$$
\text { by } 1
$$

HAROLD NERLIN COCHRAN
B. S., Kanses State University, 1965

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967

Approved by:

TABIE OF CONTENMS

INTRODUCTION 1
Background and Purpose 1
Problem 2
SURVEY OF THE LIMERATURE 3
Approaches to the Problem. 3
Evaluation of the Proposed Methods of Solution 4
DANMZIG AND RANSER METHOD 5
CLARKE AND WRIGHT NETHOD 13
General Remarks 13
Theoretical Aspects of the Problem. 14
Computational Procedure. 17
The Algorithm Surmarized. 29
MODIFIED CLARKE AND WRIGHT METHOD FOR MULIIPLE RESTRAINTS. 31
Noaifications 31
The Modified Algorithm Sumarized. 37
Discussion of Sample Probleras 39
CONCLUSIONS. 42
ACKNOWLEDGMENTS 44
REFERENCES 45
APPENDIX 46
D1scussion of Computer Program. 47
Computer Program. 54
Sample Problems 66

INTRODUCTION

Background and Purpose

The transportation system in the United States is one of the major contributors to the present high level of the national economy. One of the mont important comeroial componenta of this system is the trucking induntry, To gain an understanding of this importance, some statistics are considered here [1]. At the present time approximately three out of every four tons of commercial goods being transported in the United States are carried at least part of the way by truck. This figure includes virtually all goods moving in local service, and about 38% of the nation's intercity freight tonnage. Today, trucks haul more than 29 billion intercity ton-miles (a ton-mile is a load of one ton carried a distance of one mile). The trucking industry generally spends (including weges) more than $\$ 42$ billion a year to move these goods.

In eddition to the trucking industry another important component of the transportation system in the United States is the school transportation system. Again, some statistics are considered here to quantify this importance [11]. School buses trensport more than four times as many students each day as the total number of passengers carried in intercity travel by the nation's railroads and commercial bus lines combined. Total national expenditures for school transportation, which include operation and maintenance (but not purchese) of school buses, amounted to $\$ 486$ million for the 1959-60 school year.

Considering these vast expenditures, improvements in the methods used by the transportation industry could conceivable result in the saving of considerable sums of money. This consideration applies not only to the
trucking industry and school transportation systems, but to many other commercial and private carriers as well, including bus lines, railroads, and airlines.

One of the mafor areas in which improvement can be made is the routing of these camiers. Routing may be defined as the determination of paths or routes over which to dispatch or send passengers and goods. The typicsl method in use today is one of trial and error, and generally consists of looking at a map, picking out routes consistent with available carrier capacities, and then by trial and error attempting to find shorter routes.

This situation provides a fertile area for operations research analysis. Consequently, this paper presents a study of the methods and techniques Which have been developed to solve problems of this nature. The purpose of this study is to evaluate current methods and esteblish which method is best for solving large scale carrier routing problems. In addition, modifications are proposed to solve the problem when the system is subject to multiple restraints.

Problem

Basically the problem is one of determining routes so that some objective is optimized and the restrictions on the system are satisfied. An example of this type of problem would be to determine routes where the distance treveled is a minimum with the following conditions being satisfied:
(1) All demands are supplied.
(2) The distance that can be traveled on each route is limited.
(3) The carriers may have different capacities.

Problems such as the above example have been entitled the "carrier routing problem", the solution of which is the principle objective of this paper.

SURVEY OF THE IITERATURE

The carrier routing problem may be regarded as a generalization of the classic traveling salesman problem, ${ }^{1}$ Although there is an abundance of literature on the traveling salesman problem, very little can be found which dixectly relates to the carrier routing problem. The principle methods for solving the carrier routing problem are simulation, dynamic programing, the integer programing formulation of M11er, Tucker, and Zemin [10], and the al.gorithms of Dantzig and Ramser [7] and Clarke and Wright [4]. These methods are discussed in the following section.

Approaches to the Problem

Work is being done at the present time in the department of Industrial Zngineering at Kansas State University on a simulation approach to the carriex routing problem. This technique is a limited version of complete search. The routfne randomly generates the order of stops while loading the carriers and checking against the available capacities. The lower bound for each route is then found using the traveling salesman algorithm developed by Little, Murty, Sweeney, and Karel [9].

A problem very similar in nature to the traveling salesman problem is known as the shortest route problem. It involves finding the path from one cIty to enother such that the distance traveled is a minimum. One approach to this problem is the dynamic programing formulation proposed by Bellman [3].
$I_{\text {The traveling salesman problem might be described as follows: Find }}$ the shortest route for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to his original point of departure.

Dynamic programing has also been applied to the carrier routing problem, in particular the school bus scheduling problem, by Tillman [12]. The sample problem used to illustrate the solution is a small scale (5 stop) problem involving 40 students and the equivelent of 3 buses. The sample problem and the method of solution are shown in the Appendix in the section on sample problems.

Miller, Tucker, and Zemin [10] formulated the carrier routing problem as on integer programing problem and experimented with several models. However, the integer programing procedures which were known at the time of the experiments were not sufficiently developed to achieve solutions in a number of the experiments tried, although optimal solutions were achleved in two of the reported experiments. The authors stated that they were hopeful that the more efficient integer progremming procedures which were being developed, notable by Gomory [8], at the time their experiments were being conducted, w111, when applied to their model, yield a satisfactory algorithmic solution to the carrier routing problem.

Finally, two algorithmic methods of solution for the carrier routing problem appear in the literature. The first algorithm was developed by Dantzig and Ramser [7] and was published in 1958. The second algorithm, a modification of the first, was developed by Clarke and Wright [4], and was proposed in 1962.

Eveluation of the Proposed Methods of Solution

The integer programming formulation proposed by Miller, Tucker, and Zemlin [10] was studied as a method of solution for the carrier routing problem. However, the method was rejected for further development and use for two reasons. The first reason is the nature of the algorithms currently
available for solving integer programing problems. These algorithms, although they theoretically should produce solutions, often fail to do so in actual applications, Secondly, the integer programming formulation did not include ell the reatrictions the author desired to include in the study, and it did not appear to be easily modifled to include these restrictions.

The work on the simulation routine mentioned above has not yet reached a stage of development such that a statement can be made about its practicability for solving large scele problems. This method appears promising but gives no guarantiee of obtaining an optimal solution.

Although dynamic programing gave an optimal solution to the small sample carrier routing; problem, it also has its limitations. It appears that the dynamic programming method is too closely related to pure seerch, and the computational labor would become prohibitive on large scale problems as is the case with pure search.

The need for a more refined and sophisticated method of solution is obvious. The algorithms developed by Dentzig and Remser [7] and by Clarke and Wright [4] provide this method of solution. Both algorithms, for this reason, are discussed in more detail in the following sections.

DANTZIG AMD RAMSER MEITOD

The first elgorithm for solving the carrier routing problem was developed by Dentzig and Remser [7] and was published as a paper in 1958. Their paper is concerned with the optimum routing of a fleet of gasoline delivery trucks between a bulk teminai and a large number of service stations supplied by the terminal. The shortest route between any two points and the quentity to be delivered to each station are assumed to be known quantities. Their purpose was to schedule trucks in such a way as to satisfy station demands and minimize the totel miles covered by the truck ileet. Their algorithm will be discussed in some detail to facilitate the reader's understanding of the method proposed by Clarke and Wright [4], which is a modification of the above method.

Dantzig and Remser regard the truck routing problem as a traveling salesman problem generalized to include the conditions that a number of loops must be determined such that all loops have one point in cormon (equivalent to the condition that the traveling salesman be required to return to his point of departure a number of times), and that specified deliveries be made at every point with the exception of the origin.

For simplicity of presentation, the authors meke the assumption that only one product is to be delivered and that al.1 trucks have the same capacity C. They state that the number of carriers does not enter the problem When they all have the same capacity. Even when carriers of different capacIties are involved, or when a number of products are to be delivered to each service station or delivery point, the same mathematicel model with minor variations may be used.

The basic ides of the method is to synthesize the solution into a number of stages of aggregation in which suboptimizetions are carried out on pairs of points or groups of points. The deliveries q_{1} are first ordered in a sequence $q_{1}, q_{2}, \ldots, q_{1}, q_{1+1}, \ldots, q_{n}$ such that $q_{1} \leq q_{i+1}$ for any $i=1, \ldots, n-1$. The meximum number of deliveries which can be made by a truck of capacity c for a given set of $q_{1}^{\prime} s$ is represented by t, and is then determined such that

$$
\begin{equation*}
\sum_{1=1}^{t} q_{i} \leq c \text { and } \sum_{1=1}^{t+1} q_{i}>c . \tag{1}
\end{equation*}
$$

The sequence $q_{1}, q_{2}, \ldots, q_{t}$ represents a feasible combination and therefore may be in the optimal solution. Hence, the number of aggregations to be used must allow the combination $q_{1}, q_{2}, \ldots, q_{t}$, or a maximum of t points, in the final aggregation. The number of points aggregated in the first stage is 2^{2}, in the second stage 2^{2}, and so on up to the final stage \mathbb{N} where the number of pointa aggregated is $2^{\mathbb{N}}$. In the first stage pairs of points are joined, in the second stage pairs of pairs are joined, etc. Therefore, 2^{N} is the largest number of points aggregated in the N th and final stage of aggregation and may correspond to as many as t points. Thus the number of stages of aggregation \mathbb{N} is determined such that

$$
\begin{equation*}
2^{N}=t \text { or } N=\log _{2} t \tag{2}
\end{equation*}
$$

Assume that the number of stages of aggregation has been determined to be $\mathbb{N}=2$. In the first stage of aggregation only those points are allowed to pair up whose combined demand does not exceed $1 / 2 C$. As a result, in the second stage of aggregation any pair of points Joined in the suboptimal first stage may be combined with any other pair of points joined in the first stage without exceeding truck capacity. If the number of stages of aggregation had been determined to be 3 , in the first stage only those points
whose combined losd would not exceed $1 / 4 \mathrm{C}$ would be allowed to pair up. Thus In the second stage any pair of pairs would have a combined demand less than $1 / 2 C$, and hence the combined demand of the aggregations formed in the third stage would be lesa than the available capacity C.

It should be noted that if each delivery truck were scheduled to visit precisely two service stations and return to the terminal point, the total distence traveled by the trucks would be the constant sum of the distances from the terminal point to each service stetion plus the sum if interpair distances, the distances between the two service stations served by each celivery truck. The onty varisbles occupring in this stitustion are the interpair distances. Therefore, to minimize the total distance covered by all trucks, the sum of these interpair distances must be minimized. This is done by determining the optimum pairings corresponding to minimum interpair distances in each intermediate stage. In the final stage aggregations are determined such that the sum of all trip lengths is a minimum.

Dantzig and Remser's formulation of the truck routing problem may be formally stated as follows:
(1) Given a set of n delivery points $p_{i}(i=1,2, \ldots, n)$ to which deliveries are made from a terminal point, designated P_{0}.
(2) A symmetric distance matrix $[D]=\left[d_{i j}\right]$ is given which specifies the aistance $d_{i j}$ between every pair of points ($1, j=0,1, \ldots, n$). Since the matrix is symmetric, $d_{i j}=d_{j i}$ for all i, j.
(3) A delivery vector $Q=\left(q_{1}\right)$ is given which specifies the demand q_{i} at each delivery point $P_{i}(i=1,2, \ldots, n)$.
(4) The capacity of all delivery trucks is the same and is represented by C, where $C>\operatorname{maximum} q_{1}$.
(5) If any two points P_{i} and P_{j} are paired, $x_{i j}=x_{j i}=1(i, j=0$,
$1, \ldots, n)$, and if the points are not paired $x_{i j}=x_{j 1}=0$. Since every point P_{i} w111 be connected either to the terminal point P_{0}, or at most to one other point P_{g}, the following relation holds:

$$
\begin{equation*}
\sum_{j=0}^{n} x_{i j}=1(i=1,2, \ldots, n) \tag{3}
\end{equation*}
$$

By definition, $x_{i i}=0$ for every $i=0,1, \ldots, n$.
(6) The problem is to find those values of $x_{i j}$ which make the botel distance

$$
\begin{equation*}
D=\sum_{i, j=0}^{n} d_{i, j} x_{1, j} \tag{4}
\end{equation*}
$$

a minimum under the conditions specified in [2] to [5].
A few general remarks about the algorithm should be made. Condition [5] Limits the values of x_{11} to be either 0 or I, which puts this problem in the class of discrete variable problems. At the time Dantzig and Ramser were doing their work, no general method had been developed for solving discrete variable problems. Gomory's method [8] had just been proposed; however, it was considered to be at too early a stage of development to be applied to the problem at hand. It turns out that even with an integer programing algorithm the formulation required to prevent "looping", a sequence of cities not connected to the origin, general il expends the size of the problem beyond the limits where currently available algorithms can provide a solution to the problem. Therefore, the authors admitted the weaker condition

$$
\begin{equation*}
0 \leq x_{1 j} \leq 1 \tag{5}
\end{equation*}
$$

and then suggest applying modified methods of linear programing to obtain "best solutions". (It should be noted that the authors did not elaborate on how this would be done.) Admitting this weaker condition may allow fractional values to appear in the solution, Indicating the existence of alternative
pairings of points or groups of points. The authors state that their experfence hes shown thet the number of such alternative pairinga will be small, so that the pairing yielding the least mileage can be readily determined by trial and error. The solution obtained in this manner will satisfy the requirement that $x_{i j}$ be elther 0 or 1 . However, when the weaker condition is admitted, the solution obteined may no longer be the absolute optimum.

They felt that the solution obtained by their method approaches the absolute optimum as the number of points increases. Moreover, an estimate can be made on the error for the minimum distance D since $x_{i \sqrt{\prime}}=0$ or l lies between the "best solution" obtained by their method and the minimum satisfying $0 \leq x_{1 j} \leq 1$.

At the start of thie computational procedure all delivery points P_{1}, P_{2}, \ldots, P_{n} may be paired with the terminal point so that there will be n entries $X_{0, i}=1$, where $1=1,2, \ldots, n$. These n entries constitute the basic set at the start of the computational procedure. During each iteration exactly one element of the basic set is eliminated and replaced by a new element or pairing. Therefore, the total number of basic entries remains constant during stage 1 .

The starting solution, in which each delivery point is paired with the terminal point, is then improved by a series of rapid corrections. These rapid corrections are mede by bringing into the solution non-basic entries which correspond to relatively small d_{13} values. This procedure of making rapid corrections is repeated as long as non-basic entries with obviously low $a_{1 j}$ values are available.

After a sufficient number of pairs of points with small interpair distances have been brought into the solution, it will become increasingly difficult to bring in additional peirs of points without calculating the
total distance in every case. Therefore, a criterion is needed to determine whether to accept or reject a non-basic variable for entry into the basic solution. This criterion is provided by what the authors have chosen to call a "delte-function", defined as

$$
\begin{equation*}
\delta_{11}^{(n)}=\frac{(n)}{1}+\pi_{1}^{(n)}-d_{1 j} \tag{6}
\end{equation*}
$$

where $\pi_{i}^{(n)}$, and $\pi_{j}^{(n)}$ are suitebly determined constents characteristic for the nth iteration. By definition $\pi \frac{(n)}{1}$ and $\pi \frac{(n)}{j}$ are determined so that

$$
\begin{equation*}
\delta_{i j}^{(n)}=0 \tag{7}
\end{equation*}
$$

for all $\mathrm{d}_{i j}$ corresponding to basic entries and

$$
\begin{equation*}
\delta_{i j}>0 \tag{8}
\end{equation*}
$$

for non-basic entries. The delta function indicates how much the total distance D will decrease per unit increase of a non-basic entry $x_{1 j}$. If $\delta_{i j} \leq 0$ for all non-basic variables, the particular set obtained at this point represents the "best solution". Otherwise, some non-basic variable corresponding to a $\delta_{1 f}>0$ is chosen for entry into the basic set. The standard criterion of the simplex method, that of selecting the non-basic variable corresponding to the largest $\delta_{1 j}$, is used to determine which variable will enter the basic set. When the delta function is negative or zero for all non-basic entries, no further improvement is possible and the f1rst stage is concluded. For a more complete aiscussion of the π_{i} constants (simplex multipliers or prices) see Dentzig, Fulkerson, and Johnson $[5,6]$.

In the second stage aggregation the $\mathbb{d}_{i j}$, or minimum distances between points, are changed to the corresponding distences between first stage aggregetions. The procedure for finding the combination of aggregates which yields minfmum mileage is then the same as the one used for first stage
aggregations. If it is determined that more than two stages of aggregation are needed, the procedure is repeated as many times as necessary. If no fractional values appear in the final solution the problem is solved. If fractional values appear, a trial end error procedure is then used to decide which alternative corresponds to minimum mileage.

In their paper [T], Dentzig and Ramser show the solution to a semple problem involving deliveries to 12 service stations. The solution they obtain results in a totai distance of 294 units. They believe, however, that a slightly different trip essignment with a total distance of 290 units is the true optimum solution to the problem. Therefore, their algorithm results in \& "best solution" which comes very close to the true optimum for the particular numerical example used. Thay state that experience with the method has shown that similar results may be obtained in other numerical cases, particularly if the station demands do not differ too widely. They aiso conjecture that the difference between the distance for the "best solution" and that of the true optimum decreases as the number of station points increases.

Generel Remarks

As wes mentioned previousiy, a modification was proposed in 1962 to the Dantzig and Remser method by Clarke and Wright [4]. This method wes chosen for further study for severel reasons, these being:
(1) The procedure is simple but effective in producing a near optimal solution.
(2) It can be used to solve large scale practical problems with reasonable efficiency.
(3) It is well suited for programming on high speed digital computers.
(4) It has been found that this method gives better results then the Dantzig and Ramser method in a number of cases tested. This has been further substantiated by work done in this study, as is shown in the Appendix.
(5) Because of its simplicity the author was able to modify this approach to include additional conditions and restrictions which constituted a significant part of this study.

The formulation is similar to that proposed by Dantzig and Ranser [7]. In using Dantzig and Ramser's method, the restriction wich allows only those customers whose combined load does not exceed $C / 2^{N-1}$ to be 1 inked in the first of \mathbb{N} stages may also allow points to be linked that are far apart, and which may be virtually on opposite ends of a stralght line through the terminal point. Although obviously long link mey be excluded in the initial stages by rapid corrections, when two points become linked in an aggregation they remain aggregated. As a result, this places more emphasis on filling trucks
to near capacity than on minimizing the total distance which must be traveled. This led to the search for a better method of solution.

Theoretical Aspects of the Problem

Included in Clarke and Wright's paper is a discussion of the theory behind their formulation of the problem. The discussion, however, does not appear to fully explain several of the major points in the theoretical development. This led to the development of the following discussion of the theoretical aspects of the problem.

Consider the feasible allocation of trucks to demand points shown in Figure 1 of Plate I. The demand points P_{x}, P_{y}, and P_{2} are inftielly linked only to the terminal point P_{0}. Three trucks, each traveling from the terminal point to a demand point and back to the terminal point, are allocated to haul the loads required by the demand points. The routes followed by the trucks are represented by solid lines and the direction of travel indicated by arrow heads. The totel distance for all routes is:

$$
\begin{equation*}
2 a_{0, x}+2 d_{0, y}+2 d_{0, z} \tag{9}
\end{equation*}
$$

Linking the two demand points P_{x} end P_{y} on a route and severing one link from the terminal point to P_{x} and one link from the terminal point to P_{y} results in the allocation shown in Figure 2 of Plate I. The resulting "saving" in total distance over" the initial allocation is:

$$
\begin{equation*}
d_{0, x}+d_{0, y}-d_{x, y} \tag{10}
\end{equation*}
$$

The total distance for all routes now becones:

$$
\begin{equation*}
\mathrm{d}_{0, x}+\mathrm{d}_{\mathrm{x}, \mathrm{y}}+\mathrm{a}_{0, y}+2 \mathrm{a}_{0, \mathrm{z}} \tag{21}
\end{equation*}
$$

Consider the allocation shown in Figure 3 of Plate I. This allocation is obtained from the allocation shown in Figure 2 by linking the demand

EXPLANARION OF PLATE I

Fig. 1. A feasible allocation of trucks to demand points. Fig. 2. Allocation obtained by linking demand points P_{x} and P_{y}. Fig. 3. Allocation obtained by linking demand points P_{x} and P_{y} and demand points P_{y} and P_{z}.

PIARE I

Fig. 3
points P_{y} and P_{z}, severing the link from P_{0} to P_{y}, and severing one of the links from P_{0} to P_{z}. The resulting saving in distance is:

$$
\begin{equation*}
d_{0, y}+d_{0, z}-d_{y, z} \tag{12}
\end{equation*}
$$

The resulting total distance for all routes is:

$$
\begin{equation*}
d_{0, x}+d_{x, y}+d_{y, z}+d_{0, z} \tag{13}
\end{equation*}
$$

The saving in total distance which would result from the linking of any two demand points which are linked to the terminal point may be calculated as shown above in equations 10 and 12 . This saving is calculated for each pair of demand points in the problem. The maximum of these savings is selected that would, if linked, produce ieasible routes consistent with truck aveilabilities and capacities. These two demand points are now linked and the next highest saving is determined and the procedure repeated.

Whenever a demand point is linked to two others (not P_{0}) it will not be considered again for linking. As a result of this, the only links that will be severed will be those of points linked to the terminal point. Thus the saving from linking two general demand points P_{y} and P_{z} is expressed*as the following relation:

$$
\begin{equation*}
a_{0, y}+d_{0, z}-a_{y, z} \tag{14}
\end{equation*}
$$

Computational Procedure

The computationel procedure used by Clarke and Wright will now be explained. The procedure is listed and explained step by step so that it can be easily referenced in the next section when the modified procedure is explained.

Step 1.

The first step in the computational procedure is the assigning of identification numbers to the demand points so that they can be more easily referenced and worked with during the computational procedure. The demand points are labeled $P_{i}(1=1,2, \ldots, M)$, where M is the number of demand points. The demand points should first be ordered such that demand point i is closest to the terminal point, demand point 2 is the next closest point, and so on.

Step 2.

The second step in the computational procedure involves the initial allocation of trucks to demand points. It is assumed that the velues of the demands $q_{1}(1=1,2, \ldots, k)$ are such that one truck can carry q_{1}. If this assumption does not hold, trucks with the highest capacity avallable are allocated to the demand point. The remainder of the demand, which will be an amount less than a truckloed of the highest capacity, is then considered in the initial allocation, and the full truckioads are excluded from further consideration. After this has been done, all demands which will enter into the computation will be such that $q_{y} \leq c_{n}(\jmath=1,2, \ldots, M)$, where c_{n} is the highest available truck capacity. For convenience of computation, the truck capacities C_{i} are ordered such that $C_{i-1}<C_{i}(i=2, \ldots, n)$, where n is the number of different avallable capacities.

Step 3.

The numerical example used by Clarke and W right is the same one used by Dantzis and Ramser. This numerical example is also used in this section and will be referred to as sample problem 1 throughout the remainder of this paper.

The third step in the computational procedure includes the calculation of the savings matrix and setting up the initial computational matrix. Since the distence matrix is symmetrical, it is recomended that a half matrix be used for hand computation. The formet for this matrix as well as the necessary matrix values for sample problem 1 are shown in Table 1 . The entries In the lower right-hand corner of each matrix cell ($y: z$) are the appropriate distances $d\left(P_{y}: P_{z}\right)$ between demand points P_{y} and P_{z} by the shortest practicable route. The entries in the lower left-hand corner of each cell are the savIngs. These values are calculated as described above, i.e., for cell (y:z) with $y, z-1$, and $y \neq z$, the value of the saving is $d_{0, y}+d_{0, z}-d_{y, z}$. A column vector $Q=\left(Q_{1}, Q_{2}, \ldots, Q_{M}\right)$ is added on the left-hand side of the matrix. At the start of the computational procedure, the values entered in this vector are the loads q_{i} required by demand point $P_{i}(i=1,2, \ldots, M)$. The remaining cell entries, designated as $t_{y, z}$, will always be either 0,1 , or 2. If the two demand points P_{y} and P_{z} are linked on a truck's route, $t_{y, z}$ $=1$ will be entered in the appropriate cell. A demand point served exclusively by a truck will have a corresponding cell value $t_{y, 0}=2$. The cell entry for each pair of demand points not linked and $y, z>0$ will be $t_{y, z}=0$. Step 4.

Table 1. Distance matrix showing distances in lower right-hand corner of each cell, saving in lower left-hand corner of each cell, initiel basic solution velues in upper left-hand corner of each cell, and the initial Q vector on left-hend side of matrix.

Q	${ }^{1} 0$				
1200	${ }^{2} \mathrm{P}_{1}$				
1700	$14.185 \mathrm{P}_{2}$				
1500	$2 \begin{array}{llll}2 & & \\ & 212 & 128 & 7\end{array}$	P_{3}			
2400		$34 \quad 10{ }^{1}$			
1700					
1400					
1200		$26 \quad 2730 \quad 254441050 \quad 7 \quad P_{7}$			
1900		$20 \quad 3724 \quad 3542 \quad 16501158 \quad 10$	${ }^{P} 8$		
1800	28\|10 372636	$16 \quad 4320 \quad 4338 \quad 2850135416$	$68{ }^{P_{9}}$		
1600	2420412036		$72 \quad 66812$	P_{10}	
1700		$34 \quad 374237442850256418$	72117612	$84 \quad 8{ }^{P} 11$	
1100			22.77020	84109210	P_{12}

Table 2. Allocation teble in form suggested by Clarke and Wright.

Trucics	tp to 4000 gal.	Over 4000 gal.	Over 5000 gal.	Over 6000 gal.
Available	∞	7	4	0
Allocated	12	0	0	0

3. The initial basic solution as shown in Table 1 is entered as $t_{y, 0}=2$ ($y=1,2, \ldots, M$), the values being shown in the upper left-hand corner of each cell. Since a demand point may be innked to at most two other points, one of which may be the terminal point P_{0}, the following relationshy always exists:

$$
\begin{equation*}
\sum_{\substack{z=0 \\ \text { with } \\ y=1}}^{t_{y, z}} \sum_{\substack{y=k+1 \\ \text { with } \\ z=i k}}^{M} t_{y, z}=2 \quad(k=1,2, \ldots, M), \tag{15}
\end{equation*}
$$

i.e., the sum along the k th row plus the sum along the k th column must elways equal 2.

Step 5.

The initial allocation table is set up in step 5. Since in the solution some trucks may be only partially loaded, the number of trucks of the smallest cepacity, x_{1}, needs to be sufficientily large to insure thst all demands will be allocated. For purposes of computation, it is assumed that an unifmited number of trucks of the smallest cepacity are available, and this value is set equal to ∞.

Table 2 shows the number of aveilable trucks above each capacity level and the number of trucks already allocated. In the numerical example shown, it is assumed that there is an unlimited supply of trucks of capacity 4000 gallons, 3 trucks of cepecity 5000 gallons, and 4 trucks of capacity 6000 gallons.

The now completed tables, Table 1 and Table 2, show the initial feasible solution.

Step 6.

The sixth step in the computational procedure is a search of the rows and columns of the half matrix of Table 1 for the maximum saving. Only those savings corresponding to links which are still eligible to be formed should be included in the search.

If there are two or more equal maxima in the search, one of these is selected randomiy.

Step 7.

Test the maximum saving found in step 6 to see if the conditions listed below are satisfied. If the maximum saving occurs in cell ($y: z$):
(1) $t_{y, 0}$ and $t_{z, 0}$ must be greater than zero. If these values are greater than zero, demand points P_{y} and P_{z} are still linked to the origin and these links are therefore eligible to be severed.
(2) Demand points P_{y} and P_{z} are not alresdy allocated on the same truck run. This restriction is necessary to prevent "looping", a situation in which routes or "loops" are formed which do not include the terminal point.
(3) Amending the allocation table (Table 2) by removing the trucks allocated to loads Q_{y} and Q_{z} and adding a truck to cover the load $Q_{y}+Q_{z}$ would not cause the trucks allocated to exceed the trucks available in any colum of the allocation table.

If one or more of the conditions is not satisfled, the meximum saving being tested is excluded from further consideration and step 6 repeated.

Step 8.

If all of the conditions listed in step 6 are atisfied, $t_{y, z}$ is set equal to l and the other values of $t_{f, j}$ are amended so that relation [15] holds. This may be accomplished very easily by reducing the values of $t_{y, 0}$ and $t_{z, 0}$ by 1 .

Step 9.

The Q vector must then be amended in two weys. First, each Q_{f} corresponding to $t_{j, 0}=0$ is 1tself sot equel to zero and second, esch Q_{j} corresponding to a demand point allocated on the new route is set equal to the total demand for all points on the route.

Step 10.

The allocation table is then changed to correspond to the new allocation. This consists of removing the trucks allocated to loads Q_{y} and Q_{z} and adding a truck to cover the load $Q_{y}+Q_{z}$.

Step 11.

The first iteration is now completed. If more links are possible repeat the procedure from step 6 on.

Step 12.

If no more links are possible, i.e., no maximum saving will satisfy all conditions, the final solution has been found. The final allocation of demand points to routes and the exact order of visitation of demand points may then be determined from the $t_{1 . j}$ half matrix, and the final allocation of
availlable trucks may be obtained from the final ellocation table. The distances for each route and the total distance for all routes may then be calculated by referring to the original distence matrix.

The computational procedure will now be discussed in conjunction with sample problem 1 to facilitate the reader's understanding. Steps 1 through 5, In which the problem is set up as shom in Tables 1 and 2 , are adequately discussed. The emphasis will be put on discussing the computational aspects of the first iteration starting at step 6 . The reader may wish to refer to the computational matrix and allocation table for the first iteration which are shown as Tables 3 and 4 , respectively.

Step 6.

The maximum saving of the half matrix of Table 1 is 92 , found in cell (12:11). Therefore, $y=12$ and $z=11$. No equel maxima are involved in this case.

Step 7.

The maximum saving is then tested to see if it meets all conditions.
(1) $T_{12,0}$ and $t_{11,0}$ are both equal to 2 and are therefore greater then zero.
(2) Demand points P_{12} and P_{21} have not already been allocated on the same truck run, since each is initielly on a separate truck run from the terminal point.
(3) Amending the allocation table (Table 2) by removing the trucks allocated to $100 d s Q_{12}$ and $Q_{11}, 1100$ gallons and 1700 gallons, respectively, would create an allocation of 10 trucks in the "up to 4000 gal ." column, with all other columns remaining as they were. The losd $Q_{12}+Q_{11}$, or 2800 gellons, would require a truck

Table 3. Computational matrix after completion of first iteration.

Table 4. Allocation table after completion of first iteration.

Trueks	Up to 4000 Gel.	Over 4000 gal.	Over 5000 gal.	Over 6000 gal.
Available	∞	7	4	0
Allocated	11	0	0	0

having a capacity of 4000 gallons, resulting in an allocation of 11 trucks in the "up to $4000 \mathrm{gal}$. " column. This does not cause the trucks allocated to exceed the trucks available in any column of the allocation table.

All of the conditions are satisfied, therefore procede to step 8.

Step 8.
$T_{12,11}$ is set equal to 1 and the values of $t_{12,0}$ and $t_{11,0}$ are reduced by 1 , making them each equal to 1.

Step 9.

The Q vector is ariended by setting Q_{12} and Q_{11} equal to 2800 gallons, the totel demand for all points on the new route formed by linking demand points P_{12} and P_{11}.

Step 10.

The allocation table is then changed to correspond to the values obtained in step 7, as shown in Table 4.

Step 11.

The Pirst iteration is now completed. The resulting computational matrix is shown in Table 3. More links are possible since not all of the eligible savings have been tested for entry into the basic solution. Therefore, the procedure would be to return to step 6 and select the next ellgible maximum saving.

The computational procedure described above has been programmed for the IBM 1620 computer. A complete description of the computer program is found In the Appendix of this paper. As explained there, it is possible to obtain
the values of the computational matrix and allocation table for each iterstion. Sample problem I has been solved in this manner, and the remainder of the iteration-by-iteration solution of sample problem l is found in the Append $4 x$ in the section on sample problems.

The final solution for sample problem 1 is shown in Table 5 and Table 6. An explaration is now given of how to read the sequence of stops, i.e., the final allocation of routes, from Table 5.

The procedure starts by checking the values of $t_{i, 0}(1=1,2, \ldots, M)$ until one is found for which $t_{1,0} \neq 0$. A $t_{1,0}=0$ indicates that stop i is Iinked to two points other than the origin. A $t_{i, 0}=1$ indicates that stop i is linked to the origin and signifies the beginning or ending of a route. A $t_{i, 0}=2$ indicates that stop i is served exclusively by a truck.

When a $t_{1,0}=1$ is found the stop, other than the origin, which is linked to stop i must be found. This is done by searching row i and/or column i until \& $t_{i, d}=1$ is found. The row or column for which this is the case is the stop linked to stop i. As an example, $t_{1,0}=1$ in sample problem 1 . The other stop linked to stop 1 is found by searching colum 1 until a $t_{i, 1}$ $=1$ is found, the value of ifor which this is true being $i=2$. Therefore, stop 2 is linked to stop 1 . The stop, other than stop I, which is linked to stop 2 is then found by searching row 2 and column 2 until the value $t_{3,2}$ $=1$ is found, indicating that stop 3 is linked to stop 2. The remainder of the stops allocated on this route are then found in a similar manner, as are the stops allocated on other routes.

The final routes and distances for sample problem 1 are listed below. The route numbering corresponds to that used by Clarke and Wright. The numbering for the computer solution differs slightly as is expleined in the discussion of the computer program in the Appendix.

Table 5. Computational matrix after completion of final iteration.

Q	P_{0}												
5800	1	P_{1}											
0	0	1	P_{2}										
0	0		1	P_{3}									
5800	1			1	P_{4}								
1700	2		2			P_{5}							
5100	1						P_{6}						
5600	1							P_{7}					
0	0						1		P_{8}				
5100	1								1	${ }^{P} 9$			
0	0							1			P_{10}		
0	0										1	${ }^{P} 11$	
5600	1											1	P_{12}

Table 6. Allocation table after completion of finel iteration.

Trucics	Up to 4000 gal	Over 4000 grl.	Over 5000 gal.	Over 6000 gal.
Available	∞	7	4	0
Allocated	1	3	3	0

(1) Route 1: $P_{0}-P_{7}-P_{10}-P_{11}-P_{12}-P_{0}$ heving a distance of 112 miles and requiring a truck having a capacity of 6000 gallons.
(2) Route 2: $P_{0}-P_{6}-P_{8}-P_{9}-P_{0}$ having a distance of 80 miles and requiring a truck having a capacity of 6000 gallons.
(3) Poute 3: $P_{0}-P_{1}-P_{2}-P_{3}-P_{4}-P_{0}$ heving a distance of 54 miles and requiring a truck having a capacity of 6000 gallons.
(4) Route $4: P_{0}-P_{5}-P_{0}$ having a distance of 44 miles and requiring a truck having a capacity of 4000 gallons. Note that this demand point is gerved exclusively by a truok and therefore $t_{5,0}=215$ the final computational matrix.

The total distance for the routes listed above is 290 miles, believed by Dantzig and Ramser to be the true minimum mileage solution.

Clarke and Wright state that although the improvement in this example is slight, a problem involving 30 demand points resulted in an improvement of 17 per cent over the Dantzig and Ramser method.

It is further suggested that, although the solution gives the order of visitation of demand points, it may be beneficial to solve the treveling salesman problem for each truck in the final allocation to determine the true optimum order of visiting.

The Algorithm Summarized

The basic steps in the computational procedure will now be listed to provide a summary of the algorithm.

Step 1. Onder the demand points according to their distance from the origin such that demand point 1 is closest to the origin, demand point 2 is next closest, and so on. Lebel the demand points $P_{i}(i=1,2, \ldots, M)$.

Step 2. Assign an initial allocation of one truck to each demand point if the allocation is feasible. If the allocation is infeasible split the invalid demands to produce a feasible allocation.

Step 3. Calculate the savings.
Step 4. Bnter the initial besic solution in the initial computational matrix (Table 1).
Step 5. Set up the initial allocation and availability table as show in Table 2.
Step 6. Find the maximym eligible saving in Table l. If there are two or more equal maxime, choose one of them randomly.
Step 7. Test the maximum saving found in step 6 to see if it meets conditions 1 through 3 listed above. If any one or more of these conditions is not satisfled exclude the maximum saving from further consideretion and return to step 6 .
Step 8. If all of conditions 1 through 3 are setisfied, set $t_{y, z}=1$ for the cell corresponding to the maxtmum saving and amend the rest of the $t_{i, j}$ velues so that relation [15] holds.
Step 9. Amend the Q vector.
Step 10. Crange the allocation table (Table 2) to correspond to the new allocation.
Step 11. Repeat the procedure from step 6 if more links are possible.
Step 12. If no more links are possible, determine the allocated routes, their respective distances, and the total distance for all routes.

MODIPIBD CLARKE AND WRIGHT METHOD FOR MULTIPLE RESTRATNTS

Modifications

This section contains a discussion of the modifications which can be made in the Clarke and Wright method to incorporate additional restraints on the system and to improve the computational procedure. In addition, limitations of the method are pointed out and discussed, and possible procedures for overcoming these limitations are suggested. The modifications are discussed in reference to the steps of the previous method so that the two methods can easily be compared.

Step 1 of the modified procedure is the same as step 1 in the previous method.

Step 2.

The second step in the computational procedure involves the initial allocation of trucks to demand points. It is assumed that the values of the loads required at each demand point are such that an initial allocetion of one truck to each demand point is possible. In the case in which one or more demands are larger than the largest available truck an allocation can still be mede. This is done by splitting the large load into two (or more) full truckloads of the highest capacities available and only considering the remainder of that $10 a d$, an arrount less than a truck load of the highest capacity. Thus, all loads considered in the problem will be such thet $q_{1} \leq c_{n}(i=1,2, \ldots, M)$.

The solution of example camrier routing problems hes pointed up a limitation of the modified Clarke and Wright elgorithm occurring in the allocation of carriers to demand points. This limitation will now be discussed and a possible means of overcoming the limitation is elso suggested.

An obvious difficulty occurs when there are not enough large trucks available to assign one truck to each demand point. This situation might be remedied by combining demands until they become such that an allocation of one truck to each demand can be made. This should be done before the computational procedure is started. This procedure, however, might cause an otherwise best solution to become a less favorable one.

A difficulty may occur even when there are enough large trucks available to assign one truck to each demand point. A number of the larger trucks may have been assigned small loads in the inftial allocation to insure an allocation of one truck to each demand point. These large trucks could be put to better use hauling larger combined loads since the elgorithm emphasizes combining small loads into larger ones. This combining of small loads vill ellow the trucks to which these loads were initially assigned to become available for further use. However, the algorithm does not include a provision for reassigning the small loads initially assigned to large trucks to the small trucks made available by the combination of loeds. Therefore, it is suggested that the elgorithm be modified to include a reassigning of trucks to loads each time two loads are comolned.

The rodified allocation procedure is as follows:
(1) Arrange the loads in order of increasing size with the smallest load first.
(2) Each load, starting with the smallest, is then assigned to the smallest avallable truck which can haul, the load.

After each iteration, in which two smaller loeds are combined into a larger one, the above procedure is repeated. This procedure should also be used when assigning the initial allocation of trucks to demand points.

It is believed that this modified procedure will make better use of the svailable trucks in certain cases, thus resulting in a better solution in terms of total miles traveled.

The computer program includes this modified allocation procedure and its use is explained in the discussion of the computer program included in the Appendix. It should be noted that the use of the modified procedure is optional since it is useful only in certain cases and it requires more running time than the normal allocation procedure.

Steps 3 and 4 of the modified procedure are the same as the corresponding steps in the previous method.

Step 5.

For ease of computation and to avoid confusion during the computational procedure, it is suggested that the form shown in Table 7 may be used. In this table the actual values of the capacities and availabilities are shown rather than the cumulative availabilities shown in Table 2.

For purposes of computation, Clarke and Wright set the number of trucks of the smallest capacity equal to ∞. However, the number of trucks of the smallest capacity available may be limited. It is believed that economic considerations will reduce the number of trucks of this capacity which will be allocated in the final solution to a velue very nearly equal to or less than the actual number available. However, the problem of requiring more truciks than ara available can be avoided in the aituation where the largeat demand is less then the smallest avallable truck capacity by adding a "dumy"

Table 7. Allocation table in form suggested by the author.

Trucks	4000 Eallons	5000 gallons	6000 gallons	Capacity $=\infty$
Aveilable	∞	3	4	0
Allocated.	12	0	0	0

Table 8. Allocation teble with "dumry" capacity of 1900 gallons.

Trucks	1900 gallons	4000 gallons	5000 gallons	6000 gallons	Capacity $=\infty$
Available	∞	2	3	4	0
Allocated	12	0	0	0	0

Table 9. Allocation teble with mileage restrictions.

Trucks	4000 gallons	5000 gallons	6000 gallons	Capacity $=\infty$
Available	∞	3	4	0
Nllocated	12	0	0	0
Distance re- striction (miles)	104	104	104	0

cepacity. If this is not the cese, the procedure suggested by Clarke and Wright should be used. The "dumry" cspacity, if used, should be set equal to the Iargest demand. It can then be assumed that an infinite number of trucks of this capacity are available, and the correct number of trucks with the smallest capacity can then be used in the computation. This procedure is demonstrated in sample problem 1 as is discussed below.

A word of caution is added on the use of the modified procedure explained above, especielly if the demands vary videly from demand point to demand point. Consider a situation in which the sum of the demands for two or more demand points is considerably smaller than the largest demand and the capacity of the smallest truck. If a "dummy" capacity equal to the largest demand were used in this situation, it is conceivable that this "dumm" capacity could be alloceted in the final solution. If this is true, a check should be made on the allocation of trucks with the smallest capacity. The trucks elloceted to the "dumry" capacity can in most cases be trensferred to the smallest capacity available without exceeding truck availabilities. It is suggested that this procedure be used when possible.

Table 8 is the inftial allocation table for example problem 1 with a "durmy" capacity of 1900 gallons added. As was discussed previousiy, this "duruy" capacity is assigned the initial allocation of 12 trucks. This allows the sctual number of trucks of the smallest capacity, in this case essumed to be 2 trucks of 4000 gellons eech to be used in the computation. It is possible to use the "durury" capacity in this case since the largest demand is less than the smallest available truck capecity.

Step 6.

It was stated in the previous section that Clarke and Wright suggest selecting randomly one of two or more equal maxima in the search. It is noted that the other equal maxime should also be tested for entry into the besic solution. The equal maxima should be tested in row by row order starting with the saving in row 2 and column 1 . After a saving has been tested it need not be considered again, regardless of whether or not it was entered into the basic solution. It should be noted that the computer progrem includes this modification.

Step 7.

It is in this step that the procedure is modified to include multiple restreints. Thus in sddition to setisfying the first three conditions of step 7 in the previous procedure, additional restraints on the system can be incorporated. In particular, if the mileage restriction aiscussed previously is to be included in the problem formulation, the maximum saving would also be subfect to the following condition in step 7 :
(4) The total mileage of the new route formed by the addition of demend points P_{y} and P_{z} must be less then or equal to the mileage restriction for the truck eapacity necessary to haul the load $Q_{y}+Q_{z}$.
If this additional condition is included in the problem formulation, the allocetion table is modified. The allocation table for sample problem 2, which is a modilication of sample problem 1, is shown in Table 9. Table 9 is Table 7 with a row added to include the restriction that a truck of a given capacity can travel no more then a specified number of miles on a route. It hes been essumed, as show in Table 9, that all trucks can travel up to 104 miles per route.

Additional restrictions such as time spent on e route could also be included in step 7 in the same manner.

The computer program mentioned previously wes modified to include e restriction on the number of miles which can be traveled by each truck. Semple problem 2 with the milege restriction was solved using this computer program and the solution is included in the sample problem section of the Appendix.

Steps 8,9 , and 10 of the modified procedure are the same es the corresponding steps in the previous method.

Step 11.

Step 10 completes each iteration. If there are more savings to check for entry Into the basic solution reassign the trucks to the loeds following the procedure outlined under step 2 above. After this hes been done return to step 6 as usual.

Step 12 of the modified procedure is the same as step 12 in the previous method.

The Modified Algorithm Summarized

The computational procedure for the modified elgorithm may now be summarized es follows:

Step 1. Order the demand points according to their distance from the origin such that demand point 1 is closest to the origin, demand point 2 is next elosest, and so on. Lebel the demand pointe $P_{i}(i=1,2, \ldots, M)$.
Step 2. Assign the initial allocetion following the procedure outlined under step 2 in the discussion of the modified algorithm.

Step 3. Calculate the savings.
Step 4. Enter the initial basic solution in the initial computational matrix (Table 1).
Step 5. Set up the initial allocation and availebility table as shown in:
(1) Table 7 if a "dumry" capacity is not used.
(2) Table 8 if a "dunmy" cepacity is used.
(3) Trible 9 if additional restrictions are included in the problem formulation.

Step 6. Find the maximum eligible saving in Table 1. . If there are two or more equal maxima, follow the procedure outlined under step 6 in the discussion of the modified algorithm.
Step 7. Test the maximum saving found in step 6 to see if it meets conditions 1 through 4 . If any one or more of these conditions is not satisfied exclude the maximum saving from further consideration and return to step 6 .
Step 8. If all of conditions 1 through 4 are satisfled, set $t_{y, z}=1$ for the cell corresponding to the meximum saving and amend the rest of the $t_{i, f}$ values so that relation [15] holds.
Step 9. Amend the Q vector.
Step 10. Change the allocation table (Table 7, 8, or 9) to correspond to the new alloca¿ion.
Step 11. If there are more savings to check reassign the trucks to the loads and return to step 6 .
Step 12. If no more links are possible, determine the allocated routes, their respective distances, and the total distance for ell routes

Discuasion of Sample Problems

A number of sample problems have been solved both by hand and using the computer program written for the solution of cerrier routing problems. These problems and their solutions are included in the Appendix, and consist of the following:
(1) A complete solution of the 12 stop sample problem referred to as sample problem 1. This problem solution includes the computational matrix and revised allocation table for each iteration, and was obtained using the computer program. Note that the destination identification numbers in the computer output do not correspond to those used int the previous discussion of sample problem 2. This discrepancy and the reason for it are explained in the discussion of the computer program in the Appendix. The two solutions may be easily compared, however, as the destination numbers in the computer used in the previous discussion.
(2) Sample problem I with the mleage restriction for all trucks set at 104 miles. Demand point P_{12}, which is 52 miles from the terminal point, may be served exclusively by a truck in the final solution. Therefore, the distance restriction must not be less than 704 miles to admit this possibility in the final solution and insure obtaining a feasible solution. As in ample problem 1 , the problem solution includes the computational matrix and revised ellocation table for each iteration, and was obtained using the computer program. The problem also includes a "dumy" capacity of 1900 gallons to show the use of a "dumry" capacity in an ectuel example. It should be noted that a truck of the "dumm" capacity was allocated in the
final solution. As discussed previously, this allocetion can be transferred to the smallest capecity, 4000 gallons, since no trucks of this capacity were allocated and 2 were available.
(3) The 5 stop problem referred to previously as having been solved by dynamic programing. The dynamic programing solution is shown and explained in adaition to the computer output. The modified Clarke and Wright method results in the same optimal solution es the dymamic programing method.
*(4) An actual 13 stop problem involving the routing of feed delivery trucks. The modified Clarke and Wright method gave a total distance of 1433 miles using 4 trucks as compared to the routing in use by the company which involved a total distance of 1474 miles and 5 trucks. Although the improvement in totel mileage is slight, the use of one less truck could save the company a considerable mount of money.
*(5) An actual 33 stop problem involving the routing of feed delivery trucks. In this example all trucks hed the same capacity. Therefore, a number of demend points requiring full truck loads were eliminated from the problem before a solution was attempted. The resulting problen which wes solved using the computer program, involved 25 demand points. The modified Clerke and Wright method gave a total aistance of 1468 miles involving 14 trucks. This wes a seving of 119 miles and 2 trucks, a substantial improvement over
*Deta for these sample problems was greciously furnished by the Grain and Feed Narketing Project of the Agricultural Experiment Station at Kansas State University.
the method in use by the eompany. It should be noted that the solution to this problem obtained using the Dentzig and Ramser method resulted in the same total distance as the method in use by the company, providing further sustificetion for the use of the modified Clarke and Wright method.

CONCLUSIONS

Because of only recent interest in the carrier routing problem, a limited number of methods for solving the problem are currently available. A summary of these methods and the reasons for their acceptance or rejection is now given.

An integer programing formulation of the generalized traveling salesman problem was studied as a possible method of solution for the carrier routing problem. It was rejected because of the nature of the algorithms currently available for solving integer programing problems, and it did not appear to be easily modiffed to include the additional restrictions the author desired to include in the study.

Another technique considered as a possible method of solution for the carrier routing problem is a simulation routine which, for purposes of the stuay, was thought of as a limited version of complete search. The technique was rejected because the work on it has not yet reached a stage of development such that a statement can be made about its practicability for solving large scale problems.

Dynamic programing was also considered as a possible method of solution for the carrier routing problem, and an actual small scale problem wes solved using a dynamic programming approach. However, it wes also rejected because It was felt that the dynamic programing method was too closely related to pure search, and the computational labor would become prohibitive on large scale problems as is the case with pure search.

Finelly, two algorithmic methods of solution for the carrier routing problem were studied. The first algorithm was developed by Dantzig and Ranser [7]. The second algorithm, a modification of the first, was developed
by Clarke and Wright [4], and was found to give better results than the Dantzig and Ramser method in a number of cases tested. Therefore, the Dantzig and Ramser method was rejected for further modification and stuay.

The Clarke and Wright method was then modified to incorporate multiple restraints and to improve the computetional procedure. A modified allocation procedure which will make better use of the available carriers was also suggested. This modification of the Clarke and Wright method is practicable and efficient for solving large scale problems. Even though it does not guarantee an optimal solution, it appears to be the "best" method available at the present time for the solution of practical large scale routing problems.

Several sample carrier routing problems were solved using the modified Clarke and Wright method. Two of these were actual problems involving the routing of feed delivery trucks. In the first problem the modified method gave a saving of 41 miles and 1 truck over the method in use by the company, and in the second problem gave a saving of 119 miles and 2 trucks over the method in use by the company. The modified method was never beaten in the solution of the sample problems, although it wes tied in the 5 stop problem (sample problem 3) by dynamic programming.

Wuch work remaing to be done on the carrier routing problem. The need for an algorithm which will give a guaranteed optimal solution is obvious. A promising step in this direction is the algorithm for solving integer programing problems developed by Gomory [8]. It appears that this technique, when further developed and applied to the carrier routing problem, may provide an optimal method of solution.

ACKNOWLEDGMENTS

The writer wishes to acknowledge the faculty and staff of the Department of Industrial Engineering for their aid in the development of this thesis. He is particularly indebted to his major professor, Dr. Frenk A. Fillman, for his initial inspiration and continual advice and guidence, both on this thesis and on numerous other topics. Thanks so also to the Agrioultural Brperiment Station for supplying the semple problems (see the footnote on page 40 of this paper), and to the writer's wife, Sherry, for her fine help in the preparation and typing of this manuseript.

REFERBNCES

1. , "Motor Transportetion," Encyclopedie Britannica, Vol. 15, 938-944 (1965).
2. Barechet, L. L., "Graphic Solution of the Traveling-Salesman Problem," Operations Research Journal of America, Vol. 5, 841-845 (December 1957).
3. Bellman, R., "On a Routing Problem," Quarterly Journal of Applied Nathematics, Vol. XVI, No. 1, 87-90 (April 1958).
4. Clarke, G., and Wright, J. W., "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research Journal of Americe, Vol. 12, No. 4, 568-581 (July-August 1964).
5. Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M., "On a LinearProgramning Combinatorial Approach to the Traveling-Salesmen Problem," Operations Research Journal of Americe, Vol. 7, 58-66 (JanuaryFebruery 1959).
6. Dantzig, G. B., Fulkerson, D. B., end Johnson, S. M., "Solution of a Large-Scare Traveling-Salesman Problem," Operations Research Journel of Americe, Vol. 2, 393-410 (November 1954).
7. Dantzig, G. B., and Ramser, J. H., "The Truck Dispetching Problem," Manegement Science, Vol. 6, Nol. 1, 80-91 (October 1959).
8. Gomory, R. E., "Bssentials of an Algorithm for Integer Solutions to Linear Programs," Bulletin American Nath Society, Vol. 64, No. 5 (1958).
9. Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karel, C., "An Algorithm for the Traveling Salesman Problem," Operations Research Journal of Americe, Vol. 11, 972-989.
10. Miller, C. E., Tucker, A. W., and Zemlin, R. A., "Integer Programing Formulation of Traveling Salesman Problems," Association for Computing Mechinery, Vol. 7, No. 4, 326-329 (October 1960).
11. Rustman, D. G., "Public School Transportation Practices in the State of Missouri," Bducation Specialist Thesis, Central Missouri State College, 1963.
1.2. Tiliman, F. A., "Dynamic Programing Solution to the School Bus Scheduling Problem," Unpublished working papers, 1965.

Discussion of Computer Program

Manuelly solving cerrier routing problems can become an extremely tedious and laborious task, even when solving relatively small problems. The iterstive nature of the computational procedure provides an ideal situation for the use of a high speed electronic computer. Therefore, a computer program wes written in FORTRAI II for the IBM 1620 computer to solve carrier routing problems. The program has the capebility of solving problems which include a restriction on the number of miles which can be traveled by each capacity of carrier. The program, dimensioned to solve a problem involving a maximum of 36 demand points (not. including the origin) and a maximum of 10 different capacities of carriers, occupies 59,382 positions of core storage. The following discussion of the program is divided into three categories:
(1) Discussion of the output.
(2) Control card and input dete cards.
(3) Operating procedure for the IBM 1620 computer.
(1) Output

Normal program output is on cards, and includes the following:
(1) A series of statements for each allocated route 11 sting the demand points ellocated to the route in their correct order of visitation, the total distance for the route, and the capacity of carrier required for the route.
(2) The total distance for all routes.
(3) The final allocation of carriers of each capacity.

If it $1 s$ desired to monitor the course of the solution, additional output may be obteined. The punching. of this additional output is under control
of SENSE SWITCCi 1, the output being punched if the switch is on, and the punching being suppressed if the switch is off. The following additional output will be punched if SENSE SWITCH 1 is on:
(1) The initial allocation of carriers.
(2) The saving half matrix elements with respective fow and column 1dentification numbers.
(3) The maximum saving at each iteration with its row and colum identification numbers.
(4) If the maximum saving patisfles all conditions, the following series of output will be punched:
(e) All non-zero elements of the $t_{1, j}$ half matrix.
(b) The current Q vector.
(c) The current allocation of carriers.
(5) If the maximum seving does not satisfy all conditions (including the mileage restriction), a statement will be punched indicating whether one or more of conditions I through 3 were not setisfied, or whether the mileage restriction was not satisfied.

If the modified allocation procedure is used the output will also include the revised allocation of carriers imnediately following the allocation normally assigned by the program. As was stated previously, the use of the revised allocation procedure is optional. Its use is controlled by SENSE SWITCH 2, the modified allocation procedure being used if the switch is on, and the normal allocation procedure being used if the switch is off.

The numbering system used by the computer program differs slightly from that used in the previous discussion of sample problem 1. This was done because the FORTRAN II programing language used does not allow the use of 0 subscripts. Therefore, the origin, which was numbered 0 in the previous discussion, is numbered I when using the computer program. The demand pointa, previously numbered starting with 1, are numbered starting with 2. Therefore, the half matrix rows are numbered from 2 to M, where M is the number of points Involved including the origin, and the half matrix colums are numbered from 2 to M .

It should be noted thet in certain infrequent instances the computer output will list routes to which no stops have been allocated. This is due to the program itself and is not an error in the input data, and these invalid routes should be disregarded. These routes are formed at a stege in the solution at which it was necessary to assume that a route vould be formed before it was knom whether or not the route actually would be formed. If, at a later stage, it wes determined that the route should have been formed the output is norma?. If, however, it was determined that the route should not have been formed a lengthy and difficult reordering procedure would have been necessary. Since program efficiency and core storage requirements, as well as conciseness and quality of output, were factors considered in the programing of the modified algorithm, it was decided to allow the output to contain the invalid routes rather than perform the reondering procedure. Two examples of these invalid routes occur in the output for sample problem 4 , these being routes 2 and 5. Therefore, only four routes were actually formed rather than $s 1 x$ es the output would at first seem to indicate.

(2) Control Card and Input Data Cards

The necessary control card and input data cards will now be discussed for the benefit of those wishing to use the progrom. The cards will be discussed in the order in which they are read into the computer and consequently must be arranged.

The first card is a control card and contains two values. The first value is the number of points involved (including the origin) and must be right-justified in columns 1-4. The second value is the number of different capacities of carriers available and is right-justified in oolumns 5-8. This numer should include only those acturl capacities available. It may be seen in the sample problems that an additional capacity is necessary in the computation. This additional capacity is set to equal to ∞ for hand computation and is internally set equal to 999999 by the computer program. The number of carriers corresponding to this capacity is internally set equal to 0 , and the mileage restriction for this capacity is also internally set equal to 0 .

Three sets of input data caxds are reguired by the program. The values found on the first set of cards are the demands at eech demand point. These values are punched one per card, and must be right-justified in columns 1-6. They must be arranged in escending order of identification number, i.e., the demand at point 2 is punched first, follored by the demand at point 3, etc. Note that the demand points should already have been arranged according to their distance from the origin.

The second set of input data cards contains the distance half matrix elements punched one per card. Each element is accompanied by its row-column identification. The row number is right-justified in columns 1 - 4 , the
column number right-justified in column 5-8, and the distance element right-justified in colums $9-12$. All distances must be given in the same units, e.g., miles or tenths of miles. If the user desires to work with fractions of units, the distances must all be scaled by the appropriate factor of 10 to make them whole numbers. The distance elements must be punched row by row starting with the element in position [2,1].

The third and final set of input data cards contain three values each. The first value is the number of carriers available of a given capacity and In right-iustiftec in colurng $2=4$. The oapsoity correnponding to this availability is the second value on the card and is right-justified in columns 5-.9. The third value is the meximum number of miles which can be traveled by a carrier of the corresponding capacity. This number is rightJustified in columns $10-13$. The number of carriers of the smallest capacity should be entered as 9999 if the "dumur" capacity discussed previously is not used. If the "dumny" capacity is used, its corresponding number of carriers should be entered as 9999. This number assumes the same role as ∞ does in the hend computation.

The input data cards must be arranged In the following order to be read into the computer:
(1) Control cerd.
(2) Set of demand cards.
(3) Set of distance cards.
(4) Set of cards containing availabilities, capacities, and distance restrictions.

The program has been compiled and is available in object deck form including the necessary subroutines. An explanation of the procedure for solving a carrier routing problem on the IBM 1620 computer is given in the next section.

(3) Problem Solving Procedure

The following section is an explanation of the operating procedure for solving a carrifer routing problem on the IBM 1620 computer.
I. Clear core storage.
A. Depress ITISTANT STOP key.
B. Depress RESET key.
C. Depress INSERT key.
D. Type the instruction 160001000000 R-s.
E. After approsimately four second depress INSTANT STOP key.
F. Depress RESEI key.
II. Prepare card punch.
A. Pick up the cards in the punch hopper.
B. Depress the NON-PROCESS RUN OUT key on the 1622 .
C. Place blank cerds in the punch hopper.
D. Depress the PUNCH START button on the 1622 .
III. Set SENSE SWITCHES.
A. Tumn SENSE SWITCH I on if output is desired at each iteration; off, if iteration output is to be suppressed.
B. Turn SENSE SWITCH 2 on if the modified allocation procedure is to be used; off, if the normal allocation procedure is to be used.
C. SEMSE SWITCH's 3 and 4 are not interrogated and should be turned off.
IV. Loed object deck and subroutines.
A. Place object deck and subroutine deck in reader hopper.
B. Depress yellow LOAD button on 1622 .
C. When the message IOAD SUBROUMINES is printed on the typewriter depress START key.
D. To read in the lest two cands, depress the READER START button on the 1622 .

```
***********************
* *
* SOURCE DECK LISTING *
*
** CARRIER ROUTING WITH DISTANCE RESTRICTION
*0806
    DIMENSION LB(10),LCAP(10),MILE(10),MAL(10)
    DIMENSION LQ(37),LR(37),LDIS(37),LRD(37),LQS(37),LSUM(37),LRR(37)
    DIMENSION LQQ(37)
    DIMENSICN II(666),JJ(666),LD(666),LS(666),LT(666)
C
C DATA READ IN
C
    300 READ 1,M,NN
    1 FORMAT (214)
C
C
C
C
C
C
        MM=M-1
        KON1=0
        DO 2 I = 1,MM
    2 KON1=KON1+I
    KONO = MAX. NUMBER OF ITERATIONS
        KONO=KON1-MM
        READ 3,(LQ(I),I=2,M)
        3 FERMAT(I6)
C
C
C
C
C LD(I) = MIN. DISTANCE FRCM STOP II(I) TO STOP JJ(I)
            DC 6 1=1,NN
    6 \text { READ 7,LB(I),LCAP(I),MILE(I)}
    7 FORMAT (14,15,14)
    LB(I) = NUMBER OF CARRIERS OF CAPACITY LCAP(I)
MILE (I) = MAX. NUMBER OF MILES WHICH CAN BE TRAVELED BY A
    CARRIER OF CAPACITY LCAP(I)
INITIALIZATION OF CARRIER CAPACITIES
```

```
    N=NN+1
    LB(N)=0
    LCAP (N)=999999
    MILE (N)=0
C
C
    ASSIGN INITIAL ALLCCATISN
    IFISENSE SWITCH 2)801,800
    REVISED INITIAL ALLCCATICN PROCEDURE
    801 DO 802 I=2,M
    802 LQQ(I)=LQ(1)
    DO 817 I=1,N
    817 MAL (I) =0
        J=2
    816 I=2
        I SAV=1
        LSW=LQQ(1)
    805 I=I+1
    IF(I-M)803,803,806
    803 IF(LQQ(I)-LOW) 804,805,805
    804 LCW=LQQ(I)
        ISAV=I
        GO TC 805
    806 K=1
    808 IF(LOW-LCAP(K))809,809,807
    807 K=K+1
    IF(K-NN)808,808,811
    809 MAL (K)=MAL}(K)+
    IF(MAL(K)-LB(K))815,815,810
    810 MAL (K) =MAL (K)-1
    GO TC 807
    8 1 1 ~ P R I N T ~ 8 1 2 ~
    8 1 2 ~ F S R M A T I 7 O H T H E R E ~ A R E ~ N O T ~ E N O U G H ~ A V A I L A B L E ~ C A R R I E R S ~ F O ~ A L L O C A T E ~ S N E ~
        1TE EACH DEMAND}
        GO TC }81
    815 LQQ(ISAV)=999999
        J=J+1
        IF(J-M)816,816,12
    800 DO 700 I=1gN
    700 MAL (I) =0
        DO 704 I=2,M
        J=1
    701 IF(LG*I)-LCAP(J))703,703,702
    702 J=J+1
        GO TC 701
    703 MAL (J)=MAL (J)+1
    704 CONTINUE
C
C
    INITIALIZATION
C
```

```
    12 DO 16 I=2,M
    LRD(I)=0
    LDIS(I)=0
    LQS(I)+LQ(I)
    LRR(I)=0
    16 LR(I)=0
    LR(I) = VECTOR TO SAVE ALLOCATED ROUTES
    LDIS(I) = INTERMEDIATE DISTANCE FOR ROUTE I
    LRD(I) = TCTAL DISTANCE FOR ROUTE I
    LQS(I) SAVES Q VECTOR IN CASE DISTANCE REQUIREMENT IS
        NOT SATISFIED
    LRR(I) SAVES CHANGED LR(I) IN CASE DISTANCE REQUIREMENT
        IS NOT SATISFIED
    KON2=0
    KON2 = ITERATION NUMBER
    LTD=0
    KON1O=0
    KON10 SAVES NUMBER OF ROUTES WHICH HAVE BEEN ALLECATED
    KON6=0
C KONG = ROUTE BEING ALLSCATED
    CALCULATION OF LSUM(I) TO SAVE I CORRESPONDING TO (1,1)
    DC 315 I=2,M
    215 LSUM(I) =0
    I=3
    317 LA=1-2
    DS 316 J=1,LA
    316\operatorname{LSUM(I)=LSUM(I)+J}
        I=I+1
    IF(I-M)317,317,318
C
C
318 LS(1)=+99999
    I =3
25 J=1
    K=I-1
22LA=LSUM(I)+J
    IF(J-1)20,20,21
    20 LS(LA)=-99999
    23J=J+1
    IF(J-K) 22,22,24
    21 LF=LSUM(I)+1
    LSAV1=LD(LF)
    LF=LSUM(J)+1
```

LSAV2=LD (LF)
$L F=\operatorname{LSUM}(I)+J$
LSAV3=LD(LF)
$L S(L A)=L S A V 1+L S A V 2-L S A V 3$
Ge TC 23
$24 \mathrm{I}=\mathrm{I}+1$
IF $(I-M) 25,25,37$
PUNCHCUT OF INITIAL ALLOCATION AND SAVING MATRIX
37 IF(SENSE SWITCH 1) 32,40
32 PUNCH 13
13 FCRMATII8HINITIAL ALLOCATICN/)
DC $14 \mathrm{I}=1, \mathrm{~N}$
14 PUNCH 15, LCAP (I), MAL (I)
15 FORMAT (10 HCAPACITY $=17,2 \mathrm{X}, 18$ HNUMBER ALLOCATED $=14$)
PUNCH 33
33 FCRMAT (1H)
PUNCH 33
PUNCH 11
11 FERMAT (14HSAVINGS MATRIX/)
PUNCH 34
34 FCRMAT 13 HRCW, $3 X, 3 H C O L, 3 X, 6 H S A V I N G / 1$
DC $35 \mathrm{I}=1$, KCN1
35 PUNCH 36, II(I), JJ (I), LS(I)
36 FERMAT (13,3X,I3,3X,I6)
c
c
C
$40 \quad \mathrm{I}=1$
43 IF(JJJ(I)-1)41,42,41
$41 \mathrm{LT}(\mathrm{I})=0$
$44 \mathrm{I}=\mathrm{I}+1$
IF(I-KCN1)43,43,135
$42 L T(1)=2$
GC TC 44
C
C C

135 I =1
MSAV=LS(I)
$I K=11(1)$
$J K=J J(1)$
$52 \mathrm{I}=\mathrm{I}+1$
IF(1-KCN1)50,50,290
50 IF(MSAV-LS(I) 151,52,52
51 MSAV=LS(I)
$I K=I I(I)$
$J K=J J(I)$
GO TO 52
290 IF (MSAV) 200,53,53
53 KON2=KCN $2+1$

```
    LHMC=0
    55 IF(SENSE SWITCH 1)56,60
    56 PUNCH }3
        PUNCH }3
        PUNCH 57,IK,JK,MSAV
    57 FCRMAT (3HI =14,2X,3HJ =14,2X,13HMAX. SAVING =16/1
C
    6 0
    C
C
    64 IF(LT(IDI))301,301,65
    301 LMN=1
            GC Tた 136
C
C
C
    65 IDJ=LSUM(JK) +1
C
C
    69 IF(LT(IDJ))301,301,70
C
C
    70 IDB=LSUM(IK)+JK
    CONDITICN 2
    74 IF(LR(IK) )75,75,250
    250 IF(LR(IK)-LR(JK))75,302,75
    302 LMN=1
        GO TO 130
    75 I=1
    76 IF(LQ(IK)-LCAP(I))78,78,77
    77 1=1 +1
        GC TO }7
c
    78 KCN3=1
        MAL(KON3)=MAL(KON3)-1
        I=1
    81 IF(LQ(JK)-LCAP(I)) 80,80,79
    79 I=I+1
        GC TC 81
```

```
C KON4 SAVES THE NUMBER OF THE CAPACITY REQUIRED BY LQ(JK)
C
        80 KON4=1
            MAL (KON4)=MAL (KON4)-1
            LZ=LQ(IK) +LQ(JK)
            I=1
        83 IF(LZ-LCAP(I)) 82,82,400
    400 I= I +1
            GC TC }8
C
C
        82 KON5=1
            MAL(KON5)=MAL(KON5)+1
C CONDITION 3
    303 LMN=1
    GO TO 150
C
C
C
C
        84LT(IDB)=1
        LT(IDI)=LT(IDI)-1
    LT(IDJ)=LT(IDJ)-1
C
C
            IF(LT(IDI))86,85,86
        85 LQ(IK)=0
        86 IF(LT(IDJ))88,87,88
        87LQ(JK)=0
        88 IF(LT(IDI))89,90,89
        89 LQ(IK)=LZ
        90 IF(LT(IDJ))91,92,91
        91LQ(JK)=LZ
            SET LQ(I) = TOTAL LCAD CN THE RCUTE FOR ALL `THER STCPS
                ALLOCATED ON ROUTE
            92 DC 120 I= 1,M
    120 LDIS(I)=0
        CHECK TO SEE IF STOPS IK AND/OR JK ARE ALREADY ALLOCATED
        ON A RCUTE
        IF(LR(IK) 1108,102,108
        102 IF(LR(JK) )109,103,109
```

```
C NEW ROUTE FORMED
    103 KON10=K2N10+1
    KON6=KON1O
    LR(IK)=KON6
    LR(JK)=KON6
    LDIS(KONG) =LD(IDI)+LD(IDJ) +LD(IDB)
            IF(LDIS(KON6)-MILE (KON5))104,104,155
C
C
    104 LRD(KO1 6)=LDIS(KON6)
            DO 311 I=2,M
    311 LQS(I)=LQ(I)
C
C
c
C
            IF(SENSE SWITCH 1)93,101
        93 I=1
        96 IF(LT(I)194,97,94
        94 PUNCH 95,II(I),JJ(I),LT(I)
        95 FCRMAT (2HT(13,1H,13,3H)=12)
        97 I=I +1
            IF(I-KON1)96,96,98
        98 PUNCH }3
            DC 99 I=2,M
        9 9 ~ P U N C H ~ 1 0 0 , I , L Q ( 1 )
    100 FORMAT (3HI = 14,2X,3HQ =16)
        PUNCH }3
    101 LMN=0
C
    131 IFO 132 I=1,NH
    131 D% 132 I=1,N
    132 PUNCH 15,LCAP(I),MAL(I)
    134 IF(SENSE SWITCH 2)821,130
C
C REVISED ALLOCATION PROCEDURE
C
    821 DO 818 I=2,M
    818 LQQ(I)=LQ(I)
    DC 819 I=1,N
    8 1 9 ~ M A L ( I ) = 0
    825 1=2
        ISAV=1
        LSW=LQQ(I)
    822 I= I +1
    IF(I-M)823,823,826
    823 IF(LQQ(I)-LCW) 824,822,822
```

```
    824 L.CW=LQQ(I)
    ISAV=I
    GC TS 822
    826 IF(LSW-999999)839,841,841
    841 IFISENSE SWITCH 1)842,135
    842 PUNCH }3
    DO 843 I=1,N
    843 PUNCH 844,LCAP(I),MAL(I)
    844 FSRMAT(1OHCAPACITY =17,2X,2OHREVISED ALLSCATION =14)
    GO TO 135
    839 IF (LCW)827,827,828
    P27 LQQ(ISAV)=999999
    GO TO 825
    828 K=1SAV+1
    830 IF(LCW-LQQ(K) )829,840,829
    8 2 9 K = K + 1
    IF(K-M) 830,830,831
    831 KK=1
    834 IF(LCW-LCAP(KK))832,832,835
    8 3 2 \text { MAL (KK) =MAL (KK) +1}
    IF (MAL (KK) -LB (KK)) 827,827,833
    833 MAL (KK) =MAL (KK)-1
    8 3 5 K K = K K + 1
        IF(KK-NN) 834,834,811
    840 IF(LR(ISAV)) 829,829,837
    837 IF(LR(ISAV)-LR(K))829,838,829
```



```
        GS TS 831
C
C JOIN NEW STOPS TO CLD_ROUTE
C
    108 IF(LR(JK))67,66,67
    6 6 ~ L R S I = L R ( I K )
        LRSJ=0
        LR(JK)=LR(IK)
        GC TO 110
    67 IF(LR(IK)-LR(JK))68,68,71
    6 8 ~ N A = L R ( J K )
        NC=LR(IK)
        GO TC 72
    71 NA=LR(IK)
        NC=LR(JK)
    72 I=2
        NSAV=LRD(NA)
        LRD (NA) =0
        LHMC=1
114 IF(LR(I)-NA) 73,115,73
    73 I= I +1
        IF(I-M)114,114,110
115 LR(I)=NC
    LRR(I)=1
    GC TO 73
```

```
    109 LRSI =*
    LRSJ=LR(JK)
    LR(IK)=LR(JK)
    110 KCN6=LR(IK)
    I=2
    112 IF(LR(1)-KON6)111,113,111
    111 I=I +1
    IF (I-M)112,112,121
    113 K=LSUM(I)+1
    117 IF(LT(K)-1)119,118,118
    118 LDIS(KON6)=LDIS(KCN6)+LD(K)
    IF(JJ(K)-1)119,270,119
    270 LQ(I)=LZ
    119 K=K+1
        IF(II(K)-1)111,117,111
C
C
121 IF(LDIS(KON6)-MILE(KON5))104,104,510
    510 IF(LHMC)511,160,511
    511 LRD (NA)=NSAV
        I=2
    513 IF(LRR(I)-1)512,514,512
    & 12 I= I +1
        IF(I-M)513,513,165
    514 LR(I)=NA
        LRR(I)=0
C
C
    136 1DB=LSUM(IK)+JK
    130 LS(IDB) =-99999
        IFISENSE SWITCH 1)304,282
    304 IF(LMN-1) 282,281,305
    281 PUNCH }28
    2 8 0 ~ F O R M A T ( 4 3 H M A X . ~ S A V I N G ~ D C E S ~ N C T ~ S A T I S F Y ~ O N E ~ O R ~ M C R E ~ C F , 2 3 H ~ C C N D I T I ! ~
    INS 1 TF REUGH 3/)
        GO TC 282
    305 PUNCH 306
    306 FERMAT(49HMAX. SAVING DCES NCT SATISFY DISTANCE REQUIREMENT/)
    282 IF(KONO-KON2)200,200,135,
C
C
    150 MAL (KON3) =MAL (KON3) +1
        MAL(KCN4)=MAL (K2N4)+1
        MAL (KON5) =MAL(KON5)-1
        GO TO 130
        REINITIALIZATICN IF MILEAGE REQUIREMENT IS NCT MET
    155 KON1-=KCN10-1
```

```
        LR(IK)=0
        LR(JK)=0
        GO TE 165
    160 LR(IK)=LRSI
        LR(JK)=LRSJ
    165 LMN=2
        MAL(KON3)=MAL(KON3)+1
        MAL (KON4) =MAL(KON4)+1
        MAL (KCN5)=MAL(KON5)-1
        LT(IDB)=0
        LT(IDI) =LT(IDI) +1
        LT(IDJ)=LT(IDJ)+1
        DC 310 I=2,M
    310 LQ(I)=LQS(I)
        GC TO }13
C
C CALCULATION OF TOTAL DISTANCE AND FINAL PUNCHOUT
    200 PUNCH }3
    PUNCH }3
    PUT CUSTCMERS SERVED EXCLUSIVELY BY A TRUCK ON NEW ROUTES
    I =2
    201 LA=LSUM( I)+1
    IF(LT(LA)-1) 202,202,203
    202 I=1 +1
    IF(I-M)201,201,204
    203 KON10=KON10+1
    LRD(KON10)=LD(LA)+LD(LA)
    LR(I)=KこN10
    GC TC 202
204 LA=1
    DO 617 I=2,M
    617 LRR(I)=0
    709 I =2
    PUNCH }24
    241 FSRMAT (11) , 16H****************)
    PUNCH 205,LA
    205 FCRMAT(6HRCUTE I2,4X,4HFRCM,7X,2HTC)
    PUNCH }24
    PUNCH }3
    601 IF(LR(I)-LA) 600,603,600
    6 0 0 ~ I = I + 1
    IF(I-M)601,601,602
602 LA=LA+1
    IF(LA-KON10) 209,209,618
603 LF=LSUM (I)+1
    IF(LT(LF)-11600,604,615
604 PUNCH 213,I
213 FERMAT(11X,6HCRIGIN,6X,12)
    LSAV1=1
```

```
    LRR(I)=1
614 I=1
605 I= I +1
    IF(LR(I)-LA) 605,612,605
612 IF(LRR(I) 606,606,605
606 IF(I-LSAV1)613,613,607
607 LF=LSUM(I)+LSAV1
608 IF(LT(LF)-1)605,609,605
*13 LF=LSUM(LSAV1)+1
    GC TE 608
609 PUNCH 61U,LSAV1,I
610 FSRMAT ( }13\textrm{X},12,8\textrm{X},12
    LSAVI=I
    LRR(LSAV1)=1
    LF=LSUM(LSAV1)+1
    IF(LT(LF)-1)614,611,614
6 1 1 ~ P U N C H ~ 2 1 5 , L S A V 1
215 FORMAT(13x,12,6X,6HORIGIN/)
616 PUNCH 219,LRD(LA)
219 FGRMAT(3X,22HDISTANCE FCR RCUTE IS I5,6H MILES/)
    K=1
628 IF(LQ(i)-LCAP(K))625,625,627
625 PUNCH 626,LCAP(K)
626 FORMAT ( }3\textrm{X},46HRRUTE REQUIRES A CARRIER HAVING A CAPACITY OF I5,6H 6,
    INITS///
        GO TO 602
627 K=K+1
    GO T* 628
615 PUNCH 213,1
    PUNCH 215,I
    GO TO 616
618 LTD=0
    DC' 619 I=1,KこN10
619 LTD=LTD+LRD(I)
    PUNCH 620,LTD
620 FORMAT(32HTCTAL DISTANCE FOR ALL RCUTES IS 16,6H MILES///)
    PUNCH 621
621 FORMAT(16HFINAL ALLOCATION/)
    DO 622 1=1,NN
622 PUNCH 15,LCAP(I),MAL(I)
814 PRINT }24
240 FORMAT (38HTC READ ANOTHER SET OF DATA PUSH START)
    PAUSE
    GO TO 300
    END
```


*
 * INPUT DATA FSR SAMPLE PRCBLEM 1 *

130003
1200
1700
1500
1400
1700
1400
1200
1900
1800
1600
1700
1100

2	1	9
3	1	14
3	2	5
4	1	21
4	2	12
4	3	7
5	1	23
5	2	22
5	3	17
5	4	10
6	1	22
6	2	21
6	3	16
6	4	21
6	5	19
7	1	25
7	2	24
7	3	23
7	4	30
7	5	28
7	6	9
8	1	32
8	2	31
8	3	26
8	4	27
8	5	25
8	6	10
8	7	7
9	1	36
9	2	35
9	3	30
9	4	37

9	5	35
9	6	16
9	7	11
9	8	10
10	1	38
10	2	37
10	3	36
10	4	43
10	5	41
10	6	22
10	7	13
10	8	16
10	9	6
11	1	42
11	2	41
11	3	36
11	4	31
11	5	29
11	6	20
11	7	17
11	8	10
11	9	6
11	10	12
12	1	50
12	2	49
12	3	44
12	4	37
12	5	31
12	6	28
12	7	25
12	8	18
12	9	14
12	10	12
12	11	8
13	1	52
13	2	51
13	3	46
13	4	39
13	5	29
13	6	30
13	7	27
13	8	20
13	9	16
13	10	20
13	11	10
13	12	10
99904000999		
3050009999		
4060009999		

INITIAL ALLOCATIEN

CAPACITY $=4000$	NUMBER ALLOCATED $=12$
CAPACITY $=5000$	NUMBER ALLCCATED $=0$
CAPACITY $=6000$	NUMBER ALLCCATED $=0$
CAPACITY $=999999$	NUMBER ALLCCATED $=0$

SAVINGS MATRIX
ROW COL SAVING

2	1	-99999
3	1	-99999
3	2	18
4	1	-99999
4	2	18
4	3	28
5	1	-99999
5	2	10
5	3	20
5	4	34
6	1	-99999
6	2	10
6	3	20
6	4	22
6	5	26
7	1	-99999
7	2	10
7	3	16
7	4	16
7	5	20
7	6	38
8	1	-99999
p	2	10
6	3	20
8	4	26
8	5	30
8	6	44
8	7	50
9	1	-99999
9	2	10
9	3	20
9	4	20
9	5	24

9	6	42
9	7	50
9	8	58
10	1	-99999
10	2	10
10	3	16
10	4	16
10	5	20
10	6	38
10	7	50
10	8	54
10	9	68
11	1	-99999
11	2	10
11	3	20
11	4	32
11	5	36
11	6	44
11	7	50
11	8	64
11	9	72
11	10	68
12	1	-99999
12	2	10
12	3	20
12	4	34
12	5	42
12	6	44
12	7	50
12	8	64
12	9	72
12	10	76
12	11	84
13	1	-99999
13	2	10
13	3	20
13	4	34
13	5	46
13	6	44
13	7	50
13	8	64
13	9	72
13	10	70
13	11	84
13	12	92
1		
1		
12		

```
I = 13 J = 12 MAX. SAVING =

Tt 2, 1) \(=2\)
T( 3, 1) \(=2\)
Ti 4,1\()=2\)
\(T(5,1)=2\)
Ti 6, 1) \(=2\)
Ti 7,1\()=2\)
Ti 8, 1) \(=2\)
Ti 9, 1) \(=2\)
\(T(10,1)=2\)
T( 11, 1) \(=2\)
T( 12,1\()=1\)
\(T(13,1)=1\)
T( 13, 12) \(=1\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(=\) & 2 & 0 & \(=\) & 1200 \\
\hline \(=\) & 3 & 0 & \(=\) & 1700 \\
\hline = & 4 & 0 & \(=\) & 1500 \\
\hline \(1=\) & 5 & 0 & - & 1400 \\
\hline \(1=\) & 6 & 0 & = & 1700 \\
\hline 1 & 7 & Q & \(=\) & 1400 \\
\hline \(\mathrm{I}=\) & 8 & 0 & = & 1200 \\
\hline 1 = & 9 & 0 & = & 1900 \\
\hline \(1=\) & 10 & 0 & = & 1800 \\
\hline I & 11 & 0 & = & 1600 \\
\hline I & 12 & Q & \(=\) & 2800 \\
\hline I & 13 & Q & \(=\) & 2800 \\
\hline
\end{tabular}

CAPACITY \(=4000\) NUMBER ALLCCATED \(=11\)
CAPACITY \(=5000\) NUMBER ALLECATED \(=0\)
CAPACITY \(=6000\) NUMBER ALLCCATED \(=0\)
CAPACITY \(=999999\) NUMBER ALLCCATED \(=0\)
\(I=12 \mathrm{~J}=11 \mathrm{MAX} \cdot\) SAVING \(=84\)
T( 2, 1) \(=2\)
\(T(3,1)=2\)
Ti 4, 1) \(=2\)
\(T(5,1)=2\)
T( 6,1\()=2\)
\(T(7,1)=2\)
\(T(8,1)=2\)
\(T(9,1)=2\)
\(T(10,1)=2\)
T( 11,1\()=1\)
\(T(12,11)=1\)
T( 13,1\()=1\)
\(T(13,12)=1\)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \(=\) & 2 & \(Q=\) & 1200 \\
\hline I & \(=\) & 3 & Q \(=\) & 1700 \\
\hline 1 & = & 4 & \(0=\) & 1500 \\
\hline 1 & \(=\) & 5 & \(Q=\) & 1400 \\
\hline 1 & = & 6 & \(Q=\) & 1700 \\
\hline 1 & = & 7 & \(Q=\) & 1400 \\
\hline 1 & = & 8 & \(Q=\) & 1200 \\
\hline I & \(=\) & 9 & \(Q=\) & 1900 \\
\hline 1 & = & 10 & \(Q=\) & 1800 \\
\hline 1 & \(=\) & 11 & \(Q=\) & 4400 \\
\hline I & \(=\) & 12 & \(Q=\) & 0 \\
\hline I & \(=\) & 13 & \(Q=\) & 4400 \\
\hline
\end{tabular}
CAPACITY \(=4000\)
CAPACITY \(=5000\)
CAPACITY \(=6000\)
NUMBER ALLCCATED \(=\)
NUMBER ALLCCATED \(=1\)
CAPACITY \(=999999\)
NUMBER ALLCCATED \(=0\)
\(I=13 \mathrm{~J}=11 \mathrm{MAX} \cdot\) SAVING \(=84\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITICNS 1 THROUGH 3
\(I=12 \mathrm{~J}=10\) MAX. SAVING \(=16\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=11 J=9 \mathrm{MAX}\), SAVING \(=72\)
MAX. SAVING DCES NCT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(I=12 \mathrm{~J}=9 \mathrm{MAX} \cdot\) SAVING \(=972\)
MAA. SAVING DEES NCT SATISFY ONE OR MORE OF CONDITICNS 1 THREUGH 3
\(I=13 \mathrm{~J}=9 \mathrm{MAX} \cdot \mathrm{SAVING}=72\)
MAX. SAVING DOES NCT SATISFY ONE OR MORE CF CONDITICNS 1 THROUGH 3
\(I=13 \mathrm{~J}=10 \mathrm{MAX} \cdot\) SAVING \(=70\)
MAX. SAVING LOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
```

I=10 J=9 MAX. SAVING =

$T(2$,	$1)=2$
$T(1)$	$=2$
$T(1)$	$1)=2$
$T(1)$	$=2$
$T(1)=2$	
T	6,
T	$1)=2$
$T(1$,	$1)=2$
$T(1$,	$1)=2$
$T(19$,	$1)=1$
$T(10$,	$1)=1$
$T(10$,	$9)=1$
$T(11$,	$1)=1$
$T(12$,	$11)=1$
$T(13$,	$1)=1$
$T(1)$	$=1$

$I=2 Q=1200$
$1=3 \quad Q=1700$
$1=4 \quad 0=1500$
$I=5 \quad Q=1400$
$1=6 Q=1700$
$1=7 \quad Q=1400$
$I=8 \quad Q=1200$
$I=9 \quad Q=3700$
$1=10 Q=3700$
$I=11 Q=4400$
$I=12 Q=0$
$I=13 \quad Q=4400$
CAPACITY $=4000$ NUMBER ALLCCATED $=8$
CAPACITY $=5000$ NUMBER ALLECATED $=1$
CAPACITY $=6000$ NUMBER ALLCCATED $=0$
CAPACITY $=999999$ NUMBER ALLECATED $=0$
$I=11 \mathrm{~J}=10$ MAX. SAVING $=68$
MAX. SAVING DEES NET SATISFY ONE OR MERE OF CSNDITIONS 1 THRCUGH 3

```
I=11 J=8 MAX.SAVING = 64
T( 2, 1) = 2
T( 3, 1) = 2
T( 4, 1) = 2
T( 5, 1) = 2
T( 6, 1)=2
T( 7, 1)=2
T( 8, 1) = 1
T( 9, 1)=1
T( 10, 1) = 1
T( 10, 9) = 1
T(11, 8)=1
T( 12, 11) = 1
T( 13, 1) = 1
T(13, 12)=1
I=2 Q = 1200
I= 3 Q = 1700
I= 4 Q = 1500
I = 5 Q = 1400
I= 6 Q = 1700
1=7 Q = 1400
I= 8 Q = 5600
1=9 Q = 3700
I = 10 Q = 3700
1=11 0 = 0
I=12 Q = 0
I=13 Q = 5600
```

CAPACITY $=4000$ NUMBER ALLECATED $=7$
CAPACITY $=5000$ NUMBER ALLCCATED $=0$
CAPACITY $=6000$ NUMBER ALLECATED $=1$
CAPACITY $=999999$ NUMBER ALLECATED $=0$
$I=12 \mathrm{~J}=8 \mathrm{MAX} \cdot$ SAVING $=64$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=13 \mathrm{~J}=8 \mathrm{MAX} \cdot$ SAVING $=64$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=9 \mathrm{~J}=8 \mathrm{MAX} \cdot$ SAVING $=58$
MAX. SAVING DOES NOT SATISFY ONE OR MERE OF CONDITIONS 1 THROUGH 3
$1=10 \mathrm{~J}=8 \mathrm{MAX} \cdot$ SAVING $=54$
MAX. SAVING DOES NOT SATISFY INE OR MORE OF CONDITIONS 1 THREUGH 3
$I=8 \mathrm{~J}=7 \mathrm{MAX} \cdot$ SAVING $=50$
Mf.X. SAVING DOES NOT SATISFY ONE OR MERE OF CONDITIONS 1 THROUGH 3
$I=9 \mathrm{~J}=7 \mathrm{MAX} \cdot \operatorname{SAVING}=50$
Ti 2, 1) $=2$
Ti 3,1$)=2$
T(4,1$)=2$
$T(5,1)=2$
T(6,1$)=2$
T(7,1$)=1$
$T(8,1)=1$
T(9, 7) $=1$
$T(10,1)=1$
$T(10,9)=1$
$T(11,8)=1$
$\mathrm{T}(12,11)=1$
T(13,1$)=1$
$T(13,12)=1$

=	2	0	$=$	1200
$1=$	3	0	$=$	1700
$1=$	4	Q	$=$	1500
$=$	5	Q	=	1400
$1=$	6	Q	$=$	1700
$1=$	7	Q	=	5100
1 =	8	Q	=	5600
$1=$	9	Q	$=$	0
1	10	Q	$=$	5100
1	11	0	$=$	0
1	12	Q	=	0
$1=$	13			00

CAPACITY $=4000$ NUMBER ALLCCATED $=5$
CAPACITY $=5000$ NUMBER ALLCCATED $=0$
CAPACITY $=6000$ NUMBER ALLOCATED $=2$
CAPACITY $=999999$ NUMBER ALLCCATED $=0$
$I=10 \mathrm{~J}=7 \mathrm{MAX} \cdot$ SAVING $=50$
MAX. SAVING DOES NOT SATISFY ONE OR MERE OF CONDITIONS 1 THROUGH 3

```
I=11 J=7 MAX.SAVING = 50
```

MAX. SAVING DOES NOT SATISFY こNE こR MORE OF CONDITIONS 1 THROUGH 3
$1=12 \mathrm{~J}=7 \mathrm{MAX} \cdot \mathrm{SAVING}=50$
MAY. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
$I=13 \mathrm{~J}=7 \mathrm{MAX} \cdot$ SAVING $=50$
MAX. SAVING DOES NOT SATISFY INE OR MORE OF CONDITIONS 1 THRCUGH 3
$I=13 \mathrm{~J}=5 \mathrm{MAX} \cdot$ SAVING $=46$
M\&X. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITICNS 1 THROUGH 3
$1=8 \mathrm{~J}=6 \mathrm{MAX} \cdot$ SAVING $=44$
MAX. SAVING DCES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THRCUGH 3
$I=11 \mathrm{~J}=6$ MAX. SAVING $=44$
MAX. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$1=12 \mathrm{~J}=6 \mathrm{MAX} \cdot$ SAVING $=44$
MAX. SAVING DCES NOT SATISFY こNE AR MORE OF CONDITIONS 1 THROUGH 3
$I=13 \mathrm{~J}=6 \mathrm{MAX} \cdot$ SAVING $=44$
MAX. SAVING DOES NOT SATISFY こNE GR MORE OF CCNDITICNS 1 THROUGH 3
$1=9 \mathrm{~J}=6 \mathrm{MAX} \cdot$ SAVING $=42$
MAX. SAVING DOES NこT SATISFY ONE OR MORE CF CONDITIONS 1 THROUGH 3

```
I= 12 J = 5 MAX.SAVING = 42
```

MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=7 \mathrm{~J}=6 \mathrm{MAX} \cdot$ SAVING $=38$
MAX. SAVING DOES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3
$I=10 \mathrm{~J}=6 \mathrm{MAX} \cdot$ SAVING $=38$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$1=11 \mathrm{~J}=5 \mathrm{MAX} \cdot \mathrm{SAVING}=36$
MAY. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=5 \mathrm{~J}=4 \mathrm{MAX} \cdot$ SAVING $=34$
$T(2,1)=2$
Ti 3, 1) $=2$
T(4,1$)=1$
Ti $5,11=1$
Ti $5,41=1$
Ti 6, 1) $=2$
$T(7,1)=1$
$T(8,1)=1$
$T(9,7)=1$
$T(10,1)=1$
$T(10,9)=1$
$T(11,8)=1$
$T(12,11)=1$
$T(13,1)=1$
$T(13,12)=1$
$I=20=1200$
$I=3 \quad 0=1700$
$I=4 Q=2900$
$I=50=2900$
$1=60=1700$
$I=70=5100$
$I=8 \quad Q=5600$
$1=9 \quad 0=0$
$1=10 Q=5100$
$I=11 \quad 0=0$
$I=12 Q=0$
$I=130=5600$

```
CAPACITY = 4000 NUMBER ALLCCATED = 4
CAPACITY = 5000 NUMBER ALLCCATED = 0
CAPACITY =6000 NUMBER ALLSCATED = 2
CAPACITY =999999 NUMBER ALLOCATED = 0
```

$I=12 \mathrm{~J}=4 \mathrm{MAX} \cdot$ SAVING $=34$
MAX. SAVING DCES NOT SATISFY ONE OR MCRE OF CONDITICNS 1 THROUGH 3
$I=13 \mathrm{~J}=4 \mathrm{MAX}$. SAVING $=34$
MAX. SAVING DOES NOT SATISFY ONE OR MERE OF CONDITIONS 1 THROUGH 3
$I=11 \mathrm{~J}=4 \mathrm{MAX} \cdot \mathrm{SAVING}=32$
MAX. SAVING DOES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3
$I=8 \mathrm{~J}=5 \mathrm{MAX} \cdot$ SAVING $=30$
MAX. SAVING DOES NCT SATISFY ONE OR MCRE OF CONDITICNS 1 THROUGH 3
$I=4 J=3$ MAX.SAVING $=28$
Ti 2, 1) $=2$
Ti 3,1$)=1$
$T(4,3)=1$
$T(5,1)=1$
Ti 5,4) $=1$
Ti 6, 1) $=2$
Ti 7, 1) $=1$
Ti 8,1$)=1$
Ti 9, 7) $=1$
Ti 10,1$)=1$
$T(10,9)=1$
$T(11,8)=1$
$T(12,11)=1$
T(13,1$)=1$
$T(13,12)=1$

$I=2$	$0=1200$	
$I=3$	$Q=4600$	
$I=4$	$Q=0$	
$I=5$	$Q=4600$	
$1=6$	$Q=1700$	
$1=7$	$Q=5100$	
$1=8$	$Q=5600$	
$1=9$	$0=0$	
$I=10$	$Q=5100$	
$I=11$	$Q=0$	
$I=12$	$Q=0$	
$1=13$	$Q=5600$	
CAPACITY	$=4000$	NUMBER ALLCCATED $=$
CAPACITY	$=5000$	NUMBER ALLSCATED $=$
CAPACITY	$=6000$	NUMBER ALLCCATED $=$
CAPACITY	$=999999$	NUMBER ALLSCATED $=$

$I=6 \mathrm{~J}=5 \mathrm{MAX} \cdot \mathrm{SAVING}=26$
MAX. SAVING DOES NOT SATISFY ENE OR MERE CF CONDITICNS 1 THRCUGH 3
$I=8 \mathrm{~J}=4 \mathrm{MAX} \cdot$ SAVING $=46$

MAX. SAVING DOES NOT SATISFY CNE OR MCRE OF CONDITIONS 1 THROUGH 3
$I=9 \mathrm{~J}=5 \mathrm{MAX} \cdot \mathrm{SAVING}=24$

MAX. SAVING DEES NOT SATISFY CNE OR MCRE OF CONDITIONS 1 THRCUGH 3
$I=6 \mathrm{~J}=4 \mathrm{MAX}$. SAVING $=42$

MAX. SAVING DCES NOT SATISFY CNE CR MCRE CF CONDITICNS 1 THROUGH 3
$I=5 \mathrm{~J}=3 \mathrm{MAX}$. SAVING $=30$

MAN. SAVING DCES NOT SATISFY ENE OR MCRE OF CONDITICNS 1 THROUGH 3
$I=6 \mathrm{~J}=3 \mathrm{MAX}$. SAVING $=30$

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
$I=7 \mathrm{~J}=5 \mathrm{MAX} \cdot$ SAVING $=20$
MAX. SAVING DOES NOT SATISFY ONE GR MORE OF CONDITIONS 1 THROUGH 3
$I=8 \mathrm{~J}=3 \mathrm{MAX} \cdot$ SAVING $=20$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=9 \mathrm{~J}=3 \mathrm{MAX}$. SAVING $=20$
MAX. SAVING DOES NOT SATISFY INE OR MORE OF CONDITIONS 1 THROUGH 3
$I=9 \mathrm{~J}=4 \mathrm{MAX} \cdot$ SAVING $=20$
MAX. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=10 \mathrm{~J}=5 \mathrm{MAX}$. SAVING $=20$
MAX. SAVING DOES NOT SATISFY INE GR MERE OF CONDITIONS 1 THRCUGH 3
$I=11 \mathrm{~J}=3 \mathrm{MAX}$. SAVING $=20$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=12 \mathrm{~J}=3 \mathrm{MAX}$. SAVING $=20$
MAX. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
$1=13 \mathrm{~J}=3 \mathrm{MAX} \cdot$ SAVING $=20$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=3 \mathrm{~J}=2 \mathrm{MAX} \cdot \mathrm{SAVING}=18$

Ti	2.	1)	$=1$
Ti	3.	2)	1
Ti	4.	3)	$=1$
Ti	5.	1)	- 1
Ti	5.	4)	$=1$
T1	6 ,	1)	2
T1	7.	1)	$=1$
Ti	8.	1)	1
T1	9.	7)	$=1$
Ti	10,	1)	1
Ti	10,	9)	$=$
T1	11.	8)	1
Tt	12.	11)	1
Tt	13,	1)	1
Tt	13.	12)	,

CAPACITY $=4000$ NUMBER ALLOCATED $=1$
CAPACITY $=5000$ NUMBER ALLOCATED $=0$
CAPACITY $=6000$ NUMBER ALLCCATED $=3$
CAPACITY $=999999$ NUMBER ALLOCATED $=0$
$I=4 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=18$
MAX. SAVING DCES NOT SATISFY CNE OR MORE OF CONDITIONS 1 THROUGH 3
$I=7 \mathrm{~J}=3 \mathrm{MAX}$. SAVING $=16$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=7 \mathrm{~J}=4 \mathrm{MAX} \cdot$ SAVING $=16$
MAX. SAVING DOES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3
$1=10 \mathrm{~J}=3 \mathrm{MAX} \cdot$ SAVING $=16$
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
$I=10 \mathrm{~J}=4 \mathrm{MAX} \cdot$ SAVING $=16$
MAX. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
$I=5 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DOES NOT SATISFY ONE GR MCRE OF CONDITIONS 1 THROUGH 3
$I=6 \mathrm{~J}=2 \mathrm{MAX} \cdot \mathrm{SAVING}=10$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=7 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=8 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=9 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DCES NOT SATISFY ONE OR MCRE OF CONDITIONS I THROUGH 3
$I=10 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$1=11 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

```
I = 12 J = 2 MAX.SAVING = 10
```

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
$I=13 \mathrm{~J}=2 \mathrm{MAX} \cdot$ SAVING $=10$
MAX. SAVING DOES NOT SATISFY ONE AR MCRE OF CONDITIONS 1 THRCUGH 3

REUTE		****************	
	1	FRCM	TC

		CRIGIN	8
		8	11
		11	12
		12	13
		13	ORIGIN

DISTANCE FIR RCUTE IS 112 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

ROUTE 2
FROM
TO

ORIGIN	7
7	9
9	10
10	ORIGIN

DISTANCE FOR ROUTE IS 80 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

```
RCUTE 3 FRCM
            FRCM TO
            ***************
        ORIGIN 2
            2
                            3
            3 4
            4 5
            5 ORIGIN
    DISTANCE FOR ROUTE IS 54 MILES
    ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS
ROUTE 4 FRCM TO
    CRIGIN 6
        6 ORIGIN
    DISTANCE FOR ROUTE IS 44 MILES
    RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 4000 UNITS
TOTAL DISTANCE FOR ALL ROUTES IS 290 MILES
FinAL ALLECATION
CAPACITY = 4000 NUMBER ALLOCATED = 1
CAPACITY =5000 NUMBER ALLOCATED =0
CAPACITY =6000 NUMBER ALLCCATED = 3
```


130004		
1200		
1700		
1500		
1400		
1700		
1400		
1200		
1900		
1800		
1600		
1700		
1100		
2	1	9
3	1	14
3	2	5
4	1	21
4	2	12
4	3	7
5	1	23
5	2	22
5	3	17
5	4	10
6	1	22
6	2	21
6	3	16
6	4	21
6	5	19
7	1	25
7	2	24
7	3	23
7	4	30
7	5	28
7	6	9
8	1	32
8	2	31
8	3	26
8	4	27
8	5	25
8	6	10
8	7	7
9	1	36
9	2	35
9	3	30
9	4	37

9	5	35
9	6	16
9	7	11
9	8	10
10	1	38
10	2	37
10	3	36
10	4	43
10	5	41
10	6	22
10	7	13
10	8	16
10	9	6
11	1	42
11	2	41
11	3	36
11	4	31
11	5	29
11	6	20
11	7	17
11	8	10
11	9	6
11	10	12
12	1	50
12	2	49
12	3	44
12	4	37
12	5	31
12	6	28
12	7	25
12	8	18
12	9	14
12	10	12
12	11	8
13	1	52
13	2	51
13	3	46
13	4	39
13	5	29
13	6	30
13	7	27
13	8	20
13	9	16
13	10	20
13	11	10
13	12	10
99901900104		
2040000104		
3050000104		
4060000104		
10		

IMITIAL ALLOCATION
CAPACITY $=1900$ NUMBER ALLOCATED $=12$
CAPACITY $=4000$
CAPACITY $=5000$
CAPACITY $=6000$
CAPACITY $=999999$
NUMBER ALLOCATED $=0$
NUMBER ALLOCATED $=0$
NUMBER ALLOCATED $=0$
NUMBER ALLOCATED $=0$

SAVINGS MATRIX
ROW CCL SAVING

2	1	-99999
3	1	-99999
3	2	18
4	1	-99999
4	2	18
4	3	28
5	1	-99999
5	2	10
5	3	20
5	4	34
6	1	-99999
6	2	10
6	3	20
6	4	22
6	5	26
7	1	-99999
7	2	10
7	3	16
7	4	16
7	5	20
7	6	38
8	1	-99999
8	2	10
8	3	20
8	4	26
8	5	30
8	6	44
8	7	50
9	1	-99999
9	2	10
9	3	20
9	4	20

```
\begin{tabular}{rrr}
9 & 5 & 24 \\
9 & 6 & 42 \\
9 & 7 & 50 \\
9 & 8 & 58 \\
10 & 1 & -99999 \\
10 & 2 & 10 \\
10 & 3 & 16 \\
10 & 4 & 16 \\
10 & 5 & 20 \\
16 & 6 & 38 \\
10 & 7 & 50 \\
10 & 8 & 54 \\
10 & 9 & 68 \\
11 & 1 & -99999 \\
11 & 2 & 10 \\
11 & 3 & 20 \\
11 & 4 & 32 \\
11 & 5 & 36 \\
11 & 6 & 44 \\
11 & 7 & 50 \\
11 & 8 & 64 \\
11 & 9 & 72 \\
11 & 10 & 68 \\
12 & 1 & -99999 \\
12 & 2 & 10 \\
12 & 3 & 20 \\
12 & 4 & 34 \\
12 & 5 & 42 \\
12 & 6 & 44 \\
12 & 7 & 50 \\
12 & 8 & 64 \\
12 & 9 & 72 \\
12 & 10 & 76 \\
12 & 11 & 84 \\
13 & 1 & -99999 \\
13 & 2 & 10 \\
13 & 3 & 20 \\
13 & 4 & 34 \\
13 & 5 & 46 \\
13 & 6 & 44 \\
13 & 7 & 50 \\
13 & 8 & 64 \\
13 & 9 & 72 \\
13 & 10 & 70 \\
13 & 11 & 84 \\
13 & 12 & 92 \\
& &
\end{tabular}
\(I=13 \mathrm{~J}=12 \mathrm{MAX}\). SAVING \(=92\)
MAX. SAVING DOES NOT SATISFY DISTANCE REQUIREMENT
```

```
I = 12 J=11 MAX. SAVING =
\begin{tabular}{|c|c|c|c|}
\hline T 1 & 2, & 1) & \(=2\) \\
\hline T 1 & 3 , & 1) & 2 \\
\hline T1 & 4, & 1) & \(=2\) \\
\hline T 1 & 5 , & 1) & \\
\hline T 1 & 6 , & 1) & \(=2\) \\
\hline T 1 & 7. & 1) & \\
\hline T 1 & 8, & 1) & \(=2\) \\
\hline Tt & 9, & 1) & \(=2\) \\
\hline Ti & 10. & 1) & \(=2\) \\
\hline \(T\) & 11. & 1) & \(=1\) \\
\hline Tt & 12, & \(1)\) & \(=\) \\
\hline Tt & 12, & 11) & \(=1\) \\
\hline & 13. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(1=\) & 2 & 0 & \(=\) & 1200 \\
\hline \(1=\) & 3 & Q & = & 1700 \\
\hline \(1=\) & 4 & Q & \(=\) & 1500 \\
\hline \(=\) & 5 & Q & \(=\) & 1400 \\
\hline \(1=\) & 6 & 0 & = & 1700 \\
\hline = & 7 & Q & \(=\) & 1400 \\
\hline 1 & 8 & Q & = & 1200 \\
\hline \(1=\) & 9 & Q & \(=\) & 1900 \\
\hline 1 & 10 & Q & \(=\) & 1800 \\
\hline 1 & 11 & Q & \(=\) & 3300 \\
\hline I & 12 & Q & \(=\) & 3300 \\
\hline \(1=\) & 13 & Q & \(=\) & 1100 \\
\hline
\end{tabular}
```

CAPACITY = 1900 NUMBER ALLCCATED = 10
CAPACITY = 4000 NUMBER ALLECATED = 1
CAPACITY = 5000 NUMBER ALLCCATED =0
Cf,PACITY = 6000 NUMBER ALLCCATED = 0
CAPACITY =9!9999 NUMBER ALLCCATED = 0

```
\(I=13 \mathrm{~J}=11 \mathrm{MAX} \cdot\) SAVING \(=84\)
MAX. SAVING DEES NOT SATISFY DISTANCE REQUIREMENT
\(I=12 \mathrm{~J}=10 \mathrm{MAX} \cdot\) SAVING \(=76\)
Ti 2, 1) \(=2\)
T( 3, 1) \(=2\)
Te 4, 1) \(=2\)
T( 5,1\()=2\)
T( 6,1\()=2\)
T( 7, 1) \(=2\)
T( 8, 1\()=2\)
T( 9,1\()=2\)
T( 10,1\()=1\)
T( 11, 1\()=1\)
\(T(12,10)=1\)
Ti 12, 11) \(=1\)
\(T(13,1)=2\)


CAPACITY \(=1900\) NUMBER ALLSCATED \(=9\)
CAPACITY \(=4000\) NUMBER ALLCCATED \(=0\)
CAPACITY \(=5000\) NUMBER ALLCCATED \(=0\)
CAPACITY \(=6000\) NUMBER ALLCCATED \(=1\)
CAIACITY \(=999999\) NUMBER ALLCCATED \(=0\)
\(I=11 \mathrm{~J}=9 \mathrm{MAX} \cdot\) SAVING \(=72\)
MAX. SAVING DCES NこT SATISFY ONE OR MORE OF CCNDITIONS 1 THROUGH 3
\(I=12 \mathrm{~J}=9 \mathrm{MAX} \cdot\) SAVING \(=72\)
Mf:X. SAVING DCES NこT SATISFY ONE GR MERE OF CONDITIONS 1 THRCUGH 3
```

I =13 J=9 MAX. SAVING =72

```
\begin{tabular}{|c|c|c|c|}
\hline Ti & 2. & 1) & \(=\) \\
\hline Ti & 3. & 1) & \(=2\) \\
\hline Ti & 4. & 1) & \(=2\) \\
\hline Ti & 5. & 1) & \(=2\) \\
\hline T 1 & 6 , & 1) & 2 \\
\hline Ti & 7. & 1) & 2 \\
\hline Ti & 8. & 1) & 2 \\
\hline Ti & 9, & \(1)\) & \\
\hline Ti & 10, & 1) & 1 \\
\hline Tt & 11. & 1) & 1 \\
\hline Tt & 12. & 10) & 1 \\
\hline Tt & 12. & 11) & 1 \\
\hline Ti & 13. & \(1)\) & 1 \\
\hline Ti & 13. & 9) & \(=1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & = & 2 & Q & = & 1200 \\
\hline I & = & 3 & Q & = & 1700 \\
\hline 1 & \(=\) & 4 & Q & = & 1500 \\
\hline I & \(=\) & 5 & Q & = & 1400 \\
\hline 1 & \(=\) & 6 & Q & \(=\) & 1700 \\
\hline 1 & = & 7 & Q & \(=\) & 1400 \\
\hline I & = & 8 & Q & \(=\) & 1200 \\
\hline 1 & \(=\) & 9 & Q & \(=\) & 3000 \\
\hline 1 & \(=\) & 10 & Q & \(=\) & 5100 \\
\hline 1 & \(=\) & 11 & Q & \(=\) & 5100 \\
\hline I & \(=\) & 12 & Q & \(=\) & 0 \\
\hline & & 13 & & & 3000 \\
\hline
\end{tabular}
CAPACITY \(=1900\) NUMBER ALLOCATED \(=7\)
CAPACITY \(=4000\) NUMBER ALLOCATED \(=1\)
CAPACITY \(=5000\) NUMBER ALL气CATED \(=1\)
CAPACITY \(=6000\) NUMBER ALLOCATED \(=1\)
CAPACITY \(=999999\) NUMBER ALLCCATED \(=0\)
\(I=13 \mathrm{~J}=10 \mathrm{MAX} \cdot\) SAVING \(=70\)
MAX. SAVING DCES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=10 \mathrm{~J}=9\) MAX. SAVING \(=68\)
MAX. SAVING DOES NOT SATISFY ONE CR MCRE OF CONDITIONS 1 THRCUGH 3
\(I=11 \mathrm{~J}=10\) MAX. SAVING \(=68\)
MAX. SAVING DEES NOT SATISFY SNE GR MCRE OF CONDITIONS 1 THRCUGH 3
\(I=11 \mathrm{~J}=8 \mathrm{MAX} \cdot\) SAVING \(=64\) MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(1=12 \mathrm{~J}=8 \mathrm{MAX} \cdot\) SAVING \(=64\)
MAX. SAVING DCES NCT SATISFY ONE OR MCRE OF CCNDITICNS 1 THROUGH 3
\(1=13 \mathrm{~J}=8 \mathrm{MAX} \cdot\) SAVING \(=64\)
\begin{tabular}{|c|c|c|c|}
\hline Ti & 2 , & 1) & 2 \\
\hline T 1 & 3 , & 1) & 2 \\
\hline Ti & 4 , & 1) & 2 \\
\hline Ti & 5 , & 1) & \\
\hline Ti & 6 , & 1) & 2 \\
\hline T 1 & 7 , & 1) & 2 \\
\hline Ti & 8 , & 1) & \\
\hline T 1 & 9, & 1) & 1 \\
\hline TI & 10, & 1) & \(=1\) \\
\hline Tt & 11. & 1) & \(=1\) \\
\hline Ti & 12, & 10) & 1 \\
\hline T 1 & 12, & 11) & 1 \\
\hline T 1 & 13, & 8) & 1 \\
\hline Ti & 13, & 9) & \\
\hline
\end{tabular}

\begin{tabular}{rl} 
CAPACITY \(=1900\) & NUMBER ALLCCATED \(=6\) \\
CAPACITY \(=4000\) & NUMBER ALLCCATED \(=1\) \\
CAPACITY \(=5000\) & NUMBER ALLCCATED \(=1\) \\
CAPACITY \(=9000\) & NUMBER ALLCCATED \(=1\) \\
CAPACITY \(=999999\) & NUMBER ALLCCATED \(=0\)
\end{tabular}
\(I=9 \mathrm{~J}=8 \mathrm{MAX} \cdot\) SAVING \(=58\)
MAX. SAVING DCES NOT SATISFY ONE OR MCRE OF CCNDITIONS 1 THRCUGH 3
\(1=10 \mathrm{~J}=8 \mathrm{MAX}\). SAVING \(=54\)
MEX. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(I=8 \mathrm{~J}=7 \mathrm{MAX} \cdot \operatorname{SAVING}=50\)
\begin{tabular}{|c|c|c|c|}
\hline T 1 & 2, & 1) & \(=2\) \\
\hline T 1 & 3 , & 1) & 2 \\
\hline Ti & 4. & 1) & 2 \\
\hline Ti & 5. & 1) & 2 \\
\hline Ti & 6 , & 1) & 2 \\
\hline Ti & 7. & 1) & 1 \\
\hline TI & 8 , & 7) & 1 \\
\hline TI & 9, & 1) & I \\
\hline TI & 10, & 1) & 1 \\
\hline Tt & 11. & 1) & 1 \\
\hline Ti & 12. & 10) & 1 \\
\hline Ti & 12, & 11) & 1 \\
\hline Ti & 13. & \(8)\) & 1 \\
\hline Ti & 13, & 9) & \(=1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \(=\) & 2 & 0 & \(=\) & 1200 \\
\hline 1 & = & 3 & Q & = & 1700 \\
\hline 1 & \(=\) & 4 & 0 & \(=\) & 1500 \\
\hline 1 & = & 5 & Q & = & 1400 \\
\hline 1 & = & 6 & 0 & \(=\) & 1700 \\
\hline 1 & \(=\) & 7 & Q & \(=\) & 5600 \\
\hline 1 & \(=\) & 8 & Q & \(=\) & 0 \\
\hline 1 & \(=\) & 9 & Q & \(=\) & 5600 \\
\hline 1 & \(=\) & 10 & 0 & \(=\) & 5100 \\
\hline 1 & = & 11 & Q & = & 5100 \\
\hline 1 & \(=\) & 12 & Q & \(=\) & 0 \\
\hline 1 & \(=\) & 13 & Q & & 0 \\
\hline
\end{tabular}
CAPACITY \(=1900\) NUMBER ALLCCATED \(=5\)
CAPACITY \(=4000\) NUMBER ALLCCATED \(=0\)
CAPACITY \(=5000\) NUMBER ALLCCATED \(=0\)
CAPACITY \(=6000\) NUMBER ALLCCATED \(=2\)
CAPACITY \(=999999\) NUMBER ALLCCATED \(=0\)
\(I=9 \mathrm{~J}=7 \mathrm{MAX} \cdot\) SAVING \(=50\)
MAX. SAVING DCES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THRCUGH 3
\(1=10 \mathrm{~J}=7 \mathrm{MAX}\). SAVING \(=50\)
MAX. SAVING DOES NCT SAT ISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(1=11 \mathrm{~J}=7 \mathrm{MAX}\). SAVING \(=50\) MAX. SAVING DOES NOT SATISFY ENE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=12 \mathrm{~J}=7 \mathrm{MAX} \cdot\) SAVING \(=50\) MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=13 \mathrm{~J}=7 \mathrm{MAX} \cdot\) SAVING \(=50\)
MAX. SAVING DCES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(1=13 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=46\)
MAX. SAVING DCES NOT SATISFY ENE OR MORE OF CONDITICNS 1 THROUGH 3
\(I=8 \mathrm{~J}=6 \mathrm{MAX} \cdot\) SAVING \(=44\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=11 \mathrm{~J}=6 \mathrm{MAX}\). SAVING \(=44\) MAX. SAVING DOES NCT SATISFY ONE OR MCRE OF CONDITIONS 1 THRCUGH 3
\(I=12 \mathrm{~J}=6 \mathrm{MAX}\). SAVING \(=44\) MAX. SAVING DOES NOT SATISFY INE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=13 \mathrm{~J}=6 \mathrm{MAX}\). SAVING \(=44\) MAX. SAVING DEES NET SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=9 \mathrm{~J}=6 \mathrm{MAX}\). SAVING \(=42\)
MAX. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(I=12 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=42\)
MAX. SAVING DOES NOT SATISFY ONE GR MCRE OF CONDITICNS 1 THROUGH 3
\(\mathrm{I}=7 \mathrm{~J}=6 \mathrm{MAX} \cdot\) SAVING \(=38\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=1 U J=6\) MAX \(\cdot\) SAVING \(=38\)
MAY. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=11 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=36\)
MAX. SAVING DOES NOT SATISFY ONE ©R MCRE OF CONDITICNS 1 THROUGH 3
\(I=5 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=34\)
\begin{tabular}{|c|c|c|c|}
\hline T 1 & 2, & \(1)\) & \(=2\) \\
\hline Tf & 3 , & \(1)\) & 2 \\
\hline Tt & 4, & 1) & 1 \\
\hline Ti & 5, & 1) & 1 \\
\hline Tif & 5, & 4) & 1 \\
\hline T 1 & 6 , & 1) & 2 \\
\hline T 1 & 7 , & 1) & 1 \\
\hline Ti & 8, & 7) & 1 \\
\hline T 1 & 9, & 1) & 1 \\
\hline T1 & 10, & \(1)\) & 1 \\
\hline Ti & 11, & 1) & 1 \\
\hline Tt & 12. & 10) & 1 \\
\hline Ti & 12, & 11) & 1 \\
\hline Tt & 13, & 8) & 1 \\
\hline T 6 & 13, & 9) & \(=1\) \\
\hline
\end{tabular}
\(I=2 Q=1200\)
\(I=3 \quad Q=1700\)
\(I=4 Q=2900\)
\(I=5 \quad Q=2900\)
\(I=6 \quad Q=1700\)
\(I=7 \quad Q=5600\)
\(I=80=0\)
\(I=9 Q=5600\)
\(I=10 Q=5100\)
\(t=11 \quad 0=5100\)
\(I=120=0\)
\(I=130=0\)
```

CAPACITY = 1900 NUMBER ALLOCATED = 3
CAPACITY = 4000 NUMBER ALLSCATED = 1
CAPACITY = 5000 NUMBER ALLCCATED = 0
CAPACITY =6000 NUMBER ALLOCATED = 2
CAPACITY =999999 NUMBER ALLCCATED =0

```
\(I=12 \mathrm{~J}=4 \mathrm{MAX}\). SAVING \(=34\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=13 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=34\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS I THROUGH 3
\(I=11 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=32\)
MAX. SAVING DCES NOT SATISFY ONE ©R MORE CF CONDITIONS I THROUGH 3
\(I=8 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=30\)
MAג. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=4 \mathrm{~J}=3 \mathrm{MAX} \cdot\) SAVING \(=28\)
Ti 2, 1) \(=2\)
Ti 3, 1) \(=1\)
Tt 4,3\()=1\)
Tt 5,1\()=1\)
Ti 5,4\()=1\)
Ti 6,1\()=2\)
Tt 7, 1) \(=1\)
Ti \(8,71=1\)
Ti \(9,11=1\)
Ti 10,1\()=1\)
Tt 11, \(11=1\)
\(T(12,10)=1\)
T(12, 11) \(=1\)
T( 13, 8) \(=1\)
Tt 13, 9) \(=1\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(I=2\) & \(Q=1200\) & & & \\
\hline \(I=3\) & \(Q=4600\) & & & \\
\hline \(I=4\) & \(Q=0\) & & & \\
\hline \(I=5\) & \(Q=4600\) & & & \\
\hline \(I=6\) & \(Q=1700\) & & & \\
\hline \(I=7\) & \(Q=5600\) & & & \\
\hline \(I=8\) & \(Q=0\) & & & \\
\hline \(1=9\) & \(Q=5600\) & & & \\
\hline \(I=10\) & \(Q=5100\) & & & \\
\hline \(I=11\) & \(Q=5100\) & & & \\
\hline \(1=12\) & \(Q=0\) & & & \\
\hline \(I=13\) & \(Q=0\) & & & \\
\hline CAPACITY & \(=1900\) & NUMBER & ALLOCATED = & 2 \\
\hline CAPACITY & \(=4000\) & NUMBER & ALLこCATED = & 0 \\
\hline CAPACITY & \(=5000\) & NUMBER & ALLOCATED = & 1 \\
\hline CAPACITY & \(=6000\) & NUMBER & ALLOCATED \(=\) & 2 \\
\hline CAPACITY & \(=999999\) & NUMBER & ALLSCATED = & 0 \\
\hline
\end{tabular}
\(I=6 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=56\)
MAX. SAVING DOES NOT SATISFY ONE OR MERE OF CONDITIONS 1 THRCUGH 3
\(I=8 \mathrm{~J}=4 \mathrm{MAX}\).SAVING \(=46\)
MAX. SAVING DEES NOT SATISFY ONE OR MORE SF CONDITIONS 1 THRCUGH 3
\(I=9 \mathrm{~J}=5 \mathrm{MAX}\). SAVING \(=24\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=6 \mathrm{~J}=4 \mathrm{MAX}\).SAVING \(=42\)
MAX. SAVING DEES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=5 \mathrm{~J}=3 \mathrm{MAX}\).SAVING \(=30\)
MAX. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIENS 1 THRCUGH 3
\(I=6 \mathrm{~J} \quad 3 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=7 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=8 \mathrm{~J}=3 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE GF CONDITIONS 1 THROUGH 3
\(I=9 \mathrm{~J}=3 \mathrm{MAX}\). SAVING \(=20\)
MAX. SAVING DCES NOT SATISFY ONE GR MORE OF CONDITIONS 1 THRCUGH 3
\(I=9 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=10 \mathrm{~J}=5 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=11 \mathrm{~J}=3 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=12 \mathrm{~J}=3 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=13 \mathrm{~J}=3 \mathrm{MAX} \cdot\) SAVING \(=20\)
MAY. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(1=3 J=2\) MAX \(\cdot\) SAVING \(=18\)
\begin{tabular}{|c|c|c|c|}
\hline Tt & 2, & 1) & \(=1\) \\
\hline T 1 & 3 , & 21 & \(=1\) \\
\hline Ti & 4. & 3) & \(=1\) \\
\hline T 1 & 5. & 1) & \(=1\) \\
\hline T 1 & 5. & 4) & \(=1\) \\
\hline T 1 & 6. & 1) & \(=2\) \\
\hline T1 & 7. & 1) & \(=1\) \\
\hline T 1 & 8 , & 7) & \(=1\) \\
\hline T1 & 9 , & \(1)\) & \(=1\) \\
\hline T 1 & 10, & \(1)\) & \(=1\) \\
\hline Tt & 11. & 1) & \(=1\) \\
\hline T 1 & 12, & 10) & \(=1\) \\
\hline Tit & 12, & 11) & \(=1\) \\
\hline T 1 & 13, & B) & \(=1\) \\
\hline 1 & 13. & 9) & \(=1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \(=\) & 2 & Q & & 5800 \\
\hline 1 & \(=\) & 3 & Q & \(=\) & 0 \\
\hline 1 & \(=\) & 4 & Q & \(=\) & 0 \\
\hline 1 & \(=\) & 5 & Q & \(=\) & 5800 \\
\hline 1 & \(=\) & 6 & 0 & \(=\) & 1700 \\
\hline 1 & \(=\) & 7 & Q & = & 5600 \\
\hline 1 & \(=\) & 8 & 0 & \(=\) & 0 \\
\hline 1 & \(=\) & 9 & 0 & \(=\) & 5600 \\
\hline 1 & = & 10 & 0 & \(=\) & 5100 \\
\hline 1 & \(=\) & 11 & 0 & \(=\) & 5100 \\
\hline 1 & = & 12 & Q & = & 0 \\
\hline 1 & \(=\) & 13 & Q & = & 0 \\
\hline
\end{tabular}
CAPACITY \(=1900\) NUMBER ALLOCATED \(=1\)
CAPACITY \(=4000\) NUMBER ALLCCATED \(=0\)
CAPACITY \(=5000\) NUMBER ALLOCATED \(=0\)
CAPACITY \(=6000\) NUMBER ALLCCATED \(=3\)
CAPACITY \(=999999\) NUMBER ALLCCATED \(=0\)
\(I=4 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=18\)
MAX. SAVING DCES NCT SATISFY ONE OR MORE OF CONDITICNS 1 THROUGH 3
\(I=7 \mathrm{~J}=3 \mathrm{MAX} \cdot\) SAVING \(=16\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=7 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=16\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=10 \mathrm{~J}=3\) MAX \(\cdot\) SAVING \(=16\)
Mf. , SAVING DOES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THRCUGH 3
\(I=10 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=16\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=5 \mathrm{~J}=2 \mathrm{MAX} \cdot \mathrm{SAVING}=10\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITICNS 1 THRCUGH 3
\(I=6 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=10\)
MAX. SAVING DOES NOT SATISFY INE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=7 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=10\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=8 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=10\)
MAX. SAVING DOES NCT SATISFY ONE AR MERE ©F CONDITIONS 1 THROUGH 3
\(I=9 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=10\)
MAX. SAVING DOES NOT SATISFY INE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=10 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=10\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=11 \mathrm{~J}=2\) MAX \(\cdot\) SAVING \(=10\)
MAX. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(I=12 \mathrm{~J}=2 \mathrm{MAX} \cdot \mathrm{SAVING}=10\)
MAY. SAVING DOES NOT SATISFY ONE OR MCRE OF CONDITIONS 1 THROUGH 3
\(I=13 \mathrm{~J}=2 \mathrm{MAX} \cdot \mathrm{SAVING}=10\)
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

RRUTE 1

\begin{tabular}{cc} 
ORIGIN & 10 \\
10 & 12 \\
12 & 11 \\
11 & ORIGIN
\end{tabular}

DISTANCE FOR ROUTE IS 100 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

ROUTE 2
\begin{tabular}{cc} 
*************** \\
FRCM & TC \\
************* \\
& \\
ORIGIN & 7 \\
7 & 8 \\
8 & 13 \\
13 & 9 \\
9 & CRIGIN
\end{tabular}

DISTANCE FOR ROUTE IS 104 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS
```

ROUTE 3 FRCM
T0
ORIGIN 2
2 3
3 4
4 5
5 ORIGIN
DISTANCE FOR ROUTE IS }54\mathrm{ MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS
ROUTE 4 FROM TO
ORIGIN 6
6 GRIGIN
DISTANCE FOR RCUTE IS }44\mathrm{ MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 1900 UNITS
TOTAL DISTANCE FOR ALL ROUTES IS 302 MILES
FINAL ALLOCATION
CAPACITY =1900 NUMBER ALLCCATED = 1
CAPACITY = 4000 NUMBER ALLCCATED = 0
CAPACITY =5000 NUMBER ALLCCATED =0
CAPACITY = 6000 NUMBER ALLECATED = 3

```

\section*{SAMPLE PROBLEM 3}

The dynemic programing solution to the carrier routing problem developed by Tillman [12] is included as it was presented by him. The numbering system used in the presentation does not correspond to that used by the computer program. However, the tro solutions mey be easily compared by referring to the following table.

Table 10. Comparison of numbering systems used.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
DYNANIC PROGRAMIING \\
NUMBERING
\end{tabular} & \begin{tabular}{c} 
COMPUTER RROGRAM \\
ITUMBERING
\end{tabular} \\
\hline SCHOOL & 1 \\
1 & 6 \\
2 & 5 \\
3 & 3 \\
4 & 2 \\
5 & 4 \\
\hline
\end{tabular}

DYNANIC PROGRAMING SOLUTION TO THE SCHOOL BUS SCHEDULING PROBTEM
Neorly all school districts have the problem of scheduling school busses for transporting students to school and home again. In determing the schedule, the objective is usually to minimize the number of miles traveled while fully utilizing the busses. The following example illustrates the problem of scheduling two busses to pick up passengers at five stops. Each bus has a capacity of trenty passengers and one bus makes two trips which Increases the fleet size to the equivalent of three busses. The distances and number of passengers are illustrated in the following figure:


\begin{tabular}{|c|c|}
\hline STOP & NO. OF PASSENGERS \\
\hline 1 & 10 \\
2 & 8 \\
3 & 6 \\
4 & 9 \\
5 & 7 \\
\hline TOTAL & 40 \\
\hline
\end{tabular}

FIg. 4

In this example the objective is to schedule the busses so that the number of miles traveled is a minimum.

The dynemic programing solution to this problem follows.


RESTRATITTS
1) Number of stops \(P_{3} \leq 5 \quad P_{3}+P_{2} \leq 5 \sum_{i=1}^{3} P_{i} \leq 5\)
2) Bus Capacity \(\sum_{i=1}^{P_{3}} N_{i 3} \leq 20 \sum_{i=1}^{P_{2}} N_{12} \leq 20 \sum_{i=1}^{P_{1}} N_{i 1} \leq 20\)
\[
\begin{array}{ll}
\mathbb{N}_{1 j}=\text { No. of passengers at stop } i \text { for bus } j & \\
P_{j}=\text { Stops made by bus } j & i=1, \ldots, 5 \\
S_{j}=\text { Stops yet to be made at stage or bus } j & j=1, \ldots, 3
\end{array}
\]

Returns:

OBJECTIVE: \(\quad\) Min \(Z=\sum_{j=1}^{3} D_{j}\)

To convert this problem to a meximizing problem subtract every distance from 15 and maximize the complement of the distances to each stop. This insures that the busses are loaded and that the distance traveled is minimized. This is illustrated in Figure 5.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|c|}{To School} \\
\hline \multicolumn{2}{|l|}{} & 1 & 2 & 3 & 4 & 5 & \[
\begin{aligned}
& \text { To } \\
& \text { Sch. }
\end{aligned}
\] \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \text { 이 } \\
& 0 \\
& \text { 号 } \\
& 0 \\
& \text { 度 }
\end{aligned}
\]} & 1 & x & 4 & 6 & 3 & 2 & 5 \\
\hline & 2 & 4 & \(x\) & 5 & 4 & 11 & 7 \\
\hline & 3 & 6 & 5 & z & 7 & 6 & 11. \\
\hline & 4 & 3 & 4 & 7 & \(x\) & 8 & 13 \\
\hline & 5 & 2 & 11 & 6 & 8 & x & 10 \\
\hline & \[
\begin{aligned}
& \text { Fron } \\
& \text { Sci }
\end{aligned}
\] & 5 & 7 & 11. & 13 & 10 & x \\
\hline
\end{tabular}

Fig. 5

It is noted that for this example, it is necessary for two busses to make two stops and one bus one stop, so that all stops are made and the bus capacities are not exceeded.

The decision at the firat stage for the various values of \(S_{1}\) is as follows:
\begin{tabular}{cr}
\(z_{1} \& \mathrm{~S}_{1}\) \\
\hline 0 & \(\frac{\mathrm{f}_{1}\left(\mathrm{~s}_{1}\right)}{}\) \\
\hline 2 & 0 \\
2 & 20 \\
3 & 22 \\
4 & 26 \\
5 & 20 \\
1,2 & 16 \\
1,3 & 22 \\
1,4 & 21 \\
1,5 & 17 \\
2,3 & 23 \\
2,4 & 24 \\
2,5 & 28 \\
3,4 & 31 \\
3,5 & 27 \\
4,5 & 31
\end{tabular}

The decision at the second stage and the return of the second and the first stege,
\[
f_{2}\left(s_{2}\right)=D_{2}+f_{2}\left(s_{1}\right),
\]
for the various values of \(S_{2}\) is as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{S}_{2}\) & \[
\begin{aligned}
& \mathrm{P}_{2}^{1} \\
& \hline
\end{aligned}
\] & or & \[
\mathrm{P}_{2}^{\prime \prime}
\] & \[
f_{2}\left(s_{2}\right)
\] & \(\mathrm{S}_{1}^{\prime}\) & or & \(\mathrm{S}_{1}^{\prime \prime}\) \\
\hline 1,2,3 & 3 & & 1,2 & 38 & 1,2 & & 3 \\
\hline 1,2,4 & 4 & & 1,2 & 42 & 1,2 & & 4 \\
\hline & 1 & & 2,5 & & 2,5 & & 1 \\
\hline 1,2,5 & 5 & & 1,2 & 38 & 1,2 & & 5 \\
\hline 1,3,4 & 4 & & 1,3 & 48 & 1,3 & & 4 \\
\hline 1,3,5 & 5 & & 1,3 & 42 & 1,3 & & 5 \\
\hline 1,4,5 & 4 & & 1,5 & 43 & 1,5 & & 4 \\
\hline 2,3,4 & 4 & & 2,3 & 49 & 2,3 & & 4 \\
\hline 2,3,5 & 5 & & 2,3 & 43 & 2,3 & & 5 \\
\hline 2,4,5 & 4 & & 2,5 & 54 & 2,5 & & 4 \\
\hline & \(1 \frac{3}{5}\) & & 4,5 & & 4,5 & & 3 \\
\hline 3,4,5 & 5 & & 3,4 & 53 & 3,4 & & 5 \\
\hline 1,2,3,4 & 1,2 & & 3,4 & 47 & 3,4 & & 1,2 \\
\hline 1,2,3,5 & 1,3 & & 2,5 & 50 & 2,5 & & 1,3 \\
\hline 2,3,4,5 & 2,5 & & 3,4 & 59 & 3,4 & & 2,5 \\
\hline 1,2,4,5 & 1,4 & & 2,5 & 49 & 2,5 & & 1,4 \\
\hline 2,3,4,5 & 1,3 & & 4,5 & 53 & 4,5 & & 1,3 \\
\hline
\end{tabular}

If \(P_{2}^{\prime}\) is made then \(S_{2}^{\prime}\) is the input to the first stage and if \(P_{2}^{\prime \prime}\) is made then \(S_{1}^{\prime \prime}\) is the input to the first stage.

Finally the decision at the third stage and the return at the third and the second stage,
\[
f_{3}\left(s_{3}\right)=D_{3}+f_{2}\left(s_{2}\right),
\]
for \(\mathrm{S}_{3}\) is 䭪 follows:
For \(S_{3}=1,2,3,4,5\)
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{P}_{3}\) & \(\mathrm{f}_{3}\left(\mathrm{~S}_{3}\right)\) & \(\mathrm{S}_{2}\) \\
\hline & 1 & \(10+59=69\) & 2,3,4,5 \\
\hline & 2 & \(14+53=67\) & 1,3,4,5 \\
\hline & 3 & \(22+49=71\) & 1,2,4,5 \\
\hline (1) & 4 & \(26+50=76\) & 1,2,3,5 \\
\hline & 5 & \(20+47=67\) & 1,2,3,4 \\
\hline & 1,2 & \(16+53=69\) & 3,4,5 \\
\hline (2) & 1,3 & \(22+54=76\) & 2,4,5 \\
\hline & 1,4 & \(21+43=64\) & 2,3,5 \\
\hline & 1,5 & \(17 i+49=66\) & 2,3,4 \\
\hline & 2,3 & \(23+43=66\) & 1,4,5 \\
\hline & 2,4 & \(24+42=66\) & 1,3,5 \\
\hline (3) & 2,5 & \(28+48=76\) & 1,3,4 \\
\hline & 3,4 & \(31+38=69\) & 1,2,5 \\
\hline & 3,5 & \(27+42=69\) & 1,2,4 \\
\hline & 4,5 & \(32+38=69\) & 1,2,3 \\
\hline
\end{tabular}

From the above there are three optimal decisions with their associated distance as follows:

Optimal Decision
1
2
3

Bus \#3
\[
\begin{aligned}
& P_{3}=4 \\
& P_{3}=1,3 \\
& P_{3}=2,5
\end{aligned}
\]

Bus. \#2
Bus \#1
\(P_{2}=1,3 \quad P_{1}=2,5\) motel \(=44\) Miles
\(P_{2}=2,5\)
\(P_{2}=4\)
\(P_{1}=4 \quad\) Total \(=44\) Miles
\(P_{1}=1,3\) Total \(=44\) Miles

The complete search method yields the following results.
\begin{tabular}{llll}
\(P_{3}\) & \(P_{2}\) & \(p_{1}\) & \(D\) \\
\cline { 2 - 4 } 1 & 2,3 & 4,5 & 56 \\
1 & 2,4 & 3,5 & 59 \\
1 & 2,5 & 4,3 & 51 \\
2 & 1,3 & 4,5 & 53 \\
2 & 1,4 & 3,5 & 58 \\
2 & 1,5 & 4,3 & 58 \\
3 & 1,2 & 4,5 & 51 \\
3 & 1,4 & 2,5 & 49 \\
3 & 1,5 & 4,2 & 57 \\
4 & 1,2 & 3,5 & 51 \\
4 & 1,3 & 2,5 & 44 \\
4 & 1,5 & 2,3 & 54 \\
5 & 1,2 & 3,4 & 53 \\
5 & 1,3 & 2,4 & 54 \\
5 & 1,4 & 2,3 & 56
\end{tabular}

\footnotetext{
15 Schedules Total
}

There are 31 or 6 [15] = 90 schedules for the three busses but the remaining 75 are included in the above for this problem.

\section*{A MULTISTAGE PROCESS KITH N STAGES}

Decision
Variable:
\({ }^{\mathrm{P}} \mathrm{N}\)
\(P_{2}\)
\(P_{1}\)

Stage
Input:
\(\mathrm{S}_{\mathrm{N}}\)
\(S_{2}\)
\(S_{1}\)

Stage

Transformation:
\(T_{N}\left(P_{N}, S_{N}\right) \quad g_{N-1}\)


Restraints:

Returns:
\[
D_{N}\left(P_{N}, S_{N}\right) \cdots \cdots \cdots D_{2}\left(P_{2}, s_{2}\right)
\]
\[
D_{1}\left(P_{1}, S_{1}\right)
\]

Table 12. Distance half matrix and delivery vector for semple problem 3.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Q & \(P_{1}\) & & & & & \\
\hline 9 & 2 & \(\mathrm{P}_{2}\) & & & & \\
\hline 6 & 4 & 8 & \(P_{3}\) & & & \\
\hline 7 & 5 & 7 & 9 & \(P_{4}\) & & \\
\hline 8 & 8 & 11 & 10 & 4 & \(P_{5}\) & \\
\hline 10 & 10 & 12 & 9 & 13 & 11 & \(P_{6}\) \\
\hline
\end{tabular}

Table 12. Carrier availabilities and capacities for sample problem 3 .
\begin{tabular}{|c|c|}
\hline CAPACITY & 20 \\
\hline \begin{tabular}{c} 
NUMBER \\
AVAILABIE
\end{tabular} & 3 \\
\hline
\end{tabular}

```

* SOLUTION FOR SAMPLE PROBLEM 3 *
*

```

INITIAL ALLOCATION
```

CAPACITY = 20 NUMBER ALLCCATED = 5
CAPACITY =999999 NUMBER ALLこCATED =0

```

SAVINGS MATRIX
\begin{tabular}{rrr} 
RCW & COL & SAVING \\
2 & 1 & -99999 \\
3 & 1 & -99999 \\
3 & 2 & -2 \\
4 & 1 & -99999 \\
4 & 2 & 0 \\
4 & 3 & 0 \\
5 & 1 & -99999 \\
5 & 2 & -1 \\
5 & 3 & 2 \\
5 & 4 & 9 \\
6 & 1 & -99999 \\
6 & 2 & 0 \\
6 & 3 & 5 \\
6 & 4 & 2 \\
6 & 5 & 7
\end{tabular}
\(1=5 \mathrm{~J}=4 \mathrm{MAX} \cdot\) SAVING \(=9\)
\begin{tabular}{lll}
\(\mathrm{T}(\) & 2, & \(1)=2\) \\
\(\mathrm{~T}(\) & 3, & \(1)=2\) \\
\(\mathrm{~T}(\) & 4, & \(1)=1\) \\
\(\mathrm{~T}(1)\) & 5, & \(1)=1\) \\
\(\mathrm{~T}(1\), & \(4)=1\) \\
\(\mathrm{~T}(\) & 6, & \(1)=2\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline I & \(=\) & 2 & & \(=\) & 9 \\
\hline I & \(=\) & 3 & Q & \(=\) & 6 \\
\hline I & \(=\) & 4 & Q & = & 15 \\
\hline I & \(=\) & 5 & Q & \(=\) & 15 \\
\hline I & = & 6 & Q & \(=\) & 10 \\
\hline
\end{tabular}

CAPACITY \(=20\) NUMBER ALLCCATED \(=4\) CAPACITY \(=999999\) NUMBER ALLCCATED \(=0\)
```

I= 6 J = 5 MAX.SAVING = 7

```
MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=6 \mathrm{~J}=3\) MAX. SAVING \(=5\)
Ti 2, 1) \(=2\)
T( 3,1\()=1\)
T( 4: 1) \(=1\)
Ti 5, 1) \(=1\)
Ti 5,4 ) \(=1\)
Ti 6,1\()=1\)
Ti 6,3\()=1\)
\(I=20=9\)
\(I=3 \quad 0=16\)
\(I=4 Q=15\)
\(I=5 Q=15\)
\(I=6 Q=16\)
CAPACITY \(=20\) NUMBER ALLOCATED \(=3\)
CAPACITY \(=999999\) NUMBER ALLOCATED \(=0\)
\(I=5 \mathrm{~J}=3 \mathrm{MAX}\). SAVING \(=2\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
\(I=6 \mathrm{~J}=4 \mathrm{MAX}\). SAVING \(=2\)
MAX. SAVING DCES NOT SATISFY ONE GR MCRE OF CONDITIONS 1 THRCUGH 3
\(I=4 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=0\)
MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(I=4 \mathrm{~J}=3 \mathrm{MAX}\). SAVING \(=0\)
MAX. SAVING DEES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THRCUGH 3
\(1=6 \mathrm{~J}=2 \mathrm{MAX} \cdot\) SAVING \(=0\) MAX. SAVING DOES NOT SATISFY ONE GR MORE OF CONDITIONS 1 THROUGH 3
\begin{tabular}{ccc} 
ROUTE 1 & \begin{tabular}{c} 
FROM \\
\(* * * * * * * * * * * * * * ~\)
\end{tabular} \\
& ORIGIN & 4 \\
& 4 & 5 \\
& 5 & ORIGIN
\end{tabular}

DISTANCE FOR ROUTE IS 17 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 20 UNITS

ROUTE 2

\begin{tabular}{cc} 
ORIGIN & 3 \\
3 & 6 \\
6 & ORIGIN
\end{tabular}

DISTANCE FOR ROUTE IS 23 MILES
ROUTE REQUIIRES A CARRIER HAVING A CAPACITY \(2 F\) F 20 UNITS

ROUTE 3 FROM TO
\(\underset{2}{\text { ORIGIN }} \stackrel{2}{2}\)
DISTANCE FOR ROUTE IS 4 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 20 UNITS

TOTAL DISTANCE FOR ALL RCUTES IS 44 MILES

FINAL ALLOCATION
CAPACITY \(=20\) NUMBER ALLOCATED \(=3\)

Table 13. Distance half matrix and delivery vector for semple problem 4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q & \(\mathrm{P}_{2}\) & & & & & & & & & & & & & \\
\hline 1000 & 25 & \(\mathrm{P}_{2}\) & & & & & & & & & & & & \\
\hline 8700 & 32 & 8 & \(P_{3}\) & & & & & & & & & & & \\
\hline 19500 & 48 & 31 & 32 & \(\mathrm{P}_{4}\) & & & & & & & & & & \\
\hline 8580 & 51 & 77 & 84 & 78 & \(\mathrm{P}_{5}\) & & & & & & & & & \\
\hline 6400 & 63 & 87 & 94 & 10 & 88 & \({ }^{P} 6\) & & & & & & & & \\
\hline 12200 & 65 & 59 & 53 & 105 & 25 & 111 & \(P_{7}\) & & & & & & & \\
\hline 12120 & 92 & 85 & 79 & 123 & 43 & 137 & 26 & \(\mathrm{P}_{8}\) & & & & & & \\
\hline 7800 & 200 & 88 & 101 & 149 & 121 & 156 & 228 & 154 & \({ }^{9} 9\) & & & & & \\
\hline 4550 & 133 & 155 & 162 & 113 & 758 & 98 & 173 & 199 & 223 & \(\mathrm{P}_{10}\) & & & & \\
\hline 4000 & 161 & 193 & 200 & 118 & 296 & 94 & 211 & 237 & 250 & 38 & 12 & & & \\
\hline 10500 & 186 & 190 & 197 & 188 & 206 & 98 & 211 & 237 & 289 & 85 & 94 & \(P_{12}\) & & \\
\hline 12000 & 212 & 215 & 223 & 214 & 222 & 185 & 237 & 263 & 315 & 121 & 120 & 26 & \(\mathrm{P}_{13}\) & \\
\hline 37260 & 222 & 234 & 228 & 223 & 188 & 232 & 173 & 164 & 301 & 166 & 192 & 145 & 159 & \(\mathrm{P}_{14}\) \\
\hline
\end{tabular}

Table 24. Carrier availabilities and capacities for sample problem 4.
\begin{tabular}{|c|c|}
\hline CAPACITY & 45000 \\
\hline \begin{tabular}{c} 
NUMBER \\
AVAILABIT
\end{tabular} & \(\infty\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ROUTE} & \multirow{3}{*}{1} & \multicolumn{2}{|l|}{****************} \\
\hline & & FRCM & T0 \\
\hline & & \multicolumn{2}{|l|}{****************} \\
\hline & & ORIGIN & 10 \\
\hline & & 10 & 11 \\
\hline & & 11 & 12 \\
\hline & & 12 & 13 \\
\hline & & 13 & ORIGIN \\
\hline
\end{tabular}

DISTANCE FOR ROUTE IS 503 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 45000 UNITS

ROUT
2
FRCM
TO
***************

\begin{tabular}{cc} 
ORIGIN & 5 \\
5 & 8 \\
8 & 7 \\
7 & CRIGIN
\end{tabular}

DISTANCE FOR RCUTE IS 185 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY SF 45000 UNITS
\begin{tabular}{ccc} 
RCUTE 4 & \begin{tabular}{c} 
FRCM \\
\(* * * * * * * * * * * * * * * ~\)
\end{tabular} \\
& & \\
& CRIGIN & 6 \\
& 6 & 4 \\
& 4 & 3 \\
& 3 & 2 \\
& 2 & 9 \\
& 9 & CRIGIN
\end{tabular}

DISTANCE FOR ROUTE IS 301 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 45000 UNITS
ROUTE 5 FROM TO

Table 15. Distance half matrix and delivery vector for sample problem 5 .


Teble 16. Carrier availabilities and capacities for sample problem 5.
\begin{tabular}{|c|c|}
\hline CAPACITY & 120 \\
\hline \begin{tabular}{c} 
MUMBER \\
AVAILABLB
\end{tabular} & \(\infty\) \\
\hline
\end{tabular}

ReUT FRCM ..... TO
ORIGIN ..... 17
17
18 ORIGIN
DISTANCE FOR ROUTE IS 185 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF ..... 120 UNITS
ROUTE 5 FROM ..... TO
****************
15 ..... 16
16 ORIGIN
DISTANCE FOR ROUTE IS 87 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
ROLTE 6 FREM ..... T 0
***************
```

ORIGIN	6
6	10
10	ORIGIN

```
DISTANCE FER ROUTE IS 47 MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
```

RCUTE	7	*1*************	
		FREM	TC
		******	*****
		ORIGIN	11
		11	13
		13	ORIGIN

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{Route} & \multirow[t]{5}{*}{8} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\underset{* * * * * * * * * * * * * * *}{\text { FROM }}
\]}} \\
\hline & & & \\
\hline & & ARIGIN & 4 \\
\hline & & 4 & 9 \\
\hline & & 9 & ORIGIN \\
\hline
\end{tabular}
```

DISTANCE FOR ROUTE IS 56 MILES

```RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
\begin{tabular}{|c|c|c|c|}
\hline \multirow{6}{*}{ROUTE} & & \multicolumn{2}{|l|}{} \\
\hline & \multirow[t]{5}{*}{9} & FRCM & TC \\
\hline & & \multicolumn{2}{|l|}{****************} \\
\hline & & CRIGIN & 2 \\
\hline & & 2 & 7 \\
\hline & & 7 & ORIGIN \\
\hline
\end{tabular}
```

DISTANCE FOR ROUTE $15 \quad 38$ MILES
RCUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
ROUTE 10

```FROMTく*\# **************
```

CRIGIN 3
3 ORIGIN
DISTANCE FOR ROUTE IS 10 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

```ROLTE 11FRCMTO
```
©RIGIN 5
ORIGIN
DISTANCE FOR ROUTE IS 28 MILES
```ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
```


RCUTE 12

FROM TO **************

ARIGIN	8
8	GRIGIN

DISTANCE FOR RCUTE IS 40 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

RCUTE 13 FROM TO

ORIGIN 12 12 GRIGIN

DISTANCE FOR ROUTE IS 54 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

RCUTE 14	FRCM	TO
	ORIGIN	14
	14	ORIGIN

DISTANCE FOR ROUTE IS 70 MILES
ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

TOTAL DISTANCE FOR ALL RCUTES IS 1468 MILES

FINAL ALLOCATION
CAPACITY $=120$ NUMBER ALLOCATED $=14$

ORTIMLZATION OF A CARRIER ROUTING PROBLEM

by

HAROLD MERLIN COCHRAN
B. S., Kansas State University, 1965

AN ABSTRACT OF A MASTER'S TAESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1967

The purpose of this study was to evaluate methods for the solution of large scele carrier routing problems.

An algorithm developed by Clarke and Wright [4] was chosen for further study and modification. The modifications allowed for the inclusion of additional restraints on the system. The particular restraint which was incorporated limited the number of miles which could be traveled by a carrier on its allocated route. A modifled allocation procedure was suggested which the author believes will make better use of the available carriers, thus resulting in a better solution in terms of total miles traveled. Improvements in the computational procedure were also suggested.

The modified algorithm was programmed for the IBM 1620 computer and several sample problems were then solved.

Experience with the method has shown that the modified algorithm is practicable and efficient for solving large scale problems. Even though it does not guarantee an optimal solution, it appears to be the "best" method currentily available for the solution of practical large scale routing problems.

