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INTRODUCTION

In solTing an ordinary differential equation, one desires to find a

aolutlon", y F(x), which satisfies the differential equation and whaterer

boundary conditions are imposed. In ppoblens whldi occur in practice, it

ery frequently is not possible to obtain an explicit F(x). In some cases,

eY«i nhen explicit representations are possible, the calculation of y for a

series of ralues Xj^ invdres a prohibitive amount of work including usually

a series of approximations. Numerical solutions involve the calculation of

values of y for x = Xq, x x by means of approximation methods.

Usually the tabulated values of y are desired for the x^'s which are, more

often than not, equally spaced. In addition, it is customary to discuss the

aoeoraoy of each derived approximation.

Kumrical mathoda for the solution of ordinary differential equations

are generally put into two categories: predictor-corrector methods and

Runge-Kutta (one step) methods. The advanUges of the former methods are

their greater accuracy and error estimating ability, especially in systems

of any complexity. Rnnge-Kutta methods have the advantage of being self-

starting and easy to program for the oosputer. Neither of these reasons is

very coiq>elling whan subroutines can be written to handle systems of ordinary

differ«ntial equations, nor do they overcome their disadvantages in error-

estimating ability and speed relative to predictor-corrector methods. Runge-

Ktttta methods, however, find application in starting the confutation and in

changing the interval size.

Oonsidering, then, Runge-Kutta methods for starting Uxe ooiiputation and,

perhaps, dunging the interval, matters concerning stability and minimisation

of ntnd-off errors are not significant. Also, on modem ooa^uters, adnimiea-



tlon of stor«g« is beoondng less critical. In fact, the only criterion of

slgnlfioance in Judging Runge-Kutta methods in this context Is minimisation

of the truncation error. It la the purpose of this study to derive Runge-

lutta methods of the second, third and fourth orders whldi have minimum

truncation error bounds.

For the derivation, we first consider the case of integrating a single

first-order differential equation and later extend the method to a system of

n simultaneous first-order equations. We then derive, for the single first-

order differential equation, bounds which give the least truncation error.

It seetf x^asonable, then, to assume that methods which are best in terms of

truncation error for one equation of the first-order will be at least nearly

best for most systems of first-order equations.

We are concerned with the solution of the ^rot-order dlfferwtial

•quAtion problem given by

? = f(x,y) (1)
dx

with starting value, yCxg) « yg*

In addition we assume that f(x,y) satisfies the conditions stated In the

following theorem:

Theorem I -. If

i. f(x,y) is defined and oontinuotis in the strip

a 5 X i b, -oo<y<oo with a and b finite;

11. there exists a constant L such that for any x < [a,b]

and any two numbers y and y*,

|f(x,y) - f(x,y*)j < L |y .y*|



i.e. the Lipschitz condition of order 1 is satisfied for all X|

then, F(x) is continuous and differentiable for all x t [a,b] ,

f'(x) f(x^r(x)) and F(xq) = y^ (i.e. the initial value problem

(1) has a unique solution 7 » F(x) for all x c [a,b] ).

We OHit the proof of this theorem. (See Henrici [5.65] •)

\



aASSICAL METHODS

D>riration by Taylor Series t

The basis of all Runge^utta nethods Is the expression of the dlfferenoe

between the ralues of j at Xn«., and x„ by

t-i

Where the ui^ are constant, and k; = >^n f ( '<-
*

"^^ '*^"
, y^ ^ /««j k^ ) > (2*)

with «H,» , ^,' Xn.. - x„ , Given the weights w; , the parameters «Kt , a^.

and using equation (2) we can scire equation (1).

We desire to determine the w^ , m; , a. so that the coefficients of

in the Taylor series expansion of both sides of equation (2) about the point

(Xjj.jjj) are identical for r a 1,2...,m for soner fixed m.

ftqpandlng F(x^^^) we hare,

2.1

Hence,
Y**'"y*

* r(x«».) - Rx^)

S (Xn».-Xn)rU«) -^ (X>«.-X»r r (Xn\ ... .

iT"
Bat, • m^ • x,», - Xn ,

•o that

2'. 3.'

or aore generally,

>•• y- ' irr- tr • (3)



Ib addlUon, sine* f(x.»,y«)= y^ , ftssuiilng diff«r«tlablllty, it

fbUova that

and

(*)

nhara ^ - ((«.^) sf^y

Thus wa haTa
,

yn»« ~ Yt«
*•.

^(lir*f}yr^<M">
(5)

Mow daflna D ll (. i_ where f,= ((x«.y-)
;

than

(f.*fiyn(M-)l - ^^f*/,w

(6)

(7)

Zb gaaaral.

D" =
fc<*

D(D"u) = D"*:. ^^mo^'iy ,

D'm. « w. .



Th» •xpmslon of equation (5) gl"v»s»

r--y- -^f-
4^,(1.

-f^)'' ^(^-f^n *'
nd, using •qUAtlon (7), va have

5
(8)

7f,Dfog][ - oat)

.

To obtain the expansion of the right hand side of equation (2), we use

the Taylor series expansion for tvo rarlables [l6,227]

or

Let D^ (-1 j; (Z:^.jU,i_) J on factoring out the X • ^^0)

ve have

U...-.i...y..(2:^jU.f.l = Zl^^^|^ • (11)

Hev, using equations (10) and (11), ve can expand each ki on the right

hand side of equation (2))



(12)

(13)

|<,= J«,f(x, + -,J%„,
Y"* ?^/«'jM >

or, g«n«raliting, m havv.

k.= J^.|ll^-'''-|^^-/V^W%^ (15)

Q«lng th« rvaoLta for k , j
« «^ , to mlto ki «8 an «qpression in povors of

iin , wo haT»,

(16)

ki z Jijcx^.y.) * V„ DJ(/..y.) ^ ix, DCfCXn.V,)
i!

k,'

Jj 4'. ' '

2.! 3! /^.

aiallarly, tho dorlred equations for ko and k^, are.

(17)

(18)

- „,- ...-j,..fl;»-5„,;,.,.^.^^.j^-s.|.-»-)p( .1

T
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• i/jnMD;i, ^-kfl.AJDZfy -Ay^Jyi^jDjj oa\)
.

Equations (16) through (19) will enable us to derslop all Runge-Kutta

Mthods through order four, and the terms Involving A^ will facilitate the

diseossion of the error texms.

SviMtltating the expressions from equations (I6) through (19) and equa-

tion (6) into equation (2) and equating powers of K through X^ we have,

U>. uJv u),*«*>4.=.|, ^20)

.-. u,,DJ * w^D,; 4 w^O^I =
Ti

'

(21)

(22)

= ilD*f*f,D^^ *3DfD(^ w;dij
(23)

aiaoe the <Xi , ^^ and w; are to be independent of f(x,7), equations (20)

thnagh (23) aotually represent eight equations. Therefore, the expressions

x
"



in braokvta In th«s« •quatlons, which are homogeneous In the operators, must

equal the corresponding terms on the right. ia.so If these eight equations

are to be Independent of f(x,y) then the ratios,

ost be constant. This vUl be true If
'

,

'
" -*,

1-

«

•««. = X &n
,

i« 1,3,4 . (25)

Tterefore,

D; ^ •'iD . (26) ,

finally, these eight equations become.

3

«»«*x/»jt«- w*('<i/i*i -t^^**) = -^ >

U»,#t» U|j.<, * ^K -t^ = -3-
4

(27)

In the equations abore, the first corresponds to equation (20), the second

te equation (21), the third and foiurth to equation (22) and the last four to

equation (23).

Cooslderlng then, equations (25) and (27), we have eleven equations In

13 unknowns, which wHI generallj be sufficient to determine the parameters
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on assigning Tsluas to the two free parameters* ¥s will now consider the

Ronge^utta Mthods of orders 2, 3, and k,

Fbr the case when « 2, the system of equations (2?) retains only the

equations pertaining to J^\ . These, with equation (25) for 1 « 2 are:

<x^^ ' Y - (28)

Three second order equations of Interest correspond to the following raluesi

o<2 , 1/2, 2/3. 1 .

Substituting in equation (1) we have, respectively,

)n^-y* « i.Hxn*^^'", ^.^kX>J^)
, (29)

(30)

(31)
7-». -yn » -^J^nt^Cx^.y.) + ^(<«*i.

, y„* in^O] .

It is Interesting to note in the above equations that equation (29) is

the Vewton.Cotes open type formula (or the improved polygon method or the

modified Euler mothod) and if f(x,y) is a function of x only, it reduces to

the mid-point rule of numerical integration. Also, equation (31) is like the

familiar trapesoidal rule when f(x,y) is a function of x only, otherwise it

is the familiar Runge.Kutta seoond^rder method (or the Improved Suler method

•r the Hem method) most oomooonly seen.



Tot th« oasf «h«n « 3t v« have.

U), CO ^ 4 vO ^

11

•<j»»)^ o<» «0^ = - t

<*W^-» .<*to, = -^ (32)

o< J - fin •* fitt.

This is A two p«r«Mt«r fanily which can be rewritten as.

to,

'I = 3m, - Z

W^ r
Z- 3««,

Um»(.<,-^») (33)

a <,

fi.
»

/-M -

where •«% "^ •«, ,•<«.•<»**, •<* * \



-ia-j_f^»- •« "Tt""^":""*

12

»d.

Two ooHBon third order 83r8teiB8 arst

kt = >t.J(x„*^^.
, 7«*ik.) ,

(34)

,. %:

(35)

Iqtution (35) aboTB is siallar to tho ooaoaon Simpson's nil* i^en f(x,7) Is «

fteetion of X onlj.

.1;.:.
/
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For th« o«s« when « 'f, we again have a two paraiMitar faoUy of oqvu-

tioos vhioh can be solred to give the following t

VU, a A_

tJ, >
•^**» - '

^ \iM»c*,..<,.X'--*»)

(36)

2iK, (I- ^oil.)

/** ' l«ti(«*»-«*x)[t.«,.,, - 41H».».<,) 4.3]

where «Xt,-<, #o , o^t ,»< :^ I ^ •<i^-<, and the

denominators of the yd's do not vanish.

Ihe Bost ooHK>n fourth order method is obtained when we let '^ * '^ * 1/2,

where U, - >^.sV(yn,^«) ,

kj - >JCx**^^Jk«, Y.*iU,)
,

),
>



1<»

Th« U8« of P>de Approximanta In the Derivation of the Second-Ordar Method :

We will dlseuss the use of Fade approxlnants In the oonstructlon of

difference equations which wUl lead to a fanlllar numerical solution of

differential equations* As before, we are giren the following

^ a f(x,y). with y(xQ) = Jq. (39)

We define Fade i^roxinants 4fter the following discussion which noti-

rates the definition: Suppose we hare a function P(x) for irtdoh the Taylor

series can be written,

P(X) = c. t.x c^x» + .. . = Z— C^K**
.

k » •

Ut

Then D (x) is a polynonlal of degree p in x. We font the product r(x) L^(k)

whidk, after siifjllflcation, yields:

We hare (p -f 1) parameters t. , (k = 0, 1, . . , ,p) which can be chosen

so that the coefficients of X***"" will vanish identically, for r » 1,2, ,,,

,p. Let V (x) be the polynomial of degree less than (q -f 1) fornsd hy ell

terms of degree less than (q <« 1) on the right hand side of equatim ClO).

Then,

••/
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Th« rational fraction, f(x) = i^ ' Is tho [0,0,] Pad© approxlnant to th«

Anotlon P(x), vhere In the notation [p,a-J * P denotes the degree of the

denosLnator and q denotes the degree of the numerator.

This Fade approxlmant enjoys the following basic properties:

1. It Is a uniquely detemlned rational fraction approximation

to P(x).

2. If the Fade approxlnant Cp,^] is expanded In a Taylor series,

the first (p»q-*-l) terns will be Identical with the first (p-tq-fl) terms In the

Taylor series expansion of the original function.

3* An estimate of the error InvolTsd In a glTsn Fade approxlmant .

can be caLculated from the remainder term In the Taylor series expansion.

Kopal [9.163] regards property 2. as being fundamental and from It is

seen that the first (p4q-f1) terms of the Taylor series expansion form a Fade

approxlmant, namely the [o, p4ql approxlmant.

It can be shown that the Fade approxlmants [p.p] to ln(l - x) eralu-

ated near x * -1 are more acciirate than the [o, 2p1 Taylor series.

We denote z. by the operator D, and h as the IntenraL step size; then
dx

3^ Xq -f hi , yj^ « 7{x^)» Define the forward and backward differences,

respeetlTily as follows:

A y^ - y^^^ - ^1 •

V yi
« ^ - y^.l .

Using this notation, we can derlTa the following symbolic relationship:

(*i)
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Now, using the operator, as defined. In the original equation (39) end

•ubttitutlng this result in equation Cfl), we have,

^ « I)3r « f(x,y) ,

dx '
.

•

ilr^jy ^ f<M) • :
(«)

For a partioolar x and 7, equation ClS) beoones

where h = t<^iy*)

Z(yi -y,..) = Zl\fi - i» ^f; ,

Ib teras of t^, we hare

7. = y... .J, [f.-i ((,-(...)] ,

or

(^3)

Iquation (^3) la precisely the siBfxLified Runge^utta seoond-order femnla

with m •rror OW,
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0«o—trie IntarpretAtlon t

Oonsldtr again th« dlfferontlal aquation,

^ = f(x.y) ,
y(X.) -.

y. ,

and usa tha ordinary fourth order nothod.

(^)

w »

vharo.

Tha gaonatrio slgnlfloanea of thesa formulae is sboim In Figure 1,

There it is aeaa that

(*5)

k^.y) fb

la the slope at R of the eunre y » F(x) vhldi satisfies the differential

equation in equation (<»4). Thus from equation('f5)we have,

J|^ i H*-.>f-) = the slope of the curve y s f(x) at (3^tyn)f

X "
*• '' = the slope of the approximating function at

—. s H*«'»-r>«, V** tk»y s the slope of the approximating function at

k p
-^ t Ric.»i^

«Y««
k,) s the slope of the approximating function at



IB

Figure 1

lach of thM* straight lines whan drawn at (^fTj.) Ulustratas ths signifi.

oaaoa of ths corresponding k^{ 1 « 1, 2, 3, 4.
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TRUNCATION ERROR

As WAS st«t«d b«for«, when using the Runge-Eutta method for starting a

solntlon and/or changing the Interval, matters such as stability (propagated

•rroT)t and roundoff error, are not significant. Vfo would like then to

Lnlxlae, as best we can, the truncation (or discretisation) error. To do

this we first look at the error terms for the three methods msntlcmed earlier.

Kquatlon (2) Is to be exact for powers of h_, 19 to h*; hence the trunoa-n n

tion error T oan be expressed as,

X = Y.Xr * OUT)
, (1,6) ,

vhora both Ym and T^ are dependent vq>on the function f(x,7)* In order to

estimate Tn, we hare to consider only Y ^^ since the bounds that we will glTS

K ^ are so conservative (i.e. the true magnitude of Y^j will generally be

much less than the bound we give) that the term OCi^n /will be vejy small

compared with Y^hJ*^ (which should be the case if h^ is small). Then the

bound on Vj^ will tisually boiind the entire error term.

Using equations (8), (16) to (19) and (26) we can calculate the terms

^2t Vj «»d Yj^' 'or m « 2, from equations (16) to (19) and equation (8)

we have, , ^

n. = i^(D>{ . i,Df)- w.JL,o:f

,

*» Z '

and, usinc •quation (26),

Henoe,

if?)



20

aiKlI«r rssults o«n b« derl-ved for V3 and Xk' ^" algebraic manipula-

tion, howarar, is too tedious to ba given here. The reeuLts ares

•V = V •«-«>
U3v M* * i^x<* -» U>4e<4'

i4
•)d*^

(rf.
- ^»»<t»< U»*«<4

- »*>

(rb-

^ > to

(JL. - ^

(^)

In order now to bound V^, we assume the following bounds on f(x«j)

its deriratiTM in a nelghboiiiood of (3'^.y„)t

|f(x,y)| < M
,

(50)

where i 4 J ^ M and M and L are constants, such that M 2 1.
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H«iM th« bounds for Y, can be deterodned by,

\-. (-t- ^')dV ' t^,W .

Kov froa oquation (6),

»»• >»>/ if

and, vBlag •quatlon (50),

>
^. < i^ ,

11^
<^ »

|W| ^ 2.ML

SUUarly,

»

rl
>^- M •

Hanea,

|D*f| ^ H12 2. ML" * ML' = ^-ML*- ,

and

IY.I ^(4|i- •'^'l
.-i-)fAL^

(51)

In a aiallar vaj, wa can deteradne bounds for Yo and Yu, Tha derira-

tloB, bovarar, will ba osLttad*

r,V -r.*-' *•» "•«".'.''
r - ".'

:;^ ";:-^j?r^'T?i^^;S33?'^T^5?i5:i
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(52)

(53)

I / .»

^. = ]i;
-

•^-<'-'^3)/».Y.*s
"

,

*
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R»f»rrlng to equAtions (2?), (28) and (33), for which the paraneters ar«

vndardetendned, In all three cases the underdetemdned parameters will be

assigned ralues so as to ndninize the bounds we hars Jtupt set on the ]C^»

Mow let us consider the second order system (i.e. » 2) and the one

paraMter family in equation (28) resulting from equating like powers of h,^

up through \ *

We h*T» thm, ^

= /J.

to. - \ — —* »
icKX

W.-
i;^^ . V (5»)

»t. - -tx

Siaoe,

«• hjiTe, after substituting ^*-' J^ »

i55)

It is dear from relation (55) that if ^2 * 2/3, Y, is minimized and,

reoTer, Vg is strioUy less than -t" . It is seen that for *^2 " 2/3 *•

'2

hAve the following,

vfaieh was one of the second order systems giran in equation (30) •



Zk

Ibr « 3. oonslder the two parameter family giTwi In equatlcKi (33) •

After solTing for w, and w^ in tenw of Tf<j, let «»< ^ « 0, o<
^ « 2/3 and

obtain the following one paraneter family of equations.

'^x -
X
"3 '

h-^

U), = ±- -U., ,

(56)

U)1

Siailarly we oan let •^g " '^3*2/3 with the resulting one paraaeter fasily

ef equations being giraa by

=^ 1- - oJx , (57)U>^ * ^ _ W, ,

/*»^ ^ 4u
»

5

We again follow the mthod used for n s 2 and see that the coefficient

of YL^ in relation (52) will be a Minimum if 0^2 " ^/^» ^^3 " 3/^, which

giTSS,

(58)

Using the ralues girm in the system of eqxxations (56) we hsTB the following

bound for Y^*

U3I ^3^^' ' (59)

or, by using those values in the system of equations {5?) "^f^ hsTS as a bound

- 'r

U.\ < iHL^ .

(60)
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Thus Illation (58) obviously will give the least bound on the truncation

error* Using the raLues of the free paraneters (i.e. '><'^ « l/2, *^3 " 3/**)

nhidi vere used to arrive at relation (58) w have the following third order

equaUon which will yield vidues of y which are best In the 'least* trunca-

tion error sense,

where U, « vlvn^Cx^.y^")
,

(61)

k, = i4(>^"* \M. -. V-* ^ W) .

For 4 we have the two parameter family given in equation (37) irtiose

possible solutions are listed below for various (common) dioioes of the free

paraaiters.
* ' ' ' 4 .

u,^- ^ - ^, , ^,, ^ ^ , . (62)

I

'

•^1 » •<^ ' » , -Cs ^ -^ ,

*^' - <: > u}x - ^ - ^^

«-»* ^ > /»3t --

"k

yfl** - - t fi^^ ~ ——

(63)
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Using th« bound on Y |. as given in relation (53) i»ith some lengthy

oo^MUtion, it can be shovn that the coeffLaient of Ifi'^ will be ainiBixed

vhm ^2 - 0.4 , «»<^ a 7/8 - 3/l6Tr .

We hare then,

lY^l < 5.4-(. >*
10"^ IM"" .

(65)

Ve ean ooapare this bound with others for various valtiss of the coefficients.

In the system of equations (62) with w^ « 5/8, we hare,

U^l < 1.11 * 10-^ hU^ . .:^ };\ (66)

In the systMi of equations (63) with Wj|^ = IO/51, we hare,

|)(^) < \S.T1 X lO""- ML*- . (67)

la the system of equations (64) with w^ s -5/78, we have,

lUl < n.(.A- '^iQ-^hL'- .

A mdx earlier bound was found by Lotkin [9.130] for the system given in

the system of equations (62) with w s 1/3 and was

UA < 10.14- '^ »o-^rAL^ .

fbr the sake of illustration, we will list some of the more oomnon error

bovids previously derived for the fourth order method. The bound for the
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dastioal fourth order msthod with <^2 " ^'^^ *^3 =* O*^ ^s glTen by,

Fbr tho Bithod by KutU with «^2 " ^Z^, ^K^ = 2/3 wo haro,

kxd fbr tho BBthod by 0111. with ^Kg « l/2, «^^ « 1/2, w^ « 1 + - wo h«TO,

U^l <. 8.83 >* 10-" ML*- , r^'^®^] •

Itt all cases it is obvious that the BdniniiM error bound is giTon by

relation (65). This was first derived by Ralston [lO,435l • Using the

ralues of the free parasneters which were used to arrive at relation (65) we

have the following minimua fourth order Runge^utta Bwthodt

y^^ - y - .17'>76028 k^ - .551'*8066 kg + 1.20553560 k^ + .17118^8 k,^,

where

"
" - . .,r

:,-*,"'
,

''

kj = iiJ (x„ + .4-55 737 i5 i\„
, (68)

y„* .29(»«177(.I k, . IS875«^ (,4-k^)
^

/'

*

Bere y . . is n approximation to the solution of the given differential
n+i

•qvatioa* '::j'~-:""':.y ".^ -

I-
:

'
•

•
, •

.

'.
'-- '

'

' - *

.'-. -.:''' ,'
'

"•
..

.
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THE RUNQEJttJTTA METHOD AS APPLIED TO A SYSTEM OF

FIRST ORDER DrFFERDJTIAL EQUATIONS

X 87Si«m of oirlLnary differential equations of the first ordor Is a

•ystoa of oquatlons of the form

f = {'(".V'.y' Y') ,

r-n^r-r )">> m
• • a

irtier* f ,f \ ...,^ *r« given functions of (a+1) argumants, and the ssoond

supersczipt on the y's refers to the derivative with respect to x.

A set of functions >^H>«),^V*) , ... ,
y'^J^) whi<di are defined and

dlfferentLahLe in an interval [a.b] and satisfy identioaliy in x the ^

relation, -.

Y^'
- t'<x,>/'U) .yv*), .... Y *''<))

, (70)

is called a solution to the system.

The problem whidi arises frequently in practice and which we will dis-

eoss here is to find a solution of the system of equations (69) irtilch satis-

fies the iBlUal conditions

7*^0 = >); , i= «,u, ... , s ,
(71)

where the *h are prsassigned constants*

It should be noted In passing that other conditions, more complicated

than these of equation (71), else arise in practice, but will not be discussed

here*
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SysUas of ordinary differontlal aquations arise in several ways; two

general situations are given in the following pages:

(i) Theoretically, every ordinary differential equation of order higher

than the first can be reduced to a system of first order equations, Gbnsider

the differential equation of order a given by

T'-U^.i.r.r- • .7'-"), *^'

whei^ f is a given function of (*!) argUBonts. The reduction of this equa.

tioa to a system of equations (69) is aooonpLished by setting

lev if the fttnetions V^'7^''" ^V"* satisfy the systen of equations,

^

(73)
• • •

7"" ' U^.t.y\ ... ,Y") ,

then the fmction y(x) « y^x) will satisfy equation (72). Thus the system

of equations (73) is a special case of the system of equations (69) •

Some authorities (MLLne [l2,82] and GiU^«9$ reooammid this reduc

tien of hif^er order equations to a system of equations of the first order

also for nxaerical purposes; others (such as Collatz [2, 1171 )take the oppo-

site position, arguing that reduction to a first order system increases boUi

the en\>r nd the necessaxy number of operations. Methods for the direct

integration of equations of higher order can be found in most advanced texts

en the subject. However, the theoretical and experimental results presented

dealing with one equation will be at least nearly best for most systems of '''
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•qtutlons. Bvidanc* indicates th*t it is possible to control the truncation

error and it can be shovn that the rovmd-off error is frequently substantially

decreased when an equation of higher order is first reduced to a first order

•ystea and then solred by an equivalent method for such a system. See

Henrici [6. 123] .

(ii) Systems of ordinary differential equations also arise in a natural

Way from many physical problems. Classical examples are electric circuits

with moz^ than one loop and mechanical problems with several degrees of free-

dom. More speoifio examples are the equations of motion of a gyroscope, the

ftndamental equations of exterior ballistics and the equations governing the

flights of rockets and missiles.

Vector Notation

:

It will be convenient for us at this time to simplify the subsequent

analysis both oonoeptually and formally by considering the quantities

y^, i 1,2, ••• ,s as components of the vector

ConseqwnUy we write ^\%,>j\)\... .>/*) ~ f\x,^)

ComblBe the s fonotions of Tc^^.y) into another vector:

fc'^.y)

\\\kV

t :..

If, \';
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Writ* •quatlon (69) in the nav ooiqMOt fom as

Y* -Tcii.Y)
(7k)

If «• d«fiiM th« Tvotor
1

by

V

tb«i ih« iBiUal oondlUon In (3) is gi^^wi bgr.

(75)

la addition, as in tha casa of one aquation, wa assuM tha following,

that tha raotor.Talued f\mctlon f(x,y) of the scalar rariabla x and tha

Taotor Y* (Y',Y*,-..y*) satisfy tha following two hypotheses J

(i) ^(x,^) l8 defined and continuous in tha region
^ii'=^;r

a £ X £ b, -oo<y*-< oo i « 1,2. • • • fi

(ii) there exists a constant L such that for sona x « [a,b] and any

two reetors ^ "»•* Y* •

• l|?<Mi -?(v-r)ll ^ Uh-vi .

where Hvll iadleatas' the norm of the rector v .

Wt ndt the lengthy proof of the following theoren \/f,113l •

Theoreat Let the function ?^X,^) satisfy tha conditions (i) and (ii) and

let *| be a giran rector; then there exists exactly one f\]netion

with the following three properties

t
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*• 9U) is eontlnuotts and continuottsly differantiabl* forx*\,a,b],

b. 7'U) «|(x, 7^)) ,
)i*La,tl,

(!••• th« initial Tilu* problen giran b7

y'=|cx.y) ,
y^'^-)' \ > (76)

has a VBiiqua solution. )•

L«t vs now consider the RungeJCutta method for oar systea of equatioas.

¥a let X • ta.bj , y be an arbitrary Teetor and z(*) denote the solution of

the systea of equations giren by.

1' «

and set

_ , I A

fu.y) ^ A -^0
,

Wa can ^ the exact relative increment of the solution of e' « 4 C-t,^).

A one^tep method (Range-Kutta is the most sophisticated of these wthods)

for the solution of the initial ralue problem given in equation (8) is

defined by,

y- M '

y- = y" 4- >(» •$>(<, y" i A) , w«o,t,.., .

Here ^ is called the increment function and is chosen so as to approximate

£k as dosoly as possible.
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In ord«r to •llalnaU the special role played by the Independent vari-

able x« «• augaent the system of equations (69) by the differential equation

y"(x) = 1 (77)

to be saUsfled by a new function y'CK) , subject to the Initial condition

y*(x.') = X. (78)

Equations (77) *nd (78) clearly imply that y"(x) « x. Hence we can replace

the system of equations (69) by the equivalent system for (s-t-1) fonotians,

*•" rcr.y v*) = i

The system now given in equation (79) has the advantage that the vari.

ables entering into the functions \ may all be considered dependent. For

sii^plicity we can continue to denote the dependent variables by V ,y\...,y'

whether or not one of them is x. Thus we may write the initial value pro-

blem as

y'^{(y) , Y<^.>^ 7 » (80)

where y , t and ^ are all vectors with s components.

If I (y) does not depend explicitly on x, neither does the function ^ ,

aer does the increment $ . Hence

Mew if the f^tuiction y (x) is a solution of equation (80) and assuming

the oomponents of f are sufficiently differentiable th«i the higher deriva-
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tlTM tf ^(.x) c«n be •xpressed In terms of the funotion -I- and its derlTa*

tires* For exjwpLe

J « . ,
'*.'".

i"
•.

Qenerally, fbr k 1,2 assuming differentiability.

aiBoe the Amotions k
(J)

exist, we hare

(81)

Aa in the ease of a single differential equation, a method for approxii

ate integration oan be based on a truncated Taylor series, the inoreaent

fwotiem for the Taylor series expansion of order p is

This method, being of no great praotLoal Interest since the eraluation

of many deilratires is InvolTed, is hoversr of theoretical importance slnoe

the Rnnge-Xutta methods are based on the idea of approximating equation (82)

by expressions which do not involTs any functions other than \i^) •

Iiot us look now in more detail at the deriratlTes and their stnieture

for 4 (y; . To slaqxLlfy the notation, write for i,J,k 1,2, ••• ,8
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vh«r«b7 fi , tjk , ... . i» Mant th© vectoM with the ooHponents

f* r , (1 1,2, . . . ,8), Wb also will find it appropriat*

at this tlM to adopt tho suBunatlon convention whloh Is used quite often in

Teotor and tensor analysis (i.e. if an index occurs both ^b a subscript and

a supersoript, the teras should be summed with respect to this Index from

1 to &)• Thus we hare.

It is clear that sums of products of the font of equation (84) can bo

dirferiQtiated like ordinary products. Hence

ut

where i.j.k.n « 1,2, ••• ,b and the argument of eyery fluiction is understood

t« by y • Also denote by A ,B, ... the vectors with the ooi^nnents

A*", Bi*", ••• (1 1,2, ,,. ,s) respectively.

With these oonventions, we can write formally the first few derlvatlTSS

in the following co^iact manner:

V
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aino* v» will hav» to wcpwid •xpresslons of the font 4 ( Y
-^a ) In powers

of h, whoro y and oL aro fixed vectors, we write Taylor's series for func-

tions of sereniL rariables [16.227] .

Vb want to oonbine values of the ftmction which I takes at different points,

in such a way that the resulting function 1^<7,1\) agrees as closely as
.

possiULe with

(HoU that equaUon (88) is the sam as equation (81).)

For the second order Runge-Kutta aethod, we put

where a^, a, end p nust be detendned. Using equation (8?), ve hare,

. = ;[ * ^pB * y:£)*t * O(i') .

B«oe

^(,,1.) - u,-..)A vi^s . -^..ttfV?. » ou') .-;,.

Mow equating the constant and linear tent in h (it is iaqjosslble to

obtain acreenant In h since D is not present in the aboTS equation )Mith

tho oorresponding tens in equation (88), we have.
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siting th« g«n«ral soltttion of tli* abov* systea of oquAtlons *s

vhor* <A :^ o .

Thus Dm iBoroBont funotion is giTon bj,

?()>»i^) * 0-'<)r(y) * Mf(y * ^ ?Cy)) , »< ^ o .

.1

. .-'?.•;

(89)

It doriatM froa •qtutlon (88) by OdO*) an'd two ovalufttions of \{9)

aro r«q«lr»d to oonputo ^ •

la a siailar aumar, as In the precoedlng casa and analogous to tha

•inglo aquation, wa vill arrira at tha classical RungaJCutta fourth ordar

athod.

Tha laoraaant fnaotlon Is glTon by

and ona aat of appropriata choloas of a^ , a , a^ and a. is found to ba

'3*1% 1/6 , a^ « a, 1/3 ,

Tins,

^(r» = i(k.^ 2^. * "2.1;. IJ ^
(90)
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It la d.««r that •quatlon (90) is a special eas* of th« oLassleal Rung*-

IvttA fourth oi^or equation dorlTod earlier for the ease of the single

dlffarmtlal equation. >:•

\ ••?«;

.." ."• * -'
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NUMERICAL E3CAMPLES

Fbr the sake of Illustration, we list five n\u»rlcal exaaqples (Tattle 1).

In papers of this kind, numerical examples are desirable, especially those

lihleh Illustrate how well the derived method compares with others. It is

sometimes difficult to choose meaningful examples to Illustrate Runge-Kutt*

methods, since the oomplieated nature of the error term makes it difficult to

dKMse a function f(x,y) which really serves as a test while at the same time

yields a problem which can be solved analytically.

A rOKTRAN program was written to con^mte both the classical and the min-

imum fourth-order solution for a given differential equation and to calculate

the error in eadi method for the desired number of iterations (see Appendix).

The results for these five differential equations are given in Table 2.

The first three of these exaiqjles show that the minimum method conqiares

favorably with the classical method while in the fourth exai^ple, there is

really no comparison and finally the fifth exaB?)le is not nearly as favorable

in oon)arison. We note that it is only a matter of a little ingenuity to

find other exaaples to make the minimum method appear more or less favorable

in oo^>arlson with the classical method or other methods.
I'

In oondosion, we re.state the main point of this report. If Runge-

Kutta methods are to be used to start the solution and/or to change the inter,

val site, one is interested only in being able to limit the truncation error

to as small a quantity as is possible. Hence we dioose the method which

puts the smallest bound on the error term in this sense. Therefore, when «

fourth-order method is desired, equation (68) should be used, vhen a third- :

order method is employed equation (61) should be used, and equation (30) V":

should be used when a seoond-order method is under consideration. In all

v-M
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««0M, if th« iMthod is best for a single equation, it is at least neaxly

best for a systen of equations.

/

\

•\

• *.•
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Kxaapl*

n

HI

IV

TABLE 1

Differential Equation

g iktlljt-Si

dx

d£

^ JStj

dx 1 + tan*^ y

dx 1-/

S - 3y2(xe^ . 6)

Initial
Condition

yd) «1

y(0) = -1

y(0) »

y(0) 3

y(o) = 1

Solution

xT«g X + 2x .X

1 - W^ » 2x
7 " ^k

y « arotan x

y s tanh x

6 -x»*

1/3

In each of the aboTs problems, we calculate the value of y vfaen x » k.

We calculate the "exact" value from the solution given in Table 1 and then

calculate the "approximate" solution using numerical methods. Thus In ex«

ai^ile I ve calculate y for x » 1(.1)^ and also for x « iCi^^'f • In exampl*

H ve calculate y for x » 1(.1)4, etc. The results for x * ^ are ooq)ared

vlth the "exact* values and these differences are noted in Table 2.

* Here the notation x > iCO'f means that ve let x take on successive values

tluroughout the interval Arom XBltox«4ln steps of length .1

(i.e. Xq 1. x^ 1.1, xg « 1.2, ..., x^^^ « 3.9, r^ « 4.0).
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TABLE 2

fiUBpl*
St«p Number of

Iterations
Error for daasical
Fourth-Order Method

Error for Mlninnui

Fourth-Order Method

I

.1

.2 20

-.338 X 10-3

-.433 X 10-2

-.265 X 10-3

-.328 X 10-2

n
.1

.2 20

.200 X 10-^

-.900 X 10-^

.000 X 10-99

-.900 X 10-^

ni
.1

.2 20

-.800 X 10-^

-.180 X 10-5

-.700 X 10-^

-.150 X 10"5

IV
.1

.2

i<0

20

..000 X 10-99

.000 X 10-99

.000 X 10-99

.000 X 10-99

V .1 10 .^^o X 10-5 ,260 X 10-5
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KSU l'»lO COMPUTING CLNTLR

0000 I

00002
0000 J
0000<»
OOOO*}
00006

00007
OOOOP
00009
OOOIU

DIMtNSItlNlJ(Al)
FU<MAU IH ,7X,
L.rt)
FO-tMAT( IHT,9X,
rU'<M'\r( IHS,7X,
FU-tMAI ( IH ,

FD-^MAT t IHl,

I7HARS0LUTB

47

ERROR = El<f.8,5X,17HRELATIVE ERROR = EH

bX,

I

00018

000??

000? <

000Z6

0002<»

00031

00036

000*0

000A5

00047

00052
000^3

I MmUJE SOLUTION)
RHX VALULS8X,RHY VALUES)
r lO.B»5X,hlb.8)

12X,^0HRUNGE-KUTTA SOLUTION//) ctcocv i -.u f laTcuMcr
rcHM\TllHS,7X,(*HX VALUFSRX.BHY VALUES5X, 9HSTEP SIZE25X , 12H INTERMEI
lAltlOX.RHX VALUFS5X,8HY VALUES)
FU^MAKIM ,3X,FI"->.8,5X,F15.8,10X,F3.2)

RV^K!l[(lHi;4Xjr7HKALiT0Ns'HiN!MUM RUNGE-KUTTA SOLUTION//)

gVv'?xIy) = 1?/?1.*(SIN(Y)/C0S(Y))»(SIN«Y)/C0SIY)))
WKIIt(3,?)
Wl< I lk( 3« 3)
0i)U'K=l,40 " ~

AN-K
U(K)=AN«.l
HtCv )^ATAN(U(K) )

WKlTFil 3,<»)U(H) ,W(K) '

CONTINUE -^c'

W>< till 3,6)
Ri^ A.J( l,l0)XA,YA,DA,XAND,YAND
IF (4)A.EO.O.)GOT060
DO .H»DA

X* <A
Y = YA
J= I

/= .IV(

II

U'

X,Y)

00060

OOOfeJ
000?.4

00066

00069

00071

r,ulu(3lf 36f40t<.^),J
CI -u^•l
x=xA»on
Y=YA»Cl/2.

G0IU29
C2-UA«Z
Y=YA*C2/2.
J = 3
GOTU?g
C3=UA»Z
X = XA«-OA
Y=YA*C3

G0r029
XA = X
C'^ = DA«Z
YA = Y^MCl2.•(C2C3)C4)/6.
JJ -JJ*1
IFt JJ.LT.25)G0T052
WRI TEI 3,8)XA,YA
JJ =

IF(XA.LT.XAND)GUTU26
XANO=XA
YAND=YA
ABrK=YAND-W(40)
R6Lb=AUER/W(40)
WRI TEI 3,7)XANU,YAND,DA
WRITE(3t DABEKfRELE
G0T(J?2
CllNTlNUr
WK Mt ( 3t9)
W« MCI 3,6)
Rt Aul l,l0)XB,YB,Dlif XBNDfYBND
IF(UB.EQ.O.)STUP
KK =

X = Xb
Y = YD
I'l
Z=GIVIX,Y)
G0ru(71(76»81t86),I
Cl=OB»Z



KSU I^IO Cl)MPUTING CTNTER

Guruis^ -.

00076 C«? = Ut^«Z
X = XU*.'.5^7:i7»OB
Y = YH*.2969 78»CU.lb8759»C2
1= )

GUTUb9
00081 C3--u;i»Z

w _ y 11 A. i ) Ll

Y=YtU.2l8l00»Cl-3.050965»C2+3.832864»C3

Guru69
00OP6 Xl^^X

00088 YR=Ya"f.l7^760»Cl-.55l481»C2+1.205536»C3*.l71185»C*)

IFUK.lt. 25)G0TU93
WrtlTFC 3,8)XB,YB
KK =

00093 irt Xfl.LT.XRMD) G0TO66
0009* XONU^XB

YBNl)=YR
APbK=YBNO-W(*0)
RELE = ABf:R/W(*0)
WHlITEl 3,7)XBND,YBND,DD
WRI r6(3tl)ABER,KELE
G0TU63
END

48
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Runge-KutU Methods are numerical means for solving a differential

equation (or a system of differential equations) given Initial values. They

are one^tep methods and require (for the most popular method) four Itera*

tlons at each stage of the calculation. Con?)ared with the more popular

ulti-step methods which require two iterations for each calculation, Runge-

Kutta methods are more time consuming even on present day coBqmters. Runge-

Kutta methods are, however, self-starting and as andx are \ised primarily to

calculate starting values to be used then by the more stable predictor,

corrector or multl.step methods.

Considering, then, Runge-Kutta methods only for starting the solution,

we are concerned with being able to mlnlmlae the truncation or discretiza-

tion error. In this report, we derive Runge-Kutta methods of second, third

and fourth orders, and use this derivation, assuming certain bounds on the

function and its partial derivatives, to arrive at expressions for the error

term in each method. These are minimized by appropriate choices of the

arbitrary parameters. With these choices for the arbitrary parameters, new

ooeffioiants are determined and used to write the minimum Runge-Kutta methods.

in analogous treatment of the derivation for a single differential

•qoation is given for a system of differential equations.

Five differential equations are chosen as examples. Each differential

equation was solved by the classical method and by the minimum method, and

the erzvr was calculated in each case after a particular number of itera-

tions. A FORTRAN program was written and the I'flO computer was used to carzy

out the computations. Although some of the examples conqiare more favorably

with the theory than others, it was pointed out that with a little foresight,

one oan find additional e(xai^>les whidi either do or do not ootapT9 favorably

with tha UMory.



If Runge-Kutt* methods ar« to be used to start a solution, these Minimm

methods are generally better. Jttso if a system of differential eqnaUona is

under oonsideration, these methods will be at least nearly best In the mini,

mum truncation error sense.


