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INTRODUCTION 

One of the most important processes in a feed mill is the 

production of hard pellets. Two of the most important problems 

in the pelleting process are: the production of pellets durable 

enough to withstand the abrasion and impact of handling, and pro- 

ducing these pellets with a minimum of power consumption. 

At the present time one of the main methods used to allevi- 

ate the first of these problems is to add a binding agent to the 

mash before it is pelleted. Most of the binding agents used at 

the present time, however, have little or no food value. This 

situation is undesirable since it leads to the purchase and hand- 

ling of large amounts of inert material. Adding inert materials 

to the formula means that more tons of feed must be produced, 

handled and shipped because the nutritive value of the feed, on a 

per pound basis, has been lowered. It was for these reasons, 

among others, that it was considered desirable to look into the 

binding qualities of a product of known nutritional value such as 

corn steep water (Condensed Fermented Corn Extractives). 

Steep water is a product resulting from the steeping of corn 

to prepare it for wet milling. In the steeping process, whole 

corn is placed in large tanks where it is soaked for about 36 

hours in circulating warm water containing a small amount of sul- 

fur dioxide, to retard fermentation and to disintegrate the pro- 

tein which surrounds the starch granules. At the end of this 

steeping process, the steep water contains much of the soluble 
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protein and minerals of the corn kernel and is, in effect, the 

first byproduct yielded by the wet milling process (1). 

Originally the steep water, which has a rather offensive 

odor, was not evaporated at all, and was discharged into streams 

and lakes near the corn mills. This practice, however, caused 

it to be a public nuisance, as a result the wet miller began 

evaporating the steep water to higher solids levels, mixing it 

with other solids such as hulls, and selling it as an ingredient 

for live stock feeds (15). More recently, steep water has been 

sold in a liquid form. 

Little work has been done on how the mixing of steep water 

with a mash to be pelleted affects pellet durability and pellet 

mill power consumption. The present study was undertaken primar- 

ily to see what effects the addition of given levels of steep 

water, to the rest of the formula, would have on pellet durability, 

and pellet mill power consumption. Secondary objectives of this 

study were to see how the ratio of the thickness of the pellet 

mill ring die to the die hole diameter, as well as the roughness 

of these holes, affect pellet durability and pellet mill power 

consumption. 
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REVIEW OF LITERATURE 

According to the 1962 Feed Production School Proceedings, 

the main factors that affect pellet durability are: (A) condi- 

tioning; (B) granulation; (C) binding agents; (D) die selection; 

(E) adequate and proper cooling; and (F) operator ability(10). 

The formulation, obviously, affects the durability. 

Simmons (11) reports, that the most suitable feedstuffs for 

use in pelleting are those containing a high percentage of oils, 

such as oil cakes, because oil lubricates the mash in its passage 

through the die; the most unsuitable are those containing much 

fiber, for example grass meal. 

With the exception of proper cooling, all of the previously 

mentioned factors have been shown to affect pellet mill power 

consumption (16, 9, 8, 11). 

During this work the effects of die selection, the addition 

of various levels of binder, the addition of fats, and to a 

limited extent conditioning, on pellet durability and pellet mill 

power consumption were studied. An attempt was made to hold the 

rest of the factors previously mentioned constant, and thus they 

will not be discussed in the rest of this literature review. 

Binding Agents 

A. G. Heideman (5) reported in the 1962 Feed Production 

School Proceedings that a good binding agent should have the fol- 

lowing characteristics. 
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A. It should have definite adhesive properties that will 

bind feed particles together when traveling through 

the pellet mill. 

B. It should materially improve the durability of the 

pellets in which it is used. 

C. It should reduce the amount of fines produced, and thus 

improve the efficiency of the pellet mill. 

D. It sometimes may improve the capacity of the pellet 

mill. 

E. It can add nutritional value equivalent to the grain it 

replaces, and should have no destructive or absorptive 

action on vitamins and other feed additives. 

F. It should be economical to use when all other factors 

are considered. 

Some of the major nutritional qualities of steep water are 

reported by D. D. Christianson, J. F. Cavins, and J. S. Wall, (3). 

They determined the identities and quantities of the nonprotein 

nitrogeneous substances, including amino acids, and quaternary 

nitrogen compounds, in corn steep water because of their nutri- 

tional importance in animal feeds and in supplements for fermen- 

tation media. Of the total nitrogen in steep water, they found 

90 percent was extractable as nonprotein nitrogen, and one half 

in free amino acids and ammonia. The four major amino acids, 

according to their work, are alanine, leucine, proline, and alpha- 

aminobutyric acid. Choline and trigonelline are the primary 

quaternary nitrogen compounds. Major purine and pyrimidine dera- 

tives are adenine, xanthine, cytidine and guanosine. Steep water 
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contains a much higher level of free nitrogenous constituents 

than the corn from which it is derived. They also found that the 

amino acid content varied among the three batches of steep water 

they obtained from a single manufacture. 

Die Selection 

The die hole diameter is usually chosen by the need for a 

certain size pellet for a certain type of animal or feeding prac- 

tice (7). 

Pfost (9) found that increasing die thickness increased pel- 

let durability on standard non-fat rations, and increased the 

power required for pelleting. He also found that increasing the 

die thickness when pelleting rations containing four percent 

animal fat did not significantly increase pellet durability. 

Patterson, Bates, and Foster (8) found in their work that, 

as the resistance to feed flow increased, pellet hardness also 

increased. 

Conditioning 

It usually has been found that, the higher the conditioning 

temperature, the higher the pellet durability. At least one 

reason why increased steam temperature helps in producing a dur- 

able pellet is because the starch in the formula is partially 

gelatinized causing it to become adhesive. 

Oak B. Smith (12) of Wenger Mixer Mfg. reported in the 1959 

Feed Production School Proceedings that he was able to reduce 

fines from 8.43% at 20% gelatizination to 6.51% at 47.5% 
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gelatizination. His work was done with a special pre-conditioner 

designed to attain and maintain for a period of time temperatures 

of around 180°F. 

Young and Pfost (16) reported that pelleting efficiency and 

durability were directly related to the amount of steam added. 

They reported that, with low level steam, 24% fines were produced 

in pellets, at a medium steam level fines were 16%, and at a high 

steam level only 10% fines were produced. 

Robert Bartikoski (2) reported that a tight adjustment of 

rolls to die allowed pelleting at higher temperatures and mois- 

tures. Pellets run at low volume and high temperatures with this 

roll setting ran as high as 14.5 on a Stokes hardness tester. He 

also reported that very little if any gelatinization of starch 

was obtained at 160°F while at 190°F considerable gelatizination 

occurred. He reported that this took place while using convention- 

al pelleting equipment. A summary of his results are: pellet 

durability, as produced and measured by conventional manufacturing 

and handling processes, can be substantially improved by proper 

conditioning of the mash. Pellet durability bears a definite re- 

lationship to the amount of gelatinization accomplished in the 

process. 

The two graphs on page 33 are from work done by Hastings (4). 

Fig. 1 shows the relationship of power consumption to the rate of 

steam added to the mash. Fig. 2 shows that the percent of fines 

decreases as the rate of steam addition increases. 
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MATERIALS AND METHODS 

The two pelleting process variables that were definitely 

controlled in this project were the level of binding agent 

(corn steep water) and die size. Some control was also exerted 

over conditioning temperature when pelleting one of the formulas, 

and the effect of die hole roughness was observed. 

Two poultry layer formulas were used in the pelleting studies, 

but were not designated as variables. The major difference be- 

tween these formulas was that one of them contained 4% animal fat 

(a formula is considered a high fat formula when it contains this 

much animal fat) while the other one contained no animal fat 

(Table 1). 

Table 1. Basal rations used in pelleting studies. 

Ingredients 
Non-fat 
Layer 

High-fat 
Layer 

Percent Percent 

Soybean Oil Meal 9.20 7.60 
Alfalfa Meal 2.00 2.60 
Ground Sorghum Grain 45.40 30.20 
Ground Corn 25.00 25.00 
Wheat Mill Feed 1.80 14.00 
Animal Fat .00 4.00 
Meat and Bone Meal 10.00 10.00 
Ground Limestone 5.40 5.4o 
Salt .30 . 3o 
Trace Minerals .05 .05 
Vitamin & Drug Premix 1.00 1.00 

1773 100.1 3 

Although the two formulas were not considered as variables 

in the statistical analysis of the work done, some comparisons 
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were made between the results obtained using each of the two 

formulas to check on the reproducability of some data. As far 

as pellet durability and power consumption were concerned, it was 

assumed that both of these factors would have lower values for 

the high fat ration than for the non-fat ration. This was obvious 

in the work reported here. 

Experimental Design 

The variables studied included: (A) steep water at levels 

of 0, 2, and 4%; (B) three hole diameters; (C) three thicknesses 

of die for each of two hole diameters. 

Each of the seven dies was tested with every level of steep 

water using every test on each of the two formulas. These tests 

were each replicated three times. 

The characteristics of primary interest in each of the tests 

were the power required to manufacture the given quantity of 

pellets and the durability of these pellets. Of secondary inter- 

est were the temperatures of the mash before it entered the con- 

ditioning chamber and after it left the chamber. 

Factors Not Studied 

As stated in the literature review an attempt was made to 

hold the following factors constant: (A) granulation; (B) ade- 

quate and proper cooling; (C) operator ability. 

Granulation was held constant by using the same peripheral 

speeds and screen sizes when the raw ingredients were ground. 
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Cooling was held constant by maintaining a minimum cooling 

time of fifteen minutes. Young (16) found that there was little 

effect on durability after ten minutes cooling time, so it is 

doubtful, if the durability of pellets increases after fifteen 

minutes cooling time. 

An attempt was made to hold operator ability constant by 

having the same person operate the pellet mill at all times. This 

same person also set the rolls after all die changes. 

The procedure used to set the rolls was: (A) they were moved 

toward the die until they ran continuously when the die was ro- 

tating at full speed and turned intermittently as the die began 

to slow down, after the pellet mill was shut off; (B) after the 

first condition had been achieved, a sheet of feed tags, having 

a thickness of one tag (.01"), was placed between each of the 

rolls and the die. The mill was then started for an instant, and 

shut off as soon as the tags had passed between the roll and the 

die. The operator could then judge the impressions on the card 

to see if they appeared to be consistent. 

Binding Agent 

The steep water was added to each of the two formulas at the 

rates of two and four percent of the original weight of the dry 

ingredients. For example when twenty pounds of steep water were 

added to one thousand pounds of either formula as listed in Table 

1 this was called a two percent addition. 

The analysis of the steep water used is given in Table 2. 
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Table 2. Corn Steep Liquor Composition 

As in (50% solids) Air dry 

Protein min. 23.0% 40.0% 

Fat min. 0.0 0.0 

Fiber min. 0.0 0.0 

Arginine 1.0 1.7 
Cystine .3 .5 
Glutamic Acid 3.1 5.2 
Glycine .9 1.6 
Histidine .9 1.5 
Isoleucine 1.0 1.5 
Leucine 2.3 4.0 
Lysine 1.0 1.7 
Methionine .5 .9 
Phenylalanine 1.0 1.7 
Theonine 1.0 1.7 
Tryptophan .1 .2 
Tyrosine .4 .8 

Valine 1.5 2.6 

Vitamin A 
B- Carotene 
Choline 
Niacin 
Pantothenic Acid 
Pyridoxine 
Riboflavin 
Thiamine 

Total Ash % 
Calcium & Copper % 
Iron % 
Magnesium % 
Phosphorus % 
Potassium % 

- 
- 

320.0 
40.0 
6.8 
4.0 
2.7 
1.3 

10.0 
0.0 
.01 

1.0 
1.8 
2.4 

- 
- 

560.0 
70.0 
11.7 
6.9 
4.7 
2.2 

17.0 
0.0 
.02 

1.7 
3.1 
4.1 

Metabolizable Energy (Poultry 707 Cals/16 1219 Cal. 
NFE % 16 28 
Other Unidentified growth factor 
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Die Size 

The die sizes and length to diameter ratios are given in 

Table 3. 

Table 3. Die Selection 

Die Thickness (in.) Die Hole Dia. (in.) Length to Diameter 
Ratio, (40) 

1-3/4 3/16 9.31 

2 3/16 10.64 

2-1/4 3/16 11.96 

2-1/4 1/4 9.00 

2-3/4 1/4 11.00 

3 1/4 12.00 

3 3/8 8.00 

It will be noted that for each 3/16" diameter die of a given 

length to diameter ratio, there was a corresponding 1/4" diameter 

die of as close a length to diameter ratio as standard die sizes 

would permit. 

All of these dies were obtained from the manufacturer just 

prior to starting this work and showed no signs of wear. 

The dies were sized in this manner so the effects of the 

length to diameter ratio versus diameter on pellet durability 

could be observed. 
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Die Hole Roughness 

An effort was made to determine the surface roughness of the 

interior of the die holes by the use of a Micrometrical Mfg. 

"Proflometer" (6) equipped with type QC amplimeter and 2V moto 

tracer. This machine was equipped with a probe which was placed 

into the outer end of the die hole, and protruded into the die 

hole approximately 3/8". The probe was attached to the moto trace 

which moved it back and forth in the hole a short distance, always 

over the same path. The speed at which the probe was moved, or 

the so called tracing speed, was .3 inches per second. 

A minimum number of holes selected at random and tested with 

this machine were 42 for the dies with 3/16" diameter holes, 35 

for the dies with 1/4" diameter holes, and 24 holes for the die 

having 3/8" diameter holes. 

Conditioning 

In the case of the non-fat ration, the mash temperature was 

maintained at what is generally considered to be the optimum 

temperature for pelleting. This temperature varied with the die 

that was used, ingredient conditions, etc. The way in which this 

temperature is attained will be covered as part of the starting 

up procedure given under the section of this paper entitled "The 

Pelleting Process". 

In the case of the high fat formula, an attempt was made to 

vary the conditioning temperature by means of the way in which 

the pellet mill feed and steam rates were set. 
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The Pelleting Process 

The pellet mill used was a California Master Model Pellet 

Mill with a standard size conditioning chamber, ratchet type 

feeder screw, and driven by a 25 horsepower motor. The cooler 

was a California Vertical Pellet Cooler size 2B. 

The procedure used was as follows: 

First - the ingredients making up the mash were weighed and 

mixed up for a period of five minutes. 

Second - the pellet mill holding bin was charged with 1000 

pounds of this mash. 

Third - the belt, under the pellet cooler which emptied the 

cooler, was started. 

Fourth - the pellet mill was started. In the case of the 

ration containing no fat, the feeder control was set so that the 

feed rate was such that the ammeter connected to the pellet mill 

motor gave a reading of 30 amps. Steam at 90 psig was then in- 

jected into the conditioning chamber until the ammeter dropped. 

The feed rate was again increased until the ammeter read 30 amps; 

this procedure was continued until increasing the steam level no 

longer caused the ammeter to drop below 30 amps. 

The results of Hastings (4) work indicate why it was felt 

that this method of starting the pellet mill gave optimum condi- 

tions of feed rate and temperature. It is obvious that power 

consumption decreases as the rate of steam addition increases. 

Fig. 2 would indicate that pellet durability increases as the 

rate of steam addition increases. 
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From these two graphs, as well as the rest of the literature 

on conditioning, it was assumed that higher conditioning tempera- 

ture would increase pellet durability, lower power consumption 

and increase the production rate. 

When starting up using the high fat formula, two systems 

were used. The first system was the same as the one used for the 

non-fat formula; this method was used for the first of the three 

replications of the work done using this formula. Many times, 

however, when this system was used, the feeder control on the 

pellet mill was wide open when the addition of more steam decreased 

the ammeter reading. When this situation occurred, steam was 

added to the conditioning chamber until the cone on the pellet 

mill showed evidence of plugging, or until the ammeter stopped 

falling. If the ammeter stopped falling and more steam was added, 

it would then start to rise, and usually would continue to rise 

until the mill plugged. 

The second procedure, which was used to start and set the 

pellet mill when making the second and third replications of the 

work on high fat formula, was as follows. The feeder control on 

the pellet mill was arbitrarily set on 30 (the feeder control 

notches number from 0 to 55), and then steam was added to the 

conditioning chamber until the die showed evidence of plugging. 

When the plugging temperature was determined, the steam level 

was decreased to the level such that the mash temperature was 3 

to 5°C below plugging temperature. The feed rate was increased 

slowly, while the temperature was held constant by slowly adding 
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steam to compensate for the addition of more mash, until the mill 

showed evidence of plugging. When this system was used to start 

up the pellet mill, the final ammeter reading was always around 

20 amps. If the ammeter reading exceeded 20 amps, either because 

of the addition of too much steam or too much mash, the mill 

usually plugged. 

It was believed that this second starting up procedure would 

allow higher mash temperatures to be reached thus producing more 

durable pellets, but would also tend to increase power consumption 

and operating time. 

Fifth - after the power and temperature conditions were es- 

tablished then the power panel, which consisted of a kilowatt 

hour meter equipped with a counter which counted the revolutions 

of the kilowatt hour meter disc and a switch, was turned on. At 

the same time the power panel was started, the belt under the 

cooler was stopped. Since the belt was running during the starting 

up period, the cooler was empty when the power panel was started, 

thus the cooler contained only pellets made when the power panel 

was running. 

Sixth - the mash that was left in the pellet mill holding 

bin was pelleted out, the mill shut off, and the power panel read- 

ing taken. 

Seventh - the cooler fan was started, and the pellets were 

cooled for 15 minutes. 

Eighth - the cooler was emptied, the pellets bagged, weighed 

and the weight recorded. 
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Ninth - the pellets were sampled. 

Tenth - the kilowatt hours of electricity that were used 

were divided by the weight of the pellets produced while the 

power panel was running; this gave the power consumption value in 

kilowatt hours per ton. 

Laboratory Tests 

The laboratory work done in connection with this project 

consisted primarily of pellet durability testing. The procedure 

used was that given by Stroup (14) in the 1962 Feed Production 

School Proceedings. 

The sieve sizes were Tyler No. 5 for 3/16" pellets, Tyler 

No. 3 1/2 for 1/4" pellets and Tyler No. 2 1/2 for the 3/8" 

pellets. These sieve sizes as well as the rest of the equipment 

were the same as that recommended in the 1962 Feed Production 

School Proceedings. 

The sieving was done by hand. One sample was taken from 

each of the pelleting tests made in the pilot feed mill. Each of 

these samples was divided into three sub-samples and durability 

tests were made on these sub-samples. The durability values re- 

corded were an average of the three values obtained from these 

sub-samples. 

The durability tests were always made within eight hours 

after the pellets were removed from the cooler, and usually with- 

in two hours. 
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Statistical Methods 

The first analysis performed on the data collected in this 

project was to determine whether there was a significant differ- 

ence between the durability of the high fat pellets obtained 

using the first starting up procedure described under the 

"Pelleting Process", and those obtained while using the second 

starting up procedure described under that heading. 

The data were considered to be arranged in the form of a 

Randomized Complete Block Design with the three replications 

considered to be the blocks, and each die and steep water combin- 

ation considered to be a treatment. An analysis of variance was 

carried out on the data in this form. 

An F test was made to see if there were any significant 

differences between blocks. Where the F tests showed evidence 

of significance, the differences between each block mean and each 

one of the other block means were tested by means of the Student - 

Newman-Keul's test (13). Two separate analysis of variances had 

to be made, one for power consumption, and the other for pellet 

durability. 

After the preceeding tests were made, the two sets of data 

(the set from the work done on the non-fat formula as well as the 

one from the work done on the high fat formula) were considered 

to be in the form of a 3x7 factorial experiment. The factors 

were considered to be the length to diameter ratio of each of the 

seven dies and the level of the steep water added to each of the 

two formulas. The levels of these two factors were considered 
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to the size of the length to diameter ratios, and the percentages 

of the steep water added to the formula. 

An analysis of variance table was constructed and the mean 

squares calculated for the effects of steep water level, die 

length to diameter ratio, as well as the interaction between 

these two variables. These mean squares were used to carry out 

F tests to see if the differences between the levels of the two 

variables, or their interaction had any significant effect on 

either pellet durability, or power consumption. 

Two separate analysis of variances for the work done on each 

formula had to be carried out, one for power consumption data, 

and the other for pellet durability data. Wherever the F tests 

showed evidence of significant differences, the individual differ- 

ences between the mean values were tested by means of the Student- 

Newman-Keults test (13). 

Plots, of both length to diameter ratio versus total mash 

temperature after conditioning, were made in an effort to see if 

there was any meaningful relationship between these two variables. 

Separate plots were made on each of the two formulas for every 

level of steep water. 

Correlation coefficients were calculated for pellet dura- 

bility versus total mash temperature after conditioning. Sums 

of squares, and cross products for these correlation coefficients 

were summed across the complete die selection. 

Correlation coefficients for mean die hole roughness versus 

mean power consumption values were calculated. The values used 
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to calculate these coefficients were the mean roughness values 

and the mean power consumption values for each die. The mean 

roughness values were calculated by adding all the Proflometer 

values for each of the dies together and dividing by the number 

of holes tested per die. The mean power consumption values were 

calculated by summing across the three levels of steep water used 

on each formula and the three replications of each die steep 

water level combination, and then dividing this sum by nine, the 

number of observations that went into each sum. 
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RESULTS OF EXPERIMENTAL WORK 

Tables 4 and 5 give the values of the pellet durability in- 

dices obtained in this work. 

Tables 6 and 7 give the power consumption values. 

Table 8 gives the mash temperatures that were attained during 

each of the pelleting tests. 

Table 9 shows the statistical treatment used to determine 

whether significant differences existed between the replications 

of the high fat formula. 

Table 10 gives the mean values of the pellet durability in- 

dices obtained for each of the three replications of the work 

done using the high fat formula. Any two values not underscored 

by the same solid line in this graph were found to be signifi- 

cantly different at the 5% level by means of the Student-Newman- 

Keul's test. 

Tables 11 and 12 show the statistical analysis of data per- 

formed to see whether the level of steep water added to the mash, 

the die length to diameter ratio or the interaction of these 

factors had any significant effect on pellet durability or power 

consumption. 

Tables 13 and 14 show which steep water levels caused signifi- 

cant differences in pellet durability and power consumption. 

Tables 15 through 18 show which dies caused significant dif- 

ferences in pellet durability and power consumption. 
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In all of the tables from 13 through 18 any two mean values 

not underscored by the same solid line were found to be signif- 

icantly different at the 5% level by the Student -Newman- Keul's 

Test (12). Any two means underscored by the same dotted line were 

found to be non-significantly different at the 1% level by the 

Student-Newman-Keels Test (12). 

Table 19 gives the mean roughness values of each of the 

dies used in this work as well as the standard deviations of 

these means. 

Table 20 contains the correlation coefficients for condition- 

ing temperature versus pellet durability index. 

Table 21 contains the correlation coefficients for die hole 

roughness versus power consumption. 

Figures 3 through 8 are plots of conditioning temperature 

versus length to diameter ratio. 
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Table 4. Pellet Durability Indices Obtained 

Using the Non-Fat Formula 

Die Size Replicate 

0% 

Steep Water Level 

2% 4% 

3"x3/8" 1. 7.52 9.16 9.35 
2. 8.54 8.70 8.95 
3. 9.00 9.05 8.95 

2 1/4"x1/4" 1. 8.39 8.20 8.30 
2. 8.36 8.65 8.57 
3. 8.33 8.70 8.75 

1 3/4"x3/16" 1. 8.70 8.94 8.67 
2. 8.85 9.10 9.28 
3. 9.15 8.77 9.05 

2"x3/16" 1. 9.17 8.98 9.24 
2. 9.18 9.34 9.06 
3. 9.07 9.15 9.05 

2 3/4"x1/4" 1. 8.57 8.60 8.84 
2. 9.00 9.05 9.06 
3. 8.20 8.65 9.06 

2 1/4"x3/16" 1. 8.76 9.00 9.25 
2. 9.31 8.76 9.04 
3. 8.95 9.05 9.03 

3"x1/4" 1. 8.49 8.65 8.73 
2. 9.04 9.10 9.25 
3. 8.75 8.84 8.75 
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Table 5. Pellet Durability Indices Obtained 

Using the High Fat Formula 

Die Size Replicate Steep Water Level 

0% 2% 4% 

3 "x3/8" 1. 7.85 7.91 7.75 
2. 7.85 7.30 7.95 
3. 8.00 8.06 7.58 

2 1/4"x1/4 1. 7.24 6.51 7.18 
2. 7.54 8.06 8.45 
3. 6.88 6.95 7.08 

1 3/4"x3/16" 1. 8.13 8.14 8.27 
2. 8.26 8.73 8.27 
3. 8.68 8.19 8.71 

2 "x3/16" 1. 8.35 8.35 8.69 
2. 8.57 8.55 8.24 
3. 8.75 8.80 8.66 

2 3/4"x1/4 1. 7.95 8.32 7.62 
2. 8.50 8.75 8.74 
3. 7.35 8.15 8.06 

2 1/4"x3/16 1. 8.60 8.39 8.68 
2. 8.66 8.64 8.90 
3. 8.20 8.10 8.34 

34" 1. 7.35 PA 7.52 
2. 8.75 8.54 
3. 7.65 8.45 8.24 
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Table 6. Power Consumption Data, Kilowatt Hours Per Ton, 

Obtained While Pelleting the Non-Fat Formula 

Die Size Replicate 

0% 

Steep Water Level 

2% 4% 

3"x3/8" 1. 13.20 9.02 12.30 
2. 7.46 9.80 10.98 
3. 8.00 10.60 10.50 

2 1/4"x1/4" 1. 4.82 5.40 5.82 
2. 5.18 5.66 6.72 
3. 5.02 5.34 8.30 

1 3/4"x3/16" 1. 5.52 4.88 5.24 
2. 3.92 4.18 7.44 
3. 3.02 5.14 5.76 

2"x3/16" 1. 5.90 6.52 6.28 
2. 4.58 6.28 7.38 
3. 4.58 5.78 7.30 

2 3/4"x1/4" 1. 7.00 7.52 9.60 
2. 6.92 8.20 8.26 
3. 6.72 8.18 10.40 

2 1/4"x3/16" 1. 5.70 6.24 6.24 
2. 4.82 6.38 8.28 
3. 5.06 6.40 8.16 

3"x1/4" 1. 7.34 6.12 7.00 
2. 6.82 6.62 9.40 
3. 5.50 6.60 6.96 
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Table 7. Power Consumption Data, Kilowatt Hours Per Ton, 

Obtained While Pelleting the High Fat Formula 

Die Size Replicate 
0% 

Steep Water Level 
2% 4% 

3"x3/8,1 1. 7.60 4.78 5.56 
2. 4.42 3.66 6.06 
3. 5.20 4.88 5.40 

2 1/4"x1/4" 1. 2.96 3.46 3.90 
2. 3.68 3.52 5.98 
3. 4.20 4.44 4.56 

1 3/4"x3/16" 1. 3.78 2.52 2.82 
2. 2.30 3.32 4.22 
3. 4.38 2.46 4.16 

2 "x3/16" 1. 3.60 4.48 3.48 
2. 4.66 6.72 6.30 
3. 3.64 5.74 4.92 

2 3/4"x1/4" 1. 3.86 4.88 4.36 
2. 3.56 4.08 4.90 
3. 4.38 4.64 5.02 

2 1/4"x3/16" 1. 2.94 3.42 3.72 
2. 3.50 2.74 4.28 
3. 3.84 3.16 5.54 

3 "xl /4" 1. 5.n 3.04 2.7o 
2. 5.02 4.44 3.32 
3. 3.14 4.48 4.78 
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Table 8. Total Conditioning Temperatures (in °C) 

Attained During the Pellet Tests 

Die Size Rep. 
Steep Water Level 

High Fat Ration Non-Fat Ration 
0% 2% 4% 0% 2% 4% 

1 3/4x3/16 1. 8o 8o 72 8o 8o 73 
2. 83 8o 74 94 85 8o 
3. 92 8o 8o 96 90 84 

2 x3/16 1. 83 71 71 8o 77 70 
2. 83 8o 73 95 88 8o 

3. 86 84 74 94 91 84 

2 1/4x3/16 1. 8o 74 67 84 77 72 
2. 85 76 71 90 93 8o 
3. 90 85 8o 96 94 86 

2 1/4x1/4 1. 81 80 75 81 71 70 
2. 85 8o 85 94 88 85 
3. 90 88 77 92 87 8o 

2 3/4x1/4 1. 81 68 67 83 88 67 
2. 87 8o 79 95 95 87 
3. 83 8o 8o 93 95 89 

3 x1/4 I. 81 75 67 81 7o 73 
2. 83 8o 75 95 87 81 
3. 87 84 77 97 93 88 

3 x3/8 I. 76 77 7o 8o 82 67 
2. 84 78 71 91 86 78 

3. 87 8o 71 94 89 78 
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Table 9. Statistical Analysis Used to Determine the 

Effects of the Starting Up Procedures Used 

With the High Fat Formula. 

Source of Variation 
: df 

: Mean 
: Square F 

Mean 
Square F 

Durability Index KWH/Ton 

(Treatments) 
Die & Steep 
Water Level 
Combinations 

(Blocks) 
Replications 

Error 

20 

2 

40 

.638 

1.25 

.149 

8.38** 

.513 

.33 

.17 

1.94n.s. 

**PL.01 
n. s. -non significant 

Table 10. Mean Values of the Pellet Durability 

Indices Obtained for the Three Replications 

of the Work Done Using the High Fat Formula. 

1 
Replications 

3 2 

Durability Indices 

7.90 8.04 8.38 
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Table 11. Statistical Analysis of Pellet Durability 

and Power Consumption Data for the Non-Fat 

Formula. 

Source of 
Variation 

df 
Mean 
Square F 

Mean 
Square F 

Durability Index KWH/Ton 

Effect of Steep 
Water Level (A) 2 .820 15.5** 21.54 16.31** 

Effect of Die 
(40) (B) 6 .59 11.32** 26.32 19.94** 

Effect of (A)(B) 
Interaction 12 .055 1.04n. s. .271 .2053n.s. 

Error 42 .053 1.32 

**-PL.01 

n.s. non-significant 
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Table 12. Statistical Analysis of Pellet Durability and Power 

Consumption Data for the High Fat Formula 

Source of Variation 
df 

: 

Mean 
Square F 

Mean 
Square 

Durability Index KWH/Ton 

Effect of Steep 
Water Level (A) 2 .07 .564n.s. 1.35 1.89n.s. 

Effect of Die 
L/B (B) 6 1.73 13.95** 4.18 5.88** 

Effect of (A)(B) 
Interaction 12 .064 .516n.s. 1.10 1.54n.s. 

Error 42 .124 .711 

**-PL.01 
n. s. -non- significant 

Table 13. Mean Pellet Durability Index Values Obtained For 

the Various Steep Water Levels While Pelleting the 

Non-Fat Ration 

Steep Water Level 

Mean Pellet 0% 2% 4% 

Durability Indices 8.73 8.88 8.96 
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Table 14. Power Consumption Values (KWH/Ton) Obtained 

for the Various Steep Water Levels While 

Pelleting the Non-Fat Formula. 

Steep Water Level 

Mean Power 0% 2% 4% 

Consumption Values 6.05 6.60 8.01 

Table 15. Pellet Durability Indices Obtained 

While Pelleting the Non-Fat Formula. 

Die Size & L/D 

2x3/16 

10.64 

9.14 

2 1/4x3/16 

11.96 

9.02 

1 3/4x3/16 3x1/4 2 3/4x1/4 3x3/8 

9.31 11.00 12.00 8.00 

Mean Pellet Durability Indices 

8.95 8.84 8.80 8.78 

2 1/4x1/4 

9.00 

8.47 

Table 16. Power Consumption Values Obtained 

While Pelleting the Non-Fat Formula. 

Die Size & L/D 

3x3/8 

8.00 

10.09 

2 3/4x1/4 

11.00 

8.09 

3x1/4 2 1/4x3/16 2x3/16 

12.00 11.96 10.64 

Mean Values of KWH/Ton 

6.93 6.25 6.07 

2 1/4x1/4 

9.00 

5.78 

1 3/4x3/16 

9.31 

5.01 
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Table 17. Pellet Durability Indices Obtained 

While Pelleting the High Fat Formula 

2x3/16 

10.64 

8.56 

2 

Die Size & (L/D) 

1/4x3/16 1 3/4x3/16 2 3/4x1/4 3x1/4 

11.96 9.31 11.00 12.00 

Mean Pellet Durability Indices 

8.50 8.38 8.16 8.05 

3x3/8 

8.00 

7.81 

2 1/4x1/4 

9.00 

7.32 

Table 18. Power Consumption Values KWH/Ton Obtained 

While Pelleting the High Fat Ration 

Die Size & (L/D) 

3x3/8 

8.00 

5.28 

2x3/16 

10.64 

4.84 

2 3/4x1/4 3x1/4 2 1/4x1/4 

11.00 12.00 9.00 

Mean Values of KWH/Ton 

4.41 3.99 3.94 

2 1/4x3/16 

11.96 

3.68 

1 3/4x3/16 

9.31 

3.33 
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Table 19. Die Hole Roughness (Measured in EMS microinches) and 

Corresponding Standard Deviations 

Die Size 

1 3/4x3/16 2x3/16 2 1/4x3/16 2 1/4x1/4 2 3/4x1/4 3x1/4 3x3/8 

Mean Roughness Before Work 

39 52 11 32 46 55 

Standard Deviations of Roughness Means 

1.45 5.31 1.37 5.21 6.28 4.77 

Mean Roughness After Work 

36 37 16 38 60.07 39 66 

Standard Deviations of Roughness Means 

1.89 2.86 1.28 6.81 9.35 3.33 4.62 
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Table 20. Correlation Coefficients for Conditioning 

Temperatures v.s. Pellet Durability Indices. 

Formula 
Steep Water Level 

0% 2% 4% 

Non-fat .018 .0913 .0122 

High Fat .220 .158 .36 

Table 21. Correlation Coefficients for Die Hole 

Roughness v.s. Power Consumption. 

Formula Before Tests After Tests 

Non-fat .25 .79* 

High Fat .65 .69 

*P (.05 
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TURNS OF HANCOCK 
CONTROL VALVE 

FIG. I. THE EFFECT OF STEAM ON 
ELECTRICAL ENERGY REQ'TS. 

TURNS OF HANCOCK 
CONTROL VALVE 

FIG. 2. THE EFFECT OF STEAM ON 
AMOUNT OF FINES PRODUCED. 
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FIG. 3. FIG. 8. THE EFFECT OF L / D ON CONDITIONING 
TEMPERATURE (HIGH FAT FORMULA 
WITH 4% ADDED STEEP WATER). 



36 

FIG. 8. THE EFFECT OF L / D ON CONDITIONING 
TEMPERATURE (HIGH FAT FORMULA 
WITH 4% ADDED STEEP WATER). 
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FIG. 5. THE EFFECT OF L/D ON CONDITIONING 
TEMPERATURE (NON-FAT FORMULA 
WITH 4% ADDED STEEP WATER). 
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FIG. 8. THE EFFECT OF L/D ON CONDITIONING 
TEMPERATURE (HIGH FAT FORMULA 
WITH 4% ADDED STEEP WATER). 
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FIG. 8. THE EFFECT OF L/D ON CONDITIONING 
TEMPERATURE (HIGH FAT FORMULA 
WITH 4% ADDED STEEP WATER). 
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FIG. 8. THE EFFECT OF L / D ON CONDITIONING 
TEMPERATURE (HIGH FAT FORMULA 
WITH 4% ADDED STEEP WATER). 
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DISCUSSION 

While no statistical tests were made to determine the effects 

of adding animal fat to the formula, it was obvious that the high 

fat produced less durable pellets and required less power to pel- 

let. These facts are in agreement with past works on pelleting 

feeds containing a high fat content. 

The statistical analyses of the data on the starting up pro- 

cedures used with the high fat formula showed that there were no 

significant differences in the amount of power consumed using 

either of these procedures. There were, however, significant 

differences between the three replications of the work done with 

the high fat formula with regard to pellet durability. It will 

be noted that the Student-Newman-Keul's test showed that signifi- 

cant differences existed between the first and second replications 

as well as between the second and third replications of this work. 

The significant differences between the first and second replica- 

tions might have at first been attributed to the difference in 

starting up procedure. The difference between the second and 

third replications could definitely not be attributed to a dif- 

ference in starting up procedure as both the second and third 

replications were made using the same procedure. This latter 

significant difference would tend to cast doubt on an assumption 

that the first significant difference was due to the starting up 

procedure. The fact that there was a significant difference be- 

tween the first and third replications definitely cast doubt on 

an assumption that the difference in the starting up procedure 
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used had an effect on pellet durability. The second starting up 

procedure did, however, allow for a definite increase in condi- 

tioning temperature. No attempt was made to replicate the first 

replication, so that there would be three identical replications 

of the work done using the high fat formula. Even if there had 

been a significant difference between the first replication and 

the second two, all of the values calculated in the rest of the 

statistical analyses of the data could have been assumed to have 

been affected by equivalent amounts. 

Steep water significantly increased pellet durability when 

added to the non-fat formula at both the 2 and 4 percent levels. 

Steep water did not, however, significantly increase the dura- 

bility of the high fat formula. 

The mean values of the pellet durability indices did not 

follow the expected order with regard to the L/D ratio. It had 

been expected that as the L/D ratio got larger, the durability 

of the pellets would improve. 

From tables 15 and 17 it might appear that durability was 

more a function of die hole diameter than the L/D ratio, since 

the 3/16 inch dies produced more durable pellets as a group than 

the 1/4 inch dies. It will be noted, however, that the 3/8 inch 

die which had the lowest LID ratio and the largest diameter holes 

did not produce the poorest pellets; thus the conclusion could not 

be drawn, that in this work the pellet durability increased as the 

hole diameter decreased. This conclusion would also be contrary 

to the theory that larger pellets are stronger because they are 
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less affected by large particles of feedstuffs in the mash. It 

will be noted that there were some tendencies within the particu- 

lar groups of dies having the same hole sizes for the dies having 

the larger L/D ratios to produce more durable pellets. While the 

differences were not statistically significant, the 2"x3/16" and 

2 1/4"x3/16" dies produced more durable pellets than the 1 3/4"x 

3/16" die when both the high fat and non -fat formulas were pel- 

leted. The 3"x1/4" and 2 1/4"x1/4" dies both produced more 

durable pellets than the 2 1/4"x1/4" die and the differences in 

the durability indices obtained between the thicker dies and the 

2 1/4"x1/4" dies were significant in the cases of both formulas. 

The effect of L/D ratio on power consumption appeared to be 

even more erratic than it did on pellet durability. It should be 

noticed, however, that when pelleting tests were made on both the 

non-fat and high fat formulas that the 3"x3/8" die had the highest 

power consumption rate, while the 1 3/4"x3/16" die had the lowest 

power consumption rate. According to what had previously been 

thought about L/D ratios, the 3"x3/8" die should have had the 

lowest power consumption rate. This die, however, was the rough- 

est of the seven dies used according to the proflometer tests and 

actually had the least amount of breaking in the seven dies. The 

1 3/4"x3/16" die had one of the lower L/D ratios so was expected 

to rank low among the rest of the dies on the basis of power con- 

sumption. 

In the case of the non-fat formula, if the arrangement of the 

dies with respect to power consumption is looked at without taking 
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the 3"x3/8" die into consideration, it will be noticed that the 

three dies with the highest L/D ratios rank above the three dies 

with the lowest LID ratios. The results obtained with the high 

fat formula were considerably more erratic than the ones obtained 

using the non-fat formula, and no trends except for the highest 

and lowest values could be detected. 

It was in an effort to find some explanation for the preced- 

ing results that the correlation coefficients for the mash temper- 

ature versus pellet durability were calculated and the plots of 

L/D ratio versus mash temperature were made. It was felt that as 

the L/D ratio got larger, less steam could be added to the mash, 

and thus pellet durability would decrease. This phenomenon would 

have helped explain why the L/D ratio did not have the effect on 

pellet durability that previously had been thought possible. 

This explanation would have only been valid, of course, if a 

sizable positive correlation between pellet durability and con- 

ditioning temperature had been established. It would not have 

helped explain, however, why the power consumption data was not 

more greatly affected by the L/D ratio, as would be expected 

since, as the mash temperature decreased, the power consumption 

would increase. If this phenomenon had been true, there would 

have been a stronger relationship between L/D ratio and power 

consumption. 

If there had been a sizable correlation between pellet dura- 

bility and conditioning temperature, this correlation would also 

have suggested one reason why steep water did not aid in producing 
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a more durable high fat pellet because increasing the steep water 

level caused a definite decrease in conditioning temperature in 

almost all cases. 

From the results of the correlation coefficients and the 

graphs it can be seen that there was little or no relationship 

between the LID ratio and the conditioning temperature, as be- 

tween pellet durability and conditioning temperature. 

One reason why there may not have been a relationship be- 

tween conditioning temperature and pellet durability, as other 

experimenters have found, was that the range of temperatures over 

which the correlation coefficients were calculated were not as 

great as those found in work where the temperature was definitely 

set. 

No consistant change could be detected in die hole roughness 

between the start of this work and its completion. A positively 

significant correlation between die hole roughness, determined 

after the pelleting tests were made, and power consumption was 

established. 
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SUMMARY 

Pelleting a poultry layer formula containing 4 percent fat 

at maximum pellet mill feed rates produced as durable a pellet 

with as high a power consumption rate as pelleting the same formu- 

la at lower feed rates and higher temperatures. 

The addition of corn steep water to a non-fat poultry layer 

formula prior to its being pelleted was shown to increase the 

durability of the pellets. It was also shown to increase the 

power consumption rate of the pellet mill, if the level of the 

added steep water was as high as 4 percent. 

The addition of steep water to a high fat poultry layer 

formula had no significant effect on either pellet durability or 

pellet mill power consumption. 

The effects of the die L/D ratios on pellet durability and 

power consumption appeared to be rather erratic when either the 

high fat or non-fat formulas were pelleted. Attempts were made 

to explain these erratic results by calculating correlation co- 

efficients for pellet durability versus conditioning temperature. 

It was thought that as the L/D ratios got larger the conditioning 

temperature values might be forced downward thus causing the 

durability of the pellets to decrease. None of the correlation 

coefficients even approached a statistically significant value 

and the plots of L/D ratio versus conditioning temperature failed 

to detect any trends. 
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A positive correlation for die hole roughness versus power 

consumption was established for the work done with the non-fat 

formula. This correlation was statistically significant at the 

5 percent level. A correlation coefficient calculated for the 

high fat ration was not quite significant at the 5 percent level. 

These coefficients were for the roughness measurements made on 

the dies after the rest of the work had been completed. The cor- 

relations for power consumption versus die hole roughness using 

the roughness values determined before the pelleting tests were 

made were quite low. 
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CONCLUSIONS 

(1) Steep water significantly increased the pellet dura- 

bility of the non-fat formula. 

(2) Steep water significantly increased power consumption 

at the 4 percent level when the non-fat formula was pelleted. 

(3) Steep water had no effect on pellet durability or power 

consumption when the high fat formula was pelleted. 

(4) The effect of die L/D ratio on both power consumption 

and pellet durability was very erratic. 
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SUGGESTIONS FOR FURTHER RESEARCH 

Some suggestions for further research on the factors varied 
in this work are to study: 

(1) The effects of various steep water levels on pellet 
durability and power consumption when added to formu-
las other than the poultry layer formulas used here. 

(2) The effects of steep water levels greater than 4 
percent on pellet durability and power consumption 
when added to the formulas pelleted in this work 
particularly the non-fat layer formula. 

(3) The effect of steep water on high urea pellets. 
(4) The effects of L/D ratio on pellet durability and 

power consumption using dies showing more wear. 
(5) More completely the effects of die hole roughness 

on power consumption and pellet durability. 
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