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INTRODUCTION

Background and Purpose

The transportation system in the United States is one of the major

contributors to the present high level of the national economy. One of the

most important eoameroial component j of this system is the trucking industry.

To gain an understanding of this importance, some statistics are considered

here [1]. At the present time approximately three out of every four tons of

commercial goods being transported in the United States are carried at least

part of the way "by truck. This figure includes virtually all goods moving

in local service, and about 38% of the nation's intercity freight tonnage.

Today, trucks haul more than 29 billion intercity ton-miles (a ton-mile is a

load of one ton carried a distance of one mile). The trucking industry

generally spends (including wages) more than $U2 billion a year to move

these goods

.

In addition to the trucking industry another important component of the

transportation system in the United States is the school transportation

system. Again, some statistics are considered here to quantify this im-

portance [11]. School buses transport more than four times as many students

each day as the total number of passengers carried in intercity travel by

the nation's railroads and commercial bus lines combined. Total national

expenditures for school transportation, which include operation and main-

tenance (but not purchase) of school buses, amounted to $H86 million for

the 1959-60 school year.

Considering these vast expenditures, improvements in the methods used

by the transportation industry could conceivable result in the saving of

considerable sums of money. This consideration applies not only to the



trucking industry and school transportation systems, but to many other com-

mercial and private carriers as veil, including bus lines, railroads, and

airlines.

One of the major areas in which improvement can be made is the routing

of these carriers. Routing may be defined as the determination of paths or

routes over which to dispatch or send passengers and goods. The typical

method in use today is one of trial and error, and generally consists of

looking at a map, picking out routes consistent with available carrier

capacities, and then by trial and error attempting to find shorter routes.

This situation provides a fertile area for operations research analysis.

Consequently, this paper presents a study of the methods and techniques

which have been developed to solve problems of this nature. The purpose of

this study is to evaluate current methods and establish which method is best

for solving large scale carrier routing problems. In addition, modifica-

tions are proposed to solve the problem when the system is subject to

multiple restraints

.

Problem

Basically the problem is one of determining routes so that some objec-

tive is optimized and the restrictions on the system are satisfied. An

example of this type of problem would be to determine routes where the

distance traveled is a minimum with the following conditions being satisfied:

(1) All demands are supplied. y

(2) The distance that can be traveled on each route is limited.

(3) The carriers may have different capacities.

Problems such as the above example have been entitled the "carrier

routing problem", the solution of which is the principle objective of this

paper.



SURVEY OF THE LITERATURE

The carrier routing problem may toe regarded as a generalization of the

classic traveling salesman problem. Although there is an abundance of lit-

erature on the traveling salesman problem, very little can be found vhich

directly relates to the carrier routing problem. The principle methods for

solving the carrier routing problem are simulation, dynamic programming, the

integer programming formulation of Miller, Tucker, and Zemlin [10], and the

algorithms of Dantzig and Ramser [7] and Clarke and Wright [k] . These

methods are discussed in the following section.

Approaches to the Problem

Work is being done at the present time in the department of Industrial

Engineering at Kansas State University on a simulation approach to the carrier

routing problem. This technique is a limited version of complete search. The

routine randomly generates the order of stops while loading the carriers and

checking against the available capacities. The lower bound for each route

is then found using the traveling salesman algorithm developed by Little,

Murty, Sweeney, and Karel [9].

A problem very similar in nature to the traveling salesman problem is

known as the shortest route problem. It involves finding the path from one

city to another such that the distance traveled is a minimum. One approach

to this problem is the dynamic programming formulation proposed by Bellman [3].

The traveling salesman problem might be described as follows: Find

the shortest route for a salesman starting from a given city, visiting each

of a specified group of cities, and then returning to his original point of

departure

.



Dynamic programming has also been applied to the carrier routing pro-

blem, in particular the school bus scheduling problem, by Tillman [12]. The

sample problem used to illustrate the solution is a small scale (5 stop)

problem involving Uo students and the equivalent of 3 buses. The sample

problem and the method of solution are shown in the Appendix in the section

on sample problems.

Miller, Tucker, and Zemlin [10] formulated the carrier routing problem

as an integer programming problem and experimented with several models. How-

ever, the integer programming procedures which were known at the time of the

experiments were not sufficiently developed to achieve solutions in a number

of the experiments tried, although optimal solutions were achieved in two of

the reported experiments. The authors stated that they were hopeful that

the more efficient integer programming procedures which were being developed,

notable by Gomory [8], at the time their experiments were being conducted,

will, when applied to their model, yield a satisfactory algorithmic solution

to the carrier routing problem.

Finally, two algorithmic methods of solution for the carrier routing

problem appear in the literature. The first algorithm was developed by

Dantzig and Raraser [7] and was published in 1958. The second algorithm, a

modification of the first, was developed by Clarke and Wright [k] , and was

proposed in 1962.

Evaluation of the Proposed Methods of Solution

The integer programming formulation proposed by Miller, Tucker, and

Zemlin [10] was studied as a method of solution for the carrier routing

problem. However, the method was rejected for further development and use

for two reasons. The first reason is the nature of the algorithms currently



available for solving integer programming problems. These algorithms,

although they theoretically should produce solutions, often fail to do so in

actual applications. Secondly, the integer programming formulation did not

include all the restrictions the author desired to include in the study,

and it did not appear to be easily modified to include these restrictions.

The work on the simulation routine mentioned above has not yet reached

a stage of development such that a statement can be made about its practica-

bility for solving large scale problems. This method appears promising but

gives no guarantee of obtaining an optimal solution,

Although dynamic programming gave an optimal solution to the small

sample carrier routing .problem, it also has its limitations. It appears

that the dynamic programming method is too closely related to pure search,

and the computational labor would become prohibitive on large scale problems

as is the case with pure search.

The need for a more refined and sophisticated .method of solution is

obvious. The algorithms developed by Dantzig and Ramser [7] and by Clarke

and Wright [h] provide this method of solution. Both algorithms, for this

reason, are discussed in more detail in the following sections.



DANTZIG ADD RAMSER METHOD

The first algorithm for solving the carrier routing problem was

developed "by Dantzig and Ramser [7] and was published as a paper in 1958.

Their paper is concerned with the optimum routing of a fleet of gasoline

delivery trucks "between a bulk terminal and a large number of service sta-

tions supplied by the terminal. The shortest route between any two points

and the quantity to be delivered to each station are assumed to be known

quantities. Their purpose was to schedule trucks in such a way as to satisfy

station demands and minimize the total miles covered by the truck fleet.

Their algorithm will be discussed in some detail to facilitate the reader's

understanding of the method proposed by Clarke and Wright [k] , which is a

modification of the above method.

Dantzig and Ramser regard the truck routing problem as a traveling

salesman problem generalized to include the conditions that a number of loops

must be determined such that all loops have one point in common (equivalent

to the condition that the traveling salesman be required to return to his

point of departure a number of times), and that specified deliveries be made

at every point with the exception of the origin.

For simplicity of presentation, the authors make the assumption that

only one product is to be delivered and that all trucks have the same capac-

ity C. They state that the number of carriers does not enter the problem

when they all have the same capacity. Even when carriers of different capac-

ities are involved, or when a number of products are to be delivered to each

service station or delivery point, the same mathematical model with minor

variations may be used.



The basic idea of the method is to synthesize the solution into a num-

ber of stages of aggregation in which suboptimizations are carried out on

pairs of points or groups of points. The deliveries q. are first ordered

in a sequence ^, %,...., 4^ ^ ^ such that
*i

~ «i+l
f°r any

i » 1 n-l. The maximum number of deliveries which can be made by a

truck of capacity C for a given set of ,,'s is represented by t, and is then

determined such that

t t+1 rn
Z q. - C and Z q. > C. LU

'i-1
i 1-1

The sequence qr q£
, . . ,

,' ^ represents a feasible combination and therefore

may be in the optimal' solution. Hence, the number of aggregations to be

used must allow the combination q.,, %,..., V °r a maxlmum of * Points •

in

j

the final aggregation. The number of points aggregated in the first stage

is 2
1

, in the second stage 2
2

, and so on up to the final stage H where the

number of points aggregated is 2
N

. In the first stage pairs of points are

N

joined, in the second stage pairs of pairs are joined, etc. Therefore, 2

is the largest number of points aggregated in the B th and final stage of

aggregation and may correspond to as many as t points. Thus the number of

stages of aggregation K is determined such that

2
1 = t or S = log

2
t. [2]

Assume that the number of stages of aggregation has been determined to

be N = 2. In the first stage of aggregation only those points are allowed to

pair up whose combined demand does not exceed 1/2C. As a result, in the

second stage of aggregation any pair of points joined in the suboptimal

first stage may be combined with any other pair of points joined in the

first stage without exceeding truck capacity. If the number of stages of

aggregation had been determined to be 3, in the first stage only those points



whose combined load would not exceed 1/Uc would be allowed to pair up. Thus

in the second stage any pair of pairs would have a combined demand less than

1/2C, and hence the combined demand of the aggregations formed in the third

stage would be less than the available capacity C.

It should be noted that if each delivery truck were scheduled to visit

precisely two service stations and return to the terminal point, the total

distance traveled by the trucks would be the constant sum of the distances

of

from the terminal point to each service station plus the sum if interpair

distances, the distances between the two service stations served by each

delivery truck. The only variables oeeurring In this situation are the

interpair distances. Therefore, to minimize the total distance covered by

all trucks, the sum of/these interpair distances must be minimized. This is

done by determining the optimum pairings corresponding to minimum interpair

distances in each intermediate stage. In the final stage aggregations are

determined such that the sum of all trip lengths is a minimum.

Dantzig and Ramser's formulation of the truck routing problem may be

formally stated as follows

:

(1) Given a set of n delivery points P (i= 1, 2 n) to which

deliveries are made from a terminal point, designated P
Q

.

(2) A symmetric distance matrix [D] [d ] is given which specifies

the distance d.. . between every pair of points (i, j 0, 1, n).

Since the matrix is symmetric, d.. d _ for all i, j.

(3) A delivery vector Q = (q.) is given which specifies the demand

q. at each delivery point P. (i " 1, 2,..., n).
i 1

(U) The capacity of all delivery trucks is the same and is represented

by C, where C > maximum q^.

(5) If any two points P. and P are paired, x = x^ = 1 (1 , J = 0,



1,..., n), and if the points are not paired x x = 0. Since

every point P. will be connected either to the terminal point P ,

or at most to one other point P , the following relation holds:

n

I x = 1 (i = 1, 2,...', n). [3]

3=0 1J

By definition, x. . = for every i = 0, 1,..., n.

(6) The problem is to find those values of x which make the total

distance

n

D = I 4 X, [It]

i,j=6
~ 3 -'"

a minimum under the conditions specified in [2] to [5].

A few general remarks about the algorithm should be made. Condition

[5] limits the values of x. . to be either or 1 , which puts this problem

in the class of discrete variable problems. At the time Dantzig and Eamser

were doing their work, no general method had been developed for solving

discrete variable problems. Gomory's method [8] had Just been proposed;

however, it was considered to be at too early a stage of development to be

applied to the problem at hand. It turns out that even with an integer pro-

gramming algorithm the formulation required to prevent "looping 1

', a sequence

of cities not connected to the origin, generally expands the size of the

problem beyond the limits where currently available algorithms can provide

a solution to the problem. Therefore, the authors admitted the weaker

condition

i x.. i 1 [5]
ij

and then suggest applying modified methods of linear programming to obtain

"best solutions", (it should be noted that the authors did not elaborate on

how this would be done.) Admitting this weaker condition may allow fractional

values to appear in the solution, indicating the existence of alternative
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pairings of points or groups of points. The authors state that their ex-

perience has shown that the number of such alternative pairings will be

small, so that the pairing yielding the least mileage can he readily deter-

mined by trial and error. The solution obtained in this manner will satisfy

the requirement that x. . be either or 1 . However, when the weaker condi-

tion is admitted, the solution obtained may no longer be the absolute optimum.

They felt that the solution obtained by their method approaches the

absolute optimum as the number of points increases. Moreover, an estimate

can be made on the error for the minimum distance D since x
n
. = or 1 lies

between the "best solution" obtained by their method and the minimum satisfy-

ing - x,. . - 1.

At the start of the computational procedure all delivery points P^ Pg,

. P mav be paired with the terminal point so that there will be n entries
' n

X =1 where i = 1, 2,..., n. These n entries constitute the basic set at
0,1

the start of the computational procedure. During each iteration exactly one

element of the basic set is eliminated and replaced by a new element or

pairing. Therefore, the total number of basic entries remains constant

during stage 1.

The starting solution, in which each delivery point is paired with the

terminal point, is then improved by a series of rapid corrections. These

rapid corrections are made by bringing into the solution non-basic entries

which correspond to relatively small d values. This procedure of making

rapid corrections is repeated as long as non-basic entries with obviously

low d.. values are available.

After a sufficient number of pairs of points with small interpair ^

distances have been brought into the solution, it will become increasingly

difficult to bring in additional pairs of points without calculating the
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total distance in every case. Therefore, a criterion is needed to determine

whether to accept or reject a non-basic variable for entry into the basic

solution. This criterion is provided hy what the authors have chosen to call

a "delta-function" , defined as

(n) (n) (n)

= 11 + IT

ij i i

- d t fi ]

where * i and '
j are suitably determined constants characteristic for the

n th iteration. By definition t/^ and tt
( "' are determined so that

>' - ET]
io

for all d. . corresponding to basic entries and
lJ > „

6
iJ

<0
[8]

for non-basic entries. The delta function indicates how much the total dis-

tance D will decrease per unit increase of a non-basic entry x^ . If 6^ -

for all non-basic variables, the particular set obtained at this point repre-

sents the "best solution". Otherwise, some non-basic variable corresponding

to a 6 > is chosen for entry into the basic set . The standard criterion
ij

of the simplex method, that of selecting the non-basic variable corresponding

to the largest S. . , is used to determine which variable will enter the basic

set. When the delta function is negative or zero for all non-basic entries,

no further improvement is possible and the first stage is concluded. For a

more complete discussion of the ^ constants (simplex multipliers or prices)

see Dantzig, Fulkerson, and Johnson [5,6].

In the second stage aggregation the d
±J

, or minimum distances between

points, are changed to the corresponding distances between first stage aggre-

gations. The procedure for finding the combination of aggregates which

yields minimum mileage is then the same as the one used for first stage
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aggregations. If it is determined that more than two stages of aggregation

are needed, the procedure is repeated as many times as necessary.

If no fractional values appear in the final solution the problem is

solved. If fractional values appear, a trial and error procedure is then

used to decide which alternative corresponds to minimum mileage.

In their paper [7], Dantzig and Ramser show the solution to a sample

problem involving deliveries to 12 service stations. The solution they

obtain results in a total distance of 29^ units. They believe, however, that

a slightly different trip assignment with a total distance of 290 units is

the true optimum solution to the problem. Therefore, their algorithm results

in a "best solution" which comes very close to the true optimum for the

particular numerical example used. They state that experience with the

method has shown that similar results may be obtained in other numerical

cases, particularly if the station demands do not differ too widely. They

also conjecture that the difference between the distance for the "best solu-

tion" and that of the true optimum decreases as the number of station points

increases.
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CLARKE AND WEIGHT METHOD

General Remarks

As was mentioned previously, a modification was proposed in 1°62 to

the Dantzig and Ramser method by Clarke and Wright [h] . This method was

chosen for further study for several reasons, these being:

(1) The procedure is simple but effective in producing a near optimal

solution.

(2) It can be used to solve large scale practical problems with

reasonable efficiency.

(3) It is well suited for programming on high speed digital computers.

(It) It has been found that this method gives better results than the

Dantzig and Ramser method in a number of cases tested. This has

been further substantiated by work done in this study, as is shown

in the Appendix.

(5) Because of its simplicity the author was able to modify this

approach to include additional conditions and restrictions which

constituted a significant part of this study.

The formulation is similar to that proposed by Dantzig and Ranser [7].

In using Dantzig and Ramser' s method, the restriction which allows only those

customers whose combined load does not exceed C/2
N_1

to be linked in the first

of H stages may also allow points to be linked that are far apart, and which

may be virtually on opposite ends of a straight line through the terminal

point. Although obviously long links may be excluded in the initial stages

by rapid corrections, when two points become linked in an aggregation they

remain aggregated. As a result, this places more emphasis on filling trucks
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to near capacity than on minimizing the total distance which must be traveled.

This led to the search for a better method of solution.

Theoretical Aspects of the Problem

Included in Clarke and Wright's paper is a discussion of the theory

behind their formulation of the problem. The discussion, however, does not

appear to fully explain several of the major points in the theoretical devel-

opment. This led to the development of the following discussion of the

theoretical aspects of the problem.

Consider the feasible allocation of trucks to demand points shown in

Figure 1 of Plate I. The demand points P
x>

P
y

, and P
z

are initially linked

only to the terminal point P
Q

. Three trucks, each traveling from the ter-

minal point to a demand point and back to the terminal point, are allocated

to haul the loads required by the demand points. The routes followed by

the trucks are represented by solid lines and the direction of travel indi-

cated by arrow heads. The total distance for all routes is:

2 d + 2 d„ + 2 dn .
[9]

0,x 0,y 0,z

Linking the two demand points P
x

and P
y

on a route and severing one link

from the terminal point to ?
x

and one link from the terminal point to P
y

results in the allocation shown in Figure 2 of Plate I. The resulting

"saving" in total distance over' the initial allocation is:

d + dA - d .
["I

0,x 0,y x,y

The total distance for all routes now becomes:

d + d + dA + 2 d. .
M

0,x x,y 0,y 0,z

Consider the allocation shown in Figure 3 of Plate I. This allocation

is obtained from the allocation shown in Figure 2 by linking the demand



EXPLANATION OF PLATE I

Fig. 1. A feasible allocation of trucks to demand points.

Fig. 2. Allocation obtained by linking demand points P and P .

Fig. 3. Allocation obtained by linking demand points P and P
x y

and demand points P and P .

y z



PLATE I
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Fig. 1

Fig. 3
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points P and P , severing the link from P„ to P , and severing one of the
y z y

links from P„ to P . The resulting saving in distance is:
z

d„ + d n - d . [12]
0,y 0,z y,z

The resulting total distance for all routes is:

d„ + d + d + d_ . [13]
0,x x,y y,z 0,z

The saving in total distance which would result from the linking of any

two demand points which are linked to the terminal point may he calculated as

shown ahove in equations 10 and 12. This saving is calculated for each pair

of demand points in the prohlem. The maximum of these savings is selected

that would, if linked, produce feasible routes consistent with truck avail-

abilities and capacities. These two demand points are now linked and the

next highest saving is determined and the procedure repeated.

Whenever a demand point is linked to two others (not P.) it will not he

considered again for linking. As a result of this, the only links that will

he severed will he those of points linked to the terminal point. Thus the

saving from linking two general demand points P and P is expressed- as the
y z

following relation:

d + d„ - d . [lh]
0,y 0,z y,z

Computational Procedure

The computational procedure used by Clarke and Wright will now be

explained. The procedure is listed and explained step by step so that it

can be easily referenced in the next section when the modified procedure

is explained.
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Step 1.

The first step in the computational procedure is the assigning of identi-

fication numbers to the demand points so that they can be more easily refer-

enced and worked with during the computational procedure. The demand points

are labeled P. (i = 1, 2, . .
.

, M) , where M is the number of demand points.

The demand points should first be ordered such that demand point 1 is

closest to the terminal point, demand point 2 is the next closest point,

and so on.

Step 2.

The second step iii the computational procedure involves the initial

allocation of trucks to demand points. It is assumed that the values of the

demands q. (i = 1, 2,..., M) are such that one truck can carry q... If this

assumption does not hold, trucks with the highest capacity available are

allocated to the demand point. The remainder of the demand, which will be

an amount less than a truckload of the highest capacity, is then considered

in the initial allocation, and the full truckloads are excluded from further

consideration. After this has been done, all demands which will enter into

the computation will be such that q - C
n (J = 1, 2,..., M) , where C

n
is the

highest available truck capacity. For convenience of computation, the truck

capacities C. are ordered such that C. , < C. (i = 2,..., n), where n is the
r

i l-l l

number of different available capacities.
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Step 3.

The numerical example used by Clarke and Wright is the same one used by

Dantzig and Ramser. This numerical example is also used in this section and

will be referred to as sample problem 1 throughout the remainder of this

paper.

The third step in the computational procedure includes the calculation

of the savings matrix and setting up the initial computational matrix. Since

the distance matrix is symmetrical, it is recommended that a half matrix be

used for hand computation. The format for this matrix as well as the neces-

sary matrix values for sample problem 1 are shown in Table 1. The entries

in the lower right-hand corner of each matrix cell (y:z) are the appropriate

distances d(P :P ) between demand points P and P by the shortest practicable
y z y z

route. The entries in the lower left-hand corner of each cell are the sav-

ings. These values are calculated as described above, i.e., for cell (y:z)

with y,z - 1, and y ^ z, the value of the saving is d + d
Q z

- d . A

column vector Q = (Q Q , ..., Q ) is added on the left-hand side of the

matrix. At the start of the computational procedure, the values entered in

this vector are the loads q. required by demand point P (i = 1, 2,..., M)

.

The remaining cell entries, designated as t , will always be either 0, 1,

or 2. If the two demand points P and P are linked on a truck's route, t
y z y,z

= 1 will be entered in the appropriate cell. A demand point served exclu-

sively by a truck will have a corresponding cell value t = 2. The cell

entry for each pair of demand points not linked and y,z > will be t = 0.

Step k.

The initial basic solution is now entered in the matrix set up in step
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Table 1. Distance matrix showing distances in lower right-hand corner
of each cell, saving in lower left-hand corner of each cell,
initial basic solution values in upper left-hand corner of each
cell, and the initial Q vector on left-hand side of matrix.

1200

1700

1500

11*00

1700

11*00

1200

1900

1800

1600

iii

2118 12 28 7

2310222017

22 L0 21E0 1.6

18 5

25102U1623

32R0 26^0 26

36L0 35

38L0 37

1*2 L0 1*120 36

20 30

L6 36

31*11)

22 2125 1$
;

16 31 '20 2338 c

26 2

20 3'

16 1*

30 25 1*1* 1C50 7

20 1*138 2

2l* 351*2 l£50 11

32 3336 2$1*1* 2C50 17ol* 10

50 13

8 10

1* 16

72 6 68 12
10

1700
5010 1*9 20 1*1* 31* 37 1*2 31 1*1* 28)50 25 1* 18 72 ll*,76 12 81* 8

11

1100
5210 51P0 1*6 3l* 3ql*6 gdUU 3ran P7fU pn I2_Ii 70

20 81* 1C92 10
12

Table 2. Allocation table in form suggested by Clarke and Wright.

Trucks
Up to

1*000 gal.

Over
1*000 gal.

Over
5000 gal.

Over
6000 gal.

Available

Allocated 12

7
'

1*
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3. The initial "basic solution as shown in Table 1 is entered as t = 2

(y = 1, 2,..., M), the values being shown in the upper left-hand corner of

each cell. Since a demand point may be linked to at most two other points,

one of which may be the terminal point P , the following relationshp always

k-1 M
It + Z t

Z=0 y> Z
y=k+l

with with
y=k z=k

=2 (k = 1, 2,..., M), [15]

i.e. , the sum along the k th row plus the sum along the k th column must

always equal 2.

Step 5-

The initial allocation table is set up in step 5- Since in the solution

some trucks may be only partially loaded, the number of trucks of the smallest

capacity, x , needs to be sufficiently large to insure that all demands will

be allocated. For purposes of computation, it is assumed that an unlimited

number of trucks of the smallest capacity are available, and this value is

set equal to co
.

Table 2 shows the number of available trucks above each capacity level

and the number of trucks already allocated. In the numerical example shown,

it is assumed that there is an unlimited supply of trucks of capacity U000

gallons, 3 trucks of capacity 5000 gallons, and k trucks of capacity 6000

gallons.

The now completed tables, Table 1 and Table 2, show the initial

feasible solution.
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Step 6.

The sixth step in the computational procedure is a search of the rows

and columns of the half matrix of Table 1 for the maximum saving. Only those

savings corresponding to links which are still eligible to be formed should

be included in the search.

If there are two or more equal maxima in the search, one of these is

selected randomly.

Step 7.

Test the maximum saving found in step 6 to see if the conditions listed

below are satisfied. ,l'f the maximum saving occurs in cell (y:z):

(1) t and t „ must be greater than zero. If these values are
y,0 z,0

greater than zero, demand noints P and P are still linked to the
y z

origin and these links are- therefore eligible to be severed.

(2) Demand points P and P are not already allocated on the same truck

run. This restriction is necessary to prevent "looping", a situa-

tion in which routes or "loops" are formed which do not include

the terminal point.

(3) Amending the allocation table (Table 2) by removing the trucks

allocated to loads Q and Q and adding a truck to cover the load
y z

Q + would not cause the trucks allocated to exceed the trucks
y ^z

available in any column of the allocation table.

If one or more of the conditions is not satisfied, the maximum saving

being tested is excluded from further consideration and step 6 repeated.
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Step 8.-

If all of the conditions listed in step 6 are satisfied, t is set

equal to 1 and the other values of t. are amended so that relation [15]

holds. This may he accomplished very easily hy reducing the values of t

and t n by I.

Step 9.

The Q vector must then he amended in two ways. First, each Q corres-

ponding to t. = is itself set equal to zero and second, each Q corres-

ponding to a demand point allocated on the new route is set equal to the

total demand for all p'oints on the route.

Step 10.

The allocation table is then changed to correspond to the new alloca-

tion. This consists of removing the trucks allocated to loads Q and Q

and adding a truck to cover the load Q + Q .

Step 11.

The first iteration is now completed. If more links are possible repeat

the procedure from step 6 on.

Step 12.

If no more links are possible, i.e., no maximum saving will satisfy all

conditions, the final solution has been found. The final allocation of demand

points to routes and the exact order of visitation of demand points may then

be determined from the t. , half matrix, and the final allocation of
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available trucks may tie obtained from the final allocation table. The

distances for each route and the total distance for all routes may then

be calculated by referring to the original distance matrix.

The computational procedure will now be discussed in conjunction with

sample problem 1 to facilitate the reader's understanding. Steps 1 through

5, in which the problem is set up as shown in Tables 1 and 2, are adequately

discussed. The emphasis will be put on discussing the computational aspects

of the first iteration starting at step 6. The reader may wish to refer to

the computational matrix and allocation table for the first iteration which

are shown as. Tables 3 and It, respectively.

Step 6.

The maximum saving of the half matrix of Table 1 is 92, found in cell

(12:11). Therefore, y = 12 and z = 11. No equal maxima are involved in

this case.

Step 7-

The maximum saving is then tested to see if it meets all conditions.

(1) T and t are both equal to 2 and are therefore greater than

zero.

(2) Demand points P.„ and P.. have not already been allocated on the

same truck run, since each is initially on a separate truck run

from the terminal point.

(3) Amending the allocation table (Table 2) by removing the trucks

allocated to loads Q.. and Q , 1100 gallons and 1700 gallons,

respectively, would create an allocation of 10 trucks in the ''up

to ItOOO gal." column, with all other columns remaining as they

were . The load „ + Q. , or 2800 gallons , would require a truck
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Table 3. Computational matrix after completion of first iteration.

Q p
n

1200 2 P
l

1700 2 P
2

1500 2 P
3

1H00 2 P
l>

1700 2 P
5

ll*00 2 P
6

1200 2 P
7

1900 2 P
8

1800 8 P
9

1600 2 P
10

2800 1
P
ll

2800 1 1
P
12

Table h. Allocation table after completion of first itersition.

Trucks
Up to
U000 Gal.

Over
1(000 gal.

Over
5000 gal.

Over
6000 gal.

Available

Allocated 11

7 It
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having a capacity of ^000 gallons, resulting in an allocation of

11 trucks in the "up to U000 gal." column. This does not cause

the trucks allocated to exceed the trucks available in any column

of the allocation table.

All of the conditions are satisfied, therefore procede to step 8.

Step 8.

T is set equal to 1 and the values of t and t are reduced

"by 1, making them each equal to 1.

The Q vector is amended by setting Q and Q equal to 2800 gallons

,

the total demand for all points on the new route formed by linking demand

points P „ and P .

Step 10.

The allocation table is then changed to correspond to the values obtained

in step 7 , as shown in Table k .

Step 11.

The first iteration is now completed. The resulting computational matrix

is shown in Table 3. More links are possible since not all of the eligible

savings have been tested for entry into the basic solution. Therefore , the

procedure would be to return to step 6 and select the next eligible maximum

saving.

The computational procedure described above has been programmed for the

IBM 1620 computer. A complete description of the computer program is found

in the Appendix of this paper. As explained there, it is possible to obtain
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the values of the computational matrix and allocation table for each itera-

tion. Sample problem 1 has been solved in this manner, and the remainder of

the iteration-by-iteration solution of sample problem 1 is found in the

Appendix in the section on sample problems.

The final solution for sample problem 1 is shown in Table 5 and Table 6.

An explanation is now given of how to read the sequence of stops, i.e., the

final allocation of routes, from Table 5.

The procedure starts by checking the values of t.
1 i

(i = 1, 2,..., K)

until one is found for which t^O. At. .=0 indicates that stop i is

linked to two points other than the origin. At. =1 indicates that stop

i is linked to the origin and signifies the beginning or ending of a route.

At. = 2 indicates that stop i is served exclusively by a truck.

When at. = 1 is found the stop, other than the origin, which is linked

to stop i must be found. This is done by searching row i and/or column i

until at. . = 1 is found. The row or column for which this is the case is
IfJ

the stop linked to stop i . As an example , t = 1 in sample problem 1

.

The other stop linked to stop 1 is found by searching column 1 until a t.

1 is found, the value of i for which this is true being i = 2. Therefore,

stop 2 is linked to stop 1. The stop, other than stop 1, which is linked

to stop 2 is then found by searching row 2 and column 2 until the value t

= 1 is found, indicating that stop 3 is linked to stop 2. The remainder of

the stops allocated on this route are then found in a similar manner, as are

the stops allocated on other routes.

The final routes and distances for sample problem 1 are listed below.

The route numbering corresponds to that used by Clarke and Wright. The

numbering for the computer solution differs slightly as is explained in the

discussion of the computer program in the Appendix.
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Table 5. Computational matrix after completion of final iteration.

0.

p
*0

5800 1 P
l

1 P
2

1 P
3

5800 1 1 P
^

1700 2 P
5

5100 1 P
6

5600 1 P
T

1 P
8

5100 1 1 P
9

1 P
10

1 pu

5600 1 1 P
12

Table 6. Allocation table after completion of final iteration.

Trucks
Up to

1(000 BBl.

Over
U000 Ral.

Over
5000 gal.

Over
6000 gal.

Available

Allocated 1

7

3

It

3
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(1) Route 1: P. - P_ - P.. - P.. - P
n
„ - P. having a distance of 112

miles and requiring a truck having a capacity of 6000 gallons.

(2) Route 2: P - P
fi

- P„ - PQ - P. having a distance of 80 miles and

requiring a truck having a capacity of 6000 gallons.

(3) Route 3: P. - P, - P„ - P, - P^ - P
Q
having a distance of 5 1* miles

and requiring a truck having a capacity of 6000 gallons.

{h) Route 1*: P - P - P having a distance of UU miles and requiring

a truck having a capacity of ^000 gallons. Note that this demand

point la served exclusively by & trues and therefore t.
Q

2 in

the final computational matrix.

The total distance for the routes listed above is 290 miles, believed by

Dantzig and Ramser to be the true minimum mileage solution.

Clarke and Wright state that although the improvement in this example

is slight, a problem involving 30 demand points resulted in an improvement of

17 per cent over the Dantzig and Ramser method.

It is further suggested that, although the solution gives the order of

visitation of demand points, it may be beneficial to solve the traveling

salesman problem for each truck in the final allocation to determine the

true optimum order of visiting.

The Algorithm Summarized

The basic steps in the computational procedure will now be listed to

provide a summary of the algorithm.

Step 1. Order the demand points according to their distance from the

origin such that demand point 1 is closest to the origin, de-

mand point 2 is next closest, and so on. Label the demand

points P. (i = 1, 2,..., K).
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Step 2. Assign an initial allocation of one truck to each demand point

if the allocation is feasible. If the allocation is infeasible

split the invalid demands to produce a feasible allocation.

Step 3. Calculate the savings.

Stei) h. Enter the initial basic solution in the initial computational

matrix (Table l).

Step 5. Set up the initial allocation and availability table as shown

in Table 2.

Step 6. Find the maximum eligible saving in Table 1. If there are two

or more equal maxima, choose one of them randomly.

Step T. Test the maximum saving found in step 6 to see if it meets

conditions 1 through 3 listed above. If any one or more of

these conditions is not satisfied exclude the maximum saving

from further consideration and return to step 6.

Step 8. If all of conditions 1 through 3 are satisfied, set t. » 1

for the cell corresponding to the maximum saving and amend the

rest of the t. . values so that relation [15] holds.

Step 9. Amend the Q vector.

Step 10. Change the allocation table (Table 2) to correspond to the new

allocation.

Step 11. Repeat the procedure from step 6 if more links are possible.

Step 12. If no more links are possible, determine the allocated routes,

their respective distances, and the total distance for all

routes.
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MODIFIED CLARKE AND WRIGHT METHOD FOE MULTIPLE RESTRAINTS

Modifications

This section contains a discussion of the modifications which can "be

made in the Clarke and Wright method to incorporate additional restraints

on the system and to improve the computational procedure. In addition,

limitations of the method are pointed out and discussed, and possible

procedures for overcoming these limitations are suggested. The modifica-

tions are discussed in reference to the steps of the previous method so

that the two methods can easily he compared.

Step 1 of the modified procedure is the same as step 1 in the previous

method.

Step 2.

The second step in the computational procedure involves the initial allo-

cation of trucks to demand points. It is assumed that the values of the

loads required at each demand point are such that an initial allocation of

one truck to each demand point is possible. In the case in which one or

more demands are larger than the largest available truck an allocation can

still be made. This is done by splitting the large load into two (or more)

full truckloads of the highest capacities available and only considering the

remainder of that load, an amount less than a truck load of the highest

capacity. Thus, all loads considered in the problem will be such that

q. - C (i = 1, 2,... , M).
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The solution of example carrier routing problems has pointed up a limita-

tion of the modified Clarke and Wright algorithm occurring in the allocation

of carriers to demand points. This limitation will now be discussed and a

possible means of overcoming the limitation is also suggested.

An obvious difficulty occurs when there are not enough large trucks

available to assign one truck to each demand point. This situation might be

remedied by combining demands until they become such that an allocation of

one truck to each demand can be made. This should be done before the compu-

tational procedure is started. This procedure, however, might cause an

otherwise best solution to become a less favorable one.

A difficulty may occur even when there are enough large trucks available

to assign one truck to each demand point. A number of the larger trucks may

have been assigned small loads in the initial allocation to insure an alloca-

tion of one truck to each demand point. These large trucks could be put to

better use hauling larger combined loads since the algorithm emphasizes com-

bining small loads into larger ones. This combining of small loads will allow

the trucks to which these loads were initially assigned to become available

for further use. However, the algorithm does not include a provision for

reassigning the small loads initially assigned to large trucks to the small

trucks made available by the combination of loads. Therefore, it is sug-

gested that the algorithm be modified to include a reassigning of trucks to

loads each time two loads are combined.

The modified allocation procedure is as follows:

(1) Arrange the loads in order of increasing size with the smallest

load first.

(2) Each load, starting with the smallest, is then assigned to the

smallest available truck which can haul the load.
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After each iteration, in which tvo smaller loads are combined into a larger

one, the above procedure is repeated. This procedure should also he used

when assigning the initial allocation of trucks to demand points.

It is believed that this modified procedure will make better use of the

available trucks in certain cases, thus resulting in a better solution in

terms of total miles traveled.

The computer program includes this modified allocation procedure and

its use is explained in the discussion of the computer program included in

the Appendix. It should be noted that the use of the modified procedure is

optional since it is useful only in certain cases and it requires more

running time than the normal allocation procedure.

Steps 3 and 1* of ' the modified procedure are the same as the corres-

ponding steps in the previous method.

Step 5-

For ease of computation and to avoid confusion during the computational

procedure, it is suggested that the form shown in Table 7 may be used. In

this table the actual values of the capacities and availabilities are shown

rather than the cumulative availabilities shown in Table 2.

For purposes of computation, Clarke and Wright set the number of trucks

of the smallest capacity equal to ». However, the number of trucks of the

smallest capacity available may be limited. It is believed that economic

considerations will reduce the number of trucks of this capacity which will

be allocated in the final solution to a value very nearly equal to or less

than the actual number available. However, the problem of requiring more

trucks than are available can be avoided in the situation where the largest

demand is less than the smallest available truck capacity by adding a "dummy"
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Table 7. Allocation table in form suggested by the author.

Trucks
ItOOO

gallons

5000
gallons

6000
gallons

Capacity
m oo

Available

Allocated . 12

3 It

Table 8. Allocation table with "dummy" capacity of 1900 gallons.

Trucks 1900
gallons

Hooo
gallons

5000
gallons

6000
gallons

Capacity

Available

Allocated 12

2 3 ll

Table 9. Allocation table with mileage restrictions.

_————
1

Trucks
1)000

gallons
5000

gallons

6000
gallons

Capacity

Available

Allocated 12

3 It

Distance re-

striction [miles
, 10 It 10lt 10U
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capacity. If this is not the case, the procedure suggested by Clarke and

Wright should be used. The "dummy" capacity, if used, should be set equal

to the largest demand. It can then be assumed that an infinite number of

trucks of this capacity are available, and the correct number of trucks with

the smallest capacity can then be used in the computation. This procedure

is demonstrated in sample problem 1 as is discussed below.

A word of caution is added on the use of the modified procedure ex-

plained above, especially if the demands vary widely from demand point to

demand point. Consider a situation in which the sum of the demands for

two or more demand points is considerably smaller than the largest demand

and the capacity of the smallest truck. If a "dummy" capacity equal to the

largest demand were used in this situation, it is conceivable that this

"dummy" capacity could be allocated in the final solution. If this is true,

a check should be made on the allocation of trucks with the smallest capa-

city. The trucks allocated to the "dummy" capacity can in most cases be

transferred to the smallest capacity available without exceeding truck

availabilities. It is suggested that this procedure be used when possible.

Table 8 is the initial allocation table for example problem 1 with a

"dummy" capacity of 1900 gallons added. As was discussed previously, this

"dummy" capacity is assigned the initial allocation of 12 trucks. This

allows the actual number of trucks of the smallest capacity, in this case

assumed to be 2 trucks of H000 gallons each to be used in the computation.

It is possible to use the "dummy" capacity in this case since the largest

demand is less than the smallest available truck capacity.
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Step 6.

It was stated in the previous section that Clarke and Wright suggest

selecting randomly one of two or more equal maxima in the search. It is

noted that the other equal maxima should also he tested for entry into the

hasic solution. The equal maxima should he tested in row hy row order

starting with the saving in row 2 and column 1. After a saving has been

tested it need not he considered again, regardless of whether or not it was

entered into the hasic solution. It should he noted that the computer pro-

gram includes this modification.

Step 7-

It is in this step that the procedure is modified to include multiple

restraints. Thus in addition to satisfying the first three conditions of

step 7 in the previous procedure, additional restraints on the system can

he incorporated. In particular, if the mileage restriction discussed

previously is to he included in the problem formulation, the maximum saving

would also be subject to the following condition in step 7:

(U) The total mileage of the new route formed hy the addition of demand

ooints P and P must be less than or equal to the mileage restric-
* y z

tion for the truck capacity necessary to haul the load Q + Q
z

-

If this additional condition is included in the problem formulation, the

allocation table is modified. The allocation table for sample problem 2,

which is a modification of sample problem 1, is shown in Table 9. Table 9

is Table 7 with a row added to include the restriction that a truck of a

given capacity can travel no more than a specified number of miles on a route.

It has been assumed, as shown in Table 9, that all trucks can travel up to

10H miles per route.
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Additional restrictions such as time spent on a route could also be

included in step 7 in the same manner.

The computer program mentioned previously was modified to include a

restriction on the number of miles which can be traveled by each truck.

Sample problem 2 with the mileage restriction was solved using this computer

program and the solution is included in the sample problem section of the

Appendix

.

Steps 8, 9, and 10 of the modified procedure are the same as the corres-

ponding steps in the previous method.

Step 11.

/

Step 10 completes each iteration. If there are more savings to check

for entry into the basic solution reassign the trucks to the loads following

the procedure outlined under step 2 above. After this has been done return

to step 6 as usual.

Step 12 of the modified procedure is the same as step 12 in the pre-

vious method.

The Modified Algorithm Summarized

The computational procedure for the modified algorithm may now be sum-

marized as follows:

Step 1. Order the demand points according to their distance from the

origin such that demand point 1 is closest to the origin,

demand point 2 is next closest, and so on. Label the demand

points P
i

(i = 1, 2,..., M).

Step 2. Assign the initial allocation following the procedure outlined

under step 2 in the discussion of the modified algorithm.
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Step 3. Calculate the savings.

Step h. Enter the initial basic solution in the initial computational

matrix ( Table 1 )

.

Step 5. Set up the initial allocation and availability table as shown

in:

(1) Table 7 if a "dummy" capacity is not used.

(2) Table 8 if a "dummy" capacity is used.

(3) Table 9 if additional restrictions are included in

the problem formulation.

Step 6. Find the maximum eligible saving in Table 1. If there are

two or more equal maxima, follow the procedure outlined under

step 6 in the discussion of the modified algorithm.

Step T- Test the maximum saving found in step 6 to see if it meets

conditions 1 through k. If any one or more of these condi-

tions is not satisfied exclude the maximum saving from further

consideration and return to step 6.

= 1
Step 8. If all of conditions 1 through h are satisfied, set t^,

for the cell corresponding to the maximum saving and amend the

rest of the t. . values so that relation [15] holds.

Step 9. Amend the Q vector.

Step 10. Change the allocation table (Table 7, 8, or 9) to correspond

to the new allocation.

Step 11. If there are more savings to check reassign the trucks to

the loads and return to step 6.

Step 12. If no more links are possible, determine the allocated routes,

their respective distances, and the total distance for all

routes
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Discussion of Sample Problems

A number of sample problems have been solved both by hand and using the

computer program -written for the solution of carrier routing problems. These

problems and their solutions are included in the Appendix, and consist of the

following:

(1) A complete solution of the 12 stop sample problem referred to as

sample problem 1. This problem solution includes the computational

matrix and revised allocation table for each iteration, and was

obtained using the computer program. Note that the destination

identification. numbers in the computer output do not correspond to

those used in the previous discussion of sample problem 1. This

discrepancy and the res.son for it are explained in the discussion

of the computer program in the Appendix. The two solutions may be

easily compared, however, as the destination numbers in the computer

used in the previous discussion.

(2) Sample problem 1 with the mileage restriction for all trucks set

at 10U miles. Demand point P , which is 52 miles from the terminal

point, may be served exclusively by a truck in the final solution.

Therefore, the distance restriction must not be less than 10U miles

to admit this possibility in the final solution and insure obtain-

ing a feasible solution. As in sample problem 1, the problem solu-

tion includes the computational matrix and revised allocation table

for each iteration, and was obtained using the computer program.

The problem also includes a "dummy" capacity of 1900 gallons to

show the use of a "dummy" capacity in an actual example. It should

be noted that a truck of the "dummy" capacity was allocated in the



uo

final solution. As discussed previously, this allocation can be

transferred to the smallest capacity, 1*000 gallons, since no trucks

of this capacity were allocated and 2 were available.

(3) The 5 stop problem referred to previously as having been solved by

dynamic programming. The dynamic programming solution is shown and

explained in addition to the computer output. The modified Clarke

and Wright method results in the same optimal solution as the

dynamic programming method.

«(10 An actual 13 stop problem involving the routing of feed delivery

trucks. The modified Clarke and Wright method gave a total dis-

tance of ll*33 miles using h trucks as compared to the routing in

use by the company which involved a total distance of iklh miles

and 5 trucks. Although the improvement in total mileage is slight,

the use of one less truck could save the company a considerable

amount of money.

*(5) An actual 33 stop problem involving the routing of feed delivery

trucks. In this example all trucks had the same capacity. There-

fore, a number of demand points requiring full truck loads were

eliminated from the problem before a solution was attempted. The

resulting problem which was solved using the computer program,

involved 25 demand points. The modified Clarke and Wright method

gave a total distance of 1U68 miles involving Ik trucks. This was

a saving of 119 miles and 2 trucks, a substantial improvement over

*Data for these sample problems was graciously furnished by the Grain

and Feed Marketing Project of the Agricultural Experiment Station at Kansas

State University.
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the method in use by the company. It should he noted that the

solution to this problem obtained using the Dantzig and Ramser

method resulted in the same total distance as the method in use

by the company, providing further justification for the use of

the modified Clarke and Wright method.
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CONCLUSIONS

Because of only recent interest in the carrier routing problem, a limited

number of methods for solving the problem are currently available. A summary

of these methods and the reasons for their acceptance or rejection is now

given.

An integer programming formulation of the generalized traveling salesman

problem was studied as a possible method of solution for the carrier routing

problem. It was rejected because of the nature of the algorithms currently

available for solving integer programming problems, and it did not appear to

be easily modified to include the additional restrictions the author desired

to include in the study.

Another technique considered as a possible method of solution for the

carrier routing problem is a simulation routine which, for purposes of the

study, was thought of as a limited version of complete search. The technique

was rejected because the work on it has not yet reached a stage of develop-

ment such that a statement can be made about its practicability for solving

large scale problems.

Dynamic programming was also considered as a possible method of solution

for the carrier routing problem, and an actual small scale problem was solved

using a dynamic programming approach. However, it was also rejected because

it was felt that the dynamic programming method was too closely related to

pure search, and the computational labor would become prohibitive on large

scale problems as is the case with pure search.

Finally, two algorithmic methods of solution for the carrier routing

problem were studied. The first algorithm was developed by Dantzig and

Ramser [7]. The second algorithm, a modification of the first, was developed
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by Clarke and Wright [h] , and was found to give better results than the

Dantzig and Ramser method in a number of cases tested. Therefore, the

Dantzig and Ramser method was rejected for further modification and study.

The Clarke and Wright method was then modified to incorporate multiple

restraints and to improve the computational procedure. A modified allocation

procedure which will make better use of the available carriers was also

suggested. This modification of the Clarke and Wright method is practicable

and efficient for solving large scale problems. Even though it does not

guarantee an optimal solution, it appears to be the "best" method available

at the present time for the solution of practical large scale routing problems.

Several sample carrier routing problems were solved using the modified

Clarke and Wright method. Two of these were actual problems involving the

routing of feed delivery trucks. In the first problem the modified method

gave a saving of kl miles and 1 truck over the method in use by the company,

and in the second problem gave a saving of 119 miles and 2 trucks over the

method in use by the company. The modified method was never beaten in the

solution of the sample problems, although it was tied in the 5 stop problem

(sample problem 3) by dynamic programming.

Much work remains to be done on the carrier routing problem. The need

for an algorithm which will give a guaranteed optimal solution is obvious.

A promising step in this direction is the algorithm for solving integer

programming problems developed by Gomory [3]. It appears that this technique,

when further developed and applied to the carrier routing problem, may pro-

vide an optimal method of solution.
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Discussion of Computer Program

Manually solving carrier routing problems can become an extremely tedious

and laborious task, even when solving relatively small problems. The itera-

tive nature of the computational procedure provides an ideal situation for

the use of a high speed electronic computer. Therefore, a computer program

was written in FORTRAN II for the IBM 1620 computer to solve carrier routing

problems. The program has the capability of solving problems which include

a restriction on the number of miles which can be traveled by each capacity

of carrier. The program, dimensioned to solve a problem involving a maximum

of 36 demand points (not, including the origin) and a maximum of 10 different

capacities of carriers', occupies 59,382 positions of core storage. The fol-

lowing discussion of the program is divided into three categories:

(1) Discussion of the output.

(2) Control card and input data cards.

(3) Operating procedure for the IBM 1620 computer.

( 1 ) Output

Normal program output is on cards, and includes the following:

(1) A series of statements for each allocated route listing the demand

points allocated to the route in their correct order of visitation,

the total distance for the route, and the capacity of carrier re-

quired for the route.

(2) The total distance for all routes.

(3) The final allocation of carriers of each capacity.

If it is desired to monitor the course of the solution, additional out-

put may be obtained. The punching. of this additional output is under control
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of SENSE SWITCH 1, the output being punched if the switch is on, and the

punching being suppressed if the switch is off. The following additional

output will be punched if SENSE SWITCH 1 is on:

(1) The initial allocation of carriers.

(2) The saving half matrix elements with respective row and column

identification numbers.

(3) The maximum saving at each iteration with its row and column

identification numbers.

(It) if the maximum saving satisfies all conditions, ths following

series of output will be punched:

(a) All non-zero elements of the ^ , half matrix.

(b) The current Q vector.

(c) The current allocation of carriers.

(5) If the maximum saving does not satisfy all conditions (including

the mileage restriction), a statement will be punched indicating

whether one or more of conditions 1 through 3 were not satisfied,

or whether the mileage restriction was not satisfied.

If the modified allocation procedure is used the output will also include

the revised allocation of carriers immediately following the allocation nor-

mally assigned by the program. As was stated previously, the use of the

revised allocation procedure is optional. Its use is controlled by SENSE

SWITCH 2, the modified allocation procedure being used if the switch is on,

and the normal allocation procedure being used if the switch is off.
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The numbering system used "by the computer program differs slightly from

that used in the previous discussion of sample problem 1. This was done

because the FORTRAN II programming language used does not allow the use of

subscripts. Therefore, the origin, which was numbered in the previous

discussion, is numbered 1 when using the computer program. The demand points,

previously numbered starting with 1, are numbered starting with 2. Therefore,

the half matrix rows are numbered from 2 to M, where M is the number of points

involved including the origin, and the half matrix columns are numbered from

1 to M,

It should be noted that in certain infrequent instances the computer out-

put will list routes to which no stops have been allocated. This is due to

the program itself and is not an error in the input data, and these invalid

routes should be disregarded. These routes are formed at a stage in the

solution at which it was necessary to assume that a route would be formed

before it was known whether or not the route actually would be formed. If,

at a later stage, it was determined that the route should have been formed

the output is normal. If, however, it was determined that the route should

not have been formed a lengthy and difficult reordering procedure would have

been necessary. Since program efficiency and core storage requirements, as

well as conciseness and quality of output, were factors considered in the

programming of the modified algorithm, it was decided to allow the output to

contain the invalid routes rather than perform the reordering procedure. Two

examples of these invalid routes occur in the output for sample problem h,

these being routes 2 and 5. Therefore, only four routes were actually formed

rather than six as the output would at first seem to indicate.
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(2) Control Card and Input Data Cards

The necessary control card and input data cards will now be discussed

for the "benefit of those wishing to use the program. The cards will be

discussed in the order in which they are read into the computer and conse-

quently must be arranged.

The first card is a control card and contains two values. The first

value is the number of points involved (including the origin) and must be

right-justified in columns 1 - k. The second value is the number of different

capacities of carriers available and is right-justified in columns 5-8.

This number should include only those actual capacities available. It may

be seen in the sample problems that an additional capacity is necessary in

the computation. This additional capacity is set to equal to » for hand compu-

tation and is internally set equal to 999999 *>y "the computer program. The

number of carriers corresponding to this capacity is internally set equal to

0, and the mileage restriction for this capacity is also internally set equal

to 0.

Three sets of input data cards are required by the program. The values

found on the first set of cards are the demands at each demand point. These

values are punched one per card, and must be right-justified in columns

1-6. They must be arranged in ascending order of identification number,

i.e., the demand at point 2 is punched first, followed by the demand at

point 3, etc. Note that the demand points should already have been arranged

according to their distance from the origin.

The second set of input data cards contains the distance half matrix

elements punched one per card. Each element is accompanied by its row-column

identification. The row number is right-justified in columns 1 — U , the
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column number right-justified in columns 5-8, and the distance element

right-justified in columns 9-12. All distances must be given in the same

units, e.g., miles or tenths of miles. If the user desires to work with

fractions of units, the distances must all be scaled by the appropriate

factor of 10 to make them whole numbers. The distance elements must be

minched row by row starting with the element in position [2,1].

The third and final set of input data cards contain three values each.

The first value is the number of carriers available of a given capacity and

is right-Justified in column* 1-1*. The capacity corresponding to this

availability is the second value on the card and is right-justified in

columns 5 -.9. The third value is the maximum number of miles which can be

traveled by a carrier of the corresponding capacity. This number is right-

justified in columns 10 - 13. The number of carriers of the smallest capa-

city should be entered as 9999 if the "dummy" capacity discussed previously

is not used. If the "dummy" capacity is used, its corresponding number of

carriers should be entered as 9999- This number assumes the same role as

<= does in the hand computation.

The input data cards must be arranged in the following order to be read

into the computer:

(1) Control card.

(2) Set of demand cards.

(3) Set of distance cards.

(U) Set of cards containing availabilities, capacities, and distance

restrictions.

The program has been compiled and is available in object deck form

including the necessary subroutines. An explanation of the procedure for

solving a carrier routing problem on the IBM 1620 computer is given in the

next section.
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(3) Proolem Solving Procedure

The following section is an explanation of the operating procedure for

solving a carrier routing problem on the IBM l620 computer.

I. Clear core storage.

A. Depress INSTANT STOP key.

B. Depress RESET key.

C. Depress INSERT key.

D. Type the instruction 160001000000R-S.

E. After approsimately four second depress INSTANT STOP key.

F. Depress RESET key.

II. Prej>are card/punch.

A. Pick up the cards in the punch hopper.

B. Depress the NON-PROCESS RUN OUT key on the 1622.

n Place clank cards in the punch hopper.

D. Depress the PUNCH START button on the 1622.

III. Set SENSE SWITCHES.

A. Turn SENSE SWITCH 1 on if output is desired at each itera-

tion; off, if iteration output is to be suppressed.

B. Turn SENSE SWITCH 2 on if the modified allocation procedure

is to be used; off, if the normal allocation procedure is to

be used.

C. SENSE SWITCH'S 3 and It are not interrogated and should be

turned off

.

IV. Load object deck and subroutines.

A. Place object deck and subroutine deck in reader hopper.

B. Depress yellow LOAD button on l622.

C. When the message LOAD SUBROUTINES is printed on the typewriter

depress START key.

i
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D. To read in the last two cards, depress the READER START

button on the 1622.
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***********************
* "*

*

*
50URCE DECK LISTING *

*********************

*» CARRIER ROUTING WITH DISTANCE RESTRICTION
*0806

DIMENSION LB (10) iLCAP ( 10 ) .MILE ( 10 ) .MALI 10)

DIMENSION LO(37).LR(37).LDIS(37).LRD(37) .LQSI37) , LSUMI 37 ) .LRR 1 37

>

DIMENSION LQQI37)
DIMENSION II (666) .JJI666) »LD(666) .LSI 666) .LTI666)

C

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

DATA READ IN

300
1

READ l.M.NN
F0RMATI2IA)

M = NUMBER OF STOPS INCLUDING ORIGIN
NN = NUMBER OF DIFFERENT CAPACITIES OF CARRIERS
CALCULATE K.0N1 (TOTAL NUMBER OF DISTANCES INVOLVED)
K0N1 = SUMMATION FROM I = 1 TO I = M-l OF I

2

MM=M-1
K0N1=0
DO 2 1=1. MM
KON1=KON1+I

KONO = MAX. NUMBER OF ITERATIONS

3

KONO=KON1-MM
READ 3.ILQI I ) »I=2.M)
FORMAT! 16)

LQ( I ) = LOAD AT STOP I

5

DO h I=1.K0N1
READ 5. II ( I) .JJ( I ) .LD( I

)

F0RMATI3I4)

LD(I) = MIN. DISTANCE FROM STOP II II) TO STOP JJ ( I

)

6

7

DO 6 1=1. NN
READ 7»LB( I) .LCAPI I ) .MILE( I

)

FORMATf I4.I5.U)
c

c

c

c

c

c

LB(I) = NUMBER OF CARRIERS OF CAPACITY LCAP ( I

)

MILE(I) = MAX. NUMBER OF MILES WHICH CAN BE TRAVELED BY A

CARRIER OF CAPACITY LCAPI I)

INITIALIZATION OF CARRIER CAPACITIES
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N=NN+1
LB(N)=0
LCAP(N)=999999

c

c

c

c
c

MILE(N)=0

ASSIGN INITIAL ALLOCATION

IFISENSE SWITCH 2)801.800

REVISED INITIAL ALLOCATION PROCEDURE
c

801 DO 802 1=2.

M

802 LOQ( I)=LQ(I)
DO 817 1=1.

N

817 MALI I)=0
J = 2

816 1=2
ISAV=I
LOW=LQQ< I

)

805 1 = 1 + 1

IF( I-M1803. 803.806
803 IFILQQI I) -LOW 1804. 805. 805
804 LCW=LQO( I

)

ISAV=I
GO TO 805

806 K = l

808 IFILOW-LCAPIK) 1809.809.807
807 K = K + 1

IFIK-NNI808.808.811
809 MAL(K)=MAL(K)+1

IF(MALIK)-LBIK) 1815.815.810
810 MAL(K)=MAL(K)-1

GO TO 807
811 PRINT 812
812 FORMAT170HTHERE ARE NOT ENOUGH AVAILABLE CARRIERS T

LTO EACH DEMAND)
GO TO 814

ALLOCATE ONE

815 LQQI ISAV) =999999
J = J + 1

IFIJ-M1816.816.12
800 DO 700 1=1,

N

700 MALI I 1=0

DO 704 1=2.

M

J = l

701 IF(LQ*I 1-LCAPIJ) 170 3.703.702
702 J = J + 1

GO TO 701
703 MAL(J)=MAL(J)+1
704

C

C

CONTINUE

INITIALIZATION
c
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12 DO 16 1=2,

M

LRD( I)=0
LDISI1 )=0

LQSI I >'LQ< I)

LRR(I)=0

c

c

16 LR( I )=0

LRU) = VECTOR TO SAVE ALLOCATED ROUTES

c LDISd) INTERMEDIATE DISTANCE FOR ROUTE I

c LRDd) = TOTAL DISTANCE FOR ROUTE I

c LQSI I) SAVES Q VECTOR IN CASE DISTANCE REQUIREMENT IS

c NOT SATISFIED
c LRR(I) SAVES CHANGED LR ( I ) IN CASE DISTANCE REQUIREMENT

c

c

IS NOT SATISFIED

KON2=0
c
c

c

KCN2 = ITERATION NUMBER

LTD =

KON10=O
c

c

c

KON10 SAVES NUMBER OF ROUTES WHICH HAVE BEEN ALLOCATED

K0N6=0
c

c K0N6 = ROUTE BEING ALLOCATED
c

c

CALCULATION OF LSUM(I) TO SAVE I CORRESPONDING TO (1,1)

DC 315 1=2.

M

jl5 LSUM1 I )=0

1=3

317 LA=I-2
DC 316 J=1,LA

316 LSUMI I )=LSUM( I )+J
1 = 1 + 1

c

c

c

IFd-M)317, 317,318

CALCULATION OF SAVINGS

318 LSI l)=+99999
1=3

25 J = l

K = I-1
22 LA=LSUM(I)+J

IF( J-l)20.20,21
20 LS(LA)=-99999
23 J=J + 1

IF< J-K122, 22,24
21 LF=LSUM( I )+l

LSAV1=LD(LF)
LF=LSUM(J)+1
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LSAV2=LD<LF>
LF=LSUM< I )+J
LSAV3=LD(LF>
LS(LA)=LSAV1+LSAV2-LSAV3
GC TC 23

24 1 = 1+1

c

c

c

IF( I-MI25.25.37

PUNCHCUT CF INITIAL ALLOCATION AND SAVING MATRIX

37 IFISENSE SWITCH 1)32.40
32 PUNCH 13

13 FCRMATI18HINITIAL ALLOCATION/)
DO 14 1 = 1 *

N

14 PUNCH 55.LCAPI I I.MALI I

)

15 FORMAT110HCAPACITY = I 7 . 2X » 18HNUMBER ALLOCATED =14)
PUNCH 33

33 FCRMATdH )

PUNCH 33
PUNCH 11

11 FORMAT! 14HSAVINGS MATRIX/)
PUNCH 34

34 FCRMAT(3HR0W.3X»3HCCL.3X»6HSAVING/>
DC 35 I=1.KCN1

35 PUNCH 36. IK I) »JJ( I ) .LSI I

)

c

c

c

36 FORMAT! I3.3X.I3.3X.I6)

ASSIGN INITIAL BASIC SOLUTION

40 1 = 1

43 IF1JJI I)-l)41,42.41
41 LT(I)=0
44 1 = 1 + 1

IF( I-K0ND43.43.135
42 LT( I)=2

GO TC 44
c
c
c

SEARCH OF SAVING VECTOR FOR MAXIMUM SAVING

135 1 = 1

MSAV = LS( I )

IK= I I ( I )

JK=JJ( I

)

52 1 = 1 + 1

IF! I-KCND50.50.290
50 IFIMSAV-LS1 I ) 151.52.52
51 MSAV=LS( I

)

I<= I I ( I

)

JK=JJI 1

)

GO TC 52
290 IFIMSAVI2Q0. 53.53
53 KON2 = K.ON2 + l
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LHMC=0
c

c PUNCHCUT CF MAX. SAVING
c

55 IFISENSE SWITCH 1)56.60
56 PUNCH 33

PUNCH 33
PUNCH 57.IK.JK.MSAV

57 FCRMATI3HI =I4»2X.3HJ = 14. 2X , 13HMAX. SAVING =16/)

c
c CHECK TC SEE IF MAX. SAVING MEETS PRESCRIBED CONDITIONS
c IDI IS THE I CORRESPONDING TO (IK.l)

c

c

c

60 IDI=LSUM( IK1+1

CONDITION 1

c
64 IFILTI IDI ) 1301.301 ,65

301 LMN = 1

GO TO 136
c

c

c

IDJ IS THE I CORRESPONDING TO ( JK . 1

)

65 IDJ=LSUM( JKJ+1
c

c

c

CONDITION 1

69 IFILTUDJ) 1301.301.70
c
c IDB IS THE I CORRESPONDING TO (IK.JK)

c
70 IDB=LSUM( IK1+JK

c

c CONDITION 2

c

74 IF(LR( IK) 175.75.250
250 IF(LR( IK)-LR(JK) 175.302.75
302 LMN = 1

GO TO 130

75 1 = 1

76 IF(LO( IK1-LCAPI I 1 178.78.77
77 1=1+1

GC TC 76
c

c KCN3 SAVES THE NUMBER OF THE CAPACITY REQUIRED BY LQ(IK)
c

78 KCN3=I
MAL ( K0N3 ) =MAL( KCN3 ) -1
1 = 1

81 IF(LQ(JK)-LCAP( I 1 180.80.79
79 1=1+1

GC TC 81 f^
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60

c
c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c
c

c

c
c
c

c

KCN4 SAVES THE NUMBER OF THE CAPACITY REQUIRED BY LQI JK)

80

83
400

KCN4=I
MAL(KCN4)=MAL(KCN4)-1
LZ=LQ( IK1+LQI JK)
1=1
IFILZ-LCAPI I ) 182.82.400
1 = 1 + 1

GC TC 83

KCN5 SAVES THE NUMBER CF THE CAPACITY REQUIRED BY LZ

82 KCN5=I
MALI KCN5 ) =MAL( KCN5 )+l

CONDITION 3

303
IF(MAL(KCN5)-LB(KCN5) 184.84.303
LMN = 1

GC TC 150

ASSUME MILEAGE RESTRICTION IS MET
CALCULATE NEW VALUES CF LT ( I

)

84 LT(IDB)=1
LT(IDI)=LT(IDI )-l
LT( IDJ)=LT( IDJ1-1

SET LQ( I ) =0 FOR LT( I ) =

85
86
87
88
89
90
91

IFILTUDI ) 186.85.86
LQ( IK)=0
IFILTI IDJ) 188.87.88
LQ( JK)=0
IF(LT< IDI ) 189.90.89
LQ( IK)=LZ
IFILTI IDJ) 191.92.91
LQ(JK)=LZ

SET LQ(I) = TOTAL LOAD ON THE ROUTE FOR ALL OTHER
ALLOCATED ON ROUTE

STOPS

92
120

DC 120 1=1,

M

LDISU )=0

CHECK TC SEE IF STOPS IK AND/OR JK ARE ALREADY ALLOCATED
ON A ROUTE

102
IFILR(IK) 1108.102.108
IFILR(JK) )109.103.109
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c
C NEW ROUTE FORMED
C

103 KON10=KON10+1
K0N6=K0N10
LR( IK)=K0N6
LR( JK)=K0N6
LDIS(K0N6)=LD< IDI )+LD( IDJ1+LDI I DB

)

IF(LDISIKON6)-MILE(K.ON5> 1104.104.155
C

C DISTANCE REQUIREMENT NOT EXCEEDED
C

104 LRDIK01 6)=LDISIK0N6)
DO 311 1=2.

M

311 LOS( I )=LQ( I)

C

C PUNCHOUT ALL NON-ZERO VALUES OF LT(I) AND ALL VALUES
C OF L0( I )

C

IFISENSE SWITCH 1)93.101
93 1 = 1

96 IF(LTtl) 194.97.94
94 PUNCH 95. IK I ) »JJ( I ) >LT(I

)

95 FORMATI2HTI I3.1H.I3.3H) =12)

97 1=1+1
IFl I-K0N1196.96.98

98 PUNCH 33
DO 99 1=2.

M

99 PUNCH 100,1 .L0( I)

100 F0RMATI3HI =I4.2X.3HQ =16)

PUNCH 33
101 LMN=0

C

C PUNCHOUT NEW ALLOCATION
C

IFISENSE SWITCH 1)131.134
131 DO 132 1=1.

N

132 PUNCH 15.LCAPI I ) .MALI I )

'34 IFISENSE SWITCH 2)821.130
C

C REVISED ALLOCATION PROCEDURE
C

821 DO 818 1=2.

M

818 LQQl I)=LQ(1)
DO 819 1=1.

N

819 MALI I)=0
825 1=2

ISAV=I
LOW=LOQ( I

)

822 1=1+1
IFl I-M>823. 823.826

823 IFILQQI 1
) -LOW ) 824. 822 ,822
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824 LCW=LQO( I

)

1SAV=I
GO TC 822

826 IFILCW-999999) 839,841 i 841
841 IFISENSE SWITCH 1)842,135
842 PUNCH 33

DO 843 I = 1»N
843 PUNCH 844,LCAP( I) »MAL( I )

844 FORMAT! 10HCAPACITY = I 7 , 2X, 20HRE VI SED ALLOCATION =14
GO TO 135

1

839 IF(LOW)827,827,828
P27 LQQ( ISAV)=999999

GO TO 825
828 K=ISAV+1
830 IFILOW-LQQ(K) 1829,840,829
829 K=K+1

IF(K-M)830,830,831
831 KK=1
834 IF(LCW-LCAPIKK) 1832,832,835
832 MAL(KK)=MAL(KK)+1

IF(MAL(KK)-LB<KK) 1827,827,833
833 MAL(KK)=MAL(KK)-1
835 KK=KK+1

IF(KK-NN)834,834,811
840 IFILR(iSAV) ) 829,829,837
837 IF(LR( ISAV)-LR(K) 1829,838,829
838 LQQ(K>=999999

GO TO 831
C

c

c
108

JOIN NEW STOPS TO OLD-ROUTE

IF(LRUK) 167,66,67
66 LRSI=LR(I<)

LRSJ=0
LR(JK)=LR(IK)
GO TC 110

67 IFILRI IK1-LRI JK) 168.68,71
68 NA=LR( JK)

NC=LR( IK)

GO TO 72
71 NA=LR(IK)

NC=LR(JK)
72 1=2

NSAV=LRD(NA)
LRD(NA)=0
LHMC=1

114 IFILRI I )-NA)73,115,73
73 1 = 1 + 1

IF( I-M)114,114,110
115 LR( I )=NC

LRRI I )=1

GO TO 73



63

109 LRSI=*
LRSJ=LR( JK)
LR( IK)=LR(JK)

110 KCN6=LR( IK)
1=2

112 IFILRd )-KCN6)111.113.111
111 1=1+1

IF< I-MU12.112.121
113 K=LSUM< I )+l
117 IF(LT(K)-1)119.118,118
118 LDIS(KCN6)=LDIS(KCN6)+LD(K)

IF< JJ(K)-1)119»270>119
270 LQ( I )=LZ
119 K = K + 1

c

c

c

IF( 11(0-1)111.117.111

CHECK TO SEE IF DISTANCE REQUIREMENT IS MET

121 IF(LDIS(KON6)-MILE(KCN5) ) 104. 104.5 10

510 IF(LHMC) 51 1.160.511
511 LRD(NA)=NSAV

1=2

513 IFILRRd 1-1)512.514.512
e 12 1=1+1

IF( I-M1513.513.165
514 LR( I )=NA

c

c

c

LRR( I)=0

FCRCE MAX. SAVING CUT OF CONSIDERATION

136 IDB=LSUM( IK1+JK
130 LSI IDB)=-99999

IFISENSE SWITCH 1)304,282
304 IF(LMN-1)282,281.305
281 PUNCH 280
280 F0RMATI43HMAX. SAVING DOES NOT SATISFY ONE OR MORE 0F.23H CONDITK

INS 1 T) ROUGH 3/)
GO TO 282

305 PUNCH 306
306 FORMAT (49HMAX. SAVING DOES NOT SATISFY DISTANCE REQUIREMENT/)

c
c

c

282 IF(KCN0-KON2)200.200.135^

REINITIALIZATION IF MAX. SAVING DOES NOT SATISFY CONDITION 3

150 MAL(KON3)=MAL(KON3)+l
MAL ( K0N4 ) =MAL ( K0N4 ) +

1

MALIK0N5) =MAL(K0N5)-1

c

c

c

GO TO 130

REINITIALIZATION IF MILEAGE REQUIREMENT IS NOT MET

155 KON1-=KON10-1
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LR<IK>=0
LR( JK)=0
GC TC 165

160 LR( IK1=LRSI
LR( JK)=LRSJ

165 LMN = 2

MAL(KCN3)=MAL(KCN3)+1
MAL(KCN4)=MAL(KCN4)+1
MAL(KCr>'5l=MAL(KCN5)-l
LT( IDB)=0
LT( IDI )=LT< IDI )+l
LT( IDJ)=LT( IDJ1+1
DC 310 I = 2»M

310 LO( I l=LQS( I)

GC TC 130
C

C

C

200

CALCULATION OF TOTAL DISTANCE AND FINAL PUNCHOUT

PUNCH 33

C

C

c

PUNCH 33

PUT CUSTOMERS SERVED EXCLUSIVELY BY A TRUCK ON NEW ROUTES

201
1=2
LA=LSUM( I )+l
I F(LT( LA 1-1)202.202. 203

202 1 = 1+1
IF( I-M1201.201.204

203 K0N10=K0N10+1
LRD(KCN10)=LD<LA)+LD(LA)
LR( I >=KCN10
GC TC 202

204 LA=1
DC 617 1=2.

M

617 LRR(I)=0
?09 1=2

PUNCH 241
241 FORMAT! 11X.16H**************»*)

PUNCH 205. LA
205 FORMAT 16HRCUTE 12 >4X .4HFR0M.7X .2HT0)

PUNCH 241
PUNCH 33

601 IF(LR(I)-LA)600.60 3.600
600 1 = 1 + 1

IF( I-M1601.601.602
602 LA=LA+1

I FILA-KCN 10 1209.209,618
603 LF=LSUM( I 1+1

IF(LTUF>-1)600. 604.615
604 PUNCH 213.1
213 FORMAT) 11X.6HCRI6IN.6X.I2)

LSAV1=I

J
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LRRI I)=l
614 1 = 1

605 1 = 1+1
IF(LR(I )-LA)605t612.605

612 IFILRRI I ) 1606.606.605
606 IF( I -LSAV1J613. 613.607
607 LF=LSUM( I 1+LSAV1
608 I FILT1LF 1-1 1605,609,605
f 13 LF=LSUM(LSAV1)+I

GO TC 608
609 PUNCH 61U.LSAV1.I
610 FCRMATI13X.I2.8X.I2)

LSAV1=I
LRR(LSAV1)=1
LF=LSUM(LSAV1>+1
IF(LTILF)-1)614.611.614

611 PUNCH 215.LSAV1
215 FORMAT! 13X.I2.6X.6H0RIGIN/)
616 PUNCH 219.LRDILA)
219 FCRMATOX.22HDISTANCE FOR ROUTE IS 15, 6H MILES/)

K = l

628 IF1LQI i )-LCAP(K) 1625.625.627
625 PUNCH 626.LCAPIK)
626 F0RMAT(3X,46HR0UTE REQUIRES A CARRIER HAVING A CAPACITY OF 15. 6H I

INITS//)
GO TC 602

627 K = K + 1

GO TO 628
615 PUNCH 213.1

PUNCH 215,1
GO TC 616

618 LTD =

DC 619 I=1»KCN10
619 LTD = LTD +LRD( I 1

PUNCH 620. LTD
620 F0RMAT132HT0TAL DISTANCE FOR ALL ROUTES IS 16. 6H MILES///)

PUNCH 621
621 FCRMATI16HFINAL ALLOCATION/1

DO 622 I=1»NN
622 PUNCH 15.LCAPI I ) .MALI I

)

814 PRINT 240
240 FCRMATI38HTC READ ANOTHER SET OF DATA PUSH START)

PAUSE
GO TC 300
END
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*»***********#*#*»********»***»»*
* *
* INPUT DATA FOR SAMPLE PROBLEM 1 »
* *
*»*«******************#*****

130003
1200
1700
1500
1400
1700
1400
1200
1900
1800
1600
1700
1100
2 1 9

3 1 14
3 2 5

4 1 21
4 2 12
4 3 7

5 1 23
5 2 22
5 3 17
5 4 10
6 1 22
6 2 21
6 3 16
6 4 21
6 5 19
7 1 25
7 2 24
7 3 23
7 4 30
7 5 28
7 6 9
8 1 32
8 2 31
8 3 26
8 4 27
8 5 25
8 6 10
8 7 7

9 1 36
9 2 35
9 3 30
9 4 37
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9 5 35
9 6 16
9 7 11
9 8 10

10 1 38
10 2 37
10 3 36
10 4 43
10 5 41
10 6 22
10 7 13

10 8 16
10 9 6

11 1 42
11 2 41
11 3 36
11 4 31
11 5 29
11 6 20
11 7 17
11 8 10
11 9 6

11 10 12
12 1 50
12 2 49
12 3 44
12 4 37
12 5 31
12 6 28
'2 7 25

12 8 18
12 9 14
12 10 12
12 11 8

13 1 52
13 2 51
13 3 46
13 4 39
13 5 29
13 6 30
13 7 27
13 8 20
13 9 16
13 10 20
13 11 10

13 12 10
9999040009999

3050009999
4060009999
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*********************************
* *
* SOLUTION FOR SAMPLE PROBLEM 1 *

* *
*************************##*»»*

INITIAL ALLOCATION

CAPACITY = 4000 NUMBER ALLOCATED = 12
CAPACITY = 50UO NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED =

CAPACITY = 999999 NUMBER ALLOCATED =

SAVINGS MATRIX

ROW Ci:l SAVING

2 1 -99999
3 1 -99999
3 2 18
4 1 -99999
4 2 18
4 3 28
b 1 -99999
5 2 10

5 3 20
5 4 34
6 1 -99999
6 2 10
6 3 20
6 4 22
6 5 26
7 1 -99999
7 2 10

7 3 16
7 4 16
7 5 20

7 6 38
8 1 -99999
P 2 10

6 3 20
8 4 26
8 5 30
8 6 44
8 7 50
9 1 -99999
9 2 10
9 3 20
9 4 20
9 5 24



70

9 6 42
9 7 50
9 8 58

10 1 -99999
10 2 10

10 3 16

10 4 16
10 5 20
10 6 38
10 7 50
10 8 54
10 9 68

11 1 -99999
11 2 10

13 3 20

XI 4 32
11 5 36
11 6 44

11 7 50
1

1

8 64
11 9 72

11 10 68
12 1 -99999
12 2 10

12 3 20
?2 4 34
12 5 42

12 6 44
12 7 50

12 8 64

12 9 72
12 10 76
12 11 84

13 1 -99999
13 2 10
13 3 20

13 4 34
13 5 46
13 6 44
13 7 50
13 8 64
13 9 72
13 10 70
13 11 84
13 12 92
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I 13 J = 12 MAX. SAVING = 92

T( 2, ] = 2

T< 3. 1 = 2

T( 4, ] = 2

T( 5, I = 2

T( 6. : = 2

T( 7, ]
= 2

T( 8. ] = 2

T( 9, 1
= 2

T( 10, ] 2

T( 11, I
= 2

T( 12, ] « 1

T( 13, 1
= 1

Ti 13, i; >

)

1

I = 2 1200
1 3 1700
I 4 Q 1500
I = 5 = 1400
I 6 Q = 1700
I = 7 = 1400
I 8 Q = 1200
I = 9 = 1900
I = 10 = 1800
I 11 = 1600
I - 12 = 2800
I 13 - 2800

CAPACITY 4000 NUMBER ALLOCATED = 11

CAPACITY = 5000 NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED =

CAPACITY = 999999 NUMBER ALLOCATED =

I = 12 J = 11 4AX. SAVING = 84

T{ 2, = 2

T< 3, = 2

T( 4, 2

T( 5, = 2

T( 6, = 2

T( 7, = 2

T( 8, 2

T( 9, = 2

T( 10, = 2

T( 11, = 1

T( 12, 1 = 1

T( 13, = 1

Tt 13, 1 I

)

1
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I = 2 Q = 1200
I 3 = 1700
I 4 Q = 1500
I = 5 Q = 1400
I 6 Q a 1700
I 7 Q = 1400
I 8 Q = 1200
I = 9 1900
I 10 Q = 1800
I « 11 = 4400
I = 12 Q =

I = 13 = 4400

CAPACITY = 4000 NUMBER ALLOCATED » 9

CAPACITY = 5000 NUMBER ALLOCATED = 1

CAPACITY = 6000 NUMBER ALLOCATED =

CAPACITY 999999 NUMBER ALLOCATED =

I = 13 J = 11 MAX. SAVING = 84

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 10 MAX. SAVING = 76

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 9 MAX. SAVING = 72

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 9 MAX. SAVING = 72

MAa. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 9 MAX. SAVING = 72

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 10 MAX. SAVING = 70

MAX. SAVING LOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = = 10 J a 9 MAX. SAVING

T( 2. ] 2

T( 3, ]
= 2

T( 4, ]
= 2

T( 5, ]
= 2

T( 6. ]
= 2

T( 7. ]
= 2

T( Bi = 2

T( 9, =

T( 10,
T( 10, < =

T( 11, »

T( 12, 1 =

T( 13, =

T( 13, 1. I )
=

2 G = 1200
3 Q = 1700
4 = 1500
5 Q = 1400
6 = 1700
7 Q = 1400
8 1200
9 Q = 3700

> 10 Q 3700
= 11 4400

12 Q

13 Q = 4400

68

CAPACITY 4000
CAPACITY = 5000
CAPACITY = 6000
CAPACITY = 999999

NUMBER ALLOCATED = 8

NUMBER ALLOCATED = 1

NUMBER ALLOCATED =

NUMBER ALLOCATED =

I = 11 J = 10 MAX. SAVING = 68

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 11 J 8 MAX. SAVING

T( 2, 1) = 2

T( 3, 1) = 2

T( 4, 1) = 2

T( 5, 1) = 2

T( 6. 1) 2

T( 7, 1) = 2

T( 8. 1) =

T( 9. 1)

T( 10, 1 )
=

T( 10, 9) =

T( 11, 8)
T< 12, LI) «

T( 13, 1) =

T( 13, 12)

I = 2 G 1200
I = 3 1700
I = 4 Q • 1500
I = 5 Q = 1400
I = 6 Q = 1700
I = 7 Q = 1400
I 8 Q = 5600
I = 9 = 3700
I = 10 Q = 3700
I = 11 =

I = 12 Q
I = 13 5600

64

CAPACITY = 4000
CAPACITY = 5000
CAPACITY = 6000
CAPACITY = 999999

NUMBER ALLOCATED = 7

NUMBER ALLOCATED =

NUMBER ALLOCATED = 1

NUMBER ALLOCATED =

I = 12 J = 8 MAX. SAVING = 64

MAX. SAVING DOES NOT SATISFY ONE GR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 8 MAX. SAVING 64

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 9 J = 8 MAX. SAVING = 58

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I » 10 J « 8 MAX. SAVING = 54

MAX. saving does nct satisfy one cr more CF CONDITIONS 1 THROUGH 3

I = 8 J = 7 MAX. SAVING = 50

MAX. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 9 J = 7 MAX. SAVING

T( 2, 1) = 2

T( 3, 1) = 2

T( 4, 1) 2

T( 5. 1) = 2

T( 6, 1) = 2

T( 7. 1) =

T( 8, 1) »

T( 9. 7) =

T( 10, 1) =

T( 10, 9) =

T( 11, 8) =

T( 12, 11) =

T( 13, 1) =

T( 13, L2>

2 Q = 1200
3 = 1700
4 Q = 1500
5 Q = 1400
b Q = 1700
7 5100
8 Q 5600
9 =

= 10 Q = 5100
= 11 Q =

= 12 Q
= 13 Q = 5600

50

capacity = 4000
capacity = 5000
capacity = 6000
capacity = 999999

NUMBER ALLOCATED = 5

NUMBER ALLOCATED =

NUMBER ALLOCATED = 2

NUMBER ALLOCATED =

I = 10 J = 7 MAX. SAVING = 50

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 11 J = 7 MAX. SAVING = 50

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 7 MAX. SAVING = 50

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 7 MAX. SAVING = 50

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 5 MAX. SAVING = 46

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 6 MAX. SAVING = 44

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 6 MAX. SAVING = 44

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I * 12 J 6 MAX. SAVING = 44

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 6 MAX. SAVING 44

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 9 J = 6 MAX. SAVING = 42

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 12 J 5 MAX. SAVING = 42

MAX. SAVING DCES NCT SATISFY CNE CR MORE •JF CONDITIONS 1 THROUGH 3

I 7 J = 6 MAX. SAVING = 38

MAX. SAVING DC ES NOT SATISFY CNE CR MORE CF CONDITIONS 1 THROUGH 3

I = 10 J 6 MAX. SAVING = 38

MAX. SAVING DC ES NCT SATISFY CNE CR MCRE CF CONDITIONS 1 THROUGH 3

I = 11 J 5 MAX. SAVING 36

MAX. SAVING DC ES NCT SATISFY CNE CR MCRE CF CONDITIONS 1 THROUGH 3

I = 5 J = 4 MAX. SAVING = 34

T( 2. 1)

T( 3. 1)

T( 4, 1) = ]

T< 5, 1) =
:

T< 5, 4) = ]

T( 6. 1) = ;

T( 7, 1) ]

T( 8, 1) ]

T( 9t 7) = ]

T( 10, 1) = i

T( 10, 9) =
]

Till, 8) =

T( 12, 11) =

T( 13, 1) =

T( 13, 12)

I = 2 Q r 1200
I 3 Q 1700
I 4 = 2900
I = 5 2900
I = 6 Q 1700
I = 7 Q = 5100
I = 8 Q = 5600
I = 9 Q =

I = 10 5100
I = 11 =

I = 12 Q =

I = 13 Q 5600
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capacity = 4000 number allocated = 4

CAPACITY = 500C NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED = 2

CAPACITY = 999999 NUMBER ALLOCATED =

I = 12 J = 4 MAX. SAVING = 34

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

| • 13 J A MAX. SAVING = 34

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 4 MAX. SAVING = 32

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 5 MAX. SAVING = 30

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 4 J = 3 MAX. SAVING = 28

T( 2. 1) = 2

T( 3, 1) = 1

T( 4» 3) = 1

T( 5, 11 = 1

T( 5. 4) = 1

T( 6. 11 = 2

T( 7. 11 = 1

T( 8. 1) = 1

T( 9. 7) = 1

T( 10. 1) = 1

T( 10, 9) = 1

Tl 11, 8) = 1

T( 12. 11) = 1

T( 13. 1) 1

T( 13. 12) = 1
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I = 2 Q = 1200
I 3 = 4600
I 4 G =

I = 5 4600
I = 6 = 1700
I = 7 = 5 100
I = 8 = 5600
I = 9 Q
I 10 = 5100
I 11
I 12 =

I 13 Q 5600

CAPACITY = 4000 NUMBER ALLOCATED = 2

CAPACITY = 5000 NUMBER ALLOCATED 1

CAPACITY = 6000 NUMBER ALLOCATED = 2

CAPACITY = 999999 NUMBER ALLOCATED =

I = 6 J = 5 MAX. SAVING = 26

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 4 MAX. SAVING = 26

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 9 J = 5 MAX. SAVING = 24

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I * 6 J = 4 MAX. SAVING = 22

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 5 J = 3 MAX. SAVING = 20

MAa. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THR0U6H 3

I * 6 J = 3 MAX. SAVING 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 7 J = 5 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 9 J = 3 MAX. SAVING = 2

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 9 J = 4 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I
= 10 J * 5 MAX. SAVING = 2

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 12 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 3 MAX. SAVING = 2

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 3 J = 2 MAX. SAVING = 18

T( 2, 1)
T( 3, 2) =

T( 4, 3)

T( 5, 1)

T( 5, 4) =

T( 6. 1) =

T( 7, 1) =

T( 8, 1) 3

T( 9. 7) =

T( lOt 1) =

T( 10, 9)
T( 11, 8) =

T( 12, 11

)

=

T( 13, 1) =

T( 13, 12)

I = 2 5800
I = 3 Q =

I 4 Q
I = 5 Q = 5800
I 6 = 1700
I = 7 = 5100
I = 8 = 5600
I = 9 a
I = 10 Q = 5100
I = 11 =

I = 12
I " 13 5600

CAPACITY 4000 NUMBER ALLOCATED = 1

CAPACITY 5000 NUMBER ALLOCATED =

capacity 6000 NUMBER ALLOCATED = 3
CAPACITY 999999 NUMBER ALLOCATED =

I = 4 J = 2 MAX. SAVING = 18

MAX. SAVING C CES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 7 J = 3 MAX. SAVING = 16

MAX. SAVING c OES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 7 J = 4 MAX. SAVING = 16

MAX. SAVING OES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 10 J = 3 MAX. SAVING = 16

MAX. SAVING DOES NCT SATISFY ONE CR MCRE OF CCNDITICNS 1 THRCU6H 3

I 10 J = 4 MAX. SAVING = 16

MAX. SAVING DCES NCT SATISFY CNE CR MCRE OF CCNDITICNS 1 THROUGH 3

I 5 J = 2 MAX. SAVING » 10

MAX. SAVING DCES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THROUGH 3

I = 6 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THROUGH 3

I - 7 J = 2 MAX. SAVING = 10

MAX. SAVING DCES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THROUGH 3

I = 8 J = 2 MAX. SAVING = 10

MAX. SAVING DCES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THROUGH 3

I = 9 J = 2 MAX. SAVING = 10

MAX. SAVING DCES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THRCUGH 3

I - 10 J 2 MAX. SAVING = 10

MAX. SAVING DCES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THROUGH 3

I = 11 J = 2 MAX. SAVING = 10

MAX. SAVING DCES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THRCUGH 3
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I = 12 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

*******«*»»»*
ROUTE 1 FROM T n

1 ^v

****************

ORIGIN 8

8 1 1

11 12
12 13
13 OR I G I N

DISTANCE FOR ROUTE IS 112 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

*i **************
ROUTE 2 FROM TO

#**»**********

ORIGIN 7

7 9

9 10
10 ORIGIN

DISTANCE FOR ROUTE IS 80 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS
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*•> **************
ROUTE 3 FROM TC

»**»»»*»******

ORIGIN 2

2 3

3 4
4 5

5 ORIGIN

DISTANCE FOR ROUTE IS 54 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

**»*«****»****
ROUTE 4 FROM TC

****************

ORIGIN 6
6 ORIGIN

DISTANCE FOR ROUTE IS 44 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 4000 UNITS

TOTAL DISTANCE FOR ALL ROUTES IS 290 MILES

FINAL ALLOCATION

CAPACITY 4000 NUMBER ALLOCATED = 1

capacity = 5000 number allocated = o

CAPACITY = 6000 NUMBER ALLOCATED = 3
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***********************************
* *
* INPUT DATA FOR SAMPLE PROBLEM 2 *
* *
»»*********»»*»****»#****»»**»***

130004
1200
1700
1500
1400
1700
1400
1200
1900
1800
1600
1700
1100
2 1 9

3 1 14

3 2 5

4 1 21
4 2 12
4 3 7

5 1 23
5 2 22
5 3 17
5 4 10
6 1 22
6 2 21
6 3 16
6 4 21
6 5 19
7 1 25
7 2 24
7 3 23
7 4 30

7 5 28
7 6 9

8 1 32
8 2 31
8 3 26
8 4 27
8 5 25
8 6 10
8 7 7

9 1 36
9 2 35
9 3 30
9 4 37
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9 5 35
9 6 16
9 7 11
9 8 10

10 1 38
10 2 37

10 3 36
10 4 4 3

10 5 41

10 6 22
10 7 13
10 8 16
10 9 6

11 1 42
11 2 41
11 3 36
11 4 31
11 5 29
11 6 20
11 7 17
11 8 10
11 9 6

11 10 12
••2 1 50.

12 2 4 9

12 3 44
12 4 3 7

12 5 31

12 6 28
12 7 25
12 8 18
12 9 14

12 10 12
12 11 8

13 1 52
13 2 51
13 3 46
13 4 39
13 5 29
13 6 30
13 7 27
13 8 20
13 9 16
13 10 20
13 11 10

13 12
i

10
9999 0190C 0104

2 0400C 0104
3 0500C 0104
4 0600010104
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* *

* SOLUTION FOR SAMPLE PROBLEM 2 *

* *
*********************************

Initial allocation

CAPACITY 1900
CAPACITY 4000
CAPACITY 5000
CAPACITY 6000
CAPACITY ' = 999999

SAVINGS MATRIX

ROW COL SAVING

2 1 -99999
3 1 -99999
3 2 18

4 1 -99999
4 2 18
4 3 28
5 1 -99999
5 2 10

5 3 20

5 4 34

6 1 -99999
6 2 10

6 3 20

6 4 22

6 5 26
7 1 -99999
7 2 10

7 3 16

7 4 16

7 5 2U

7 6 38
8 1 -99999
8 2 10

8 3 ZO
8 4 26
8 5 30
8 6 44
8 7 50

9 1 -99999
9 2 10

9 3 20

9 4 2U

NUMBER ALLOCATED = 12

NUMBER ALLOCATED =

NUMBER ALLOCATED =

NUMBER ALLOCATED =

NUMBER ALLOCATED =
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9 5 24
9 6 42
9 7 50
9 8 58

10 1 -99999
10 2 10

10 3 16

10 4 16
If1

5 20

It 6 38
10 7 50

10 8 54
10 9 68
11 1 -99999
u 2 10

11 3 20
11 4 32
11 5 36

11 6 44

11 7 50
11 8 64

11 9 72

11 10 68
12 1 -99999
12 2 10

12 3 20

12 4 34

12 5 42
12 6 44
12 7 50
12 8 64
12 9 It

12 10 76

12 11 84
13 1 -99999
13 2 10

13 3 20
13 4 34

13 5 46
13 6 44
13 7 50
13 8 64
13 9 72

13 10 70
13 11 84
13 12 92

I = 13 J 12 MAX. SAVING = 92

MAX. SAVING DOES NOT SATISFY DISTANCE REQUIREMENT



89

I = 12 J = 11 MAX. SAVING = 8 4

T( 2, I
- 2

T( 3. ]
= 2

T( 4, ] 2

T( 5. ]
= 2

T( 6. . 2

T( 7, 1
= 2

T< 8, 1 2

T( 9, 2

T( 10, = 2

T( lit = 1

T( 12. = 1

T( 12. 1 = 1

T( 13. = 2

I 2 Q
- 1200

I = 3 1700
I 4 Q 1500
I = 5 1400
I 6 Q 1700
I = 7 = 1400
I 8 = 1200
I = 9 Q 1900
I • 10 Q = 1800
I = 11 B 3300
I = 12 = 3300
I » 13 = 1100

CAPACITY s 1900 NUMBtR ALLOCATED = 10

CAPACITY = 4000 NUMBER ALLOCATED " 1

CAPACITY • 5000 NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED =

CAPACITY = 9 '.9999 NUMBER ALLOCATED =

I = 13 J = 11 MAX. SAVING = 84

MAX. SAVING DOES NOT SATISFY DISTANCE REQUIREMENT
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I = 12 J 10 MAX. SAVING = 76

T( 2, 2

T( 3, .
= 2

Tf 4, 2

T( 5, ]
= 2

T( 6, ]
= 2

T( 7, = 2

T( 8, = 2

T( 9, 2

T( 10, = 1

T( 11. 1

T( 12, 1 = 1

T( 12. 1 = 1

T< 13, = 2

I • 2 Q
- 1200

I = 3 = 1700
I = 4 = 1500
I 5 = 1400
I 6 Q = 1700
I 7 1400
I 8 Q = 1200
I 9 Q 1900
I = 10 a = 5100
I = 11 Q = 5100
I = 12 Q =

I = 13 1100

CAPACITY = 1900 NUMBER ALLOCATED 9

CAPACITY 4000 NUMBER ALLOCATED
CAPACITY = 5000 NUMBER ALLOCATED
CAPACITY = 6000 NUMBER ALLOCATED = 1

CAPACITY = 999999 NUMBER ALLOCATED

I = 11 J = 9 MAX. SAVING = 72

MAX. SAV NC 3 )CES N,JT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 9 1AX. SAVING 72

MAX. SAV NC5 "'CES N 3T SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 13 J = 9 MAX. SAVING = 72

T< 2. 1
= 2

T( 3, ] 2

T( 4. ]
= 2

T< 5. ] 2

T( 6. I
= 2

T( 7, 1 2

T( 8, 1 2

T( 9. .
=

T< 10, =

T( 11. =

T( 12. 1<

T( 12. 1 =

T( 13. -

T( 13, )l a

I = 2 Q = 1200
I 3 Q = 1700
I » 4 Q 1500
I » 5 Q 1400
I = 6 Q 1700
I 7 Q 1400
I = 8 1200
I = 9 Q = 3000
I 10 G = 5100
I 11 Q = 5100
I = 12 Q

I 13 Q = 3000

CAPACITY = 1900 NUMBER ALLOCATED = 7

CAPACITY 4000 NUMBER ALLOCATED 1

CAPACITY = 5000 NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED = 1

CAPACITY = 999999 NUMBER ALLOCATED =

I 13 J 10 MAX. SAVING 70

MAX. SAV IN I DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 10 J 9 MAX. SAVING = 68

MAX. SAV ING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 11 J = 10 MAX. SAVING 68

MAX. SAV ING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 11 J = 8 MAX. SAVING = 64

MAX. SAVINC DOES NCT SATISFY ONE CR MORE CF CONDITIONS 1 THROUGH 3

I 12 J = 8 MAX. SAVING = 64

MAX. SAVINC DOES NCT SATISFY ONE CR MCRE CF CONDITIONS 1 THROUGH 3

I = 13 J = 8 MAX. SAVING = 64

T( 2. 2

T( 3, = 2

T( 4, - 2

T( 5, = 2

T( 6. = 2

T( 7, = 2

T( 8.
T( 9, =

T( 10, =

T( 11, =

T( 12, 11 l| =

T( 12, 1.L) =

T( 13, ( i )
=

T( 13, <))

I = 2 Q = 1200
I = 3 Q = 1700
I = 4 1500
I = 5 B 1400
I = 6 (J = 1700
I = 7 Q = 1400
I = 8 4200
I 9 Q = 4200
I = 10 Q

~ 5100
I = 11 Q 5100
I = 12 Q =

I = 13 Q "

CAPACITY = 1900 NUMBER ALLOCATED = 6

CAPACITY = 4000 NUMBER ALLOCATED =

CAPACITY = 5000 NUMBER ALLOCATED = 1

CAPACITY = 6000 NUMBER ALLOCATED = 1

CAPACITY = 999999 NUMBER ALLOCATED =

I = 9 J = 8 1AX. SAVING = 58

MAX. SAV NC . DOES N :t satisfy one or more cf CONDITIONS 1 THROUGH 3
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^

I = 10 J = 8 MAX. SAVING = 54

MAX. SAVING DOES NO T SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I
= 8 J = 7 MAX. SAVING = 50

T( 2. 11=2
T( 3. 1) = 2

T( 4, 11=2
T( 5. 11=2
T( 6. 1 ) « 2

T( 7, 1) = 1

Tt 8. 7) = 1

T( 9. 1) = 1

T( 10. 1) = 1

Till. 1) = 1

T( 12. 10) = 1

T( 12, 11) = 1

T( 13, 8) = 1

T( 13, 9) = 1

I = 2 Q 1200

I = 3 Q = 1700

I 4 0= 1500
I = 5 0= 1400
I = 6 0= 1700
I = 7 Q = 5600
[ - 8 0=
I = 9 0= 5600
I = 10 Q = 5100

I m 11 Q = 5100

I 12 =

I = 13 Q =

CAPACITY = 1900 NUMBER ALLOCATED = 5

CAPACITY = 4000 NUMBER ALLOCATED
CAPACITY = 5000 NUMBER ALLOCATED

CAPACITY = 6000 NUMBER ALLOCATED = 2

CAPACITY = 999999 NUMBER ALLOCATED =

I = 9 J = 7 WU. SAVING = 50

MAX. SAVING DOES N OT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 10 J = 7 MAX. SAVING 50

MAX. SAVING DOES N OT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 11 J = 7 MAX. SAVING = 50

MA.V . SAVING DOES NCT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 7 MAX. SAVING = 50

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 7 MAX. SAVING = 50

M/.X. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 5 MAX. SAVING = 46

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 6 MAX. SAVING = 44

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 6 MAX. SAVING = 44

MAX. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 6 MAX. SAVING = 44

MAX. SAVING DOES NOT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 6 MAX. SAVING = 44

MAX. SAVING DOES NCT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3

I = 9 J = 6 MAX. SAVING 42

MAX. SAVING DOES NCT SATISFY ONE CR MORE OF CONDITIONS 1 THROUGH 3
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I = 12 J - 5 MAX. SAVING = 42

MAX. SAVING DCES NOT SATISFY ONE CR MCRE CF CCNDIT1CNS 1 THROUGH 3

I a 7 J = 6 MAX. SAVING = 38

MAX. SAVING DC ES NCT SATISFY ONE CR MCRE CF CCNDITICNS 1 THROUGH 3

I a 10 J = 6 MAX. SAVING = 38

MA>". SAVING DC ES NCT SATISFY CNE CR MCRE CF CONDITIONS 1 THROUGH 3

I = 11 J 5 MAX. SAVING = 36

MAX. SAVING DC ES NCT SATISFY CNE CR MCRE CF CCNDITICNS 1 THROUGH 3

I « 5 J = 4 MAX. SAVING = 34

T( 2, 1)

T< 3, 1)

T( 4, 1) = ]

T( 5. 1) =

T< 5, 4) =

T( 6, 1) J

T( 7, 1) =

T( 8. 7) =

T( 9. 1) = :

T( 10, 1) =

T( lit 1) =

T( 12t 10) =

T( 12t 11) =

T( 13t 8) =

T( 13. 9) =

I = 2 Q = 1200
I = 3 = 1700
I- a 4 Q = 2900
I = 5 = 290U
I = 6 = 1700
I = 7 = 5600
I = 8 =

I a 9 = 56U0
I = 10 = 5100
I = 11 Q = 5100
I = 12 Q a

I a 13 Q
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CAPACITY 1900 NUMBER ALLOCATED 3

CAPACITY 4000 NUMBER ALLOCATED = 1

CAPACITY 5000 NUMBER ALLOCATED =

CAPACITY 6000 NUMBER ALLOCATED « 2

CAPACITY = 999999 NUMBER ALLOCATED =

I = 12 J = 4 MAX. SAVING = 34

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 4 MAX. SAVING = 34

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 4 MAX. SAVING = 32

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 5 MAX. SAVING 30

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = MAX. SAVING = 28

1 )

1)

3)

1 )

4)
1 )

1 )

7)

II

] I

1)

T( 12. 10)
T( 12.
T( 13.
T( 13.

2.
3.
4.
5,
5,

6.
7,
8.
9.

T( 10.
T( lit

11)
8)

9)
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I = 2 Q = 1200
I = 3 Q = 4600
I = 4 Q =

I = 5 Q 4600
I = 6 Q = 1700
I = 7 Q = 5600
I = 8 Q =

I = 9 Q = 5600
I = 10 Q = 5100
I = 11 = 5100
I = 12 Q =

I = 13 Q =

CAPACITY 1900 NUMBER ALLOCATED = 2

CAPACITY 4000 NUMBER ALLOCATED =

CAPACITY 5000 NUMBER ALLOCATED = 1

CAPACITY 6000 NUMBER ALLOCATED = 2

CAPACITY = 999999 NUMBER ALLOCATED =

I = 6 J = 5 MAX. SAVING = 26

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I - 8 J = 4 MAX. SAVING 26

MAX. SAVING DOES NOT SATISFY ONE CR MORE CF CONDITIONS 1 THROUGH 3

I = 9 J = 5 MAX. SAVING = 24

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I * 6 J = 4 MAX. SAVING 22

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 5 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I 6 J „ 3 MAX. SAVING = 20

MAX. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 7 J = 5 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 9 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 9 J = U, MAX. SAVING 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 10 J = 5 MAX. SAVING = 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 11 J = 3 MAX. SAVING = 20

MAX. SAVING DOES NCT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 3 MAX. SAVING 20

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 3 MAX. SAVING 20

MA V
. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 3 J = 2 MAX. SAVING = 18

T( 2, 1) 1

T( 3. 2) = 1

T( 4. 3) = 1

T( 5, 1) = 1

T( 5, 4) = 1

T( 6. 1) = 2

T( 7, 1) = 1

T( 8. 7) = 1

T( 9, 1) = 1

T( 10, 1) = 1

T( 11, 1) " 1

T( 12, 10) « 1

T( 12, 11) = 1

T( 13, 8) 1

T( 13, 9) = 1

I 2 0= 5800
I = 3 Q =

I = 4 Q =

I = 5 Q = 5800
I = 6 Q = 1700
I = 7 Q = 5600
I = 8 0=
I = 9 Q = 5600
I = 10 Q = 5100
I = 11 = 5100
I = 12 Q =

I = 13 Q =

CAPACITY = 1900 NUMBER ALLOCATED = 1

CAPACITY = 4000 NUMBER ALLOCATED =

CAPACITY = 50U0 NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED = 3

CAPACITY = 9°9999 NUMBER ALLOCATED =

I 4 J = 2 MAX. SAVING = 18

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 7 J = 3 MAX. SAVING = 16

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I " 7 J = 4 MAX. SAVING = 16

MAX. SAVING DCES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 10 J 3 MAX. SAVING = 16

MAX. SAVING OOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 10 J = A MAX. SAVING = 16

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 5 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 6 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 7 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 8 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I 9 J = 2 MAX. SAVING 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 10 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 11 J = 2 MAX. SAVING = 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 12 J = 2 MAX. SAVING = 10

MAy. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I = 13 J = 2 MAX. SAVING 10

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

ft**************

RrUTE 1 FROM TO
****************

ORIGIN 10
10 12
12 1 1

11 ORIGIN

DISTANCE FOR ROUTE IS 100 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

ROUTE

***»*#*********»
FROM TO

****************

ORIGIN
7
8

7

8

13

13
9

9

ORIGIN

DISTANCE FOR ROUTE IS 104 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS
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ROUTE
****************
FROM TO

*****************

ORIGIN ?

2 3

3 4

4 5

5 ORIGIN

DISTANCE FOR ROUTE IS 54 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 6000 UNITS

****************
ROUTE 4 FROM TO

****************

ORIGIN 6

6 ORIGIN

DISTANCE FOR ROUTE IS 44 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 1900 UNITS

TOTAL DISTANCE FOR ALL ROUTES IS 302 MILES

FINAL ALLOCATION

CAPACITY 1900 NUMBER ALLOCATED = 1

CAPACITY = 4000 NUMBER ALLOCATED =

CAPACITY = 5000 NUMBER ALLOCATED =

CAPACITY = 6000 NUMBER ALLOCATED = 3
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SAMPLE PROBLEM 3

The dynamic programming solution to the carrier routing problem devel-

oped by Tillman [12] is included as it was presented by him. The numbering

system used in the presentation does not correspond to that used by the

computer program. However, the two solutions may be easily compared by

referring to the following table.

Table 10. Comparison of numbering systems used.

DYNAMIC . PROGRAMMING COMPUTER PROGRAM
NUMBERING NUMBERING

SCHOOL 1

1 6

2 5

3 3

It 2

5 It
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DYNAMIC PROGRAMING SOLUTION TO THE SCHOOL 'BUS SCHEDULING PROBLEM

Nearly all school districts have the problem of scheduling school busses

for transporting students to school and home again. In determing the

schedule, the objective is usually to minimize the number of miles traveled

while fully utilizing the busses. The following example illustrates the

problem of scheduling two busses to pick up passengers at five stops. Each

bus has a capacity of twenty passengers and one bus makes two trips which

increases the fleet size to the equivalent of three busses. The distances

and number of passengers are illustrated in the following figure:

Distance to School

1 s 3 h 5
to
sch.

1 11 9 12 13 10

2 11 10 11 k 3

3 9 10 8 9 h

U 12 11 8 7 2

5 13 ll 9 7 5

fr.

sc'r
10 8 h 2 5

STOP NO. OF PASSENGERS

1

2

3

It

5

10

8

6

9

7

TOTAL UO

Fig. k
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In this example the objective is to schedule the busses so that the number of

miles traveled is a minimum.

The dynamic programming solution to this problem follows.

Decision
Variable

Stage Input

Stage Trans. S
3

- P
3

= S
2

S
2

- P
2

= Sl B
x

- P
x
- S

Q

Stages S, -
' 5

~H
#3

S
2 #2

S
l HI

s
o

=

«> r

RESTRAINTS

1) Number of Stops P, - 5 P + P S 5 E P,2 5
J i=l

2) Bus Capacity
3

E N.

i=l
X

20 E I - 20 E N - 20

i=l i=l
X

H. . = No. of passengers at stop i for bus j

P . = Stops made by bus j
i = 1 , . . . , 5

S. = Stops yet to be made at stage or bus J ] ! 3

Returns

:

Min. Ho. of Mill. No. of Min. No. of

Miles Heces- Miles Neees- Miles Neces-

sary to Load sary to Load sary to Load

Bus #3 Bus #2 Bus #1 Which
is Bus Which
Returned

D„ D„

OBJECTIVE

:

Min Z = E D.

j=l J
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To convert this problem to a maximizing problem subtract every distance

from 15 and maximize the complement of the distances to each stop. This in-

sures that the busses are loaded and that the distance traveled is minimized.

This is illustrated in Figure 5-

To School

1 2 3 it 5
To
Sch.

1 X 1* 6 3 2 5

2 It X 5 It 11 7

3 6 5 X 7 6 11

h 3 It 7 X 8 13

5 2 11 6 8 X 10

Fror

Sen
1

5 7 11 L3 10 X

Fig. 5

It is noted that for this example, it is necessary for two busses to make two

stops and one bus one stop, so that all stops are made and the bus capacities

are not exceeded.
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The decision at the first stage for the various values of S is as follows:

P
1
&S

1
f
1
(s

1
)

1 10
2 lit

3 22
k 26

5 20
1,2 16
1,3 22
I, 1* 21

1,5 17
2,3 23
2, It 2lt

2,5 28
3,l» 31
3,5 27
**,5 31

The decision at the second st age and the return of the second and the

first st age,

f
2
(E 2»

='
D
2
f^),

for the various values c f S is ae follows

S
2

P'
2

or
IL

ys
2

S
i

or S"

1,2,3 3 1,2 38 1,2 3
1,2,

U

It 1,2 1*2 1,2 It

<
5

2,5 2,5 1
1,2,5 1,2 38 1,2 5
1,3,4 h 1,3 1*8 1,3 It

1,3,5 5 1,3 1*2 1,3 5
1,^,5 it 1,5 1*3 1,5 It

2,3,U It 2,3 1*9 2,3 U

2,3,5 5 2,3 1*3 2,3 5
2,U,5 It 2,5 ' 51* 2,5 1*

<?
1*,5 1*,5 3

3, It,

5

3,1* 53 3,1* 5
1,2,3, h 1,2 3, It 1*7 3,1* 1,2
1,2,3,5 1,3 2,5 50 2,5 1,3
2, 3, It,

5

2,5 3,

U

59 3,1* 2,5
1,2,1*,

5

1,1* 2,5 1*9 2,5 1,1*
1,3, it,

5

1,3 k,5 53 1*,5 1,3

If P' is made then S' is the input tc the first stage and if P" is made

then S" is the input to the first stage

.

1
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Finally the decision at the third stage and the return at the third

and the second St age,

f
3
(s

3
)

= D
3

+ f
2
(S

2
),

for S, is as follows:

For S, = 1, 2, 3, h, 5

z^ f,(s,
3 3

) ^2_

1 10 + 59 = 69 2,3,4,5
2 lU + 53 = 67 1,3,4,5

3 22 + k9 = 71 1,2,4,5

(1) ^ 26 + 50 = 76 1,2,3,5

5 20 + !l7 - 67 1,2,3,1*

1,2 16 + 53 - 69 3,4,5

(2) 1,3 22 + 5^ = 76 2,4,5

x,u 21 + 1(3 = 6U 2,3,5

1,5 17/ + 49 = 66 2, 3,

4

2,3 23 + 43 = 66 1,4,5
2,1* 2 It + 42 = 66 1,3,5

(3) 2,5 28 + 48 = 76 1,3,4

3,4 31 + 38 = 69 1,2,5

3,5 27 + 42 = 69 1,2,4

K5 31 + 38 = 69 1,2,3

From the above there are three optimal decisions with their associated

distance as follows:

Optimal Decis: 033 Bus #3 Bus #2 Bus #1

1 P
3
=4 P = 1,3 P = 2,5 Total = hk Miles

2 P
3
=l 3 P = 2,5 P = 4 Total = Hit Miles

3 P
3

= 2 5 P = U P - 1,3 Total = 44 Miles
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2,3
2,1*

2,5

1,3
1,1*

1,5

1,2
1,1*

1,5

1,2
1,3

1,5

1,2
1,3
1,1*

U.3

3,5
h,3

U.5

3,5
U,3

fc,5

2,5
^,

2

3,5
2,5

2,3

3,1*

2,1*

2,3

56

59

51

53

58

58

51
1.9

57

51
1(1* OPTIMAL
51*

53
51*

56

15 Schedules Total

There are 3! or 6 [15] = 90 schedules for the three husses "but the

remaining 75 are included in the ahove for this problem.



Decision
Variable:

Stage
Input

:

A MULTISTAGE PROCESS WITH I STAGES

110

Stage
Transformation: yp^) S^

Stages: SS~* 7
N-l

2
(P

2
,S

2
) S

x
T
1
(P
1
,S
1

) S

s
2 -H s

i"*

Restraints: F Se R P
2
^R

2
P
1
&R

1

Returns

:

wv "D
2
(P

2
,S

2
) VW
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Table 11. Distance half matrix and delivery vector for
sample problem 3

.

Q p
l

9 2 P
2

6 1+ 8 P
3

T 5 7 9 p
k

8 8 11 10 it P
5

10 10 12 9 13 11 P
6

Table 12. Carrier availabilities and capacities for
sample problem 3.

CAPACITY 20

NUMBER
AVAILABLE

3
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*********************************
* »

* scLUTION FCR SAMPLE PROBLEM 3 *

* *
*********************************

INITIAL ALLCCATION

CAPACITY = 20 NUMBER ALLOCATED = 5

CAPACITY = 999999 NUMBER ALLOCATED

SAVINGS MATRIX

RCW CCL SAVING

2 1 -99999
3 1 -99999
3 2 -2

4 1 -99999
4 2

4 3

5 1 -99999
5 2 -1

5 3 2

5 4 9

6 1 -99999
6 2

6 3 5

6 4 2

6 5 7

I = 5 J 4 MAX. SAVING = 9

T( 2. 1) = 2

T( 3. 1) = 2

T( 4. 1) = 1

T( 5. 1) = 1

T( 5. 4) = 1

T( 6. 1 ) = 2

I = 2 9

I = 3 6

I 4 Q 15

I = 5 15
I * 6 10

CAPACITY = 20 NUMBER ALLOCATED = 4

CAPACITY = 999999 NUMBER ALLOCATED =
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I = 6 J = 5 MAX. SAVING = 7

MAX. SAVING DOES NOT SATISFY ONE CR MORE CF CONDITIONS 1 THROUGH 3

3 MAX. SAVING =

T( 2. 1 ) = 2

T( 3. 1) - ]

T( 4. 1) =
:

T( 5. 1) =
;

T( 5, 4) = i

T( 6. 1) = i

T( 6, 3) = ]

I = 2 - 9

I = 3 = 16
I = 4 = 15
I = 5 Q = 15
I = 6 Q = 16

CAPACITY = 20
CAPACITY = 999999

NUMBER ALLOCATED
NUMBER ALLOCATED

I = 5 J 3 MAX. SAVING = 2

MAX. SAVING DOES NOT SATISFY ONE CR MORE CF CONDITIONS 1 THROUGH 3

I = 6 J = 4 MAX. SAVING = 2

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I • 4 J = 2 MAX. SAVING

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3

I - 4 J = 3 MAX. SAVING

MAX. SAVING DOES NOT SATISFY ONE OR MORE OF CONDITIONS 1 THROUGH 3
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I = 6 J = 2 MAX. SAVING =

MAX. SAVING DOES NCT SATISFY ONE OR MORE CF CONDITIONS 1 THROUGH 3

****************
ROUTE 1 FROM TO

****************

ORIGIN 4

4 5

5 ORIGIN

DISTANCE FOR ROUTE IS 17 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 20 UNITS

****************
ROUTE 2 FROM TO

****************

ORIGIN 3

3 6

6 ORIGIN

DISTANCE FOR ROUTE IS 23 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 20 UNITS

****************

ROUTE 3 FROM TO
****************

ORIGIN 2

2 ORIGIN

DISTANCE FOR ROUTE IS 4 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 20 UNITS

TOTAL DISTANCE FOR ALL ROUTES IS 44 MILES

FINAL ALLOCATION

CAPACITY = 20 NUMBER ALLOCATED = 3
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Table 13. Distance half matrix and delivery vector for
sample problem k.

Q P
l

1000 25 P
2

8700 32 8 P
3

19500 k8 31 32 F
k

8580 51 77 8k 78 P
5

6U00 63 87 9k 10 88 P
6

1220C 65 59 53 105 25 111 P
7

12120 92 85 79 123 !»3 137 26 P
8

7800 100 88 101 lk° L21 156 128 15^ P
9

1*550 133 155 162 113 158 98 173 199 223 P
10

1+000 161 193 200 118 196 °k 211 237 250 38 p
"11

10500 186 190 197 188 206 98 211 237 289 85 9k P
12

12000 212 215 223 211* 222 185 237 263 315 111 120 26 P
13

37260 222 23U 228 223 188 232 173 l6H 301 166 192 1U5 159 P
l^

Table ik. Carrier availabilities and capacities for

sample problem k.

CAPACITY U5000

UUMBEK
AVAILABLE

CO
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*********************************
* *
* SOLUTION FOR SAMPLE PROBLEM 4 *

* *
*********************************

ROUTE 1

****************
FROM TO

****************

ORIGIN 10
10 11
11 12

12 13
13 ORIGIN

DISTANCE FOR ROUTE IS 503 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 45000 UNITS

****************
ROUTE 2 FROM TO

****************

****************
ROUTE 3 FROM TO

****************

ORIGIN 5

5 8

8 7

7 ORIGIN

DISTANCE FOR ROUTE IS 185 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 45000 UNITS
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****************
ROUTE 4 FROM TO

*******»»*****

ORIGIN 6

6 4

4 3

3 2

2 9

9 ORIGIN

DISTANCE FOR ROUTE IS 301 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 45000 UNITS

****************

ROUTE 5 FROM TO
****************

****************

ROUTE 6 FROM TO
****************

ORIGIN 14
14 ORIGIN

DISTANCE FOR ROUTE IS 444 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 45000 UNITS

TOTAL DISTANCE FOR ALL ROUTES IS 1433 MILES

FINAL ALLOCATION

CAPACITY 45000 NUMBER ALLOCATED
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Table 15. Distance half matrix and delivery vector for
sample problem 5-

Q 13

6o C :.

.'
5 5 3

50 12 H 17 :

90 lit Hi 19 26
:>

15 ie £0 2J 33 32 ,

66 le 18 23 30 3V 23
p
7

100 20 20 25 32 6 38 38 V
,

60 22 22 27 22 36 1*9 1*0 22
y
o

60 Sfk 26 is 36 |i 5 II :ai J*S 2

30 2k 2t 2? 36 32 gg 24 22 1*6 34
P
il

90 27 2" 32 2j 1*1 M !

22 !*2 2j 51 51
P
X:

60 35 35 1*0 1*7 36 !*C 23 22 57 1*5 23 62 ^
80 35 35 1*C JiL 36 1*0 25 .22 57 1*5 23 32 2:

60 35 35 1*0 1*7 1*2 33 17 23 57 38 17 62 \2 22 h
uo in in 1*6 53 1*5 1*1 22 56 63 1*6 20 60 26 26 22

!

2.

60 72 72 "7 32 73 73 33 7 9 lt -2 22 ?? 1*8 1*8 1*5 33 -27

60 80 80 35 92 02 93 70 37 102 ioU 63 Iff 22 23 60 2o 33 *1«

30 91 91 ^ 10 no. 22 3-3 23 6 U3 26 87 2.3 98 98 35 50 78 99
- 2t

?n 93 0';
g£ OS. 232 223 15 222 ai 2§ S3 222 3 DO 57 52 80 22 8 2.

50 97 97 102 IDS .08 97 72 aii 119 '32 93 122 fll| 22 61 56 32 1C5 22 lit ^
60 S3 L3B 30 \22 li*7 130 252 252 A3 2:2

„.
156 258 ,68 232 2 3 2:2 222 133 .2: -3? 2 i

30 m B5 36 :a !*7 322 Si
33'' 11*3 E5 §2

42 28 :68 H38 37
!3 Si

-1T
3 S3 22 ;37 3

90 Wi R7 bo - 22 l1*2 3 2 £J 355 llfi E7 SS J5S 2 2 T-n m Q£ 2a 2,33 122 iu L& _a _6i 7!.

_32_ RP 2 t3 26. '32 233 B£ :y
'" RO -32 & -2 2 173 232. -70 "j aa 135 22 la J2: g 3

3"

30 s*i La fe6
"PC E5 33i 223.

23

'

;332- 123 322. £i '..
''

"L2 232 2-8 3":. 3;] 3322 33 8 22 13 1°
a

Table 16. Carrier availabilities and capacities for
sample problem 5-

CAPACITY 120

NUMBER
AVAILABLE

00



119

*********************************
* »
* SOLUTION FOR SAMPLE PROBLEM 5 *

* #
*********************************

»***»»********
ROUTE 1 FROM TO

ORIGIN 24
24 25
25 ORIGIN

DISTANCE FOR ROUTE IS 276 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

ROUTE 2 FROM TO
***#****»*»»**

ORIGIN 23
23 22
22 26
26 ORIGIN

DISTANCE FOR ROUTE IS 285 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

ROUTE
*********#*****
FROM TO
**»*»»******»*

ORIGIN 20
20 19
19 21
21 ORIGIN

DISTANCE FOR ROUTE IS 210 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
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*< »**##**»******
ROUTE 4 FROM TO

**«*»»«*»*»»»*

ORIGIN 17
17 18

18 ORIGIN

DISTANCE FOR ROUTE IS 185 MILES

ROUTE REQUIRES A CARRIER HAVING A

***»*»********

CAPACITY OF 120 UNITS

ROUTE 5 FROM TO
*****#********

ORIGIN 15

15 16
16 ORIGIN

DISTANCE FOR ROUTE IS 87 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

ROLTE 6 FROM TO
****************

ORIGIN 6

6 10
10 ORIGIN

DISTANCE FOR ROUTE IS 47 MILES

ROUTE REQUIRES A CARRIER HAVING A

»4 ***»»»*******

CAPACITY OF 120 UNITS

ROUTE 7 FROM TO
#*»*********»»

ORIGIN 11
11 13

13 ORIGIN

DISTANCE FOR ROUTE IS 82 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS
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ROUTE 8 FROM TO
»**»*«»**»»****

ORIGIN 4
k 9

9 ORIGIN

DISTANCE FOR ROUTE IS 56 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

ROUTE 9 FROM TO
****************

ORIGIN 2

2 7

7 ORIGIN

DISTANCE FOR ROUTE IS 38 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

»*»##*»»«»#**»**
ROUTE 10 FROM TO

»**»******»****

ORIGIN 3

3 ORIGIN

DISTANCE FOR ROUTE IS 10 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

***#»»**#***»*
ROUTE 11 FROM TO

ORIGIN 5

5 ORIGIN

DISTANCE FOR ROUTE IS 28 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

4
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****************
ROUTE 12 FROM TO

****************

ORIGIN 8

8 ORIGIN

DISTANCE FOR ROUTE IS 40 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

****************
ROUTE 13 FROM TO

****************

ORIGIN 12
12 ORIGIN

DISTANCE FOR ROUTE IS 54 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

*< *»**»*****»*
ROUTE 14 FROM TO

ORIGIN 14
14 ORIGIN

DISTANCE FOR ROUTE IS 70 MILES

ROUTE REQUIRES A CARRIER HAVING A CAPACITY OF 120 UNITS

TOTAL DISTANCE FOR ALL ROUTES IS 1468 MILES

FINAL ALLOCATION

CAPACITY = 120 NUMBER ALLOCATED « 14



OPTIMIZATION OF A CARRIER ROUTING PROBLEM

by

HAROLD MERLIN COCHRAN

B. S., Kansas State University, 1965

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhatt an , Kans as

1967



The purpose of this study was to evaluate methods for the solution of

large scale carrier routing problems.

An algorithm developed by Clarke and Wright [U] was chosen for further

study and modification. The modifications allowed for the inclusion of

additional restraints on the system. The particular restraint which was

incorporated limited the number of miles which could be traveled by a

carrier on its allocated route. A modified allocation procedure was sug-

gested which the author believes will make better use of the available

carriers, thus resulting in a better solution in terms of total miles

traveled. Improvements in the computational procedure were also suggested.

The modified algorithm was programmed for the IBM 1620 computer and sev-

eral sample problems were then solved.

Experience with the method has shown that the modified algorithm is

practicable and efficient for solving large scale problems. Even though it

does not guarantee an optimal solution, it appears to be the "best" method

currently available for the solution of practical large scale routing pro-

blems.


