STUDENT'S QUIDE SHEETS BASED
 UFON THP CONTRACT IETHOD OP TEACHING POR THE PIRST SEMESTER OF HINTH GRADE ALQEBRA

by

FLORENCE MYPTLE STIZ
A. B.. State University of Iowa, 1924

A THESIS

submitted in partial fulfillment of the requirements for the degree of

WASTFR OF SCIENCE

KANSAS STATE COLLEAE OR AORICULTURT AND APFLIED SCIENCE

1934

TABLE OF CONTENTS

Page
Introduction 1
Unit I. Introduction to Algebra 5
Unit II. The Formula 9
Unit III. Simple Equations 18
Unit IV Positive and Negative Numbers 28
Unit V. Products and Factoring 46
Appendix. Keys for Tests 60
Acknowledgment 71
Bibliography 72

nerrooduct Ioll

There is littlo doubt but that the old-fashloned recitation method of teaching is something of the peat.

A modern curriculum cannot become fingl. but the work here presented represents one of the more modern methods, usually eslled the "Contract Plen" of teeching.

In this method, the individual pupil and not the class is the unit of instruction. Fach pupil is given a guide sheet or lesson assignment with study helps covering the unit's work. The units here given can be adopted to any text. The pupil has the privilege of choosing his own contract. If he chooses the " B " Contract, that means that he must be able to work the whole of Contracts "D" and "C" besides Contract "B". In other words, the contracts are sccumulated. If in giving the unit test, the pupil usually does better on it than the contract he chooses, he should be encouraged to strive for a higher contract. for this would reveal that he is capable of doing better work.

The first atep in using this method of teaching is to make a preliminary appraisal of each pupil's experience as related to the unit in order to determine how much teaching the individual needs.

A pre-test is usually given before beginning the unit's work since it helps to reveal cases where some pupils mey have studied this work before, and thus helps in presenting the new unit and determines the point of view from winch the unit should be attacked for a particular class.

The second step consists in telling the story of the unit to the whole group. Present the unit es a whole in ten to twenty minutes by bringing out the important facta, their relation to each other, and to the unit. Then encourege the pupil to study further and in detall the various facts brought out by the presentation. This results in the laboratory plan or supervised study period.

During this period, the teacher has the opportunity to observe the atudy habits of her pupils and to define their difficulties in learning certain phases of the work. It is suggested that those who wish help during the class period write their names on slips of paper and place them in order on the teacher's desk. This will do away with wasting time by raising hands. Fach pupil is free to work at his own rate of speed within a set time limit, at work given in the form of a contract which he chooses to complete.

This time limit per unit should be made flexible se
that an extra day or tio can be added if necessary.
A ten-minute test given in the middle of the unit's work is advisable as it reveals whether the pupil is making the correct progress. Care should be taken so thet there will be plenty of time for reviews.

Be sure to give each pupil a chance to bring his findings on the unit's work to the discussion table, as it will encourage socialization and it will also give the pupils working on the "D" Contract a chance to see and hear what those working on the " $B^{\prime \prime}$ and " A " Contracts are discovering.

The "Wastery Test" should follow this discussion period. This test should have a totally different purpose from thet of determining what marks should be recorded. aince those are determined by the contracts one completes, but to see if the pupils have really learned the unit's work. Pupils falling on parts are retaught and another similar test is given. This is repeated until the work is mestered.

This method of teaching should make the class perfod a productive thought provoking hour for every member of the elass. It is a question of working up to capacity while working, and does away with the necessity of having
the brighter pupila westing tine, waiting for the slower ones to catch up.

An added advantage is in the case a pupil is absent, he can work at home. In case the teacher is absent, a substitute teacher can more easily oarry out the work for the pupils lenow just what is expected of them. The pupils also have more social contact in that they ean work in amall groups. It often helps to prepare them for their iffe work by developing in them responsibility and initiative. They are responsible only to themselves for the daily work they accomplish. It teaches them how to be good managers so as not to have all the work to do at one time. The work is more enjoysble to them and many strive for the " A " Contract.

The teacher benefits in that she no longer needs to see that each pupil is given enough to to or enough help. It is thoir duty to go to her if they need it. She no longer is necessary in the elass room every minute of the period as the pupils san go on without her. She can help the slower ones during the class period, rather than efter sohool, which is almost impossible in some comunities.

This work can be done successfully by pupils of the ninth grade if emphasis is placed on leading the pupils to discover a process of how to work problems rather than of telling them how to do them.

UAIT I. INTKODUCTION TO ALGFBFA

T1me: $2-3$ days

How do you suppose we ever decided to eall this subfoet algebra? The Arabs introduced into Europe in the niath century a book called "Al-jebr w'al maqaabalah", which was shortemed to elgebra. From thet time forth we have used the word algebre.

Lesson I

Open jour books to the "Table of Contents" and compare It wth that of another text or two. Do you find that they are quite similar or widely different? Can jou explain jour findings? Under which of the following would the author of each of these texts be more easily classified: Student, superintendent, pubilsher, teacher, or a principal?

Contract D. Read the Introduction and Preface of jour text. Choose some topic of historical value dealing with methemetics and write a short outline of the interesting things you find.

Contrect C. Name some professions which presuppose a lnowledge of algebra.

Contract B．Report on origin of symbols of operation by Slaught and Lennes，＂Flementary Algebra＂，p．\％，and Fawkes，Luby，and Touton＇s＂First Course in Algebra＂，pp． 4,5 ．

Contract A．Give an example of the type which the person must do for your professions listed under Contract C_{0} Hame all the occupations you can think of where no mathematics is used．

Lesson II

Arithmetic Foundation Drill

Everybody write out the answers to the following：
（1） $5+0$ ．
（2） $0 \div 7$ ．
（3） $8-0$.
（4） 7×0 ．
（5） 0×6
（6） $37+8$ 。（7） $74-9$ 。
（8） $46+7$ ．
（9） $36-9$.
$25+8$ ．（11） $3 / 4+1 / 2$ ．（12） $5 / 6+1 / 3$ ．（13） $2 / 3+3 / 4$ ．
（14） $3 / 5-1 / 2$ ．（15） $3 / 8+5 / 6$ ．（16） $3 / 4 \times 8 / 5$ ．
$2 / 3 \times 9 / 10$ ．（18） $5 / 3 \times 6 / 10$ ．（19） $35 / 8 \times 21 / 2$ ． $61 / 4 \div 21 / 2$ ．

Place the decimal point where it belongs in Ex． 21 － 24．The products and quotients are correct otherwise．
（21） $4.7 \times .32=1504$ 。
（22） $.03 \times .68=204$ ．
（23） $11.97 \div 2.1=57$ ．
（24） $.445 \div .05=89$ ． Solve：
(25) $23 / 5+31 / 2$.
(26) $82.5+16.07$.
(27) $18.75-9.8$.
(28) $73 / 5 \times 85$.
(29) $162 / 3 \times 36 .(30) 7.5 \times 15.3$.
(31) $84.152 \div 3.14$. (32) $146.054 \div 2.06 .(33) 371 / 2 \div 31 / 8$
(34) 8% of 2750 .
(35) $621 / 2 \%$ of 56 . (36) 120% of 75.

If upon working the above problems, you discover that you do not know how to add a number to sero or zero to a number, how to subtract zero from a number, or how to multiply a number by zero, or zero by a number, or to divide sero by a number, review your rules along these lines, since you will make good use of them throughout the course.

Also be sure you know how to handle erithmetic eomputations dealing with frections, decimels, and mixed numbers before you go on. Your teacher will give you supplementary work along these lines if you asir for it.

PRETEST OM UN IT II

1. Express x feet and 2 inches in terms of inches.
2. How many cents are there in ix quarters?
3. What does $x+5$ indicate? $5 x$?
4. If $\mathrm{h}=6$ and $\mathrm{b}=7$, what would be the value of a in the rommel, $e=b$?
5. Find the area of a triangle whose altitude is 8 inches, and base 12 inches.
6. Write the formulas for:
a. The area of a square whose side is x.
b . The area of a rectangle.

- The area of a circle.
d. The area of a parallelogram.

UNIT II. THK PORMULA

Time: $7-8$ days

One of our chief reasons for studying algebra is to solve difficult problems and to solve them quickly. In order to do this, we must be able to write our English words by the use of agmbols in shorthand form. Our aim is to eppreciate the significance of the formula and to strengthen our ability to write the shorthand of algebra and to translate it into words.

This is all clomrly expleined in your text. Read it carefully.

Contract D. Bofore leaving this unit, you should have mastered the following types of problems to a dogree of perfection.

1. The use of letters in algebra.
2. How to write certain formulas, as $\Lambda=b h$, from the verbal form.
3. How to evaluate formulas by substitution.
4. Important formulas and how to apply them, as $A=b h, A=\frac{b h}{2}, v=l w h, c=2 \mathrm{kr}, P=2 l+2 w$, which are commonly used in mensuration.
5. The intereat formula and its various forms and
uses, as finding the time when P, I, and r are known.
6. How to express the meaning of these formulas In sentence form.
7. How to change formulas into other forms, as $d=r t ; r=d / t ; t=d / r$.

Contract C. Be able to explain:

1. How we can find the value of pi by construeting a eirele.
2. How to find either the length, width, height, or volume of a rectilinear solld when only one unknown is given.
3. How to determine the area of any or all of the faces of a rectilinear solid.
4. How to find the area of the curved surface of a eylinder or 1 ts total area.
5. How to find the volume of a cylinder.

Write and solve some practical applioations of the above, as a circular flower bed, fencing a garden, or a race track.

Contract B. Learn the following:

1. How to compare the entire surfaces or the volumes of two or more different cubes.
2. How to find the number of gallons in a oylin-
drical or a rectilinear tank when its dimensions are given in inches or feet.
3. How to construct a table, given the formula and the values of all the letters but one, as $\mathrm{A}=\mathrm{bh}$. Construct a table when $\mathrm{h}=5$.

When $\mathrm{b}=$	0	2	3	5	9	12	15	20
Then $\mathrm{A}=5 \mathrm{~b}=$	0	10	15	25	45			

Using the formula $p=35$, see if you can Pind the perimeter of an equilateral triangle whon $S=5$. Wame and work out others.
S. How to decide which orangea are the most economical to buy, by comparing the amount of juice in each, to their respective prices.

Be able to explain what is meant by "Dependence and Variables". In the formula $C=2 x r$, the length of the circuraference (c) depends on the radius (x). The quantities C and r may change in value and are therefore celled variablea.

Contract A.

1. Be able to obtein formulas from tables as: Find the formule frow the following table and complete.

When b	1	2	4	5	7	9	12	15
then $A=$	4	8	16	20				

The answer would be $A=4 b$.
See if you can construct others for the area of a circle, perimeter of a rectangle. etc.
2. Be able to draw a graph from a formula.
3. Be able to obtain the area of an irregular plot of ground by dividing it up into rectangles and triangles.
4. Know how to proportion the usuel distribution of your time in a circular graph form.
5. Heme other uses for this type of a graph.
6. Make a survey of formulas from the "Popular

Science" or "Science and Vechanics".
7. Make a line graph of the lowest, average, and highest temperatures for your eity in the last 25 years.

UNTT II. MASTERX TEST

Directions: In order to complete any contrect, you are required to pess the testa on $1 t$ and all the contracts preceding it, 1.0 ., those completing Contract C are required to pess both tests D and C. Everyone should work as many problems in each contract test beyond his own contract es is possible for him to do.

Contract D. Write a shorthand statement for each of the following:

1. Pive times a number (n) plus 3.
2. The length times the width divided by two.
3. The quotient of x divided by y.
4. One-half a number (n) equals $s i x$.
5. The cost of y divided by seven.
6. Four plus a number (n).

Ivaluate the following:
7 . $A=1 / 2$ bh; find A when $b=6$ and $h=5$.
8. $A=$ bhi find h when $A=16$ and $b=2$.
9. $\nabla=$ lin ; find ∇ when $l=7, v=3, h=4$.
10. $v=$ hwh find w when $v=420 . h=7, l=12$.
11. $d=r t$; find r when $d=120, t=3 \mathrm{hrs}$.
12. Find the area of a parallelogram with a base of 4 ft ., and an eltitude of $21 / 2 \mathrm{ft}$.
15. If the side of an equilateral triangle is $4 x$, write a formula for its perimeter (p).
14. If y stands for any number, what is the meaning of $3 \mathrm{y}, \mathrm{y}+5,5-\mathrm{y}, \mathrm{y} / 6$?
15. Find the mount invested at 4% for S yeare if the interest amounted to $\$ 10.44$.
16. $A=\ell w ;$ solve for l; for w.
17. $I=$ prt; solve for $\mathbf{r} ;$ for t.
18. $\mathrm{V}=$ lwh; solve for h ; for w .

Contraet C.
19. A rectangular strip of ground is 20 ft . long and 12 St . wide. Along the two longer sides is a flower bed one foot wide. The rest of the plot is in grass. How many sq.et. of grass are there?
20. The dimensions of a rectangular solid are ℓ, w, and h. Write a formula for (1) its total surface (5); (2) its volume (V).
21. Write the formula which shows how many cents (c) in (a) dollars, (q) quarters, and (n) nickels. 22. A rectangular tin box has a square base, the edge of wich is 8 inches long. It is 6 inches high. What is the volume of this box? How much tin is used in making the bottom and sides of this box?

Contract B.
23. A cylindricsi boiler wes 14 inches in diameter and $6 \mathrm{ft} . \mathrm{high}$. How many gellons of water did it hold? (One gel. = 231 eu.in.). Find the area in sq.in. of its totel surface (S).
24. Compere the volumes of two cubes whose edges are 6 ft . and s ft. respectively. Compare their areas.
25. Construct a table of values for the formula $c=8 n$ for the following values of $\mathrm{n}: 5,9,12,15,25$. Contract A.
26. This table shows how to find the postage required to send a parcel into the third zone.

| "t. In lbs. (x) | 1 | 2 | 3 | 5 | 10 | 20 | 70 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cost (c) | $\$.08$ | .14 | .20 | .32 | .62 | 1.22 | 422 |

Write the formula for the above table.
27. If you spend 9 hours dally in sleeping, 2 hours eating, 2 hours in dressing, 6 hours at school, 2 hours in outside activities, 1 hour playing, end 2 hours working, draw a ciroular graph showing this.
28. Find the area of the plot of land shown here.

29. (a) Draw a graph of the formula $p=38$. Let
s have the values $0,3,6,9,12,15$.
(b) From the graph, determine p when is 8 .
(c) From the graph, determine when p is 30 .
(d) Complete: As s increases, p \qquad。

PRETEET FOR UNIT III

1. (a) What is the left aide of the equation $6 a=12$?
(b) What is its root?
(c) What number satisfies it?
(d) To solve it, what do you do to both sides?
2. Whet does $x+7$ meen? $7 x$? $7-x$? $x / 7$?
3. What does A_{3} mean? S_{8} ? \mathbb{H}_{x} ?
4. Solve the following equations and aheek:
(a) $x / 2=5$.
(b) $a+3=8$.
(a) $y-7=2$.
(d) $3 m=15$ 。
5. Terms auch as $3 x^{2}$ and $5 x^{2}$ are called \qquad .

UWIT III. STMPLE EQUATIONS

ITme: 4 weeks

What is an equation? Can you recall working with equations before? What is a formule? Is it an equation Do all equations need to be formulas? What slways separates the left merber from the right member?

Our aim in this unit is to use the equation as an inetrument in the solution of verbal problems. Wie also desire to strengthen our ability of problem solution, and to develop self-reliance in the banding of numerical problems through the consistent use of checks.

Contract D. Before attempting the "raatery Test" on this unit, you should have completely mastered the work on the following types of problems:

1. How to write verbel statements in ahorthand form, es:

Three times $x=3 x$.
Seventy-five per cent of the cost of an algebra
book is 96 cents. What does it cost?
Solution: a. Let $x=$ cost of the book in cents.
b. $\therefore .75 x=75 \%$ of the cost of the book.
e. $\therefore .75 x=96$
d.

$$
x=128
$$

\therefore the book cost \$1.28.
Check. Does $.75 \times \$ 128=\$.96$? Yes.
Always write out all the steps as given above and chock your result.
2. How to solve the multiplication type as $a x=b$, or $3 x=15$.

Note: In this type of problems, all the letters except x represent numerals. The x is the unknown. 3. How to solve the division type, as $x / a=b$, or $x / 2=10$.
4. How to solve the addition type, as $x+b=c$, or $x+3=15$.
5. How to solve the subtraction type, $\& 8 x-b=c$, or $x-8=10$.
6. How to use the fundamental axioms.
7. How to check any type of an equation.
B. How to combine like terms.
9. How to solve the following types of equations consisting of more then one step, as:
(a) $x / a+b=c$, or $x / 3+5=14$.
(b) $x / a-b=c$, or $x / 3-5=1$.
(c) $x / a \pm b / c=d$, or $x / 2 \pm 4 / 3=5$.
(d) $a x \pm b=c$, or $2 x+5=7$, and $4 x-3=9$.
(e) $a x \pm b=c x+d$, where a is greater than c and b is less than d, as $3 x+4=x+7$.
(f) $\mathrm{ax} \pm \mathrm{b}+\mathrm{cx}=\mathrm{d}$, or $7 \mathrm{x}+9+\mathrm{x}=25$.
(g) $6 x+b x+c x+d x+0=f$, or $8 x+x+5 x$ $+3 x+9=43$.
10. How to write the equation and how to solve and check those based on verbal statements, as:

If 8 years be subtracted from Ann's age. the
result is 6 . How old is Am?
Solution: Let $x=A n n ' s$ age.
$x-8=8$ years subtracted from Ann's age.
$x-8=6$ correct equation.
$A_{8}+8+8$
$x=14 A n n^{\prime} s$ age.

Check:

$$
\begin{aligned}
14-8 & =6 \\
6 & =6 .
\end{aligned}
$$

Know that A_{4} means to add 4 to both sides of the equation.

Know that S_{3} means to subtract 3 from both sides of the equation.

Know that D_{5} means to divide each term of the equalion by 5 .

Know that H_{2} means to multiply each term of the equation by 2.

Contract C. More complicated forms of the above verbal type problems w111 be expected of you. Instead of only one unknown, you should be able to solve problems containing two unknowns, both expressed in terms of one unknown letter. There may also be necessity of taking two or more steps in solving these equations, such as:

Frank is 5 years older then Fred. The sum of their ages is 25 . How old is each?

Solution: Let $x=$ Fred's age.
Then $x+5=$ Frank's age.
$x+x+5=25$ correct equation.

$D_{2} \quad x=10$ Fred's age.

$$
x+5=15 \text { Prank's age. }
$$

Check: Does $10+15=25$? Yes.
Contract B. emphasis should be placed on verbal problems containing three unknowns. The way you derive your equations, and jour method of solving and checking them, are very important. Care should be taken so that the most economical unknown is represented by (x). Then state the others in terms of it. This will lead to clear, stralght-forward statements and fewer errors will result.

For example: The sum of the ages of three children of a certain family is 36 years. Charles' age is one year more then twice John'a age; Mary's age is one year leas than 3 times John's age. Find their ages.

Solution: Let $x=$ John's age.

$$
\begin{aligned}
& \text { Then } 2 x+1=\text { Charles' age }, \\
& \text { and } 3 x-1=\text { Mary's age. } \\
& \begin{aligned}
x+2 x+1 & +3 x-1=36, \text { correct equation } . \\
6 x & =36 \\
x & =6 \text { John's age } \\
D_{6} \quad 2 x+1 & =13 \text { Charles' age } \\
3 x-1 & =17 \text { Mary's age. }
\end{aligned}
\end{aligned}
$$

Check: Does $6+13+17=36$? Yea.
Contract A. Bring to class several verbal problems based on your everyday experiences or on those of your friends. Can you find any involving fractions?

UNIT III. MASTERY TEST

Directions: In order to complete any contract, you are reguired to pess the tests on it and all the contreots preeeding it, $1.0 .$, those completing Contract C are required to pass both tests D and C. Everyone should work as many problems in eech contract test beyond his own contract es is possible for him to do.

Contrect D. Write the following statements in shorthand form:

1. A man is π years old. Express his age 8 years from now.
2. A man is x years old. Express his age 8 years ago.
3. A man is x years old. Express 8 times his age.
4. A besebell teem played n games and lost 7. The number of games won was?
5. The cost (c) of one article when the total cost (T) of a articles is known.
6. Represent the smaller number (s) when the larger one is (l) and their dirference is (d).
7. Six diminished by twice a mumber (n).
8. Represent the number of days (D) in x weeks
and 5 dey*.

Form equations only:
9. Hine less than 3 times a number is 27 .
10. If 4 is subtracted from 11 times a number. the remainder 187.
11. Eight more than 5 times a number is 43.
12. Does 4 satisfy the equation $7 x+3 x=40$?
13. Is 5 a root of the equation $3 y-9=12$?
14. What does A_{2} mean? S_{4} ? M_{3} ?

Solve for the value of the unknown and check jour results.

$$
\begin{array}{ll}
15 \cdot 25 t=80 . & 18 \cdot x+11=29 . \\
16 \cdot x-17=13 . & 19 \cdot 3 / 5 x=18 . \\
17 \cdot x / 7=2 . & 20 \cdot 2 x-9=15 .
\end{array}
$$

Solve and check the following:
21. The sum of the angles in a triangle is 180 dogrees. If two of them are equal to each other. and the tnird angle is 55 degrees, how many degrees are there in each equal angle?
22. Pind two parts of 92 , one of which is $1 / 3$ of the other.

Contract C. Solve and check the following:
23. John's radio set cost him 4 times as much as Henry's. Both sets cost $\$ 125$ together. What was the cost of ench?
24. The length of the school playground is twice the width. The perimeter is 1800 ft . That are the length and width?
25. Divide 21 into three parts auch that the first is twice the second, and the second is twice the third. Contract B. Solve for the value of the unknown in the following and check your results.

$$
\begin{array}{ll}
\text { 26. } 3 / 4 x=12 . & 27 \cdot 3 x+11 x=280 . \\
28 \cdot x / 2+7=12 . & 29 \cdot 21 z-z+8=88 . \\
\text { s0. } 3 x+5-x=x+9 . \\
51 \cdot 3 y+y-8+7 y+2=y+28 .
\end{array}
$$

Solve and checik the following:
32. A plumber and two helpers together earned \$15 a day. How wuch dis each man earn in a day if the plumber earned 4 times as much as each helper?
33. Mary has 3 times as far to welk to school as Helen has and their difference is $1 / 2$ mile. How far does each welk?
34. Ann has $\$ 8.50$ in a aevings account and 18 depositing \$.50 a week. Edna has $\$ 12.25$ and is depositing $\$ 25$ a week. In how many weeks will An^{n} have as much as Eana?

Gontract A. Solve and check the following:
35. There are two numbers of which the larger is 6
times the smaller. The larger is also 25 more than the ameller. What are the two numbers?
36. The perimeter of a triangle is 20 inches. The
second side is 2 inches longer than the first side, and the tinird side is 3 inches longer than the first side. Find the length of each alde of the triangle.
37. A is ten years older than C, and B is 6 years
younger then C. The sum of their ages six years ago was 40 years. How old is each now?

PRE-TEST ON UNIT IV

1. How would you indicate a rise of 7 degrees in temperature? A fall of 7 degrees?
2. Add:
$\begin{array}{llllllllll}+3 & +6 & -9 & 5 & -12 & +3 & 0 & 1 & -1 a^{2} & -2 x \\ -4 & +1 & -2 & 4 & +9 & -3 & -2 & +9 & -8 a^{2} & +15 x\end{array}$
3. Subtract the 2 lower number from the upper
number:
$\begin{array}{lllllllll}-5 & -6 & +8 x & -7 & +3 & +13 & -8 & +0 & -6 \\ +2 & -2 \\ \text { 4. Multiply: } & & & & -10 x \\ -12 & -12 & -4 & +15 & -6 & -6 & +y\end{array}$

3	+7	$-7 x$	-9	$+8 x$	$-5 a^{2}$	-8	0
-2	+4	$-2 x$	+3	$-12 y$	$+8 a^{2}$	$\underline{0}$	+3

5. Divide:

27 by $-3 ;-9$ by $+3 ; 5$ by $0 ; 0$ by $-8 ;-15$ by $-5 ; 12$ by +1 ; $35 x$ by $-7 ;-3 x^{3} y^{2}$ by $x y$.

UNIT IV. POSTIIVE AND NEGATIVE WUMBERS

Time: 7 weeks

A. ADDITIOII OP POSIT IVE AND NEQAT IVR WUMBERS

Positive numbers such as we have in arithmetic may be plotured by lengths of lines. We can choose a line segment and mark off on it units of equal length to represent our numbers, or parts of a unit for fractions. If this line segment is extended on the left, it can be marked off similarly. This will give us a number scale which we can find in most any standard text. Study carefully the characteristios of this scale. Will a thermometer scale make a good number scale? Gan you think of others?

Contract D. Before attempting the "Fastery Test" on this pert of the unit, you should have complete mastery of the following:

1. The meaning and important uses of positive and negative numbera.
2. How to mentally picture signed numbers.
S. How to add signed numbers and sraetions.
3. How to add two or more monomials either vertically or horisontally.
4. How to add two or more polynomials and check your results.
5. How to solve equations involving two or more edditions, es:

$$
a x-b=c-d x \text {, or } 9 x-12=1-4 x
$$

where a is greater than d and b is greater than c. Know the definitions of: directed numbers, similar terms, coefficient, exponent, monomiels, polynomials, sbsolute values, lescending and ascending powers, binomial, trinomial, negative and positive torms.

Know the rules for addition.
Contract C. Be able to determine the following:

1. How to find the average hourly temperature reading for any day.
2. How to solve verbal problem based on addition. Contreet B.
3. Write out a brief aummary of the uses of positive and negative numbers, showing their relationship to arithmetic. State if. you think they Will be of benefit to you, and why.

Contract A.

1. Write out a few practioal appliostions where you can meke use of these rules in everyday 11fe, as:

2. Know how to chock the addition of any polynomials.

B. SUBTRACTION OF POSITIVE ABD NEOATIVE RUNBERS

Construct a number scale similar to the one you used in learning how to add directed numbers. See if you can determine the rules for subtraction from it. If you cannot, study this methad from some standerd text. Do you find any similerity between the addition and subtrection rules?

Contract D. A semi-unit test will be given at the close of this part of the unit. You should have mastered the following before attempting to take it.

1. How to subtract one signed number from another and check your results.
2. How to subtract one monomial from another and cheok your results.
3. How to subtract one polynomial from another and check your results.
4. How to solve equations involving two or more subtractions, es:
$a x+b=c+d x$, or $6 x+2=12+x$, where b is less than c and d is less than a.
5. How to remove one symbol of grouping and colleet like tems in solving algebraic expressions containing parentheses preceded by oither a plus or a minus sign.
6. How to solve an equation involving one perenthesis.

Know the definitions of the following: subtrahend, minuend, supplementary and complementary angles, and consecutive numbers.

Know the rules for subtractions and for renoving parentheees.

Contract C. Learn to do the rollowing:

1. How to perform the combination of addition and subtrection with polynomials.
2. How to solve equations or algebraic expressions involving two parentheses.
3. How to solve verbel problems based on subtraction.

Contract B. Study carefully the solution of equations, both numericel and literal, containing two or more parentheses, some of which are within others.

Contract A. Learn the following:

1. How to check the subtraction of the more difficult polynomials.
2. How to inclose two or more terms in parentheses preceded by either a minus or plus sign.

UNIT IV. MASTERY TEST ON THE ADDITION ALD SUBTRACTION OF SIGNED NUMBERS

Directions: In order to complete any contract, you are required to pass the tests on $1 t$ and all the contracts preceding it, $1.0 .$, those completing Contract 6 are required to pass both tests D and C. Everyone should work as many problems in each contract test beyond his own contract as is possible for him to do.

Contract D.

1. Add:
$\begin{array}{rllllllrl}+10 & -7 & -8 & +2 x & 0 & x & -y & -y & 3 x \\ -3 & +2 & -4 & +8 x & -2 & -7 x & +y & -y & -x \\ - & - & -x & 0\end{array}$ 2. Subtract:
$\begin{array}{rrrrrrrrrr}3 & -12 & +6 & 0 & x & -x & 3 y & 5 x & -7 y & 12 y \\ -9 & 5 & +6 & -8 & 0 & -\underline{x} & -2 y & -5 x & +9 y & -y\end{array}$
2. In the expression $3 m^{2}-9 m n+n^{2}$:
a. $3 m^{2},-9 m n,+n^{2}$ are called \qquad ?
b. $3 \mathrm{~m}^{2}$ is a \qquad ?
c. -9 mn is a \qquad ?
a. The numerionl coefficient of n^{2} is ?
3. Add:

Add and cheek the following:

Subtract and check the following:
8. $\begin{array}{r}3 x-z+42 \\ 3 x+2 y-2 \\ \hline\end{array}$
9. $\begin{array}{r}7 x^{2}+2 a t-9 t^{2} \\ -x^{2}+8 t-2 t^{2}\end{array}$
10. From $5 \mathrm{a}+7 \mathrm{~b}-3 \mathrm{c}$ subtract $\mathrm{a}-2 \mathrm{~b}-5 \mathrm{c}$.
11. Combine like terms: $5 x-3 z+t+4 r-2 t$ $+7 s-t+3 r-s$.

Solve the following equations and check your results:

$$
\text { 12. } 11 x=144-5 x
$$

$$
13 \cdot 17 y-38=100-6 y
$$

$$
14 \cdot 18 x+4=5 x+147
$$

$$
\text { 15. } 5 x-(5 x-7)=15
$$

$$
16.5 y-(8-6 y)=80
$$

17. How many degrees are there in the angle which
is 11 times as large as its supplement?
Contract C. Solve the following:
18. How much more than $x^{2}-8$ is $-5 x^{2}+11$?
19. Subtract $-5 \mathrm{x}^{2}-\mathrm{rs}-5 \mathrm{~s}^{2}$ from the sum of
$x^{2}+3 x^{2}-5 s^{2}$ and $2 x^{2}+7 s^{2}$.
20. By how mich does $e^{2}-15 e+2$ exceed
$\theta^{2}+5 \theta-2$?

$$
\begin{aligned}
& \text { 5. } \begin{array}{r}
3 x+2 y-z \\
-x+y+3 \\
\hline
\end{array} \\
& \text { 6. } \begin{array}{r}
-9 x^{2}+7 x y+8 \\
8 x^{2}+x y-7 \\
\hline
\end{array} \\
& \text { 7. } 3 x^{2}-3 x y+7 y^{2}
\end{aligned}
$$

21. How much smallor is $-4 a+2 b-140$ than a $-6 b-7 e$?
22. From the sum of $y^{2}-z^{2}, y^{2}-y^{2}-2 z^{2}$, and $2 y z+z^{2}$ subtract $z^{2}-y^{2}+2 y z$.

Solve the following equations:
23. $(10 x+6)-(11-15 x)=20 x$.
24. $1-(6 x-5)=2 x+(15-9 x)$.
25. There are three consecutive integers whose sum is 114. What are they?
26. If you subtract 32 from 7 times a certain number, the remainder is 24. What is the number?

Contract B. Solve the following equations:
$27 . b-[2+(11-b)]=1$.
28. $3 x-[x-(x+a)]=$ e. Solve for x.
29. How large is the angle which is 6 more than 3
times as large as its complement?

Contract A.

30. Check Wo. 28 above by letting $x=3$.
31. Cheak \#o. 19 sbove by letting $\mathbf{r}=2$ and $s=2$.
32. Check No. 22 above by letting $\bar{y}=2$ and $2=3$.
33. One number is 8 times as large as a smaller one. If the amaller one be subtracted from the larger, the remainder is 21. Pind the two numbers.
C. MULTIPLICATIOH OF POSITIVS

AND IFGATIVE NUMBERS

The rules for multiplying positive and negative numbers ere easy to learn, but you should carefully study the explanation of them in your text so as to be able to understand them.

Contract D. Learn the following perfectly:

1. How to multiply aigned numbers .
2. How to multiply monomisis containing exponents and coerficients.
3. How to wultiply a polynomiel by a monomial.
4. How to multiply a polynomial by a binomial.
5. How to solve simple fractional equations.

Know the lawe of order, grouping, exponents, removing parentheses, and for multiplication.

Be able to define multiplier, produot, and multiplicand.

Contract C. Learn the following:

1. How to multiply a polynomial by any polynomial.
2. How to solve verbal problems of the maltiplieation type, such as: The sum of two numbers is 55; twice the greater equals three times the
smaller, plus 15 . Pind each number.
Solution: Let $x=$ the smaller part.
Then $55-x=$ the greater part.
$2(55-x)=3 x+15$, correct eguation.
$110-2 x=3 x+25$, or rearranging
$3 x+15=110-2 x$
$4_{2 x} \frac{+2 x}{5 x+15=110}+2 x$
$S_{15} \frac{-15-15}{5 x=95}$
D5 $\quad \mathrm{x}=19$ amaller part.
$55-x=36$ larger part.
Check: Does $19+36$ give 55 ? Yea.
Contract B. Know how to solve verbal problens of the more complicated types involving multiplication and addition or subtraction, es: If 5 times the complement of a certain angle be subtracted frox 2 times its supplement, the result is 15 degrees. What is the angle?

Solution: Let $x=$ the angle.

$$
\begin{aligned}
& \text { Then } 90-x=\text { the complement } \\
& \text { and } 180-x=\text { the supplement. } \\
& 2(180-x)-5(90-x)=15 \text { correet equation. } \\
& 360-2 x-450+5 x=15
\end{aligned}
$$

$$
3 x-90=15
$$

\qquad

$$
\begin{aligned}
3 x & =105 \\
x & =35 \text { degrees, the aize of the angle. } \\
90-x & =55, \text { its complement. } \\
180-x & =145, \text { its supplement. }
\end{aligned}
$$

Checif: Does 2 times 145 minus 5 times $55=15$? Yes.
Contract A. Write out some practieal epplications of multiplication from everyday life. It $w 111$ not be necessary that you solve all of them.
D. DIVIEIOK OF POSITIVE AND WFGATIVE WUMBRRS

Look through the explanation of division of signed numbers and see if you can make up your own rules. How do they differ from those for multiplioetion?

Contraet D. You should have complete mestery of the following before attempting to take the "Mastery Test" over the whole of Unit IV.

1. How to divide one signed number by another.
2. Hom to divide one monomial conteining expenents and coefficients by another.
3. Row to divide a polynomial by anomial.
4. How to divide a polynomial by a trinominl or binomial.
5. How to solve equations with negative roots.
6. How to find the equations for, and how to solve
and cheok all types of verbal problems based on simple inear equations, such as percentage problems, mixture problems, coin problems, motion problems, age problems, and other applied problems.

Know the laws of order, exponents, and your rulea for diviaion.

Be able to define dividend, divisor, quotient, and remainder.

Contract C. Learn how to do the following:

1. How to divide one polynomial by enother polynomial.
2. How to solve the more difficult verbel problems.

Contrect B .

1. Be able to multiply or divide three or more place figures, which are perfect multiples of smaller figures, by the use of the laws of exponenta, such as: Divide 1024 by 128 by using a teble of the verious powers of 2.

$$
\frac{1024}{128}=\frac{2^{10}}{2^{7}}=2^{3}=8 .
$$

2. Hake a study of a number of problems that can be solved by signed numbers, as ganes, eges, financial conditions, present weather condi-
tions, and bus iness problems.

Contrect A.

1. Bring to elass some outaide project based upon What you have already learmed in algebra. This mey be a group of practical problems and their solutions, a poem, play, poster, etc.
2. Hake a study of scales and find how to use them with positive and negative numbers.

UNIT IV. MASTERY TEST

Directions: In order to complete any contract, you are required to pass the tests on it and all the contracts preceding it, 1 .e., those completing Contract C ere required to pass both tests D and C. Everyone should woric as many problem in each contract test beyond his own contract as is possible for him to do.

Contract D. Add, then subtract the following:

1. $-7 x+3 y+4 z$

$$
6 x-3 y-8
$$

3. From $5 x-3 y-2$ subtract $4 x-2 y-z$. and
check.
4. Remove parentheses and simplify:

$$
(3 y-7)-(4 y-9)
$$

Solve for x and check:

$$
\text { 5. } 14 x+7=9 x+32
$$

$$
\text { 6. } 15(2 x-1)+8=5 x-57
$$

Multiply:

7. | 3 | -2 | 0 | 12 | $4 x$ | $-x y$ | $-3 x^{2} y$ | -9 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| -7 | 5 | -9 | 0 | \underline{y} | $-3 x y$ | $x y^{2}$ | $-3 x y^{3}$ |

Divide:

$$
\begin{array}{ll}
\text { 8. }(+28) \text { by }(+2) & 25 y^{4} \text { by } 5 y^{4} \\
(-15) \text { by }(-3) & 25 t \text { by }(-3)
\end{array}
$$

(-10) by (-1)	xyz by xy
(-4) by $(+8)$	$\left(-12 x y^{2}\right)$ by $(-6 x y)$
$(+27)$ by (-3)	$(0 d)$ by $(-d)$
y^{3} by y^{2}	$\left(-8 y^{2}\right)$ by $(2 y)$
33 by a	$16 m^{2} n^{3}$ by $(-2 m n)$
$3 x y^{3}$ by y^{5}	

Find:

$$
\begin{aligned}
& \text { 9. }(6 a-12 b) \div 6 . \\
& \begin{array}{lc}
\text { 10. }\left(-2 m^{2}+6 m-4\right) \div(-2) \cdot & \text { 14. } 12 \cdot-3 / 4 \cdot 2 / 3 \\
\text { 11. }\left(-y^{4}\right)\left(-y^{5}\right) \cdot 7 y \cdot-2 x^{5} y \cdot & 15 \cdot 2 m\left(5 m^{2}-4 m+3\right) \\
\text { 12. }(-1)(-1)(-1)(-1)(-1) \cdot & \text { 16. } \frac{-x^{2}+3 x-4}{-1}
\end{array}
\end{aligned}
$$

Multiply:

$$
\begin{aligned}
& \text { 17. } y^{2}+8 y+15 \text { by } y+3 \\
& \text { 18. } 12 x+38 \text { by } x-48 . \\
& \text { 19. } 3 x^{2}-5 x-2 \text { by } 2 x+7
\end{aligned}
$$

Divide:

$$
\begin{aligned}
& \text { 20. }-10 x^{3} y+6 x^{2} y^{2}-2 x y^{5} \text { by }-2 x y \text {. } \\
& \text { 21. } 10 x-8+9 x^{3}-15 x^{2} \text { by } 5 x-4 .
\end{aligned}
$$

Solve:
22. $1 / 2 x-1 / 5 x=9 / 10$.
23. $m-10=3 n / 4-m / 6$.
24. What is the area of a rectangle whose base is
$(5 x+y)$ in., and whose altitude is (2x-y) in.? Contrect 0 .
25. lluatiply $x^{3}-2 x^{2}+8+4 x$ by $2-x$.
26. Divide $\mathrm{e}^{3}-8$ by $a-2$.

27 . Divide $27 \mathrm{~b}^{3}+1$ by $3 \mathrm{~b}+1$.
28. Two-thirds of a certain number is 20 more than one-fourth of the number. What is the number?
29. A is now 4 times as old as B. In 10 years, he vill be only twice as old as B is then. How old is each now?
30. Two men start from the anme place, one going south and the other going north. One goes twice as fast as the other. In 5 hours they are 450 miles apart. Find the rate at which each man travels. Write the equation only.
31. Mary weighs 80 lbs, and sits 4 ft. Srom the fulcrum. Where must John sit if he veighs 90 lbs.? Trite the equation only.

Contract B. Solve for x and check your result:
32. $12 x^{2}+3 x+2[2 x-5 x(x-1)-10]-$ $\left(2 x^{2}+7 x\right)=20$.
\$3. Find 3 consecutive even numbers such that the sum of 3 times the Pirst and twice the seoond equels 4 times the third.
34. The total income from 2 investments is $\$ 135$. Part of the money is invested at 6\% and part at 7\%. The total amount invested is $\$ 2000$. Find the two sums.
35. One car suming 40 miles an hour left a certain place 4 hours later than another car running in the same direction at the rate of 25 wiles an hour. In how many hours will the faster ear overtaice the other? Write the equation only.
36. Eighteen coins, all dimes and cuarters, amount to $\$ 2.25$. Find the number of each kind of coin. Write the equetion only.

Contract A.

S7. Incloae the last three terms in parentheses preceded by e minue sign: $2 x^{3}-y^{2}-2 y-1$.
38. A collection of nickels, dimes, and quarters amounts to $\hat{4}$. There are 10 more niekels than dimes, and 2 less quarters then dimes. Find the number of eech.
39. I bought 45 stamps for $\$ 2.05$. If part of them were 2-cent stamps and part 3-cent stamps, how many of each did I buy?
40. A grocer mixes two kinds of tea. He mixes 20 lbs. more of the 60f variety than of the 75f varioty. How meny pounds of each does he mix if the total value is \$45.75? Fite the equation only.

FRE-TEST ON UNIT V

1. Find the product of the following the easiest way you can and show your work.

$$
\begin{aligned}
& a(3 x+5 y-z) \\
& (2 a+7)(a-1) \\
& (x-y)(x-y) \\
& (a+b)(a-b) \\
& (2 a+7)(2 a+7) \\
& x(x+3)(2 x-9)
\end{aligned}
$$

2. Factor the following and explain how you did it by using the easiest method you know.

$$
\begin{aligned}
& (7 r-7 t) \\
& \left(a^{2}-2 a b+b^{2}\right) \\
& \left(2 a^{2}+a-21\right) \\
& \left(25 x^{2}-y^{2}\right) \\
& \left(9 m^{2}+12 m+4 n^{2}\right) \\
& \left(3 x^{2} y-11 x y-20 y\right)
\end{aligned}
$$

3. Solve for the unknown letter.

$$
\begin{aligned}
& a^{2}-5 a+6=0 \\
& a^{2}-25=0
\end{aligned}
$$

UNIT V. PFODUGTS AND PACTURIUG

Time: 5 weeks

You have already learned one method of finding the products of two or more quantities by multiplication and how to find the factors of two quantities by division. Our aim here is to find a simpler method for some special cases in order to develop speed and accurecy in handing them. Also to understand the fact that algebre has broader powers than arithmetic.

Study this through carefully in your text.
Contract D. A complete mestery of the following should bo had before attempting the unit test.

1. How to find the product of any two binomiala by the oross-product method, as $(a x+b)(e x+d)$.
2. How to find the speciel products listed below:
a. The square of any binomial and oheck, as $(a x \pm b)^{2}$.
b. The product of the sum and difference of any two terms and check, es $(x+y)(x-y)$.
3. How to find the product of any two binomiale and a monomial and check.
4. How to factor and check the following types:
a. Removing a common monomial factor by Inspection, as ab + ec + ad.
b. Factoring a trinomial of the type $a x^{2}+b x+c$, or $3 x^{2}-5 x-2$.
C. Factoring any trinomial square, as $x^{2} \pm 2 b x+b^{2}$.
d. Fettering the difference of two squares, $a a^{2}-b^{2}$.
5. How to solve quadratic equations by the factoring method.

Know the definitions of quadratic equations, and prime and highest common factors.

Contract C. Learn the following:

1. How to find the products or the factors of the above named "special forms or products" by Inspection.
2. How to factor with speed the type $a x^{2}+b x+c$, or $6 x^{2}+24 x+18$, where three factors are obtrained, one a monomial factor.

Contract B.

1. Learn how to factor polynomials that may be grouped to show the difference between two squares, as $a^{2}+2 a b+b^{2}-c^{2}$.
2. Wake charts howing how to illustrate the Plading of the products of two binomials.
3. Weke charts to illustrate the use of factoring in the solution of formulas.
4. Reed in Hamilton-B1iss-Kupier, "Essentials of Junior High School Mathematics", Book III, pages 160-164-168-173-177.
5. Read in Tingelhardt and Haertter, pages 166-186. Contract A.
6. Learn how to solve literal quadratic equations.
7. Learn how to solve equations containing special products.
8. Niake a survey of reatangles, triangles, and cireles whase area can be found by the "crossproduct" method and whose dimensions can be found by the factoring method.
9. Bring to class some problema based on jour everydey experience, such as finding the unused area in a cookg pan by using different aized cook cutters, otc.

UNIT V. MASTRT DEST

Directions: In order to coaplete any contract, you are required to pass the teats on it and all the cantracts preceding it, 1 .e., those completing Contract C are required to pasa both tests D and C. Everyone should work as many problems in esch contract test beyond his own contract as is possible for him to do.

Contract D. Multiply:

$$
\begin{array}{ll}
\text { 1. }(-3 x)^{2} & \text { 2. }\left(+7 y^{2}\right)^{3} \\
\text { 3. }\left(-2 x y^{3}\right)^{2} & \text { 4. } 3 a\left(-2 y^{2}\right)^{3} \\
\text { 5. } 5 a(x+s-t) & \text { 6. }-2 y(a-b+c) \\
\text { 7. } a\left(a^{2}-3 a-1\right) & \text { 8. }(3 x-b)(3 x+b) \\
\text { 2. }(x+y)(x+y) & \text { 10. }(2 y-7)(y+8) \\
\text { 11. }(a b-c)(a b-c) & \text { 12. }(4 d-3)(4 d-3) \\
\text { 13. }(3 x+2)(x-1) & 14 \cdot(x-y)(x+y)
\end{array}
$$

Find the prime factors of:

$$
\begin{array}{ll}
15 \cdot 3 x-7 x y & \text { 16. } 2 a x+8 b x-4 e x \\
\text { 17. } 5 x-5 y & \text { 18. }-2 x^{5} x+4 x^{2} y-6 x z \\
\text { 19. } 4 x^{2}-4 y^{2} & 20 \cdot 4 a^{2}-1 \\
21 \cdot m^{2}-7 m n-44 n^{2} & 22 \cdot 25 y^{2}-9 x^{2} \\
23 \cdot x^{2} y^{2}+x y-6 & 24 \cdot 4 x^{2}-12 x y+9 y^{2} \\
25 \cdot 4 x^{2}+4 x y+y^{2} & 26 \cdot 6 a^{2}-13 a+6
\end{array}
$$

Solve the following quadratio equations by factoring: 27. $3 x^{2}+8 x+5=0$. 28. $6 a^{2}-7 a+1=0$.

Contract C. Multiply:
29. $b(2 a+7)(2 a+7) \cdot 30 \cdot\left(7 n^{2}-3 n\right)\left(5 m^{2}-2 n\right) \cdot$
31. $m(3 m+2)(2 m+3) \cdot 32 \cdot\left(8 x^{2}-5 y\right)\left(3 x^{2}-2 y\right)$.
33. $(a+b)(e+d)$ 34. $\left(2 x^{2}+y\right)(3 x-7)$.

Find the prime factors of:
$35.1-9 y^{4}$. $\quad 36 \cdot 169^{4}-1$
$37 \cdot 6 m^{4}+9 m^{2}-6 . \quad 38 \cdot e^{2} / 4-4 e+16$
$39 \cdot 169 a^{2} b+78 a b^{2}+9 b^{3}$.
40. $4 x^{4} y^{2}+2 x^{3} y^{3}-7 x^{3} y^{2}$.
41. $18 e t^{2}+48 e t+32 a \cdot 42 \cdot 18 a^{2} c^{2}-57 a c^{2}+45 c^{2}$.

Solve the following quadratic equations by fectoring:
43. $b-16+15 b^{2}=0 \cdot 44 \cdot t^{2}=9-8 t$.
45. $x^{2}=2 / 3 x+5 / 3$.

Contract B. Find the prime factors of:
46. $196 y^{2}-\frac{25}{169} a^{4} \quad 47 \cdot a^{2}-b^{2}+2 b c-a^{2}$.
48. $x^{2}-a^{2}-2 a b-b^{2}$.

Solve for the unknown:
49. $(2 x-1)(x+2)-(x+1)(x-5)=24+x^{2}$.
50. $3(2 a-5)(a+4)-6(a+8)(a-2)=9$.
51. $(2 x+3)^{2}-(4 x+1)(x+2)=19$.
52. The square of a certain number equals the sum of 5 times the given number and 6 . What is the number?

Contract A.
53. The base of a certain rectangle exceede its altitude by 8 inches. If the base and altitude are both decreased by 4 inches, the old area exceeds the new area by 192 square inches. Find its dimensions.
54. The aquare of the larger of two consecutive integers is 29 more than the square of the smaller. That are the integers?
55. Given, e circular metal plate of redius \mathbb{R}. From this plate 16 circular pleces, each of radius s, are to be eut.
a. Write a formula for the remaining area a of the surface of the plate.
b. Write in factored form the formula obtained.
c. Evaluate A if $R=12 \mathrm{in}$, and $\mathrm{F}=2 \mathrm{in}$.

TEST OVER ELEETAEY ALGESIA, FIRST STMESTR

Part I. True - False

Directions: If the statement is true, mark it plus (t); if false, zero (0).

1. A monomial is an expression consisting of one term.
2. A formula is an equation.
3. Fe cannot multiply a number by zero.
4. We cannot divide number by zero.
5. $(-5)^{3}$ means s times (-5).
6. The sum of twice a number and 6 may be expressed as $2 \mathrm{x}+6$.
\qquad

-

9. If the same number is added to both sides of an equation, the equality is destroyed.
10. When terms are multiplied, we must multiply the exponents of like letters to obtain the product.
11. The quotient of two negative members is always positive.
12. The sum of x and y may be written $x y$.
13. Angles are measured by a sall unit esiled a degree.
14. Subtract exponents in diviaion. 15. The quotient is the result obtained by multiplicetion.
15. A trinomial is an expreasion of one term. 17. A small number witten to the right and a little above the number is called the coerricient of the number.
16. An expression wifich contains two or more terme joined with plus or minus signs is a polynomial.
17. An a gebraic statoment that two quantities are equal is called an equation.
18. In eddition of positive and negative numbers. sdd lixe signs and subtrect unlike signs.

Part il. Matching rest

Directions: Write the letter of the correct product in the blank space before the problem.

Fart III. Completion teat

Directions: In each blank write the word which should be supplied where the corresponding number appeers in the incompleto statements.

1. $(a-b)^{2}$ means the (1) of the (2) of (3) and (4).
2. $(x y)^{2}$ meens the (5) of the (6) of (7) and (8).
3. $x^{2}+y^{2}$ means the (9) of the (10) of (11) and (12).
4. The rorrauia $V=\ell w h$ shows that the (13) of a (14) is equal to the (15) of the (16) times the (17) times the (18).
5. The square of the sum of eny two numbers equals the (29) of the first number, (20) two times the (21) of the two numbers, (22) the (23) of the (24) number.
6. In subtraction, change the aiga of the (25) and proceed es in (26).
7. In edding polynomiels, eech group

of (27) terms should be written in a column.
8. If in solving some special problem, it happens that
two expresilions are (28), or represent the same thing, we get en (29). It is a tool to be used in solving problems in which (30) numbers are to be found.

Part IV

Directions: Write the correct answer to each problem on the line to the right of the problem.

1. If $3 x-7=8$, find x.
2. If $a=5$ and $b=2$, find the value
of $3 a^{2}-2 a b$.
3. If $2 x-7 y=10$. find y when $x=3$.
4. Find the product of $4 a^{3}$ and $-9 a b^{4}$.
5. Find the sum of $-7 a^{2}$ and $4 a^{2}$.
6. Whet is the remeinder when -8r is subtracted from -5r?
7. What is the quotient when $6 a^{8}$ is divided by $3{ }^{4}$ 4?
8. Express $x^{2}-11 x+24$ as a product of two factors.
9. What is the product of $\left(3 a^{2}-7\right)$
and $\left(a^{2}+2\right)$?
10. Pind the values for x in
$4 x^{2}-11 x-3=0$.
11. If $y / 2=20$, what does y equal?
12. If a man travela x inlles in one
hour, how far does he travel in y hours?
13. How many truck loads of if tons
esch are contained in a car load of T tons
of conl?
14. If $b x-0=a$, then x equals
15. If $1=E / R$, then R equals
16. Subtract $3 x^{3}-7 x^{2}+8$ from
$x^{3}+2 x^{2}-6 x+3$.
17. Add $2 x^{2} y+7 y^{3},-3 x^{3}+x y^{2}$.
$3 x^{3}+x^{2} y-y^{3}$.
18. Divide $a^{5}-b^{3}$ by $a-b$.
19. Solve for $x \ln 2 x-7(3-x)$
$=x+8$.
20. Combine $3 x-7 y-x-7-3 y$
$+7 x+4$
21. Pxpress as a formula the area A
of a right triangle whose altitude is a and base b.
22. If 5 pencils cost y cents, what
v111 2 cost?
23. If the first number is x and the second $1 s \mathrm{y}$, represent the square of the sum of the two numbers.
24. If p pounds of copper eost t
dollars, how many cents per pound did it cost?
25. The greater of two numbers is 5
times the ampler. The sum of the two
numbers is 144. Write the equation.
26. The result obtained by subtract-
ing 24 from 7 times a number is 25 . Find the number.

27 . There are three consecutive numbers whose sum is 126. Find them.

Equal . (1) \qquad - Ans . (2) \qquad
28. Two angles A and B are complementary. Angle A is 21 degrees smaller than angle B. How large is each angle?

Eque. (1) \qquad - Ans. (2)
29. A grocer has some 40\% tea and some 90\% tea. How many $2 b s$. of each must he take to form a mixture of 100 lbs. Which he can sell for 60, a lb.? Equa . (1) \qquad - Ans . (2)

SO. The age of A is 4 times the age of B. Pour years from now A's will be one year more than 3 times B^{\prime} s age then. What are their present ages?

Equal. (1) \qquad - Ans . (2)

APPEMD DX

Rey for Pre-test for Unit II

1. $12 x+2$. 2. 50 x .
2. 5 more then $x ; 5$ times x.
3. $A=42$.
4. $48 \mathrm{sq} . \operatorname{in}$.
5. (a) x^{2}; (b) bh or ab; (c) x^{2}; (d) bh or ab.

Key for Hastery Test on Unit II

Contrect D.

1. $5 n+2$.
s. $x / 8$.
2. y/
3. $A=15$.
4. $V=84$.
5. $y=40$.
6. $\mathrm{p}=12 \mathrm{x}$.
7. S times $5 ; 5$ more than yi 5 diminished by $y ; 1 / 6$ of y. 15. 87.
8. $r=I / p t ; t=I / p r$.

Contract 6 .

19. 200 sq .ft.
$20 \cdot s=2 h+2 w k+2 l w . v=l \mathrm{mn}$.

Contract C.

21 . $=100 d+25 q+5 n$.
22. 384 ou. In ., $256 \mathrm{aq} . \operatorname{in}$. Contract B.
$25.48 \mathrm{gal} \cdot \mathrm{S}=3476 \mathrm{sq} . \mathrm{In}$.
24. 216 to 27 , or one 188 times the volume of the other. 216 to 54, or the area of one is 4 times that of the other.
25. 10; 72; 96; 120; 200.

Contract A.
26. $c=6 x+2$.
28. $3795 \mathrm{sq}$. .ft.
29. (b) $p=24 ;(c) s=10 ;(d)$ increases.

Evaluetion of problems: Total score 75 points.

$7-11.14,17,18,19,20,21,26--2$ points each.

22. 23. 24, 29 … -.............................. points each.

Key for Pre-test for Unit III

1. (a) 68 ; (b) 2 ; (c) 2 ; (d) divide both sides by 6 .
2. 7 more than $x ; 7$ times $x ; 7$ diminished by $x ;$ divided by 7 .
3. Add 3 ; subtract 8 ; multiply by x.
4. (e) $x=10 ;(b) a=5 ;(c) y=9 ;(d) m=5$ 。
5. Similar terms.

Key for rastery Test for Unit III

Contraat D.

1. $x+8$. 8. $x-8,3 \cdot 8 x$. 4. $n-7.5 \cdot 0=T / \square$.
2. $s=-d . \quad 7 \cdot 6-2 n . \quad 8 \cdot D=7 x+5$.
$9 \cdot 3 n-9=27 \cdot 10 \cdot 11 x-4=7 \cdot 11 \cdot 8+5 x=43$. 12. Yes. 13. No. 14. Add 2; subtract 4 ; multiply by 3. 15. $t=51 / 3 . \quad 16 . m=30 . \quad 17 \cdot x=14 . \quad 18 \cdot x=18$. 19. $x=30$. $20 \cdot x=12$. $21.621 / 2$ degrees. 22. 23, 69.

Contract C.

23. Henry's. \$25; John's, \$100. 24. 官1dth, 300; length, 600, 25.3, 6, 12.

Contract B.

26. $x=16.27 \cdot x=20 . \quad 28 \cdot x=10.29 \cdot z=4$.
$30 \cdot x=4$. $31 \cdot y=32 / 5$. $32 \cdot$ helper, $\$ 2.50 ;$ plumber, \$10. 33. 1/4, 3/4. 34. 15.

Contract A.

35.5 , 30. $36.5,7,8.37 .28,12,18$.

Ivaluation of problems: Total score 74 points.
Ex. 1 - 8, 15 - 20, 26 - 31 …..........-- 1 point each.

22, 23. 24. $32-36,37$.................-- 4 points eech.

Key for Pre-test on Un1t IV

1. +7 degrees; 7 degrees.
2. $-1,+7,-11,9,-3,0,-2,10,-12 \mathrm{a}^{2}, 11 x$.
3. $-7,-5,-2 x, 5,19,17,-23,6,0,-2 y$.
4. $-6,28,14 x^{2},-27,-96 x y,-40 x^{4}, 0,0$.
5. $-9,-5,0$, impossible. $3,3,-5 x,-3 x^{2} y$.

Key for Mastery Test on Unit IV - A and B

Contract D.

1. 7, $-5,-12.10 x,-2,-6 x, 0,-2 y, 2 r, 5 x$.
2. $12,-17,0,8, x, 0,5 y, 10 \mathrm{x},-16 \mathrm{y}, ~ 25 \mathrm{y}$.
3. (a) Terme or monomiala; (b) positive tera; (c) negative term; (d) 1.
4. $12 a b^{2}$. $5 \cdot 2 x+3 y \cdot 6 \cdot-x^{2}+8 x y-15$.
5. $3 x^{2}-3 x y+8 y^{2} \cdot 8 \cdot-3 y+5 z \cdot 9 \cdot 8 x^{2}+8 t-7 t^{2}$.
$10 \cdot 4 a+9 b+2 c \cdot \quad 11 \cdot 12 r+3 s-2 t . \quad 12 \cdot x=9$ 。
6. $\mathrm{y}=6$. $14 \cdot \mathrm{x}=11.15 \cdot \mathrm{x}=\mathrm{3} \cdot 16 \cdot \mathrm{y}=8$.
7. 165 degrees.

Contreat C .

18. $-6 x^{2}+19 \cdot 19 \cdot 8 x^{2}+4 x s+7 s^{2} \cdot \quad 20 \cdot-20 e+4 \cdot$
19. $5 a-8 b+7 c \cdot \quad 22 \cdot 3 y^{2}-y z-3 z^{2} \cdot \quad 23 \cdot x=1$. $24 . x=9.25 .37,58,59.26 .8$.

Contract B.
27. $\mathrm{b}=7.28 \cdot \mathrm{x}=\frac{\mathrm{c}-\mathrm{e}}{3} . \quad 29.69$ dogrees .

Contrect A.
30. -35. 31,47 . 32. -21. 35. 3, 24.

Evaluation of problems: Total score 212 points.

18, $30,31,32$-------------------------2 2 points each.
$4-10,11,12,15,14,27,20,21$,
$25,26,29,33$ …........................... 3 points each.
$3,15,16,23,24,27,28$ —............. 4 points each.

Key for Mastery Test on Unit IV

Contract D.

1. $-x+3 z ;-15 x+6 y+5 z$.
2. $-x^{2}-2 r s+a^{2} ; 3 x^{2}-4 r a+s^{2}$.
3. $x-y$. 4.2-y. $5 . x=5$. ô. $x=-2$.
4. $-21 ;-5 ; 0 ; 0 ; 12 x^{3} ; 3 x^{2} y^{2} ;-3 x^{3} y^{3} ; 27 x y^{6}$.
5. $9 ; 5 ; 10 ;-1 / 2 ;-9 ; y ; a^{2} b ; 3 x ; 5 ;-5 t ; 2 ; 2 y ;-0 ;$
$-4 y ;-8 a n^{2}$.
8.a-2b. 10. $\mathrm{m}^{2}-3 \mathrm{~m}+2$. 11. $-14 \mathrm{x}^{3} \mathrm{y}^{11}$. 12. -1 .
6. -6 . 14. $10 m^{5}-8 m^{2}+6 m \cdot 15 \cdot x^{2}-3 x+4$.
7. $y+5 \cdot \quad 17 \cdot y^{3}+11 y^{2}+39 y+45$.
8. $12 x^{2}-45 x s-12 s^{2} \cdot 19 \cdot 6 x^{3}+11 x^{2}-59 x-14$.
9. $5 x^{2}-3 x y+y^{2} \cdot 21 \cdot 3 z^{2}-r+2$. $22 \cdot x=3$. 23. $m=24$. 24. $10 x^{2}-3 x y-y^{2}$ sq.in.

Contract C .

25. $16-8 x^{2}+4 x^{3}-x^{4} \cdot \quad 26 \cdot e^{2}+2 a+4$.
$27.9 b^{2}-3 b+1.28 \cdot x=48$. 29. A, 20 yrs .; B, 5 yrs.
$50.5 x+10 x=450$. $31.80 \cdot 4=90 x$.
Contract B.
26. $x=4$. 33. 12, 14, 16. 34. \$1500 at 7\%; $\$ 500$ at 6%.
27. $40 x=25(x+4) \cdot 36 \cdot 25 x+10(18-x)=225$, or
$10 x+25(18-x)=225$.
Gontract A.
28. $2 x^{3}-\left(y^{2}+2 y+1\right)$. 38. Dimes, 10; quarters, 8;
niekels, 20. 39. 2-sent stamps, 30; 3-cent stamps, 15. 40. $60(x+20)+75 x=4575$.

Eveluation of problems: Total score 135 points.

4. 5, $11-21,27,28$------------------2 2 points each.

6, 7, $34-40$-------------------------3 pointa each.

Key for Pre-test for Unit V

1. $3 \mathrm{ax}+5 \mathrm{y}$ - az .

$$
\begin{aligned}
& 2 a^{2}+5 a-7 \\
& x^{2}-2 x y+y^{2} \\
& s^{2}-b^{2} \\
& 4 a^{2}+28 a+49 \\
& 2 x^{2} x-3 x x-27 x .
\end{aligned}
$$

2. $7(r-t)$.

$$
\begin{aligned}
& (a-b)(a-b) \\
& (2 a+7)(a-3) . \\
& (5 x-y)(5 x+y) . \\
& (3 m+2 n)(3 m+2 n) . \\
& y(3 x+4)(x-5) .
\end{aligned}
$$

3. $a=3$ or 2 .
$a=5$ or -5 .

Key for Mestery Test for Unit V

Contract D.

1. $9 x^{2}$. 2. $343 y^{6}$. 3. $4 x^{2} y^{6}$. 4. $-248 y^{6}$.
2. 3ar + 3as - 3at. 6. -2ay + 2by - 2cy.
3. $a^{3}-3 e^{2}-$. 8. $9 x^{2}-b^{2} \cdot 9 \cdot x^{2}+2 x y+y^{2}$.
4. $2 y^{2}+9 y-56 . \quad 11 \cdot a^{2} b^{2}-2 a b c+d^{2}$.
5. $16 d^{0}-24 \mathrm{~d}+9$. 13. $3 \mathrm{x}^{2}-\mathrm{x}-2$. 14. $\mathrm{x}^{2}-\mathrm{y}^{2}$.
6. $x(3-7 y) .16 \cdot 2 x(a+4 b-2 e) \cdot 17 \cdot 5(x-y)$.
7. $2 \mathrm{r}\left(-\mathrm{r}^{2} \mathrm{z}+2 \mathrm{y} y-3 z\right)$. $29 \cdot \pi(\mathrm{z}+\mathrm{y})(\mathrm{x}-\mathrm{y})$.
8. $(2 e+1)(2 e-1) \cdot 21 .(m-1 \ln)(m+4 n)$.
9. $(5 y+3 x)(5 y-3 x)$. 23. $(x y-2)(x y+3)$.
10. $(2 x-3 y)(2 x-3 y)$. $25 \cdot(2 x+y)(2 x+y)$.
11. $(3 a-2)(2 a-3) \cdot 27 \cdot x=-5 / 3,-1$.
$28 . a=1 / 6,1$.

Contract C .

$29.4 a^{2} b+28 a b+49 b \cdot 30 \cdot 35 m^{4}-29 m^{2} n+6 n^{2}$.
31. $-6 m^{3}-13 m^{2}-6 m$. $32 \cdot 24 x^{4}-32 x^{2} y+10 y^{2}$.
$33 \cdot a c+b c+a d+b d \cdot 34 \cdot 6 x^{3}+5 x y-14 x^{2}-7 y \cdot$
$35 \cdot\left(1+3 y^{2}\right)\left(1-3 y^{2}\right) \cdot 36 \cdot\left(4 a^{2}+1\right)(2 a+1)(2 a-1)$.
$37 \cdot 3\left(2 m^{2}-1\right)\left(m^{2}+2\right) \cdot 38 \cdot(a / 2-4)(2 / 2-4)$.
39. $b(13 a+3 b)(13 a+3 b) \cdot 40 \cdot x^{3} y^{2}(4 x+2 y-7)$.
41. $2 a(3 t+4)(3 t+4) \cdot 42 \cdot 3 a^{2}(3 a-5)(2 a-3)$.
43. b $=-16 / 15,1$. 44. $t=-9,1 . \quad 45 \cdot x=5 / 3,-1$.

Contract B.
46. $\left(14 y+5 / 13 a^{2}\right)\left(14 y-5 / 13 a^{2}\right)$.
$47 \cdot a+(b-c) a-(b-c)$.
48. $r+(a+b) r-(a+b)$.
49. $x=3 . \quad 50 \cdot a=1 . \quad 51 \cdot x=4 . \quad 52 \cdot 6,-1$. Contract A.
53. 22, 30 . $54.14,25$. 55. (a$) A=\pi \mathrm{R}^{2}-16 \mathrm{~m}^{2}$.
(b) $A=E(R+4 r)(R-4 r)$. (c) $A=2513 / 7 \mathrm{sq} . \sin$.

Ivaluation of problems: Total score 172 points.
8-48
3 points each.

Key for Semester Test

Part I. True - False
$1 .+$.
2. + 。
3. 0.
$4 .+$.
5. 0 .
6. + .
$7 .+$

1. 0.
1. 8 .
2. 3.
1. 2.

8.0.
9. 0 .
10. 0 .
11. + .
12. 0.
13. + 14 .

Part II. Matching Test

1.0.	5. 0.	9. b.
2. 8.	6.1.	10. d.
3. 3 .	7. ℓ.	11. $\mathrm{a}^{\text {. }}$
4. 1.	8. k .	12. h .

Part III

1. square.	11.x.	21. product.
2. difference.	12. y.	22. plus.
3. a.	13. volume.	23. square.
4.b.	14. solid.	24. second.
5. square.	15. product.	25. subtrahend.
6. product.	16. length.	23. addition.
7. x.	27. width.	27. like or similar.
8. J.	18. height.	28. equal.
9. sur.	19. squere.	29. equetion.
10. squares.	20. plus.	30. unknow.

Part IV

1. $x=5$. 2. 15. 3. $y=-4 / 7$. 4. $-36 a^{4} b^{4} \cdot 5 \cdot-5 a^{2}$. $6 \cdot 5 x \cdot 7 \cdot 2 a^{4} \cdot 8 \cdot(x-8)(x-3) \cdot 9 \cdot 3 a^{4}-a^{2}-14$. 10. $-1 / 4,3.21, y=40$. 12. $x y$. $23 . \pi / \kappa$. 14. $\frac{a+c}{b}$. 15. B/1. $\quad 16 \cdot-8 x^{3}+9 x^{2}-6 x-5$. 17. $3 x^{2} y+x y^{2}+6 y^{3} \cdot 18 \cdot a^{2}+a b+b^{2} \cdot \quad 19 \cdot x=35 / 8$. 20. $9 x-10 y-3 . \quad 21 \cdot A=a b / 2 . \quad 22 \cdot 2 y / 5$. 23. $(x+y)^{2} \cdot \quad 24 \cdot 100 t / \mathrm{p} \cdot \quad 25 \cdot x+5 x=144 \cdot \quad 26 \cdot 7$. $27.41,42,43.28, A=341 / 2, B=551 / 2$.
2. 40 lbs . at 90 cents; 60 lbs . at 40\%. $30 . \AA=36$; $B=9$.

Evaluation of problens: Total score 71 points.
Score for Part $I=$ No. right - No. Wrong .
Score for Part II $=$ No. right .
Score for Part III $=10$. right .
Score for Part IV = Ex. 1-26 -..........-1 point each.

$$
\begin{array}{r}
27-30 \cdots \\
\\
\text { correct equation }
\end{array}
$$ and answer .

ACKNODLEDGMENT

IWish to express my sincere appreciation to Dr. V. L. Strickland for the kind and helpful superviation Which he has given to we.

I ama greatly indebted to Dr. W. T. Stratton and to Associete Professor Miss Mme Hyde for the constructive oriticism offered by them.

BIBLIOGRAPIIY

Abelson, Harold II.
Aghievemont of dull pupils under the Dalton plan. Sch. and Soe. 30:211-12. Aug. 10, 1929.

Carter, Jean.
Contrects socialized. Tingl. Jour. 17:544-9. Sept. 1928.

Comish, Alison.
The contract plan in retrospect. Sch. and Soc. 34:95-7. July, 1931.

Gook, A. R. The contract plan: its vorking. Educ. Rev. 73:109-11. Feb. 1927.

Eason, Victor E. and Cole, Robt. D.
The effectiveness of the contract method as compared with the ordinary method of teaching. Sch. Mev. 37:272-81. Apx. 1929.

Hargrave, Mary.
The Dalton plen in practice. Engl. Jour. 17:372-80. Mey, 1928.

Hepler, Elizabeth Spears.
A comparative study of the individual and group methods of teaching ninth grade algebra. Unpub1ished thesis, Kans. St. Col. of Agr. and Appl. Sci. 72 p. 1931.

Miller, Herry Lloyd.
Creative learning and teaching. New York. G. Scribner's Sons. 377 p. 1922.

Stone, C. A. and Georgea, J. S.
The laboratory schools. University of Chicago. Sch. Se1. \& Fath. 31:58-67. Jan. 1931.

Sumer, Stephen Clayton.
Supervised study in mathematics and science. New York. The Macleillan Company. 241 p. 1922.

Waples, Douglen and Stone, Charles A. The teaching unit--a type study. New York. D. Apploton * Co. 205 p. 1929.
weber, I. The contract plan of instruction in science. 3at. Tduc. Assm. 576-9. 1928.

