime Recognition Task characteristics 



  

(e.g., time pressure, independent judgments) may have motivated pilots to rely on a more 

shallow or text-based level of processing (i.e., general semantic meaning) that is less affected 

by experience. Implications for menu structure design and assessment are discussed.  
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Chapter 1 - Statement of the Problem 

Multifunction displays (MFD) provide a means through which pilots can access large 

amounts of information through a single interface, thereby attenuating space constraints 

inherent in the cockpit. However, because of relatively small MFD display real-estate, 

information may no longer be directly available through simple visual search, but instead may 

be hidden within layers of the MFD’s information structure (i.e., hierarchical menu structure). 

Therefore, the MFD must be organized in such a way that the pilot will know where and how to 

find the desired information.  

When interacting with any interface, novel or familiar, pilots bring with them a vast 

amount of aviation-related knowledge and previous experiences that allow them to form 

expectations about how information may be organized in that interface. Systems are easier to 

learn, use, and remember when they are organized in a manner consistent with the knowledge 

and experiences that the user brings to the situation (Roske-Hofstrand & Paap, 1986). Further, 

usability bottlenecks can occur when there are disconnects between the design of the system 

and the user’s knowledge and expectations (Norman, 1983). Thus, in order for interface 

designers to truly design for the user, they must first have a way of deriving a representation of 

what the user knows about the domain of interest.  

The term “knowledge structure” is often used to refer to the organization of one’s 

knowledge about a certain domain. Knowledge structures are comprised of information 

concepts (e.g., winds and jet stream are two weather information concepts) and the 

relationships or associations between these information concepts (e.g., jet stream is a type of 

wind phenomenon) stored in Long-Term Memory (LTM). They consist of both declarative 

knowledge (e.g., facts, personal experiences, and characteristics associated with aircraft and 

flight) and procedural knowledge (e.g., how to use various systems to complete certain tasks). 

Declarative knowledge provides users with an in-depth understanding of system components 
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independent of specific tasks, whereas procedural knowledge represents properties of the 

system that allow the user to perform specific real-world tasks (Van der Veer & Melguizo, 2002). 

Some researchers further propose that knowledge structures mediate the translation of 

declarative knowledge into procedural knowledge and facilitate the application of procedural 

knowledge (Jonassen, Beissner, & Yacci, 1993).  

The notion of a knowledge structure is predicated on the idea that information concepts 

are stored in memory and differ in relatedness or “psychological proximity.” Learning and 

exposure to new experiences can affect the psychological proximity of information concepts, 

including the addition of new information concepts to the structure and the reorganization of 

some of the “old” knowledge, based on the new information. Therefore, individuals who vary in 

their expertise of a given domain will presumably also vary in how domain knowledge is 

structured in memory (Schvaneveldt, Durso, Goldsmith, Breen, & Cooke, 1985). Chapter 2 

provides a more extensive definition of knowledge structure and review of relevant research. 

The process of deriving a representation of how knowledge is structured in memory is 

generally three-fold. First, information concepts representative of the knowledge domain must 

be identified. Second, the psychological proximity between the concepts must be quantitatively 

measured. Third, proximity data must be transformed into a meaningful representation of the 

psychological proximity between the concepts. For the purposes of the current study, the term 

“knowledge structure” will refer to the “true” organization of information in memory. Chapters 7 

and 8 review the processes through which fifteen representative weather-related information 

concepts were identified for use in this study. The derived representation of how knowledge is 

structured will be referred to as the “conceptual structure” because 1) it is based on a 

representative sample of information concepts assumed to comprise the knowledge structure 

and 2) its resemblance to the true knowledge structure is dependent, in large part, on the 

techniques used to elicit the psychological proximity of those concepts. Techniques that rely on 
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verbal report or intuition can be subject to bias and flaws in memory or intuition (Canas, Antoli & 

Quesada, 2001; Cooke, 1999). Techniques that infer knowledge structure from judgments of 

conceptual relatedness have had their relationship to performance questioned (e.g., Geiwitz et 

al, 1990, as cited in Cooke, 1999). Indeed, the relationship between knowledge structure and 

conceptual structure in many ways is analogous to the relationship between the population 

mean and the sample mean in statistics. As Figure 1.1 illustrates below, the conceptual 

structure represents the knowledge structure plus some “error” introduced via the elicitation 

techniques and scaling procedures, just as a sample mean represents the population mean plus 

measurement “error.” Thus the process of knowledge elicitation is more conventionally viewed 

as a process of constructing a model of knowledge (i.e., conceptual structure) rather than a 

direct extraction of knowledge structure (e.g., LaFrance, 1992), with the resultant model 

reflecting reality to a varying degree (Cooke, 1999).     

    

Conceptual Structure  [15 concepts] = “True” Knowledge Structure  [15 concepts] + “Error”[Elicitation Technique]

 
Figure 1.1. Relationship between the derived conceptual structure and the true knowledge 
structure. 

 

In Cognitive Psychology literature, there exist several techniques that can be used to 

elicit or tap into knowledge structures and derive their corresponding conceptual structures. 

Most knowledge structure elicitation techniques are based on the assumption that knowledge 

structures are semantic networks in memory comprised of concepts and associations between 

the concepts that vary in strength. The strength of the association between two concepts is an 

indication of their similarity (e.g., Anderson & Bower, 1973). Some techniques (e.g., 

Relationship Judgment and Card Sort) explicitly ask participants to generate judgments of 

similarity.  The explicit techniques are well known and frequently used but it is unclear whether 
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the high-order cognitive processing needed to generate similarity pairings/groupings affects the 

validity of the resultant conceptual structure. An alternative technique may be the use of 

response times and priming to implicitly reflect the strength of relationship between concepts in 

semantic memory.  The Prime Recognition Task, borrowed from the associative memory 

literature, has been used to test hypotheses about underlying knowledge structures (e.g., 

Navarro-Prieto & Canas, 2001) but it has not been used to derive knowledge structures 

themselves. Therefore, the validity of the Prime Recognition Task as a knowledge elicitation 

technique has not been fully explored. Chapter 3 provides a review of relevant explicit and 

implicit knowledge elicitation techniques (KETs).  

KETs differ in several key ways that may have an impact on the validity of the data 

collected (i.e., the extent to which the conceptual structure resembles the true knowledge 

structure). First, some KETs present stimuli for judgment simultaneously (e.g., Card Sort) while 

others present stimuli one at a time or in pairs (e.g., Relationship Judgment). Second, some 

KETs allow for judgments to be changed (e.g., Card Sort) or revised while others do not (e.g., 

Relationship Judgment). Third, some KETs may involve time pressure (explicit or implied) that 

may affect the extent of cognitive processing the participant engages in when making 

judgments. Fourth, the total number of similarity judgments may vary considerably across KETs, 

which in turn, may influence the extent to which fatigue, boredom, or vigilance affect the 

judgments. And lastly, as previously mentioned, many KETs explicitly ask for participants to 

make similarity ratings, but other types of objective data (e.g., response times) could be used to 

represent proximity data without the participant explicitly considering similarity as a factor (see 

Chapter 3 for more information on the potential advantages of implicit over explicit techniques 

with regard to eliciting knowledge structure). Understanding the consequences of the choice of 

KET is crucial to the use of conceptual structures to guide interface design. Conceptual 

structures can only be used to facilitate better interface design if they are able to adequately 
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reflect the true nature of the knowledge structure from which they were elicited. Some previous 

studies have examined the effect of KET on the validity of the resultant conceptual structures 

(e.g., Bijmolt & Wedel, 1995; Dorsey, Campbell, Foster, & Miles, 1999; Rowe, Cook, Hall, & 

Halgren, 1996). However, more research is needed as the list of KETs is extensive and their 

utility is often goal- or domain-specific (Hoffman, Shadbolt, Burton & Klein, 1995).  

One means of validating conceptual structures and comparing them across KETs is to 

assess whether or not the conceptual structures can be used to 1) discriminate among 

participants of certain groups and to 2) predict group membership (Schvaneveldt et al., 1985). 

Of particular interest to the current study is whether conceptual structures can be used to 

discriminate and classify pilots in terms of their level of experience. In other words, given the 

conceptual structure of a “high-time” pilot (i.e., a pilot who has logged a large amount of flight 

hours), can the pilot be correctly classified as a High-Time pilot? Again, this validation technique 

is based on the reasonable assumption that pilots with the same level of experience also share 

certain characteristics in their conceptual structures.  

Although validity is an important factor to consider when comparing KETs, it is also 

important to compare and contrast KETs on some of the more practical aspects of their 

employment, including the time and resource requirements of each KET. KETs that elicit highly 

valid conceptual structures may still have their usefulness questioned in the field of Human-

Computer Interaction (HCI) if they are typically unable to be employed and analyzed with 

minimal time and effort required by both the participant and the researcher. Often, research in 

the more applied settings of HCI is characterized by tight timelines, minimal resources, and 

research personnel who may have limited formal background in Human Factors, Psychology 

and/or Statistics. For a KET to be truly valuable to interface design, it must be robust to the 

constraints posed by applied environments.  
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Previous research studies have used conceptual structures to suggest avionics menu 

structure for Flight Management Systems (FMS) (e.g., Roske-Hofstrand & Paap, 1986) and 

MFDs (e.g., Williams & Joseph, 1998) and to suggest prioritization of information presentation in 

cockpit information displays (e.g., Schvaneveldt, Beringer, Lamonica, Tucker, & Nance, 2000). 

However, with the exception of Williams and Joseph (1998), few other studies have included 

weather-related elements in their list of information concepts. When weather-related concepts 

were included, the concepts tended to be vague and used nondescript terminology (e.g., 

“general weather” and “wind”). A large part of the risk that is inherent in General Aviation (GA) 

stems from the effects of deteriorating weather conditions on flight dynamics. Weather 

information can be presented on current MFDs in much greater detail than was previously 

possible in the cockpit. Therefore, the primary area of interest for the current study is aviation 

weather and how that information is organized in pilots’ knowledge structures.  

In summary, the main goal of the current research study is to compare and contrast 

three different KETs for eliciting and representing pilots’ knowledge structures for weather-

related information concepts. These KETs will be compared and evaluated in terms of the 

characteristics of the data collected, the validity of the resultant conceptual structures, and the 

resources required for their employment. Special focus will be placed on how each KET is able 

to resolve any differences in conceptual structure for pilots of varying levels of experience.  
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Chapter 2 - Defining Knowledge Structure 

 Defining Terms 

Knowledge structure is a hypothetical construct in that it has no structural referent in the 

brain. However, it is a very useful construct for describing the way humans organize and 

retrieve information from LTM. Knowledge structure as a construct has been applied in many 

domains, from basic research in cognitive psychology to more applied research in Human 

Factors, HCI, and even Cognitive Science. Each domain may have slight variations in how 

knowledge structures are conceptualized but most are consistent in their underlying premise of 

referring to the pattern or organization of concepts and their relationships in LTM (e.g., Preece, 

1976; Shavelson, 1972). In addition to knowledge structure, other terms in the literature that 

have been used to refer to this construct include cognitive structure, conceptual knowledge, and 

structural knowledge (Jonassen et al., 1993).  

Knowledge structure differs conceptually from knowledge content. Knowledge content 

refers to the amount and type of knowledge that is encoded in a given knowledge structure. 

Knowledge structure refers to the interrelationships of concepts that comprise that knowledge 

content (Ye, 1998).  Performance on almost any task that requires cognitive effort will be 

affected by both the knowledge structure and the knowledge content participants have that is 

relevant for that task, as the knowledge structure (i.e., the set of connections) leads to an 

understanding of when and how knowledge content applies in a given situation (Baxter, Elder & 

Glaser, 1996).  For example, anyone can develop the knowledge content for how to play chess 

(e.g., understanding of the rules, knowledge of the terminology). However, people with more 

experience playing chess may develop a better structure for their knowledge about chess, which 

may, in turn, yield better performance. For example, experienced chess players are able to 

relate current chess configurations to past experiences in developing the strategies necessary 

to decide which chess pieces to move next and/or within the next two or three steps. In other 
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words, the organization of knowledge stored in memory is of equal or even greater significance 

to task performance than the amount or type of knowledge (Kraiger, Ford & Salas, 1993). The 

primary focus of the current study is on knowledge structure although initial phases of the study 

are necessarily devoted to understanding the knowledge content pilots have for weather as well.  

 Theoretical Foundation of Knowledge Structures 

Prevailing memory theories are based on the idea that information is represented in 

memory in an organized network of associations (e.g., Collins & Quillian, 1969). This network is 

comprised of concepts (nodes) that are “linked” to represent a variety of relationships. The 

degree of relatedness between two concepts can be represented by either the strength of a link 

or the number of shared links. The retrieval of information proceeds through spreading 

activation (Collins & Loftus, 1975). A given concept activates a corresponding starting node and 

that activation spreads through all the links connected to that node to other nodes and through 

all of those links to other nodes. These nodes can represent other concepts and/or their 

properties. The strength of activation decreases as time, distance, and the number of activated 

unrelated concepts increases. If the activation reaching a given node achieves a threshold 

value, that corresponding concept will be activated or retrieved from memory (Anderson, 1974).  

Within semantic memory, the more nodes or properties that concepts have in common, 

the stronger they are linked together through those properties. Further, learning can be thought 

of as a reorganization of the network in semantic memory, as these semantic networks provide 

an indication of what a person knows and a framework for learning new ideas through adding, 

deleting, and restructuring associations. Thus, for the present study, semantic networks are 

analogous to knowledge structures (Jonassen et al., 1993). 
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 Schemas and Knowledge Structures 

The notion of knowledge structure is not unlike the construct of a schema. Schema 

theory (e.g., Rumelhart & Norman, 1985) asserts that knowledge, experiences, and 

expectations are organized in structures called schemas. Schemas can be thought of as 

information packets that represent knowledge about an object or an event in the form of 

attributes or variables whose values assist in object or event recognition. Schemas vary in their 

complexity (e.g., ice cream cone, sailing on a boat in the bay) and their abstractness (e.g., 

happiness, paying at a restaurant). They can be embedded with other schemas. For example, a 

schema for hitting a homerun may be comprised of both a schema based on the procedural 

knowledge needed to hit the ball and a schema based on the particular home run you saw Alex 

Gordon hit at the last Royals game you attended. Schemas are active, dynamic and continually 

changing – new ones can be developed based on existing ones, and existing ones can be 

altered or adjusted to meet new task or domain demands. Knowledge structure is built through 

the use of schemas and their interrelatedness (Jonassen et al., 1993).  

 Mental Models and Knowledge Structures 

Research efforts in several domains have focused on how design can best support the 

user in developing the “right” mental model, including situation awareness (e.g., Jones & 

Endsley, 2000), HCI (e.g., Norman, 1988), system maintenance (e.g., Kieras & Bovair, 1984), 

computer programming (e.g., Pennington, 1987), and weather forecasting (e.g., Trafton, 2004). 

However, the term “mental model” has been used with much impunity within the literature and 

its use is often not clearly defined or operationalized (Rickheit & Sichelschmidt, 1999; Canas et 

al., 2001).  

Gentner & Stevens (1983) define a mental model as an internal psychological 

representation of how a person conceives and understands the system to function. Carroll & 

Olsen (1988) further define a mental model to be a dynamic representation of the components 
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of a system, how the system works, the relationship between the components, what the internal 

processes are, and how those internal processes affect the components. Generally, the mental 

model construct has as its core components working memory (WM), knowledge structures (i.e., 

LTM), and perceptual processes (Gentner & Stevens, 1983; Johnson-Laird, 1983; Yates, 1985). 

To perform a given task, a person forms a mental representation of the world (e.g., the system) 

by combining the information stored in LTM (i.e., knowledge structures, schemas) with the 

information about the task characteristics that are extracted by the perceptual processes. 

Knowledge is extracted from LTM into WM based on a series of triggering events, for instance, 

pattern recognition (Canas et al., 2001). Therefore, for the purposes of the current study, the 

terms knowledge structure and mental model are not synonymous terms. Rather, knowledge 

structures are considered and treated as integral components of LTM upon which mental 

models are derived and employed in WM during task performance. The primary focus of the 

current study is on knowledge structure, rather than mental model.  

 Knowledge Structure and Experience 

Efforts to understand the variables that differentiate skilled or expert performance from 

less-skilled or novice performance can be traced back to the late 1800s (Bryan & Harter, 1899, 

as cited in Beilock & Carr, 2004). Past research has not only focused on measuring the success 

of overt behavior but also on understanding the cognitive changes that occur as learning 

progresses and performance improves. Cognitive mechanisms that facilitate planning and 

execution are what are truly thought to distinguish novice from skilled performance. Memory and 

attention are two of these important cognitive mechanisms (Beilock & Carr, 2004). Fitts & 

Posner (1967), Anderson (1983), and Rasmussen (1983) have all proposed theories or 

frameworks of skill acquisition. While the nature of these theories range from descriptive 

frameworks (e.g., Fitts & Posner, 1967; Rasmussen, 1983) to simulated models (e.g., Anderson 

& Lebiere, 1998), all three are similar in that they propose skilled performance to be acquired in 
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three general stages. With each successive stage, knowledge is represented in an increasingly 

structured and organized way (Ye, 1997).  

Stage I: Novice performance is based on declarative knowledge that is explicitly 

retrieved from LTM and held in WM where it is consciously attended to in real-time. Fitts & 

Posner (1967) refer to this stage as the cognitive stage, Anderson (1983) as the declarative 

stage, and Rasmussen (1983) as knowledge-based behavior.  

Stage II: As learning progresses, declarative knowledge is restructured into procedural 

knowledge through experience and repetition. This stage is characterized by less conscious 

control of real-time performance as “rules” or “procedures” are developed or compiled that 

associate task characteristics or situations with the appropriate actions. This stage is referred to 

as the associative stage by Fitts & Posner (1967), the knowledge compilation by Anderson 

(1983), and rule-based behavior by Rasmussen (1983).  

Stage III: With extended practice, conscious attentional control of real-time performance 

is no longer necessary as particular actions are automatically executed when confronted by 

particular task characteristics or situations. Procedural knowledge is reinforced and refined 

through experience and fine-tuned for efficiency. This stage is analogous to Fitts & Posner’s 

(1967) autonomous stage, Anderson’s (1983) procedural stage, and to Rasmussen’s (1983) 

skill-based behaviors.    

Previous empirical research studies have provided evidence to suggest that groups that 

differ in skill level also differ in knowledge structure. Ye (1998) provided an overview of several 

relevant studies and results. General findings from the review are summarized below:  

• Experts have more well-structured chunks of knowledge in LTM. Several studies 

have found that experts exhibit better recall performance than novices but only when 

pieces of information are represented to participants in a meaningful organization. 

Experts and novices show similar recall performance when pieces of information are 
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presented in a random or scrambled organization (e.g., Adelson, 1981; Chase & Simon, 

1973; de Groot, 1965; Reitman, 1976)   

• Experts frame problems in terms of abstract principles while novices represent 

problems in terms of surface or literal characteristics. Chi, Feltovich & Glaser (1981) 

found that when asked to categorize physics problems, those with more physics 

experience categorized problems according to laws or principles of physics, whereas 

less experienced physicists categorized the same problems in terms of surface features 

or more literal aspects of the problem. These results imply that experts represented the 

problems according to deep and highly learned principles, whereas those with less 

experience represented the physics problems at a more surface level. 

• Experts form fewer but larger chunks of information. Ye and Salvendy (1994) asked 

10 expert and 10 novice C computer programmers to provide relatedness ratings for C 

programming concepts presented in pairs. Relatedness ratings were averaged across 

each of the experience groups and submitted to a hierarchical clustering analysis, with 

the clusters of concepts representing how each group “chunked” knowledge of the C 

language. Results showed that experts formed fewer but larger chunks than did novices.  

• Variance in knowledge representation decreases with increases in skill level. 

Goldsmith & Johnson (1990) asked college juniors and seniors taking a Psychology 

class to provide relatedness ratings for psychology concepts presented in pairs at 

different times during the course (1st week, 8th week, 15th week). Relatedness ratings 

were analyzed using Multidimensional Scaling and Pathfinder Analysis. The coefficient 

of correlation between the instructor’s knowledge structure and each student’s 

knowledge structure increased over the course of the semester. Also, the agreement 

between the students’ knowledge structures increased over the course of the semester 

as well. 
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Research studies in aviation provide evidence implying knowledge structure differences 

with varying levels of experience. Schvaneveldt et al. (1985) collected similarity ratings for pairs 

of basic flight-related concepts from 10 instructor pilots (M=2583 hrs), nine Air National Guard 

Pilots (M=6064 hrs) and 17 undergraduate pilot trainees (M=200 hrs). Similarity ratings were 

submitted to both MDS and Pathfinder Analysis. Analyses suggested that the knowledge 

structures of experienced pilots and novice pilots differed in their complexity, with novices 

showing more complex cognitive structures than the experienced pilots (i.e., more links between 

concepts). The results implied that experienced pilots are able to identify the important critical 

information and associations which, in turn, yields a simpler cognitive structure, with only the 

most meaningful associations represented.  

One of the typical explanations suggested for these findings is that those with extensive 

domain experience are able to perceive a more global picture of the domain, which facilitates 

chunking relevant concepts into larger units compared to novices. Since research suggests that 

novices have less organized knowledge structures compared to experienced users, they are not 

capable of encoding information as quickly or in units as large as the experienced users can. 

Some have also suggested that those with domain experience have memory structures that are 

hierarchically organized and, therefore, can recall a larger number of chunks. In this case, a 

high-level chunk may be comprised of several low-level chunks, each further containing chunks 

at a more detailed (lower) level. This hierarchical structure allows them to store large amounts 

of information more effectively than novices (Schvanevaldt et al., 1985). 

In sum, a knowledge structure is a hypothetical construct with its theoretical foundation 

in associative memory and it is used for describing the way humans organize and retrieve 

information from LTM. They, like schemas, are the integral components upon which mental 

models are derived and employed in WM. Empirical studies have suggested that the enhanced 
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performance typically seen by experienced participants relative to novices is in large part a 

function of the experienced participants having more organized knowledge structures.  
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Chapter 3 - Review of Knowledge Elicitation Techniques 

 Categories of Techniques 

The process of knowledge elicitation was born out of a desire to build knowledge-based 

applications to facilitate human performance. These knowledge-based applications include 

expert systems, adaptive user-interfaces, and knowledge-based selection and training protocols 

(Cooke, 1999). Researchers and practitioners in a variety of disciplines, including human 

factors, judgment and decision-making, cognitive science, and expert systems, have developed 

a number of different knowledge elicitation techniques (KETs) designed to extract and preserve 

domain-specific knowledge underlying human performance, most commonly within the context 

of experienced-novice differences (Hoffman et al., 1995).   

While the general goal of each method is to elicit knowledge, the purpose of elicitation 

may vary depending on the discipline. For example, from the perspective of naturalistic 

decision-making, the KETs must possess ecological validity and representativeness and be 

easily transported from the laboratory setting to the field setting. From an expert systems 

perspective, KETs must allow the elicitation of the ”important” knowledge directly since the 

major goal is to develop a high quality and valid knowledge base to be used in an eventual 

computer system.  From the psychological perspective, KETs must reveal information about 

reasoning strategies and sequences and facts about how knowledge is organized (Hoffman et 

al., 1995). To that end, Hoffman et al. (1995) define three categories of knowledge elicitation 

techniques.  

 Observational Techniques 

Observational KETs are designed to understand the tasks that experts perform (i.e., 

What do experts usually do?). Methods such as documentation analysis, task analysis, think 

aloud problem-solving, and protocol analysis provide insight into what experts do when they 
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conduct their usual problem-solving or decision making tasks in their natural environments. 

These observational techniques are typically how knowledge elicitation begins and are 

especially helpful in providing an overall conceptualization of the domain and some of the 

relevant constraints or issues to be mindful of in later phases of knowledge elicitation. However, 

there are some tasks in which observations in natural settings are impossible (e.g., flying single-

seat aircraft) and therefore simulated contexts (e.g., simulator) must be used (Cooke, 1999). 

Observational techniques can vary in terms of what is observed (e.g., all events or pre-defined 

events), the observer’s role (e.g., passive/nonintrusive or participatory), and documentation 

method (e.g., note-taking, video, photos, audio) (Cooke, 1999).  

 Interview-based Techniques 

A second category of KETs is comprised of interview-based methods (i.e., What do 

experts say they usually do?). Interviews can either be structured or unstructured, individual or 

group. During the interviews, experts are asked a series of questions that cover a broad range 

of issues within a domain. Experts may also be asked to generate different types of lists that are 

related to the domain of interest (e.g., list of important concepts, definition of terms, list of 

procedures, event recall). Unstructured interviews are free-flowing and are especially useful in 

learning about a domain and gathering the knowledge necessary to set up structured interview 

questions or tasks. Structured interviews take on many different forms (Cooke, 1999). For 

example, in forward scenario simulations, the expert is walked through a problem verbally and 

asked to respond to a series of system and/or environmental events posed by the facilitator. In 

the teachback method, the expert is asked to teach the facilitator something and the facilitator 

explains it back to the expert for verification. The process continues until the expert is satisfied 

with the facilitator’s explanation. In the 20 questions method, the expert tries to guess a domain 

concept by asking the facilitator yes/no questions about the concept. The types of questions 

asked by the expert reveal information about what attributes are important for distinction within a 



17 

 

domain. While interviews in general are easy to administer compared to other KETs, untrained 

facilitators can bias the integrity of the data collection by the type of question asked (or not 

asked) and how the question is framed (e.g., leading questions). Also, analysis of interview data 

can be time-consuming and tedious.  

 Indirect Techniques 

Indirect1 KETs are designed to reveal knowledge and reasoning processes indirectly, 

without actually asking about these processes (i.e., “What do experts do when they are 

constrained in some way?”). Methods like decision analysis (e.g., risk analysis, analyses 

involving probability and utility modeling), group decision making, rating tasks and sorting tasks 

force the expert to perform completely unfamiliar tasks or familiar tasks that have been modified 

or the experts themselves are constrained in some way in performing them. These indirect tasks 

have been shown to reveal experts’ knowledge and reasoning. For example, through asking 

expert and novice chess players to recall game boards in which pieces had been randomly 

arranged, Chase & Simon (1973) discovered that experts were no better than novices at 

recalling chess positions when those positions did not follow the conventions of the game. 

Indirect tasks like card sorts and rating tasks have been used to derive conceptual maps or 

structures of a domain (Hoffman et al., 1995).  

Two factors contributed to the decision to employ only indirect techniques for the current 

study. First, since the focus of the current study was to understand how knowledge is organized 

in memory and not necessarily to understand how experts use that knowledge to perform tasks, 

only indirect techniques were employed. Second, one of the benefits of the indirect techniques 

is that the data collection is less susceptible to bias or influence from the researcher/facilitator. 

Conversely, observational and interview-based techniques require extremely well-trained 

                                                 
1 Hoffman et al. (1995) refers to these techniques as “contrived” techniques, but for the purposes of the current study, they 

will be referred to as “Indirect” techniques.  
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facilitators/researchers to conduct the data collection because the data collected can be very 

easily biased or influenced by even the most unintentional cues given by the facilitator during 

the session (e.g., framing/terms used in the questions, facial expressions, unspoken body 

language). Further, the onus is on the facilitator/researcher to identify and interpret what 

information is important and unimportant for the study and their interpretation could be biased 

by any preconceived notions of what they might find (i.e., untrained researchers/facilitators may 

be more likely to focus on or hear only what they expect to hear during data collection). Thus, 

indirect techniques for KETs may result in more reliable insights into knowledge structures. For 

more information on the other two categories of KETS, the reader is directed to Hoffman et al. 

(1995) and Cooke (1999).  

Cooke (1999) refers to Indirect techniques as “conceptual methods of knowledge 

elicitation” when they are used to elicit and represent knowledge structure as domain-specific 

concepts and their interrelations. As previously noted, these KETs are based on documenting 

the perceived similarity between pairs of concepts and using similarity data to infer how 

concepts are organized in the knowledge structure. Indirect KETs can be further sub-divided 

based on the extent to which the conscious processing of perceived similarity is required. 

Explicit techniques require the participant to consciously compare or evaluate the similarity of 

items and/or categorize them based on shared properties. Relationship Judgment (e.g., Cooke, 

1994) and Card Sort (e.g., Spencer, 2009) are examples of explicit KETs.   

For the Relationship Judgment Task, participants are asked to rate (typically on a 9-point 

scale) pairs of representative information concepts in terms of their perceived similarity. In 

theory, relationship judgments provide the most direct method for rating the similarity between 

concepts in a participant’s knowledge structure. However, several properties of the Relationship 

Judgment Task have the potential to limit the reliability of the data that are elicited. First, note 

that if the term “similarity” is not operationally defined, participants are allowed to vary in their 
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interpretation of the “relationship” used render the comparisons, possibly compromising the 

informativeness of the resulting conceptual structure. For instance, if asked to rate the similarity 

of a plate and a fork, a participant who interprets similarity in terms of shared functions (e.g., 

both are used to support eating behavior) would rate the pair quite high in similarity, while a 

participant who interprets similarity in terms of shared characteristics may rate the pair quite low 

in similarity (Roske-Hofstrand & Paap, 1990).However, operationally defining “similarity” in a 

way that is ultimately not meaningful to the participant or to the domain of interest also may 

compromise or limit the informativeness of the resulting conceptual structure. Also, similarity 

ratings have been shown to be limited in reliability, changing with direction of how the pairs are 

presented (chair-table vs. table-chair) and/or context in which they are collected (Jonassen et 

al., 1993). Lastly, without an intervening interference task between ratings, the rating attributed 

to one pair of information concepts may be influenced by the rating attributed to a recent pair of 

information concepts (Canas et al., 2001).  

Another explicit method for indirectly deriving knowledge structures is to ask users to 

sort information concepts into different conceptual groups based on their perceived shared 

properties. The Card Sort Task is used to estimate semantic distances between categories and 

the concepts within those categories (Halgren & Cooke, 1993; Spencer, 2009). According to 

Miller (1969), asking participants to sort concepts according to some similarity of meaning or 

meaningful criteria results in the identification of concept groups that are assumed to be 

organized in a hierarchical manner. The groupings provide insight into the meaning that the 

participant assigns to the concepts and ultimately gives insight into the organization of their 

knowledge structure. Further, card sorting allows the identification of meaningful criteria upon 

which sorting is based, such as identifying concepts that are grouped in terms of their functional 

(i.e., “how to”) usage and concepts that are grouped in terms of their conceptual (“what is”) 

similarity. In some cases, the organization imposed by the participant during card sorting will 
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also provide identification of knowledge deficits that may prevent that participant’s knowledge 

structure from facilitating the interaction with a system (Jonassen et al., 1993). The main 

disadvantages to the Card Sort task are that it restricts the participants to consider only the 

concepts presented on the cards and that it can be biased by the surface similarity of the 

terminology used to describe the concepts on the card or by the recent interaction with a familiar 

system.  

In sum, the criticisms associated with explicit KETs can be attributed to the effects that 

cognitive processes have on the participants’ relationship judgments or groupings, specifically 

those involved in perceiving and evaluating similarity. Further, according to Canas et al. (2001), 

explicit knowledge elicitation techniques only provide a partial picture of the knowledge structure 

– a picture that is dependent on the particular task performed by the participants. 

Conversely, implicit techniques are those that derive knowledge structure through 

semantic priming of knowledge stored in LTM, thereby negating the need for explicit, effortful 

cognitive processes to elicit similarity data.2  Specifically, Navarro-Prieto and Canas (2001) 

suggest employing a Prime Recognition Task in conjunction with explicit KETs in order to study 

how knowledge is stored and used in a particular domain. For the Prime Recognition Task, 

participants are shown a set of information concepts to store in memory for a short period of 

time (i.e., a memory set). Then, in each trial, the participants are presented with the target 

information concept and their task is to decide as quickly as possible whether or not that target 

was part of the memory set. The target is preceded by another information item (the prime). The 

underlying assumption is that if the prime and target are related in the knowledge structure, the 

activation of the prime will facilitate the activation of the target. In other words, through 

spreading activation, the activation of one concept (the prime) will result in the activation of 

highly similar concepts (e.g., a semantically related target). 
                                                 
2 Note: the use of the terms “explicit” and “implicit” to describe these techniques is the author’s decision. Thus the use of 

these terms for their meaning in this study may not be reflective of their use in the greater cognitive psychology literature.  
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In past knowledge elicitation research, the Prime Recognition Task has mainly been 

used to confirm hypotheses about the general organization of knowledge in LTM (Pennington, 

1987; Navarro-Prieto & Canas, 2001). The present study, however, explored the use the Prime 

Recognition Task as an implicit technique to derive knowledge structure. Thus, major 

contributions of the current study will include: 1) the examination of the Prime Recognition Task 

as a KET, and 2) the identification of any practical differences that exist between conceptual 

structures when they are derived through explicit and implicit techniques.  
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Chapter 4 - Analytical Techniques for Knowledge Structure 
Representation & Evaluation 

To review, the process of deriving a representation of how knowledge is structured in 

memory is generally three-fold. First, information concepts representative of the knowledge 

domain must be identified. Second, the psychological proximity between the concepts must be 

quantifiably measured and Chapter 3 reviewed some of the KETs that have been used to 

measure psychological proximity between concepts in memory. Third, proximity data must be 

transformed into a meaningful representation of the psychological proximity between the 

concepts. The first section of this chapter provides an overview of several different scaling 

techniques that can be used to provide meaningful representations of how those concepts are 

related given their psychological proximities. The last section of this chapter describes some 

approaches for evaluating those derived knowledge structures.  

 Knowledge Structure Representation Techniques 

Multidimensional Scaling (MDS), Pathfinder Network Scaling, and Cluster Analysis are 

three of the most commonly used analysis techniques to reduce the set of psychological 

proximity data into a graphical form that is easier to visualize, facilitating both qualitative and 

quantitative interpretation of the resulting conceptual structures.   

 Multidimensional Scaling 

Multidimensional scaling (MDS) refers to a series of data analysis methods that visually 

represent the underlying structure and relation between objects or events for which data have 

been collected (e.g., Young & Hamer, 1987). The data consist of proximities placed into matrix 

format that quantify the strength or degree of relation (e.g., similarity) between objects or events 

represented in the matrix (Kruskal & Wish, 1978). MDS methods vary in terms of a number of 

factors including the space used to represent the data structure (e.g., Euclidean, non-Euclidean) 
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and whether or not they take into account individual differences. However, the one defining 

element of all MDS methods is the spatial representation of data structure along dimensions 

thought to represent features or attributes that differentiate the concepts (Young & Hamer, 

1987). Figure 4.1 provides an illustration of a spatial layout of a two-dimensional MDS solution 

for proximity data gathered about a list of concepts occurring in nature. In this example, MDS 

analysis revealed that the features or attributes that define these concepts are 1) whether they 

are living or non-living and 2) whether they are plants or animals.  

 

 

Figure 4.1. Illustration of the spatial layout of an MDS solution in two-dimensions (adapted from 
Schvaneveldt et al., 1995). 

 

Torgerson (1952) is credited with introducing MDS to the field of Psychometrics, defining 

the MDS problem space, and providing the first metric solution. His main motivation was to 

improve upon what he saw as the limits of traditional psychophysical scaling methods, 
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specifically that traditional methods presuppose knowledge of the area being investigated. In his 

own words (1952):  

[Traditional psychophysical scaling methods]…require judgments along a 

particular defined dimension, i.e., A is brighter, twice as loud, more conservative, or 

heavier than B. The observer, of course, must know what the experimenter means by 

brightness, loudness, etc. In many stimulus domains, however, the dimensions 

themselves, or even the number of relevant dimensions, are not known. What might 

appear intuitively to be a single dimension may not be necessary…it may be that they 

can be accounted for by linear combinations of others. Other dimensions of importance 

may be completely overlooked. In such areas the traditional approach is inadequate. (p. 

401) 

Thus, MDS differs from traditional psychological scaling methods in two important ways 

(Torgerson, 1952). First, MDS does not require judgments along a given dimension. Rather, 

MDS utilizes judgments of similarity (or dissimilarity) between the stimuli. Second, the 

dimensionality and the scale values of the stimuli are determined from the data themselves, 

rather than having to be predefined.  

 Pathfinder Network Scaling 

Pathfinder Network Scaling is a structural modeling technique developed to derive and 

represent knowledge structure through the production of link-weighted networks in which 

concepts are depicted as nodes and relationships are depicted by links connecting the nodes 

(Schvaneveldt, 1990). Based on any set of proximity data (e.g., similarity ratings, relationship 

judgments, card sort matrices, etc.), a link is created between each pair of concepts or nodes. 

Each link is assigned a value or weight that reflects the strength of the relationship between the 

nodes. Pathfinder removes links on the basis of relative efficiency. That is, a direct link between 

two nodes is removed if a multi-link pathway exists through the network that is shorter than the 
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direct link. Thus, a link remains in the network if and only if it represents the minimum-length 

path between two concepts. The functions by which path length is computed will yield different 

networks. For instance, the number of links in the resultant network will decrease systematically 

with decreases in the computed lengths of multi-link paths in the network (Schvaneveldt et al., 

1985). Examples of different path length methods include the Minkowski r-metric and the 

parallel method. Figure 4.2 provides an illustration of a network representation of proximity data 

gathered about a list of concepts occurring in nature series of nature concepts, the same 

concepts used in the illustration in Figure 4.1 above.  

 

 

Figure 4.2. Illustration of a Pathfinder network representation (adapted from Schvaneveldt et al., 
1995). 
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 Cluster Analysis 

Another common technique for mapping participants’ knowledge structures is cluster 

analysis (e.g., Richard, Kleiss, & Bittner, 2004). Cluster analysis is an exploratory data analysis 

technique that can be used to sort different concepts into groups based on the degree of 

association (i.e., relatedness) between them. Two objects belong to the same group if they have 

maximum association and belong to different groups if they have minimal association. For 

instance, Lightning and NEXRAD radar returns are types of weather information and may be 

perceived to be highly related and would therefore end up being clustered together within the 

same group. Conversely, traffic awareness may not be perceived to be as related to NEXRAD 

information and therefore they would probably not end up being clustered together into the 

same group. There are several cluster analysis methods (tree clustering, block clustering, k-

Means clustering) that differ in the procedures for defining clusters.  

 The Use of MDS as the Representation Technique 

 Comparing MDS to Cluster Analysis  

Like MDS, Cluster Analysis uses proximities or distances between cases or variables. 

However, there are several deficiencies of Cluster Analysis when compared to MDS. First, in 

Cluster Analysis, it is typical to have a qualitative grouping of items into clusters. However, 

Cluster Analysis provides no real explanation about why that structure exists. MDS analysis 

results in a graphic representation that allows both visual and quantitative examination of the 

distances between each concept, with the nature of the dimensions providing some explanation 

as to why the structure exists in that form.  

Also, MDS can be performed on multiple matrices, while Cluster Analysis can handle 

only one matrix. Therefore, in order to perform a Cluster Analysis using data from multiple 

participants, data must be aggregated into a mean matrix. This mean matrix attenuates the 
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variance among participants within a group. Consequently, the resultant group hierarchy gives 

an incomplete picture of the conceptual structures of the group (Ye, 1998). Not only does MDS 

provide the opportunity for individual differences scaling, it also provides a quantitative 

indication of how well each individual participant fits the overall model representation.  Lastly, 

there is no way to identify whether or not differences in clustering across groups is statistically 

significant (George & Mallery, 2009).  

Past research has shown that menu structures based on Cluster Analysis derived from 

end-user conceptual structures support improved performance and facilitation of menu structure 

learning (Lewis, 1991; McDonald, Stone, Liebelt, & Karat, 1982). However, for more complex 

systems, the advantages of cluster analysis may be diminished. Cluster Analysis forces an 

individual function or information element into a single cluster only, even though it may also be 

closely associated to functions or items in other clusters. This potential masking of other 

possible relationships between functions and elements may result in an oversimplified menu 

design, devoid of interconnections and redundancies that are increasingly common and 

important in complex MFDs (Richard et al., 2004).  

In sum, MDS was chosen over Cluster Analysis as the representation technique 

because MDS 1) provides some insight into the structure (i.e., identifies underlying dimensions), 

2) accounts for individual differences in the model and provides a metric for how well each 

individual’s data fits the model, and 3) reduces the probability of oversimplified structures 

because it does not force items to fit into just one group.  

 Comparing MDS to Pathfinder 

Both MDS and Pathfinder use estimates of psychological proximity as data with the end 

goal of reducing this large amount of proximity data into a meaningful and interpretable form. 

However, the two techniques approach achievement of that goal from different perspectives. 

MDS is concerned with identifying the semantic dimensions that underlie a set of concepts and 
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representing how those concepts cluster on those dimensions. The dimensions themselves 

provide an indication of how the concepts are organized in memory, with the Euclidean distance 

between the points representing the psychological distance between the concepts. Pathfinder 

judges the importance of the relationship between items in each pair of concepts and builds a 

network representation based on those individual relationships. Links between two concepts are 

only included in a network if that link represents the minimum length path between those 

concepts. Because MDS uses a least-squares technique to determine the location of all 

concepts in some k-dimensional space, each rating between all pairs of concepts is treated the 

same and has the same amount of influence on the spatial solution. This, in turn, could result in 

some distortion in the representation of strong associations as the solution has been made to fit 

all ratings data (Branaghan, 1990).  

Several previous research studies have compared Pathfinder and MDS as techniques 

for representing knowledge structures (e.g., Branaghan, 1990; Cooke, Durso, & Schvaneveldt, 

1986; Goldsmith, Johnson, & Acton, 1991; Gonzalvo, Canas, & Bajo, 1994; Schvaneveldt et al., 

1985). In general, most research studies have concluded that both MDS and Pathfinder 

approaches provide valid techniques for assessing and representing knowledge structures 

(although see Arabie, 1993 for a critique of Pathfinder). However, previous research has 

suggested that because of their differing perspectives on how to represent knowledge structure 

(i.e., MDS focuses on underlying dimensions while Pathfinder focuses on network structure), the 

techniques provide different structural aspects of the knowledge domain. Specifically, MDS 

seems to capture more global information about knowledge structure and Pathfinder networks 

seem to represent more local relationships between concepts in knowledge structure 

(Gonzalvo, Canas & Bajo, 1994). For example, in tasks that require a global analysis of 

concepts (e.g., categorization, analogy completion), MDS representations are predictive of 

performance (e.g., Rips, Shoben, & Smith, 1973; Rumelhart & Abrahamson, 1973). For tasks 
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that rely on relationships between individual concepts such as free recall and paired associates, 

Pathfinder representations are predictive of performance (e.g., Cooke et al., 1986; Branaghan, 

1990).     

In order to compare and contrast the KETs, it was necessary to control for as many of 

the potential confounding variables as possible. One necessary control was to limit the number 

of weather-related concepts upon which to assess knowledge structure to 15 (Chapter 9 

provides more information about the necessity of this constraint). These 15 concepts, while still 

representative of pilots’ knowledge structure for weather, did not constitute a comprehensive 

representation by any means. Because the concepts were limited to 15, it was decided to focus 

primarily on assessing the global relationship between these concepts rather than the local 

relationships because it was assumed that any insight gained about local relationships would be 

largely dependent upon the concepts that were actually included in the analysis. For example, if 

two additional concepts were added to the study and the study was replicated, the local 

relationships between the concepts would be more likely  affected by the inclusion of these two 

extra concepts than would the global relationships between the concepts. Thus it was feared 

that the information gained from an analysis of the local relationships between this limited 

number of concepts would be less indicative of pilots’ actual knowledge structure for weather 

information than would the global relationships between these limited number of concepts. 

Since MDS has been shown to provide more quality information about global relationships 

between concepts relative to Pathfinder Network Scaling (e.g., Schvaneveldt et al., 1985), MDS 

was chosen for use in this study.     

 Approaches to KET Evaluation 

Most approaches to evaluating conceptual structures share the common theme of 

evaluating one conceptual structure within the context of some standard. One approach is to 

quantify the similarity between the empirically derived conceptual structure and the actual or 
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known structure of the domain content (e.g., Shavelson, 1972). However, often the actual 

structure of the domain content is unknown. Therefore, a second approach is to compare 

different types of conceptual structures (Goldsmith et al., 1991). For example, conceptual 

structures of novices have often been compared to conceptual structures of experts. Also, 

conceptual structures of the same individuals have been compared before and after training. 

Correlations (e.g., Goldsmith et al., 1991; Gonzalvo et al., 1994) and the Mantel Test (e.g., 

Valero & Sanmartin, 1999) are two techniques that have been used by previous studies to 

compare conceptual structures. Both techniques will be employed in the current study.  

 Correlations 

A correlation statistic determines a coefficient of correlation between two matrices of 

proximity data. One can compare intergroup correlations with intragroup correlations, which 

provides an understanding of the relative closeness of the conceptual structures for individual 

participants who may share a common grouping characteristic (e.g., experts or novices). 

However, correlations provide no indication about the nature of the differences in the conceptual 

structures between the groups of participants (Ye, 1998).  

 Mantel Test 

The Mantel Test (Legandre & Legandre, 1998; Mantel 1967; Sokal & Rohlf, 1995) uses 

sampled randomization techniques to test whether the association or relationship between two 

matrices is stronger than what would be expected by chance. Unlike conventional statistical 

analyses, the Mantel Test does not assume independence of samples. Another advantage of 

the Mantel test is that it can be applied to different types of data (e.g., categorical, rank, interval-

scale) as long as those data can be transposed into a distance measure (e.g., dissimilarity 

matrix). See Chapter 10 for more explanation of the Mantel Test.  
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Chapter 5 - Application of Knowledge Structures to HCI 

The field of human factors has been at once a benefactor and beneficiary of knowledge 

elicitation research. Human factors and basic psychological research have contributed 

significantly to the development of knowledge elicitation methodology. Methods like structured 

interviews, card sort, and semantic scaling with their foundation in human memory and 

perception have made the process of knowledge elicitation more efficient than the unstructured 

interviews that were relied upon by the computer scientists who showed initial interest in the 

application of knowledge elicitation (Hoffman, 1998). Previous chapters of this document have 

provided an overview of the current methods or techniques for knowledge elicitation (Chapter 3) 

and representation (Chapter 4) of which Human Factors is partially responsible for creating. 

However, the fields of Human Factors and HCI have also benefitted from the application of 

these KETs, especially within the context of interface design and training. This chapter provides 

a select review of some of those most relevant contributions.  

 Contributions to Interface Design 

 The application of the knowledge structure construct to HCI most notably provides the 

theoretical foundation for the “mental model hypothesis” in system display design (e.g., Norman, 

1988). The “mental model hypothesis” in HCI is based on the assumption that faulty or 

incomplete representations (or misconceptions) of knowledge structures in system design lead 

to user errors. The types of errors that users make can be understood (and may ultimately be 

eliminated) by deriving a model of their knowledge structures (Kellogg & Breen, 1990). In other 

words, when learning to use a new system, exposure to new technology requires the user to 

add new knowledge to their existing knowledge structures and modify the old knowledge 

structures in order to incorporate the newly learned information. Thus, new technology should 

be easier to learn, use and remember (and require less training time) if its content and 
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organization is consistent with the content and organization of the user’s existing knowledge 

structure. Further, if system designs adhere to the principle of consistency (Wickens, Gordon, & 

Liu, 1998), users will be able to correctly infer how to complete a novel task based, in part, on 

the knowledge acquired through previous experiences (Roske-Hofstrand & Paap, 1986). Thus, 

not only will an interface that capitalizes on and incorporates users’ existing knowledge 

structures support quicker learning, but it should also facilitate remembering and elicit a more 

efficient interaction with the system.  

Since most of the interaction between a user and a system takes place primarily through 

menu selections, it is imperative that the menu structure and terminology be consistent with the 

user’s knowledge structure. Previous research on menu layout supports the importance of 

interface organization. Several studies have found that users are able to locate items more 

quickly in menus that were categorically organized, compared to alphabetical or random (e.g., 

McDonald, Stone, & Liebelt, 1983; Salmeron, Canas, & Fajardo, 2005; Halgren & Cooke, 1993). 

Researchers reasoned that the benefit to performance was because the categorical 

arrangement of the menus had a high correspondence with the structure of the user’s 

knowledge about the domain.  However, Parkinson, Sisson, and Snowberry (1985) caution 

against blanket generalization of these findings to all forms of menu selection or 

implementation, as they found that categorization does not always show superior performance 

to alphabetized lists, especially when other design and situational factors are considered (e.g., 

spacing between groups, row vs. column arrangement, familiarity of terms, type of menu 

selection task).  

A few attempts have been made to derive users’ knowledge structures for the specific 

purpose of improving the menu organization (e.g., Williams & Joseph, 1998; Schvaneveldt et 

al., 2000; Jonsson & Ricks, 1995; McDonald, Dearholt, Paap, & Schvaneveldt, 1986). One 

seminal study that examined the application of knowledge structure as a guide to menu 
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organization in an aviation-related context was Roske-Hofstrand and Paap (1986). They created 

34 panels, each containing a “chunk” of information representative of the types of information a 

Flight Management System (FMS) would display. Four pilots with varying levels of flight 

experience rated the similarity of each pair of panels using a 9-point scale with smaller numbers 

indicating less similarity. The ratings were submitted to a Pathfinder analysis which yielded 

meaningful information about local relationships between information elements, but the 

Pathfinder analysis had to be supplemented with Graph Theory in order to identify the items that 

would appear on a “main menu” page (highest level of organization) as Pathfinder is less useful 

for providing meaningful information about global organization. Thus, based on the Pathfinder 

and Graph Theory results, three menu structure prototypes were created based on users’ 

conceptual structure. Each prototype differed in the level of redundancy of the links between 

information concepts. A fourth prototype was created based on the recommendations of a 

design team rather than on derived user knowledge. Results showed that a menu structure 

based on conceptual structure that offers the maximum number of meaningful pathways from 

the top level to the bottom level (i.e., high redundancy) was easiest to learn and use.  

Williams and Joseph (1998) performed a similar study with respect to the organizational 

design of multifunction displays (MFDs). They had 148 pilots of varying experience levels 

perform a card sort task of 48 flight related data elements that could be transmitted to the 

cockpit via data-link. Pilots also rated their familiarity with each item and the importance of each 

item with respect to performing three flight-related functions (communication, navigation, or 

surveillance). Pathfinder analysis was performed on the similarity matrices resulting from the 

card sort task. Their results suggested a foundation upon which to base MFD menu structure 

designs, however, no menu structure prototypes were constructed and validated as part of their 

study.  
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 Contributions to Training and Instruction 

As previously discussed, people with different levels of experience with a particular 

domain and/or tasks within that domain may develop different representations of that domain 

knowledge which may then lead to different levels of performance on a task (Ye, 1998). The 

correlation between experience and enhanced performance is most often attributed to 

experienced users having better organized knowledge representations that facilitate better 

performance. Therefore, investigating the differences in knowledge structure between groups of 

different skill levels (e.g., experts and novices) can lead to insights into how training and support 

tools may be designed to help facilitate enhanced performance by novices.  The previous 

section reviewed some of the literature regarding how knowledge structures have been applied 

to interface design. This section will review a few examples of how derived knowledge 

structures have been used to facilitate training or instruction. 

Knowledge structure assessment has been used to impact the content and organization 

of training courses. For example, knowledge structures can be assessed before any training 

occurs to identify how best to structure the training so that it capitalizes on existing knowledge 

(Whitener & Brodt, 1994; Dorsey et al., 1999). Also, knowledge structures can be used to 

identify which concepts are not well understood by novices compared to those who are more 

experienced in the domain. Note that since experienced users have developed a large database 

of knowledge, it is important that the knowledge essential to domain expertise be distinguished 

from knowledge that is not. The scaling-based KETs (e.g., card sort, similarity ratings) may be 

helpful in identifying which conceptual relationships are present in multiple experts’ knowledge 

structures, suggesting high importance of those relationships to domain expertise (Schvaneveldt 

et al., 1985).  

Knowledge structure assessment has also been used to assess the consequences or 

impact of specific types of training. For example, Kraiger, Ford & Salas (1993) proposed a 
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three-dimensional approach to training evaluation, with cognitive, skill-based, and affective 

components. Achievement tests, the most typical assessment of cognitive learning (i.e., 

knowledge acquisition), were questioned as to their ability to discriminate high levels of 

cognitive development. Therefore, the approach of Kraiger and colleagues relied on the 

assessment of knowledge structure, specifically the comparison of knowledge structures before 

and after training, to assess the impact of training on knowledge acquisition.  

 Selecting the Appropriate KET 

As reviewed in Chapter 3, there are a multitude of KETs that have been developed with 

the intent to provide insight into knowledge structure organization. However, no one method has 

achieved universal acceptance (Rowe et al., 1996). The KETs vary in terms of several key 

characteristics, including 1) level of ecological validity of the situation, 2) level of involvement of 

the researcher, and 3) the level of behavior/introspection required by the user. These 

characteristics may affect the type of knowledge assessed (e.g., procedural vs. declarative) as 

well as the reliability and validity of that assessment. Consequently, KET acceptability is 

dependent on the goals of knowledge elicitation, with some KETs more equipped to support 

some goals than others.   

Some research studies have been devoted to the evaluation of some KETs in terms of 

their reliability and validity. However, more research is needed. For example, Rowe and 

colleagues (1996) compared four KETs (laddering interview, diagramming task, think aloud 

task, and similarity ratings) and found that the laddering interview and the similarity ratings were 

the only techniques that were predictive of troubleshooting performance.  Dorsey and 

colleagues (1999) compared concept mapping and similarity judgments with traditional 

measures of declarative knowledge. They found a low level of convergence between concept 

mapping and relatedness judgments, suggesting that the two KETs were tapping into different 

types of knowledge. Further, they found only small correlations between concept maps and 
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similarity ratings with traditional measures of declarative knowledge, suggesting that the KETs 

are also assessing a construct different from declarative knowledge.   

Fiore, Fowlkes, Martin-Milham & Oser (2000) were interested in understanding whether 

card sort and similarity ratings would measure different aspects of “expert” knowledge. They 

found a significant correlation between the raw data gathered from the two KETs. However, 

when looking at the intersubject correlations between high and low-time pilots (based on total 

flight hours), card sort correlations were able to reliably distinguish among the different groups 

but the similarity rating correlations were not. However, this study used a relatively small 

number of participants (N=14) and the average total flight hours that distinguished “more 

experienced” pilots (M=2142 hrs) from “less experienced” pilots (M=1540 hrs) was relatively 

small. Thus, this study provides some interesting insights into the understanding of KETs and 

their interaction with experience level but more research is needed.  
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Chapter 6 - Research Objectives & Overview of Methods 

Pilots learn about and use weather information in virtually every phase of flight. Previous 

research has found that flight experience plays a role in weather-related decision-making, 

especially in terms of being able to recognize and diagnose in-flight weather problems (e.g., 

Burian, Orasanu, & Hitt, 2000; O’Hare, Owens & Wiegmann, 2001). However, research has also 

shown that even experienced pilots lack some confidence in their abilities to diagnose problems 

related to weather (Goh & Wiegmann, 2002). One key component of the general decision-

making process is the ability to diagnose a problem and evaluate pieces of information 

pertaining to that problem. According to the information processing model of decision making 

proposed by Wickens and Hollands (2000), LTM and WM influence this diagnostic stage of the 

process. Therefore, understanding how weather-related information is structured in the memory 

of both novice and experienced pilots could provide insight into how decision aids (e.g., MFDs) 

and training materials should be designed to facilitate weather-related decision-making and 

problem-solving.   

As reviewed in Chapter 3, several different techniques have been used to elicit 

knowledge structures. The choice of technique may influence how well the conceptual structure 

represents the knowledge structure (e.g., Bijomolt & Wedel, 1995). Further, some techniques 

may be more adept than others at resolving differences in knowledge structure as a function of 

domain experience (e.g., Fiore et al., 2000). While previous research provides insights into 

differences between KETs, there is still more to be learned. Thus, the current study seeks to 

expand the understanding of how the choice of technique affects the validity of the resultant 

conceptual structures for pilots of varying levels of experience.  

Some techniques (e.g., Relationship Judgment, Card Sort) require the pilot to engage in 

higher-order cognitive processing (e.g., generate scenarios where both concepts exist) to 

generate similarity data, which may, in turn, jeopardize the reliability and/or validity of the 
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judgments (Reitman & Rueter, 1980). The Prime Recognition Task implicitly derives a pilot’s 

knowledge structure from response times generated from priming pairs of concepts. The task, 

borrowed from the associative memory literature, has been used to confirm hypotheses about 

underlying knowledge structures (e.g., Navarro-Prieto & Canas, 2001) but its use in the current 

study as a knowledge elicitation technique is novel and unexplored. 

Thus, the primary goal of the current study was to compare and contrast three different 

KETs (Relationship Judgment, Card Sort, Prime Recognition Task) for eliciting and representing 

the weather-related knowledge structures of pilots of varying experience. More specifically, the 

current study was designed to address the following research objectives:  

1) Explore the similarities and differences between the three KETs in terms of 1) the extent 

to which the proximity data are correlated and 2) the ability to identify groups of pilots 

that maintain similar identifiable knowledge structures as a function of experience 

(Chapter 10). 

2) Identify the factors or dimensions underlying pilots’ knowledge structure for weather 

information and how those dimensions are impacted by 1) KET and 2) pilot experience 

(Chapter 11).  

3) Validate and compare the three KETs in terms of their ability to 1) discriminate among 

pilot experience groups and 2) predict pilots’ experience group based on their knowledge 

structures (Chapter 12).  

4) Compare and contrast the KETs on the more practical aspects of their employment, 

including a) time and resource requirements for the researcher and the participant, b) 

data formatting and management requirements, and c) participants’ subjective 

perceptions of the experience (Chapter 13).  

The research objectives were achieved through the completion of three phases. Phase I 

was an information needs analysis designed to generate a master list of weather-related 
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information requirements for maintaining a safe flight. Phase II identified the most familiar and 

important weather-related items in that master list. Phase III employed each of the three KETs 

to elicit psychological proximity data for each of the item pairs. 

 Defining Experience 

The design of the current study is predicated on the fundamental tenet that pilots who 

differ in experience will also differ in their knowledge structure. Ultimately, this tenet is an 

assumption but has its foundation in empirical research and practical application. Several 

studies in cognitive psychology have attributed the differences between expert and novice 

performance in large part to the differences with which information is organized in memory 

(Chapter 2 provides a review of some of these studies). The issue for the current study is how to 

operationally define “domain specific experience” such that differences in knowledge structure 

can be logically assumed.  

Several different indicators have been used throughout aviation research to try to 

capture the notion of “domain-specific experience”. For example, several studies have relied 

upon measures of flight hours to indicate domain experience, such as total flight hours (e.g., 

Goh & Wiegmann, 2002; Fiore et al., 2000), cross-country flight experience (Wiggins & O’Hare, 

1995), and hours flown recently (Goh & Wiegmann, 2002). Pilot certification (i.e., private or 

commercial license) and pilot ratings3 (e.g., VFR, IFR) have also been used (Goh & Wiegmann, 

2002). However, it is unclear which of these measures of flight experience best captures 

domain-specific experience. In fact, Goh & Wiegmann (2002) hypothesize that the importance 

of certain measures of flight experience may be task-dependent, with some measures being 

more important for certain tasks and not for others. 

                                                 
 3 VFR stands for Visual Flight Rules and means that a pilot is only allowed to fly when they can maintain a constant visual 

with the ground (typically visibility of 3 mi and ceiling of 1000 ft. IFR stands for Instrument Flight rules and means that a pilot is able 

to fly using the instruments and, thus, do not have to maintain a constant visual of the ground.  
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The use of total flight hours as an indication of domain specific experience has been a 

fairly common practice in aviation research and within studies focused on knowledge structures 

(e.g., Fiore et al., 2000, Schvaneveldt et al., 1995). In addition, all pilots keep a log of their flight 

hours and the FAA has specific standards and requirements that involve achieving a certain 

number of flight hours in order to achieve different ratings and certificates. It is standard practice 

in the FAA to use total flight hours as an indication of where the pilots are in their career, 

although it is often paired with other measures as well to provide a more comprehensive 

assessment (T. McCloy & C. Donovan – FAA Scientific and Technical Advisors for Human 

Factors, personal communication, April 28, 2011). However, it must be noted that while total 

hours is a necessary component underlying pilot experience, it is certainly not sufficient for 

expertise to develop. If flight time does not occur under increasingly challenging conditions 

(when more domain knowledge and richer experiences can be gained), then increasing total 

flight hours will not be indicative increasing experience level (i.e., an asymptote in experience 

level will be quickly achieved).    

Given that recruiting difficulties made it impossible to get an equal representation of 

pilots in terms of other potential indicators of experience level (e.g., ratings, cross-country flight 

experience, seasons of flying) total number of flight hours was used to capture and quantify 

domain-specific experience for this study. Thus, while the fundamental tenet that pilots who 

differ in experience will also differ in their knowledge structure is technically an assumption, it is 

a logical assumption given 1) previous research in expert-novice studies and memory 

organization and 2) its use as an indication of experience within the domain of aviation. 
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Chapter 7 - Weather Information Needs Assessment (Phase I) 

The purpose of Phase I was to generate a master list of aviation weather-related 

information concepts. These concepts represent the type of weather information pilots need to 

access and/or maintain awareness of in order to maintain safe flight.  

The first step in this assessment was to conduct an inventory of the weather-related 

information currently accessible to pilots through different forms of technology and support 

systems used both during flight planning and while enroute. System designers of commercially 

available MFDs (e.g., Honeywell/Bendix King) were informally interviewed regarding how the 

menu structure and rules of information organization and design were developed for their 

respective systems. In addition, as part of earlier FAA grant-funded work, menu structures were 

inventoried for three commercially available MFDs that display text and graphical weather (i.e., 

the complete menu structures were documented). Also, Williams and Joseph (1998) inventoried 

the various types of data available from the Operational and Supportability Implementation 

System (OASIS) to support their interface design research. OASIS is a computer-based system 

that allows the FAA’s Automated Flight Service Stations (AFSSs) to provide weather briefing 

and flight planning assistance to the GA pilot population through data-link technology. Their 

inventory was consulted to inform the current study as well. Lastly, an inventory was taken of 

the types of data-linked weather information available through the Flight Information Service 

Data Link (FISDL) program. 

The second step in this assessment was to consult previous information needs analyses 

performed for flight-related activities in the GA cockpit. Several previously conducted 

information needs analyses for flight-related tasks were used as an initial starting point (e.g., 

Groce, as cited in Jonsson & Ricks, 1995; Schvaneveldt et al., 2000).  Also, Latorella, Pliske, 

Hutton and Chrenka (2001) conducted a cognitive task analysis of business jet pilots’ weather 
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flying behaviors and identified some primary weather information requirements in the cockpit 

(see also Latorella, Lane & Garland, 2002; Vigeant-Langlois & Hansman, 2002).  

The system inventories and research reviews provided a starting point for understanding 

the type of weather to which pilots needed access in the cockpit. However, each left questions 

unanswered. For example, system inventories only provided insight into weather information to 

which pilots had access, but not necessarily the type of information they needed for flight. 

Second, with the possible exception of Latorella et al. (2001), most previous information needs 

assessments were not specifically focused on understanding weather-related needs. Therefore, 

the third step to Phase I of this study involved applying design research techniques in order to 

more thoroughly understand pilots needs, goals, and context of using weather-related 

information. 

 Method 

 Participants 

Five discussion groups were held with a total of 16 participants, 15 of whom were GA 

pilots. The additional participant was an aviation meteorologist who had flown with GA pilots 

many times but did not, himself, hold a private pilot’s license. Table 7.1 summarizes the 

demographics and other relevant characteristics of the pilots participating in each discussion 

group. As Table 7.1 shows, the pilots represented various levels of aviation experience.   
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Table 7.1. Pilot Demographic Data for Discussion Groups. 

Date/Time of 
Discussion 

Groups 
Location Number 

of pilots 
Age 
(avg) 

Total Hrs 
(avg) Rating 

8/18/05 (AM) Garmin 
(Olathe KS) 2 26.5 297.5 All VFR-rated 

8/18/05 (PM) Garmin 
(Olathe KS) 3 52* 7750* All IFR-rated 

8/19/05 
Aviation Weather 

Center 
(Kansas City , MO) 

3 45.5** 2500** 
2 IFR-rated; 1 

aviation meteorologist 
(non-pilot) 

9/9/05 Douglas Aviation 
(Memphis, TN) 6 24 1603 2 VFR-rated 

4 IFR-rated 

9/22/05 Kansas State Univ. 
(Manhattan, KS) 2 21.5 67.5 2 VFR-rated 

* Based on data from two pilots; one pilot failed to turn in a demographics questionnaire. 
** Based on data from two participants; the non-pilot participant (the aviation meteorologist) did not 
complete the demographics questionnaire. 

 

 Procedure 

Each discussion group began with a brief 15 minute presentation about the study. This 

presentation was designed to inform the pilots about the problem (i.e., organization of 

information in MFDs) and their role in the effort to solve the problem (i.e., the tasks in which they 

will be asked to participate). After the presentation, pilots were asked to sign the informed 

consent form. Discussion groups were video-recorded.  

The discussion group itself was comprised of three different exercises (Word Association 

Task, Forward Scenario Simulation, structured group discussion), each designed to understand 

more about what weather information pilots use for flight planning and enroute. Each exercise 

approached knowledge gathering from different perspectives, with the goal of gaining a more 

thorough assessment of aviation weather-related information needs.   

 Exercise #1: Word Association Task 

The Word Association Task was used as a method to brainstorm an initial list of 

important weather-related concepts (see Jonassen et al., 1993 for more information). During the 

task, pilots were shown a series of 28 weather- and/or aviation-related terms presented via 
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Power Point. For each weather information concept (the cue), they were asked to write down as 

many related terms as they could think of in one minute. They were told to write down terms 

immediately as they came to mind. After that one minute, they were asked to go back over the 

terms they generated and rank order the terms from most to least related to the original 

concept. Table 7.2 presents a listing of the 28 terms used as cues in the Word Association 

Task. 

 

Table 7.2. Weather / Aviation-Related Terms Comprising the Word Association Task. 

Alternate Airport METAR Forecasts Autopilot 
PIREPs Altimeter Setting Relative Humidity Turbulence 
SIGMET Heading Traffic Fuel On-Board 
Airspeed Ambient Temperature Precipitation Winds Aloft 

Low Pressure Center Visibility Ceiling Taxiway 
Altitude Convective Activity Waypoints Icing 

Estimated Time of 
Arrival 

Radio 
Communications 

Horizontal Situation 
Indicator 

Minimum Safe 
Altitude 

 

The lists produced by pilots could contain any number of the following: 1) alternative 

terminology for the cued concept, 2) other concepts that are related to the cued concept in 

some way (e.g., used to perform the same function, used in combination to perform a function, 

etc.), 3) concepts that have no real meaningful relationship to the cued concept (e.g., only 

recalled because the terms were learned in conjunction with each other, or they remember 

hearing them mentioned at the same time in the past). Therefore, the lists produced by the 

pilots were mainly used to create a more exhaustive list of weather information concepts and to 

identify more appropriate or frequently used terminology to describe or refer to the weather 

information.  

 Exercise #2: Forward Scenario Simulation 

After the Word Association Task, pilots participated in a structured interview employing 

the Forward Scenario Simulation method (Burton & Shadbolt, 1987). Pilots were presented with 
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a scenario and then were asked to verbally identify the steps they would take to resolve the 

situation. This technique was chosen because it provides situational context for pilots to 

describe and elaborate on their flight-related problem-solving and decision making strategies 

without having to actually perform tasks (i.e., flight) during the session. It also does not require 

the researcher/facilitator to have prior knowledge about how the task is performed.  

For each scenario, pilots were given basic information about the flight (aircraft type, how 

many pilots aboard, destination and departure airport, flight plan, weather conditions and flight 

route) as well as a narrative about the type of problem they encountered (see Appendix A) for a 

description of the scenarios used and the information provided). Pilots in each of the groups 

were free to discuss amongst themselves the possible actions appropriate for the given 

scenario. 

 Exercise #3: Structured Discussion 

Lastly, the pilots were asked to discuss their general perspectives on and information 

usage pertaining to weather and aviation, including what types of weather information and 

weather sources they rely on to support their weather-related decisions, define their personal 

minimums for flight, etc. This time was also used to clarify any questions about information 

gathered during the Word Association Task and/or the Forward Scenario Simulation.   

 Results 

Data from the Word Association Task were analyzed in the following way. Each concept 

generated for each cue word by each pilot was entered into an MS Excel file, along with the 

order in which it was generated (i.e., was it the first, second, third, etc.) and the rank order it was 

given by the pilot. Then, two Aviation Human Factors researchers independently went through 

each of the generated terms and grouped them into similar concepts (e.g., the concepts of 

“visibility” and “distance at which you can see” were grouped as the same concept of “visibility”). 
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The two researchers then met to review their individual groupings and identified and resolved 

discrepancies. The result was a master list of all concepts generated through the word 

association task. Terms for information concepts were changed to more appropriately match 

how pilots refer to them if necessary. Lastly, a frequency measure was calculated by summing 

the number of times each of these concepts was generated.  

Tapes were viewed from the discussion sessions and notes were taken regarding pilots’ 

problem-solving and decision making strategies voiced during the Forward Scenario 

Simulations and their answers to the structured discussion questions posed to them at the end 

of the session. The notes were reviewed and information extracted about the weather concepts 

and sources that pilots said they rely on for weather-related decisions. No efforts were made to 

gather frequency data on the number of times each concept was mentioned during either 

exercise. Rather, the end result was a listing of important weather/aviation-related information 

concepts mentioned at least once by at least one pilot during the exercises.  

The resulting lists from the Word Association Task and the discussion exercises were 

cross-referenced with a list of important weather/aviation-related concepts identified in previous 

information needs and knowledge elicitation studies (e.g., Roske-Hofstrand & Paap, 1986; 

Williams & Joseph, 1998; Groce, as cited in Jonsson & Ricks, 1995; Schvaneveldt et al., 2000) 

to ensure consistency. The end result of Phase I was a comprehensive list of 68 unique 

information requirements pilots rely on for weather-related decision-making (see Table 8.2 in 

Chapter 8). These concepts provided the basis for the stimulus lists used in Phase II and 

ultimately in Phase III as well.  
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Chapter 8 -  Identification of the Primary Weather Information 
Concepts (Phase II) 

The purpose of Phase II was to identify the information concepts to be used in each of 

the three KETs to elicit pilots’ knowledge structures for weather information in Phase III. The 

final list was identified through two steps. First, an online survey was conducted to identify the 

importance of the 68 concepts identified through Phase I. Second, because the goal of this 

study was to make comparisons across three different KETs, it was necessary to use the same 

list of concepts in each of the three KETs.  Given the nature of two of the KETs, the list of 

concepts had to be reduced to 15 in order to accommodate pilots’ time availability and to guard 

against fatigue.   

 Method 

 Participants  

GA pilots were recruited to participate in this study. Emails were sent to nearby pilot 

organizations (e.g., KSU Salina, FAA employees, nearby flying clubs, etc.) and those who 

received the email were encouraged to forward it to other pilots. Advertisements were also 

placed in lobby areas of several local GA airports and posted to several GA pilot online forums. 

The only qualification for participation was that they had to hold a current flight license. 

Sixteen pilots ultimately volunteered to participate (14 males, 2 females). Of these 16, all 

but one had their instrument rating. The IFR-rated pilots averaged 1096 total hours (SD=764 

hrs), while the one VFR pilot reported having 225 total hours. Three of the 15 IFR-rated pilots 

reported not having flown at all under IFR during the previous six months. Table 8.1 provides a 

summary of the pilots’ demographic information.   
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Table 8.1. Demographic information for pilots participating in Phase II.  

  Number of 
pilots Gender Age 

(average) 
Total Hours 

(average) 

IFR-Rated pilots 
 15 13 male 

2 female 

32 yrs 
(stdev=13) 

Range: 21-56 

1096 hrs 
(stdev=764) 

VFR-Rated pilots 1 1 male 30 225 hrs 

 

 Procedure 

An on-line survey was used to identify the most important weather-related concepts from 

the 68 concepts identified from the information needs assessment conducted in Phase I. The 

on-line survey consisted of a brief demographics questionnaire, followed by a listing of the 68 

terms. Pilots were asked to rate the importance of each term for weather avoidance on 9 point-

Likert scale (1 = not important at all; 9 = extremely important). They were given the following 

instructions: “For the following section, imagine that you are approximately 45 minutes into a 

scheduled 2 hour flight and it is your desire to avoid hazardous weather that may or may not 

affect your flight. For each of the following information concepts, please rate how important each 

is to the task of avoiding hazardous weather and maintaining safe flight.”  

The survey was on-line for approximately 3 weeks. Due to time constraints, data had to 

be extracted and analyzed at the end of 3 weeks’ time. By this time, 16 pilots had completed the 

survey.  

 Results 

Average importance ratings were calculated for each of the 68 terms that were rated. 

The terms were then divided into two categories – weather concepts and non-weather concepts. 

Weather concepts were defined as actual weather phenomena or reports of weather 

phenomena. Non-weather concepts were aviation-related terms that were not specific weather 
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events but could be affected by weather or could affect weather avoidance. Table 8.2 provides 

the mean importance ratings for each of the weather-related and non-weather-related concepts.  

Table 8.2. Pilots’ Average Importance Ratings for Information Concepts (1-9 Likert Scale). 

Weather Concepts  Non-Weather Concepts 
Term Rating  Term Rating

Icing 8.58   Fuel On-board 8.67 
Precipitation Type (e.g., rain, snow, hail, 
etc.) 8.42   Type of Flight (IVR, VFR) 8.00 
Thunderstorms 8.42   Restricted Airspace 7.33 

Freezing Level 8.33   Altitude AGL 7.17 
Ceiling 8.08   AWOS 7.17 
Ambient Temperature 8.00   NAVAID Operational Status 7.08 
Lightning 7.75   ASOS 7.08 
Convective SIGMET 7.58   ATIS 7.08 
Cloud Type (e.g., scattered, overcast, etc.) 7.50   Minimum Safe Altitude (MSA) 7.00 
Visibility 7.50   Approach Types 6.92 
Weather Forecasts 7.42   Alternate Airport 6.83 
Cloud Proximity 7.25   Margin Above Stall 6.58 

Wind Velocity 7.17   NOTAMs 6.50 

Terminal Aerodrome Forecast (TAF) 7.08   
Runway Information (e.g., length, 
orientation, surface, active, etc.) 6.50 

Surface Observation 7.00   Destination 6.25 

Temperature/Dewpoint Spread 7.00   
Radio Frequencies (e.g., FSS, Flight 
Watch, etc.) 6.17 

Weather Trend (e.g., developing or 
dissipating) 7.00   Traffic Conflicts 6.17 
SIGMET 6.92   Ground Track 6.08 
PIREPs 6.83   Indicated Airspeed 6.08 
Dewpoint 6.67   Nearest 6.00 
METAR Report 6.67   Estimated Time of Arrival (ETA) 5.92 
Weather Fronts 6.67   Altitude MSL 5.83 
Turbulence 6.58   Estimated Time Enroute (ETE) 5.83 
Wind Shear 6.58   Flight Plan 5.83 
Wind Direction 6.50   Heading 5.75 
AIRMET 6.33   Rerouting 5.75 
Cloud Tops 6.33   Terminal Information 5.75 
Radar 5.75   GPS Operational Status 5.67 
Area Forecast (FA) 5.67   Engine RPM 5.58 
NEXRAD 5.58   Traffic Information 5.50 
Runway Visual Range (RVR) 5.42   Direct-to 5.17 
      Airspace Class 5.08 
     Barometric Pressure 4.83 
     Datalink Status 4.75 
     Departure Time 4.67 
     Traffic Patterns 4.67 
      Departure Point 4.08 
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 Finalizing the List of Weather-Related Concepts 

Because the goal of this study was to make comparisons across three different KETs, it 

was imperative that the same list of concepts was used in each of the three KETs. However, 

one of the ways the KETs differ is with respect to how the items are presented to participants.  

Specifically, the Relationship Judgment Task and the Prime Recognition Task both require the 

pair-wise assessment of each of the items within the concept list, whereas the Card Sort Task 

does not. The number of pair-wise combinations generated for a given list length (N) is defined 

by the following formula: 

  

Total # of pair-wise comparisons   =  N*(N-1) (1)

     2 

Thus, the length of the study was directly proportional to the number of concepts. For 

example, a list of 30 concepts results in 435 pair-wise comparisons and a list of 40 concepts 

results in 1225 pair-wise comparisons. Given concerns about fatigue and the limited availability 

of GA pilots, the goal was to ensure that the Relationship Judgment Task and the Prime 

Recognition Task were each able to be completed in less than one hour. Therefore, the final list 

of weather-related concepts was limited to 15, resulting in 105 different pair-wise comparisons.  

The final list of 15 most important weather-related concepts was derived from the 

information in the left column of Table 8.2 above. Concepts included in the final list had to be 

highly rated as important and they also had to satisfy the following constraints: 1) only concepts 

consisting of one or two words were used, and 2) if two concepts were too conceptually similar 

only one was used in the final list (e.g., thunderstorms and Convective SIGMET). These 

constraints were put into place so that the items in the final list would be appropriate for use in 

the Prime Recognition Task (the implicit elicitation task). The logic and importance behind these 

constraints are further discussed in Chapter 9 under the description of the Prime Recognition 
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Task. Table 8.3 lists the final 15 items used as stimuli for the knowledge elicitation tasks in 

Phase III.4 A Professor from the Kansas State University (KSU)-Salina Aviation Program helped 

in the applying the constraints to the final concept list. 

 

Table 8.3. Fifteen Weather-Related Concepts to be used as Stimuli in the Phase III Knowledge 
Elicitation Tasks. 

Ambient Temperature Dewpoint Cloud Proximity 
Precipitation Type Icing Turbulence 

Freezing Level Thunderstorms Lightning 
Visibility Ceiling Wind Direction 

Wind Velocity Sky Conditions TAF 
 

 

                                                 
4 Many of the concepts in Table 8.2 were used as distractor concepts in the Prime Recognition Task in Phase III. 
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Chapter 9 - Knowledge Elicitation (Phase III) 

The information needs assessment conducted in Phase I and the importance ratings 

study in Phase II culminated in a list of 15 important weather-related concepts to be used as 

stimuli for the knowledge elicitation tasks employed in Phase III. Again, the purpose of Phase III 

was to derive pilots’ knowledge structures for weather-related information.  

To review, three techniques were used to elicit pilots’ knowledge structures for weather-

related information. Two of the techniques, the Relationship Judgment Task and the Card Sort 

Task, are well established within the psychological and HCI domains as techniques for eliciting 

knowledge structures. However, the major drawback of these techniques is that each explicitly 

asks pilots about how they organize information or how they perceive information to be related, 

and therefore, may be influenced by transitory contextual factors or by the cognitive processes 

necessary for completing these tasks. Consequently, the way pilots say the information is 

organized in their memory may not be the way they actually think about that information when 

posed with a real-world situation, especially under time stress and high workload. The Prime 

Recognition Task implicitly derives knowledge structures by assessing relationships or 

associations in memory through examining priming effects on response times to a basic 

memory task. Pilots are unaware of the intent to examine relationships between information 

concepts; therefore, the results should be less susceptible to influences of transitory or 

experimental factors affecting cognitive processing. Thus, comparisons will be made between 

conceptual structures derived using the Relationship Judgment Task, Card Sort Task and the 

Prime Recognition Task.  

 Hypotheses 

The current study was largely exploratory in nature. Therefore, very few hypotheses 

were generated going into the data collection. However, based on previous research regarding 
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knowledge structures and experience, a few hypotheses were set forth across the four 

objectives of the study:  

Objective #1: Explore the similarities and differences between the three KETs in terms of 1) 

the extent to which the proximity data are correlated and 2) the ability to identify groups of 

pilots that maintain similar identifiable knowledge structures as a function of experience. 

• Hypothesis #1: Relationship Judgment and Card Sort should show more 

similarity in how information concepts are related (i.e., the underlying 

dimensions) compared to the Prime Recognition Task. The similarity will be due 

to the fact that they both require pilots to explicitly consider how the concepts are 

similar to each other.  

• Hypothesis #2: Given previous research on the effect of experience on 

knowledge structures, the more experienced group of pilots will show less 

variability in their knowledge structures than will the less experienced groups of 

pilots.  

Objective #2: Identify the factors or dimensions underlying pilots’ knowledge structure for 

 weather information and how those dimensions are impacted by 1) KET and 2) pilot 

 experience 

• No specific hypotheses were generated for what dimensions or factors may 

underlie pilots’ knowledge structures for weather information. However, given 

that the 15 weather concepts were identified at least in part because of their 

importance for avoiding hazardous weather, it is expected that the concept of 

severity or hazard would be represented in some manner in conceptual 

structures from valid KETs. Further, pilots with more experience should have a 

different interpretation of severity than less experienced pilots.  
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Objective #3: Validate and compare the three KETs in terms of their ability to 1) 

 discriminate among pilot experience groups and 2) predict pilots’ experience group 

 based on their knowledge structures. 

• Hypothesis #3: Conceptual structures derived from knowledge structures using 

the Prime Recognition Task should be more consistent among pilots of similar 

experience levels because they should be uninfluenced by variability introduced 

by the cognitive processing required of the explicit techniques. Therefore, given 

that previous research suggests that experts have more well organized 

knowledge structures than novices, the Prime Recognition Task should be able 

to better discriminate among pilots of various experience groups based on the 

differences in their knowledge structure organizations than the other KETs.   

Objective #4: Compare and contrast the KETs on the more practical aspects of their 

 employment, including 1) time and resource requirements for the researcher and the 

 participant, 2) data formatting and management requirements, and 3) participants’ 

 subjective perceptions of the experience.  

• No specific hypotheses were generated for this objective. A qualitative 

assessment and comparison between the KETs will be made based on the 

effectiveness and efficiency with which each supports elicitation of knowledge.   

 Method  

 Participants 

Recruiting posed a significant challenge to this study, both in the ability to access GA 

pilots and in the need to convince them to volunteer significant amounts of their time for no 

monetary compensation. Therefore, to ensure adequate numbers of participants, the only 

qualification for participation was that they had to at least hold a current GA private pilots’ 
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license. GA pilots were recruited to participate through multiple different avenues. Some were 

students and instructors from the KSU-Salina Aviation Program, some were affiliated with the 

FAA and/or other government agencies involved in aviation, and some were recruited based on 

their affiliation with local flying clubs. Data collection locations are listed in Table 9.1 below. In 

total, 53 pilots participated in data collection for Phase III. After data collection was complete, 

however, seven participants’ data were excluded from further analysis because it was 

discovered that these pilots did not hold a current flight license.5 

 

Table 9.1. Data Collection Locations. 

MITRE  Tyson’s Corner, VA
FAA Headquarters  Washington, DC, 
General Aviation Conference  Alexandria, VA 
Garmin  Olathe, KS 
KSU Salina Campus  Salina KS 
KSU Department of Psychology  Manhattan, KS 

 

Pilots were classified into one of three Experience Groups based on their total number of 

hours flown (see Chapter 6 for more discussion on using total number of hours flown as an 

indication of pilot experience). When specifying cutoffs between groups, care was taken to 

minimize the standard deviation in total hours among pilots in each group while also ensuring 

relatively similar numbers of pilots within each of the groups. Table 9.2 provides a summary of 

the demographics information for the three Pilot Experience Groups.  

Six of the 46 pilots were VFR-rated only, meaning they were only rated to fly under 

Visual Flight Rules (VFR). Five of these pilots were categorized as Low-Time pilots and one 

                                                 
 5 During data collection, all pilots who volunteered were allowed to participate, regardless of whether they had maintained 

currency with their license. Once data collection was complete it was decided that enough current pilots had participated so those 

without current licenses were dropped from the study. The majority of those excluded from the analysis were pilots who had retired 

from the commercial airline industry with over 10,000 hrs of total flight time. 

  



56 

 

was categorized as a High-Time pilot, based on their total flight hours. The rest of the 46 pilots 

had their Instrument Rating (IFR). 

 

Table 9.2. Demographic information for the Pilot Experience Groups based, in large part, on 
total number of hours flown. 

Group # in 
Group 

Ave Age 
(yrs) 

Ave Total 
Hrs Flown 

# of hrs flown 
in last 90 days 

# of hrs flown 
in last 6 mo 

Range of 
total hrs 

Low-
Time 
Pilots 

15 25.5 
(SD=9.9) 

208 
(SD=76.7) 

3.5 
(SD=3.8) 

37.1 
(SD=33.4) 65-310 

Mid-
Time 
Pilots 

14 40.9 
(SD=15.9) 

700 
(SD=284.1) 

16.7 
(SD=23.8) 

95.3 
(SD=109.7) 336-1185

High-
Time 
Pilots 

17 49.4 
(SD=10.4) 

5722.2 
(SD=3577) 

17.3 
(SD=30.7) 

98.3 
(SD=100.8) 

1660 – 
15,500 

 

Note that the High-Time group consisted of pilots with the widest range of total hours 

flown (1660 – 15,500 hrs). While this large range constituted a potential concern, the decision 

was made to conduct the initial analyses with pilots divided into these three groups in order to 

maximize the number of participants in each group. It was decided that additional analyses 

could be conducted with the High-Time group subdivided into two smaller groups if the initial 

results imply it is necessary. For example, it may be that knowledge structures of pilots with 

1660 hrs vary widely from knowledge structures of pilots with over 10,000 hrs, resulting in too 

much variability to identify dimensions that underlie knowledge structures of experienced pilots. 

In that case, additional analyses could be conducted with this group further divided into two 

subgroups to see if consistency in knowledge structure improves, but the analysis will require a 

sacrifice in sample size. Alternatively, it may be the case that once a certain level of experience 

is achieved, knowledge structures become more consistent and therefore a 1000 hr pilot may 

be more similar to a 10,000 hr pilot than a 100 hr pilot in terms of how information is structured 

in memory.  Therefore, initial data analysis was conducted with the three Pilot Experience 
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Groups as defined above with the possibility of conducting additional analysis with the High-

Time pilot group sub-divided if the results from the initial data analysis indicate a need.   

 Procedure 

A general experimental procedure was followed for all three KETs. Pilots were run one 

or two at a time.6 The Relationship Judgment Task and the Prime Recognition Task were both 

performed on a laptop computer and keyboard with E-Prime Psychology Software (Schneider, 

2000) used to present the stimuli for the task and collect the data (Schneider, 2000). Card Sorts 

were performed by hand using concepts printed individually on index cards. Depending on time 

availability, one, two, or three Card Sorts could be completed. Each Card Sort differed in the 

number of cards needed to be sorted: 15, 36, and 80 cards.7  Only the data from the 15-card 

Card Sort were included in the final analysis. The stimuli for the Relationship Judgment, Card 

Sort, and Prime Recognition Tasks consisted of the 15 concepts listed in Table 8.3.  

Each data collection session began with a brief 15 minute presentation about the study. 

This presentation was designed to inform the pilots about the problem (i.e., organization of 

information in MFDs) and their role in the effort to solve the problem (i.e., the tasks in which they 

will be asked to participate). Pilots were told that this was a study designed to understand how 

pilots think about weather information. They were also told that the study was funded by an FAA 

grant. After the presentation, pilots were asked to sign the informed consent form and then 

asked to fill out a brief demographics questionnaire.  

                                                 
6 Even when pilots were run two at a time, they were isolated from each other and each completed the KETs separately, 

without input or interference from the other pilot.  
7 The 36-card and 80-card card sorts consisted of additional weather-related concepts and aviation related concepts 

identified from the information needs analysis in Phase I. These data were collected as part of a separate study.  
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Pilots were pseudo-randomly8 assigned to either the Relationship Judgment Task or the 

Prime Recognition Task (Table 9.3). Because the Relationship Judgment Task only required 

approximately 40 min, all but one pilot in the Relationship Judgment Task also completed at 

least one of the three Card Sorts. Because the Prime Recognition Task lasted over one hour, 

pilots assigned to that group were only asked to perform Card Sort(s) if their schedules allowed 

for it. Data collection sessions lasted one to three hours, depending on the number of KETs 

completed. Overall, 75% of the 46 pilots completed two KETs – the Card Sort and either the 

Relationship Judgment or Prime Recognition Task. No pilot participated in both Relationship 

Judgment and the Prime Recognition Task. Table 9.4 provides a summary of the number of 

participants in each Pilot Experience Group to complete two KETs as well as the number of 

pilots completing just one of the KETs. 

 

Table 9.3. Number of pilots from each Pilot Experience Group who participated in each of the 
KETs. Note: Pilots often participated in more than one KET. 

Pilot Experience Group Relationship 
Judgment (RJ) 

Card Sort (CS) Prime Recognition 
Task (PRT) 

Low-Time Pilots 6 12 9 
Mid-Time Pilots 5 12 8 
High-Time Pilots 8 14 7 
Total 19 pilots 38 pilots 24 pilots 
 

Table 9.4. Number of pilots who completed each KET or combination of KETs. 

Pilot Experience 
Group 

Pilots completing 
2 KETs Pilots completing only 1 KET  

RJ & CS PRT & CS RJ only CS only PRT only Total 
Low-Time Pilots 6 6 0 0 3 15 
Mid-Time Pilots 5 6 0 1 2 14 
High-Time Pilots 6 6 2 2 1 17 
Total number of 
pilots 17 18 2 3 6 46 
 35 pilots 11 pilots 
 

                                                 
8 During the last several data collection sessions, care was taken to assign pilots to KETS so that there would be relative 

equality in pilot experience (total numbers of hours flown) across each KET.     
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 Relationship Judgment Task (RJ) 

The Relationship Judgment Task began with brief but explicit instructions on how to 

complete the task on the computer. Pilots were familiarized with the 1-9 Likert scale on which to 

base their judgments (1=not related at all; 9 = highly related). The pilots were not given an 

explicit definition of what “relatedness” meant. Instead, they were just told to make their 

judgment for a pair of concepts based on whatever the term “relatedness” meant to them. After 

they read the instructions, they were given three practice trials using concepts not appearing in 

Table 8.3 and were told to ask for clarification about the task if needed. They then completed 

the 105 relatedness ratings (pairwise comparisons with each of the 15 concepts). The 

relatedness of each pair of concepts was judged only once.  

 

Figure 9.1. Illustration of the procedure for a Relationship Judgment procedure. 

 

Figure 9.1 provides an illustration of the procedure for a given trial. Each trial began with 

a presentation of a fixation point (1000ms), followed by a pair of information concepts. Pilots 
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were instructed to provide their rating of the relationship between the two concepts as quickly 

but as truthfully as possible. After they entered their 1-9 rating via computer keyboard, they 

were presented with a three digit number and asked to count backwards by 3’s until prompted to 

stop (8-10 sec). After 8-10 seconds, a screen appeared asking them to enter via the computer 

keyboard the last number to which they counted. After they entered the number, they were 

asked to press the space bar to begin the next trial. This “interference task” of counting 

backwards by 3’s was designed to make it difficult for pilots to remember their previous 

judgment, as previous research has shown that a relationship judgment can be unintentionally 

influenced by the immediately preceding judgment (Canas et al., 2001). Thus, the interference 

task was used in an attempt to eliminate any traces left in WM from a previous pair-wise 

comparison rating before making the next pair-wise comparison. The Relationship Judgment 

Task took approximately 40 minutes to complete. 

 Prime Recognition Task (PRT) 

As Figure 9.2 illustrates, a trial in the Prime Recognition Task started with the 

presentation of a memory set of four information concepts. The pilot was then presented with a 

fifth information concept not in the memory set (the prime) and was told to memorize all five 

concepts. After the prime, the pilot was presented with another information item (the target) in 

red font. On 60% of the trials, the target was in the memory set (i.e., target trials) while on the 

other 40% the target was not in the memory set (i.e., foil trials). The pilot’s task was to decide as 

quickly as possible whether or not the target was part of the memory set by responding “Yes” or 

“No” using the appropriately labeled key on the computer keypad. The underlying assumption 

was that if the prime and target are related in the knowledge structure, the activation of the 

prime will facilitate the activation of the target, resulting in a shorter time to respond that the 

target was in the memory set.  
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To eliminate some of the variability associated with response time measures, 

participants were instructed to complete the task with each index finger constantly positioned on 

the “Yes” and “No” buttons. For half of the participants, the “Yes” button was mapped to their 

right index finger and for the other half of participants it was mapped to their left index finger. 

This arrangement was to guard against any possible confounds associated with response 

button placement.  

To reduce the possible build-up of proactive interference, the pilots performed one of two 

interference tasks after they made their decision about whether or not the target was in the 

memory set. On 60% of the trials, they were asked to complete the same interference task as in 

the Relationship Judgment Task (i.e., they were prompted to count backwards by three’s from a 

randomly generated three-digit number for 8-10 seconds). On 40% of the trials, they were asked 

to complete a search task in which they were presented with a display of different-colored 

asterisks for approximately 2 seconds and then had to respond with how many red asterisks 

they counted. Both tasks were used to ensure memory traces were cleared in both the auditory 

and visual components of WM.  

Each of the 15 weather-related concepts was used as either a prime or a target, 

resulting in 105 prime-target pairs (i.e., target trials) whose data were used to construct the 

conceptual structures. Fifteen additional target trials were added but were not used to construct 

the conceptual structures, bringing the total number of target trials to 120.  In addition, several 

other information concepts from Phase I were used as distracters in the memory set9, primes, 

and as probes, to comprise a total of 79 foil trials. Thus, the total number of trials seen by each 

pilot was 199. The Prime Recognition Task took approximately 60-70 minutes to complete. 

Measures were taken in constructing the memory sets to protect against participants 

responding whether or not the target was in the memory set based on physical or visual 
                                                 
9 Memory sets for the 105 prime-target pairs (“target trials”) were comprised of combinations of the 15 weather-related 

information characteristics.  
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characteristics of the concepts rather than their meaning. For example, if the target was a two-

word concept, then all of the items in the memory set were two-word concepts. If the target was 

one word, then all of the items in the memory set were one word. If the target was an acronym, 

then all of the items in the memory set were acronyms. Also, the distractor items in the memory 

set were chosen to have relatively low conceptual similarity to the target (e.g., if “precipitation” 

was the target, then the memory set would not include distractor items like “rain” or “snow” or 

“fog”).   

 

Figure 9.2. Illustration of the procedure for a Prime Recognition Task trial. 

 

 Card Sort Task (CS) 

Pilots completed up to three card sorts, depending on their time availability. Card Sort #1 

consisted of the same 15 concepts from Phase II that were used in the other two KETs.  Card 

Sort #2 consisted of 36 weather-related concepts (the 15 original concepts and 11 additional 

weather-related concepts from Phase II). Card Sort #3 consisted of 80 concepts (the 36 
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weather-related concepts in Card Sort #2 and 44 additional non-weather-related concepts from 

Phase I). [Only data from Card Sort #1 were analyzed as a part of the current study.] 

To begin the Card Sort task, each pilot was presented with the stack of cards along with 

several blank cards (Figure 9.3). Each card had an information concept printed on one side. The 

card sort was an “open” card sort, meaning that participants create their own groups (as many 

or as few as they like) and apply labels to each of the group. This is different than a closed card 

sort in which participants are given pre-determined categories into which they are to sort a stack 

of cards.  

Pilots were instructed to read every card and sort the cards into groups that seemed 

appropriate. They were given no further instructions on how the cards were to be sorted or the 

number of groups that could be created. Pilots were instructed to not be concerned with trying to 

organize the information as they have seen it organized in MFDs or other displays. Rather, the 

pilots were told to organize the cards as they perceived the relatedness of the concepts.  

Since the goal of the card sort was to understand how participants think about and relate 

the concepts to each other (i.e., elicit their knowledge structure of the concepts), very few 

restrictions were placed on their ability to organize the cards. They were given several 

allowances with their Card Sort for fear that some procedural restrictions may artificially 

influence their groupings:  

• They were allowed to create a duplicate card if they felt the concept belonged in 

more than one category.  

• If they encountered a concept that absolutely did not belong in a cockpit display, 

they were allowed to create an “outlier” pile 

• They were allowed to create hierarchies of card groups (i.e., subgroups of cards 

within a larger group).  
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• If a pilot found a card whose label did not seem appropriate or descriptive of the 

concept, he/she was instructed to write a “better” label on the card. 

Once the groups were established, pilots were asked to provide labels for each group and/or 

subgroup. The number of times each information concept was grouped with another was 

calculated by hand and input into a matrix as proximity data.   

 

Figure 9.3. Illustration of the procedure for the Card Sort task.10  

 

 Preparation of Data for Analysis 

Raw data collected from each of the three KETs were submitted to initial analyses that 

served two major purposes. First the analyses helped determine the best approach to coding 

and/or trimming the data. Second, the analyses were conducted to explore whether the Pilot 

Experience Groups differed in their general approach or ability to perform the KETs. The 

                                                 
10 (Images courtesy of the following websites: http://nform.ca/tradingcards/2007_01.jpg, 

http://www.officeclipart.com/office_clipart_images/a_stack_of_papers_and_documanets_in_an_office_0515-1007-3003-

0814_SMU.jpg, http://www.foviance.com/wp-content/uploads/2009/03/card-sorting-3.jpg ) 
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following section provides a brief description of data preparation procedures and a summary of 

the results from the initial explorations into differences between pilot experience groups on raw 

data from each of the three KETs. Appendix B provides more detailed discussion of the results.   

 Data Coding & Formatting 

While all data from each of the KETs had to be prepared for analysis, some KETs 

required more data preparation than others. The goal of data preparation was to transform the 

raw data into dissimilarity data (i.e., higher numbers correspond with greater dissimilarity) 

because it is recommended that MDS be applied to dissimilarity data rather than similarity data. 

The Relationship Judgment Task required the least amount of data preparation while the Card 

Sort task required the most data preparation.  

Relationship Judgment. When the data were extracted from the E-Prime Psychology 

Software program, it was in the form of similarity judgments between pairs of concepts because 

participants were asked to rate the relatedness with higher numbers indicating greater 

relatedness or similarity on a 9-point scale. Thus, each relationship judgment data point was 

recoded to represent a dissimilarity judgment by subtracting it from 10 (dissimilarity = 10 – 

similarity judgment). 

Prime Recognition Task. Data extracted from the E-Prime Psychology Software program 

were in the form of response times between prime-target pairs of concepts. Response times 

were fairly uniform without the presence of many extreme outliers. To help decide whether a 

trim should be applied to the data, some initial exploratory analyses of variance (ANOVAs) were 

conducted. Response times were compared between the Pilot Experience Groups on both 

target and foil trials. One analysis used the untrimmed data while the other analysis was used 

data in which a two standard deviation trim was applied to each individual participant’s data (i.e., 

response times that were greater than or less than two standard deviations away from the 

participant’s mean were replaced by that outer fence value). A total of 4.6% of the data points 
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were replaced with the trimmed 2 standard deviation value. All of the replaced data points were 

on the upper tail of the distribution. Trimming the data had no effect on the results, relative to 

the untrimmed data (Appendix B provides more information on the results of this analysis). 

Therefore, results based on untrimmed data are reported to maintain consistency with the idea 

that response time is a measure of semantic distance between pairs of items in memory. 

Trimming the response times could artificially affect the validity of that measure of proximity in 

ways that are not clearly understood. Prime Recognition Task data were already in the form of 

dissimilarity data when they were collected, as larger response times between prime-target 

pairs represented greater dissimilarity.  

Card Sort. Because participants physically organized cards into groups, rather than 

using an online or computerized tool, the first step of data coding required that the relationship 

(or lack thereof) between each of the concepts be recorded by hand into an Excel spreadsheet.  

However, allowing duplicate cards, outlier piles, and hierarchies significantly complicated the 

data coding procedure. Therefore, the data were coded using two different procedures. The first 

procedure was consistent with much of the usability literature (e.g., Spencer, 2009) and involved 

collapsing hierarchical groups into a single level. Items that occur within the same parent group 

were treated the same regardless of if they were in the same or different sub-groups. Pairs of 

items that occurred within the same group were assigned 1s and pairs of items that did not 

occur within the same group were given 0s.   

The second procedure used Jaccard scoring to code the groupings (Capra, 2005). 

Jaccard scoring accounts for hierarchal groups on a continuous scale in that it places different 

weights on items depending on whether they occur within the same group or within different 

subgroups under the same parent group. Items occurring in different subgroups under the same 

parent group are given scores greater than 0 (meaning there is some relationship between the 

items) but less than 1 (meaning they did not occur in the same immediate group). Similarity 
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scores calculated using Jaccard scoring were highly correlated with similarity scores calculated 

using traditional card sort coding procedures (r=.97, p<.05). However, because the Jaccard 

scoring  takes into account the hierarchical groups created by pilots, it was decided to use the 

Jaccard scoring procedure as it provided a more accurate representation of how the pilots truly 

sorted the concepts. (See Appendix C for more information about how Jaccard similarity scores 

are calculated and Appendix B for more information on the results of the exploratory analyses). 

Jaccard similarity scores were then recoded into dissimilarity scores by subtracting each score 

from 1 (dissimilarity = 1-similarity). Thus, the Jaccard Card Sort data were on a continuous scale 

with 0 indicating not dissimilar (i.e., two items placed in the same group) and 1 indicating highly 

dissimilar (i.e., two items were not placed in the same group).  

 Explorations of Pilot Experience Group Differences 

One-factor (Pilot Experience Group) ANOVAs were conducted on each of the data sets 

from the three KETS – the dissimilarity judgments from the Relationship Judgment Task, the 

Jaccard similarity scores from the Card Sort, and the accuracy and response time data from the 

Prime Recognition Task. There was no effect of Pilot Experience Group on the dissimilarity 

judgments or on the Jaccard similarity scores (p=n.s.). There was also no effect of Pilot 

Experience Group on accuracy for the 105 target trials in Prime Recognition Task or in the 

average response times for those trials. However, upon further analysis of the response time 

data, it was discovered that one Low-Time pilot had an average response time that was more 

than two standard deviations longer than the mean for Low-Time pilots. When the analysis was 

redone with the removal of this pilot (analysis based on 8 pilots rather than 9), there was still no 

effect of Pilot Experience Group on accuracy, but there was a main effect of Pilot Experience 

Group on response time (p<.05). Low-Time pilots had the quickest average response times. 

Mid-Time pilots and High-Time pilots did not significantly differ in average response time. See 

Appendix B for a more detailed discussion of the results for each of the three KETs.   
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Chapter 10 - KET Data Exploration (Phase III) 

Initial data explorations and comparisons between the data elicited from each KET were 

designed to address two specific research questions:  

1) To what extent are the data elicited by each technique correlated for the 15 weather-

related items? 

2) Do pilots with similar levels of experience maintain similar knowledge structures and, if 

so, are there differences in how the techniques are able to identify these similarities in 

knowledge structure?  

 Correlations between KETs 

 Overall Correlations 

Within each KET, raw data11 for each of the 105 weather-related items were averaged 

across all pilots, regardless of Pilot Experience Group. Thus, each of the 105 concept pairs had 

an average Relationship Judgment score, an average response time score (from the Prime 

Recognition Task), and an average Card Sort similarity score. Significance was assessed at an 

alpha level of .05.  

The overall correlation between Relationship Judgments and Card Sort was significant 

(r=.46) and positive, meaning that higher dissimilarity relationship judgments corresponded with 

higher card sort dissimilarity scores. The correlation between Card Sort and the Prime 

Recognition Task was marginally significant (r = -.17, p<.10). Also note that the correlation is 

negative, meaning that longer response times were associated with smaller Card Sort 

dissimilarity scores. Longer response times were hypothesized to indicate weaker relationships 

(i.e., less similarity) between the prime-target pairs of weather-related items. Therefore, if Card 
                                                 
11 Data from each KET were on different scales (Relationship Judgment: 1-9 Likert scale; Prime Recognition Task: 

response time (ms) data bounded only on the lower tail (0) and positively skewed; Card Sort: 0-1). Reported analyses were 
performed using raw data. However, separate analyses revealed that standardizing the KET data to z-scores had no effect on the 
strength or the outcome of the correlations. 
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Sort and Prime Recognition Task were eliciting similar structures, longer response times would 

be expected to be associated with larger Card Sort dissimilarity scores (i.e., a positive 

correlation).  This negative correlation, although only marginally significant, may suggest that 

Card Sort and Prime Recognition Task are tapping into different types of knowledge structures. 

The correlation between Prime Recognition Task and Relationship Judgment was not significant 

(r = -.02, p=n.s.).  

 Correlations between KETs within each Pilot Experience Group 

For this analysis, data from each of the 105 weather-related items were averaged across 

pilots within each of the three Pilot Experience Groups for each KET. In other words, for each 

Pilot Experience Group, each of the 105 concept pairs had an average Relationship Judgment 

score, an average response time (from the Prime Recognition Task), and an average Card Sort 

similarity score. Again, significance was assessed at an alpha level of .05.  

Relationship Judgment and Card Sort. The correlation between Relationship Judgment 

and Card Sort was significant for all three levels of Pilot Experience Group: Low-Time (r = .43), 

Mid-Time (r =.26), and High-Time (r = .53). The correlation was strongest for High-Time pilots, 

which is not surprising considering that previous research has shown that pilots with more 

experience exhibit more consistency in their knowledge structures. Thus, if both techniques are 

tapping into the same type of knowledge structure, one would expect the correlation to be 

stronger when there is less variability in the knowledge structures themselves. However, it is 

also interesting to note that Relationship Judgments and Card Sort scores were more strongly 

correlated for Low-Time pilots than Mid-Time pilots. Skill acquisition literature provides one 

possible explanation for the lower correlation for Mid-Time pilots. Perhaps these pilots are in the 

process of transitioning between declarative and procedural knowledge which may lead to 

higher variability within this group relative to the Low-Time pilots who may be heavily relying on 
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declarative knowledge (e.g., Rasmussen,1983). The higher within-group variability for Mid-Time 

pilots may have led to the lower correlation between the two KETs.  

Prime Recognition Task and Card Sort. The correlation between the Prime Recognition 

Task and Card Sort failed to reach significance for any of three pilot experience groups (p=n.s.). 

The correlation was weak regardless of pilot experience.  

Relationship Judgment and Prime Recognition Task. There was no correlation between 

Relationship Judgments and response times from the Prime Recognition Task for any of the 

Pilot Experience Groups (p=n.s.). Again, the correlation was weak regardless of Pilot 

Experience Group.   

 Correlations between KETs for Within-Subjects Data 

Recall that 75% of the 46 pilots who participated in the study actually participated in two 

of the three KETs – Card Sort and either Relationship Judgment or Prime Recognition Task (no 

pilot participated in both Relationship Judgment and the Prime Recognition Task). Therefore, 

correlations were examined between Card Sort and Prime Recognition Task and between Card 

Sort and Relationship Judgment using data from pilots who completed both techniques. Again, 

significance was assessed at an alpha level of .05. Table 10.1 shows correlations coefficients 

for all data and within-subjects data.  

Relationship Judgment and Card Sort. There was a significant positive correlation 

between Relationship Judgment and Card Sort (r = .60). As dissimilarity judgments increased, 

Jaccard dissimilarity scores increased. This significant positive correlation was consistent 

across all three levels of Pilot Experience. Similar to the results that were based on all 

participants, the correlation was again strongest for the High-Time pilots (r = .54) followed by 

the Low-Time pilots (r = .48) and was weakest, but still significant, for Mid-Time pilots (r = .41). 

Not surprisingly, the correlation between Relationship Judgment and Card Sort when collapsed 
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across Pilot Experience Group was stronger when based on within-subjects data (r = .60) 

compared to when it was based on data from all pilots for those KETs (r = .46).  

Prime Recognition Task and Card Sort. There was no correlation between Prime 

Recognition Task data and Card Sort data when collapsed across Pilot Experience or as a 

function of Pilot Experience Group.  

Summary. Analyses revealed a relatively strong correlation between the data elicited by 

the Relationship Judgment Task and the Card Sort task. Correlations were highest for High-time 

pilots. These results suggest that Relationship Judgment and Card Sort may be tapping into 

similar types of knowledge and the structure of that knowledge gets more consistent as pilot 

experience increases. The Prime Recognition Task, however, may be tapping into a different 

type of knowledge compared to the other two techniques. However, because the data used in 

this analysis were averaged across participants on each of the 105 individual item pairs, it 

provides only a cursory glance into pilots’ knowledge structures for weather information. The 

analysis discussed in the next section provides more insight into comparisons of knowledge 

structures between individual pilots. 

   

Table 10.1. Correlations between each Knowledge Elicitation Technique on all data and on 
within-subjects comparisons (where each pilot completed both techniques). 
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 Identifying Similarities in Conceptual Structures 

The objective of this analysis was to assess whether conceptual structures were more 

similar between pilots of the same experience group than between pilots of different experience 

groups and, if so, whether this greater similarity within pilot group occurred consistently 

throughout all three KET datasets. In order to assess similarities between pilots’ conceptual 

structures, an index of similarity between pilots was first obtained. For each KET dataset, 

correlations were performed between all pairs of pilots who completed that KET. Pilots were 

paired with every other pilot whether they were in their same experience group or not. The 

correlations were based on each pilots’ data for each of the 105 concept pairs. This analysis 

produced Pearson r correlation coefficients for each pair of pilots. High r values indicated pairs 

of pilots who were similar in their judgments/responses when completing that particular KET.  

Because the data were symmetrical (i.e., the correlation between P1 and P2 was the 

same as the correlation between P2 and P1), the correlation coefficients were organized and 

placed into half-matrices for each KET. Each matrix was constructed with pilots ordered based 

on the Pilot Experience Group to which they were assigned (see Figure 10.1). Values along the 

diagonal of each matrix (i.e., the white cells in the bottom half of the matrix) corresponded to 

members of the same Pilot Experience Group (i.e., intragroup pairs). Values toward the lower 

left corner of each matrix (i.e., the gray cells in the bottom half of the matrix) corresponded to 

pairs of participants who were from different Pilot Experience Groups (i.e., intergroup pairs).  
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Figure 10.1. Illustration of how the matrix of correlations between participants was formatted. 
Cells in white around the diagonal indicate pairs of participants from the same group (i.e., 
intragroup pairs). Cells in gray, further away from the diagonal, indicate pairs of participants 
from different groups (i.e., intergroup pairs). (Illustration is representative of the Relationship 
Judgment Task that 19 pilots completed). 

 Assessing Intragroup Homogeneity 

If pilots with similar total hours flown have similar knowledge structures, then it would be 

expected that correlations between pilots within the same Experience Group would be generally 

higher than correlations between pilots who are not in the same Experience Group. The term 

“intragroup homogeneity” refers to the situation when correlations are higher between members 

of the same group than between members of different groups (Valero & Sanmartin, 1999).  

One drawback to using correlation coefficients as an index of similarity to examine 

intragroup homogeneity is that the correlations between each pair of pilots are non-independent. 

To meet the assumption of statistical independence, the occurrence of one event within a 

dataset cannot make the occurrence of another event more or less probable. In other words, 

changing the value of one event should not affect the values of the other events in the dataset. 
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Since the current analysis uses correlation coefficients between all pairs of pilots, if the 

responses of one pilot are altered, the correlation coefficients of all pairs that involve that pilot 

would also be altered. Thus, matrix data for this analysis are not independent and therefore, 

traditional parametric tests are inappropriate for use, although the issue of non-independence 

has been frequently overlooked in previous research (e.g., Cooke & Schvaneveldt, 1988; Fiore 

et al, 2000). Valero & Sanmartin (1999) suggest the use of the Mantel Test to examine 

intragroup homogeneity of conceptual structures when correlation coefficients are used as 

indices of similarity between participants.  

The Mantel Test (Mantel, 1967; Legandre & Legandre, 1998; Sokal & Rohlf, 1995) is a 

statistical test designed to assess the similarity between two matrices by using sampled 

randomization techniques to test whether the association between the matrices is stronger than 

what would be expected by chance. It is frequently used in the domain of Ecology because, 

unlike conventional statistical analyses, the Mantel Test does not assume independence of 

samples and frequently the ecology samples that are being compared are non-independent. 

Another advantage of the Mantel Test is that it can be applied to different types of data (e.g., 

categorical, rank, interval-scale), as long as that data can be transposed into a distance 

measure (e.g., dissimilarity matrix).  

There are several different forms of the Mantel Test but the form most relevant for the 

current research study is its use as a nonparametric equivalent of an analysis of variance (Sokol 

& Rohlf, 1995; Hubert, Golledge, & Costanzo, 1982). The Mantel Test can be used as a formal 

hypothesis test by assessing the strength of the relationship between an observed similarity 

matrix and a matrix posed by a model or hypothesis. Because the objective was to assess 

whether conceptual structures of pilots within the same Pilot Experience Group are more similar 

than are conceptual structures of pilots in different groups, the model matrix consists of 1’s and 

0’s, with 1’s placed in cells corresponding to the correlations between pairs of pilots within the 
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same Experience Group (i.e., intragroup pairs) and 0’s placed in cells corresponding to 

correlations between pairs of pilots in different Experience Groups (i.e., intergroup pairs) (see 

Figure 10.2). The null hypothesis for any Mantel Test is that there is no association between the 

elements in the observed and model matrices (Sokal & Rohlf, 1995). A rejection of the null 

would indicate that the correlations between pilots within the same group are higher and more 

frequently associated with the 1’s in the model matrix than the correlations between pilots within 

different groups.  

 

 

Figure 10.2. Illustration of the model matrix to test for intragroup homogeneity. 
 

 Mantel Test Calculations 

The Mantel Test involves the calculation of a z test value (zM) that is based on the cross-

product of values within the two matrices that are being compared:  
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(2) 

 

where xij is the correlation between a given pair of pilots and yij is the corresponding value in the 

model matrix (“1” if the pilots are in the same experience group or “0” if the pilots are in different 

groups). High values of zM indicate a high correspondence between 1s in the model matrix and 

high correlation (r) coefficients between pairs of pilots in the observed matrix. 

The zM value is typically then normalized using the following formula:  

 

 

  

(3) 

 

where x and y are the average of the observed (X) and model (Y) matrices, respectively, Sx and 

Sy are standard deviations of the X and Y matrices, and d = [n(n-1)/2] is the number of distances 

in the half matrix (lower triangular part of each matrix) (Legendre & Legendre, 1998).  

Once rM is calculated, the next step is to conduct the equivalent of an analysis of 

variance over the matrices. However, because the distribution of rM is unknown, the hypothesis 

test is conducted through permutation procedures. The rows and columns of one of the matrices 

are randomly rearranged and the rM values are recalculated thousands of times to generate a 

distribution of rM values. It does not matter which matrix gets rearranged. Figure 10.3 provides a 

schematic illustration of a distance matrix (a) and a random permutation of its rows and columns 

(b).  
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Figure 10.3. A schematic distance matrix (a) and an example of a random permutation of its 
rows and columns (b). Schematic representation adapted from Sokol & Rohlf (1995, p.817). 

 

The significance is specified by the proportion of times the permuted rM is above or 

below the original rM value.  The probability (p) of the observed value is calculated using the 

formula: 

 

  

(4) 

 

where nT is the number of randomized rM values equal to or above (or equal to or below) the 

observed value of  rM .  If p < .05, then the observed and model matrix are correlated, meaning 

that the probability of the observed rM is statistically larger than what we would normally observe 

through chance. XLSTAT was used to perform the Mantel Test analyses.12  

All p values were calculated using a distribution of rM values estimated from 10,000 

permutations and are evaluated at a significance level of .05. All analyses were also conducted 

with 1000 permutations (recommended to be evaluated at an alpha level of .05) with no change 

in the results. Thus, all reported analyses are from the 10,000 permutation analysis. 

As Figure 10.4 and Figure 10.5 show, average correlations between pilots were highest 

in the Relationship Judgment Task, regardless of intergroup or intragroup pairings. Intergroup 
                                                 
12 XLSTAT demonstrations and tutorials for the Mantel Test suggest the use of a full matrix to conduct the analysis, even 

when the data is symmetric as is the case in the current research study. Thus, all analyses were actually conducted on full matrices. 
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and intragroup correlations were all around r = .5. The Mantel Test confirmed that intragroup 

correspondence was not greater than intergroup correspondence, meaning that there was no 

homogeneity within the Pilot Experience Groups (rM =.06, p=.45). In general, pilots from the 

same Experience Group showed no greater correlation with each other than did pilots from 

different Experience Groups with respect to their Relationship Judgments. This finding suggests 

that the Relationship Judgment may tap into more general aviation knowledge that is unaffected 

or uninfluenced by the level of pilot experience. Note that there seems to be more variability in 

the correlations between pairs of Mid-Time Pilots (MT/MT) than between pairs of Low-Time 

Pilots (LT/LT) or High-Time (HT/HT) pilots (i.e., the 95% confidence interval is larger for MT/MT 

than the LT/LT or HT/HT in Figure 10.4). Again, this finding is consistent with skill acquisition 

research which suggests that the transition between declarative and procedural knowledge that 

Mid-time pilots are in the process of making results in higher variability in their knowledge 

structures.  

Average correlations between pilots were very low for the Prime Recognition Task 

response times regardless of intergroup or intragroup pairings (all were very near r = .1). The 

Mantel Test revealed no homogeneity within the Pilot Experience Groups (rM =-.001, p=.973), 

meaning that pilots from the same Experience Group showed no greater correlation with each 

other than did pilots from different Experience Groups on their Prime Recognition Task data. 

Thus, pilots showed a general lack of similarity in their response times for prime-target pairs, 

regardless of whether they shared similar levels of experience.   
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Figure 10.4. Average Group Correlations for intragroup pilot pairings across the three KETs 
(LT/LT=Low-Time pilots paired with other Low-Time pilots; MT/MT = Mid-Time pilots paired with 
other Mid-Time pilots; HT/HT =High-Time pilots paired with other High-Time pilots). Means are 
depicted with 95% confidence intervals.   

 

 

 

Figure 10.5. Average Group Correlations for intergroup pilot pairings across the three KETs 
(LT/MT=Low-Time pilots paired with Mid-Time pilots; LT/MT = Low-Time pilots paired with Mid-
Time pilots; MT/HT =Mid-Time pilots paired with High-Time pilots). Means are depicted with 
95% confidence intervals. 
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Overall, correlations between pilots based on their Card Sort scores were higher than 

correlations based on their Prime Recognition Task data but not as high as the correlations 

based on the Relationship Judgment task. The Mantel Test revealed that intragroup 

correspondence was slightly greater than intergroup correspondence in the Card Sort data, 

meaning that there was a marginally significant homogeneity within the Pilot Experience Groups 

(rM =.07, p=.06). This result implies that, in general, Card Sorts by pilots from the same Pilot 

Experience Group show slightly greater correlation with each other than do Card Sorts by pilots 

from different Pilot Experience Groups.   

To identify which of the three Pilot Experience Groups account for the intragroup 

homogeneity in the Card Sort, subsequent Mantel Tests were conducted on pairwise 

comparisons between each of the three Pilot Experience Groups. Thus, three different observed 

matrices were created – one comparing Low-Time to Mid-Time pilots, one comparing Low-Time 

to High-Time pilots, and one comparing Mid-Time to High-Time pilots. Figure 10.6 shows an 

example of an observed matrix comparing Low-Time pilots to High-Time pilots. The model 

matrix (Figure 10.7) was again constructed such that cells corresponding to pairs of pilots 

originating from different Experience Groups were given 0’s and cells corresponding to pairs of 

pilots from the same Experience Groups were given 1’s (Legendre & Legendre, 1998). 
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Figure 10.6. Illustration of how the matrix of correlations between pilots was formatted when 
conducting the Mantel Tests to compare between groups (a comparison between Low-Time and 
High-Time pilots is depicted). 

 

 

Figure 10.7. Illustration of model matrix to test for comparisons between Pilot Experience 
Groups. 

 

Table 10.2 provides a summary of the individual Mantel Tests for each pairwise 

comparison between the three Pilot Experience Groups on the Card Sort scores as well as the 

average correlations between and within each Pilot Experience Group. Note that the average 
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correlations between pilots within the same Experience Group (i.e., r11, r22, r33) and between 

pilots in different Experience Groups (i.e., r12, r13, r23) shown in Table 10.2 are also represented 

graphically in Figure 10.4 and Figure 10.5 above. High-Time pilots showed the highest average 

correlations (r 33 = .37).  

As Table 10.2 indicates, the Mantel Tests indicated a significant result between High-

Time and Low-Time pilots (rm = .125, p=.03), thus implying that there are differences in 

conceptual structures between High-Time pilots and Low-Time pilots13. In other words, Low-

time pilots and High-time pilots had higher correlations when paired with pilots of similar 

experience level (LT/LT and HT/HT) than when paired with pilots of different experience level 

(LT/HT). This result implies that Low-time pilots and High-time pilots have least similarity in their 

conceptual structures.   

When taken together, the Mantel Test results and the average correlations between and 

within the Pilot Experience Groups suggest that the Card Sort technique may be tapping into a 

part of the knowledge structure that is affected or shaped by pilot experience. High-Time pilots 

have a greater intragroup homogeneity with respect to their Card Sort data (r33=.37) than Low-

Time pilots (r11=.24) and Mid-Time pilots (r22=.25), even though the range of total hours flown 

was much larger for High-Time pilot group than it was for the Low-Time and Mid-Time pilot 

groups. Further, the Mantel Test results suggest that the conceptual structures of High-Time 

pilots are incompatible with the conceptual structures of Low-Time pilots when elicited by Card 

Sort. Mid-Time pilots seem to share some similarity in conceptual structure with both Low-Time 

Pilots and High-Time pilots, as Mantel Test results were not significant for any group 

comparison involving Mid-Time pilots.  

                                                 
13 Note that rm=.13 is not a Pearson correlation coefficient and therefore does not imply that the relationship between 

High-Time and Low-time pilots explains 1.7% of the variance. As the explanation on Mantel Test calculation indicates, rm is just the 

normalization of the cross product between the observed and model matrices.  
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It is somewhat surprising to find that Mid-Time pilots show higher average correlations 

when paired with High-time pilots (r23 = .30) compared to when they are paired with other Mid-

Time pilots (r22 = .25). Also, Low-time pilots show higher average correlations when paired with 

High-time pilots (r13=.27) compared to when they are paired with other Low-Time pilots (r11 = 

.24). However, according to the Mantel Test, these average correlations between groups were 

not significantly different from each other.   

 

Table 10.2. Mean correlations for the Pilot Experience Groups (intragroups) and between 
members of different groups for each of the group comparisons conducted (intergroups). Also 
included are results from the three Mantel Tests performing pairwise comparisons between the 
three Pilot Experience Groups (** indicates a significant result, p<.05). 

 

 

 Assessing the Similarity between KETs using Within Subjects Comparisons  

Several pilots participated in two KETs, Card Sort and either Prime Recognition Task or 

Relationship Judgment. The Mantel Test was used to see whether pairs of pilots who were 

highly correlated in one KET were also highly correlated in another KET. In other words, instead 

of using the Mantel Test to evaluate the relationship between an observed matrix of correlations 

between pilots and a model matrix, the Mantel Test was used to assess the similarity between a 
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matrix of correlations based on pilots’ Card Sort data and a matrix of correlations for the same 

pilots on either their Relationship Judgment or Prime Recognition Task data. 

Seventeen pilots participated in both the Card Sort and the Prime Recognition Task. 

Correlations between each pair of those 17 pilots on their Card Sort data were arranged into a 

matrix. Pilots’ pairwise correlations on their Prime Recognition Task data were arranged into 

another matrix. The Mantel Test was used to test the strength of the association between these 

two data matrices. Mantel Test found no homogeneity between pilots correlated in the Prime 

Recognition Task and Card Sort (rM =-.08, p=.37).  In other words, the Mantel Test found no 

relationship between the Prime Recognition Task and Card Sort matrices, implying that pilots 

who were highly correlated based on their Prime Recognition Task data were not necessarily 

highly correlated based on their Card Sort data.  

 An additional 17 pilots participated in both the Card Sort and the Relationship Judgment 

Task. Correlations between each pair of those 17 pilots on their Card Sort data were arranged 

in one matrix and their correlations based on their Relationship Judgment data were arranged in 

a second matrix.  The Mantel Test was again used to test the strength of the association 

between these two data matrices. Mantel Test did find homogeneity between pilots correlated in 

the Card Sort and pilots correlated in the Relationship Judgment matrices (rM =.20, p=.02). In 

other words, the Mantel Test found a relationship between the Card Sort and Relationship 

Judgment matrices, meaning that pilots who were highly correlated based on their Card Sort 

data were also highly correlated based on their Relationship Judgment data.  

 Summary  

Relationship Judgment and Card Sort techniques elicit proximity data that are highly 

related, both in terms of the raw proximity data and with respect to individual pilot performance. 

This suggests that the Relationship Judgment and Card Sort Techniques tap into a similar type 

of knowledge structure relative to the Prime Recognition Task, as hypothesized. Card Sort was 
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the only technique where conceptual structures were differentiated by pilot experience (as 

indicated by the Mantel Test). Conceptual structures elicited by Relationship Judgment and by 

Prime Recognition Task seemed relatively uninfluenced by different levels of pilot experience, 

as defined by total number of hours flown. Taken together, these results suggest that each of 

the three techniques may be tapping into a different type of knowledge, knowledge that for at 

least two of the KETs may not be as influenced or affected by the total number of hours flown as 

Card Sort was.   

The Mantel Test was based on calculating Pearson correlation coefficients between 

each pair of pilots to see whether the pattern of responses across the 105 items was the same. 

However, correlation coefficients ignore information about the actual magnitude of the scores. 

They do not provide any information about the actual structure of the weather items in memory. 

They also do not provide any information on the factors that pilots used to assess the 

relationship between items. Correlations only specify the extent to which the response patterns 

themselves are similar. Thus, these initial analyses provide some insight into the similarities in 

knowledge structure across Pilot Experience Groups but there is still more to be learned. The 

next chapter describes analyses designed to provide insight into the features or characteristics 

that influence how knowledge is structured in memory. Also, the chapter describes attempts to 

assess the validity of each of the KETs.    
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Chapter 11 - Dimensions Underlying Pilots’ Knowledge 
Structures for Weather Information (Phase III) 

The second major objective of this research was to understand more about pilots’ 

knowledge structures for weather information and how the elicited conceptual structure may be 

affected by pilot experience and type of KET.  Multidimensional scaling (MDS) is one of the 

most commonly used methods for extracting the latent structure from the proximity data and 

representing that structure in a spatial form. The application of MDS to the current research 

study had two purposes. First, MDS was used to create spatial representations of conceptual 

structures that provide insight into how weather information is structured in pilots’ memory.  

Spatial representations were created based on data from all pilots and also for each pilot 

experience group to see if there were any differences in spatial layout as a function of 

experience. Those results are reviewed in the current chapter. Second, the MDS results were 

used to help provide validation of each of the data collection methods as a knowledge elicitation 

technique. Validation occurred by examining how well each KET conceptual structure could be 

used to 1) discriminate among pilot experience groups and 2) predict pilot experience group 

membership. The validation results are reviewed in Chapter 12.  

 Procedure for Analysis 

Proximity data collected from each KET were formatted and placed into 15 x 15 half 

matrices where each of the 15 weather concepts was crossed with all other concepts. One data 

matrix was created for each participant. These individual matrices were submitted to MDS 

ALSCAL individual differences scaling procedure (i.e., Weighted MDS or WMDS). Individual 

ALSCAL WMDS analyses were conducted on data from each KET separately. Nonmetric 

WMDS scaling solutions were developed from two to six dimensions for matrix conditional data. 

The convergence criterion was set to .001, the maximum number of iterations was set to 30 and 
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the minimum s-stress value was set to .005, all default settings for SPSS 13. Table 11.1 

provides a summary of the characteristics of the data collected in each KET and the parameters 

used for the ALSCAL WMDS analysis (see Appendix D for more explanation about the data 

characteristics and analysis decisions). 

 

Table 11.1. Characteristics of the Data Collected in each KET. 

 

Knowledge Elicitation Technique (KET) 
Relationship 

Judgment (RJ) Card Sort (CS) Prime Recognition Task 
(PRT) 

Data Characteristics:    
Type of proximity data Dissimilarity 

(Judgments on 1-9 
scale) 

Dissimilarity 
(Jaccard scores, range 

0-1) 

Response Times 
(longer = less similar) 

Data matrix shapes square square square 
Number of ways three-way three-way three-way 

Presence of missing 
data 

Yes no yes 

# of judgments per 
stimulus pair  

 (recommended > 9) 

Total: 19 
Low-time pilots: 6 
Mid-time pilots: 5 
High-time pilots: 8 

 

Total: 38 
Low-time pilots: 12 
Mid-time pilots: 12 
High-time pilots: 14 

 

Total: 24 
Low-time pilots: 9 
Mid-time pilots: 8 
High-time pilots: 7 

 
Analysis Decisions:    

MDS Procedure non-metric 
(ordinal) 

non-metric 
(ordinal) 

non-metric 
(ordinal) 

Conditionality matrix-conditional matrix-conditional matrix conditional 
MDS model Weighted MDS Weighted MDS Weighted MDS 

Approach to ties in data untie untie untie 
 

ALSCAL WMDS provides a spatial representation of the relationships between each of 

the weather-related concepts. That spatial representation is called a stimulus space. Fenker 

(1975) identified three properties of stimulus spaces: 

1) Characteristics or features of the domain of interest are represented by a set of 

dimensions, and information about the domain of interest (represented as 

concepts or items) is organized and interpreted on the basis of those dimensions. 

2) The dimensions can be represented in n-dimensional space. 
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3) There are many relationships between concepts and the stimulus space 

identifies or depicts a relationship. However, the nature behind how the concepts 

are related (i.e., the meaning of the underlying dimensions) has to be interpreted. 

Thus, the dimensions in the stimulus space reveal the underlying features or 

characteristics used by pilots to make judgments of similarity between the pairs of weather-

related concepts. The placement of each concept in the stimulus space is based on data from 

all pilots included in the analysis. ALSCAL WMDS also provides a participant space that 

consists of points along the same dimensions as the stimulus space, but this time the 

coordinates of each point represent the relative salience of each dimension to the pilot each 

point represents. In sum, the stimulus space provides insight into how knowledge is structured 

in memory (i.e., through identification of an overall conceptual structure based on data 

aggregated across pilots) and the participant space provides insight into how individual pilots 

value the underlying dimensions of that aggregated conceptual structure.  

 Background on Procedures for MDS Interpretation 

The following sections provide a brief description of the procedures for interpreting MDS 

analyses and representations. See Appendix D for more explanation on each of these 

procedures.   

 Identifying Optimal Dimensionality 

Several criteria can be used to identify optimal dimensionality but ultimately the decision 

is left up to the researcher. The term optimal dimensionality refers to the number of dimensions 

that provides the best model fit to the proximity data while also lending itself to meaningful 

interpretation. Ultimately, the determination of optimal dimensionality is subjective. Measures of 

fit such as stress and variance accounted for (R2) can be calculated to evaluate the fit of the 

model solution to the original proximity data. Stress is defined as the square root of a 
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normalized “residual sum of squares” and it is the measure that the computer programs attempt 

to minimize through the iterative procedure in which the model configuration is modified step-by-

step to increase its correspondence with the original proximity data. Stress values greater than 

.20 are widely considered to indicate poor model fit (Kruskal & Wish, 1978).  R2, also referred to 

as the squared correlations, is an indicator of the proportion of variance of the disparities 

accounted for by the MDS model. Thus higher numbers of R2 indicate a better fit of the model to 

the data (George & Mallery, 2009; Schiffman, Reynolds, & Young, 1981).  

A higher dimensional solution generally increases the fit of the model. However, higher 

dimensional solutions are not necessarily desirable because of the difficulty in interpreting such 

configurations. Thus, the reliance on measures of fit is tempered by considerations for ease of 

use and ease of interpretability when deciding which dimensional solution is optimal. Also, the 

MDS literature suggests the following guideline for appropriate dimensionality (D) given the 

number of stimuli used (I): I – 1 > 4D. Generally, the number of stimuli (I) minus one should be 

at least four times as great as the dimensionality, D (Kruskal & Wish, 1978). The current study 

used 15 stimuli and thus this guideline would suggest that the optimal solution should not 

exceed 3 dimensions. 

 Interpreting Dimensionality 

While MDS provides a systematic procedure for creating a graphical representation of 

the underlying relationships in the proximity data, the process of interpreting the meaning of the 

dimensions that specify the relationships is less systematic. One way of identifying meaningful 

features or characteristics that define dimensions is to look at the orderings or groupings of the 

stimuli along the dimensions separately, based on their coordinates. Figuring out what 

distinguishes the items on the extremes of the dimensions should help in interpreting the 

dimension meaning. Often, subject matter experts (SMEs) are relied upon to help provide this 

understanding of the dimensions.  
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Of course, in some cases, it may be impossible to identify the meaning of a dimension. 

In other words, items may be configured along a dimension but there is not enough information 

to be able to identify exactly what feature or characteristic that dimension actually represents. 

Failure to identify or interpret a dimension does not necessarily invalidate the MDS analysis 

(e.g., Schiffman et al., 1981; Schvaneveldt et al., 1985).  

 Representing Conceptual Structure 

 Procedure  

MDS was used at two different levels to uncover latent structure in the proximity data 

elicited by each KET. First, MDS was used to uncover how the 15 weather-related concepts 

were organized in memory based on data from all pilots without regard for level of experience. 

This analysis provided insight into the general conceptual structure of weather information and 

how that general structure may differ as a function of the KET. Second, MDS was used to 

examine how the organization of those weather concepts differed among the Pilot Experience 

Groups.   

ALSCAL WMDS analyses were conducted using SPSS 13 on data from each of the 

KETs. For each KET, ALSCAL WMDS analysis was applied to the entire dataset (collapsed 

across Pilot Experience Group). Conceptual structures and participant spaces were constructed 

for WMDS solutions ranging from two to six dimensions. Then, individual ALSCAL WMDS 

analyses were conducted on data sets specific to each Pilot Experience Group. Conceptual 

structures and participant spaces were constructed for WMDS solutions ranging from two to six 

dimensions for each Pilot Experience Group. Thus, a total of 12 WMDS analyses were 

conducted – four analyses based on data (Overall, Low-Time only, Mid-Time only, High-Time 

only) from each of the three KETs.  
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 Assessing Complexity of Conceptual Structure 

Table 11.2 provides the Stress-1 and R2 values as a function of increasing 

dimensionality of the WMDS solutions for each KET collapsed across Pilot Experience Group. 

For each of the three KETs, Stress-1 and R2 improved with increasing dimensionality. Scree 

plots were constructed but as is often the case, there were no clear “elbows” apparent to help in 

identifying optimal dimensionality for any of the KETs. Although the six-dimensional 

configuration resulted in the best Stress-1 value for all three KETs, a six-dimensional solution is 

not interpretable and therefore is of no practical use for this study. Stress-1 levels were less 

than .20 (indicating at least a fair model fit) for the 3D solution in Relationship Judgment, the 2D 

solution in Card Sort, and the 4D solution in the Prime Recognition Task. Note, too, that the R2 

values for the threshold at which Stress-1 indicates fair model fit are higher for Card Sort (R2 = 

.85) compared to Relationship Judgment (R2 = .74) and much higher compared to Prime 

Recognition Task (R2 = .21). Thus, the Card Sort required the least complex solution to achieve 

at least a fair model fit to the overall dataset. 

 

Table 11.2. Stress-1 and variance accounted for (R2) for each WMDS solution based on two- to 
six-dimensions for Relationship Judgment, Card Sort, and Prime Recognition Task data. 
Dimension at which MDS identified a “Fair” model fit (Stress-1 < .20) for each KET dataset is 
shaded in gray and bolded. 

Dimensions 
(D) in 

solution 

Relationship Judgment 
(19 pilots) 

Card Sort 
(38 pilots) 

Prime Recognition Task 
(24 pilots) 

Stress-1 R2 Stress-1 R2 Stress-1 R2

2 .22 .70 .18 .85 .36 .16 
3 .17 .74 .14 .88 .26 .21 
4 .13 .76 .11 .87 .20 .21 
5 .11 .79 .09 .89 .16 .23 
6 .10 .80 .08 .91 .13 .27 

 

Table 11.3 provides the Stress-1 and R2 values as a function of increasing 

dimensionality of the WMDS solutions for each KET x Pilot Experience Group. Again, Stress-1 

and R2 improved with increasing dimensionality for each KET x Pilot Experience Group. Scree 
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plots were constructed but, as was the case for the analysis on data collapsed across 

experience group, there were no clear “elbows” apparent to help in identifying optimal 

dimensionality for any of the KET x Pilot Experience Group. Not surprisingly, the six-

dimensional solution resulted in the highest Stress-1 and R2 values for nine analyses but it is 

uninterpretable. Fair model fits (Stress-1 <.20) were found in the 3D solution for Relationship 

Judgment, 2D solution for Card Sort and 4D solution for Prime Recognition Task. The 

dimensions at which the models indicated fair fit were consistent across the three Pilot 

Experience Groups for each KET. Again, Card Sort required the least complex (fewest 

dimension) solution to achieve at least a fair model fit, and the High-Time pilots required the 

least complex solution with the highest R2 value (R2 = .91) of all KET x Pilot Experience Groups.  

 

Table 11.3. Stress-1 and R2 values as a function of increasing dimensionality of the solution 
space for each KET and each pilot experience group: a) Low-Time pilots, b) Mid-Time pilots, c) 
High-Time pilots. Dimension at which MDS identified a “Fair” model fit (Stress-1 < .20) for each 
KET dataset is shaded in gray and bolded. 

a) Low-Time Pilots 

Dimensions 
(D) in 

solution 

Relationship Judgment 
(6 pilots) 

Card Sort 
(12 pilots) 

Prime Recognition Task 
(9 pilots) 

Stress-1 R2 Stress-1 R2 Stress-1 R2

2 .21 .76 .15 .89 .36 .14 
3 .15 .79 .12 .91 .26 .20 
4 .12 .82 .08 .94 .20 .25 
5 .10 .84 .07 .94 .16 .27 
6 .08 .86 .06 .96 .13 .31 
 

b) Mid-Time Pilots 

Dimensions 
(D) in 

solution 

Relationship Judgment 
(5 pilots) 

Card Sort 
(12 pilots) 

Prime Recognition Task 
(8 pilots) 

Stress-1 R2 Stress-1 R2 Stress-1 R2

2 .22 .73 .18 .84 .34 .22 
3 .15 .80 .14 .87 .25 .25 
4 .11 .85 .10 .93 .18 .34 
5 .08 .89 .07 .95 .15 .36 
6 .07 .89 .06 .95 .12 .42 
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c) High-Time Pilots 

Dimensions 
(D) in 

solution 

Relationship Judgment 
(8 pilots) 

Card Sort 
(14 pilots) 

Prime Recognition Task 
(7 pilots) 

Stress-1 R2 Stress-1 R2 Stress-1 R2

2 .22 .70 .14 .91 .37 .17 
3 .17 .75 .10 .94 .26 .23 
4 .14 .76 .08 .96 .20 .29 
5 .11 .81 .06 .97 .15 .31 
6 .09 .83 .05 .97 .14 .31 
 

 Identifying Optimal Dimensionality for Interpretation 

Based on the following criteria, the two-dimensional solutions for each KET and each 

KET x Pilot Experience Group were identified as optimal dimensionality for interpretation: 

• Measures of fit: As discussed in the previous section, Fair model fits occurred in the 

3D solutions for Relationship Judgment, 2D solutions for Card Sort, and 4D solutions 

for Prime Recognition Task. It was determined that the R2 values did not show a 

large enough increase between the 2D and 3D solutions to justify the extra 

complexity of interpreting Relationship Judgment with three dimensions. Also, the R2 

value for Prime Recognition Task was going to be much lower than the other two 

KETs regardless of what dimensionality was chosen as optimal.  

• Interpretability / Ease of Use: Convention states that any solutions that involve more 

than three dimensions are difficult if not impossible for humans to process and 

evaluate (see Appendix D for more information). Since no other supporting data was 

collected to help understand dimension meaning (e.g., importance ratings, phase of 

flight usage, frequency of use, etc.), it was decided that two-dimensions would result 

in easier interpretability and ease of use for both interpretation and application.  
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• Number of stimuli: Given the number of stimulus items used (15 weather-related 

information concepts), MDS guidelines suggest that only the two and three-

dimensional solutions are appropriate for interpretation.  

 Interpreting Conceptual Structure 

Figures 11.1 – 11.3 show the spatial representations of the conceptual structures based 

on the 2D WMDS solutions for proximity data elicited from Relationship Judgment, Card Sort, 

and Prime Recognition Tasks, respectively. The larger graph in the upper left hand corner 

depicts the conceptual structure based on all pilots’ data. Graphs depicting the conceptual 

structures based on data from the individual Pilot Experience Groups are also included in 

Figures 11.1 – 11.3. The X and Y axes represent dimensions (i.e., features, characteristics, etc.) 

that underlie the relationships between the weather information concepts.  

Item placement and clustering along the dimensions are the most informative pieces of 

graphical representation of an MDS analysis. Recall that MDS can distort the local relationships 

(i.e., the distance between any particular pair), so MDS is much more useful for understanding 

the global structure among concepts rather than the local structure (Schvaneveldt et al, 1985). 

For example, in the Relationship Judgment and Card Sort conceptual structures, items like wind 

direction and wind velocity are often clustered together and placed on the opposite end of a 

dimension from items like freezing level and icing. This graphical representation provides some 

insight into how knowledge is structured on a global level (freezing level and wind direction are 

opposites on some dimension meaning). The fact that wind direction and wind velocity are 

placed slightly further apart in the Card Sort conceptual structure compared to the Relationship 

Judgment conceptual structure is less informative and potentially unreliable in an MDS analysis.  

The conceptual structures of Card Sort and Relationship Judgment (Figure 11.1 and 

Figure 11.2) appear to be more qualitatively similar in layout compared to the Prime Recognition 

Task (Figure 11.3). For example, while wind direction and wind velocity are generally clustered 
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in the Card Sort and Relationship Judgment conceptual structures, they occur on opposite ends 

from each other in the Prime Recognition Task conceptual structure. Icing and freezing level 

also appear to be on opposite ends of a dimension in the Prime Recognition Task conceptual 

structure, whereas they are generally clustered in Card Sort and Relationship Judgment 

conceptual structures. The numerous visual differences between the Prime Recognition Task 

conceptual structure and the Relationship Judgment and Card Sort conceptual structures may 

be at least partially due to the relative lack of fit of the 2D solution for Prime Recognition Task 

data (R2 = .16) compared to the fits of the 2D solutions for Card Sort (R2 = .85) and Relationship 

Judgment (R2 = .70) data. However, note that even the 6D solution for Prime Recognition Task 

data (R2 = .27) still provided much less fit than even the 2D solutions for Relationship Judgment 

and Card Sort.  

Three pilots and one FAA Engineering Manager were asked to assist as subject matter 

experts (SMEs) in interpreting the meaning of the dimensions for the 2D solutions. Demographic 

and background information for each of the SMEs is provided in Table 11.4 below. These 

individuals were chosen to be SMEs because of their extensive experience as pilots and 

instructor pilots and/or because of their work with the FAA in developing guidance for pilot 

training and policy for new aircraft technology.  

SMEs were given a short description of the goal of the study and an overview of the 

characteristics and demographic information for the pilots who participated in the research. 

They were shown example output of an MDS analysis not based on any of the concepts used or 

data collected for this study to use as practice for interpretation of the dimensions. They were 

told to focus on assessing two factors: 1) dimension meaning, and 2) effect of pilot experience. 

To help identify dimension meaning, SMEs were told to think about what characteristics 

distinguish weather-related items on the opposite sides of the dimensions and what features the 

clusters of items have in common. Regarding the effect of pilot experience, SMEs were asked to 
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identify any differences they saw in how the items are structures in data from High-Time pilots 

compared to the less experienced pilots.  

 

Table 11.4. Demographic information for the Subject Matter Experts (SME) asked to interpret 
the meaning of the dimensions underlying the 2D conceptual structures resulting from each 
KET. 

SME Total hrs 
flown 

Certificates / Ratings Held 
Job Description 

1 1650 

Private Pilot with single and multi-engine land ratings with an instrument 
rating; Also hold Certified Flight Instructor, Flight Instructor Instrument, 
and Multi-engine Instructor Ratings 
 
Flight Safety International Simulator and Ground Instructor for the 
Cessna C208 Caravan. Responsible for taking initial and recurrent pilots 
through both classroom curricula and the simulator training course 

2 17,700 

Airline Transport Pilot with type ratings for: LR-Jet, IA-Jet, HS-125, G-IV, 
CL-600, BBD-700, DHC-6, B-757/767, single engine land and sea 
commercial privileges; also hold a Flight Instructor Certificate for single 
engine, multi-engine and instrument airplanes 
 
FAA Operation’s Specialist responsible for developing training, checking 
and currency requirements for new and retrofitted legacy airplanes. 

3 600 

Private Pilot with Instrument Rating and Glider Rating 
 
FAA flight test engineer with responsibilities for rules, guidance, and 
policy for the flight test issues in Part 23 aircraft. Also flight tests new 
technology.  

4 n/a 

Student Pilot14 
 
FAA Engineering Manager (Programs and Procedures) responsible for 
certification of new technology and the FAA’s NextGen air traffic 
systems as it is implemented for small planes. Also spent 15 years as an 
FAA flight test engineer.  

 

 Conceptual Structures Elicited by the Relationship Judgment Task 

Figure 11.1 depicts the 2D conceptual structures elicited by the Relationship Judgment 

Task for data collapsed across pilot experience groups and for data from each Pilot Experience 

Group. For the conceptual structure based on all pilots, the SME pilots agreed that Dimension 1 

                                                 
14 Note that this person’s inclusion as an SME was due to his knowledge and experience as a result of his role as an FAA 

Engineering Manager responsible for certification of new technology, rather than for his minimal flight experience as a student pilot.  
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was representative of a “Severity” construct. SME pilots were less confident about the meaning 

of Dimension 2 but did agree that Dimension 2 seemed to represent some type of “Seasonal” 

construct or a “Go/No-go Flight Decision” construct which for some pilots, especially Low-Time 

pilots, may be affected by seasonal conditions. For example, Low-Time pilots may decide not to 

even fly in the winter because of the possibility of icing and the decreased amount of daylight. 

Further, SME pilots also perceived that the “Severity” and “Seasonal”/”Flight Decision” 

dimensions also seemed to interact to form two diagonal “hybrid” dimensions (superimposed on 

Figure 11.1 with a dotted line). SME pilots named the left-most diagonal “Medium to High Risk” 

and the right-most diagonal “Low to Medium Risk” indicating the two general types of 

consequences that could occur for weather item’s Severity x Flight Decision coordinates.   

When looking at the conceptual structures at the level of the Pilot Experience Group, the 

SME pilots found no perceivable or interpretable differences between the experience groups in 

terms of dimension meaning or in how concepts were clustering. For Low-Time pilots, 

Dimension 2 more clearly signified a “Go / No-go Flight Decision” characteristic in that items that 

would most likely affect a Low-Time pilot’s decision to fly were grouped toward the bottom end 

of the dimension (e.g., lightning, turbulence, thunderstorms) and items that they would need to 

consult while flying were grouped toward the top end of the dimension (e.g., wind speed, wind 

direction, visibility). Dimension 1 again signified “Severity.” The general meanings of 

Dimensions 1 and 2 held fairly consistently throughout the conceptual structures of all three 

Pilot Experience Groups. This consistency was a surprise to some of the SME pilots who 

expected that the weather items would cluster differently on the “Go/No-go Flight Decision” 

dimension for High-Time pilots since their decision to fly would be much less affected by the 

convective items on the “No-go” end of the dimension (e.g., lightning, thunderstorms).  
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 Conceptual Structures Elicited by the Card Sort Task 

Figure 11.2 depicts the 2D conceptual structures elicited by the Card Sort Task for data 

collapsed across Pilot Experience Groups and for data from each Pilot Experience Group. 

Consistent with Relationship Judgment, for the conceptual structure based on data from all 

pilots the SME pilots agreed that Dimension 1 was again defined by some type of “Severity” 

construct. However, a few pilots went on to further describe the dimension as having a 

“Strategic-Tactical” component in addition to Severity. Weather items like TAF, ceiling, sky 

conditions and visibility are pieces of information that pilots use strategically when planning their 

flights, whereas information like turbulence, thunderstorms and icing are used on a more tactical 

basis, specifically in trying to avoid them because they may pose some level of severity. The 

meaning of Dimension 2 was less clear, but all SME pilots agreed that the dimension 

represented some type of “Seasonal” construct.    

When Card Sort conceptual structures were examined at the level of the individual Pilot 

Experience Group, Dimension 2 was still loosely defined as “Seasonal” across all experience 

groups, but the “Severity / Strategic-Tactical” dimension was more clearly defined and seemed 

to vary at least slightly across experience groups. For the Low-Time pilots, this dimension 

appeared to function at a level one step higher than “Severity/Strategic-Tactical.” One pilot 

described the dimension more descriptively for Low-Time pilots as a “Level of Importance” 

dimension. Items on the left of the dimension (thunderstorms, lightning, icing, freezing level) 

would actually be relatively unimportant to Low-Time pilots when flying because they will not or 

cannot attempt to fly during those conditions. In other words, rather than being strategic, 

tactical, or even severe, the weather items at that one end of the dimension are just irrelevant 

because Low-Time pilots will never even encounter them when flying. The items on the right 

side of the dimension, however, are important for Low-Time pilots to attend to during flight. SME 

pilots noted that the overall conceptual structures appeared to be quite similar between the Low-
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Time and Mid-Time pilots along this dimension, except that the placements of the items were 

reversed (i.e., “unimportant” items were now on the left side of the dimension for Low-Time 

pilots and the right side of the dimension for Mid-time pilots).  

For the High-Time pilots, this Dimension 1 seemed to maintain its general meaning of 

“Severity / Strategic – Tactical” but it did vary a bit from the other two groups. In the conceptual 

structure for High-Time pilots, turbulence, lightning, and thunderstorms are very isolated from 

the rest of the items. The SME pilots interpreted this dimension to adopt a “Severity for 

Passengers” emphasis that the Low-time and Mid-Time pilots did not or would not show based 

on their more limited experience. Most High-Time pilots likely have passengers with them and 

passengers tend to become concerned or upset by convective weather. Therefore, it is in the 

High-Time pilot’s best interest to avoid convective weather, not necessarily because they are 

concerned about their ability to handle it but because they do not want to cause problems or 

concerns for their passengers.  

 Conceptual Structures Elicited by the Prime Recognition Task 

Not surprisingly, it was impossible for the SME pilots to interpret the meaning of either 

dimension in the Prime Recognition Task conceptual structure (Figure 11.3). The lack of 

interpretation was most likely due to the lack of fit of the model to the data. MDS stimulus 

spaces tend to appear as if the items are placed in circular form when the fit of the model to the 

data is poor.  

 Summary 

This section described the conceptual structures elicited from the three KETs as 

represented by the WMDS analysis. The number of dimensions that are needed to fit a solution 

can be considered an indication of the complexity of the conceptual structure that is needed to 

represent the inherent knowledge structure. The Card Sort task appeared to elicit the least 
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complex conceptual structures. Further, the High-Time pilots seemed to be best fit by the least 

complex conceptual structure, which is consistent with past research that has shown knowledge 

structures to decrease in complexity as experience increases (e.g. Schvaneveldt et al, 1985). 

Schvaneveldt and colleagues interpreted their results to imply that expertise is not necessarily 

synonymous with complex structure. Rather, experts tend to identify the information that is 

critically associated with their task, which may lead to a simpler representation of that 

information in knowledge structure. The fact that when dimension (complexity) was held 

constant, the model fit (i.e., Stress-1) did not increase with experience in Relationship Judgment 

but did slightly in Card Sort also suggests that Card Sort may be better able to tap into 

knowledge that is shaped by experience. The next section provides a deeper look into validating 

each of these techniques.  
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Figure 11.1. Conceptual structures based on 2D WMDS solutions for the Relationship Judgment Task when based on all 
pilots and when based on pilots within each individual Pilot Experience Group.  
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Figure 11.2. Conceptual structures based on 2D WMDS solutions for the Card Sort Task when based on all pilots and 
when based on pilots within each individual Pilot Experience Group.  
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Figure 11.3. Conceptual structures based on 2D WMDS solutions for the Prime Recognition Task when based 
on all pilots and when based on each individual Pilot Experience Group. 
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Chapter 12 - Validation of the KETs (Phase III) 

Schvaneveldt and colleagues (1985) described and employed a method of validating 

and comparing conceptual structures that result from different techniques (in their case, they 

were interested in comparing the validity of analysis techniques – MDS and Pathfinder). This 

validation method is predicated on the assumption that differences in experience level among 

pilots should translate into differences in their elicited conceptual structures if the elicitation 

technique was valid. Further, pilots of similar experience level should share certain 

characteristics in their conceptual structures that were shaped by common experiences. Thus, if 

the conceptual structures elicited by a given KET are valid, it should be possible to use those 

conceptual structures to 1) discriminate pilots with less experience from pilots with a lot of 

experience, and 2) classify the experience level of a pilot.  

 Assessing KET Ability to Discriminate Based on Pilot Experience 

 Procedure 

The first step to assessing validity was to examine which of the KETs (if any) allowed the 

conceptual structures of pilots with less experience to be discriminated from conceptual 

structures of pilots with a lot of experience. First, proximity matrices of High-Time pilots from 

each KET were submitted to an ALSCAL WMDS analysis to define the “expert” conceptual 

structure elicited by each KET. Consistent with the overall conceptual structures discussed in 

the previous section, when goodness of fit, ease of use, and ease of interpretability were all 

considered, the 2D solution was determined as optimal for representing the High-Time pilots’ 

conceptual structure as elicited from each KET. However, because complexity of conceptual 

structure was also a factor of interest, the ability of a KET to discriminate levels of experience 

was assessed for both the 2D and the 3D solutions.  
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In addition to the conceptual structure, recall that WMDS also calculates dimension 

weights for each pilot included in the analysis. These dimension weights (comprising the 

participant space) represent the importance each pilot placed on each of the dimensions of the 

resulting conceptual structure when making their responses during completion of each KET (i.e., 

how much each dimension influenced their overall judgments, categories, or response times).  

Dimension weights were on a continuous scale and could range from 0 (meaning the dimension 

was not at all a factor in the pilots’ judgments) to 1 (meaning that the dimension was extremely 

important in the pilots’ judgments). The dimension weights were recorded for each High-Time 

pilot for the “expert” conceptual structures in both the 2D and 3D solutions.  

Next, after defining the “expert” conceptual structure based on data from the High-Time 

pilots, the proximity matrix from each Low-Time and Mid-Time pilot was then added one at a 

time to the proximity matrices of the High-Time pilots and the WMDS procedure was rerun 

repeatedly. The 2D and 3D dimension weights for each Low- and Mid-time pilot were also 

recorded. Table 12.1 shows the average 2D and 3D weights for each of the Pilot Experience 

Groups for each KET. Thus, values in Table 12.1 provide an indication of how important each of 

the dimensions of the “expert” conceptual structure were to the judgments of pilots in all three 

Pilot Experience Groups. If the dimensions of the expert stimulus space are meaningful, one 

would expect those dimensions to be more critical to (i.e., weighted higher by) the High-Time 

pilots compared to the less experienced pilots who may lack the domain experience and 

knowledge organization characteristics that the more experienced pilots have. Dimensions listed 

in Table 12.1 include the names they were given (if any) by the SME pilots as discussed in 

Chapter 11.  
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Table 12.1. The average dimension weights for each Pilot Experience Group on the dimensions 
that defined the “expert” conceptual structure from the a) Relationship Judgment, b) Card Sort, 
and c) Prime Recognition Tasks. Higher weights indicate greater importance of that dimension 
in pilots’ responses while completing each KET. 

a) Relationship Judgment 

2 Dimension Solution High-time 
Pilots 

Mid-time 
Pilots 

Low-time 
Pilots 

Mean 

Dim 1 – “Severity” .69 .73 .67 .70 
Dim 2 – “Seasonal” or “Go/No-Go” .46 .38 .50 .45 

 

3 Dimension Solution High-time Pilots Mid-time Pilots Low-time Pilots Mean 
Dim 1 – “Severity” .64 .67 .59 .63 

Dimension 2 .44 .35 .40 .39 
Dimension 3 .36 .37 .47 .40 

 

b) Card Sort 
2 Dimension Solution High-time Pilots Mid-time Pilots Low-time Pilots Mean 

Dim 1 – “Severity” .68 .80 .74 .74 
Dim – 2 “Seasonal” .54 .31 .35 .40 

 

3 Dimension Solution High-time Pilots Mid-time Pilots Low-time Pilots Mean 
Dim 1 – “Severity” .61 .82 .72 .72 

Dimension 2 .48 .17 .26 .30 
Dimension 3 .38 .27 .28 .31 

 

c) Prime Recognition Task 
2 Dimension Solution High-time Pilots Mid-time Pilots Low-time Pilots Mean 

Dimension 1 .29 .28 .27 .28 
Dimension 2 .28 .30 .28 .29 

 

3 Dimension Solution High-time Pilots Mid-time Pilots Low-time Pilots Mean 
Dimension 1 .29 .28 .27 .28 
Dimension 2 .27 .29 .29 .28 
Dimension 3 .26 .28 .28 .27 

 

Individual two-way repeated measures ANOVAs were conducted on pilots’ dimension 

weights from each 2D and 3D solution for each KET. Within each ANOVA, Dimension was the 

within-subjects variable, Pilot Experience Group was the between-subjects variable and 

Dimension Weight was the dependent variable. Results of each ANOVA are described below. 



107 

 

When necessary, Tukey’s HSD was used for post-hoc comparisons between Pilot Experience 

Groups and Paired t-tests were used for post-hoc comparisons between Dimensions for each 

level of Pilot Experience Group.  A significance level of .05 was adopted for all analyses and 

comparisons.  

 Ability to Discriminate Pilot Experience: Relationship Judgment Task 

Three-dimensional (3D) solution. There was a significant main effect of Dimension 

(F(2,32) = 21.51, p<.05, partial η2 = .57). There was no main effect of Pilot Experience Group 

(p=n.s.) nor did it interact with Dimension (p=n.s.). Paired t-tests revealed that pilots with 

different levels of experience relied upon the dimensions differently (Table 12.2). Pilots with 

more experience tended to rely on Dim 1 (“Severity”) significantly more than the other two 

dimensions when making their judgments. Mid-Time and High-Time pilots showed a greater 

difference between the weights for Dim 1 (“Severity”) and the other two dimensions than did the 

Low-Time pilots who weighted Dim 1 (“Severity”) significantly higher than Dimension 2 but not 

Dimension 3.  

 

Table 12.2. Results for paired comparisons (t-tests) between dimension weights for each Pilot 
Experience Group on each Dimension for the Relationship Judgment Task 3D WMDS solution. 

Pilot 
Experience 

Groups 

Paired Comparisons
(paired t-tests, alpha = .05) 

Dimension 1 vs. 
Dimension 2 

Dimension 1 vs. 
Dimension 3 

Dimension 2 vs. 
Dimension 3 

Low-Time Pilots 

t(5) = 3.28, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

p=n.s. p=n.s. 

Mid-Time Pilots 

t(4) = 4.54, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

t(4) = 2.83, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

p=n.s. 

High-Time Pilots 

t(7) = 4.76, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

t(7) = 4.18, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

p=n.s. 
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Two-dimensional (2D) solution. There was a significant main effect of Dimension 

(F(1,16) = 35.26, p<.05, partial η2 = .69). Paired t-tests showed that pilots in all three Pilot 

Experience Groups relied significantly more on Dim 1 (“Severity”) than Dimension 2 (“Seasonal” 

or “Go/No-go”) when making their judgments (Table 12.3). There was no main effect of Pilot 

Experience Group (p=n.s.) nor did it interact significantly with Dimension (p=n.s.).  

 

Table 12.3. Results for paired comparisons (t-tests) between dimension weights for Pilot 
Experience Group on each Dimension for the Relationship Judgment Task 2D WMDS solution. 

Pilot Experience 
Groups 

Paired Comparisons
(paired t-tests, alpha = .05) 

Dimension 1 vs. Dimension 2 

Low-Time Pilots 
t(5) = 2.62, p<.05 
 
Dimension 1 was more important (weighted higher) 

Mid-Time Pilots 
t(4) = 3.31, p<.05 
 
Dimension 1 was more important (weighted higher) 

High-Time Pilots 
t(7) = 4.18, p<.05 
 
Dimension 1 was more important (weighted higher) 

 

In summary, Dimension 1 (“Severity”) was relied upon most heavily by all three Pilot 

Experience Groups for both the 2D and the 3D solutions. However, weights did not differ 

between Pilot Experience Groups for any of the dimensions in either the 2D or 3D solutions. In 

other words, none of the Dimensions defining the “expert” conceptual structure were any more 

important to the High-Time pilots than they were to the Mid-Time or Low-Time pilots. This 

finding calls into question the validity of the Relationship Judgment task in being able to 

distinguish between pilots with different levels of experience.   

 Ability to Discriminate Pilot Experience: Card Sort Task 

Three-dimensional solution. Analysis revealed a marginally significant interaction 

between Dimension and Pilot Experience Group (F(4, 70) = 2.43, p=.06, partial η2 = .12) and 

significant main effects for Dimension (F(2,70) = 21.92, p<.05, partial η2 = .39) and for Pilot 
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Experience Group (F(2, 35) = 4.33, p<.05, partial η2 = .20). Dim 1 (“Severity”) was weighted 

highest of all three Dimensions by all three Pilot Experience Groups. Low-Time and Mid-Time 

pilots had higher weights on Dim 1 than High-Time pilots but the difference between the means 

was not statistically significant.  Overall, High-Time pilots had significantly higher average 

weights on the dimensions (M=.49) than either Mid-Time pilots (M=.42) or Low-Time pilots 

(M=.42). Dimension weight comparisons within each Pilot Experience Group revealed that Low-

Time and Mid-Time pilots relied on Dim 1 (“Severity”) significantly more than Dimensions 2 and 

3 (Table 12.4). There were no differences among the weights for the dimensions by High-Time 

pilots (p=n.s.), meaning that High-Time pilots relied on each of the dimensions fairly equally.  

 

Table 12.4. Results for paired comparisons (t-tests) between dimension weights for each Pilot 
Experience Group on each Dimension for the Card Sort Task 3D WMDS solution. 

Pilot 
Experience 

Groups 

Paired Comparisons
(paired t-tests, alpha = .05) 

Dimension 1 vs. 
Dimension 2 

Dimension 1 vs. 
Dimension 3 

Dimension 2 vs. 
Dimension 3 

Low-Time Pilots 

t(11) = 2.77, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

t(11) = 2.60, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

p=n.s. 

Mid-Time Pilots 

t(11) = 7.02, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

t(11) = 4.11, p<.05 
 
Dimension 1 was more 
important (weighted higher) 

p=n.s. 

High-Time Pilots p=n.s. 
 

p=n.s. p=n.s. 

 

Two-dimensional solution. There were significant main effects of Dimension (F(1,35) = 

12.98, p<.05, partial η2 = .27) and Pilot Experience Group (F(1,2) = 3.45, p<.05, partial η2 = .17) 

on Dimension Weights but no significant interaction between Dimension and Pilot Experience 

Group (p=n.s.). Dim 1 (“Severity”) was weighted higher than Dim 2 (“Seasonal”) by all three Pilot 

Experience Groups. Post-hoc comparisons indicated that High-Time pilots showed significantly 

higher overall averaged Dimension Weights (M=.61) for the dimensions in the “expert” 

conceptual structure than did Low-Time pilots (M=.54) or Mid-Time Pilots (M=.54), although only 



110 

 

the difference between High-time and Low-time was significant. Paired t-tests confirmed that 

Mid-time and Low-time pilots relied more heavily on Dim 1 (“Severity”) compared to Dim 2 

(“Seasonal”), as evidence by the higher dimension weights for Dim 1 (Table 12.5). However, 

High-time pilots relied on Dim 1 (“Severity”) and Dim 2 (“Seasonal”) more equally, with the 

difference between Dim 1 and 2 weights failing to reach significance (p=n.s.).  

 

Table 12.5. Results for paired comparisons (t-tests) between dimension weights for Pilot 
Experience Group on each Dimension for the Card Sort Task 2D WMDS solution. 

Pilot 
Experience 

Groups 

Paired Comparisons
(paired t-tests, alpha = .05) 

Dimension 1 vs. Dimension 2 

Low-Time Pilots 
t(11) = 2.06, p<.05 
 
Dimension 1 was more important (weighted higher) 

Mid-Time Pilots 
t(11) = 3.55, p<.05 
 
Dimension 1 was more important (weighted higher) 

High-Time Pilots p=n.s. 
 

 

In sum, High-Time pilots had the highest averaged dimension weights when averaged 

across all Dimensions in both the 2D and 3D WMDS solutions. Mid-Time and Low-Time pilots 

tended to mainly rely on Dim 1 (“Severity”) to make their judgments. This was true for both the 

2D and 3D solutions. High-Time pilots generally seemed to make their judgments while placing 

more equal importance on all of the dimensions comprising the “expert” conceptual structure 

(Figure 12.1 provides an illustrated summary of these findings). The fact that the High-Time 

pilots seemed to weight the dimensions of the “expert” conceptual structure differently than the 

other experience groups provides evidence that the Card Sort may be a more valid KET than 

Relationship Judgment.  
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Figure 12.1. Visual illustration of the participant space from the Card Sort 2D WMDS solution. 
Dimension Weights for pilots within each Pilot Experience Group are highlighted and represent 
the salience of each dimension for pilots when making their Card Sort groupings.   
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 Ability to Discriminate Pilot Experience: Prime Recognition Task 

Three-dimensional solution. There were no significant differences in the Dimension 

weights as a function of Pilot Experience Group or as a function of Dimension (p=n.s.). 

Two-dimensional solution. Again, there were no significant differences in the Dimension 

weights as a function of Pilot Experience Group or as a function of Dimension (p=n.s.). 

In sum, Dimension weights did not differ by Pilot Experience Group or by Dimension. 

Also note that the dimension weights themselves were overall much lower in the Prime 

Recognition Task compared to the Card Sort and Relationship Judgment Tasks. These lower 

weights were mostly likely a byproduct of the overall lower fit of the 2D and 3D solutions to the 

proximity data (as indicated by their respective Stress and R2 values).  

 Summary of Discrimination Ability 

Individual WMDS analyses indicated that Pilot Experience Groups were only 

distinguishable based on their conceptual structures derived from Card Sort. There were no 

differences between the Pilot Experience Groups in the importance they placed on any of the 

dimensions in the 2D or 3D solutions for either Relationship Judgment or Prime Recognition 

Task. In both Card Sort and Relationship Judgment, Dimension 1 (“Severity”) was weighted 

higher than the other Dimensions. In Relationship Judgment, the reliance on Dimension 1 over 

the other dimensions was fairly consistent across Pilot Experience Groups. However, in the 

Card Sort, High-Time pilots tended to weight the dimensions more equally, while Low-Time and 

Mid-Time pilots really seemed to rely on Dimension 1 much more than the other dimensions. 

Prime Recognition Task does not appear to tap into any knowledge that is shaped by 

experience, as the Pilot Experience Groups did not differ at all in their usage of the dimensions. 

Further, the fact that the weights for all dimensions were rather low and the model fits (i.e., 

Stress and R2) were much poorer compared to the other two KETs suggests that the nature of 
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the response times as proximity data precludes MDS from resolving any meaningful 

relationships in the data.   

Thus, assuming that knowledge structures of highly experienced pilot should be different 

from knowledge structures of inexperienced pilots, Card Sort was the only technique that 

showed evidence of being a valid KET for this particular purpose in that 1) High-Time pilots had 

higher overall dimension weights compared to Mid-time and Low-Time pilots and 2) High-Time 

pilots seemed to rely on more than just Dimension 1 (“Severity”) to make their judgments 

whereas the judgments of the Low-Time and Mid-Time pilots seemed to be more heavily based 

on Dimension 1 over the other dimensions.  

 Classification 

The use of classification to assess validity is also predicated on the assumption that 

knowledge about a topic area is organized in memory differently for an expert compared to a 

novice. Therefore, a KET is valid if and only if it elicits proximity data that reflect these 

differences in experience. The previous section compared the KETs in terms of how well the 

Pilot Experience Groups were discriminable based on their conceptual structures. This section 

describes the assessment of KET validity in terms of in terms of how well a pilot can be 

classified into a particular experience group based on the individual’s conceptual structure 

derived from the proximity data.    

Classification procedures are generally concerned with assigning an object to one of two 

or more groups based on a combination of attributes. These procedures generally involve 

comparing each object’s combination of attribute values to each group’s prototype to find the 

closest group for membership. Discriminant analysis is one classification technique that has 

been used to distinguish groups based on MDS dimension weights (Jones & Young, 1972; 

Kruskal & Wish, 1978) and can be used to test the validity of conceptual structure 

representations (Schvaneveldt et al., 1985).  
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 Procedure 

Discriminant analyses were conducted for each KET to determine whether a pilot’s 

dimension weights from their conceptual structures could predict Pilot Experience Group 

membership. Although 2D WMDS solutions were identified as optimal for interpretation, it was 

decided to conduct discriminant analyses on dimension weights from both a 2D WMDS solution 

and a 3D WMDS solution to explore how classification accuracy for a given KET may differ with 

complexity of the WMDS solution. Thus, dimensions weights from both the 2D and 3D WMDS 

solutions for each KET were used in separate discriminant analysis as predictors to Pilot 

Experience Group membership (Low-Time, Mid-Time, High-Time), resulting in six individual 

discriminant analyses.   

It should be noted that one serious limitation of discriminant analysis is its potential 

sensitivity to sample size (Mertler & Vanetta, 2001). The suggested ratio of total sample size to 

the number of variables is 20:1 (Stevens, 1992, as cited in Mertler & Vanetta, 2001). For 

example, the recommended sample size for a discriminant analysis with 2 predictors (e.g., 

dimension weights from 2D WMDS solution) would require a sample size of at least 40 pilots 

and the recommended sample size for 3 predictors (e.g., dimension weights from the 3D 

WMDS) is 60. Recall the sample sizes for each KET were Relationship Judgment (N=19), Card 

Sort (N=38) and Prime Recognition Task (N=24), and therefore constitute very small sample 

sizes compared to what is recommended for discriminant analysis to be stable.  Therefore, 

results of the discriminant analyses are designed to be exploratory in nature and are to be 

interpreted with caution. 

 Classification Accuracy: Relationship Judgment Task 

Two discriminant analyses were conducted on data from the Relationship Judgment 

Task to determine whether the dimension weights of the 2D and/or 3D WMDS solutions, 

respectively, could predict the experience level of a pilot. Bivariate scatterplots indicated that the 
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assumption of normality of the linear combinations of predictors was not violated for dimension 

weights for either the 2D or 3D solution. Box’s M test failed to reach significance (p>.001) in 

either solution, indicating that the assumption of homoscedasticity was not violated.  

Analysis on 2D WMDS solution, using Dim 1 (“Severity”) and Dim 2 (“Seasonal” or 

“Go/No-Go”) Weights as predictors. Two functions were generated but neither function was 

significant (p=.62, p=.92) indicating that the function of predictors did not significantly 

differentiate between pilots with different levels of experience. Pilot Experience Group was 

found to account for 15.6% of Function 1 variance and .06% of Function 2 variance. 

Standardized function coefficients and correlation coefficients (see Table 12.6) revealed that 

Dim 2 (“Seasonal” or “Go/No-go”) was most associated with Function 1 and Dim 1 (“Severity”) 

was most associated with Function 2. Cross-validated classification results revealed that 66.7% 

of Low-time pilots, 40% of Mid-time pilots, and 12.5% of High-time pilots were correctly 

classified as Low, Mid, or High-time (Table 12.7). For the overall sample, 52.6% were correctly 

classified. Cross-validation derived 36.8% accuracy for the total sample. For Function 1, Low-

Time pilots had the highest function mean, indicating that those with high dimension weights on 

Dim 2 (“Seasonal” or “Go/No-go”) were likely to be classified as Low-Time (Table 12.6). For 

Function 2, the function means of all three Pilot Experience Groups were fairly low, indicating 

that none of the group differences lend much support to Function 2.   

Analysis on 3D WMDS solution, using Dim 1 (“Severity”), Dimension 2, and Dimension 3 

weights as predictors). Two functions were generated and both were marginally significant, 

Function 1: Wilks’ Lambda = .45, χ2 (6, N=19) = 11.96, p=.06; Function 2: Wilks’ Lambda = .70, 

χ2 (6, N=19) = 5.41, p=.07, indicating that both functions of predictors were marginally significant 

in differentiating pilots of different experience levels. Pilot Experience Group was found to 

account for 35.4% of Function 1 variance and 30.3% of Function 2 variance. Standardized 

function coefficients and correlation coefficients (Table 12.6) revealed that Dimension 2 was 
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most associated with Function 1 and Dim 1 (“Severity”) and Dimension 3 were most associated 

with Function 2. Cross-validated classification results revealed that 66.7% of Low-time pilots, 

40% of Mid-time pilots, and 37.5% of High-time pilots were correctly classified as Low, Mid, or 

High-time (Table 12.7). For the overall sample, 57.6% were correctly classified. Cross-validation 

derived 47.4% accuracy for the total sample. For Function 1, Mid-Time pilots had the highest 

function mean, indicating that those with high dimension weights on Dimension 2 were likely to 

be classified as Mid-Time (Table 12.6). For Function 2, Low-Time and High-Time pilots had the 

highest function means, indicating that those with high dimension weights on Dim 1 (“Severity”) 

and Dimension 3 were likely to be classified as either Low-Time or High-Time.   

 
Table 12.6. Correlation Coefficients, Standardized Function Coefficients, and Discriminant 
Function Means for Relationship Judgment using dimension weights from a) the 2 Dimensions 
in the 2D WMDS solution as predictors and b) the 3 Dimensions in the 3D WMDS solution as 
predictors. 

a) 2D WMDS Solution  

Dimension Weights 

Correlation Coefficients with 
Discriminant Function 

Standardized Function 
Coefficients 

Function 1 Function 2 Function 1 Function 2 
Dim 1 (“Severity”) -.435 .892 -.021 1.111 

Dim2 (“Seasonal” or 
“Go/No-Go”) 

1.00 .018 .991 .503 

 
 
Discriminant Function Means 
 

Pilot Experience 
Groups 

Function 1 
(“Seasonal” or “Go/No-go”) 

Function 2 
(“Severity”) 

Low-Time Pilots .527 .014 
Mid-Time Pilots -.496 .025 
High-Time Pilots -.085 -.026 

**Note: Both functions failed to reach statistical significance (p=n.s.)
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b) 3D WMDS Solution 

Dimension Weights 

Correlation Coefficients with 
Discriminant Function 

Standardized Function 
Coefficients 

Function 1 Function 2 Function 1 Function 2 
Dim 1 (“Severity”) -.294 .048 .604 1.803 

Dimension 2 .940 -.109 1.236 .413 
Dimension 3 .076 .515 .205 1.859 

 
 
Discriminant Function Means 
 

Pilot Experience 
Groups 

Function 1 
(Dimension 2) 

Function 2 
(Dim 1 “Severity” and Dimension 3) 

Low-Time Pilots .527 .014 
Mid-Time Pilots -.496 .025 
High-Time Pilots -.085 -.026 

**Note: both functions were marginally significant (p=.06, p=.07) 
 

Table 12.7. Classification results for the discriminant analyses conducted on Relationship 
Judgment dimensional weights from a) the two-dimensional WMDS solution, and b) the three-
dimensional WMDS solution. 

a) Based on dimension weights from 2D WMDS Solution 
 Predicted Group Membership 

Total Low-time
Pilots

Mid-Time 
Pilots

High-Time 
Pilots 

Original 
Classification 

Low-time Pilots 83.3% 16.7% 0% 100%
Mid-Time Pilots 20% 80% 0% 100%
High-Time Pilots 50% 37.5% 12.5% 100%

Cross-
Validation 
 

Low-time Pilots 66.7% 16.7% 16.7% 100%
Mid-Time Pilots 20% 40% 40% 100%
High-Time Pilots 50% 37.5% 12.5% 100%

52.6% of original grouped cases correctly classified
36.8% of cross-validated grouped cases correctly classified 
 

b) Based on dimension weights from 3D WMDS Solution 
 Predicted Group Membership 

Total Low-time
Pilots

Mid-Time 
Pilots

High-Time 
Pilots 

Original 
Classification 

Low-time Pilots 66.7% 0% 33.3% 100%
Mid-Time Pilots 20% 60% 20% 100%
High-Time Pilots 25% 25% 60% 100%

Cross-
Validation 
 

Low-time Pilots 66.7% 0% 33.33% 100%
Mid-Time Pilots 20% 40% 40% 100%
High-Time Pilots 25% 37.5% 37.5% 100%

57.9% of original grouped cases correctly classified 
47.4% of cross-validated grouped cases correctly classified 
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Summary.  Classification accuracy was the same for Low-Time and Mid-Time Pilots 

whether using dimension weights the 2D or the 3D WMDS solutions. The slight increase in 

overall classification accuracy for the 3D solution (47.4%) compared to the 2D solution (36.8%) 

was primarily because of the slightly increased success in classifying High-time pilots when 3 

Dimensions were used as predictors (12.5% accuracy with 2D solution, 37.5% accuracy with 

the 3D solution). There is still quite a bit of confusion in classifying between Mid-Time Pilots and 

High-Time pilots in both the 2D and 3D solutions. Using both 2D and 3D solutions, just as many 

Mid-Time pilots were correctly classified as “Mid-Time” (40%) as were incorrectly classified as 

“High-Time” (40%) and just as many High-Time pilots were correctly classified as “High-Time” 

(37.5%) as were incorrectly classified as “Mid-Time” (37.5%). The two discriminant functions 

based on the 2D WMDS solution were not significant, whereas the two discriminant functions 

based on the 3D WMDS solution were marginally significant, indicating that classification 

accuracy increases with increasing complexity. This is not surprising, given that only the 3D 

WMDS solution provided a “Fair” fit to the data, but the 2D WMDS solution did not.    

 Classification Accuracy: Card Sort Task 

Two discriminant analyses were conducted on data from the Card Sort Task to 

determine whether the dimension weights of the 2D and 3D WMDS solutions, respectively, 

could predict the experience level of a pilot. Bivariate scatterplots indicated that the assumption 

of normality of the linear combinations of predictors was not violated for dimension weights for 

either the 2D or 3D solution. However, scatterplots showed that data appeared slightly less 

normal in the 3D solution compared to the 2D solution. Box’s M test failed to reach significance 

(p>.001) in either solution, indicating that the assumption of homoscedasticity was not violated. 

Analysis on 2D WMDS solution, using Dim 1(“Severity” or “Strategic-Tactical” and Dim 2 

“Seasonal” Weights as predictors. Two functions were generated but only one function 

(Function 1) was significant, Wilks’ Lambda = .704, χ2 (4, N=38) = 12.12, p<.05 indicating that 
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the function of predictors significantly differentiated between pilots of different experience 

groups. Pilot Experience Group was found to account for 29.5% of Function 1 variance and only 

0.11% of Function 2 variance. Standardized function coefficients and correlation coefficients 

(Table 12.8) revealed that Dim 2 (“Seasonal”) was most associated with Function 1 and Dim 1 

(“Severity” or “Strategic-Tactical”) was most associated with Function 2. Cross-validated 

classification results revealed that 8.3% of Low-time pilots, 58.3% of Mid-time pilots, and 71.4% 

of High-time pilots were correctly classified as Low, Mid, or High-time, respectively (Table 12.9). 

For the overall sample, 55.3% were correctly classified. Cross-validation derived 47.4% 

accuracy for the total sample. For Function 1, High-Time pilots had the highest function mean, 

indicating that those with high dimension weights on Dim 2 (“Seasonal”) were likely to be 

classified as High-Time (Table 12.8). For Function 2, the function means of all three Pilot 

Experience Groups were fairly low, indicating that none of the group differences lend much 

support to Function 2.   

 

Table 12.8. Correlation Coefficients, Standardized Function Coefficients, and Discriminant 
Function Means for Card Sort using dimension weights from a) the 2 Dimensions in the 2D 
WMDS solution as predictors and b) the 3 Dimensions in the 3D WMDS solution as predictors. 

a) 2D WMDS Solution 

Dimension Weights 

Correlation Coefficients 
with Discriminant 

Function 

Standardized 
Function Coefficients 

Function 1 Function 2 Function 1 Function 2 
Dim 1 (“Severity” or “Strategic-Tactical”) -.265 .964 1.791 1.529 

Dim2 (“Seasonal”) .649 -.761 2.271 .624 
 
 
Discriminant Function Means 
 

Pilot Experience 
Groups 

Function 1 
(“Seasonal”) 

Function 2 
(“Severity” or “Strategic-Tactical”) 

Low-Time Pilots .407 -.041 
Mid-Time Pilots -.539 .037 
High-Time Pilots .811 .003 

**Note: only Function 1 was statistically significant (p<.05) 
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b) 3D WMDS Solution 

Dimension Weights 

Correlation Coefficients with 
Discriminant Function 

Standardized Function 
Coefficients 

Function 1 Function 2 Function 1 Function 2 
Dim 1 (“Severity”) -.337 .186 1.585 .431 

Dimension 2 .555 -.754 1.535 -.506 
Dimension 3 .476 .601 1.435 .896 

 
 
Discriminant Function Means 
 

Pilot Experience 
Groups 

Function 1 
(Dimension 2) 

Function 2 
(Dim 1 “Severity” and Dimension 3) 

Low-Time Pilots -.511 -.234 
Mid-Time Pilots .282 .290 
High-Time Pilots .679 -.048 

**Note: only Function 1 was statistically significant (p<.05) 
 

Analysis on 3D solution, using Dim 1 (“Severity”), Dimension 2, and Dimension 3 

Weights as predictors). Two functions were generated and but only one was marginally 

significant (Function 1), Wilks’ Lambda = .733, χ2 (6, N=38) = 10.56, p=.10, indicating that the 

function of predictors was marginally significant in differentiating pilots of different experience 

levels. Pilot Experience Group was found to account for 23.1% of Function 1 variance and 4.6% 

of Function 2 variance. Standardized function coefficients and correlation coefficients (Table 

12.8) revealed a fair amount of equality between the three Dimensions, with Dimension 2 being 

slightly more associated with Function 1 and Dimensions 2 and 3 were more associated with 

Function 2 than was Dimension 1. Original classification results revealed that 58.3% of Low-

time pilots, 25% of Mid-time pilots, and 71.4% of High-time pilots were correctly classified as 

Low, Mid, or High-time, respectively (Table 12.9). For the overall sample, 57.9% were correctly 

classified. Cross-validation derived 52.6% accuracy for the total sample. For Function 1, High-

Time pilots had the largest function mean, indicating that those with high dimension weights on 

Dimension 2 were likely to be classified as High-Time (Table 12.8). For Function 2, Low-Time 
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and Mid-Time pilots had the highest function means, indicating that those with high dimension 

weights on Dimensions 2 and 3 were likely to be classified as either Low-Time or Mid-Time.   

 

Table 12.9. Classification results for the discriminant analyses conducted on Card Sort 
dimension weights from a) the two-dimensional WMDS solution, and b) the three-dimensional 
WMDS solution. 

a) Based on dimension weights from 2D WMDS Solution 
 Predicted Group Membership 

Total Low-time
Pilots

Mid-Time 
Pilots

High – Time 
Pilots 

Original 
Classification 

Low-time Pilots 25% 58.3% 16.7% 100%
Mid-Time Pilots 8.3% 66.7% 25% 100%
High-Time Pilots 14.3% 14.3% 71.4% 100%

Cross-
Validation 
 

Low-time Pilots 8.3% 66.7% 25% 100%
Mid-Time Pilots 16.7% 58.3% 25% 100%
High-Time Pilots 14.3% 14.3% 71.4% 100%

55.3% of original grouped cases correctly classified 
47.4% of cross-validated grouped cases correctly classified 
 
 

b) Based on dimension weights from 3D WMDS Solution 
 Predicted Group Membership 

Total Low-time
Pilots

Mid-Time 
Pilots

High – Time 
Pilots 

Original 
Classification 

Low-time Pilots 58.3% 25% 16.7% 100%
Mid-Time Pilots 25% 41.7% 33.3% 100%
High-Time Pilots 7.1% 21.4% 71.4% 100%

Cross-
Validation 
 

Low-time Pilots 58.3% 25% 16.7% 100%
Mid-Time Pilots 41.7% 25% 33.3% 100%
High-Time Pilots 7.1% 21.4% 71.4% 100%

57.9% of original grouped cases correctly classified 
52.6% of cross-validated grouped cases correctly classified 
 

 

Summary. Dimension weights from the Card Sort WMDS seemed to able to be used to 

accurately classify High-Time pilots as High-Time regardless whether the simpler 2D WMDS 

solution was used or the more complex 3D WMDS solution was used. The more complex 3D 

WMDS solution made the correct classification of Low-Time pilots more likely, but slightly 

reduced the correct classification  of Mid-Time pilots. Using the 2D WMDS solution, Low-Time 

pilots were more likely to be incorrectly classified as “Mid-Time” (66.7%) and to a lesser extent 

“High-Time” (25%) than they were to be correctly classified as “Low-Time” (8.3%). Using the 3D 
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WMDS solution, however, Mid-Time pilots were the most incorrectly classified, with 41.7% 

incorrectly classified as “Low-Time” and 33.3% incorrectly classified as “High-Time.” Thus, the 

Card Sort task seems to elicit data upon which more experienced pilots can be correctly 

classified. However, there is some difficulty in identifying the difference between Low-Time and 

Mid-Time pilots based on their conceptual structures as elicited from the Card Sort task. Recall 

that the discriminant function based on the 2D WMDS solution was significant, whereas the 

discriminant function based on the 3D WMDS solution was only marginally significant.  

 Classification Accuracy: Prime Recognition Task 

Two discriminant analyses were conducted on data from the Prime Recognition Task to 

determine whether the dimension weights of the 2D and 3D WMDS solutions, respectively, 

could predict the experience level of a pilot. Bivariate scatterplots indicated that the assumption 

of normality of the linear combinations of predictors was not violated for dimension weights for 

either the 2D or 3D solution. Box’s M test failed to reach significance (p>.001) in either solution, 

indicating that the assumption of homoscedasticity was not violated. 

Analysis on 2D WMDS solution, using Dimension 1 and Dimension 2 Weights as 

predictors. Two functions were generated but only one function (Function 1) was marginally 

significant, Wilks’ Lambda = .667, χ2 (4, N=24) = 8.31, p=.08 indicating that the function of 

predictors differentiated between pilots of different experience groups with marginal 

significance. Pilot Experience Group was found to account for 33.3% of Function 1 variance and 

0.01% of Function 2 variance. Standardized function coefficients and correlation coefficients 

(Table 12.10) revealed that Dimension 1 was most associated with Function 1 and Dimension 2 

was most associated with Function 2. Original classification results revealed that 44.4% of Low-

time pilots, 50% of Mid-time pilots, and 57.1% of High-time pilots were correctly classified as 

Low, Mid, or High-time, respectively. For the overall sample, 62.5% were correctly classified 

(Table 12.11). Cross-validation derived 50% accuracy for the total sample. For Function 1, Mid-
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Time pilots had the highest function means, indicating that those with high dimension weights 

on Dimension 1 were likely to be classified as Mid-Time (Table 12.10).  For Function 2, the 

function means of all three Pilot Experience Groups were fairly low, indicating that none of the 

group differences lend much support to Function 2.     

Analysis on 3D WMDS solution, using Dimension 1, Dimension 2, and Dimension 3 

weights as predictors. Two functions were generated and but neither reached significance 

(p=.66, p=.90), indicating that the functions of predictors did not significantly differentiate 

between pilots with different levels of experience. Pilot Experience Group was found to account 

for 17.9% of Function 1 variance and 1.1% of Function 2 variance. Standardized function 

coefficients and correlation coefficients (Table 12.10) revealed that Dimension 2 was most 

associated with Function 1 and Dimensions 1 and 3 were most associated with Function 2. 

Original classification results revealed that 11.1% of Low-time pilots, 12.5% of Mid-time pilots, 

and 57.1% of High-time pilots were correctly classified as Low, Mid, or High-time, respectively 

(Table 12.11). For the overall sample, 50% were correctly classified. Cross-validation derived 

25% accuracy for the total sample. For Function 1, Mid-Time and High-Time pilots had the 

highest function means, indicating that those with high dimension weights on Dimension 2 were 

likely to be classified as Mid or High-Time. For Function 2, the function means of all three Pilot 

Experience Groups were fairly low, indicating that none of the group differences lend much 

support to Function 2.     
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Table 12.10. Correlation Coefficients, Standardized Function Coefficients, and Discriminant 
Function Means for Prime Recognition Task using dimension weights from a) the 2 Dimensions 
in the 2D WMDS solution as predictors and b) the 3 Dimensions in the 3D WMDS solution as 
predictors. 

a) 2D WMDS Solution 

Dimension Weights 

Correlation Coefficients 
with Discriminant 

Function 

Standardized 
Function Coefficients 

Function 1 Function 2 Function 1 Function 2 
Dimension 1 .692 .722 2.11 -.636 
Dimension 2 .289 .957 -1.59 1.52 

 
 
Discriminant Function Means 
 

Pilot Experience 
Groups 

Function 1 
(Dimension 1) 

Function 2 
(Dimension 2) 

Low-Time Pilots -.16 .011 
Mid-Time Pilots .865 -.005 
High-Time Pilots -.782 -.009 

**Note: only Function 1 was marginally statistically significant (p=.08) 
 

b) 3D WMDS Solution 

Dimension Weights 

Correlation Coefficients with 
Discriminant Function 

Standardized Function 
Coefficients 

Function 1 Function 2 Function 1 Function 2 
Dim 1 (“Severity”) .435 .296 -1.387 1.346 

Dimension 2 .799 .244 1.855 .768 
Dimension 3 .595 -.206 .205 -2.017 

 
 
 
Discriminant Function Means 
 

Pilot Experience 
Groups 

Function 1 
(Dimension 2) 

Function 2 
(Dim 1 “Severity” and Dimension 3) 

Low-Time Pilots .094 .126 
Mid-Time Pilots .453 -.095 
High-Time Pilots -.638 -.053 

**Note: both functions failed to reach statistical significance (p=n.s.) 
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Table 12.11. Classification results for the discriminant analyses conducted on Prime 
Recognition Task dimensional weights from a) the two-dimensional WMDS solution, and b) the 
three-dimensional WMDS solution. 

  
a) Based on dimension weights from 2D WMDS Solution 

 Predicted Group Membership 
Total Low-time

Pilots
Mid-Time 

Pilots
High – Time 

Pilots 
Original 
Classification 

Low-time Pilots 55.5% 22.2% 22.2% 100%
Mid-Time Pilots 25% 50% 25% 100%
High-Time Pilots 0% 14.3% 85.7% 100%

Cross-
Validation 
 

Low-time Pilots 44.4% 22.2% 33.3% 100%
Mid-Time Pilots 25% 50% 25% 100%
High-Time Pilots 28.6% 14.3% 57.1% 100%

62.5% of original grouped cases correctly classified 
50% of cross-validated grouped cases correctly classified

 

b) Based on dimension weights from 3D WMDS Solution 
 Predicted Group Membership 

Total Low-time
Pilots

Mid-Time 
Pilots

High – Time 
Pilots 

Original 
Classification 

Low-time Pilots 22.2% 44.4% 33.3% 100%
Mid-Time Pilots 12.5% 62.5% 25% 100%
High-Time Pilots 0% 28.6% 71.4% 100%

Cross-
Validation 
 

Low-time Pilots 11.1% 55.6% 33.3% 100%
Mid-Time Pilots 50% 12.5% 37.5% 100%
High-Time Pilots 14.3% 28.6% 57.1% 100%

50% of original grouped cases correctly classified 
25% of cross-validated grouped cases correctly classified

 

Summary. Discriminant analysis was more successful in classifying pilot experience 

based on dimension weights when using the simpler 2D WMDS solution, especially with respect 

to classifying Low-time and Mid-time Pilots. Cross-validation percentage of correct classification 

decreased quite significantly for Low-time and Mid-Time pilots as well between the 2D and 3D 

WMDS solutions.  

 Summary of Classification Results 

 The dimensional weights from conceptual structures were moderately successful 

predictors of pilot experience, with some KETs outperforming others in classifying certain 

groups depending on the complexity of the conceptual structure (i.e., the number of Dimension 
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Weights used as predictors). When dimension weights were used from the more complex 

conceptual structures (3D WMDS solutions), Low-Time pilots were more successfully classified 

based on the Relationship Judgment conceptual structure while High-Time pilots were more 

successfully classified based on the Card Sort conceptual structure (Figure 12.2). No KET 

conceptual structure was able to be used to classify Mid-time pilots with any great success, 

although Relationship Judgment did so with slightly greater than chance accuracy. The Prime 

Recognition Task conceptual structure was not at all successful in classifying Low and Mid-time 

pilots but curiously was much more accurate when classifying High-time pilots. The cause of 

this drastic increase in accuracy among Pilot Experience Groups is not known, as most of the 

other analyses have consistently shown Prime Recognition Task to be fairly uninfluenced by 

pilot experience.  

When dimension weights were used from the less complex conceptual structures (the 

2D WMDS solutions), the Relationship Judgment conceptual structure was again most accurate 

for classifying Low-Time pilots and the Card Sort conceptual structure was most accurate in 

classifying High-Time pilots (Figure 12.3). Mid-Time pilots were more successfully classified by 

Card Sort and Prime Recognition Task conceptual structures when they were based on the less 

complex 2D WMDS solutions. Classification accuracy of Relationship Judgment for Mid-Time 

pilots was unaffected by complexity of the solution.  
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Figure 12.2. Cross-validation classification accuracy from the discriminant analysis applied to 
three dimension weight data for each Pilot Experience Group and KET. 

 

 

 

Figure 12.3. Cross-validation classification accuracy from the discriminant analysis applied to 
two dimension weight data for each Pilot Experience Group and KET. 
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Thus, classification results suggest that each of the KETs elicit proximity data that when 

analyzed using MDS yield conceptual structures that capture some valid structural information 

about how pilot experience level influences the organization of weather information in memory. 

The Relationship Judgment KET appears to capture more of the structural information useful for 

discriminating Low-Time pilots from the rest of the group while the Card Sort KET appears to 

capture more of the structural information useful for discriminating High-Time pilots from the rest 

of the group. However, these results must be taken with caution, as the sample size was small 

for discriminant analysis and for some of the KETs the functions failed to reach statistical 

significance or were only marginally statistically significant.  

 Summary of Validation 

The focus of this section was on validating the conceptual structures as elicited from the 

three KETs: Relationship Judgment, Card Sort, and Prime Recognition Task. Validation was 

examined in different two ways. Both analyses indicated Card Sort to be the most valid of the 

three KETs. 

First, Card Sort was only KET from which it was possible to discriminate between pilots 

of different experience level. High-time pilots had higher overall weights for the dimensions that 

underlie the “expert” conceptual structure compared to Low-Time and Mid-Time pilots, meaning 

that those dimensions had a greater influence on the Card Sorts of the High-Time pilots, which 

in turn implies that the High-Time pilots had a greater understanding of the meaning of those 

dimensions.  Also, High-Time pilots were found to rely on more than just the “Severity” 

dimension to make their Card Sorts, whereas Low-Time and Mid-Time pilots had much higher 

weights for “Severity” than the other dimensions indicating that they relied on that dimension 

primarily in sorting the concepts.  

Second, classification analysis indicated that the conceptual structure based on Card 

Sort contained more structural information useful for classifying High-Time pilots from the rest of 
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the group than did the other KETS. The Relationship Judgment conceptual structure maintained 

a relatively high cross-validation accuracy for classifying Low-Time pilots, however, the 

functions for Relationship Judgment failed to reach statistical significance, indicating that the 

function of predictors did not significantly differentiate between pilots with different levels of 

experience.   
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Chapter 13 - Practical Evaluation of the KETs 

Even KETs that elicit highly valid conceptual structures may still have their usefulness 

questioned by those in applied fields if they do not fit well with the characteristics that describe 

applied environments such as tight timelines, minimal resources and personnel who may have 

limited formal training in Human Factors, Psychology, and/or Statistics. Hoffman et al. (1995) 

identified several dimensions upon which KET efficiency and effectiveness can be qualitatively 

evaluated (see Table 13.1). Efficiency was evaluated in terms of amount and type of necessary 

resources. Effectiveness was evaluated in terms of KET simplicity, artificiality, and flexibility.   

 
Table 13.1. Operationally defined dimensions on which the efficiency and effectiveness of the 
KETs were qualitatively compared (adapted from Hoffman et al., 1995, p. 142).  

Dimension of 
Efficiency & 

Effectiveness 
Operational 
definition 

Relationship 
Judgment Card Sort 

Prime 
Recognition 

Task 
Simplicity of materials The number of stimuli or 

other materials and their 
complexity relative to the 
familiar task 

Fair Excellent Poor 

Simplicity of the task Brevity of the 
instructions necessary to 
specify precisely what 
the participant is 
expected to do 

Good Good Fair 

Brevity of the task Total time on task, or 
total time relative to the 
duration of the familiar 
task 

Fair 
(25-35 min) 

Excellent 
(under the 

participants’ 
control) 

Poor 
(45-60 min and 
at most half of 
data collected 

is usable) 
Flexibility of the task Is it adaptable to 

different materials, 
different participants, 
variations in instructions, 
etc.? 

Good Excellent Poor 

Artificiality of the task How much, and in what 
ways, does it depart 
from the familiar tasks? 

Fair 
(has some 
artificiality) 

Good 
(has little 

artificiality) 

Poor 
(does not 
resemble 

familiar tasks in 
any way) 

Data format Do the data records 
come out of the task in a 
format ready to be 
represented in a 
computer 

Good 
Poor when 

administered 
by hand 

Fair 
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 Simplicity of the Materials 

The same 15 weather-related information concepts were used for each KET. However, 

each KET required different numbers of stimuli and therefore had different set up requirements. 

Relationship Judgment 

The Relationship Judgment required that each of the 15 weather information concepts 

be judged in pairwise comparison with all other weather information concepts, resulting in 105 

pairs. To simplify data collection, a computer program was constructed using E-Prime 

Experimental Lab Software (Schneider, 2000) that would display each of the 105 pairs in 

random order and collect pilots’ 1-9 responses on the computer keyboard. In addition to 

constructing the computer program, all 105 stimuli had to be created. Also, it is recommended 

that the order in which an item in each pair is presented should be counterbalanced across all 

participants, which would have required an additional 105 stimuli to be created. However, order 

of presentation within each pair was not counterbalanced in the current study. Lastly, an 

interference task had to created and administered after every rating to ensure there were no 

carryover effects from previous ratings.  

Card Sort 

The Card Sort required minimal materials and time for set up. Each of the 15 weather-

related items was printed on a small card. Stacks of 15 cards were created for each participant. 

Blank cards were also made available for creating duplicate cards and for applying labels to the 

resultant groups. Card sorts could be performed anywhere there was a tabletop surface for 

grouping the cards.  

Prime Recognition Task 

The Prime Recognition Task required the most material and set up time of all of the 

KETs by far. Each of the 105 pairs of the 15 weather-related items were used as prime-target 
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pairs. Of the 105 “Target” trials (trials where the target was part of the memory set), each 

concept was used 50% of the time as a prime and 50% of the time as a target. Memory sets 

had to be custom-created for each Target so that each item in the memory set shared the same 

physical characteristics or structure as the target. For example, if the target was an acronym 

then all items in the memory set needed to be acronyms of relatively equal length. If the target 

was two words, then all items in the memory set had to be two words. If at all possible, words 

were chosen for the memory set that were relatively equal in length as well to reduce any 

possibility that the participant could rely on any non-semantic information to complete the task.  

Also, because the response is either “yes” or “no” to whether the target was part of the memory 

set, the Prime Recognition Task required the set up of “Foil trials” (i.e., trials where the target 

was not in the memory set ) in addition to the 105 Target trials. It is recommended that the 

number of Target and Foil trials be relatively equal to ensure the participant is responding based 

on memory and not based on any perceived likelihood ratios. Lastly, an interference task had to 

created and administered after every trial to help extinguish any memory traces from the 

concepts used in the previous trials.   

 Simplicity of the Task 

Relationship Judgment 

The task of rating the similarity between items was a relatively straightforward and 

familiar task that required little instruction. However, the experimenter must make the choice 

about whether or not to define similarity. Defining what “similarity” means will ensure that 

participants are consistent in how they are evaluating the relationship but it could unfairly bias 

them into evaluating the items on a relationship that is less meaningful within their overall 

domain understanding.  
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Card Sort 

 The task of sorting items into groups was also a relatively straightforward and familiar 

task that required little instruction. However, as with Relationship Judgment, the experimenter 

must make the choice about whether or not to provide further instruction as to the relationship or 

context within which the items are to evaluated and grouped.  

Prime Recognition Task 

The Prime Recognition Task was not a familiar task to participants and required a fair 

amount of initial instruction and practice trials during which they were allowed to answer any 

clarification questions. Once the practices trials were completed, however, pilots had no 

difficulty performing the task correctly.  

 Brevity of the Task 

Relationship Judgment 

Because all concepts must be evaluated in pairwise comparison with each other 

concept, a very modest list of 15 concepts required 105 ratings. Typically pilots could complete 

these 105 ratings in about 25-35 min. 

Card Sort 

The task of sorting 15 cards could be done rather briefly, within a matter of minutes, or 

the participant could take their time and revise the groupings multiple times until they were 

satisfied. The important point is that the duration of the task is largely under the participants’ 

control.  

Prime Recognition Task 

The 105 Target Trials (105 prime-target pairs), the 15 additional “Target” trials that 

involved acronyms, and the additional 79 “Foil” trials resulted in 199 trials for the participants to 
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complete. Typically participants completed this task in 45-60 min. However, this task is 

extremely inefficient considering that of those 199 trials, only data from at most 105 trials will be 

used to build conceptual structures. The phrase “at most” is used because data can only be 

used from trials in which participants are correct in their memory that the target was in the 

memory set. Therefore, depending on participant accuracy, there may be missing data for some 

of the 105 pairs on an individual participant basis.   

 Flexibility of the Task 

Relationship Judgment 

The Relationship Judgment Task is fairly flexible. Concepts to be compared can be 

words, phrases, pictures, etc. Participants can be asked to judge relationships between items in 

any number of different ways (e.g., similarity, dissimilarity, relatedness, etc.). However, because 

it requires pairwise comparisons, even a small increase in the number of concepts that are of 

interest will result in a much larger increase in the number of pairwise comparisons needed. For 

example, increasing the list of 15 to 18 will increase the number of pairwise comparisons from 

105 to 153. There are some alternative methods for administering rating tasks that do not 

require participants to rate every pairwise comparison, but those methods often require 

increasing the number of participants.  

Card Sort 

Like the Relationship Judgment, Card Sorts can be done with any number of different 

types of concepts, including words, phrases, pictures, etc. Instructions and protocol can be 

varied to allow participants to perform open card sorts (where participants create their own 

groups) or closed card sorts (where participants sort cards into pre-specified groups). Card sorts 

are very capable of handling large numbers of cards (up to 100) with less dramatic effects on 

total time on task compared to the Relationship Judgment (Spencer, 2009).  
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Prime Recognition Task 

Because of all of the required procedures for setting up a Prime Recognition Task, the 

task itself is fairly inflexible to different materials. It would be very difficult to conduct a Prime 

Recognition Task (in the form used in the current study) using anything other than one- or two-

word concepts. Also, the Prime Recognition Task is based on response time and requires a 

motor response. Since motor response time can get slower with increasing age, it makes the 

Prime Recognition Task difficult to justify using for reliably discriminating between groups on a 

certain factor when age is not controlled within each group.    

 Artificiality of the Task 

Relationship Judgment 

Participants are asked to make judgments about the relationship between two items 

independently, without respect or consideration for any overlapping or moderating relationships 

that may occur in combination with other concepts as well. This independence adds some 

artificiality to the task, considering that in any real-world context within which the two items co-

occur, there will most likely never be a need to assess the relationship between these two items 

in isolation.   

Card Sort 

The extent to which the Card Sort is artificial depends largely on the type of concepts 

that are used in the sort. If the concepts are not representative of the domain or are unfamiliar to 

the participant, then the Card Sort could be considered to be highly artificial. However, the Card 

Sort, when used with appropriately representative concepts, is the least artificial of all of the 

KETs evaluated in the current study. Also, the physical task of spreading cards out on a table, 

putting similar items nearer to each other and eventually putting like items into groups is a very 

natural task, making it very intuitive for participants (Spencer, 2009).  
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Prime Recognition Task 

The Prime Recognition Task does not at all resemble any familiar task. Participants 

often expressed confusion as to the reason they were being asked to complete this task as they 

saw no relevance between it and display design.  

 Data Format 

Relationship Judgment 

In the current study, the Relationship Judgment Task was administered via computer. 

Therefore, no by-hand data entry or coding was required. Data were able to be exported from E-

Prime into Excel for further analysis. Exported data required some cleaning and formatting but 

overall the data format process was relatively efficient.  

Card Sort 

In the current study, Card Sorts were administered and conducted by hand, meaning 

that participants physically sorted and grouped cards. Cards that were formed into groups were 

physically attached (via paper clip) and placed into plastic bags. At the end of data collection, all 

groupings had to be hand-coded into excel spreadsheets. This process took several days to 

complete. However, there are some computer-based software programs that allow card sorts to 

be administered electronically. Spencer (2009) provides a review of card sort software. These 

software programs will collect the card sort data and enter it into some type of analysis tool 

automatically. However, some of the analysis tools are fairly limited in what they can do. Also, 

most software programs will not allow the use of duplicate cards and/or hierarchical groups to 

be created (at the time of data collection for the current study, no software program supported 

any of these options). Therefore, while software programs are available to make the data 

formatting more efficient, they tend to do so at the expense of opportunities for flexibility in how 

the card sort is administered.  
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Prime Recognition Task 

Like the Relationship Judgment Task, all data are collected via computer which negates 

the need for any hand coding. Data can be exported from E-Prime into Excel for analysis. 

Again, the data file requires the same cleaning and formatting that the Relationship Judgment 

Task does. However, Prime Recognition Task requires the added procedures of 1) removing 

Foil Trials, 2) removing target trials where the participant was “incorrect” in their response, and 

3) identifying when response times constitute outliers and how to deal with outliers.  

 Summary 

Of all of the dimensions used to qualitatively evaluate efficiency and effectiveness of the 

KETs, the Card Sort method was identified as being the most efficient and effective. It is flexible 

in its ability to handle a lot of concepts without drastic increases in task completion time. Sorting 

and grouping related items, especially physical representations of them, comes very naturally to 

most participants. It provides a more realistic opportunity for participants to evaluate each 

concept within the context of its relationship to multiple other concepts and allows the groupings 

to be revised in iterative fashion until the participant is satisfied that it adequately represents 

their view. The major drawback to card sorts is the need for manual coding if the card sorts are 

administered manually.  
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Chapter 14 - General Discussion 

The main goal of this research was to compare and contrast three different methods for 

eliciting and representing pilots’ knowledge for weather-related information. Each of the three 

KETs is grounded in psychological theory and each has a history of employment in the fields of 

Human Factors and HCI. This study sought to increase the understanding of the strengths and 

weaknesses and similarities and differences of these techniques in terms of the data they yield, 

the information about knowledge structure they elicit, and the resources they require. Once the 

strengths and weaknesses have been assessed, guidelines can be established for selecting the 

appropriate KET to arrive at the desired information.  

The approach taken to compare the three KETs was based on one fundamental tenet – 

that individuals who differ in skill level will also differ in knowledge structure – for which previous 

research in Cognitive Psychology provides support. Thus, each of the KETs was evaluated in 

terms of how well the data and the information derived from that data reflected differences 

associated with skill level of the pilot participants. KET(s) that represented or maintained 

differences in output as a function of skill level were considered to be more valid conceptual 

structures than KET(s) that could not discriminate between pilots of different experience. 

  Results Review 

 Data Collected  

The first analysis was conducted to understand the similarities and differences between 

proximity data elicited by each of the techniques. Proximity data from the Relationship 

Judgment and Card Sort Tasks were significantly correlated, meaning that items that were 

judged as being similar in the Relationship Judgment task tended to be grouped with each other 

in the Card Sort. This significant correlation between the techniques maintained for all three 

Pilot Experience Groups, with the highest correlation occurring on proximity data for High-Time 
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pilots. However, proximity data from the Prime Recognition Task was not correlated with 

proximity data from the Relationship Judgment Task and only marginally correlated to proximity 

data from the Card Sort Task. This suggests that the Relationship Judgment and Card Sort 

Techniques tap in to a similar type of knowledge structure relative to the Prime Recognition 

Task. This finding was as hypothesized, since the Relationship Judgment and Card Sort tasks 

were both explicit KETs that specifically asked pilots to consider similarity or relationships 

between items, whereas the Prime Recognition Task was an implicit KET in which relationship 

between items is inferred based on response times and memory performance.   

 Information about Knowledge Structure 

Several analyses were conducted to examine how the information gained about 

knowledge structure was influenced by the type of technique used to elicit it. Special focus was 

on evaluating which technique elicited proximity data and ultimately conceptual structures that 

differed with pilot experience. Card Sort was the only KET to reliably support and represent 

differences between pilots of different experience across all analyses. The Mantel Test showed 

that Card Sort was the only KET to elicit proximity data on which pilots with the same level of 

experience were more correlated with each other than they were with pilots who had different 

levels of experience.  

Proximity data from each KET were submitted to WMDS and the analyses on the 

resulting conceptual structures further supported the greater validity of the Card Sort technique. 

WMDS achieved at least a “Fair” fit with the least complex solution for the Card Sort data. Card 

Sort data were fit with a 2D solution, whereas more complex solutions were required for 

Relationship Judgment (3D) and Prime Recognition Task (4D) to achieve a “Fair” model fit.  

This low complexity (2D) solution was an even better fit for Card Sort data from High-Time 

pilots, whereas for the other two KETs the fit did not improve with experience level. Previous 

research suggests that knowledge organization actually simplifies with increased experience. 
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Experience allows one to identify and maintain the important information and associations, 

yielding a simpler organization (e.g., Schvaneveldt et al., 1985; Ye & Salvendy, 1994).  

SMEs were only able to ascertain meaning for the dimensions underlying the Card Sort 

and Relationship Judgment 2D conceptual structures. Further, in the Card Sort conceptual 

structure they were able to identify differences in how pilots of various levels of experience 

seem to interpret those dimensions based on how the weather information concepts were 

located along those dimensions as a function of Pilot Experience Group. However, they were 

unable to identify any such differences among the Pilot Experience Groups for their Relationship 

Judgment conceptual structures. Further, they were unable to interpret any meaning for the 

dimensions that defined the conceptual structures from the Prime Recognition Task.  

“Expert” conceptual structures were defined for each KET (based on data from High-

Time pilots) and analyses were conducted to understand how important each of the dimensions 

of the expert conceptual structure was to the overall judgments/groupings/response times of 

pilots within each Pilot Experience Group. Given that experience influences knowledge 

structure, it was assumed that the dimensions for the expert conceptual structure should be 

more important (weighted higher) for High-Time pilots than for pilots with less experience. 

Results showed Pilot Experience Groups differed in the importance perceived for the 

dimensions for Card Sort conceptual structures only. High-Time pilots had overall higher 

dimension weights than the other two experience groups and tended to rely on the dimensions 

more equally while Low- and Mid-Time pilots seemed to rely more heavily on the “Severity” 

dimension when completing their card sorts. Pilot Experience Groups did not differ in their 

importance of the dimensions that defined the expert conceptual structures for either the 

Relationship Judgment or Prime Recognition Task.  

Lastly, Discriminant Analyses performed on the dimension weights of respective KET 

conceptual structures showed that the conceptual structure based on Card Sort contained more 
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structural information useful for accurately classifying High-Time pilots from the rest of the group 

than the other KETs. The Relationship Judgment conceptual structure showed greatest 

accuracy for classifying Low-Time pilots from the rest of the group than did the other KETs; 

however, the functions for the Relationship Judgment failed to reach statistical significance, 

calling into question the reliability of those results. 

 Type of Knowledge Elicited 

Up to this point, KET validity has been evaluated in terms of how well each of the KETs 

result in conceptual structure that reflect differences in knowledge structure presumed to occur 

as a result of different levels of experience. However, another important consideration when 

evaluating KETs is to understand what type of knowledge is being elicited by each technique. 

The “differential access hypothesis” is a belief held in the knowledge elicitation domain that 

different KETs may elicit different types of knowledge (e.g., declarative vs. procedural) and/or 

evoke different kinds of strategies (e.g., top-down vs. bottom-up reasoning) (Hoffman et al., 

1995). For example, Gammack & Young (1985) found that sorting and scaling tasks were best 

for eliciting interactions between domain concepts and think aloud problem solving and task 

analysis techniques were best for eliciting procedures and heuristics. Further, some KETs may 

tap knowledge that is more predictive of performance than others. For example, Rowe et al. 

(1996) found that relatedness ratings and hierarchical concept listing interviews were better than 

diagramming and think aloud methods in terms of eliciting knowledge that corresponded to 

avionics troubleshooting performance. Therefore, the results of the current study taken in 

combination with an understanding of the characteristics of the KETs should provide some 

insight into how the KETs may differ in the type of knowledge they attempt to elicit.   
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 Review of KET Task Characteristics 

The three KETs differ in several key ways that may impact the type of knowledge and/or 

the validity of the data that are elicited (see Table 14.1). First, as previously noted, the KETs 

differed in the amount of awareness that the participant has about the true purpose of the task. 

Participants were aware of the need to evaluate relationships between concepts in the Card 

Sort and Relationship Judgment tasks (explicit techniques) but were not aware that 

relationships were being evaluated in the Prime Recognition Task (implicit technique). Second, 

the KETs differed in terms of how the concepts were presented for evaluation. The Card Sort 

allows the evaluation to occur within the context of all other concepts, the Relationship 

Judgment Task requires concepts to be evaluated in pairs independently of other pairs, and 

Prime Recognition Task presents concepts in implicit prime-target pairs but within the context of 

a memory task rather than an evaluation.  

KETs also differed in the amount of time pressure the participant felt when completing 

the task. Card Sort participants had no time pressure (told to take as much time as necessary), 

Prime Recognition Task participants had high time pressure (told to work quickly and accurately 

and were aware that response time was being collected). Relationship Judgment participants 

were not given expectations or instructions regarding time but they may have been motivated to 

make their judgments more quickly in order to be finished  with the rather mundane task. 

Consequently, only the Card Sort task provided participants with the opportunity to mentally 

simulate situations where the concepts would be used in order gauge relationships between 

concepts. They could have taken the time during the Relationship Judgment as well, but 

response times for their similarity judgments suggest that most did not evaluate the 

relationships to that degree. Only the Card Sort allowed participants the opportunity to rethink 

and revise their judgments to visually evaluate, represent, and revise the relationships between 

concepts. 
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Table 14.1. Summary of how the key differences in task characteristics vary among the three 
KETs.  

Task Characteristics 
Knowledge Elicitation Tasks (KETs) 

Card Sort Relationship 
Judgment 

Prime Recognition 
Task 

Awareness of the true task 
purpose (i.e., evaluate 
relationships between concepts) 

Explicit 
(fully aware) 

Explicit 
(fully aware) 

Implicit 
(not aware) 

Presentation of concepts for 
evaluation 

Within the 
context of 

other concepts

In pairs, 
independently 

evaluated 
(given an 

interference task 
to remove memory 
traces of previous 

ratings) 

Concepts presented 
within context of 

memory task (not for 
evaluation) 

Time pressure None Some (implied) 
High (aware 

performance is being 
timed) 

Opportunity to mentally simulate 
situations that involve the 
information concept(s) to help 
make judgments 

Yes 

Some (but implied 
time pressure may 
make participants 
reluctant to make 

much effort to 
simulate) 

No (participants are 
unaware that 

relationships are 
being evaluated) 

Opportunity to rethink and revise 
judgment Yes No No 

Visual feedback about 
relationships 

Yes – can 
visually see 
and tactually 
manipulate 
groupings 

No No 

 

 Generalizing Results to the CI Model 

The Construction Integration Model (Kintsch, 1988) postulates that information can be 

processed at three different levels of representation. The surface level is the minimally 

processed text information that is initially coded. For example, given “Nebraska really pounded 

K-State in football last fall,” the surface level processing reveals the syntactic and orthographic 

structure of the sentence and is short-lived. At the text-based level, information is parsed into 

predicates (e.g., verbs, adjectives, adverbs) and arguments that are processed in terms of their 

semantic meaning with minimal inferences (e.g., Nebraska scored more points than K-State). 
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The situation model level activates relevant and non-relevant information stored in LTM and 

engages elaborative processing and inference generation beyond the semantic meaning of the 

information. For example, when processing the sentence above, other concepts and memories 

may be activated that are beyond semantic meaning and are based on previous experiences, 

like the sad looks on the faces of the K-State fans watching the game on TV at the bar with you, 

the fun times you had with your friends at the last game you attended at Bill Snyder Family 

Stadium, and the smell of the funnel cakes that are sold at the games. Thinking about the KET 

task characteristics within the context of the CI model provides some insight into the reasons 

why the card sort was the only technique for which experience seemed to play a role.  

The Card Sort task was the only technique that explicitly asked pilots to consider each 

weather-related item within the context of all of the other weather-related items when making 

their assessments of relationship. The technique also applied the least amount of time pressure 

on the sorting judgments and allowed pilots to reevaluate their groupings continuously within the 

context of other items they were sorting. Perhaps it was this opportunity for deliberation and 

revision that allowed the pilot’s experience level to factor into the task. In other words, the Card 

Sort technique allowed for the pilots to engage in a deeper level of processing of the weather-

related information and/or simulate the various scenarios for how these concepts are related in 

flight (i.e., situation model). It was this deeper level of processing or mental simulation that 

triggered the associations and usage instances on the basis of the pilot’s past experience that 

ultimately influenced the Card Sort groupings.  

Although the Relationship Judgment task did ask pilots to make similarity judgments on 

aviation-related items, pilots made each relationship judgment between two items individually 

and were not allowed to revise their judgments like they could in the Card Sort. Pilots had to 

complete a masking task between trials to further ensure that the judgments were made 

independently. The fact that the judgments were made individually, independently, and perhaps 
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under some implicit time pressure may have resulted in pilots relying on text-based level of 

processing of items (i.e., using the general semantic meaning or textbook definition of the 

terms) to make their judgments rather than evoking the situation model level of processing at 

which experience may play a stronger role (Kintsch, 1988). In other words, shallow processing 

was sufficient to complete the task (Graesser, Singer & Trabasso, 1999).  

Less response variability would be expected among Relationship Judgments if they were 

based on a general “textbook definition” of a term because pilots should have the same general 

understanding of the semantic meaning of each of the terms regardless of their experience 

level. Less variability in responses would, in turn, lead to fairly high correlations between all 

pilots regardless of experience level. Recall that correlations between all pairs of pilots were 

overall higher for Relationship Judgment proximity data than for data from the other two KETs, 

further supporting this notion that Relationship Judgments are based on a text-based level of 

processing of the items. In other words, task demands and participant strategy could have 

combined to motivate only processing of the “textbook definition” of the weather-related items, 

resulting in higher average correlations among pilots compared to the other KETs but also a 

lack of effect of pilot experience on the responses.  

The decision to examine the Prime Recognition Task as an alternative technique for 

knowledge elicitation arose out of concern that the cognitive processing involved with having 

participants explicitly judge or evaluate relationship introduces unnecessary variability into the 

data. Specifically, responses could be biased by transient environmental and situational factors 

(e.g., recent events may stand out in memory as participants think about situations in which the 

concepts may occur but those events may not be representative of what is typical). The Prime 

Recognition Task was hypothesized to be able to provide information about knowledge structure 

that is unbiased by these transient potential influencers. However, results from the current study 

showed that the Prime Recognition task yielded proximity data that was very noisy and not at all 
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affected by experience level of the pilot. WMDS required a 4D solution in order to provide a 

“Fair” model fit to the data and even then, the R2 value was not nearly as high as it was for “Fair” 

fits to the data from the other KETs. In addition, the dimensions underlying the conceptual 

structure based on the 2D MDS solution were uninterpretable by SME pilots. In sum, the Prime 

Recognition Task did not lend itself well to being a KET used in this context.     

The task characteristics of the Prime Recognition Task provide at least a partial 

explanation of its shortcomings as a KET. At its core, the Prime Recognition Task is a memory 

task. Perhaps the fact that the task was presented to the pilots as a memory task with both 

response time and accuracy as primary goals motivated pilots to develop and employ memory 

retrieval strategies (e.g., mnemonics, location based cues on the screen, visual appearance of 

the words, etc.) that effectively removed any aviation-related context and processing for the 

weather items, including the prime and the target. Thus, the priming effect (and therefore the 

prime-target relationship on which the conceptual structures were ultimately supposed to be 

based) may not have been based on any aviation-related context, knowledge or experience. 

This may explain why there was no evidence that pilot experience was a factor influencing the 

conceptual structures elicited by the Prime Recognition Task.   

Another potential limitation of the Prime Recognition Task and its use of response time 

as proximity data is that it requires a motor response. Motor responses have been shown to 

decrease with increasing age (Falkenstein, Yordanova & Kolev, 2006). The High-Time pilot 

group had the highest average age (49 yrs) compared to Mid-Time (41 yrs) and Low-Time (26 

yrs) pilots. Therefore, the requirement of a motor response may have confounded the use of 

response time to assess relatedness of items in knowledge structure. Low-Time Pilots did have 

significantly quicker response times overall compared to Mid-Time and High-Time Pilots (see 

Appendix B). If the prime were activating global structure, one would expect High-Time pilots to 

be overall quicker in response time since highly experienced people tend to have denser 
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knowledge structures that should facilitate the priming. Perhaps any gain in response time due 

to experience and priming was confounded by a degradation in motor response time of the older 

High-Time pilots relative to the other Pilot Experience Groups.  

 Limitations 

The current study had several limitations. Also, decisions were made regarding the 

methodology that may be worth revisiting if this study was to be replicated and extended.  

First, the number of weather-related information concepts on which the conceptual 

structures were derived was very small (15 concepts). Further, previous research has shown 

that the strength of relationship between any two concepts is affected by the context in which 

the judgment is made. One of the factors that shapes the context is the combination of concepts 

that comprise the stimulus set (Dorsey et al., 1999). Efforts were taken in Phases I and II of the 

current study to identify the most important weather-related concepts for inclusion in the 

stimulus set. However, the desire to maintain the same stimulus set across the three KETs 

combined with the procedural and stimulus requirements of the Prime Recognition Task 

resulted in a list of 15 concepts that may not have been as comprehensive in their 

representation of aviation weather-related knowledge structure as would have been desired. 

Further, since validity was defined as the ability to distinguish between different levels of pilot 

experience, it may have been beneficial to include different groupings of concepts that would be 

presumed to be differentiators of experienced-based knowledge (Dorsey et al., 1999).  

Second, experience was defined as the total number of flight hours. Previous studies 

have used total flight hours as an indication of experience (e.g., Goh & Wiegmann, 2002). 

However, pilots were not specifically recruited based on their total number of hours flown. 

Instead, the Pilot Experience Groups were identified at the conclusion of the data collection and 

were designed to maintain relatively equal numbers of pilots per group while also taking into 

consideration any natural breaks in the distribution of hours flown and the range of hours within 
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which pilots could logically be expected to have relatively similar flight experiences. Perhaps the 

KET validity results would have been different if pilots were recruited based on total flight hours 

such that greater delineations between experience groups could have been maintained. For 

example, perhaps the Relationship Judgment and Prime Recognition Task would were not 

sensitive enough to detect conceptual structure differences given the high variability of total 

hours within each Pilot Experience Group (see Table 9.2). Perhaps if Pilot Experience Groups 

were to differ more significantly and with less variability in terms of total hours flown, then 

Relationship Judgment and Prime Recognition Task validity may have been improved.  

It is also possible, however, that total hours may not have been the most appropriate 

parameter on which to base experience, especially with respect to the use of weather 

information. For example, a High-Time pilot may have been able to accumulate many hours of 

flight time but decide to never fly in anything but VFR conditions (e.g., sunny) even though he or 

she may be rated to do so. Also, a pilot may have accumulated many total hours but has maybe 

flown just enough to stay current in the last several years. Other factors that may be useful to 

consider when trying to classify experience include how many seasons they have flown through 

and in which seasons they have accumulated a certain number of hours (seasonal flying is 

emphasized in FAA flight training), type of airplane operation (recreational or commercial), and 

type of aircraft flown (low performance, high performance) (G. Shetterly, personal 

communication, March 18, 2011). 

Another potential limitation of the current study is the subjectivity with which the 

conceptual structure dimensions were identified. SMEs were asked to provide their 

interpretation of meaning for the underlying dimensions of the conceptual structures derived 

from each of the KETs. While the SMEs were able to confidently identify meaning in some of the 

dimensions, they were unable to identify meaning in all of the conceptual structures. Also, even 

though they felt confident in their interpretations, these interpretations were still very subjective. 
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Perhaps other types of data could have been collected to help in identifying dimension meaning. 

For example, pilots could have also been asked to complete a general knowledge measure, 

such as a general comprehension test (e.g., defining terms, recognizing information) and/or a 

skilled performance tests (e.g., identify steps needed to accomplish an aviation-related task), 

the differences in their performance on these tests could have provided insight into the meaning 

of the dimensions in the conceptual structures (Dorsey et al., 1999; Schiffman et al., 1981). 

Other types of data that could have provided quantitative help or objective insight into identifying 

dimension meaning include 1) importance/severity ratings for each of the concepts, 2) 

frequency of use ratings for each concept, 3) phase of flight within which each concept is used, 

and 4) familiarity with each concept.  

Altering the procedures for administering the KETs could also have provided better 

insight into the meaning of the dimensions underlying the conceptual structures. For example, 

pilots performed Relationship Judgments without specific instruction as to what “relatedness” 

really meant. It is commonly assumed that raters will choose the most relevant features on 

which to make their comparisons. However, this lack of instruction can lead to difficulty in 

interpreting dimensions using MDS (Dorsey et al., 1999). However, as discussed in Chapter 9, 

providing explicit guidance on how relatedness should be judged could lead to biased 

responses and result in the identification of dimensions and that are not truly meaningful in the 

actual knowledge structure. When completing the Card Sort, participants were not explicitly told 

to talk out loud while making their groupings, nor were any notes taken about observations of 

participant behaviors or comments during the sorts. If participants would have been asked to 

think aloud while performing the card sorts, their comments and behaviors (e.g., deliberations 

for specific card placement) could have given some insight into the factors that were influencing 

their groupings. However, the mere act of talking outloud may have impaired or influenced their 
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ability to engage in the deeper level of processing that the current results suggest they achieved 

when completing their sorts.  

Lastly, while several attempts were made to evaluate the validity of each of the tasks as 

elicitation techniques, no analyses were conducted to assess the reliability of each technique. In 

retrospect, reliability could have been assessed in a couple of different ways. However, each 

option for assessing reliability also presents some drawbacks as well.  

First, trial replications could have been used to examine reliability for each technique 

(i.e., whether the elicited data were comparable across replication). Ideally, all trials would be 

replicated, but practically speaking this is rarely an option in applied domains like aviation. 

Therefore, even replicating a proportion of the total trials could give some indication of the 

reliability of each technique. For example, pilots could have been asked to rate 30% of the 105 

concept pairs twice in the Relationship Judgment, respond to 30% 105 prime-target pairs twice 

in the Prime Recognition Task and asked to sort the same 15 cards into groups again after 

some time had passed.  

However, adding trials to each of the tasks also adds to the amount of time required to 

complete each technique (e.g., increasing the number of Relationship Judgments to 137 

compared to 105). The addition of extra trials would be even more extreme for the Prime 

Recognition Task, given that any additional Target trials must come with the addition of Foil 

trials to maintain roughly the same proportion of Target and Foil trials (important for preventing 

participants from responding based on any internal calculation of the likelihood of Target Trial 

presentation). Thus, a 30% increase in prime-target trials would actually result in the addition of 

50 trials or more. Considering that the pilots were volunteering their time for no reimbursement, 

the decision was made to keep the number of necessary trials to a minimum for each technique, 

thereby sacrificing the ability to assess reliability.  
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Also, analyses could have been conducted on half of the participants within a technique 

with results confirmed by analyzing the other half of the participants who completed that 

technique (i.e., split-half technique). However, given that the sample size for each technique in 

some cases was already less than ideal, the informativeness of a split-half reliability analysis 

would have to be questioned. Thus, reliability assessment remains a limitation of this study.  



152 

 

Chapter 15 - Implications and Future Research  

 Implications 

The focus of much of the research regarding display design has been on optimizing 

display image quality (e.g., luminance, contrast, resolution, legibility, etc.) or on other perceptual 

factors of display formatting (e.g., color coding, map orientation, etc.). Within the design 

lifecycle, higher-order issues such as content and information organization typically are 

assessed later in the design process, when changes are more costly to make and there is less 

motivation to make the changes. Further, the analysis is usually based on expert opinion 

applied in a relatively informal manner. Thus, the major practical application of this research 

was to support the use of objectivity (not subjectivity) in evaluating the effectiveness of MFD 

menu structure and terminology during FAA Avionics certification.  

Specifically, the current research study was meant to lay the foundation upon which a 

tool could be developed to assess the extent to which re-learning a candidate system’s menu 

structure would be required after an extended period of absence from the system. This tool 

would provide the FAA with data regarding the degree of mapping between the candidate 

system’s menu structure for weather information and the knowledge structure for weather 

information that the targeted pilot population can be assumed to have. If the degree of mapping 

between the system’s menu structure is high, then the time needed to re-learn a system should 

be low. If the degree of mapping is low, then more time will be required to re-learn the system 

and the interaction may be more prone to errors, confusion, and/or the inability to find the 

necessary information when they need it. Such a metric is especially important for Low-Time GA 

pilots (e.g., “weekend” flyers) or pilots who routinely engage in “plane switching.” Low-Time 

pilots may need to plane switch because they do not own their own aircraft and therefore need 

to rent. More experienced pilots also may be plane-switching as they may hold ratings in several 

different types of aircraft equipped with various types of display technology. Thus, it is important 
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to understand how the MFD menu structure can be organized to support efficient and effective 

information access by pilots of different levels of aviation experience.  

The first step to developing this menu structure assessment tool is to understand how 

pilots of different levels of experience think about flying and the type of information on which 

they rely to maintain safe flight. To that end, the current study has implications for how best to 

achieve that understanding of pilots’ knowledge and information use.  

First, when the goal is to define and understand differences in knowledge structure as a 

function of experience, the Card Sort task provides a valid technique for providing insight into 

those differences, as it was the only KET to identify any differences in conceptual structure with 

pilot experience. Further, use of MDS allowed the identification of underlying factors for how 

knowledge was structured and how experience level affected the importance of those factors. 

With future research, it may be possible to define different “modes” for MFDs that correspond to 

different levels of pilot experience. Each mode may be able to highlight and prioritize types of 

information that are most relevant and important for that Pilot Experience Group for certain key 

flight situations (e.g., phase of flight).  

The current study also provided some insight into the commonalities across pilots of all 

levels of experience in how they think about weather. All pilots, regardless of experience, think 

about weather in terms of severity. However, the meaning of severity was interpreted differently 

by pilots of different experience. For example, Low-Time pilots may evaluate hazardous weather 

in terms of how it will affect their ability to maintain safe flight. High-Time pilots tend to have the 

advanced training, the experience, and the type of aircraft that make weather less of a concern 

in terms of maintaining safe flight. However, they still want to avoid severe weather because 

they do not want to alarm or inconvenience their passengers.  

Third, the current study showed that total flight hours can be used as a valid indicator of 

pilot experience level when other information about skilled vs. unskilled performance is 
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unavailable (e.g., performance tests, type of aircraft experience, memory tests, problem-solving 

tests, etc.). The Card Sort technique was able to identify differences in conceptual structure 

among different Pilot Experience Groups when experience was defined by total hours flown. 

Also, in most of the analyses where Pilot Experience Levels were compared, High-Time pilots 

showed the least amount of variance in their judgments. High-Time pilots also showed more 

consistency in their knowledge structures compared to Low-Time or Mid-Time pilots. This 

finding is consistent with previous research demonstrating that variance in knowledge 

representation decreases with increasing skill level (e.g., Goldsmith & Johnson, 1990). The 

major benefit of this finding is that total flight hours is a measure that is a consistently tracked 

industry variable. Thus, while there are certainly other types of indicators that future research 

may identify as even better indicators of pilot experience, the current study did find value in 

using total flight hours in the absence of other information.       

The current study was designed within the context of an applied environment. However, 

the implications of this study are not necessarily constrained to the field of Aviation. There are 

many different domains and product designs that are characterized by the need to display 

and/or provide access to a large amount of information on a relatively small screen to be used 

by people of different skill levels. Website design is one such field. The one major issue to 

consider about applications to other domains is the extent to which experience is expected to 

affect knowledge structure. In aviation, experience plays a key role in shaping and organizing 

domain knowledge. Pilots are trained, spend many hours honing their skills, are tested on their 

skills, and can experience very extreme consequences for poor skilled performance. However, 

users of websites may vary widely in their experience with the content, their knowledge of the 

domain, and their task goals. Also, there are less severe consequences for poorly skilled 

performance in a website compared to in flying a plane. It would be interesting to examine 

whether Card Sort would still be identified as the most valid KET for eliciting knowledge 
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structure when the task goals can vary as widely as they may with website usage. Perhaps the 

experience of using a website requires mostly shallow processing of the presented information, 

and thus the Relationship Judgment may be the more appropriate elicitation technique. 

However, any extrapolation of the current results to other domains is highly speculative.  

 Future Research 

The current study provides some insight into the similarities and differences between 

three KETs. Strengths and weaknesses of each technique have been highlighted. However, 

more research is needed to truly provide guidance into the most appropriate KET to use to 

satisfy specific research and design needs.  

 Making the Link to Performance 

This study defined KET validity in terms of the ability to use derived conceptual structure 

to distinguish between levels of experience. However, just because a conceptual structure is 

able to identify the knowledge that distinguishes groups from one another does not mean that 

that knowledge actually correlates with performance (Rowe et al., 1996). In order for validity to 

truly be established, the correlation between task performance and knowledge representation 

should be assessed. If a particular KET derives a conceptual structure that is found to be 

associated with successful performance, then the insights about knowledge gained from that 

conceptual structure can be used to affect training and/or display design to improve 

performance.  

Thus, the next step in this line of research is to confirm the results of the current study by 

assessing the validity of each KET with respect to task performance. For example, Card Sort 

was the only technique for which evidence was found for conceptual structures differing as a 

function of pilot experience. Thus, one way to validate whether or not the results of this study 

are truly indicative of performance is to build a menu structure based on the conceptual 
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structures identified for the High-Time pilots via each KET. Then a usability evaluation should be 

conducted during which pilots of various levels of experience (i.e., total number of hours) are 

asked to perform different tasks using those menu structures. Figure 15.1 provides an 

illustration of how the representations of the conceptual structures from the MDS analysis on 

Card Sort data could be transformed into groupings in MFD menu structure.15 Figure 15.2 

provides a simple mock-up of what the MFD prototype interface may look like to support 

usability testing of menu structure.  

 

 

Figure 15.1. Example illustration of how conceptual structure representation from WMDS 
analysis may be transformed into groupings for MFD menu structure. Example is based on 
conceptual structures derived by the Card Sort task performed by High-Time Pilots only.  

                                                 
15 Note that the use of only 15 information concepts in the current study results in a rather small and simplistic menu 

structure for usability testing (as discussed in the limitations section in Chapter 14). Ideally, future research would also include 

additional information concepts for deriving pilots’ knowledge structures for weather information and then testing the usability of 

menu structure(s) based on those resulting conceptual structures.   
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Figure 15.2. Simple visual illustration of what a computer-based MFD prototype interface may 
look like to support usability testing of menu structure.  

 

In theory, if the conceptual structures from each KET are valid, Card Sort menu structure 

usability (e.g., time on task, number of steps to complete, satisfaction ratings) would be 

expected to be best when used by the High-Time pilots since the menu structure organization 

would have been based on the conceptual structure derived from High-Time pilots which were 

shown in the current study to differ from the conceptual structures of the other Pilot Experience 

Groups. Usability for menu structures based on conceptual structures of High-Time pilots from 

the Relationship Judgment and Prime Recognition Tasks should not differ between pilots of 

different experience levels because their conceptual structures were not shown to differ based 

on the results of the current study.  

Note that in order to create the menu structures, other techniques would have to be used 

to resolve the local structure of the relationship between concepts, as MDS is less accurate at 

depicting the local relationships compared to global relationships. Pathfinder is one technique 

that could be used (see Chapter 4). Pathfinder analysis may also be of use to further analyze 

the results of the current study. For example, Pathfinder analysis may be used to understand 

how the presence or absence of specific links between concepts differs with respect to pilot 
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experience. This information could be very useful to the design of training curricula and 

protocols because it could help identify what information to highlight when the desire is to train 

less experienced pilots to think about weather information in ways analogous to the more 

experienced pilots. However, limitations noted about the type of number of information concepts 

may compromise the informativeness of a Pathfinder analysis applied to the current results.   

 Further Evaluation of the Card Sort Technique 

The current study identified the Card Sort as the most valid of the three KETs used to 

elicit pilots’ knowledge structure for weather information. The Card Sort was performed 

manually, with pilots physically grouping cards on a table, which allowed pilots the maximum 

flexibility with which to create their groups (unlimited time, ability to revise, ability to create 

outlier piles, duplicates cards, subgroups, and alternative terminology, etc.). Pilots in the current 

study did, in fact, take advantage of this flexibility with some Pilot Experience Groups exhibiting 

some behaviors more than other groups. For example, 50% of the Low-Time pilots in created 

sub-groups within parent groups, whereas only 25% of Mid-Time and 21% of High-Time pilots 

created sub-groups. However, more Mid-Time pilots (58%) and High-Time pilots (50%) created 

duplicate cards than did Low-Time pilots (33%). Further, more Mid-Time pilots identified more 

concepts as outliers (42%) than did Low-Time pilots (25%) or High-Time pilots (21%). While 

none of these differences reached statistical significance, it does warrant the need for more 

research specifically designed to understand whether or not this increased flexibility is 

necessary to achieve valid conceptual structures, especially when it is desirable to identify 

differences in conceptual structures as a function of experience level. This increased flexibility 

comes at a significant cost in terms of the time and resources necessary to collect, code and 

format the data. Therefore, it is important to understand just how important this flexibility is to 

the validity of the Card Sort as a knowledge elicitation task.   
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Also, there are computer programs available that will allow card sort data to be collected 

electronically and therefore negate the need for a lot of the hand coding and formatting work 

(see Spencer, 2009 and Chaparro, Hinkle & Riley, 2008 for a partial review of available software 

programs). In most cases, the software programs try to simulate the look and feel of a manual 

card sort (e.g., concepts written on graphical representations of “cards” that can be dragged 

across the screen into categories). While the technology advances have improved the 

functionality of these computer-based sorts, limitations still may exist in terms of the flexibility 

with which participants may group their concepts (e.g., inability to create sub-groups, inability to 

create duplicate cards). Therefore, understanding the impact of that increased flexibility to the 

overall validity and reliability of card sorting as a knowledge elicitation technique will help 

practitioners understand the tradeoffs they may be making in terms of data informativeness if 

they opt for the quicker but less flexible computer-based card sort methodology.   

More research is also needed to understand whether computer-based card sorts yield 

different information about knowledge structures compared to paper-based card sorts. In other 

words, does the physicality of holding cards in hand and placing them into piles add to the 

validity of the card sort as an elicitation technique? Further, the comparison between the 

modalities should be conducted on domain-specific concepts for which there is a logical 

expectation that participants may differ in the structure of that information based on their level of 

experience, as that difference in physicality may facilitate more elaborative processing about the 

relationships between the concepts in the paper-based method. However, if there is no 

difference between paper and computer-based card sorts, the computerized card sorts could 

provide a lot of benefit over paper-based card sorts, especially in terms of automating the data 

collection and formatting. Computerized card sorts could also provide the ability to collect other 

process-related data about the sorting behavior that would be very difficult if not impossible to 

collect during a paper-based card sort (e.g., number of times participants revise their groupings, 
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deliberation time – overall and for placement of each concept within a group, sequences with 

which the items are grouped, etc.).   

 Conclusions 

Display technology is increasing at very rapid rates. With the advent of touch screen 

interfaces and increases in software development, the amount and type of information that can 

be made available to the user is virtually limitless. However, the one component of the user 

experience that has not changed is basic human processing ability and capacity. The only way 

to truly leverage these advances in technology is to build the experience with the human in 

mind. Understanding how the human thinks about the information and identifying the 

relationships that are important and relevant in a given domain are important first steps to 

ensuring usable design. Valid knowledge elicitation is key to the success of those first steps.  
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Appendix A - Forward Scenario Simulation Materials 

Scenario #1

• 10 minutes after takeoff, you are cleared to climb to 7000ft where you 
experience moderate to severe turbulence. You make repeated calls to 
Miami Center to ask for higher but you are either ignored or are unable to 
make contact for some reason. The aircraft is very difficult to control (even 
with both pilots’ hands on the controls). The aircraft is flying in and through 
cumulonimbus clouds (no icing) and passengers are starting to panic.

Up the middle of the state (over Orlando)Route of flight:

•Convective Activity over the state (clear off-shore)
•Moderate to severe turbulence between 5,000ft and 20,000ft

Wx Conditions:
IFRFlight Plan:
1:00 p.m. ESTDeparture Time:
2 hrs 10 minTime Enroute: 
Atlanta Peachtree Dekalb (PDK)Destination APT:
Boca Raton, FL (BCT)Departure APT:
2 pilots onboardPilot(s):

Beechcraft King Air 200
•Turboprop with de-cing equipment; can be flown by single pilot, but 
usually flown by 2

Aircraft:

 

Figure A.1. Description of Scenario #1 presented to pilots as part of the Forward Scenario 
Simulation conducted during Phase I data collection.  

 

•Skies 2000ft overcast decreasing to marginal VFR along the route
of flight

Wx Conditions:
VFRFlight Plan:
5:00 p.m. ESTDeparture Time:
1 hrTime Enroute: 
Bartow Municipal (BOW)Destination APT:
Daytona Beach, FL  (DAB)Departure APT:
Single pilotPilot(s):

Cessna 172
•Single engine reciprocating aircraft with no anti-ice or de-icing 
equipment

Aircraft:

• 30 minutes after take-off you have descended to 1000ft and are 
scud-running. You’ve checked and there aren’t any obstacles 
between you and your destination above 500ft, but you’re slowly 
descending with the overcast cloud layer.

Scenario #2

 
Figure A.2. Description of Scenario #2 presented to pilots as part of the Forward Scenario 
Simulation conducted during Phase I data collection.  
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•Icing between 8000ft and 18000ftWx Conditions:
IFRFlight Plan:
10:00 a.m.Departure Time:
4 hrsTime Enroute: 
Charlotte, NC (CLT)Destination APT:
Great Barrington, MA (GBR)Departure APT:
Single pilotPilot(s):

Cessna 421
•Twin engine reciprocating aircraft with no anti-ice or de-icing 
equipment

Aircraft:

• You file an IFR flight plan at 6000ft. There are forecast layers
between 3000 and 5000ft and 8000 and 18000ft. It is clear above 
FL180 but you do not have oxygen equipment aboard so you cannot 
go above 14000ft. The ceiling is at 3000ft

• After departure you climb to 6000ft and you’re still in the clouds. The 
PIREPs have reported that there are breaks in the clouds near your 
location but you are starting to pick up ice on the leading edge of the 
wings. 

Scenario #3

 
Figure A.3. Description of Scenario #3 presented to pilots as part of the Forward Scenario 
Simulation conducted during Phase I data collection. 

 

•Marginal VFR
•Ceiling at 1000ft and visibility is 1mi in rain and mist.
•There is a Low pressure over the Gulf of Mexico.
•Weather is forecast to be raining to severe thunderstorms along 
your route of flight until after you pass Sarasota, FL (approx 300mi).

Wx Conditions:
None (although the pilot is IFR-rated)Flight Plan:
7:00 a.m.Departure Time:
3 hrs, 30minTime Enroute: 
Hollywood (N. Perry), FL (HWO)Destination APT:
Destin – Ft. Walton Beach (DTS)Departure APT:
Single PilotPilot(s):

Beechcraft Bonanza
•Single engine reciprocating aircraft with no anti-ice or de-icing 
equipment

Aircraft:

• The route of flight you have planned is over the Gulf of Mexico. 30 minute 
after departure, you are over the water at 800ft to maintain cloud clearance 
and you are now too low to receive Departure or Center Control. If you 
climb to receive the flight service station or any other VHF frequency to get 
an IFR clearance, you will enter the clouds.

Scenario #4

 

Figure A.4. Description of Scenario #4 presented to pilots as part of the Forward Scenario 
Simulation conducted during Phase I data collection.  
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Appendix B - Assessment of Pilot Experience Group 
Performance in each KET 

Raw data collected from each of the three KETs were submitted to an initial analysis that 

served two major purposes. First the analyses helped determine the best approaches to coding 

and/or trimming the data. Second, the analyses were used to explore whether the pilot 

experience groups differed in their general ability to perform the KETs. Note: Because of the 

exploratory nature of this study and the small sample sizes, no adjustments have been made for 

family-wise error in any of the following analyses.  

 

  Relationship Judgment  
Participants were asked to rate the similarity of 105 concept pairs on a 1-9 scale (1=not 

similar, 9= very similar). These data were recoded to represent dissimilarity judgments 

(dissimilarity = 10-similarity).  

Results 

 Dissimilarity Ratings 

The dissimilarity ratings for each item pair were averaged for each participant. Analysis 

revealed a marginally significant negative correlation between total hours flown and average 

dissimilarity rating (r = -.41, p<.10). Pilots with less hours flown tended to have higher average 

dissimilarity ratings.  

A one-factor (Pilot Experience Group) ANOVA was conducted on the averaged 

dissimilarity data. The effect of Pilot Experience Group was not significant (p >.05). Dissimilarity 

judgments for Low-Time Pilots tended to be higher (M=5.06) than Mid-Time Pilots (M=4.73) or 

High-Time Pilots (M=4.38) but the difference did not reach statistical significance (see Figure 
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B.1). Also note that the High-Time pilots showed much less variability in their Relationship 

Judgments (SD=0.45) compared to Low-Time pilots (SD=1.24) and Mid-Time pilots (SD=0.8).  

 

Figure B.1. Effect of Pilot Experience on Relationship Judgment dissimilarity ratings (95% 
confidence intervals depicted).  

 

 Response times 

A one-factor (Pilot Experience Group) ANOVA was conducted on the averaged time it 

took each pilot to make the dissimilarity ratings. The effect of Pilot Experience Group was not 

significant (p=n.s.). Mid-Time pilots took an average of almost 2 sec longer to make their ratings 

(M=8087 ms) than did High-Time pilots (M=6128 ms) and almost 1.5 sec longer than Low-Time 

pilots (M=6664 ms) but the differences did not reach statistical significance. It is important to 

note, however, that pilots were told to focus on making their judgments and were not explicitly 

told to make their ratings as quickly as possible. Therefore, there was a lot of variability in the 

time pilots took to make their ratings and any interpretation of the response time data for 

relationship judgments should be made with extreme caution.  
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Discussion 
Pilots with fewer hours flown tended to rate weather concept pairs as more dissimilar 

than pilots with more experience, although the negative correlation was only marginally 

significant and the differences between the Pilot Experience Groups failed to reach statistical 

significance. High-Time pilots did show more overall consistency in their Relationships 

Judgments, which would be expected if knowledge structures become more efficiently 

organized with experience. Mid-time pilots took an average of 2 sec longer to make their ratings 

than the High-Time pilots and 1.5 sec longer than the Low-Time pilots. This difference, while not 

statistically significant, could provide additional evidence to suggest that Low-time pilots were 

tapping in to declarative knowledge that was more accessible in memory for them than it was for 

Mid-Time pilots, and High-Time pilots were trying to tap into the a knowledge structure that, 

though extensive knowledge and experience, has become much more organized than the Mid-

Time pilots, allowing them to make their ratings more quickly.    

 Prime Recognition Task 
The Prime Recognition Task presented the participant with a memory set of four 

concepts on one screen. After a short duration, the screen was replaced with the prime (another 

weather concept) followed quickly by the target (in red). Participants were told to answer 

whether or not the target word was part of the memory set. The pilot was told that the prime was 

a 5th memory set item that could not fit correctly on the screen with the first four concepts.  

Target trials were defined as trials when the target was part of the memory set and Foil 

trials were defined as trials when the target was not part of the memory set. There were 120 

total Target trials, comprised of 105 pairings of the 15 weather-related concepts and 15 

additional trials in which the probe and/or prime consisted of an acronym. There were 79 Foil 

trials. Mixed repeated-measures ANOVAs were conducted with Pilot Experience Group (3 
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levels) as the between-subjects variable and Trial Type (Target or Foil) as the within-subjects 

variable on both accuracy and response time results.  

Results 

 Accuracy Results 

Overall, pilots were very accurate in their responses, achieving over 94% correct across 

both Target and Foil trials. The effect of Trial Type was significant [F(1,21) = 25.75, p< .05, 

partial η2 = .55]. Pilots were more accurate in recognizing when the target was part of the 

memory set (M=96%) than recognizing when it was not part of the memory set (M=91%). There 

was no main effect of Pilot Experience Group nor was there any interaction between Pilot 

Experience Group and Trial Type (p=n.s.).  Low-Time pilots more accurate in their judgments on 

Foil trials (M=94%) compared to High-Time pilots (M=90%) and Mid-Time pilots (M=88%) but 

the difference between the groups failed to reach statistical significance (see Figure B.2). Pilot 

experience had no effect on accuracy when the analysis was restricted only to the 105 Target 

trials (p>0.5).  

 

Figure B.2. The effect of Pilot Experience Group on accuracy for Target and Foil trials (with 95% 
confidence intervals).  
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Response Time Results  

Only response times for correct trials were included in the response time analysis. 

Correlation analysis revealed no correlation between Total Hours Flown and average Response 

Time (p=n.s.).   

The average Response Time across both Target and Foil trials was 922.4 msec 

(SD=171.1). The effect of Trial Type was significant [F(1,21) = 47.32, p< .05, partial η2 = .69]. 

Pilots were quicker to recognize when the target was part of the memory set (M=860.9 ms) than 

when it was not part of the memory set (M=1023.2 ms). There was no significant effect of Pilot 

Experience Group nor was there a significant interaction between Pilot Experience Group and 

Target Type (p=n.s.). Low-Time pilots tended to have quicker response times for both Target 

and Foil trials, but the difference between the Experience Groups was not significant (Figure 

B.3). Pilot Experience Group also had no effect on Response Time when the analysis was 

restricted only to the 105 Target trials (p=n.s.). Again, Low-Time pilots were quickest to respond 

in the 105 target trials but the difference failed to reach statistical significance (p=n.s.). 

 

Figure B.3. The effect of Pilot Experience Group on response times for Target and Foil Trials 
(with 95% confidence intervals depicted).  
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Age may have played a role in the quickness with which one is able to perform this task. 

On average, Low-Time pilots were 14 years younger than Mid-Time pilots and Mid-Time pilots 

were, on average, 10 years younger than High-Time pilots. Response time did tend to increase 

between Low-Time and Mid-Time pilots, although the difference was not statistically significant. 

However, response time was no different between Mid-Time and High-Time pilots so perhaps 

there is a threshold beyond which younger age is no longer a facilitator to the task.  

Upon further examination of the dataset, it became apparent that one Low-Time pilot 

(#54) had a significantly higher average response time (M=1376 ms) than two standard 

deviations above the mean for the Low-Time group (outer-fence = 1279 ms). None of the Mid-

Time or High-Time pilots had mean response times greater than 2 standard deviations above 

their respective group means. Low-Time pilot #54 was not an outlier in terms of any 

demographic characteristic (i.e., he was 20 years old and had 133 total hours) but his response 

times for most of the 105 item pairs were longer than any other Low-Time pilot. Pilot #54 was 

removed from the Low-Time group dataset and the mixed repeated measures ANOVA was 

conducted once again (with the Low-Time group consisting of 8 participants instead of 9) to 

examine the effect of this outlier.   

With pilot #54 removed, the effect of Trial Type was still significant, [F(1,20) = 46.97, p< 

.05, partial η2 = .70], with pilots quicker to recognize when the target was part of the memory set 

(M=839 ms) than when it was not part of the memory set (M=1006 ms). The effect of Pilot 

Experience Group was significant, F(2,20) = 4.19, p<.05, partial η2 = .30) but there was no 

interaction between Pilot Experience Group and Trial Type. Post-Hoc Tukey HSD tests revealed 

that Low-Time pilots were significantly quicker to respond to Target Trials and Foil Trials than 

Mid-Time pilots (p<.05). The difference between Low-Time and High-Time pilots was marginally 

significant (p<.10).  The difference between Mid-Time and High-Time pilots was not significant 
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(p=n.s.). The correlation between total number of hours and average response time was still not 

significant even with the removal of participant #54 (p=n.s.). 

Even though pilot #54 was more than 2 standard deviations slower than the rest of the 

Low-Time pilots in judging whether the target was in the memory set, it was decided to include 

this pilot in the rest of the data analysis because the pilot’s slow response time was relatively 

consistent across the 105 target trials and therefore the correspondence between response time 

and relationships between information concepts should be maintained. In other words, because 

this pilot was slower to respond across all trials, prime-target pairs that are highly related in his 

memory should still be expected to have quicker response times (relatively speaking) than 

prime-target pairs that are not related.  

In sum, pilots were more accurate in recognizing when the target was in the memory set 

than they were in recognizing when the target was not part of the memory set. Low-Time Pilots 

were the most accurate in recognizing when the Target was not part of the memory set (i.e., Foil 

trials), although the difference among the experience groups was not statistically significant. 

Accuracy on Target trials did not differ across Pilot Experience Group. Low-Time pilots were 

quicker to respond whether the target was part of the memory set but because the Prime 

Recognition Task relies on quick motor response, this quicker response time may have been 

partially due to the overall younger age of the Low-Time group rather than anything having to do 

with their knowledge structure organization.   

 Card Sort 
Pilots were asked to organize 15 concepts (each presented on a card) into groups that 

make sense to them. They were allowed to create duplicate cards and to create hierarchies of 

groups when necessary. Jaccard scoring was used to represent the groups created through the 
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Card Sort. Jaccard scoring16 ranges from 0 (meaning items were never placed together in a 

group) to 1 (meaning two items were always placed in the same group). Jaccard scoring 

accounts for hierarchal groups in that it places different weights on items depending on whether 

they occur within the same group or within different subgroups under the same parent group. 

Items occurring in different subgroups under the same parent group are given scores greater 

than 0 (meaning there is some relationship between the items) but less than 1 (meaning they 

did not occur in the same immediate group). Another way to examine Card Sort data is to look 

at the total number of links participants created as a function of their card sort. Of course, this 

metric should be highly correlated with the Jaccard similarity scores.   

Total Hours Flown was not significantly correlated with the average Jaccard scores (r = -

.08, p=n.s.) or the average number of links created between concepts (r = -.15, p=n.s.). As 

expected, Jaccard similarity scores were highly correlated with the average number of links 

created by pilots (r=.78, p<.05). Participants who created a lot of links within their card sorts 

resulted in higher similarity scores.  

Results 

 Jaccard Similarity Score Results 

A one-factor (Pilot Experience Group) ANOVA was conducted on the averaged Jaccard 

Similarity scores. The effect of Pilot Experience Group was not significant (p=n.s.). As Figure 

B.4 indicates, similarity scores tended to be higher for Mid-Time pilots (M=.35) compared to 

Low-Time (M=.27) or High-Time pilots (M=.28) but the difference did not reach statistical 

significance (p=n.s.).  

                                                 
16 Note that Jaccard scores were maintained as similarity scores for this analysis rather than dissimilarity scores for the 

other parts of this study to make this initial comparison and interpretation simpler within the context of Number of Links.  
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Figure B.4. Average Jaccard Similarity Score as a function of Pilot Experience Group (95% 
confidence intervals depicted).  

 

 Number of Links Results 

Mid-Time pilots had more average links (M=47) in their Card Sorts than did Low-Time 

pilots (M=40) or High-Time pilots (M=37), although the difference between the three groups was 

not statistically significant (p=n.s.). To give some context to these numbers, if all 15 concepts 

were to be placed into the same group (meaning they would all be equally related), that Card 

Sort would result in the creation of 105 links. However, note that 105 does not represent the 

maximum number of links possible. The creation of duplicate cards would result in more than 

105 links. The average number of links for each group does indeed include some duplicate 

cards. However, if 105 was considered a theoretical maximum number of links, then the 

average Card Sort for Mid-Time Pilots contained approximately 44% of the possible links 

between concepts, Low-Time pilot Card Sorts contained approximately 38% of the possible 

links, and High-Time pilot Card Sorts contained approximately 35% of the possible links. The 

fact that Mid-Time pilot Card Sorts had the most links was not unexpected, given that Mid-Time 

pilots tended to have higher Jaccard similarity scores as well.  
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 Card Sort Behaviors 

Several different Card Sort behaviors were identified, inventoried and compared across 

the three Pilot Experience Groups. Many of these group differences failed to reach statistical 

significance (evaluated at an alpha level of .05), most likely because of the small sample size. 

However, they do suggest potential trends in behavior. Table B.1 provides a summary of these 

behaviors across the three groups.  

Subgroups. Half (50%) of the Low-Time pilots created at least one subgroup, compared 

to 25% of Mid-Time pilots and 25% of High-Time pilots. However, the difference between the 

groups was not statistically significant. Of those pilots who did create subgroups, Card Sorts 

created by Low-Time pilots had more subgroups (M=3.5), on average, than did Card Sorts 

created by Mid-Time (M=2) or High-Time (M=2.3) pilots. Again, however, the difference 

between the groups was not statistically significant. 

Duplicate cards. More than half of the Mid-Time (58%) and High-Time pilots (50%) 

created duplicate cards of at least one of the 15 original concepts. Only 33% of Low-Time pilots 

created duplicate cards. While the difference between the groups was not statistically 

significant, duplicate cards appeared to be more necessary for the experienced pilots to 

properly represent the relationship between all of the concepts within the sort. The number of 

duplicate cards created did not vary with Pilot experience (see Table B.1).  

Parent Groups. Card Sorts typically consisted of 3-4 parent groups, regardless of Pilot 

Experience Level. Not surprisingly, there was a significant effect of Subgroup Creation on the 

number of parent groups created, F(1,32) = 4.74, p<.05, partial η2 = .13. Those who did not 

create subgroups tended to create more Parent groups (M=4) than did those people who 

created subgroups (M=2.9). Thus, pilots who did not create subgroups necessarily created 

more shallow but broader structures with their cards. Those who used subgroups tended to 

create deeper but narrower structures with their cards. 
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There was also a significant Pilot Experience Group x Duplicate card creation 

interaction, F(2,32) = 3.93, p<.05. High-time pilots who created duplicates cards typically 

created more Parent groups (M=4.7) than those who did not create duplicate cards (M=3.1). 

Low-time pilots who created duplicate cards typically created fewer Parent groups (M=2.5) than 

did those who did not create duplicate cards (M=4.0). Mid-Time pilots who created duplicate 

cards differed only slightly in the amount of Parent groups they created (M=3.6) compared to 

those who did not create duplicate cards (M=3.0).   

 

Outliers. More Mid-time pilots created an outlier pile (42%) than Low-Time (25%) or 

High-Time pilots (29%). However, the difference between the groups was not statistically 

significant. 

Created cards with new concepts in addition to original 15 concepts.  Only pilots with  

higher levels of experience felt they needed to create additional concepts not already included 

in the original 15 to adequately express how the items are related (8% of Mid-Time pilots and 

21% of High-Time pilots). The difference between the groups was not significant (p=n.s.).  

 

Added description to original/duplicated concepts. Some pilots added descriptors or 

extra words to how the original concepts were worded. Most of the time it was to make a 

distinction between Enroute or Ground weather concepts (e.g., adding “Enroute” to the “Wind 

Speed” concept to distinguish it from “Ground” Wind Speed) or between Current or Forecasted 

weather (e.g., adding “Current” to the “Icing” concept to distinguish it from “Forecasted”). While 

all pilots were told they could change the wording on the cards if necessary, only a few pilots did 

this and all of them were either Mid-Time (17%) or High-Time pilots (14%).   
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Table B.1. Summary table of various Card Sort Behaviors across the three Pilot Experience 
Groups.  

Card Sort Behaviors 
Pilot Experience Groups 

Low-
Time 

Mid-
Time 

High-
Time 

Created Subgroups 50% 25% 21% 
Mean number of Subgroups (those that created them) 3.5 2 2.3 
Created duplicate cards 33% 58% 50% 
Ave number of duplicate cards (those that created them) 3.75 4.27 4 
Ave number of Parent groups created 3.5 3.33 3.92 
Created Outlier pile 25% 42% 29% 
Add concepts in addition to original 15 concepts 0% 8% 21% 
Added additional description to original and/or duplicated 
cards (e.g., added “surface” to Wind Direction card) 0% 17% 14% 

 

Discussion 
Pilot experience had no significant effect on Jaccard similarity scores, although Mid-

Time pilots’ scores tended to be slightly higher than the other pilot groups. Similarly, Mid-Time 

pilots had the most average links and were more likely to create duplicate cards in their Card 

Sorts although the differences were not statistically significant. These findings do suggest that 

Mid-Time pilots have more complex (or perhaps even less organized) knowledge structures 

than Low-Time pilots who may have relied on information memorized from textbooks and 

classes to make their groupings. However, Mid-Time pilots may not have the extent of 

experience that the High-Time pilots have to be able to focus on the more important 

relationships between items that allowed the High-Time pilots to generate less complex Card 

Sorts. Instead, Mid-Time pilots tended to build extra links between concepts (or create more 

duplicate cards) to make sure they “covered their tracks,” so to speak, in representing the 

important relationships between concepts. Low-Time and High-Time pilots may be been more 

judicious and sparing with their groupings because Low-Time pilots relied on their more 

rehearsed declarative knowledge and High-Time pilots relied on their vast amounts of practical 

experience.  
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Appendix C - Preparing Card Sort Data for Analysis 

This appendix describes the procedures for transforming the physical groups of cards 

that pilots created into a quantitative measure of similarity. Two procedures were used: 

Traditional data coding and Jaccard similarity scoring.  

 Traditional Data Coding 
Figure C.1 shows an example of what one pilot’s groupings looked like after the 15-card 

card sort was complete. Items in pink represent the labels created and applied to the groups by 

the pilot. This pilot created three groups (VFR, TAF, and IFR) with IFR having two subgroups 

(Icing Related and Thunderstorm-related). Cloud Proximity was identified as an outlier, and the 

“Ceiling” card was duplicated so that it could be represented in both the VFR and IFR 

categories.  

An excel spreadsheet was created with all 105 pairs of concepts listed in a matrix form. 

The 15 concepts were listed across the top of the matrix and along the side, so that the diagonal 

shows each concept crossed with each other concept. Data were assumed to be symmetric, so 

only the bottom portion of the matrix was completed.  Each of the 105 pairs was assigned a “1” 

if the two concepts occurred in the same group together or a “0” if they did not.  For example, 

the Sky Conditions – Visibility pair was assigned a “1” and the Wind Direction - Precipitation 

Type pair was assigned a “0”. Any pair that involved Cloud Proximity was assigned a “0” 

(because it was designated an outlier) as was any pair that involved TAF (because it placed in a 

group unto itself). Item pairs within the IFR category were assigned a “1” even if they occurred 

in different subgroups. For example, the Dewpoint-Icing pair was assigned a “1” because they 

both occurred under “Icing Related.” The Dewpoint-Precipitation Type pair was also assigned a 

“1” because they both occurred under “IFR” even though they were in different subgroups. 
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Thus, the subgroups created by pilots were “flattened” to simply the coding and analysis. Data 

were then formatted into similarity matrices. 

 

Figure C.1. Example shows an example of what one participant’s groupings looked like after the 
15-card card sort was complete. Items in pink represent the labels created and applied to the 
groups by the participant. This participant created three groups (VFR, TAF, and IFR) with IFR 
having two subgroups (Icing Related and Thunderstorm-related). Cloud Proximity was identified 
as an outlier, and the “Ceiling” card was duplicated so that it could be represented in both the 
VFR and IFR categories. 

  
The major drawback to the traditional scoring procedure is that it completely disregards 

the fact that participants created subgroups. In other words, it gives the relationship between 

Dewpoint and Precipitation Type (occurring in different subgroups) the same weight as the 

relationship between Dewpoint and Icing (occurring in the same subgroup) when clearly the 

participant saw and represented a difference.  

 Jaccard Scoring 
The Jaccard similarity coefficient measures (Jaccard, 1912) similarity between sample 

sets. It represents the ratio of the number of categories two items have in common (their 

intersection) to the total number of categories containing the items (Union) (Capra, 2005). 
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Jaccard scoring allows for the accommodation of hierarchical groups and the creation of 

duplicate cards for a concept.  

The formula for calculating the Jaccard score: 

 

Consider Dewpoint and Icing in the sorted items of Figure C.1 above. This pilot created 

six different categories (i.e., IFR is considered one category as are each of its subgroups – Icing 

Related and Thunderstorm –Related). To calculate the similarity between Dewpoint and Icing, 

the values of a, b, and c need to be defined as follows: 

• Number of categories that contain both Dewpoint and Icing (a) = 2 (IFR and Icing 

Related) 

• Number of categories that contain Dewpoint but not icing (b) = 0 

• Number of categories that contain Icing but not Dewpoint (c) = 0 

Using the formula above, Jaccard score for the Dewpoint – Icing pair = 2 / (2+0+0) = 2/2 = 1.  

  

To calculate the similarity between Dewpoint and Precipitation Type, the values of a, b, 

and c are defined as follows: 

• Number of categories that contain both Dewpoint and Precipitation Type (a) = 1 

(IFR) 

• Number of categories that contain Dewpoint but not Precipitation (b) = 1 (Icing 

Related) 
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• Number of categories that contain Precipitation type but not Dewpoint (c) = 1 

(Thunderstorm-Related) 

The Jaccard score for the Dewpoint - Precipitation Type pair = 1/(1+1+1) = 1/3 = .333.  

To calculate the similarity between Dewpoint and Visibility, the values of a, b, and c are 

defined as follows: 

• Number of categories that contain both Dewpoint and Visibility (a) = 0 

• Number of categories that contain Dewpoint but not Visibility (b) = 2 (IFR, Icing 

Related) 

• Number of categories that contain Visibility but not Dewpoint (c) = 1 (VFR) 

The Jaccard score for the Dewpoint - Visibility pair = 0/(0+2+1) = 0/3 = 0.  

Thus, Jaccard scores are not only able to distinguish between pairs of concepts that 

reside in the same group (e.g., Dewpoint-Icing = 1) from those that do not reside in the same 

group (e.g., Dewpoint – Visibility = 0), but it is also able to distinguish between pairs that reside 

in the same subgroup from those that reside in the same parent group but different subgroups. 

Pairs that reside in the same group (e.g., Dewpoint – Icing) are given a score of 1. Pairs that 

reside within the same parent group but different subgroups (e.g., Dewpoint – Precipitation 

Type) will have values greater than 0 but less than 1, indicating that they are not quite as similar 

as pairs that reside within the same group and/or subgroup. Jaccard scores were calculated for 

all 105 pairs for each participant who completed the 15-card Card Sort. Data were then 

formatted into similarity matrices. 

 Illustrating how Jaccard Similarity Scores are Influenced by Number of Parent Groups   

Creating fewer parent groups means making less distinction in similarity of the items. 

Creating more groups means effort is being taken to create distinctive relationships between 

concepts. For example, Figure C.2 shows a Card Sort that resulted in one of the lowest Jaccard 

similarity scores (.19) because it has five Parent groups and no subgroups. Figure C.3 shows a 
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Card Sort that resulted in one of the highest Jaccard similarity scores (.48) because it has fewer 

Parent groups (less distinction between concepts) but a couple of subgroups. Figure C.4 shows 

a Card Sort that resulted on one of the highest Jaccard similarity ratings because it only 

consisted of two Parent groups and no subgroups.  

 

Figure C.2. Example of a Card Sort that resulted in one of the lowest Jaccard Similarity Scores 
in the distribution (.19). Pink shading indicates Group labels applied by the pilot.  
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Figure C.3. Example of a Card Sort that resulted in one of the highest Jaccard Similarity Scores 
(.44). The Green shading indicates duplicate cards and the Pink shading indicates Group labels 
applied by the pilot).  

 

 
Figure C.4. Example of a Card Sort that resulted in the highest Jaccard Similarity Score (.66). 
Pink shading indicates Group labels applied by the pilot.  
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Appendix D - MDS Data Characteristics and Analysis 
Decisions 

General MDS Procedure 
In simple terms, MDS is a tool that allows for the relationships between objects to be 

presented spatially. Data are gathered through any number of different methods in an effort to 

quantify the nature of the relationship between each pair of objects. The resultant datasets are 

often called proximities. MDS attempts to represent or map proximity data as distances among 

points in an n-dimensional configuration, also referred to in this study as a conceptual structure. 

The mapping is specified by a representation function, f: pij  dij(X) which specifies how 

proximities (pij) should be related to distances (dij) , otherwise known as disparities, in the 

conceptual structure. The goal of MDS is to define the configuration (within a given 

dimensionality) whose disparities satisfy f as closely as possible (Borg & Groenen, 1997).  

MDS starts by calculating some set of coordinates for the stimulus, called the starting 

configuration. Disparities are calculated from these coordinates and compared with the 

proximity data. Depending on how large the differences are, MDS will move the coordinates 

around and then recompute the disparities. The process continues to iterate until the disparities 

fit the proximity data as closely as possible. Multiple dimensions may be used to order to 

increase the fit of the solution to the data. In this context, the term “dimension” refers to a 

characteristic that serves to define a point in a space (Schiffman et al., 1981). Generally, higher 

dimension solutions will provide a better fit for the data. However, higher dimension solutions 

are not always practical and are extremely difficult to interpret. Since MDS is most often used to 

describe or provide insight into the latent structure of the data, it is important that the solution be 

interpretable on at least some of the dimensions. Typically, multiple MDS solutions are 

computed using a range of dimensions and then the optimal solution is chosen by the 
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experimenter based on a number of different factors, including goodness of fit, interpretability, 

and ease of use, all discussed in more detail below.    

The specific computations used by MDS are different depending on the scaling 

procedure and the type of model used, both of which are discussed in further detail in upcoming 

sections.  Many MDS algorithms are based on Euclidean distance to calculate optimal distances 

between objects in n-dimensional space. Euclidean distance is derived from the Pythagorean 

Theorem and is defined as the hypotenuse linking two points in a hypothetical right triangle. 

Several computer programs have been developed over the past several years to improve the 

efficiency and ease with which MDS can be employed. Two of the most commonly used 

computer programs are INDSCAL (Carroll & Chang, 1970) and ALSCAL (Takane, Young, & de 

Leeuw, 1977). ALSCAL is available in major statistical systems (SAS and SPSS). 

The following section provides a review of basic MDS data characteristics, criteria for 

determining the optimal solution, and the process by which decisions were made regarding how 

MDS was applied to the data in the current study.  

      Data Characteristics 

 Type of Proximity Data 

Typically, MDS analysis begins with data representing the relationship (i.e., proximity) 

between objects. This relationship is often elicited by having people directly judge the 

“psychological distance” or closeness of objects. Similarity and/or dissimilarity ratings are most 

frequently used to elicit psychological distance (i.e., proximity). The attributes used to judge the 

psychological distance between objects are usually not specified other than, perhaps, to 

indicate a specific type of similarity to judge (e.g., “political similarity” in a study about countries). 

Other methods to elicit proximities include stimulus confusability (i.e., confusability is measured 

by the percentage of “same” responses to a pair of physically different stimuli) and card sorting 
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(i.e., proximity reflects the number of times each item occurs with another item in the same 

category) (Kruskal & Wish, 1978).  

The use of dissimilarity data is encouraged over similarity data for the simple reason that 

its relationship to distance is direct and positive – that is, objects that are highly dissimilar are 

assumed to have a larger perceived psychological distance between them. Thus, large 

proximity values will be represented by large distances in the conceptual structure. Similarity 

data can be transformed into dissimilarity data by subtracting the original data values from a 

constant that is higher than all collected values (Kruskal & Wish, 1978). For the current study, 

Relationship Judgment and Card Sort data (using Jaccard similarity scores) existed in raw data 

form as similarity data and, thus, had to be recalculated into dissimilarity ratings. Prime 

Recognition Task data were originally in dissimilarity form (large response times implied larger 

dissimilarity).  

 Data Matrix Shapes 

MDS can handle proximity data in the form of two different shapes. Square data 

matrices occur when the same objects are represented as rows and columns of the matrix, 

indicating that all objects are compared to each other. The term “square” applies because there 

are identical numbers of rows and columns in the matrix. Rectangular matrices usually occur 

when the objects represented in the rows are different from the objects represented in the 

columns (e.g., rows represent nations, columns represent different types of measurement 

variables about those nations) (Giguere, 2006). Data from all three KETs were fitted into square 

matrices, as each weather concept was paired with each other weather concept to form the 

matrix.   

Data within a square matrix is said to be symmetric if the order of presentation has no 

effect on the judgment (i.e., the judged similarity/dissimilarity between a and b is the same as 

the judged similarity/dissimilarity between b and a). In this case, it is typical to only include the 
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bottom half of the matrix in the analysis since the values above and below the diagonal are 

identical. If presentation order does affect the value of the judged similarity, the data is said to 

be asymmetric (Giguere, 2006).  Data from all three KETs were treated as symmetric. 

 Number of Ways 

A single data matrix of rows and columns is said to be two-way data because the data 

has exactly two ways – rows and columns. When multiple matrices comprise a data set, the 

data is said to be multi-way. For example, if participants are asked to judge the similarity of 

several pairs of mobile phones, then the data has three ways – participants and mobile phones 

(which comprise the rows and columns of each matrix). A study conducted before and after 

participants were allowed to use them would constitute four-way data, with the ways consisting 

of occasion (before and after use), participants, and the two ways of mobile phones. For the 

current study, each KET resulted in a dataset comprised of three-way data with one way 

corresponding to individuals (pilots) and the other two ways corresponding to the weather 

information concepts.  

 Number of Recommended Judgments per Stimulus Pair 

Previous research provides the following recommendation for the number of judgments 

(J) per pair of stimuli used in any MDS analysis:  

 

where D represents the maximum number of dimensions anticipated and I represents the 

number of items used in the study (e.g., Giguere, 2006). 

 For the current study, I = 15 weather-related concepts. To ensure interpretability and 

ease of use of the MDS results, the maximum number of dimensions D = 3 (see below for more 

explanation about identifying the appropriate dimensionality). In each of the three KETs, each 

participant made one judgment for each of the 105 stimulus pairs. Therefore, the recommended 
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number of judgments J is analogous to the recommended number of participants for each 

analysis. Thus, according to the formula above, recommended number of participants for each 

MDS analysis is (40*3)/(15-1) = 9 participants. Fortunately, the total number of participants who 

participated in each of the KETs exceeded this number. However, when MDS was applied to 

individual pilot experience groups, the number of participants failed to meet this 

recommendation in Relationship Judgment for all pilot experience groups and in the Prime 

Recognition Task for High and Mid-time pilots (see Table D.1).   

 

Table D.1. Number of pilots who completed each KET.  
Pilot Experience 

Group # 
Relationship 

Judgment 
Card Sort 
(15 card) 

Prime Recognition 
Task 

Low-Time 6 12 9 
Mid-Time 5 12 8 
High-Time 8 14 7 
Total 19 38 24 

  

 Missing Data 

Missing data can be caused by several different events. In some cases, it can occur as a 

result of an experimental design decision, as in when incomplete designs are used to gather 

data (i.e., judgment pairs are randomly assigned to participants, with no participant providing 

judgments on all stimulus pairs). These designs are typically employed when not enough time is 

available for the number of judgments it would take to maintain a full design. Missing data may 

also occur inadvertently, such as through experimenter or participant error (e.g., inadvertently 

skipping trials).  Most MDS computer programs are designed to analyze data sets that have 

missing values, with the exception of INDSCAL. For programs that can handle missing data, 

there are very few restrictions placed on the amount or pattern of missing data (Schiffman et al., 

1981).  
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For the current study, datasets from two of the three KETS had some missing data. 

During Relationship Judgments, two participants (both Mid-time pilots) inadvertently chose an 

incorrect response (i.e., other than 1-9) as their judgment on a few occasions. These incorrect 

responses were removed from the data matrices, resulting in missing data (4.8% from one 

matrix, 1.0% from the other matrix). All but one of the Prime Recognition Task matrices had at 

least some data points missing. Recall that data matrices only included response times from 

trials in which the participant correctly indicated that the target was part of the memory set. 

Thus, if a participant was incorrect on a trial (i.e., answered “no” when the target was actually in 

the memory set), the response time for that corresponding target-prime pair was excluded from 

the analysis. The amount of data missing from pilots’ matrices ranged from 1.0% to 10.5% with 

an average of 4.0% missing from matrices of Low-time pilots, 4.4% missing from matrices of 

Mid-time pilots, and 4.5% missing from matrices of High-time pilots.   

 Determining the Optimal Solution 
Determining the optimal solution for an MDS output is as much an “art” is as it is a 

science. Of course, goodness of fit of the solution to the data is one important consideration. 

However, because MDS is typically used as a descriptive technique for representing and 

understanding data, determining the “true” or “statistically correct” dimensionality of a dataset is 

useless if the true dimensionality is too high to interpret.  Therefore, in most cases the ultimate 

goal is to identify the appropriate dimensionality, rather than the true dimensionality of the data 

set (Kruskal & Wish, 1978). Several factors must be considered when deciding the appropriate 

dimensionality: Measure of Fit, Interpretability, Ease of Use and Number of Stimuli.   
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Measures of Fit 

 Scatter Diagrams 

Scatter diagrams (i.e., Shepard diagrams) provide a visual assessment of the 

correspondence between dij (the calculated disparities) and pij (the original proximity data). 

Typically, the horizontal axis displays the original proximities and the vertical axis displays the 

disparities. Thus, each point corresponds to one pair (i, j) and has coordinates (pij, dij). If the 

proximities are dissimilarity data, a best fitting MDS solution should have small dissimilarities 

corresponding to small distances and large dissimilarities corresponding to large distances, 

resulting in the points in the diagram forming a rising pattern increasing from lower left to upper 

right on the graph. If the proximities are similarity data, the best fitting MDS solution should form 

a falling pattern. The amount of “scatter” is a visual indication of fit of the solution to the original 

data. Scatter diagrams can also be used to ensure that data does not look abnormal in any way 

(i.e., a degenerate solution). For example, if the function f connecting the proximities and the 

disparities is assumed to be linear, scatter diagrams having the wrong “shape” (i.e., not sloping 

upward for dissimilarity data or downward for similarity data) are an indication that a local 

minimum solution may have been found (Kruskal & Wish, 1978). 

 Stress 

Stress is one of the most widely used goodness-of-fit measures for MDS. Stress is 

defined as the square root of a normalized “residual sum of squares” and provides an indication 

of how well the configuration represents the data. Stress is sometimes referred to as a 

“badness-of-fit” measure given that larger values of Stress indicate a worse fit to the data 

(Kruskal & Wish, 1978). Computer programs such as ALSCAL typically start the process of 

finding the best-fitting MDS representation with some initial configuration of coordinates and 

improve this configuration by moving points in small iterative steps to approximate the ideal 
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model relation f(Sij)= δij (X). To determine the “badness-of-fit” between the MDS representation 

and the original data, SPSS ALSCAL uses a loss function called S-STRESS defined as: 

 
where  δij

2 is the squared disparity between items i and j, dij
2 is the related squared distance 

between items i and j in terms of the proximity data, I is the number of rows and J is the number 

of columns in the matrix.  S-STRESS is derived from Kruskal’s (1964) Stress formula 1 (SS1) 

measure. When using Replicated MDS or Weighted MDS, the S-STRESS given in the iteration 

history is calculated differently to take into account the individual differences in the multiple data 

matrices contributing to the representation:  

 
where SS1k is the corresponding S-STRESS measure calculated for participant k, and m is the 

number of data matrices (participants) contributing to the analysis (Giguere, 2006). 

Typically, computer programs compute an S-STRESS measure after each program 

iteration to indicate how far off the model is from the original proximity matrix, with lower values 

indicating less stress or a better model). SPSS ALSCAL keeps trying to improve the model by 

adjusting the coordinates until the S-STRESS does not improve very much with the next 

iteration.  

In addition, SPSS ALSCAL also gives Kruskal’s Stress formula 1 measures for each of 

the matrices used in the individual differences scaling model and for the overall model.  

Kruskal’s Stress formula 1 is similar in concept to the S-STRESS measure except that it uses a 
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different equation that makes comparisons between different analyses with different programs 

easier (George & Mallery, 2009).  

Kruskal & Wish (1978) have proposed some guidelines for interpreting Stress-1 (see 

Table D.2).The interpretation of stress values may be dependent upon the number of objects 

being examined (I) and the dimensionality (m) of the configuration. As long as the number of 

objects is large compared to the number of dimensions (general rule of thumb: I > 4m), the 

interpretation of stress is not sensitive to I or m. However as the number of objects approaches 

the number of dimensions, the interpretation of stress values is affected. For example, a stress 

value of .02 may generally be considered good fit when I ≥ m. However, for I = 7 objects in m=3 

dimensions (i.e., I < 4m), a stress value of .02 or less would occur for contentless random data 

about 50% of the time (see Kruskal & Wish, 1978 for more detail).  Many factors can affect the 

value of stress. In general, stress is higher when 1) using metric MDS, 2) using a higher number 

of stimulus pairs or data matrices, and 3) there is a high level of error in the data. Stress is lower 

when 1) dimensionality of the MDS representation is higher, 2) there is missing data, and 3) 

when using nonmetric MDS (Giguere, 2006).   

Table D.2. Guidelines for interpreting the level of MDS model fit from Kruskal’s Stress formula 1 
measure (i.e., Stress-1) (Kruskal & Wish, 1978; Giguere, 2006).  

Stress-1 value Interpretation of Fit 
>.20 Poor 

≥ .10 but ≤ .20 Fair 
≥ .05 but ≤.10 Good 
≥ .025 but ≤ .05 Excellent 

.00 Perfect 
 

Stress should always decrease as dimensionality decreases and this is most often 

visualized by a Scree Plot. Scree plots visually depict the Stress value as a function of the 

dimensionality of the configuration and can be used to determine if adding an extra dimension 

significantly decreases the badness-of-fit. One way to do this is to look for an “elbow” in the 

screen plot, indicating that additional dimensions do not result in significant decreases in the 
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badness-of-fit.  However, elbows are often very difficult to identify or non-existent in the data so 

other criteria for identifying dimensionality must be used.  

In addition to Stress measures, SPSS ALSCAL also provides an R2 value for each 

matrix in an individual differences scaling model and for the overall model. R2, also referred to 

as the squared correlations, is an indicator of the proportion of variance of the disparities 

accounted for by the MDS model, thus higher numbers of R2 are better (George & Mallery, 

2009; Schiffman et al., 1981).  Some argue that R2 provides a better indicator of how well the 

model fits the data than Stress because R2 is simpler to interpret. Schiffman et al. (1981) 

advocate the use of R2 and provide examples of studies where R2 does provide a better 

indicator of the appropriate dimension than Stress (see Chapter 9 of their book for more detail).     

Interpretability 
Many authors (e.g., Kruskal & Wish, 1978; Davidson, 1983) suggest that the ability to 

interpret a configuration should be a central consideration for choosing dimensionality, 

especially when a range of reasonable dimensionalities has been suggested by goodness-of-fit 

measures. In other words, it may not be necessary to add dimensions that do not contribute to 

the interpretation and understanding of the underlying dataset, just for the purposes of reducing 

the stress value. Similarly, one should consider removing dimensions when it helps the 

interpretation even though the stress value may increase (Kruskal & Wish, 1978, Giguere, 

2006). However, caution should be used in trusting any interpretation when the configuration fits 

the data too poorly (Kruskal & Wish, 1978). 

Ease of Use 
 Generally, interpretation is easier on configurations of fewer dimensions. According to 

Kruskal & Wish (1978, p. 58), “when an MDS configuration is desired primarily as the foundation 

on which to display clustering results, then a two-dimensional configuration is far more useful 

than one involving three or more dimensions.” Kruskal and Wish also note that configurations 
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based on a higher number of dimensions may only be useful when supplementary techniques 

are employed to find understandable and interesting structures. Of course, by constraining the 

interpretation to fewer dimensions, there is always the risk that important aspects of the 

structure are missed because they are not represented in the small number of dimensions. 

However, configurations based on lower dimensions are typically easier to interpret and easier 

to explain to a general audience. Thus, interpretations will only be discussed for MDS solutions 

in two-dimensions and occasionally three-dimensions when the meaning of third dimension 

provides additional clarity to the understanding of the conceptual structure.  

Number of Stimuli 
The number of stimuli has a direct effect on the number of dimensions that can be 

reliably observed and interpreted in the MDS output. However, recommendations for the 

proportion of stimuli to the number of dimensions vary across researchers. Kruskal & Wish 

(1978) recommend at least 9 stimuli in order to identify two-dimensional solutions, 13 stimuli for 

3 dimensions, and 17 stimuli for 4 dimensions. Spence and Domoney (1974) recommend at 

least 11 stimuli for two-dimensional solutions and 17 stimuli for 3 dimensional solutions. 

Schiffman et al. (1981) recommend 12 stimuli for two-dimensional solutions and 18 stimuli for 

three-dimensional solutions. However, Schiffman et al. (1981) also note that recommendations 

can be weakened if there are many matrices that contribute to the analyses (e.g., > 10 

matrices), although they admit they have no empirical data on which to base this 

recommendation. Given the use of 15 stimuli in the current study, most guidelines would 

suggest that no higher than a three-dimensional solution should be interpreted.  

 Decisions Made Regarding the Application of MDS to KET Data 
Several decisions had to be made to ensure the appropriate MDS analysis was applied 

to the KET data. First, the decision was made to apply nonmetric MDS, even though the 

measurement level of the KET data could be considered metric (interval and ratio). Second, the 
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decision was made to treat all data from each KET as matrix conditional, rather than 

unconditional.  Third, the weighted MDS model was identified as the appropriate model to 

answer the research questions. Fourth, the decision was made to employ procedures to untie 

any ties that were in the original proximities matrices. The following sections describe each 

issue and the rationale behind the decisions that were made.  

MDS Scaling Procedure 
The terms “metric” and “nonmetric” are often used to mean two different things within the 

context of MDS. First, the terms may be used to describe the measurement level of the data. 

Used in this context, nonmetric refers to data measured at a nominal (objects sorted in groups) 

or ordinal level (objects ranked in order of magnitude) and metric refers to data measured at an 

interval (the magnitude of the difference between objects is shown by a scale) or ratio level 

(position along a scale represents absolute magnitude of the attribute, with the scale having a 

zero point) (Schiffman et al., 1981).   

 Metric and nonmetric can also refer to MDS scaling procedures. In metric MDS, scaled 

distances preserve the original proximity data in a linear fashion (i.e., by applying linear 

transformations to the data). In nonmetric MDS, scaled distances only preserve the rank order 

of the original proximity data. That is, monotonic transformations applied to the original data 

maintain the rank order of the proximities and allow the performance of arithmetic operations on 

those rank orders (Schiffman et al., 1981). Thus, nonmetric solutions can be found for proximity 

data whether that data is measured at a metric (i.e., interval or ratio) or nonmetric (i.e., ordinal) 

level. Used in this context, “nonmetric” indicates that a nonlinear monotone transformation has 

been applied to the original data.  

In most cases, the use of metric scaling vs. nonmetric scaling has very little effect on the 

resultant conceptual structure but the goodness of fit (i.e., stress) is typically lower when using 

nonmetric scaling (Kruskal & Wish, 1978). According to Schiffman et al. (1981), “in general, 
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nonmetric scaling, where only rank order relationships are maintained, provides spaces with 

better fit in low dimensionality than metric solutions” (p. 6). Also, previous research in 

knowledge elicitation where MDS has been employed suggests using nonmetric scaling to 

analyze similarity judgments (e.g., Jonassen et al., 1993). For these reasons, the current study 

employed nonmetric MDS.17  

Matrix Conditionality 
Conditionality refers to any relationships that may exist among observations within sets 

of observation categories (Young & Hamer, 1987). Data is said to be matrix conditional if 

individual differences between participants are hypothesized. For example, when participants 

judge the similarity of all pairs of a set of stimuli, it may be inappropriate to compare one 

participant’s response to another because those participants may not be using the response 

scale in identical ways. That is, a response of “7” on a similarity scale cannot be assumed to 

represent more similarity than another participant’s response of “6” and one participant’s 

response of a “6” may not be assumed to indicate the same magnitude of similarity as another 

participant’s response of “6”. Thus, the term “matrix conditional” is used because the meaning of 

the data is conditional upon which participant is responding (Young & Hamer, 1987). 

Conversely, unconditional data matrices are able to be meaningfully compared with each other. 

Objective measures such as response times and test scores most likely can be compared 

across participants in a meaningful way (Giguere, 2006; Young & Hamer, 1987).  

Generally, MDS is performed when datasets are considered matrix conditional. In terms 

of the current study, clearly the Relationship Judgment data must be considered matrix 

conditional, as it fits the exact description of matrix conditionality above. While response time 

data (from the  Prime Recognition Task) can generally be considered unconditional according to 
                                                 
17 Separate analyses were conducted using metric scaling with the results confirming previous research. Conceptual 

structures were relatively unchanged between metric and nonmetric scaling, but the nonmetric scaling solutions provided a better fit 

to the data.  
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Young and Hamer (1987), it was considered matrix conditional for the purposes of the current 

study. Some participants were just naturally faster or slower in making most of their judgments 

in the Prime Recognition Task and therefore, both their range and magnitude of the response 

times varied widely. The following hypothetical example illustrates the reasoning behind this 

decision. Consider a case where a specific prime-target pair elicited a response time of 656ms 

for both Pilot 1 and Pilot 2. However, if Pilot 1’s response times ranged from 300-700ms while 

Pilot 2’s response times ranged from 600 ms – 1300 ms, that response time of 656ms has 

different implications for the relative similarity of that pair compared to other pairs depending on 

whether it is part of the dataset for Pilot 1 or 2. Thus, Prime Recognition Task data were 

considered to be matrix conditional for the analysis. Card sort data was also treated as matrix 

conditional for the analysis because the value of each data point can be considered to be 

conditional upon how many groups each participants felt it necessary to create.  

Choosing the Appropriate MDS Model 
There are three main models by which MDS is applied to a dataset. Generally, these 

models differ in terms of 1) number of matrices contributing to the analyses and 2) 

accommodation of individual differences.    

 Classical MDS (CMDS) 

Classical MDS is the simplest of the MDS models. It uses only one matrix of raw or 

averaged data (i.e., one-way data). The algorithm produces a hypothetical stimulus space 

where Euclidean distances are arranged such that they match the original data as much as 

possible. The original proximity data are transformed into disparities using a linear (for metric 

MDS) or monotonic (for non-metric MDS) function. Thus, if a study contains multiple 

participants, the participants’ proximity matrices must averaged, with the averaged matrix used 

as the dataset for the MDS analysis.  
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 Replicated MDS (RMDS) 

Replicated MDS uses several data matrices (e.g., three-way data) and allows for the 

accommodation of individual differences in the response biases between the participants (i.e., 

different ways participants may have used the response scales), depending on the conditionality 

of the data. It does so by permitting the use of different response transformation functions, one 

for each participant (proximity matrix). However, only one stimulus space is produced (e.g., 

Schiffman et al., 1981).  

 Weighted MDS (WMDS) 

Weighted MDS also uses three-way data, with the third way typically corresponding to 

participant differences. However, true WMDS need not be reserved to just individual 

differences. The third way could include occasions or experimental conditions other than 

individuals. For the current study, however, the third way does correspond to pilots.  

WMDS can be used when it is assumed that participants differ in the degree to which a 

given dimension (e.g., characteristic, attribute, feature, etc.) affects their similarity judgments. 

The model assumes there is a common stimulus space that reflects the dimensions used by the 

entire group of participants. The model calculates a vector of weights, with a weight value for 

each dimension that reflects how important that dimension was to the participant’s judgment. A 

large weight value indicates that a dimension was highly salient to the participant when making 

the judgment. A zero weight value indicates that a dimension was not used by the participant 

when making the judgment (Young & Hamer, 1987). It is the introduction of weights that sets 

WMDS apart from RMDS. While RMDS allows individual differences in response bias through 

the data transformations, the individual differences are not represented in the Euclidean model. 

In WMDS, the weight values that specify differences between participant matrices are included 

in the Euclidean model (e.g., Schiffman et al., 1981). Thus, WMDS uses several data matrices 

(one per participant) and provides not only a representation of the item configuration in common 
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stimulus space but also a participant space that indicates the differential weighting given by 

each participant to each of the dimensions depicted in the common stimulus space (Giguere, 

2006). While Classical MDS and Replicated MDS require matrix conditional data, Weighted 

MDS can use several matrices of either matrix-conditional or unconditional data. Table D.3 

specifies the model equations for the three MDS models.  

 

Table D.3. Model Equations for each of the MDS models (Giguere, 2006).  
Classical MDS (CMDS) 

 
T(P) = D2 + SSE 
 
P = original proximities matrix 
 
T(P) = disparity matrix 
stemming from transformation T 
(linear or monotonic depending 
on metric or nonmetric MDS) 
 
D2 = squared Euclidean 
distances fit by ALSCAL 
 
SSE = sum of squared errors 
between the distances and 
disparities 
 

Replicated MDS (RMDS) 
 
Tk(Pk) = D2 + SSEk 
 
Pk = original proximities matrix for 
participant k 
 
Tk(Sk) = individual disparities 
matrix for participant k stemming 
from unique transformation Tk 
(linear or monotonic depending on  
metric or nonmetric MDS) 
 
D2 = squared Euclidean distances 
fit by ALSCAL for the common 
stimulus space 
 
SSEk = sum of squared errors 
between distances and disparities 
for participant k 

Weighted MDS (WMDS) 
 
Tk(Pk) = D2

k + SSEk 
 
Pk = original proximities matrix for 
participant k 
 
Tk(Pk) = individual disparities 
matrix for participant k stemming 
from unique transformation Tk 
(linear or monotonic depending 
on  metric or nonmetric MDS) 
 
 D2

k = squared Euclidean 
distances fit by ALSCAL for 
participant k 
 
SSEk = sum of squared errors 
between distances and 
disparities for participant k 

 

 Of primary importance to the current study is the examination of individual differences in 

knowledge structures as represented by the MDS output (i.e., conceptual structures).  

Therefore, all analyses employed the WMDS procedure. It should be noted that the terms 

“Weighted MDS” or WMDS and “individual differences scaling” (INSCAL) are often used 

interchangeably in the literature. However, Schiffman et al (1981) identify a distinction between 

the two terms that will be adopted and used in the current study. INDSCAL will be used to refer 

to the computer program (originally developed by Carroll & Chang, 1970) while Weighted MDS 

or WMDS will refer to the analysis. This distinction is important because WMDS is not reserved 
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just for individual differences. As previously noted, the third way in the data can also correspond 

to occasions or experimental conditions other than individual differences. 

ALSCAL and INDSCAL are of the more common two computer programs that perform 

WMDS, but do so in slightly different ways. INDSCAL was the first to perform WMDS and 

provides only a metric solution by optimizing the fit of scalar products to a transformation of the 

data. ALSCAL can provide both nonmetric and metric solutions to WMDS and does so by 

optimizing the fit of squared distances in the data (Young, 1985). Thus, ALSCAL was chosen to 

conduct the MDS analysis because it is 1) well known, 2) can accommodate datasets with 

missing data, 3) provides the flexibility to construct both metric and nonmetric MDS solutions, 

and 4) was easily accessible (through SPSS 13). 

 The Measurement Process and its Implications for Managing Ties in 
the Data 

Measurement Process 
The type of measurement process (discrete or continuous) used to generate the 

proximity data has implications for the treatment of ties in the data. Since the data for the 

current study are all obtained from participants, then the distinction between discrete and 

continuous refers to the nature of what is assumed to be occurring in the mind of the 

participants as they are making those judgments. If their internal scale is assumed to be 

continuous but they are forced to provide discrete numbers, then the data are continuous. If the 

internal scale really is discrete, then the data can be thought of as discrete. Ties are left tied 

when the process is considered discrete but they should become untied if the process is 

considered continuous. Most programs only allow the option for ties to become untied for the 

ordinal level of measurement. The choice of whether or not to untie the data is only crucial when 

there are a large number of ties in the data. Otherwise the solutions between analyses on tied 

and untied data are typically not very different (Schiffman et al., 1981). 
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The decision of how to treat ties in the data for the current study was based on both 

logical reasoning and empirical evidence. Logical reasoning took into account the assumptions 

that could be made regarding participants’ internal response scales when participating in the 

KETs.  The empirical evidence was obtained by comparing the results for MDS analyses 

conducted on data from each KET when ties were allowed to exist and when procedures were 

used to untie the data ties. The next section provides more information on the assumptions 

regarding pilots’ internal scales and comparison of the MDS output for data in which data was 

left tied or untied. 

Decision to Use Tied or Untied Data 
An important consideration for nonmetric MDS is how to handle ties in the data, given 

that a monotone function is used to preserve the order of the proximities.18  One approach, 

known as the primary approach, is to allow the model to break the ties when fitting distances 

(disparities) if it increases the goodness of fit. Thus, just because proximities pij and pkl are equal 

(pij= pkl) does not necessarily mean that their scaled disparities dij and dkn will be equal as well. 

The secondary approach retains all ties in the fitting of distances such that if pij= pkl then also dij 

= dkl. Many MDS program use the primary approach as the default for ordinal data, although 

ALSCAL does not (Borg & Groenen, 1997).  

The type of measurement process used to generate or collect the data (i.e., discrete vs. 

continuous) has implications for how ties should be treated in the data. Since the data for the 

current study are all obtained from pilots, then the distinction between discrete and continuous 

refers to the nature of what is assumed to be occurring in the mind of the pilots as they are 

making those judgments. If their internal scale is assumed to be continuous but they are forced 

to provide discrete numbers, then the data are continuous and any ties in the data should be 

                                                 
18 Most programs only allow the option for ties to become untied for the ordinal level of measurement. For other levels of 

measurement, the measurement process is implied to be discrete (Schiffman et al., 1981).  
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untied when distances are fitted (i.e., the primary approach). If the internal scale really is 

discrete, then the data can be thought of as discrete and ties in the data should be maintained 

(i.e., the secondary approach).  (Borg & Groenen, 1997; Schiffman et al., 1981).  

Borg & Groenen (1997) provide some examples of different data collection methods that 

can result in ties in proximity data. Variants on a Card Sort task and Relationship Judgment task 

were highlighted as two major examples:  

• Card Sort: Imagine participants are asked split a stack of cards into two piles, one 

containing more similar pairs, the other more dissimilar pairs. Then the participant 

repeats the sort for each pile multiple times until he or she determines that it is not 

possible to further discriminate between pairs of objects in any pile. If at the 

conclusion of the sort each pile has only one card left, then the result is a complete 

similarity order of pairs of objects, with no ties occurring. However, the more likely 

result is that some piles have multiple cards, with smaller piles for pairs objects that 

are extremely similar and larger piles for pairs of objects that have intermediate 

similarity. However, it would be inappropriate to assume that objects within the same 

group hold equal similarity. Instead, group membership merely means that the pairs 

in some piles do not appear to be sufficiently different to warrant further meaningful 

sorting. In this case, Borg & Groenen (1997) advise breaking ties in the data for 

analysis.  

• Relationship Judgment: Say that participants are asked to rate the degree of 

similarity between each pair of 12 objects on a 9 point scale, with end points labeled 

“very different” and “very similar.” In this situation, ties in the data are expected, 

because there are 66 pairs of objects and would thus require a rating scale of at 

least 66 categories in order to be able to assign a different proximity value to each 

pair. In this case, the 9 point scale acts as a high-level approximation of true 
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similarity, with the data representing intervals on a continuum of similarity. Borg & 

Groenen (1997) also advise breaking ties in the data because the ties occur as a 

result of the data collection method.  

 

The choice of whether or not to untie the data is only crucial when there are a large 

number of ties in the dataset, otherwise the solutions between analyses on tied and untied data 

are typically not very different. However, extreme caution should be used when interpreting 

solutions from datasets that contain an abundance of ties and those ties are at the extreme end 

of the data range. Through the use of scattergrams and plots of transformations, Schiffman et 

al. (1981) showed how transformations of continuous (i.e., untied) data resulted in many of the 

original tied “no difference” observations being transformed into large disparities. In other words, 

untying data from their study provided transformed disparities that were either basically zero or 

approximately uniform but large numbers. While their suggestion is still to untie the data, they 

caution against over-interpreting any solutions that come from similar types of extreme data.  

Implications for the Current Study 
Arguments can be made for data in all three KETs arising from an internal continuous 

scale. Prime Recognition Task data are comprised of response times, and response time is 

considered a continuous variable. Also, as Borg & Groenen’s (1997) previous examples 

illustrate, one can argue that the participant uses an internal continuous scale of similarity on 

which to base their Relationship Judgments and Card Sort behaviors as well.  Not surprisingly, 

both the Relationship Judgment and Card Sort data contain a considerable number of ties 

because of their relatively constrained response scales.  

Although several sources suggest the primary approach (i.e., untying data) is most 

appropriate in most cases of nonmetric MDS, the cautionary example provided by Schiffman et 

al. (1981) suggested the need to conduct MDS analyses using both the primary (i.e., untied 
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data) and secondary (i.e., leave data tied) approaches to ultimately understand the best 

approach for each of the KET data sets.  Thus, individual nonmetric WMDS analyses were 

conducted on datasets from each of the three KETs with SPSS ALSCAL using both the primary 

and the secondary approach to data ties. Two-dimensional solutions for both participant spaces 

and stimulus spaces were compared across each approach to examine the effect that untying 

the data has on the MDS solutions.   

 Determining the Optimal Solution 

 Table D.4 shows the values of stress and R2 for 2-6 dimensional solutions when using 

tied and untied data for each KET dataset. As Tables D.4a and D.4b indicate, there is a vast 

improvement in the amount of variance explained by the solution when MDS is performed on 

untied data in Relationship Judgment and especially in Card Sort. There is also some 

substantial improvement in the Stress measures. The differences in R2 and Stress between 

untied and tied Prime Recognition Task data are negligible, which is to be expected because 

there was a very low instance of ties in the original response time data. Therefore, because of 

the nature of the assumed internal scales for the responses in the KETS and the improvement 

seen in the goodness of fit measures, results will be interpreted from the MDS analysis using 

untied data only for each KET. 

 

Table D.4. Values of Stress and R2 for each of the 2-6 dimensional solutions for untied data are 
shown for a) Relationship Judgment, b) Card Sort, and c) Prime Recognition task data.  

a) Relationship Judgment (RJ) 
 
Dimension 

Data Left Tied Data Untied 
Stress Ave R2 Stress Ave R2 

6 .14 .50 .10 .80 
5 .16 .51 .12 .79 
4 .20 .48 .14 .76 
3 .24 .48 .17 .74 
2 .30 .45 .22 .70 

 

 

 



213 

 

b) Card Sort (CS) 
 
Dimension 

Data Left Tied Data Untied 
Stress Ave R2 Stress Ave R2 

6 .18 .33 .08 .91 
5 .21 .35 .09 .89 
4 .26 .31 .11 .87 
3 .29 .30 .14 .88 
2 .38 .29 .18 .85 

 
  c) Prime Recognition Task (PRT) 
 
Dimension 

Data Left Tied Data Untied 
Stress Ave R2 Stress Ave R2 

6 .13 .27 .13 .27 
5 .16 .23 .16 .23 
4 .20 .22 .20 .21 
3 .26 .21 .26 .21 
2 .37 .15 .36 .16 

 

 Stimulus Spaces19 

The stimulus space resulting from the Relationship Judgment task stayed fairly 

consistent whether the primary approach or secondary approach was used to handle ties in the 

data (Figure D.1). Items that clustered together when ties were allowed tended also to cluster 

together when ties were removed from the data. Untying the data resulted in greater 

dissimilarity between Icing and Ambient Temperature and between Ambient Temperature and 

Freezing level, although the respresentation still maintained an indication of overall similarity 

between those three items. Untying the data also resulted in slightly greater similarity between 

TAF,  Sky Condition, Visibility, Ceiling and, to a lesser extent, Dewpoint.  

Not surprisingly, untying the data had more of an effect on Card Sort stimulus spaces 

(Figure D.2). When ties were allowed to exist, items tended to cluster closer together in more 

well defined groups near the extremes of the two dimensions. When data were untied, these 

                                                 
19 Note: In this section, stimulus spaces will only be discussed insofar as the relative placement of items will be compared 

and contrasted across the stimulus spaces that result from the primary and secondary approaches. Interpretation of the underlying 

structure occurs in other sections of the main document.  
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clusters still seemed somewhat apparent, but location of items in the representation seemed to 

be distributed more uniformly across the dimensions.  

The relative locations of the items within the Prime Recognition Task stimulus space 

stayed fairly consistent regardless of the primary or secondary approach to ties in the data 

(Figure D.3).  However, note that many of the items shift from one side of a dimension to 

another as the approach to ties in data changes. For example, Precipitation Type is positioned 

on the right side of Dimension 1 when ties were allowed, but is positioned on the left side  of 

Dimension 1 when ties were not allowed. The same phenomenon occurs for Cloud Proximity, 

Lightning, and others. Note that the same repositioning occurs along Dimension 2 (e.g., Wind 

Velocity is positioned at the lower end of Dimension 2 when ties were allowed and at the upper 

end of Dimension 2 when ties were not allowed). However, the relative position of each item 

stays very consistent in both stimulus spaces. The reason for this repositioning is uncertain.  

 

Relationship Judgment 

a) Primary Approach 
(Untied data ties) 

b) Secondary Approach 
(Data left tied) 

 

Figure D.1. Comparison of stimulus space for Relationship Judgment data resulting from WMDS 
analysis when ties in the data were handled using a) the primary approach and b) the 
secondary approach.  
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Card Sort 

a) Primary Approach 
(Untied data ties) 

b) Secondary Approach 
(Data left tied) 

Figure D.2. Comparison of stimulus space for Card Sort data resulting fromWMDS analysis 
when ties in the data were handled using a) the primary approach and b) the secondary 
approach.  

 
 

Prime Recognition Task 

a) Primary Approach 
(Untied data ties) 

b) Secondary Approach 
(Data left tied) 

 

Figure D.3. Comparison of stimulus space for Prime Recognition Task data resulting from 
WMDS analysis when ties in the data were handled using a) the primary approach and b) the 
secondary approach.  
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 Participant Spaces 

Figures D.4-D.6 show the participant spaces for tied and untied data in each KET. Each 

point in the graph represents the location of a participant’s dimension weights, with the number 

indicating the participant’s label in the dataset. However, it should be noted that the label 

meaning does not stay consistent across KETs (e.g., Pilot 2 in Relationship Judgment is not the 

same participant as Pilot 2 in Card Sort). Pilot experience level is noted by corresponding icon: 

Low-Time Pilots (green circle), Mid-Time Pilots (orange triangle) and High-Time Pilots (blue 

diamond).   

For the most part in Relationship Judgments and Card Sort, representation of pilots’ 

weights maintains the same order of magnitude regardless of the approach to ties in the data. 

Untying the data appears to increase the distance between pilots compared to when data were 

left tied. The biggest change in participant weights as a function of data tie approach was seen 

in the Card Sort data (Figure D.5). In this data set, notice that pilots who originally had very low 

weights for both dimensions when data were left tied (e.g., Pilot #’s 32, 7, 18, etc.) actually 

resulted in having much higher weights for Dimension 2 compared to Dimension 1 when data 

were untied. The effect of untying the data did not seem to be as extreme for weights along 

Dimension 1, as most of the weights were merely stretched along the access. Not surprisingly, 

participant spaces for the Prime Recognition Task were relatively unchanged when comparing 

the primary and secondary approaches to data ties.   
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Relationship Judgment 

a) Primary Approach 
(Untied data ties) 

b) Secondary Approach 
(Data left tied) 

Figure D.4. Comparison of the participant space for Relationship Judgment data resulting from 
WMDS analysis when ties in the data were handled using a) the primary approach and b) the 
secondary approach. 

 

 

Card Sort 

a) Primary Approach 
(Untied data ties) 

b) Secondary Approach 
(Data left tied) 

Figure D.5. Comparison of the participant space for Card Sort data resulting from WMDS 
analysis when ties in the data were handled using a) the primary approach and b) the 
secondary approach.  
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Prime Recognition Task 

a) Primary Approach 
(Untied data ties) 

b) Secondary Approach 
(Data left tied) 

 
Figure D.6. Comparison of stimulus space for Prime Recognition Task data resulting from 
WMDS analysis when ties in the data were handled using a) the primary approach and b) the 
secondary approach.  

 

Summary 
Overall, there was vast improvement in the amount of variance explained by the solution 

when MDS was performed on untied data from Relationship Judgment and especially from Card 

Sort. There was also some substantial improvement in the stress measures. The differences in 

R2 and stress between untied and tied Prime Recognition Task data was negligible, which was 

to be expected because there was a very low instance of ties in the original response time data.  

Untying the data seemed to influence how tightly or loosely the items were clustered. 

However, caution should be taken when interpreting the distance between items in a cluster, as 

MDS is generally more robust to representing global structure than it is local structure 

(Schvaneveldt et al., 1985). Untying had the most effect on the order of magnitude on a given 

dimension in the Card Sort Task. However, overall the global structure seemed to maintain 

throughout when data were untied compared to when data were left tied.  
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Thus, final interpretation of the MDS analysis will occur on the untied data for the 

following reasons: 1) increased fit of the model to the data while maintaining logical 

relationships between items, 2) participants’ internal scales are assumed to be continuous, 

which logically implies data should be continuous (untied) as well, 3) the primary approach is 

the one most often advised by previous researchers in the field of MDS.  

 

 

 

 

 

 

 

 

 

 

 

 


