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Abstract 

The properties of hexagonal boron nitride (h-BN) as a semiconductor neutron detection 

medium were investigated. Single h-BN crystal domains were synthesized by the Chemical 

Engineering department at  Kansas State University (KSU) using crystallization from molten 

metal solutions.  At Texas Tech. University (TTU), a detector was fabricated using epitaxial h-

BN growth on a sapphire substrate where metallic micro-strip contacts 5 μm apart and 5 nm 

thick where deposited onto the un-doped h-BN. In this research both the crystal domains 

synthesized at KSU and the detector fabricated at TTU were tested for neutron response. Neutron 

irradiation damage/effects were studied in pyrolytic h-BN by placing samples in the central 

thimble of the TRIGA MARK II reactor at KSU and irradiating at increasing neutron fluences. 

The domains synthesized at KSU as well as the detector fabricated at TTU showed no response 

to neutron activity on a MCA pulse height spectrum. Conductivity analysis showed abrupt 

increases in the conductivity of the pyrolytic h-BN at around a fluence of 10
14

 neutrons per cm
2
. 

Bandgap analysis by photoluminescence on the irradiated pyrolytic h-BN samples showed shifts 

in energy due to towards plane stacking disorders upon neutron irradiation. Future efforts may 

include the introduction of dopants in h-BN growth techniques for charge carrier transport 

improvement, and mitigation of plane stacking disorders.  
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Chapter 1 - Introductory Aspects  

Applications of neutron detection are prevalent in science, engineering, and medicine. In 

medicine, neutrons play roles in imaging, dosimetry, and cancer treatment. In engineering, 

neutron detectors are crucial to nuclear energy research and nuclear power operations. In nuclear 

non-proliferation applications, neutron detection is a primary indicator of the presence of fissile 

materials such as 
239

Pu.  

This thesis is an account of a portion of a collaborative research project between Kansas 

State University (KSU) and Texas Tech. University (TTU). The project is focused on the 

development of a high efficiency semiconductor neutron detector based on hexagonal boron 

nitride (h-BN) for national security and non-proliferation purposes.  

TTU’s part of the project is the fabrication of the detector using epitaxial layers of h-BN 

grown via chemical vapor deposition (CVD) on a sapphire substrate (Li et al, 2011). KSU’s part 

is divided between the Chemical Engineering Department (ChE) and the Mechanical and 

Nuclear Engineering (MNE) Department. The ChE Department is investigating h-BN single 

crystal growth methods from molten metal solutions (Kubota, et al, 2008). The MNE Department 

is investigating the relation between radiation damage and the useful lifetime of an h-BN based 

detector using pyrolytic BN, and is assessing the crystals synthesized by the KSU ChE 

Department, as well as testing the detector fabricated at TTU for neutron detection using the 

TRIGA MARK II reactor at KSU. In addition, Monte Carlo studies using Matlab programming 

were used by the KSU team for expected spectrum, average energy deposition per reaction, and 

neutron absorption prediction for different h-BN parameters, such as thicknesses and enrichment 

fraction of 
10

B. 

 Section 1.1: Brief Introduction to Neutron Detection 

 Suitable Neutron Detection Materials 

Due to their intrinsic charge neutrality, neutrons cannot directly ionize matter. A neutron 

conversion medium (NCM) affords indirect neutron detection. A NCM suitable for neutron 

detection is a medium which, whether by chemical composition or impregnation, contains an 
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isotope with a high microscopic neutron absorption cross-section; the isotope promptly releases 

ionizing radiation, such as gamma-rays (γ-rays) or charged particles upon the absorption of a 

neutron. Prompt release of ionizing radiation permits detection at the instant the neutron is 

absorbed. The isotopes 
3
He, 

6
Li, 

10
B, 

113
Cd, 

235
U and 

239
Pu  are used by scientists and engineers, 

pure or as part of a medium, because they are suitable NCM’s. The cross-sections in barns as a 

function of neutron energy in eV for the 
3
He, 

6
Li, 

10
B, and 

113
Cd isotopes are shown in Fig.1-1. 

 

Figure 1-1: Microscopic neutron cross sections (σ) in barns for 
3
He, 

6
Li, 

10
B, and 

113
Cd as given 

by the China Nuclear Data Center and Chinese Nuclear Data Network (CENDL).  

3
He is not a naturally occurring isotope on earth and is material leftover from the nuclear 

weapons manufacturing era; consequently, 
3
He is expensive and becoming increasingly rare 

prompting research on efficient alternative NCMs such as the mentioned isotopes. The boron 

compound BN is being investigated for semiconductor properties and is of special interest, 

motivating the collaborative research between KSU and TTU. 

 Detectors: Energy Deposition, Efficiency, and Types 

Radiation detectors respond to the energy deposited in the detection medium of the detector; 

neutron detectors generally use NCMs to generate directly ionizing radiation such as charged 

particles. When travelling through matter, charged particles deposit energy as described by the 

Bragg curve; energy deposition also defines the particle’s range in the specific medium and is 

characteristic of the medium through which the particle is travelling. A sample Bragg curve for a 
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1.78 MeV alpha particle travelling in h-BN was developed by the Stopping and Range of Ions in 

Matter (SRIM) code (Ziegler, 2011) and is provided in Fig. 1-2; the figure shows more energy 

deposition near the end of the particle’s range than at the beginning of the particle’s range. 

 

Figure 1-2: Bragg curve for a 1.78 MeV alpha particle in h-BN. A 1.78 MeV alpha particle was 

chosen because one of the 
10

B neutron reactions produces such an alpha particle. 

Neutron detectors make use of the nuclear reactions presented in Eqs.1-1.1 through 1-1.5 

(Tsoulfanidis, and  Landsberger, 2010) summarized below. 

 
3 3He  n  H  p    1-1.1 

 

10 7 4

10 7 4

94% probability     B  n Li He -ray

  6% probability     B  n Li He

   

  
 1-1.2 

 
6 4 3Li  n He H    1-1.3 

 
235 1U  n n fission products    1-1.4 

 
113 114Cd  n Cd -ray    1-1.5 

 

In order to compare devices based on different materials and geometries, the devices’ 

efficiencies must be compared. To simply describe total efficiency of a detector as the number of 

absorbed neutrons by which a detectable signal was generated in the detector divided by the 

number of neutrons impinging on the detector is intrinsically incomplete. The geometric set up 
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between source and detector, the source shape, and other factors play large roles in efficiency 

calculations. Due to the lack of standardization, detailed geometries—detector, source, and 

setup—have to be reported for the efficiency value to have full meaning. Although the different 

types of efficiencies are thoroughly discussed, described, formulated, and published elsewhere 

(McGregor and Shultis, 2011), efficiencies will again be discussed in this thesis for 

completeness. 

 Gas filled detectors 

Most gas filled neutron detectors make use of neutron interactions with 
3
He, 

10
B, 

6
Li, or 

235
U with the prompt release of ionizing radiation in the form of charged particles into a gaseous 

medium. Charged particles passing through a gaseous medium deposit energy and leave a cloud 

of electron-ion (e-ion) pairs in their wake. The bias voltage applied across the gas separates the 

e-ion pairs and accelerates the electrons and ions in opposite directions. The collected charges 

generate a signal in the load resistor of the circuit in the form of a detectable pulse for each 

neutron interaction (Shultis and Faw, 2002). 

A 
3
He gas filled detector’s neutron absorption efficiency—absorbed fraction—largely 

depends on the amount of gas in the detector’s vessel. The amount of gas contained in the vessel 

is directly proportional to the vessel’s size and gas pressure. Increasing the amount of gas 

increases the efficiency of the detector, but requires higher biasing voltages. The data in Table 1-

1 provided by TGM DETECTORS (trademark by Saint-Gobain) shows how the bias voltage 

changes with both pressure and size for cylindrical 
3
He tubes. 

Table 1-1-1: Operating voltage data for 
3
He detectors. 

Pressure (atm) 2 4 6 8 10 

Diameter (inch) Operating Voltage 

0.5 750 950 1150 1350 1650 

0.75 800 1000 1200 1400 1700 

The cost of 
3
He is around $ 1000.00/liter at standard temperature and pressure (STP), 

which is 1 atmosphere (atm) and 273 degrees Kelvin . 
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 Scintillation Detectors  

Scintillation detectors are composed of materials from which light is emitted when 

energy is deposited by some form of radiation. The scintillation material is usually connected to 

a photo-multiplier tube (PMT) or avalanche photodiode (APD), each of which  transforms the 

emitted photons from the crystal to electrons and amplifies the electron current to detectable 

levels. 

The isotope 
113

Cd emits prompt γ-rays post neutron absorption, as indicated by Eq. 1-1.5, 

where 
113

Cd may be used as an external NCM outside the scintillation material. Some 

scintillation crystals are designed to respond to heavy charged particles and the reactions in Eqs. 

1-1.2 through 1-1.5 may be used when the crystal is impregnated with the appropriate isotopes. 

However, heavy charged particles cause physical damage, thus crystals such as thallium-

activated sodium iodide NaI(Tl) which respond to γ-rays are usually preferred in order to avoid 

radiation damage effects caused by charged particles. 

 Semiconductor Detectors 

Semiconductor detectors generate signals via charge collection as gas filled detectors do; 

however in semiconductor detectors, energy deposition generates electron-hole (e-hole) pairs 

rather than e-ion pairs. Furthermore, the fundamental differences between the two types of 

detectors make semiconductor devices more attractive in some cases.  

Semiconductors possess electrical conductivity and have higher mass densities than gases 

leading to higher neutron absorbency per unit length. Good electrical conductivity leads to lower 

biasing voltages and thus more compact designs. Semiconductor detectors generate signals 

directly by e-hole separation and charge collection.  

E-hole pair generation in a semiconductor requires a certain minimum amount of energy 

which is the semiconductor’s bandgap energy. However the average required energy is about 2.5 

to 3 times of the semiconductor’s band-gap energy.  The band-gap energy is the difference 

between two energy bands referred to as the valance and conduction bands. 
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 Semiconductor conductivity can be controlled by doping
1
. Doping comes in two forms 

reflecting the majority charge carriers: p for positive doping is the implantation of impurities 

through which  the lattice modification produces an electron accepting medium in the impurity’s 

locality, and n for negative doping produces an electron donating medium. In some cases 

unintentional impurities are present, such impurities may provide charge-trapping sites 

preventing charges from being collected, thus degrading the detector’s energy resolution. 

For neutron detection, semiconductors may be coated or impregnated with a NCM, or the 

semiconductor can be pillared or layered within the NCM. Also, the semiconductor may be the 

NCM itself as is the case for a proposed h-BN detector to be fabricated at TTU. 

 Section 1.2: Boron Nitride 

 Graphitic and Pyrolytic h-BN 

This study focuses on the hexagonal form also known as graphitic h-BN (g-BN). The graphitic 

form has a structure similar to graphite with alternating boron and nitrogen atoms on the 

hexagonal rings in each layer forming a plane of connected hexagonal rings with a single 

common BN molecule between contiguous rings as shown in Fig. 1-3. The hexagonal ring planes 

are held together by van der Waals forces. Graphitic-BN is thermodynamically stable and high 

quality crystals can be manufactured through CVD or by crystallization from a molten nickel 

chromium solution using h-BN powder as the solute (Kubota et al, 2008).  

Pyrolytic h-BN is a polycrystalline formed of microscopic planes directed haphazardly 

throughout the entire mass; its microscopic crystals or grains are randomly oriented.  

The term single crystal refers to macroscopic ordered sets of parallel planes reaching 

dimensions of millimeters (Kubota et al, 2008); Fig. 1-3 is an example. Single g-BN crystals are 

the goal of the effort within the ChE Department at KSU and may be a suitable material for 

neutron detection with semiconductor properties. However, the charged particles resulting from 

reactions presented by Eq. 1-1.2 travel through the BN medium from plane to plane displacing 

                                                 

1
 Implantation of impurities by various techniques 
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individual atoms causing damage to the lattice along their paths. Such damage changes the 

electrical properties of BN single crystals and altering the crystal’s quality and determining a 

device’s lifetime. 

 

Figure 1-3: Lattice structure of g-BN (Contributors, 2012). 

 Macroscopic Cross-Section (Σ) and Neutron Absorption of h-BN 

Natural boron consists of 19.8% 
10

B and 80.2% 
11

B by mass; however the 
10

B fraction 10 B
f  can 

be increased by enrichment. The macroscopic neutron cross-section of 
10

B in a medium is given 

by  

  
 10 V 24 1B

A
10  cm

10.013

E
E

 
     1-2.1 

where 
B10  is the overall mass density of 

10
B in g/cm

3 
within the medium, σ is the microscopic 

neutron cross-section of 
10

B in barns, E is neutron energy, AV is Avogadro’s number whose 

value is 
236.022 10  

atoms mole
-1

, 10.013 is the atomic mass of
 10

B in grams mole
-1

, and 10
-24

 is 

the barn to cm
2
 conversion factor. 

The mass density of 
10

B in a medium is determined by dividing the total mass of 
10

B 

present in the medium by the total volume of the medium. One mole of h-BN made with natural 

boron with a molar mass of 24.82 g/mole and a density of 2.1 g/cm
3
 implying the volume is 

11.819 cm
3
/mole which does not vary with 10 B

f . 

The average molar mass of boron BA  as a function of 10 B
f  is represented by  

     10 10B B B
A 10.013  g/mole 1 11.009 g/molef f    1-2.2 

and the density of 
10

B can be written as 
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10

B

B 3B
10

A
 g/cm

11.819

f
 

.  
 1-2.3 

Substituting Eqs. 1-2.2 and 1-2.3 into Eq. 1-2.1 leads to  

      10 10 10 10

3 2 1

h-BN B B B B
, 5.094 10 11.009 cm          0 1nE f E f f f         1-2.4 

where all units with the exception of cm
-1 

cancel and  E  is the numerical value of the 

microscopic cross-section of 
10

B at a certain neutron energy E. Eq. 1-2.4 provides a simplified 

function for the macroscopic cross-section for any h-BN mass as long as the 
10

B enrichment 

fraction and the neutron energy are known and is useful in Monte Carlo coding. 

The intensity of unabsorbed neutrons transmitted through a medium with absorption 

cross section a  is given by  

 at

oN N e


  1-2.5 

where No is the intensity of impinging neutrons onto the medium and t is the medium’s 

thickness. The absorbed portion of neutrons Na is simply N subtracted from No or  

  a 1 at

oN N e


 
.  

 1-2.6 

Therefore the absorbed fraction fa is  

  , 1 at

af t e


    1-2.7 

and asymptotically approaches unity as either Σa or t or both simultaneously increase. 

 Section 1.3: Research Scope  

The overall goal of the collaboration is to test the suitability of h-BN for neutron 

detection. Key to the study is the use of high crystal quality material with low residual impurity 

concentrations in order to achieve best electrical properties. Radiation damage investigation on 

pyrolytic h-BN and detector assessment  takes place at KSU.  

 Motivation 

One way of fabricating a BN semiconductor neutron detector is by depositing h-BN on a 

semiconductor substrate such as silicon or gallium arsenide. Neutron conversion takes place in 

the h-BN layer and the emitted charged particles travel and exit the h-BN, which is the NCM, 
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striking the semiconductor and depositing the remaining energy generating e-hole pairs which 

are collected by the bias voltage to generate a signal; diode and pillar based designs have been 

implemented (Osberg et al, 2007), (Osberg et al 2006). However, such designs suffer from 

conflicting requirements arising from necessary design parameters: the thicker the NCM the 

more neutron conversion as Eq. 1.7 shows, yet the thicker the NCM the less energy deposition in 

the semiconductor due to energy loss of the resulting particles travelling longer distances in the 

NCM. If the NCM is sufficiently thick, the particles reaching the semiconductor have little or no 

energy, resulting in weak or lost signals. On the other hand, a thinner NCM results in less 

neutron absorbency as Eq. 1-1.7 shows and more energy deposition in the semiconductor as 

shown in Fig. 1-2. Therefore, a design which employs the medium simultaneously as the NCM 

and the semiconductor mitigates the conflict in requirements and optimizes both neutron 

absorption and energy deposition in the semiconductor. 

 Detector Fabrication at TTU 

TTU’s efforts are focused on the construction of a neutron detector where the NCM—n, 

or p doped h-BN—is the semiconductor, enabling e-hole pair generation and collection within 

the NCM mitigating the conflict between the energy deposition and range parameters. In 

principle, a BN semiconductor detector could result in a higher, and possibly complete, neutron 

absorption and energy deposition, as shown in Fig. 1-4.  

 

  (a) (b) (c) 

Figure 1-4: (a)- BN or boron on a silicon pn junction, the resulting particles have to travel 

through the h-BN in order to reach the semiconductor. In some cases the particles do not travel in 

the semiconductor’s direction and in most cases the particles reaching the semiconductor have a 

fraction of the initial energy. (b)- BN or boron pillared between silicon pillars still suffers from 

particles having to travel through the h-BN before reaching the semiconductor. (c)- the  proposed 

detector with the BN pn junction where the particles are generated within the h-BN and generate 

e-hole pairs within the h-BN which is the semiconductor.  



10 

 

 Crystal Growth and Detector Assessment 

The ChE Team at KSU is investigating the crystallization of h-BN from molten metal solutions 

for neutron detection purposes. Thus far, large single crystals have been grown which seem 

promising as detector crystals from a materials perspective. However the crystals are extremely 

thin, brittle, and delicate and easily destroyed—shattered—during detector fabrication. 

The MNE Team is: 

 fabricating and assessing detectors fashioned from h-BN  crystals/samples. 

 assessing a detector fabricated at TTU. 

 conducting experiments to determine the extent of radiation damage in pyrolytic 

h-BN. Radiation damage experiments are based on neutron fluence to estimate 

the lifetime of BN detectors by conductivity and band-gap measurements. 

 Using Mote Carlo methods for MCA spectrum prediction of h-BN devices  
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Chapter 2 - Theoretical Considerations 

The proposed detector in Fig. 1-4, (c), is a design employing doped g-BN as the NCM for 

improved charge transport properties which could eliminate the conflict between range and 

energy deposition requirements. In essence, if the NCM is a semiconductor with adequate charge 

transport properties, there will be less restriction on the NCM’s thickness which may be grown to 

reach tens of microns allowing, in principle, almost 90% neutron absorption. Furthermore every 

absorbed neutron would generate a detectable signal. 

 Section 2.1: Semiconductors 

Semiconductors are a group of materials having conductivities between metals and insulators. 

There are two general classifications of semiconductors: elemental semiconductors such as 

silicon and germanium, found in group IV of the periodic table, and compound semiconductors 

formed from special combinations of elements such as gallium arsenide and indium phosphide. 

Semiconductors in general have band-gap energies anywhere between 0 and 3 eV. Hexagonal-

BN is a compound formed from the group III element boron and the group V element nitrogen 

and has a band-gap energy of 5.76 eV. However, boron nitride electrical properties may be 

improved via doping. 

Up to this point in the research conducted at KSU and TTU, a pn doped BN detector has 

not yet been fabricated; future efforts should include the use of doped h-BN which may exhibit 

electrical properties characteristic of semiconductors. However, in order to provide some basis to 

the concepts by which semiconductors are rendered useful as neutron detectors, a general 

independent introductory discussion on semiconductors is necessary. The discussion will 

introduce crystalline, polycrystalline, and disordered solid structures and a basic crystallography 

approach with the application of Miller plane indices.  

To establish a fundamental understanding of charge transport and band structures a brief 

description of crystalline structures follows. The following discussion terminates with the 

extraction of the band-gap energy from the Kronig-Penney model and a simple explanation of 

how the model would apply to disordered solids. Furthermore, the discussion is general and does 
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not refer to any specific semiconductor unless an example is needed. Detailed reading on 

subsequent topics such as electron effective mass, the Fermi-Dirac distribution and statistics, 

charge carrier  transport  phenomena, and semiconductor devices can be found in (Neamen, 

1992), or other introductory semiconductor texts. 

 The Crystalline Structure of Solids 

There are three general types of solids: amorphous, polycrystalline, and crystalline. Each of the 

solid types is characterized by the size of ordered regions within the material, the spatial volume 

through which atoms or molecules have a clear periodic arrangement defined by a lattice 

characteristic of the solid. In amorphous solids, the periodicity of the structure only extends to 

within a few molecular dimensions. In polycrystalline solids, ordered regions (grains) span many 

atomic or molecular dimensions and vary in size and orientation with respect to each other. In 

crystalline solids, order  extends throughout the material’s volume and the entire volume is a 

single-crystal. Figure 2-1 is a two-dimensional depiction of the three solid structures. 

   

 (a)  (b)                    (c) 

Figure 2-1: (a) amorphous, (b) polycrystalline, and (c) single-crystal or crystalline.   

The advantage of single-crystal or crystalline materials is, in general, crystalline 

materials’ charge transport properties are superior to the charge transport properties of 

polycrystalline and amorphous solids. Due to the predominance of crystalline materials in the 

semiconductor application and research areas, the mathematical approach in this chapter applies 

to single-crystal regions; “band structure and charge transport are not understood in disordered 

solidsbut rather modeled.” (Baranovski, 2006) 

 Lattices 

Most crystalline or single-crystal regions in polycrystalline materials possess spatial 

periodicity or translational symmetry, and the entire volume of a single-crystal can be retrieved 
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by the repetition of a building block called the basis (Galperin, 1994) or unit cell (Neamen, 

1992). Because the three dimensional lattice is a periodic repetition of a group of atoms there is 

no need to consider the entire volume of the crystal in order to represent the crystal. Among the 

numerous possible types of lattices, the hexagonal lattice is most important as far as h-BN is 

concerned, but a simple example of a generalized unit cell would be a starting point.  

Figure 2-2 shows a basic two dimensional lattice as a base for a three dimensional unit 

cell. The relationship between the unit cell and the lattice can be characterized by the three lattice 

constants a, b, and c shown in Fig. 2-2, where every lattice point in the three dimensional crystal 

can be found using the vector r pa qb sc    where p, q, and s are integers (Neamen, 1992) 

and , ,and a b c  are the lattice vector constants.  

 

Figure 2-2: A two dimensional single-crystal lattice and a three dimensional generalized  

unit cell. 

The hexagonal lattice system is presented in Fig. 2-3 where the relation r pa qb sc    

still applies and a b c  . 

1
2
0 o

a

b

c

 

Figure 2-3: The primitive cell in the hexagonal system (Kittel, 1996) showing the relation to g-

BN in Figure 1-3. 
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 Crystal Planes and Miller Indices 

The structures defined in the previous subsection are the basis needed to reconstruct the 

crystal. However, crystals are not infinite and must end at certain points in space defining their 

volume, shape, and the electrical properties of their surfaces. Semiconductor devices are 

fabricated at or near crystal surfaces and the properties of the crystal’s surface influence the 

device’s operational characteristics (Neamen, 1992). Surfaces on or planes through crystals can 

be described by considering the intercepts of the plane along the , ,  and a b c axes and the integer 

multipliers p, q, and s. Figure 2-4 shows a plane intersecting the , ,  and a b c  axes at p, q, and s 

equal to (1, 2, 2) from which the Miller indices for the plane will be derived as an example and 

Fig. 2-5 shows the (100), (010), (001), and the (110) planes. 

 

Figure 2-4: A plane intersecting an arbitrary set of axes at p, q, and s equal 1, 2, and 2, 

respectively. 

If one takes the reciprocals of the intercepts in Fig. 2-4,  1 1,1 2,1 2 , and then 

multiplies by the least common denominator, 2, one  obtains the set of numbers (2,1,1) and the 

plane is referred to as the (211) plane;  any plane with similar indices is parallel to the plane used 

to obtain the indices. The axes can be in any direction as long as they form a basis set, and the 

vectors lengths do  not have to be equal but the chosen units must hold in ensuing calculations.  
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Figure 2-5: The (100), (010), (001), (110) planes.  

Miller indices are a means of determining the nearest distance between equivalent 

parallel planes and the surface atom density per unit area cut by a particular plane. The 

parameters are important in determining how two different materials will fit one another across 

their interface when joined. Furthermore, when a crystal is physically cut, analogous to a plane 

cutting through the crystal to expose a surface, the electrical properties at the surface are defined 

by the lattice structure and the broken chemical bonds at the surface.    

 Structural Imperfections and Impurities in Crystals 

So far the discussion has covered perfect crystals; in reality, crystals are not perfect, but contain 

structural defects and impurities. Both structural defects and impurities or dopants affect the 

crystal’s electrical properties.  

 Structural Imperfections 

The point defect is a structural defect characterized by two distinct forms. The first is a 

missing atom from a particular lattice site referred to as a vacancy point defect; the second is an 

atom located between lattice sites referred to as an interstitial point defect. In both cases the 

perfect geometrical arrangement of the atoms in the lattice and the chemical bonding is disrupted 

producing localized electrically different properties. The Frenkle defect consists of a vacancy 

and an interstitial in close proximity. A line defect is where a partial or entire row of atoms is 

missing or displaced. The plane defect can be visualized as line defect spreading across a region 

within the crystal as shown in Fig. 2-6 (b). 
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In disordered solids, the concentration per unit volume of structural defects is high and 

randomly distributed in size, area, and direction. The defects crisscross each other throughout the 

solid, warping and deforming each other and the electrical properties vary on a scale of atomic 

distances. Thus a disordered solid is a material which neither has the structure of a perfect lattice 

nor the structure of a crystal lattice with isolated defects as shown in Fig. 2-6 (a) and (b). 

 
 (a) (b) (c) 

Figure 2-6: (a)-Point defects in a plane within a crystal lattice (Universe, 2008). (b)-The plane 

(NDT Resource Center, 2012) in the center may be viewed from two different perspectives, 

interstitial plane (lower half) or vacancy plane (upper half), depending on the predominant 

structure of the crystal. (c)-The structure of a disordered solid (SOLIDSONLINE, 2011) a 

deformed crystal lattice as plane and other defects warp and crisscross each other distorting the 

crystal lattice and varying the crystal’s electrical properties on the order of atomic distances. 

When a crystal is cut whether physically or by an imaginary designated plane such as the 

(110) plane cutting the body-centered cubic lattice in Fig. 2-7 (left) a pattern of the cut atoms 

shown in Fig. 2-7 (right) emerges, the pattern is repeatable on the entire plane’s surface with the 

exception of localities where defects are present as shown by a vacancy point defect. 

Vacancy

(1
10)

 

Figure 2-7: A face-centered cubic lattice cut by the (110) plane 
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As earlier mentioned crystals are not infinite and for simplicity an assumption is made 

where in the interior of a crystalline solid all valence electrons are strongly bound; the strengths 

(energy) of the bonds vary based on localized structural parameters and defects. On the surface 

of a crystal, depending on the crystal’s atomic composition, ionic or covalent bonds are broken 

leaving weakly bound electrons behind. 

 Impurities 

Impurities are unavoidable even in the purest of materials. Impurities located in the place 

of atoms at lattice sites are referred to as substitutional impurities and impurities located in-

between lattice sites and are referred to as interstitial impurities. Some impurities such as oxygen 

in silicon are inert and tend to have no effect on the crystal’s electrical properties. Gold and 

phosphorous on the other hand can drastically change the crystal’s electrical properties (Neamen, 

1992). Silicon was used as an example to demonstrate the effect of impurities; ultimately, the 

overall electrical properties are a function of the material and the impurity.  

  

 Quantum Mechanics  

Discussing semiconductors and their behavior and how they apply to neutron detection directly 

would seem ideal. However, prior to describing in detail the events leading to neutron detection, 

a fundamental understanding of the behavior and motion of charge in semiconductors should be 

established through quantum mechanics, for the electrical properties of semiconductors are 

directly related to the behavior of electrons in the crystal lattice and the potentials therein. The 

behavior and characteristics of these electrons can be described by the formulation of quantum 

mechanics called wave mechanics using Schrödinger's wave equation.  

 The Basis of Quantum Mechanics 

Prior to presenting Schrödinger's wave equation the basic principles of quantum 

mechanics are briefly introduced: the principle of energy quanta, the wave-particle duality 

principle, and the uncertainty principle. 
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 The Principle of Energy Quanta 

In 1900 Max Planck postulated quanta as thermal radiation being emitted from a heated 

surface in discrete packets. In 1905 Albert Einstein explained the results of the photoelectric 

effect by introducing photons as the energy in a light-wave contained in discrete packets, where 

the photon’s energy must be enough to unbind an electron from the surface of a metal where the 

minimum of the energy needed is referred to as the material’s work-function. Unless equal to the 

next needed level of energy to emit a more strongly bound electron, any energy in excess of the 

material’s work-function will be manifested as the kinetic energy of the electron. Both Plank and 

Einstein deduced E = hν as the energy contained in the photons, where h is Plank’s constant and 

is equal to 6.625 ×10
-34

 J-s, and ν is the frequency of the electromagnetic wave.  

 The Wave-Particle Duality 

In 1924 Louis-Victor-Pierre-Raymond, 7th duc
2
 de Broglie postulated the relation 

between a wave and a particle in motion as a relation of reciprocation and because waves, which 

are energy in motion, behaved as particles, then moving particles should manifest wave-like 

behavior. The reciprocation is described as the momentum, p, of a photon is given by h/λ where λ 

is the wave’s wavelength, then the wavelength, λ, of a particle in motion should be h/p. The 

wave-particle duality is proven by the diffraction of moving sub-atomic particles, and is the basis 

for many applications, including neutron diffraction to achieve a monoenergetic beam of thermal 

neutrons. 

 The Uncertainty Principle 

The first two principles of quantum mechanics are definitive and absolute, but certain 

experimental results on small subatomic particles do not agree with Newtonian physics applied 

on large objects such as planets, falling objects, and speeding bullets. 

In 1927 Werner Heisenberg announced the Uncertainty Principle which in the most 

succinct terms states: the more precisely the position of a particle is determined, the less 

precisely the momentum is known in the instant the position was observed, and vice versa, or in 

                                                 

2
 French for duke 
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mathematical terms ∆p ∆x ≥ ћ where ћ is h/2π and ∆p and ∆x are the uncertainties in the 

particle’s momentum and position, respectively. The second statement of the principle, which 

can be directly derived from the first, states: it is impossible to simultaneously describe with 

absolute accuracy the energy of a particle and the instant of time the particle had the energy, 

and vice versa which in mathematical terms is given as ∆E ∆t ≥ ћ where ∆E and ∆t are the 

uncertainties in the particle’s energy and the uncertainty in the time at which the particle’s 

energy was measured, respectively. 

 Schrödinger's Wave Equation. 

Schrödinger's wave equation, a basic postulate of quantum mechanics (Neamen, 1992) 

can be written in one spatial dimension x  

 
 

   
 22

2

, ,
,

2

x t x t
V x x t i

m x t

  
  

  ,
 2-1.1 

where  ,x t  is the one-dimensional wave function,  V x is the one-dimensional time 

independent potential function, m is the particle’s mass, and i is the complex variable 1 . The 

three dimensional form of Schrödinger's wave Eq. involves the three Cartesian directions x, y, 

and z, and can also be represented in cylindrical and spherical coordinate systems. The solution 

to the one-dimensional non-relativistic Schrödinger's wave Eq. is sufficient to demonstrate the 

basic ideas and the statistical nature of charge transport mechanisms.   

The first step in solving Eq. 2-1.1 is the separation of the functions of the constituent 

independent variables x and t as shown in Eq. 2-1.2 (Griffiths, 2005). 

      ,x t x t    2-1.2 

Where    and x t   are the independent position and time functions, respectively. The 

substitution of Eq. 2-1.2 into Eq. 2-1.1 yields the complete derivative . 

  
 

       
 22

22

d x d t
t V x x t i x

m dx dt

 
   


   2-1.3 

Dividing Eq. 2-1.3 by    x t   yields 
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 
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The left hand side (LHS) and the right hand side (RHS) of Eq. 2-1.4 are functions of x and t, 

respectively.   Thus, each side must be equal to a constant referred to as the separation constant 

denoted by η. Equating the RHS or the time-dependent portion of Eq. 2-1.4 to η gives  

 
 

 1 d t
i

t dt





  2-1.5 

which can be solved to yield 

    i E t
t e




.
 2-1.6 

The introduction of the term E—energy—into Eq. 2-1.6 must be justified before moving further. 

The form of Eq. 2-1.6 is the classical exponential solution of the sinusoidal wave where η/ћ is 

the angular frequency ω and the energy E=hν=hω/2π. Thus ω= η/ћ= E/ћ and so the separation 

constant is the total energy of the particle and the LHS of Eq. 2-1.4 is equal to the particle’s total 

energy E as shown below 

 
 

 
 

22

2

1

2

d x
V x E

m x dx






 

.  

 2-1.7 

through simple algebraic manipulation Eq. 2-1.7 becomes 

 
 

    
2

2 2

2
0

d x m
E V x x

dx


    2-1.8 

where E is the total energy—kinetic + potential—in the system and is known as the Hamiltonian 

operator(Griffiths, 2005).  

As for the physical meaning of the wave Eq. and ultimately the description for the 

behavior of an electron in a crystal, Eq. 2-1.6 can be substituted in Eq. 2-1.2 to yield the complex 

function 

      
,

i E t
x t x e


 

.  
 2-1.9 

Because Eq. 2-1.9 is complex, the validity of a physically tangible solution seems absurd. 

However, in 1926 Max Born postulated the function  
2

,x t  as the probability density function 

of finding the electron between x and x + dx (Neamen, 1992).  Because  is a complex-valued 

function, then  

      
2*, , ,x t x t x t   

,
 2-1.10 
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where      * *,
i E t

x t x e


   and is the complex conjugate of  ,x t . Clearly by performing 

the operation in Eq. 2-1.10 the result is 

        
2 2*,x t x x x    

,
 2-1.11 

where  
2

x
 
is the electron’s position probability density function (pdf). Eq. 2-1.11  expresses 

a key difference between classical and quantum mechanics and supports the validity of the 

uncertainty principle. 

The electron’s pdf must be normalized such that 

  
2

1x



 .

 2-1.12 

Equation 2-1.12 is one boundary condition which allows the determination of the wave 

function’s coefficients. The other boundary conditions which must be imposed are the wave 

function and the resulting first derivative must have the following two properties if the total 

energy E and the potential function V(x) are finite everywhere; i.e.     and x d x dx   must 

be continuous, finite, and single valued. 

 Solving Schrödinger's Wave Equation. 

Solving Schrödinger's Eq. using several examples with different constant potential functions 

provides an indication of the behavior of electrons under the influence of the different potentials 

and the electrons’ total energy. The results will be used to describe the general behavior and 

electrical properties of semiconductors. 

 The Electron in Free Space 

The electron in free space example represents an unbounded electron with a constant 

potential function. The total energy E of the electron must be greater than the potential function 

or otherwise the electron would be bounded. Furthermore, with E > V(x), from Eq. 2-1.8 

 E V x
 
represents a net energy, if V(x) is constant. For simplicity, V(x) will be assumed to be 

zero and Eq. 2-1.8 becomes Eq. 2-1.13, which is the time independent portion of Eq. 2-1.2. 

 
 

 
2

2 2

2
0

d x Em
x

dx


 

.
 2-1.13 
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The solution to Eq. 2-1.13 is 

  
2 2ix mE ix mE

x Ae Be

   
   
       

.
 2-1.14 

Eq. 2-1.13 can be represented in sines and cosines and the time independent solution will not be 

affected. However, the time dependent portion,  t , has an exponential solution, Eq. 2-1.6, and 

the substitution of Eq. 2-1.14 into Eq. 2-1.9 simply makes the algebra easier and results in the 

following 

  
   2 2

,

i i
x mE Et x mE Et

x t Ae Be

   
     

     
. 
 2-1.15 

Equation 2-1.15 describes a travelling wave representing a moving electron in free space. The 

term with coefficient A is a wave travelling in the +x direction and the portion with the 

coefficient B represents a wave travelling in the –x direction. Imposing boundary conditions by 

which the electron is travelling in the +x direction, then B must be zero; the reverse is also true. 

Thus for the electron travelling in the +x direction Eq. 2-1.15 becomes 

  
 2

,

i
x mE Et

x t Ae

 
 

  
.  

 2-1.16 

Referring back to the wave-particle duality principle and setting the wave number 2k   , and 

as earlier shown ω= E/ћ by replacing i with j Eq. 2-1.16 reduces to  

    
,

j kx t
x t Ae

   
.  

 2-1.17 

Thus a free particle with a well defined function has well defined wavelength and 

momentum, but the probability density function    * *, ,x t x t AA    is a constant independent 

of position, and thus the particle may be found anywhere. The reasoning is in agreement with the 

uncertainty principle. A localized free particle is defined by a wave packet, formed by a 

superposition of wave functions with different momentum or k values. The mathematics of wave 

packets will not be investigated further in this work. 

 The Electron in an Infinite Potential Well 

The electron in free space example effectively demonstrated the application of 

Schrödinger's Eq. and the three principles of quantum mechanics. The electron in an infinite 
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potential well represents a strongly bound particle— an electron. The potential function of the 

infinite well is shown in Fig. 2-8. 

 
Figure 2-8: The potential function of the infinite well. The electron with finite energy is 

contained in and confined to the finite space of region II. 

Equation 2-1.8 is the time independent portion of Schrödinger's wave Eq., where E is the 

electron’s total energy and V (x) is the potential. Due to the electron’s confinement in region II 

the wave function  x  in regions I and III must be zero simply because the electron’s energy is 

finite and the potential is infinite. However, the potential in region II is zero and Eq. 2-1.8 can be 

rewritten as 

 
 

 
2

2 2

2
0

d x Em
x

dx


 

.  
 2-1.18 

the solution is given by  

   1 22 2

2 2
cos sin

mE mE
x C x C x

   
       

   
 2-1.19 

by equating K to 22mE , Eq. 2-1.19 can be presented as  

      1 2cos sinx C Kx C Kx  
.  

 2-1.20 

As earlier stated, the wave function in regions I and III must be zero; therefore, due to the 

required continuity, the wave function must be zero at the inside edges of the potential well 

where x = 0, and x = a. Imposing the mentioned boundary conditions on Eq. 2-1.20, then C1 must 

equal zero rendering   0x 
 
at x=0; as for the second boundary at a the trivial solution is of 

course C2 = 0. However, with C1 = 0 Eq. 2-1.20 becomes 
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    2 sin 0x C Kx    2-1.21 

and solutions other than C2 = 0 at a are all K values rendering sin   0Ka  , for a is constant. For 

the sine function to equal zero the argument must be an integral multiple of π and implies  

 Ka n  2-1.22 

or 

 
n

K
a




.  
 2-1.23 

In order to find C2 Eq. 2-1.21 must be normalized as shown in Eq. 2-1.24 

  2 2

2
0

sin 1
a

C Kx dx  .
 2-1.24 

Evaluation of the integral in Eq. 2-1.24 and substitution of the value of K from Eq. 2-1.23 yields 

  
2

sin 1,2,3, ,
n x

x n
a a




 
   

  .  

 2-1.25 

Equation 2-1.25 is a standing wave in the potential versus the travelling wave of the free 

electron, and looking back at Eq. 2-1.23 and the earlier statement where 22K mE  as a 

precursor to Eq. 2-1.20, then 

 
2 2 2

22
n

n
E E

ma


 

.  
 2-1.26 

Also, in Eq. 2-1.25 K must have discrete values, implying that the total energy of the particle can 

only have discrete values as demonstrated by Eq. 2-1.26. The result is the quantization of the 

particle’s energy; i.e. the energy of the particle can only have discrete values (Neamen, 1992). 

However, if the energy is precisely known then the momentum is precisely known and, by the 

uncertainty principle, the position cannot be known and the normalized form of Eq. 2-1.25 

represents the probability density functions of all energies respective to the values of n. The first 

five energy levels with respective wave and probability functions for 5a  Ȧ are depicted in Fig. 

2-9. 
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  (a) (b)   (c) 

Figure 2-9: (a) The first 5 energy levels (b) the respective position, and (c) probability functions 

for 5a   angstroms. 

 The Step Potential 

Previously the particle was considered to be confined between two infinite potential 

barriers—the infinite potential well. Infinite potential do not exist and are only of theoretical 

interest.  A particle flux travelling from one medium to another, or through a defect within a 

crystal, encounters a finite potential, which may be lower or higher than the particles’ total 

energy.  

 
Figure 2-10: The step potential function, the potential exists in region II where x > 0. 

In region I of Fig. 2-10, the potential V is zero and the time independent Schrödinger's 

Eq. for region I is  

 
 

 
2

I

I2 2

2
0

d x Em
x

dx


   2-1.27 

and the solution is 
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    I I

I I I 0
iK x iK xx Ae B e x 

  
.
 2-1.28 

The subscript I denotes the variables in Eq. 2-1.28 which are pertinent to region I, and

2

I 2K mE . 

In region II the potential exists and has a positive constant value oV . The time 

independent Eq. for region II is given as 

 
 

   
2

II

II2 2

2
0o

d x m
E V x

dx


    2-1.29 

By rearranging  oE V  into   oV E  Eq. 2-1.29 has an exponential solution and is of the form 

    II II

II II II 0
K x K xx A e B e x 

  
,
 2-1.30 

where   2

II 2 oK m V E  , and boundary conditions force the solution to remain finite 

rendering  II 0 for 0B x   and the solution to Eq. 2-1.29 is 

    II

II II 0
K xx A e x 

 
.  

 2-1.31 

The boundary conditions necessary to solve for the coefficients I I II, ,  and A B A  are: at      

x = 0 both I IIand   must be equal and their derivatives must be equal in order for the total 

wave function to be continuous. So at x = 0  

 I I II A B A 
,
 2-1.32 

and the derivatives being equal at x = 0 yields 

 I I I I II IIiK A iK B K A    2-1.33 

Solving Eqs. 2-1.32 and 2-1.33 for I II and B A  in terms of AI, results in 

 
 

 

2 2

II I II I I

I 2 2

II I

2K iK K K A
B

K K

  



 2-1.34 

and 

 
 

 
I I II I

II 2 2

II I

2K K iK A
A

K K





 2-1.35 
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Derived from Eqs. 2-1.34 and 2-1.35 elsewhere (Griffiths, 2005; Neamen, 1992) is the 

reflectance coefficient R must be unity for particles with 0E V , implying the wave is totally 

reflected back into region I by the step potential; yet, Eq. 2-1.31 also implies the wave’s 

existence in region II, as by Eq. 2-1.32 AII is not zero. The result implies that there is a 

probability where a particle in region I moving towards region II would penetrate the barrier into 

region II. Even though the probability of a particle with 0E V  penetrating from region I into 

region II exists, the reflectance coefficient is still unity indicating that any particle which does 

penetrate the barrier is eventually reflected back into region I in the x direction. 

 The Potential Barrier 

Of all the examples thus far, the potential barrier—depicted in Fig. 2-11—has the most 

significant implications in semiconductors. The mathematics involved in solving Schrödinger's 

equation have been demonstrated in the two previous examples; the steps for solving 

Schrödinger's equation, for the potential barrier are the same as the previous examples; however, 

they are more complex and lengthy, thus only the solutions and their meaning will be provided 

here. 

 
Figure 2-11: The potential barrier function. 

The solutions of the wave equation for the regions I, II, and III in Fig. 2-11 are given, 

respectively, by (Neamen, 1992) 

   I I

I I I

iK x iK xx Ae B e 
   2-1.36 

   II II

II II II

K x K xx A e B e 
   2-1.37 

   I I

III III III

iK x iK xx A e B e 
   2-1.38 
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where 2

I 2K mE  and   2

II 2 oK m V E  . 

The coefficient BIII is representative of a negative travelling wave, but there are no 

potentials in region III and thus a particle can never be reflected back into the potential in region 

III and thus BIII must be zero. Due to the potential barrier’s finite width neither AII nor BII can 

become unbounded, and in region I both AI or BI must remain for the particle can be reflected as 

earlier demonstrated. As before, the coefficients BI, AII, BII, and BIII can be determined in terms 

AI.  

Of particular interest in semiconductors is the transmission parameter
3
 T defined as 

 
*

III III

*

I I

A A
T

A A





.

 2-1.39 

Equation 2-1.39 implies that a particle impinging on the potential barrier in region I, has a finite 

probability of penetrating the barrier and appearing in region III (Neamen, 1992). This 

phenomenon is known as tunneling which what enables semiconductors to operate the way they 

do. 

 The Single Electron Atom 

Extending Schrödinger's wave equation to the single electron atom provides a qualitative 

idea of how the outermost electrons of atoms behave and their energy levels in terms of quantum 

numbers. For simplicity, the atom will be considered spherical and Schrödinger's Eq. in spherical 

coordinates is  

       2

2

2
, , , , 0om

r E V r r          2-1.40 

where mo is the electron’s rest mass and   2 4 oV r e r  is the potential function due to the 

coulomb attraction between the electron and the nucleus. The negative sign is indicative of the 

force being inwards towards the nucleus and the electron is bound to the nucleus. Substitution of 

the spherical Laplacian and separating the variables , ,r    as previously demonstrated in Eq. 

2-1.2 results in  

                                                 
3 T is the ratio of the transmitted flux in region III to the incident flux in region I; also known as the probability of transmittance. 
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    

         

  
.

 2-1.41 

The middle term, involving  the azimuthal angle has the solution 

 ime   , 2-1.42 

where m is a separation constant, and with the imposed condition where the wave function must 

be single valued, m must be an integer where 0, 1, 2, 3, 4,m      . The separation constants 

for the other two terms in Eq. 2-1.41 are l and n, where 1, 2, 3,n  , and 

1, 2, 3,l n n n    . “It can be shown that , 1, ,0m l l  ” (Donald A. Neamen, 1992). 

The quantities l, n, and m are designated as quantum numbers. A fourth quantum number defines 

the electron’s spin and is designated by the symbol s with values of 1 2 and 1 2   (Neamen, 

1992; Griffiths, 2005). Each set of allowed quantum numbers is a distinct quantum state which is 

a consequence of the Pauli exclusion principle
4
, and the solution to the wave Eq. is designated as

, ,l m n . As shown in Fig. 2-9, n is the principal quantum number and the electron’s energy may 

be given as 

 
 

4

2 2 24 2

o
n

o

m e
E

n




.   

 2-1.43 

The derivation of how the separate quantum numbers apply to atoms with higher number of 

electrons is not the object of this work and the single electron atom is the simplest example and 

provides a qualitative idea; however, some explanation is due in order to clarify how the 

quantum numbers apply to the electronic configuration of the elements as the definition of 

energy levels and valence electrons. In Table 2-1 the quantum number n defines the energy level 

of a shell, l pertains to a sub-shell within the n energy shell and so on; s is the spin due to the 

electron’s angular momentum as the electron spins on an axis. 

                                                 
4 The Pauli Exclusion Principle states that, in any given system (an atom, molecule, or crystal), no two electrons may occupy the same 

quantum state (Griffiths, 2005). 
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Table 2-1: Initial portion of the periodic table (Neamen, 1992; Griffiths, 2005). Valence 

electrons are the electrons in the unfilled n energy level. Helium has the n level completely filled 

and no other electrons and thus  has no valence electrons.  

Element Electronic 

configuration 

n l m s Valence electrons 

Hydrogen 11s  1 0 0 1 2 or 1 2 

 1 

Helium 21s  1 0 0 1 2 and 1 2   0 

Lithium 2 11 2s s  
2 0 0 1 2 or 1 2   

1 

Beryllium 2 21 2s s  2 0 0 1 2 and 1 2   2 

Boron 2 2 11 2 2s s p  2 1 0,-1,+1 1 2 , 1 2   3 

Carbon 2 2 21 2 2s s p  2 1 0,-1,+1 1 2 , 1 2   4 

Nitrogen 2 2 31 2 2s s p  2 1 0,-1,+1 1 2 , 1 2   5 

Oxygen 2 2 41 2 2s s p  2 1 0,-1,+1 1 2 , 1 2   
6 

Fluorine 2 2 51 2 2s s p  2 1 0,-1,+1 1 2 , 1 2   7 

Neon 2 2 61 2 2s s p  2 1 0,-1,+1 1 2 , 1 2   0 

  

 Quantum Theory Extended To Solids and Crystals 

As shown an electron confined to a finite space within an atom can only take discrete 

quantized energy levels, and by the Pauli Exclusion Principle, no two electrons confined in an 

atom may have the same set of quantum numbers. The extension of quantized energy levels from 

atoms to crystal systems leads to allowed and forbidden energy band structures. The concept of 

energy band structure leads to the understanding of the electrical properties of semiconductors 

and will introduce the parameter known as the electron’s effective mass. Dealing with electrons 

in single crystal systems implies the existence of a very large number of electrons in a finite 

confined space and must be approached statistically. 
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 Energy Band Formation 

Just as there are allowed and forbidden energy bands in atomic systems, allowed and 

forbidden energy bands exist in systems comprised of a multitude of atoms such as crystal 

lattices. The phenomenon arises from the close proximity of the atoms in the solid. As atoms 

approach each other the radial probability density functions tend to overlap. The overlapping 

places electrons from adjacent atoms in the same confined space. The Pauli Exclusion Principle 

does allow atoms in the same space to have the same quantum state—quantum number sets—; 

even though, the principal quantum number n will not change for adjacent atoms, the quantum 

numbers l, m¸ and s cannot form the same set with the same principal energy level n. The 

changes in l, m¸ and s bring about slightly different energy levels about the principal energy 

level, causing a split in the valence electrons’ energy levels. 

 
 (a) (b) 

Figure 2-12: (a)-The radial probability density functions of two hydrogen atoms far from each 

other. (b)- The radial probability density functions of two hydrogen atoms in close proximity of 

each other; ao is the Bohr radius
5
. 

Figure 2-12 (a) shows the radial probability density function of two single electron 

atoms—hydrogen—sufficiently far from each other in order for neither electron to occupy the 

same space. Figure 2-12 (b) shows the radial probability density function of the same atoms but 

close enough to each other in order for the radial probability density functions to overlap. The 

                                                 
5 The Bohr radius is an approximation of the distance between the nucleus—proton—of the hydrogen atom and the orbiting electron. 



32 

 

overlapping implies that the two electrons would, at some point, have to exist in the same finite 

volume causing changes—perturbations—in the quantum numbers l, m¸ and s. 

The splitting of energy levels due to changes in l, m¸ and s does not change the principal 

energy level n; changes in n can only be achieved by the injection of energy from an external 

source such as heat or an electric field. Thus the splitting is minute about the principal energy 

level, and according to Fig. 2-9 there are allowed and forbidden n levels. The splitting of energy 

levels about n also has forbidden levels and when there are N atoms there will, at least, be N 

splits about n. If N is large, the forbidden and allowed states in the N splits about n are close 

enough to each other and the entire region may be considered as a continuous energy band as 

shown in Fig. 2-13. In other words, the energy needed to elevate an electron from one energy 

level to a higher energy level within the band is infinitesimally small. The same is true for energy 

lost by an electron when falling from one energy level to a lower energy level within the band. In 

both cases the energy is minute when N is on the order of 10
10

 or larger. 

Figure 2-12 depicts the potential functions of two hydrogen atoms being drawn closer 

together by some imaginary force. In a real crystal adjacent atoms are intrinsically close and 

share valence electrons. Each atom, depending on the lattice, is surrounded by a number of other 

atoms; each of the surrounding atoms is in turn surrounded by a number of atoms affecting the 

energy levels in the initial atom. The effect propagates through the crystal, generating an energy 

state for each atom in the crystal. The discussion will be later extended to the valence and 

conduction bands, which, on a physically measurable scale, are the basis of semiconductor 

operation and electrical properties.  
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Figure 2-13: The splitting of energy levels due to the number of atoms in close proximity; as the 

number of atoms increases progressively the splitting about the principal energy level n increases 

accordingly until the bands about n appear continuous. The white bands are forbidden energy 

states. The figure is based on arbitrary values and does not represent any real data. 

 The Kronig-Penney Model 

The potential function of a single atom is   2 4 oV r e r   where r is always positive 

with the center of the atom at r = 0. The previous analysis can now be extended to a one-

dimensional model of potentials and wells spreading across a one-dimensional crystal; the model 

was first introduced in 1931 by R.L. Kronig and W.G. Penney (Stephen T. Thornton, Andrew 

Rex, 2006). 

Figure 2-14 shows the progression of the potential function in a one-dimensional crystal 

resulting from the overlapping of potential functions of closely packed atoms. The Kronig-

Penney model is an idealized representation of adjacent potential barriers separated by potential 

wells. The model idealizes Fig. 2-14 (c) and depicts potential barriers and wells equal in width 

and height as shown in Fig. 2-15.  

n
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 (a) (b) (c) 

Figure 2-14: (a)-potential function of an isolated atom. (b)- Due to the close placement of atoms 

in a crystal the potential functions overlap. (c)- The overlapping potential functions add to 

produce a net potential function in the crystal.  

 
Figure 2-15: The idealized Kronig-Penney model has equal potentials and widths on all barriers 

and wells, respectively. 

In Fig. 2-15 all barriers are of equal width and potential, and all wells have the same 

width. Thus all wells are labeled as region I, and all barriers are labeled as region II. In a real 

crystal neither the potentials nor the wells have equal widths or heights. The idealization 

simplifies solving Schrödinger's equation and offers qualitative insight into important features of 

the quantum behavior of electrons in a periodic lattice. 
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The mathematical theorem by Bloch
6
 gives the solution to Schrödinger's Eq. in a one-

dimensional crystal as  

     ikxx u x e 
,
 2-1.44 

where k is a constant of motion and  u x  is a periodic function with period  a b  extending 

from the starting point of a barrier to the starting point on the next barrier. As previously stated 

in Eq. 2-1.2, the total solution to the wave equation is the product of the time-independent and 

time-dependent solutions, which in terms of Eq. 2-1.44 becomes the traveling-wave in Eq. 2-1.45

, representing the motion of an electron in a single-crystal material. 

 

 
         

    

,
i E tikx

i kx E t

x t x t u x e e

u x e

 




  


.  

 2-1.45 

The relation between k, the total energy E, and the potential Vo, can now be determined by 

considering a well region—labeled I  0 x a  —in Figure 2-15 where Vo is zero and 

substituting the second derivative of Eq. 2-1.44 into the time independent Schrödinger's Eq. 

given by Eq. 2-1.8 this results in  

 
   

   
2

1 1 2 2

12
2 0

d u x du x
ik k u x

dx dx
   

,
 2-1.46 

where  1u x  is the amplitude of the wave function in region I and the parameter  is defined as

2 22mE  . Performing the same operation on region II 0b x   in Fig. 2-15 where Vo is 

not zero results in  

 
   

 
2

2 2 2 2

22 2

2
2 0o

d u x du x mV
ik k u x

dx dx


 
     

  .  

 2-1.47 

By defining 2 2 22 omV    Eq. 2-1.47 becomes  

 
   

   
2

2 2 2 2

22
2 0

d u x du x
ik k u x

dx dx
   

.
 2-1.48 

                                                 
6 Bloch’s theorem states that all one-electron wave functions involving periodically varying potential energy functions must be of the form  

    ikx
x u x e 

 
(Neamen, 1992). The solutions are known in literature as Bloch waves.  
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Noting from the previous definition of  , if ,oE V  is real, and if ,oE V   is imaginary. 

The solutions for all regions labeled “I” in Fig. 2-15 are the specific solution of Eq. 

2-1.46 particular to the region and given by Eq. 2-1.49 (Neamen, 1992) 

      
1 12

i k x i k x

n nu x Ae Be a b x a
   

      2-1.49 

and the solutions for all regions labeled II in Fig. 2-15 are the specific solution of Eq. 2-1.48 

particular to the region and given by Eq. 2-1.50 (Neamen, 1992) 

      
2

i k x i k x

n nu x Ce De a x a b
   

    
.  

 2-1.50 

The continuity of  V x  implies that the first derivative of  u x and  u x must also be 

continuous at all transitions from regions I into regions II and vice versa as the wave—

electron—propagates through the crystal.  

Considering the boundary 0x   where, because of continuity,    1 20 0u u   

 or

0

A B C D

A B C D

  

   

 2-1.51 

now applying the second condition 

 
   1 2

0 0x x

du x du x

dx dx
 

  2-1.52 

yields 

         0k A k B k C k D          
.  

 2-1.53 

Applying the same conditions for region I lim0 , ax a x   and region II 
 lim

0,
b

b x x


    where 

the first condition    1 2u a u b   yields  

        
0

i k a i k a i k b i k b
Ae Be Ce De

        
    .   2-1.54 

Applying the second boundary condition 

 
   1 2

x a x b

du x du x

dx dx
 

  2-1.55 

yields 
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                
0

i k a i k a i k b i k b
k Ae k Be k Ce k De

   
   

     
       

.  
 2-1.56 

Equations 2-1.51, 2-1.53, 2-1.54, and 2-1.56 are four simultaneous, linear, homogeneous 

equations with four unknowns: , , ,andA B C D . The trivial solution is setting the four coefficients 

to zero; a nontrivial solution exists if and only if the determinant is zero as shown in Eq. 2-1.57 

(Neamen, 1992) 

 
       

       
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   

   

   

     

     

 

     


 

     
.

 2-1.57 

The solution to the matrix determinant in Eq. 2-1.57 is given by (Neamen, 1992) 

 
 

         
2 2

sin sin cos cos cos 0
2

oa b a b k a b E V
 

   


 
      

.  

 2-1.58 

Equation 2-1.58 directly relates k to  and oE V  via  and    (Neamen, 1992). 

If  > oE V  the electron would be free, but the useful behavior of semiconductors arises when the 

electrons are bound in the crystal with  < oE V  where tunneling occurs as earlier demonstrated by 

the transmittance parameter T—Eq. 2-1.39—in the potential barrier example. With  < ,oE V   is 

imaginary where  and i i      . Eq. 2-1.58 may be written as Eq. 2-1.59 which can only be 

solved by numerical or graphical techniques. Numerical or graphical techniques require the 

substitution of the symbolic expressions or numerical values of the parameters  and    and 

given by (Neamen, 1992) 
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E V
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   



 
   



 
       






  
      



 2-1.59 

To obtain an equation more amenable to graphical solution, let the width of the potential barrier 

approach zero and the potential approach infinity; i.e. 
0

limand lim
ob V 

 where the product bVo 
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remains finite and Eq. 2-1.59 reduces to Eq. 2-1.60 (Neamen, 1992), which is analogous to the 

one-dimensional Dirac comb function
7
 (Griffiths, 2005). 

 
 

   2

sin
cos coso

amV ba
a ka

a






 
  

 
 2-1.60 

The first term in Eq. 2-1.60 was derived by using l’Hopital’s rule
8
 for  0   , the other two 

terms are simple substitutions of
0

lim
b

. By designating 2

oO mV ba   Eq. 2-1.60 can be 

rewritten as 

 
 

   
sin

cos cos
a

O a ka
a





  

.  
 2-1.61 

Eq. 2-1.61 is not a direct solution to Schrödinger's equation but rather provides the conditions for 

which Schrödinger's equation has solutions (Neamen, 1992).  In a disordered solid the analogy to 

the Kronig-Penney Model would be randomized barrier heights and widths rendering high 

unpredictability of a material’s electrical properties. 

 The Energy Band-gap 

Equation 2-1.58 directly relates k to the electron’s total energy E via the parameter  . If 

oV  in Eq. 2-1.60 is zero then the parameter O  in Eq. 2-1.61 is also zero and    cos cosa ka  . 

This means k   and the electron is unbound and energy is continuous with no allowed and 

forbidden energy bands as in Fig. 2-13.  

If the electron’s energy remains constant and O  increases, the electron becomes 

increasingly bound to the potential until the total energy of the electron becomes less than the 

potential and the energy band structure becomes more pronounced. The plot of Eq. 2-1.61 with 

oE V  demonstrates the band structure and is referred to as the k-space diagram of a bounded 

electron. 

                                                 

7
 The one-dimensional Dirac comb function is a periodic function consisting of evenly spaced delta spikes. 

 

8 l’Hopital’s rule uses derivatives to determine limit values when the limit is indeterminate such as 0, 0 , ,or 0 0     
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Equation 2-1.61 can be represented as    cosf a ka 
 
 (Neamen, 1992). Fig. 2-16 is a 

plot of  f a  verses a  or the LHS of Eq. 2-1.61 where O  is arbitrarily assumed to be 4. The 

two straight lines at 1 and +1  in the bottom Fig. of Fig. 2-16 represent the minimum and 

maximum limits of the RHS of Eq. 2-1.61 or  cos ka . 

 
Figure 2-16: Top-  sinO a a  . Center-  cos a . Bottom-    sin cosO a a a    . The 

two straight lines at 1 and +1  in the bottom portion are the limits of  cos ka  where k is zero or 

a  and the limits alternate as 1 0,1,2,3, ,n n   .O  and α were arbitrarily chosen as 

4 and 1.5 respectively and the parameter a was also assigned an arbitrary value of 1. 

For Eq. 2-1.61 to be satisfied, the portions of  f a  lying outside the limits of  cos ka  

are not solutions to Eq. 2-1.61 and are the forbidden energy levels—band-gaps. The band-gaps in 

Fig. 2-16 can also be represented in a k-space diagram which could be directly extracted from 

Eq. 2-1.61 (Neamen, 1992) by isolating the parameter ka. 

Section 2.2: Semiconductors and Neutron Detection 

 Two basic types of neutron interactions with matter are of most interest in radiation 

detection. First, the neutron can be scattered by a nucleus, transferring some of its kinetic energy 

to the nucleus. If enough energy is transferred, the recoiling nucleus ionizes the material 

surrounding the point of interaction. This recoil mechanism is only efficient for neutrons 

interacting with light nuclei. In fact, only hydrogen and helium nuclei are light enough for use in 
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practical detectors. Second, the neutron can cause a nuclear absorption reaction. The products 

from these reactions, such as protons, alpha particles, gamma rays, and fission fragments, can 

initiate the detection process. Some reactions require minimum neutron energy (threshold), but 

many take place at thermal energies. Detectors exploiting thermal reactions are usually 

surrounded by moderating material to take maximum advantage of this feature (Crane and Baker, 

1991). When semiconductor detectors are used as the pulse generating medium, the energy 

deposition by charged particles generates e-hole pairs which ultimately get collected by the bias 

voltage generating a pulse. In the current section, mechanisms whereby semiconductors respond 

to charged particles are described. 

 The pn Junction 

A doped semiconductor in contact with a metal can either form an Ohmic or a rectifying 

Schottky contact, and a pn junction is formed when a p-doped and an n-doped semiconductor are 

in contact. In the cases where a Schottky contact or a pn junction are formed a depletion region is 

generated; in either case, the device is a diode. 

 Basic Structure of the pn Junction 

A pn junction is shown in Fig. 2-17. In actuality, however, the two regions are part of the 

same crystalline volume that has been doped with one type of dopant on one side, with the other 

type of dopant on the other, often the substrate material. 

The n dopants are also known as electron donors because they provide electrons which 

become mobile under the influence of an electric field or thermal excitation. The freed electrons 

diffuse into the p doped region where the dopants are also known as electron acceptors. The 

holes
9
 migrate into the n doped region. The diffusion of electrons and migration of holes reaches 

equilibrium and a space charge depleted region is formed between the two doped regions; the 

region is referred to as the depletion region (Neamen, 1992). In diodes, the width of the depletion 

region is a function of applied voltage and temperature; the direction of the applied electric field 

also is referred to as the bias direction.  

                                                 

9
 Positive ions left behind in the valence band when electrons from the valence band are excited to the conduction band. 



41 

 

 

 

 (a) (b) 

Figure 2-17: (a)-Two doped regions, showing the mobile charge carriers, in contact forming the 

initial pn contact plane. (b)-The depletion region is formed when the diffusion of electrons into 

the p region and the migration of holes into the n doped region reaches equilibrium leaving 

behind immobile ions.  

 Biasing 

Devices can be biased in three ways: zero, forward, or reverse biasing. Reverse biasing is 

the configuration required for charged particle detection, and thus neutron detection (Knoll, 

2010). Forward biasing will not be discussed, for in the case of forward biasing there is always 

current flow, which prohibits signal isolation. 

 Zero Biasing: The Built-In Potential Barrier 

Assuming no voltage is applied across the pn junction, then a fair deduction would be: if 

the temperature across the entire device is uniform, the device and consequently the pn junction 

is in thermal equilibrium, and the Fermi energy level
10

 is constant throughout the system 

(Neamen, 1992). The conduction and valence band energies must bend going through the 

depletion region, because the relative position of the conduction and valence bands with respect 

to the Fermi energy changes between p and n regions (Neamen, 1992), as shown in Fig. 2-18. 

The built-in potential Vbarrier maintains equilibrium between majority carrier electrons in the n 

                                                 
10 The Fermi energy is a concept in quantum mechanics referring to the energy of the highest quantum state in a system of fermions at 

absolute zero (0 K)  
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region and minority carrier electrons in the p region, and also between majority carrier holes in 

the p region and minority carrier holes in the n region. 

 

Figure 2-18: Energy band diagram of a pn junction in thermal equilibrium and at zero bias 

voltage showing the Fermi Energy Level and the built in potential Vbarrier.   

The potential barrier is given by ,  

 barrier 2
ln d a

i

N NkT
V

e n

 
  

  , 

 2-2.1 

where ni is the intrinsic carrier concentration, Nd and Na are the donor (n-dopant) and acceptor 

(p-dopant) concentrations respectively, k is the Boltzmann constant, T the system’s temperature, 

and e is the electron’s coulomb charge (Neamen, 1992). 

 Reverse Biasing and Depletion Region Width 

Reverse biasing a device constitutes the application of a positive potential on the n-doped 

region with respect to the p-doped region. By applying a potential, whether in reverse or forward 

bias, the device will no longer be in thermal equilibrium and the Fermi energy level is no longer 

constant throughout the system (Neamen, 1992), as shown in Fig. 2-19, and the Fermi level on 

the n side is below the Fermi level on the p side. The difference between the two is equal to the 

applied voltage or energy over charge  /kT q . The total potential barrier is the sum of the built 

in potential and the applied reverse bias voltage given by Eq. 2-2.2, and Vbi is given in Eq. 2-2.1. 

The depletion region’s width is given by Eq. 2-2.3 (Neamen, 1992) where the semiconductor’s 

permittivity is s  and o  is the permittivity of free space. 

 total AppliedbiV V V   2-2.2 

 total
Depletion

2 s o a d

a d

V N N
W

e N N

  
  2-2.3 
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Figure 2-19: Energy band diagram of a pn junction in reverse bias (Neamen, 1992). The total 

leakage current in reverse biasing is the sum of both leakage currents. 

The width of the depletion region described in Eq. 2-2.3 is also referred to as the “active 

volume” of a semiconductor device designed for radiation detection purposes (Knoll, 2010). The 

region is referred to in such a manner because only e-hole pairs generated within the depletion 

region of a reverse biased detector generate detectable pulses. The electric field in the bulk of the 

n and p doped regions is negligible and assumed to be zero (Neamen, 1992) in most calculations, 

and the electric field’s presence is mostly in the depletion region and can separate the e-hole 

pairs as they are generated. 

 Neutron Detection via Charged Particles 

When a device is in reverse bias, a leakage current, generally on the order of micro or 

nano-amps, is always present even when the applied voltage is less than the device’s breakdown 

voltage
11

; therefore, for efficient pulse counting detection, all signals generated must be of a 

current higher than the leakage current (which contributes to noise).  

                                                 
11 The voltage required to overcome the resistance presented by the depletion region. 
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 Energy Deposition and e-hole Pair Generation by Charged Particles 

Before a charged particle reaches the detector’s active volume, the particle must go 

through a “dead layer” (Knoll, 2010) if the particle’s origin is outside the detector; the dead layer 

constitutes detector housing and fabrication materials as well as the inactive regions of the 

semiconductor device itself. Consequently, not all the energy is deposited in the detector’s 

effective region. However, if the neutron interacts with a conversion isotope such as 
10

B inside 

the active volume as in the case of the proposed detector in Fig. 1-4, the reaction products would 

deposit a considerable amount of energy in the active zone of the detector. Energy deposition is 

given by the Bragg curve of which an example is shown in Fig. 1-2. On the other hand, a 

daughter particle may exit the active volume before complete energy deposition. In all cases 

however, once sufficient ionization energy
12

 is deposited in the detector’s active volume, a signal 

may be generated above the leakage current if the deposited energy is sufficient to generate 

enough e-hole pairs to surpass the leakage current/noise. 

 Pulse Generation and Affecting Factors 

When a charged particle deposits energy in the active volume of the detector, e-hole pairs 

are generated. The electric field present in the vicinity must be sufficient to separate the pairs 

into a free electron capable of moving along the conduction band and a hole which migrates by 

electron substitution
13

 in the opposite direction along the valence band. The electrons and holes, 

or the charge carriers, move in opposite directions constituting a monodirectional electric current 

which persists until all charges have been collected at the edges of the active region of the 

detector (Knoll, 2010). However there are factors which could affect the pulse’s period, shape, 

and height; the factors are the direct result of the semiconductor’s properties and the applied 

biasing voltage. 

The first condition for effective pulse generation is a direct consequence of the ionization 

energy of the semiconductor material. Ionization energies in semiconductors are typically on the 

order of 3 to 10 eV. Considering the short ranges of charged particles in solid materials, such as a 

                                                 

12
 The minimum energy required to generate a single e-hole pair in the semiconductor’s material. 

13
 The combined electric field of the hole and the applied voltage pulls on an electron from a neighboring neutral site in the valence 

band neutralizing the original hole and leaving a hole in the neutral site’s location, thus holes migrate in the direction of the applied electric field.  
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semiconductor’s, the deposition of 3 to 10 eV in order to generate a single e-hole pair takes place 

very easily; however, a single e-hole pair is never sufficient to generate a pulse above noise 

given the charge carriers—electrons and holes—pass through all trapping sites
14

 in the 

semiconductor on the way to the edges of the active region where they get collected. In effect, 

the more energy deposition the more charge carrier generation which directly translates to higher 

current, and from Ohm’s law—V RI —the higher the current the higher the voltage when the 

resistance is constant. Thus the relation between pulse height and energy deposition: the pulse 

height is directly proportional to energy deposition in the detector’s active volume. 

Another factor which affects current as well as pulse period is charge carrier mobility in 

the semiconductor; in other words, the speed at which the charge carriers move under the 

influence of the electric field, for current is given by (Shockley, 1938, Ramo, 1939, and Radeka, 

1988) I dQ dt qdV dt   where q is charge, V is the weighting potential, and dt is the time 

differential. Charge carrier mobility is an experimentally determined quantity; furthermore, the 

mobility of electrons is higher than the mobility of holes resulting in different drift velocities in 

the semiconductor given by Eqs. 2-2.4 and 2-2.5 (Knoll, 2010) 

 
e ev E  2-2.4 

and 

 
h hv E

,  
 2-2.5 

where   is the mobility, v is the drift velocity, and E is the applied electric field. The pulse’s 

period is inversely affected by the mobility, i.e., higher mobility leads to a shorter pulse because 

charges are collected faster. Trapping sites affect pulse period: traps may hold on to charge 

carriers for an extended period of time. When traps release charge carriers into their respective 

bands at later times, the detrapping effect extends charge collection times and pulse period is 

increased as a consequence. 

                                                 

14
 Unintended impurities or unavoidable structural defects that hold charge carriers at energy levels between the conduction and the 

valence bands and prevent/delay further charge carrier migration to collection sites where a pulse is generated. 
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 Section 2.3: Radiation Detector Efficiencies 

As earlier mentioned, detector efficiencies are thoroughly discussed, described, and formulated 

elsewhere (McGregor and Shultis, 2011). The types of efficiencies described here are absolute, 

relative, and intrinsic efficiency for point and beam sources. Here the discussion on efficiencies 

will be short and is only meant for completeness. Further details can be found in the literature 

(McGregor and Shultis, 2011). 

As earlier stated, the perception of the efficiency of a detector being the ratio of absorbed 

neutrons resulting in detectable signals to the number of neutrons impinging on the detector is 

intrinsically incomplete. Source activity, geometric set up, source and detector shapes determine 

the number of neutrons impinging on the detector. Unless the source is a collimated beam 

encompassing an area less than the detector’s area exposed to the beam, the number of neutrons 

impinging on the detector is invariably a fraction of the actual number of neutrons emanating 

from the source. Thus, for total efficiency to be determined, variables such as source activity, 

solid angle subtended by the detector from every point of the source, and detector orientation 

must be known. 

Absolute efficiency 
A is defined as the ratio of detectable signals/counts to the total 

number of emissions from the source and is mathematically described by Eq. 2-3.1 to include the 

branching ratio
15

. Absolute efficiency is an example of how an efficiency measurement can 

change with geometric set up between source and detector as shown in Fig. 2-20.   

 
   

detcount rate

source acitvity branching ratio
A

R

AB
  


 2-3.1 

                                                 
15 The branching ratio is the ratio of activity of the source with the specific radiation to the total activity of the source. 
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Figure 2-20: The radiation flux entering the detector at position 1 with solid angle Ω1 is greater 

than the radiation flux entering the detector at position 2 with solid angle Ω2 (McGregor and 

Shultis, 2011). Should the source have been a line or a plane source, then the solid angles 

subtended by the detectors from every point on the source must be considered. 

Relative efficiency is akin to absolute efficiency where, by again referring to Fig. 2-20, 

relative efficiency is simply the ratio of the absolute efficiencies of two detectors under the same 

exact geometric setup and conditions where one of the absolute efficiencies is known and used as 

the reference efficiency as shown in Eq. 2-3.2. 

   

 detector

det

reference detector reference detector reference detector

count rate

source activity branching ratio

A
R

A A A

R

AB




  
  


 2-3.2 

The values of both absolute and relative efficiencies are highly dependent on geometry, and the 

geometry must be reported in detail along with source activity and type of source. Caution must 

be exercised when reporting relative efficiency, given the same source, activity and branching 

ratio cancel out reducing Eq. 2-3.2 to Eq. 2-3.3; implying, if the detectors have the same 

parameters, relative efficiency may seem to be 100%. 

 
detector

referenceR

R

R
   2-3.3 



48 

 

Intrinsic efficiency of a detector exposed to radiation from a point source is the 

introduction of the subtended solid angle to absolute efficiency where the solid angle is the 

fraction of the source’s activity reaching the detector as given in Eq. 2-3.4 and can still be 

described by Fig. 2-20. 

 
     point

detcount rate

source activity branching ratio solid angle

A
i

R

AB


   

   
 2-3.4 

The introduction of the solid angle factor mitigates the need to accurately describe the geometric 

arrangement; however depending on the detector’s geometric parameters such as the area 

exposed to the radiation and thickness of the reacting medium, a parallax factor which is intrinsic 

to the detector can affect the efficiency if the NCM is sufficiently thick. This is because the solid 

angle varies with respect to depth into the NCM from the exposed surface and is analogous to a 

multitude of detectors at different distances from the source as shown in Fig. 2-21. Therefore the 

reacting medium’s geometric parameters must be described along with the solid angle subtended 

by the detector’s surface facing the source. 

 

Figure 2-21: A depiction of a sufficiently thick NCM with thickness t shows the parallax effect at 

two different thicknesses, the thickness t (θ) varies with the angle as sin (θ) and Eq. 2-3.4 must 

be adjusted accordingly (McGregor and Shultis, 2011). 

Finally, the intrinsic efficiency of a detector in a beam source is of particular interest, for 

the efficiency of the detectors developed in the project will be ultimately evaluated using the 

mono-energetic thermal neutron beam—0.025 eV—at KSU. The detectors may also be tested 

using the  multi-energetic  neutrons in the southeast beam emanating from the reactor’s core. The 

advantage of using a mono-energetic neutron source is because the neutron absorption cross-

section of the NCM, h-BN, is invariant where as in a multi-energetic source the cross-section is 
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different for different neutron energies (Fig. 1-1) and thus the neutron energy spectrum must be  

known along with the intensity of neutrons within each differential energy interval defined by the 

experimenter(s).  

The geometric advantage of using a beam source is the near total independence from 

solid angle determination, where the solid angle is small enough to be considered negligible; 

however geometric dependence on area persists. The dependence on area results from the angle 

of incidence of the beam on the detector’s surface as shown in Fig. 2-22, and the intrinsic 

efficiency of a detector in a beam source is given by  

 
     

detectorcount rate

beam intensity intersected area A cos
i

R

I




 


.  

 2-3.5 

 

 

Figure 2-22: A detector facing a beam with an angle of incidence ϕ. The area intersected by the 

detector’s surface and the beam is the area of the detector’s surface multiplied by the cosine of 

the angle of incidence, or if the detector’s area is larger than the beam’s area than the intersected 

area is the beam’s area multiplied by the cosine of the angle of incidence. 

Measuring the intrinsic efficiency of a new detector such as the one fabricated at TTU 

requires relating the detector’s count rate to another detector’s count rate with known intrinsic 

efficiency; the efficiency procedure and formulation will be discussed in the procedural section 

concerned with the evaluation of a detector’s efficiency.   

 Section 2.4: Monte Carlo Coding 

Due to advances in computer technology and availability, Monte Carlo methods are often used 

by various industries and academic fields of study where the statistics of events is based on 
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randomness. The main advantage Monte Carlo offers is the ability to statistically analyze 

events/processes, based on pseudo-randomly generated statistical data, without the need for live 

or actual data collection. Such abilities allow the comparison of actual results to theoretical 

results, and may be used to  improve the process or design. However, any Monte Carlo code 

written to analyze a certain process should be validated by comparison to known results.  

Efficiency assessment of any detector/sample is to be performed using a beam source and 

Eq. 1-2.7 with 0  . Thus, a Monte Carlo  code was written to reflect the conditions and treat 

neutrons from a collimated beam source incident perpendicular—ϕ=0—to the detector’s square 

surface area facing the beam.  The detector is modeled as having a thickness T. 

Based on the description of the proposed detector, where the detector’s NCM is the 

operational semiconductor, and on the discussion in Section 2.2: Semiconductors and Neutron 

Detection, a significant percentage of the charge generated as e-hole pairs by the energy 

deposited within the NCM is collected. Thus, the code is focused on evaluating energy 

deposition within the NCM  for each neutron interaction in the h-BN medium. The charged 

particles resulting from the reactions in Eq. 1-1.2 are emitted isotropically in opposite directions, 

to conserve momentum. The scored quantity is a histogram of energy deposition in the medium.  

 Energy versus Distance Data and Fits 

The first and one of the most important steps in the coding process is to acquire data reflecting 

charged particle energy loss as a function of distance travelled for the purposes of energy 

deposition calculations. The relevant energy distance data needed are the data pertaining to the 

charged particle products by the reactions in Eq. 1-1.2 in h-BN. The free source program SRIM 

(Ziegler, 2011), which uses Monte Carlo methods and formulation, was used to acquire the 

needed energy deposition data. Figures 2-23 through 2-26 show the actual SRIM data and curves 

fitted by Matlab to the data. The respective fit equations are given in Eqs. 2-4.1 through 2-4.4. 
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Figure 2-23: Matlab energy verses distance fit for SRIM generated data for the 1.02 MeV lithium 

nucleus from the first reaction in Eq. 1-1.2. 

   9 3 6 2

MeV
3.761 10 9.14 10 6536 1.023E r r r r       2-4.1 

 
Figure 2-24: Matlab energy verses distance fit for SRIM generated data for the 0.84 MeV lithium 

nucleus from the second reaction in Eq. 1-1.2. 

   9 3 7 2

MeV
1.311 10 1.151 10 6211 0.824E r r r r       2-4.2 
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Figure 2-25: Matlab energy verses distance fit for SRIM generated data for the 1.47 MeV alpha-

particle from the first reaction in Eq. 1-1.2. 

 
  16 5 13 4 10 3

MeV

6 2

3.79 10 7.924 10 3.249 10

2.799 10 3625 1.471

E r r r r

r r

      

   
 2-4.3 

 
Figure 2-26: Matlab energy verses distance fit for SRIM generated data of the 1.78 MeV alpha-

particle from the second reaction in Eq. 1-1.2. 

 
  16 5 12 4 9 3

MeV

5 2

2.475 10 2.016 10 6.676 10

1.365 10 3211 1.782

E r r r r

r r

     

   
 2-4.4 

Figures 2-23 through 2-26 show the Matlab fits represented by Eqs. 2-4.1 through 2-4.4 

shadowing the SRIM generated data. Thus, equations 2-4.1 through 2-4.4, also generated by 
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Matlab, are good approximations of the SRIM data and will be implemented in the code for 

energy deposition calculations as will be later discussed in the current section. 

 Logic Flow 

In the current code the starting point in the life of a neutron is at the interface between a 

monoenergetic collimated thermal neutron beam with a diameter of 1.27 cm and the 

perpendicularly aligned NCM, h-BN. The h-BN layer is infinite in the (x, z) plane and the 

thickness T is in the y direction starting at y = 0 and ending at y = T. The energy of the neutrons 

in the beam is 0.025 eV. Based on Eq. 1-2.4 and the data in Fig. 1-1, the macroscopic absorption 

cross-section for h-BN synthesized from natural boron with a 
10

B enrichment fraction of 0.198 is 

141.84 cma

  . Neutron containment within the beam implies that a neutron enters the NCM 

uniformly within a disk with a diameter of 1.27 cm. 

Selection of a starting position for a neutron in a disk distribution on the surface of the h-

BN’s layer is performed using a rejection method where two random positions, x and z, are 

chosen uniformly within a square with sides equal to the diameter of the beam and then checking 

whether the point (x, z) is in a disk of radius R (Dunn and Shultis, 2011). The two positions are 

determined, in history i, from  

   or 2 1i i ix z R    2-4.5 

where ρi is a random number on the interval [0,1], and the point  ,i ix z  is accepted if and only if  

 2 2

i ix z R 
.  

 2-4.6 

However, rejection sampling within a disk is not necessary, for the code would yield similar 

energy deposition spectra—theoretical MCA pulse height spectra—for any other perpendicular 

neutron source geometry or even if the source geometry is not defined. This is due to the fact that 

energy deposition is dependent on the distance travelled by the particles in h-BN and not on the 

neutron’s point of entry into the h-BN layer. Disk geometry was chosen because the thermal 

beam, in the reactor facility at KSU, which would be used for efficiency determination of any 

detector is rounded in geometry and has a diameter of 1.27 cm. 
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The next step is to determine whether or not the neutron interacted with the h-BN layer; if 

so, where with respect to the thickness of the layer? Choosing whether or not an interaction took 

place and at what depth relative to the neutron’s point of entry into the h-BN was based on an 

exponential pdf (Dunn and Shultis, 2011); the choice is given by Eq. 2-4.7 

 
 ln

a

t





 2-4.7 

where t could, for all practical matters, be greater than T (neutron escapes absorption); T is the h-

BN’s thickness. 

Upon neutron absorption another random number is chosen to determine whether the first 

or the second reaction in Eq. 1-1.2 occurred. Given the probabilities of occurrence of 0.94 and 

0.06, respectively, a random number on the interval [0,1] is chosen and if the random number is 

less than or equal to 0.06 then the second reaction has occurred, otherwise the first reaction has 

occurred. 

The interaction depth has been determined for each of the neutrons which interacted 

within the h-BN layer and the next logical step is to randomly pick a direction of emission of the 

resulting particles. As earlier mentioned, the direction is isotropic and can lie anywhere in the 

4  sphere. However, only the polar angle,  , referenced from the positive y axis, on the 

interval [0, π] is necessary, for the layer’s double-faced flat parallel geometry offers conical 

symmetry on the azimuthal angle once a polar angle has been chosen as shown in Fig. 2-27 

where any azimuthal angle chosen in the xz plane will always fall in the prescribed cone and will 

not contribute to distance calculations. Choosing the polar angle involves integrating the cosine, 

 , pdf of the angle on the interval [-1, 1] as in Eq. 2-4.8 resulting with   as given by Eq.2-4.9 

.The distances to the exit planes can be determined by dividing t and T-t by the cosine of the 

chosen angle which is  , otherwise referred to as the directional cosine.  

  
1

1 1
1

2 2
id




  


     2-4.8 

then 

 2 1i i
    2-4.9 
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where i  is the cosine of the chosen angle i . Choosing the cosine of the polar angle on the 

interval [-1,1] results in two cases: 1) 0 1i   and the chosen angle is on the interval  0, 2 , 

2) 1 0i    and the chosen angle is on the interval  2,  . As far as the case where 

0 1i   is concerned dividing by i  yields a positive distance. However, when  1 0i    

the directional cosine is negative rendering the direction on the axis from positive to negative, or 

in the negative direction, and t  must be represented as t  and T t  as  T t   where both 

parameters yield positive distances when divided by i . To mitigate the negative sign effects and 

the introduction of a conditional loop, t and T-t were divided by the absolute value of i  

rendering the distance travelled by the particles positive in all cases as shown in Eqs. 2-4.10 and 

2-4.11 where the distance travelled to the face of the layer at thickness equal zero is 

 
0y i

i

i

t
d



  , 2-4.10 

and the distance travelled to the face of the layer at thickness T is 

 
y T i

i

i

T t
d



 
 . 2-4.11 

If the calculated distance in the angle’s direction is greater than the particle’s range 

travelling on the determined path, the energy deposited in the h-BN is the energy with which the 

particle was born, simply because the particle ionizes the h-BN and deposits energy until all the 

particle’s energy is exhausted. On the other hand, if the distance is less than the particle’s range, 

the deposited energy must, in all such cases, be calculated based on the mathematical fits in Figs. 

2-23 through 2-26. 



56 

 

 
Figure 2-27:  Illustration of the geometry leading to Eqs. 2-4.10 and 2-4.11 as well as the 

mentioned conical symmetry.  

In Fig. 2-27 the distance travelled in the direction towards y = 0 is shown as 0yd   and the 

distance travelled towards y = T is shown as y Td  . Also, clear from the Fig. 2-27, any line 

passing through the interaction point on the surface of the cone constitutes an equal path length 

to any other line on the surface of the cone passing through the interaction point providing 

conical symmetry and mitigating the need for an azimuthal angle which would fall in a circle 

circumscribing the cone’s surface in Fig. 2-27.  

The last event to be determined is which of the particles travels in which of the 

determined paths. To accomplish the task, a random number on the interval [0, 1] is chosen; if 

the number is on the interval [0, 0.5] then one of the particles travels in one of the directions and 

the other travels in the other, and if the number is on the interval [0.5, 1] the particles switch 

directions. In effect, the procedure gives each of the particles an equal probability of traveling in 

either direction rendering travelling in the 4π sphere possible for each of the particles. 

The event inventory at this point stands at which of the two reactions has occurred, what 

is the distance inside the h-BN layer to each surface of the layer, and which particle traveled in 

which direction. With the event inventory complete, the energy deposited in the h-BN layer can 

be calculated using Eqs. 2-4.1 through 2-4.4, by simply calculating the energy at the distance 

travelled in the h-BN layer and subtracting the resulting energy from the energy a particle was 
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born with by applying Eq. 2-4.12 where r is the distance travelled within the range of the particle 

in h-BN. 

  Deposited Initial

i i iE E E r   2-4.12 

As earlier mentioned, if the distance to one of the h-BN layer’s faces is greater than the particle’s 

range in h-BN, then the entire energy the particle was born with is deposited in the h-BN layer. 

 Code Vetting and Validation 

Hand calculations were performed on different sections of the code as the code was being 

written. As a consequence of the multitude of neutrons generated by the code, only a few hand 

calculations were performed and compared to the number of neutrons involved. Under such 

conditions, final vetting and validation must be the result of comparison with closely related 

known results. This was done by comparing the theoretical spectra based on the boron trifluoride 

(BF3) tube and the absorption fraction in Eq. 1-2.7. 

 The Boron Trifluoride Tube 

In principle a boron trifluoride (BF3) tube’s operation is similar to the operation of a 
3
He 

tube, in the respect where both materials are gaseous. However, the neutron reacting isotope in a 

BF3 tube is 
10

B. Thus, a BF3’s tube spectrum provides a validation comparison to the spectrum 

from a BN semiconductor detector. 

A radiation detector responds to energy deposited in the device and converted into charge 

carriers transported under the influence of an applied electric field. In other words, current is 

generated by separating e-ion or e-hole pairs, depending on whether the medium is a gas or 

semiconductor, respectively. 

When a neutron interacts with a 
10

B atom in a BF3 tube the daughter products of the 

reactions in Eq. 1-1.2 are emitted in opposite directions. Each particle travels to the end of its 

range in the BF3 medium, generating a number of e-ion pairs proportional to the amount of 

energy deposited in the gas. However, not all neutron interactions take place at positions where 

the entire energy is deposited in the gas; a few interactions take place at positions, near the tube’s 

wall where the trajectory of one of the daughter particles, from the point of interaction to the 
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tube’s wall, is shorter than the particle’s range in the gas. Consequently, the particle collides with 

the tube’s wall prior to total energy deposition in the gas. Partial energy deposition in the gas 

results in a spectrum comprised of energy continua for each of the particles as well as total 

energy peaks. The particle-wall collisions resulting in the energy continua in the spectrum are 

referred to as the “wall-effect” (Tsoulfanidis, and  Landsberger, 2010). Figure 2-28 is a 

theoretical depiction of a BF3 spectrum and shows each of the continua due to all daughter 

particles from the reactions in Eq. 1-1.2. 

 

Figure 2-28: Top- A detailed BF3 tube theoretical spectrum, for a mono-energetic neutron beam 

showing the energy continua for each of the particles resulting from the reaction in Eq. 1-1.2, as 

well as the 94% and 6% full energy peaks when neither particles undergo a collision with the 

wall. Bottom- A more realistic BF3 tube spectrum lacks the sharp edges due to poor resolution 

and elevated dead-times at high neutron fluxes. 

If the NCM is a thin h-BN layer, which does not possess favorable charge transport 

properties, and is surrounded by layers or pillars of a semiconductor, then the escaping particles 

still have energy to deposit in the semiconductor after partial energy deposition in the BN layer. 

The e-hole pairs generated in the semiconductor are then transported for signal generation. The 

escaping particles also result in continua of deposited energy in the semiconductor similar to 

boron lined gas filled detectors.  

However, if the semiconductor and the NCM are the same material, eliminating the need 

for an external semiconductor as is the case for the proposed detector, then the energy continua 

are due to partial energy deposition in the h-BN layer, analogous to a BF3 tube. Thus the 

spectrum resulting from such a detector should bear the same features as a spectrum from a BF3 

tube. The continua are still due to the “wall-effect” and are the results of escapes from the h-BN 

layer after partial energy deposition rather than collisions with a detector’s wall. 
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Figures 2-29 through 2-34 are smoothed spectra generated by the code for h-BN 

thicknesses of 0.5, 1, 1.5, 2.5, 3.5, and 7 microns; all the spectra pertain to h-BN with 19.8% 
10

B, 

0.025 eV neutrons, a flux of 4 2 16.024 10  cm s   over one minute, and a beam diameter of 1.27 

cm totaling 64.5786 10  incident neutrons. 

 

Figure 2-29: Code generated spectrum for a 0.5   thick h-BN layer. The first high count peak 

shows a high probability of escape followed by the energy continua leading to the 94% and 6% 

peaks which is hardly visible. In such a spectrum, most of the deposited energy seems to be at or 

slightly higher than the noise level and may be hard to discern between noise and actual signals 

resulting from neutron absorptions. 
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Figure 2-30: Code generated spectrum for a 1   thick h-BN layer. The escape peak is still 

prominent but shifted further up on the energy axis. The 94% peak slightly more prominent than 

in the 0.5 μ thick layer, and the 6% peak is more visible. 

 

 
Figure 2-31: Code generated spectrum for a 1.5   thick h-BN layer; the escape peak is shifted 

even farther up the energy axis . The 94% peak is increasing in count, and the 6% peak is clearly 

visible. 

 

 

Figure 2-32: Code generated spectrum for a 2.5   thick h-BN layer; the escape peak is giving 

way to the continua.  
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Figure 2-33: Code generated spectrum for a 3.5   thick h-BN layer. The escape peak is 

drastically moved up the energy axis and the beginning of the 840 keV lithium nucleus 

continuum is already visible. 

 

 

Figure 2-34: Code generated spectrum for a 7   thick h-BN layer closely matching the features 

of the theoretical spectrum in Fig.2-28.  

 

Both the 840 keV lithium nucleus and the 1.47 MeV alpha particle continua appear more 

prominently than the continua corresponding to the 1.78 MeV alpha particle and the 1.02 MeV 

lithium nucleus for the latter continua represent only 6% of all interactions. In Fig. 2-28 

however, the latter continua were inflated for the purposes of illustration. 
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The spectra in Figs. 2-29 through 2-34 are the result of smoothing the data generated by 

the code. Smoothing the data does not affect the total number of counts and was performed for 

two reasons: 1) smoothing reduces the scale of high peaks to other features in the spectrum by 

widening the high count features, rendering the low count features of the spectra more visible. 2) 

The spectra produced by the code are due to perfect energy resolution and do not reflect realistic 

spectra generated by actual detectors which do not generate spectra with perfect energy 

resolution. A working detector was not available in order to determine the necessary degree of 

smoothing, and the degree of smoothing was arbitrarily chosen. Figures 2-35 and 2-36 are, 

respectively, smoothing illustrations of the 2.5 and the 7 micron thick h-BN spectra showing the 

differences between the smoothed and the unsmoothed data. The smoothed data in Figs. 2-35 and 

2-36 are the same spectra presented in Figs. 2-32 and 2-34. 

 

Figure 2-35: Differences between the smoothed and unsmoothed code generated spectra for the 

2.5 micron thick h-BN layer. 
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Figure 2-36: Differences between the smoothed and unsmoothed code generated spectra for the 7 

micron thick h-BN layer. 

 

In light of the two comparative spectral analyses a conclusion can be made that the code 

is operating properly and yielding correct, though theoretical, spectral results. Furthermore, the 

spectra in Figs. 2-29 through 2-36 are simple histograms of energy deposited in the h-BN layer 

by individual neutron interactions within the layer. The amount of deposited energy directly 

translates to the number of e-hole pairs generated within the detector’s active volume and pulse 

height. The average energy of the particles resulting from the 
10

B(n,α)
7
Li reaction is given by  

    AV 0.94 2.31 MeV 0.06 2.8 MeV 2.3394 MeVE      . 2-4.13 

Based on Eqs. 2-4.1 through 2-4.4 and the corresponding figures, not every neutron interaction 

deposits the total energy of the particles within the h-BN slab. The code was run for thicknesses 

from 0.5 μ to 36 μ in intervals of 0.5 μ, and the total deposited energy of all absorbed neutrons 

was averaged over the number of absorbed neutrons and is shown in Fig. 2-37 (a) is the average 

energy deposited per neutron absorption, and (b) is a plot of the percentage energy deposition of 

the average energy value in Eq. 2-4.13 per absorbed neutron. The code was run with the same 

parameters used to generate the spectra in Fig. 2-29 through Fig. 2-34. 
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   (a)       (b) 

Figure 2-37: (a)-Best case average energy deposition per neutron absorption in h-BN made from 

natural boron with a 0.198 
10

B enrichment fraction. (b)-Percent energy deposition per absorbed 

neutron based the average energy of the 
7
Li nuclei and the alpha-particles in Eq. 2-4.13.  

For both figures in Fig. 2-37 the average was calculated five times for each thickness then the 

mean and standard deviation was then calculated based on the five values and the error bars 

represent the error in the average. On the other hand, it would also be useful to calculate the 

average deposited energy and the percent deposited energy, once per thickness, and then 

determine the distribution of the deposited energy about the average deposited energy as shown 

in Figs. 2-38 and 2-39. Basically, Figs. 2-38 and 2-39 represent the same set of calculated data. 

However, since the standard deviation is usually plotted symmetrically about the average, the 

upper error limit of the data was higher than the highest allowed value in some cases as is clear 

in Fig. 2-38. Consequently, the upper error limit was truncated down to the maximum allowed 

values and is represented in Fig. 2-39.  
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   (a)       (b) 

Figure 2-38: Error about the average energy deposition where the average deposited energy and 

percent energy deposited as calculated by the code clearly show upper limit error values above 

allowed maximum average energy of Eq. 2-4.13 and error percentages higher than 100%. 

 
   (a)       (b) 

Figure 2-39: Upper limit error values in Fig. 2-38 truncated to maximum allowed values. 

 The Absorption Fraction 

The absorbed fraction of neutrons impinging on an h-BN slab generated by the code must 

also be verified against Eq. 1-2.7, for the efficiency of a detector largely depends on the absorbed 

fraction. Furthermore, the validation enables efficiency calculation prediction. Absorption data 

generated by the code for h-BN thicknesses from 0 to 1000 microns and 0.198 enrichment and 
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the same code parameters used to generate the spectra in Figs. 2-29 through 2-34 verses Eq. 

1-2.7 is shown in Fig. 2-40. 

 
Figure 2-40: Code generated absorption data against theoretical absorption data—Eq.1-2.7—for 

h-BN made from natural boron with a 0.198 
10

B enrichment fraction. 
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Chapter 3 - Experimentation  

In addition to the determination of the utility of the crystals synthesized by the Chemical 

Engineering team as suitable detector NCM’s, and assessing the detector fabricated at TTU; the 

MNE team at KSU independently investigated the feasibility of and radiation damage in 

pyrolytic h-BN. In total, the MNE Team at KSU conducted four experiments.  

I — Radiation damage in pyrolytic h-BN caused by neutron irradiation was assessed. 

Selected pyrolytic h-BN samples were tested for neutron response. A similar experiment with the 

same steps up to neutron response testing was previously conducted (McGregor et al, 2008), but 

damage was not assessed.  

II — Testing a neutron detector fabricated from a single domain crystal synthesized by 

the Chemical Engineering team at KSU.  

III — Testing a neutron detector fabricated from a boron chromium nickel alloy—dubbed 

the Robin’s Egg—with microscopic h-BN crystals deposited on the surface of the alloy. 

IV — Assessment of the thin film h-BN detector fabricated at TTU.  

Furthermore, for all of the experiments, determining the neutron detection efficiency of 

any detector/sample was contingent upon a positive neutron response. Screening  for neutron 

response was first conducted at the Southeast beam located in the reactor facility at KSU. 

Efficiency determination, when necessary, was to be conducted at S.M.A.R.T. laboratory’s 

monoenergetic—0.025 eV—diffracted neutron beam also located in the reactor facility at KSU. 

 Section 3.1: Generalities 

To avoid redundancy, common aspects, procedures, calculations, and equipment employed in 

this work are presented independently. 
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Equipment and Circuit Block Diagram 

The equipment used in these experiments is listed in Table 3-1. Figure 3-1 is a schematic 

diagram of the equipment set-up. Equipment settings for the individual experiments are tabulated 

in each of the experiments’ sections.  

 Table 3-1: Equipment at the Southeast Beam of the reactor facility at KSU. 

Unit description Brand Model 

High voltage power supply (HVPS) ORTEC 456 

Preamplifier ORTEC 142A 

Amplifier CANBERRA 2022 

Multichannel analyzer (MCA) APTEC EAGLE/CLASSIC 

Oscilloscope (OS) 
AGILENT 

TECHNOLOGIES 
DS01024A 

 

 

Figure 3-1: General block of the circuit used in all experiments and both equipment sets, where 

the box labeled detector represents any sample/detector undergoing the procedure.  

 Neutron Response 

All detector/samples were tested for neutron response as a preliminary to efficiency 

determination and validation. 

In order to ensure the sound operation of the equipment in Table 3-1 and the circuit in 

Fig. 3-1, a verified neutron detector was connected to the circuit and exposed to the neutron 
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beam prior to the conduction of any experiment. The step insures the equipment’s sound 

operation should the detector being tested fails to respond to neutrons. 

The southeast beam was collimated down to a diameter of half an inch by means of a 

layered shield. The shield was comprised of two inches of bakelite for fast neutron 

thermalization followed by two inches of borated polyethylene for thermal neutron absorption. 

The final layer is two inches of lead to suppress/scatter γ-rays from the first reaction in Eq. 1-1.2. 

A half inch hole was then drilled through the layered assembly restricting the beam to the half 

inch hole. The collimated beam’s thermal and fast neutron flux were determined using copper 

NAA where upon neutron absorption by 
63

Cu the activated 
64

Cu emits annihilation photons with 

a branching ratio of 0.35. The fast and thermal fluxes were calculated to be 474.78 cm 
-2

s 
-1

 and 

21.7 cm 
-2

s 
-1

 per kW of reactor power, respectively; neither flux is monoenergetic. With a 

21.87:1 thermal to fast neutron flux ratio the beam is ideal for thermal neutron response 

experimentation where the thermal neutron spectrum follows a Maxwellian distribution. 

Neutron response testing involved biasing the detector/sample as shown in Fig. 3-1 and 

aligning the detector with the collimated beam. As far as simple neutron response testing is 

concerned, where the objective is not efficiency determination, careful angular alignment of the 

detector with the beam to satisfy Eq. 2-3.5 with ϕ = 0 for maximum areal exposure is not 

necessary.   

 Efficiency: Procedure and Formulation 

With a sample/detector oriented perpendicular to the diffracted monoenergetic thermal neutron 

beam, Eq.2-3.5 reduces to Eq. 3-1.1 with  0 and cos 1  
 

 detector

A
i

R

I




  3-1.1 

When a detector with a known efficiency   records R counts, the number of neutrons N 

impinging on the detector per unit time and area is given by Eq. 3-1.2. 

 
R

N


  3-1.2 
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If the area of the beam impinging on the detector is less than the detector’s area facing the beam, 

then N is the neutron flux in the beam, which is constant regardless of the detector placed in the 

beam’s path. The diffracted beam at KSU has a diameter of 1.27 cm (McGregor and Shultis, 

2011), thus placing a 
3
He tube with a 5 cm diameter covers the beam. The 

3
He is known to have 

an intrinsic beam efficiency 
i  of 85%. With the thermal neutron flux in the beam considered 

statistically constant over time, then the total number of neutrons, totalN , in the beam is  

 

3

3

beambeam

He detector

Total detectorHe
ii

R R
N


 

.

 3-1.3 

Correcting for the difference in area between the detector being evaluated and the  
3
He tube, or in 

this case the beam’s area, for the beam’s diameter is smaller than the 
3
He tube’s diameter, the 

intrinsic beam efficiency of the detector can be formulated by Eq. 3-1.4 

 
3

3
beam beam

 detector beam
Detector He

 detectorHe

A

A
i i

R

R
 



  3-1.4 

 Current Voltage Curves and Conductivity Measurements 

All samples used in Experiments I were subjected to current-voltage curve IV-curve 

measurements. Recording IV-curves requires a voltage sweep, usually symmetric about zero 

volts, from a negative voltage to a symmetric positive voltage with the current measured at each 

voltage. For semiconductor devices the IV-curve reveals the bias conditions for the particular 

device. If a device has a pn junction or a Schottky contact, the IV-curve will bear diode 

characteristics; on the other hand, the IV-curve also reveals Ohmic contacts. Figure 3-2 is an 

example of an ohmic IV-curve belonging to a pyrolytic h-BN sample bearing the nearly constant 

slope characteristic of a resistor.  

Another property revealed by an IV-curve is the electrical conductivity; where pre-and 

post-neutron irradiation conductivity changes reveal the fashion by which a sample’s electrical 

properties are affected by irradiation. For conductivity measurements the original IV data are 

inverted placing voltage on the vertical axis and current on the horizontal axis, where the 

resistance is the slope of the curve. Eq. 3-1.5 is the formula for conductivity. 
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 1Conductivity S m
AR

I
  

,
 3-1.5 

where  is the path-length the current encounters through the sample, A is the sample’s area 

perpendicular to the current’s path, and the resistance, R, is the slope— dV dI —of the inverted 

IV curve. The units of conductivity are Siemens per meter and the symbol σ is commonly used; 

however, for the purposes of avoiding confusion with the microscopic cross-section symbol, σ 

for conductivity will be represented with the subscript I denoting electrical current. 

 
Figure 3-2: An example of an inverted IV-curve where the slope is the resistance of the h-BN 

sample. 

 Section 3.2: Experiment I 

Twenty five pyrolytic h-BN samples were used in two batches of fifteen and ten samples 

respectively for experiment I. The second batch was not part of the original experiment; 

however, post neutron irradiation conductivity measurements of the first batch showed an abrupt 

increase in conductivity at around a neutron fluence of 10
12

 cm
-2

 . The second batch was 

irradiated at neutron fluences about the fluence point where conductivity abruptly increased in 

the first batch in order to observe a smoother transition in conductivity.   

A few irradiated h-BN samples were studied using photoluminescence (PL) band-gap 

analysis at TTU. PL will not be discussed further in the current chapter, because the procedure 

was performed at TTU’s facilities and was not performed by the MNE team at KSU. However, 
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Pl analysis should reveal pre and post irradiation bandgap energy changes. If energy changes are 

detected via PL and the energy peaks can be identified, then energy bandgap changes may 

indicate the type of damage resulting from irradiating h-BN with neutrons. 

 Sample Preparation and Irradiation 

 

A 3 cm by 5 cm by 1 mm thick slab of pyrolytic h-BN was fastened with wax onto a 

thick ceramic block and cut into thirty-two 5 ± 0.5 mm by 5 ± 0.5 mm by 1 mm thick squares on 

a diamond wire saw under a flowing stream of mineral spirits for lubrication. The samples were 

then placed in boiling water to remove the fastening wax. Sample cleaning involved four stages 

of fifteen minute sonic baths in four different solvents where each successive solvent removes 

the previous solvent, while the first solvent removes grease and mineral spirits. The stage 

respective solvents are: acetone, isopropyl alcohol, methanol, and finally de-ionized water. The 

samples were then inserted into a multi-pocket shadow-mask with 3 mm to 4.5 mm diameter 

openings and placed in an electron beam evaporator where metal contacts were deposited on the 

samples. Each contact consisted of 500 Ǻ of titanium followed by 20,000 Ǻ of aluminum on 

each side of the p-BN samples. All steps in sample preparation took place in S.M.A.R.T 

laboratory’s facilities at KSU.  

A single sample from the first batch was not irradiated; the rest were irradiated in the 

central thimble of the TRIGA MARK II reactor at KSU at successively increasing neutron 

fluences. One at a time, the samples were placed inside an aluminum vial alongside a small steel 

sample, as a standard, whose mass was recorded. Upon withdrawal from the central thimble, the 

steel sample was placed on a high purity germanium γ-ray detector (HPGE) for neutron 

activation analysis (NAA) which permits the determination of the total neutron fluence   —

the sum of the thermal and fast fluences—the sample was exposed to as shown in Eq. 3-3.1. 

 
59 58

Fe

23 24

Fe Fe

A

6.023 10 10
th th Fast Fast

A

mf
 


  

  
 3-3.1 

where Th  and Fast  are the averaged thermal and fast microscopic cross-sections of 
58

Fe in 

barns, respectively, Th  and Fast  are the thermal and fast fluences, respectively, m is the steel 
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sample’s mass in grams, 58 Fe
f  is the mass abundance fraction of 58 Fe  and is 0.282%. A in Eq. 

3-3.1 is the activity of the resulting 59 Fe  in becquerel where 
1

total counts 
N

Total i

n

C n


   where in  

is the net number of counts under peak i, and TotalC is the sum of all counts under all the pertinent 

peaks. There are two γ-ray energy peaks resulting from the activity of 
59 Fe:  1.095 MeV and 

1.292 MeV γ-rays where the branching ratios are 0.56 and 0.44, respectively. The software 

controlling the detector calculates the total activity by dividing the detector’s efficiency, ε, 

multiplied by the counting time, t, into the total counts under a peak or  TotalA C t . The 

decay constant of the active isotope, 59 Fe ,in s
-1

 is 59 Fe
 , FeA  is the elemental atomic mass of iron 

(58.845 grams/mole), 10
-24

 1 2barn cm   is the barn to cm
2
 conversion factor, and 

236.023 10  is 

Avogadro’s number atoms/mole. The neutron fluences the samples in batches one and two were 

exposed to are shown in Fig. 3-3. The derivation of Eq. 3-3.1 is shown in the following sequence 

of equations. 

Activity 59

59

Fe
,A N 
 
yielding 59

59

Fe
N A   where N

59
 is the total number of 

59
Fe atoms in 

the sample.
 
Considering the generation of an atom of 

59
Fe is the result of an atom of 

58
Fe 

absorbing a neutron; the number of 
59

Fe atoms generated is the number of 
58

Fe atoms present in 

the sample multiplied by the total number of neutrons per unit area—neutron fluence (flux 

multiplied by irradiation time)—which impinged on the sample and the sum of the averaged fast 

and thermal microscopic cross-sections converted to cm
2
 and given by  

    59 58 24

irradiation time
10th th Fast FastN N t         3-3.2 

Implying  

 
   

59

irradiation time 58 2410
th th Fast Fast th th Fast Fast

N
t

N
     


   


 3-3.3 

where N
 58

 is given by Avogadro’s number multiplied by the mass of the sample and the mass 

abundance fraction of 
58

Fe all divided by the elemental atomic mass of iron as shown in Eq. 

3-3.4 

 
58

23

58 Fe

Fe

6.022 10

A

mf
N


 . 3-3.4 
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Substituting Eq. 3-3.4 into Eq. 3-3.3 leads to 

 
58

59

Fe

23 24

Fe

A

6.022 10 10
th th Fast Fast

N

mf
 


  

 
,

 3-3.5 

and then substituting 59

59

Fe
N A   into Eq. 3-3.5 yields Eq. 3-3.1. Decay corrections for 

counting, irradiation, and waiting times were not included in Eq. 3-3.1, for the half-life of 
59

Fe is 

44.5 days and the process, from the beginning of irradiation until the end of counting, lasted less 

than two days rendering Eq. 3-3.1 a good approximation of the true neutron fluence the samples 

were exposed to.  

The units of the RHS of Eq. 3-3.1 workout to 1 2barn atom cm    as follows 

 
1 1

1 2

1 1 2 1

neutrons s g mole
barn atom cm

atom mole barn cm s g

 
 

  

  
  

    
. 3-3.6 

While the units of the microscopic cross-sections in the LHS of Eq. 3-3.1 are 1barn atom . 

Cancelling similar units from the LHS and the RHS of Eq. 3-3.1 results in the units of fluence,

2neutrons cm ,  leftover on the RHS of Eq. 3-3.1. 

Furthermore, a single independent sample was irradiated up to a fluence of approximately 

9 ×10
14

 neutrons for the purposes of increased lithium buildup, where the increased lithium 

concentration may act as a p dopant. The sample was thermally annealed to restore order to the 

lattice with lithium may be an interstitial impurity.  To avoid melting the aluminum contacts the 

annealing temperature was kept below 600
o
C. (Watanabe et al, 2006) reported the restoration of 

stacking orders
16

 to mechanically damaged h-BN upon annealing the h-BN at temperatures 

around 2000
o
C for three hours. However in the present study boron atoms are burned-up in the 

process and are not replaced by annealing. Thus deformities due to the missing atoms will 

inevitably remain. Furthermore, whether annealing at 600
o
C restores order is unclear, and future 

PL analysis on similarly processed samples may reveal whether annealing at 600
o
C restores 

order. 

                                                 
16 Plane slippage deforming the hexagonal lattice.  
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Figure 3-3: The neutron fluences the pyrolytic h-BN samples in batches one and two were 

exposed to.  

Pre-and post-irradiation IV curves were recorded from -200 V to 200 V in a dark box for 

all samples in both batches. For each of these samples conductivity was determined using Eq. 

3-1.5. 

 Sample Biasing Apparatus Construction 

Testing the samples for neutron response involves biasing the samples at a certain voltage 

in order to collect opposite charges as earlier described in Section 2.2: Semiconductors and 

Neutron Detection. The apparatus used for biasing is a simple construction described as follows. 

A 1 ¼ inch by 1 inch by ½ inch block of bakelite was super-glued on one side of a 2 inch 

by 1 ¼ inch 1 mm thick copper sheet. A hole sufficient for an 8-32 tap was drilled into one of the 

1 inch by ½ inch surfaces of the bakelite. A copper leaf spring was then attached to the bakelite 

with an 8-32 screw; the copper spring was bent towards the copper sheet to the point where 

around a 0.25 mm gap was maintained between the spring and the copper sheet where the 1 mm 

thick samples would be inserted. Both sides of the gap—spring and copper sheet—were smeared 

with silver and indium free molten solder which was left to cool and harden; the flat surfaces of 

the hardened solder produce a more evenly distributed and cleaner electrical contact on both 

sides of the inserted samples. The exposed side—bakelite free side—of the copper sheet was 

then fastened to the floor of a 6 inch by 3 inch by 1 ½ inch aluminum box by double-sided tape. 

The copper sheet was then grounded by a bare copper wire connected to the aluminum box. The 
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spring would then be held at the bias voltage generating an electric field through any sample 

placed in the gap between the two conductive surfaces. The apparatus holding a non-irradiated 

sample is shown in Fig. 3-4. A ½ inch hole was then drilled in the containing aluminum box’s 

cover and the detector was fastened with the sample aligned with the drilled hole; the hole was 

then covered with aluminum tape to reduce electromagnetic noise. 

 
 (a)  (b) 

Figure 3-4: The apparatus—detector—used in experiment I. (a)-The detector with ground 

connection to the aluminum box and bias voltage on the leaf spring. (b)-A sample held between 

the grounded copper sheet and the spring held at a potential. 

 Neutron Response 

Table 3-2 lists the selected samples tested for neutron response from batch one along with the 

fluences the samples were exposed to.  

 

Table 3-3 lists the equipment’s settings used for the selected samples from experiment I.  

Table 3-2: Samples selected from batch one for neutron response testing on the Southeast Beam. 

Testing was performed at 50 kW of reactor power and 1800 seconds counting time. 

Sample Irradiation Fluence (cm
-2

) 

1 0 

6 9 42.1549 10 4.621 10    

13 12 69.7593 10 3.1241 10    
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Table 3-3: Circuit settings for neutron response testing of the selected samples used in 

Experiment I from batch one. The percent LLD is the percent of the ULD (highest channel) the 

LLD is set at. 

Amplifier gain Times 300 

MCA Lower level discrimination (LLD) Channel 250 or 3.05% of the total channels 

MCA Upper level discrimination (ULD) Channel 8192 

Bias Voltage (V) 600 

  

 Section 3.3: Experiment II- A Single Crystal h-BN Domain 

The Chemical Engineering team at KSU synthesized a polycrystalline h-BN sample with a large 

triangular single crystal domain within the sample. The dimensions of the triangular single 

crystal domain shown in Fig. 3-5 are approximately 2 mm across the triangle’s base and 4 mm in 

height. The entire sample’s thickness was on the order of tens of microns which, compounded 

with the fragility of the sample, rendered the sample extremely delicate for traditional detector 

construction using the sample as the neutron conversion medium.  

  

   (a)                                                                (b) 

Figure 3-5:  (a)-A 2 mm base and 4 mm height triangular h-BN single crystal domain within a 

polycrystalline matrix. (b)-A magnified view of the domain showing structural defects in the 

form of localized ridges. The Chemical Engineering Team confirms single crystalline structure 

of the domain through Raman spectroscopy. 
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 Sample Adaptation for Neutron Response Testing 

“A single [h-BN] crystal has surfaces with predominant cleavage at c facets along the 

layers, and it is easily collapsed by mechanical perturbations causing the layers to glide along the 

surface” (Watanabe et al, 2006).Thus the sample’s fragility did not allow the application of any 

appreciable physical pressure and the use of the detector apparatus used in Experiment I would 

destroy the domain.  Instead the sample had to be biased laterally rather than through the 

thickness of the domain. Even then, the sample was too fragile for direct connections with 

copper wires. 

The sample was fastened onto a bakelite block with wax, a molten drop of wax which 

hardened after the sample was deposited on the bakelite block, to support and strengthen the 

sample. The tips of two bare copper wires were then laid on opposite sides of the triangle, one on 

the top vertex, and the other on the mid-point of the base as shown in Fig. 3-6 (a). Silver 

conductive epoxy was then applied to the wire tips and slightly smeared to cover a small area of 

the domain creating two electrical contacts on opposite sides of the domain. The copper wires 

were then taped to the bakelite block to avoid accidental disconnection while the block was 

being mounted. Upon hardening of the silver conductive epoxy, black silicone was used to cover 

the gap between the two electrical contacts in order to avoid false signals due air ionization. The 

block was glued on the inside wall of a steel box with the sample facing outward toward a hole 

in the box. The hole in the box was covered with aluminum tape for electromagnetic noise 

reduction. Figure 3-6 (a) shows the sample mounted on the bakelite block and the block mounted 

in the steel box is shown in Fig. 3-6 (b). 

 
 (a) (b) 

Figure 3-6: (a)-The single crystal domain mounted on the bakelite block on top of cooled wax 

with the two copper wire tips laid on the vertex and base of the domain; the wire tips were then 

covered with conductive epoxy to establish electrical contacts between the domain and the wire 

tips on each end of the domain. (b)-The bakelite block mounted inside the steel box. 
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The steel box was mounted on a clamp which was in turn mounted on a stand; the mount 

was oriented in such geometry where the hole in the box would, within approximation, 

perpendicularly face the diffracted beam in the reactor facility at KSU, exposing the sample to 

thermal neutrons emanating from the reactor core. Table 3-4 lists the equipment settings used in 

testing the sample for neutron response; reactor power was 250 kW and the counting time was 

900 seconds. The count was preceded by a background count lasting 900 seconds with the 

reactor shut off, and followed by a background count lasting 900 seconds with the reactor still 

running at 250 kW but with a 2 mm cadmium shutter inserted between the beam’s emanation 

point and the detector. Running the two background counts before and after the counts was, in 

the current case, performed to insure whether the running reactor contributed to electromagnetic 

noise. Thus there were three spectra associated with the sample. The step was not performed for 

following experiments. Only a background count with the reactor shutoff was performed for all 

following experiments.  

 The lower level discrimination (LLD) setting on the MCA had to be elevated to 82 prior 

to the dead time average being reduced to 1.5 percent. The equipment in Table 3-1 was used and 

the experiment was conducted using the diffracted neutron beam in the KSU reactor facility, for 

the southeast beam was not available. 

Table 3-4: Equipment settings used for neutron response testing of the single domain sample.  

Amplifier gain Times 170 

MCA Lower level discrimination (LLD) Channel 82 or 1 % of the total channels 

MCA Upper level discrimination (ULD) Channel 8192 

Bias Voltage 460 Volts 

 Section 3.4: Experiment III- The Robin’s Egg Sample 

The sample was synthesized by the Chemical Engineering Team at KSU in the following 

manner: boron powder dissolved in nickel and chromium with respective mass percentages of 

18.3, 65.6, and 16.1 placed in an oven at 1400 
o
C for twelve hours in an ammonia atmosphere. 

The molten mass solidified into the shape of the containing crucible used and attained the shape 

of a robin’s egg; the sample is shown in Fig. 3-7. 
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Figure 3-7: The robin’s egg sample with an h-BN crust on the metal surface exposed to ammonia 

during heating. The bottom side which was in contact with the crucible, was bare metal without 

any h-BN crust.  

The crusty film surrounding the sample is polycrystalline h-BN; however, within the 

film, microscopic crystalline h-BN crystals had formed and are shown in Fig. 3-8 (a), while Fig. 

3-8 (b) is a cross-sectional impression of the structure showing the assumed position of the h-BN 

crystals embedded in the surface film relative to the main metal body. There is no proof showing 

the crystals actually penetrate the surface film and were in physical contact with the sample’s 

main metallic body. A simple ohm-meter was used to determine electrical non-conductivity 

through the film into the sample’s main metallic body. An ohm-meter test also showed that the 

sample’s main metallic body is electrically conductive. 

  
 (a) (b) 

Figure 3-8: (a)-magnified sample surface showing microscopic h-BN crystals—white dots— 

embedded in the surface film; the white scale bar, bottom right, represents 100 microns. (b)-An 

assumed cross-sectional impression of the sample assuming the h-BN crystals are contact with 

the sample’s main metallic body. 
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 Testing the Sample for Neutron Response 

Due to their small size, electrical contact was impossible to establish across any single 

microscopic h-BN crystal embedded in the surface film. Therefore, electrical contact across the 

crystals was made with the sample’s metallic body and to a small surface area of the sample on 

the crusty side using conductive epoxy with an embedded copper wire tip. The configuration 

places a multitude of h-BN crystals between two electrical contacts—the sample’s metallic body 

and the conductive epoxy— rendering the crystals as a multitude of neutron conversion mediums 

in an electrically parallel configuration. Thus if any of the crystals under the epoxy layer 

converts a neutron, and the h-BN crystal is in contact with the metallic body, and if the crystals 

possess adequate charge transport mechanisms, a signal should be generated.  

However, the epoxy deployed in such fashion completely engulfs the crystals’ exposed 

surfaces and an electrical potential would only be established on a small area on any individual 

crystal surface. Furthermore, crystalline domain orientation of each of the crystals is not 

invariant, for the crystals are randomly oriented on the sample’s surface and each crystal would 

have different electrical properties with respect to any other crystal. Both  factors will have 

adverse effects on the device’s efficiency should the device respond to neutrons.   

Figure 3-9 shows the epoxy and the soldered wire on both sides of the sample. The 

sample was then placed in the same aluminum box used for experiment I with the epoxy facing 

the drilled hole. The aluminum box was connected to the circuit with settings shown in Table 3-5 

and mounted in front of the Southeast beam for neutron response testing; reactor power level was 

50 kW— corresponding to a thermal neutron flux of 23,739 ± 154 cm
-2

s
-1

; counting and 

background times were 900 seconds live time. 
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 (a) (b) 

Figure 3-9: (a)-The metallic side of the robin’s egg sample showing a soldered copper wire. (b)- 

The side with the crusty of embedded crystals showing the first of two conductive epoxy layers 

next to the tip of a copper wire whose diameter is approximately 0.5 mm; the copper wire’s tip 

was sandwiched between the first epoxy layer and a second epoxy layer.  

Table 3-5: Circuit settings for the robin’s egg sample; dead time was 2.6 percent at a LLD level 

of 250. 

Amplifier gain Times 100 

MCA Lower level discrimination (LLD) Channel 2050 or 25.02% of the total channels 

MCA Upper level discrimination (ULD) Channel 8192 

Bias Voltage 500 Volts 

 Section 3.5: Experiment IV- Assessment of TTU Team’s Detector 

TTU’s detector construction is presented in Fig. 3-10 (a) (Li et al, 2011) the device is fabricated 

as follows: “Hexagonal h-BN epitaxial layers of about 1 μm thickness were synthesized by metal 

organic chemical vapor deposition (MOCVD) using natural triethylboron (TEB) sources 

(containing 19.8% of 
10

B and 80.2% of 
11

B) and ammonia (NH3) as B and N precursors, 

respectively. Prior to epilayer growth, a 20 nm BN  or AIN buffer layer was first deposited on 

sapphire substrate at 800 
o
C. The typical h-BN epilayer growth temperature was about 1300 

o
C.” 

The fabrication procedures consisted of the following steps. First, photolithography was 

employed to define the micro-scale strips (5 μm/5 μm width/spacing) followed by pattern 

transferring using inductively coupled plasma dry etching to form micro-strips. A bilayer of 

5nm/5nm (Ni/Au) was deposited using e-beam evaporation (Li et al, 2011). 
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 (a)                                      (b) 

Figure 3-10: (a)-An impression of the nickel/gold micro-strips embedded in the h-BN epitaxial 

layering the micro-strips are 5 μm apart and biasing is lateral through the h-BN layering. (b)-The 

Fig. is a photograph of the continuous winding of the micro-strips on the surface of the h-BN (Li 

et al, 2011). 

Evaluation of the TTU detector involved neutron response on the Southeast beam at 

KSU’s reactor facility; the experiment is simply to determine whether the detector responds to 

neutrons. Contingent upon successful neutron response, the experiment would proceed into the 

next phase of neutron detection efficiency determination using the 0.025 eV diffracted neutron 

beam at KSU’s reactor facility.  

The breakdown voltage of h-BN is 800 V/mil translating to 31.5 V/ μm. Biasing voltages 

measured at the preamplifier output were set below 31.5 V to prevent breakdown. The voltage 

measured at the preamplifier output is lower than the HVPS bias voltage. The equipment used is 

presented in Table 3-1 and biasing was based on the block diagram in Fig. 3-1. Equipment 

settings are presented in Table 3-6.  

Table 3-6: Equipment settings for the detector fabricated at TTU.  

Amplifier gain Times 1000 

MCA lower level discrimination (LLD) Channel 150 or 1.8% of the total channels 

MCA upper level discrimination (ULD) Channel 8192 

Bias voltage at preamplifier output 30 Volts 

 

The LLD setting was raised until a dead time average of 1.5% was reached. Reactor 

power was set at 100 kW resulting in a thermal neutron flux of 47,478 cm
-2

s
-1

. The capacitance 

of the aluminum box detector assembly was 5 pF, which according to ORTEC is within 

specification for the 142A preamplifier used in the experiment.  The preamplifier can be used for 

detectors with up to 100 pF capacitance. The detector was also tested for biasing conditions by 
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running an IV curve from -30 to 30 volts on the detector which revealed no pn junctions in both 

directions across the device and the detector consisted of simple Ohmic contacts.  
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Chapter 4 - Experimental Outcomes 

Prior to presenting the results from the experiments conducted for this work note should be made 

that none of the samples, including the detector fabricated at TTU showed any neutron 

responsiveness on a MCA pulse height spectrum at the southeast beam or the diffracted beam in 

the case of the sample in Experiment II. Thus the determination of neutron detection efficiency 

was not performed in any of the experiments. However the samples in Experiment I did show 

conductivity and band-gap changes due to irradiation.  

Conductivity changes in the p-BN sample batches 1 and 2 are shown in Figs. 4-1 and 4-2 

respectively. Band-gap measurements obtained by PL analysis at TTU for select samples (7 and 

10) in batch 2 are shown in Fig. 4-3 alongside a PL spectrum of a non-irradiated sample. 

 Conductivity and Band-gap Changes in Experiment I 

 

Figure 4-1: Conductivity changes for pre and post irradiation of the samples in batch 1. 
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Figure 4-2: Conductivity changes for pre and post irradiation of the samples in batch 2. 

 
Figure 4-3: Photoluminescence spectra from two irradiated p-BN samples from batch 2 exposed 

to thermal neutron fluences of 13 13 22.74 10  and 8.27 10  cm  , and a PL spectrum from a non-

irradiated p-BN sample. The discontinuity in the data is a result of using different scales on 

different energy ranges by the TTU staff. 

The photon wavelength of each of the energy peaks in Fig. 4-3 can be determined based 

on the photon energy relation in Eq. 4-1.1 
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where E is the photon’s energy, in eV, h is Planck’s constant and has the value of 

15 14.1356 10  eV.s  , c is the velocity of light which is 17 13 10  nm.s , and λ is the photon’s 

wavelength in nanometers. The major energy peak of the PL spectra for p-BN in Fig. 4-3 is at 

approximately 5.45 eV rendering the wavelength to be  227.6 nm for all samples. For the non-

irradiated p-BN sample, the shoulder following the major peak has a wavelength of 

approximately 223.5 nm and there appear to be, but not definitive, shoulders at wavelengths 

around 215 nm (5.77 eV) and at 212 nm (5.85 eV).  

The pulse height MCA spectra of all the p-BN samples in Experiment I, including the 

highly irradiated and annealed sample, were not consistent for any single sample under the same 

biasing voltage and MCA settings and thus the presentation of any of the spectra would not be an 

accurate description of any of the samples’ performance, for repeatability may not be achieved. 

 Pulse Height MCA spectrum of the Single Crystal Domain  

 
Figure 4-4: MCA pulse height spectra of the single crystal h-BN domain synthesized by the 

Chemical Engineering Team at KSU. The two background spectra and the spectrum pertaining to 

the 250 kW reactor power level only show statistical variations characteristic of noise. 
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 Pulse Height MCA spectrum of the Robin’s Egg Sample 

 
Figure 4-5: The background and the neutron MCA spectra of the Robin’s Egg Sample. 

 Pulse Height MCA spectrum and IV curve of the Detector Fabricated at TTU 

  
Figure 4-6: The background and the neutron MCA spectra of the detector fabricated at TTU. 
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the contacts leading into the device. When the detector was observed on the oscilloscope’s 

screen, noise indicative of arcing was observed and a MCA spectrum was not recorded. The IV 

curve for the detector is shown in Fig. 4-7. 

 

Figure 4-7: The IV curve generated by the detector fabricated at TTU. The IV curve shows that 

the detector is a simple resistor and does not bear any features pertaining to a pn junction. By 

inverting the IV curve placing voltage on the vertical axis and current on the horizontal axis, and 

then calculating the slope, resistance, whose value is 107.834 10    .  
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Chapter 5 - Discussion, Conclusions, and Further Work 

The pyrolytic h-BN samples used in Section 3.2: Experiment I yielded inconsistent pulse 

height spectra and a definite conclusive statement cannot be made concerning the inconsistency. 

A similar experiment conducted with pyrolytic h-BN at an earlier time by (McGregor et al, 2008) 

yielded some MCA response data; however, the samples did get noisier with increasing neutron 

fluence and neutron resulting pulses where not discernible from noise (McGregor et al, 2008). 

Increased noisiness may be due to an increase in conductivity as shown in Figs. 4-1 and 4-2 and 

an increase in disorderliness as will be later discussed in the current chapter. Batch 2 in Section 

3.2 was an effort to observe a smoother transition in conductivity rather than an abrupt increase 

in conductivity as in batch 1. However conductivity also increased abruptly in batch 2, and a safe 

conclusion  can be stated as: conductivity rises abruptly once initiated at a certain neutron 

fluence which appears to be between 10
13

 and 10
14

 neutrons.cm
-2

. 

The interesting part of the results from Section 3.2: Experiment I is the bandgap PL 

analysis. “[h-]BN has a natural tendency toward stacking disorder, such as stacking faults or 

strained lattice layers” (Watanabe et al, 2006). The PL spectra in Fig. 4-3 show the total 

disappearance of the 223.5, 215, and 212 nm peaks in the irradiated samples. According to 

(Watanabe et al, 2006) , where the 215 nm wavelength due to ordered stacking of h-BN layers as 

shown in the of Fig. 1-3. Also according to (Watanabe et al, 2006), the 227 nm is due to 

“deformed” h-BN. However, the PL spectrum of the non-irradiated sample shows levels of the 

215 nm wavelength indicating some amount of ordered h-BN in pyrolytic h-BN. The 223.5 and 

212 nm peaks remain unidentified. 

The sample in Section 3.3: “A Single Crystal Domain” is a single crystal domain which 

according to (Watanabe et al, 2006): “A single crystal has surfaces with predominant cleavage at 

c facets along the layers, and it is easily collapsed by mechanical perturbations that cause the 

layers to glide along the surface” rendering the sample unworkable leading to the unconventional 

manner by which electrical contacts were deposited on the sample. The spectrum of the single 

crystal domain reflecting the 250 kW reactor power level in Fig. 4-4 appears to be slightly higher 

than both background counts—the reactor shutoff and the neutron beam interrupted by a 

cadmium shutter—and may be interpreted as a response to neutrons. However, a closer look at 
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Fig. 4-4 shows the counts in the spectrum pertaining to the 250 kW reactor power level are 

simply slightly elevated counts of the same energies in the same MCA channels pertaining to 

both background counts and does not contain any counts in channels describing energies above 

noise or background energies. Furthermore, the 250 kW spectrum follows the same trend as the 

background spectra and reaches zero count at the same energy/channel as the background 

spectra. Therefore the 250 kW spectrum pertaining to the single crystal domain in Fig. 4-4 is a 

statistical variation of noise. 

As far as the sample evaluated in “Section 3.3: The Robin’s egg”, noisiness and non-

responsiveness may be attributed to multiple factors: first- the unconventional manner by which 

electrical contacts were attached, second- possible poor charge carrier transport in h-BN, third 

whether the microscopic crystals are in contact with the metallic body of the sample or not is 

unclear. Whether any of the three mentioned factors is a predominant contributor to noise and 

non-responsiveness in a MCA pulse height spectrum is unknown. 

Concerning the detector fabricated at TTU using un-doped epitaxial grown h-BN layers 

(Li et al, 2011), the lack of neutron response may be due poor charge carrier transport resulting 

from stacking faults during epitaxial growth as pointed out by (Watanabe et al, 2006): “In 

general, a layered material such as h-BN is subject to stacking faults during epitaxial growth that 

affect its crystallinity.” However, even if epitaxial growth does lead to perfect crystallinity, 

stacking disorders are inevitable once the material is exposed to neutrons as pointed out by the 

PL results in Fig. 4-3, where the 215 nm wavelength count due to ordered plane stacking 

disappears due to increasing disordered layer stacking. Thus the exposure of h-BN to neutron 

fluences on the order of 10
13

 cm
-2

s
-1

 leads to disordered structures along the charged particles’ 

paths in the crystal and is distributed randomly within the crystal’s volume increasing defect 

concentrations and possibly inhibiting charge carrier transport. The distribution of such 

disorderliness throughout the crystal changes the electrical properties at interaction localities 

affecting the overall electrical properties of the crystal as localized disordered regions standing 

as barriers or traps to normal charge carrier transport (Baranovski, 2006), and doped h-BN is not 

immune to the phenomenon. 

The discussion now has to, very briefly, move into the topic of charge transport in 

disordered solids, for any neutron detector dependent on h-BN being the NCM and the 



92 

 

operational semiconductor as the charge carrier transport medium simultaneously, as is the 

proposed detector, is indeed subject to, rather quickly, accumulating disorderliness and 

“localized [disordered] states [which] can either play the role [of] traps terminating charge 

carrier transport via extended states or they can be used by charge carriers in the so called 

‘hopping transport mode’, in which the carriers move via direct tunneling between the localized 

states”(Baranovski, 2006). For further clarification, also from (Baranovski, 2006): “[i]nstead of 

bands and [energy] gaps, one can only distinguish in disordered materials between extended and 

localized states. In the former states, the charge carrier wave function is spread over the whole 

volume of the sample, while in the latter states the wave function of a charge carrier is localized 

in a spatially restricted region, and a charge carrier in such a state cannot spread as a plane wave, 

like in ordered materials.” Tunneling can be described as the wave function for region two in the 

potential barrier example in the subsection titled Quantum Mechanics of this work.  

The most concise conclusion which may be drawn from the conducted experiments and 

the PL analysis, is, whether doped or not an h-BN detector based on deploying h-BN as a NCM 

and a semiconductor simultaneously in order to bypass the charged particle range and neutron 

absorption conflict presents serious challenges: First- h-BN is intrinsically an insulator with a 

band-gap energy of 5.76 eV and whether doping improves h-BN’s charge transport properties is 

unclear. The TTU team claims the achievement of both p-type and n-type doping of h-BN in 

separate h-BN volumes. However, a pn junction has not been achieved at this time. Second- 

stacking disorders during crystal growth on a substrate, whether epitaxial or otherwise seem to 

be unavoidable. Third- based on PL analysis results and (Watanabe et al, 2006), any detector 

based on utilizing h-BN as a semiconductor is subject to lattice stacking disorders upon neutron 

exposure even though the starting material may have perfect crystallinity. Fourth- h-BN grown 

independently from metal solvent solution may produce high quality single crystal domains 

(Kubota et al, 2008) with a high degree of orderliness, however detector fabrication from such 

domains exposes the domains to mechanical perturbations and stresses leading to stacking 

disorders (Watanabe et al, 2006) which would be compounded when the device is exposed to 

neutrons.  

Besides doping research and crystal growth improvement methods on h-BN, research 

must also focus on the mitigation of stacking disorders in g-BN in order to avoid the degradation 
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of possibly existing desirable electrical properties. Special attention must also be paid to the fact 

where neutron absorption in h-BN does induce considerable localized damage drastically 

changing charge carrier transport properties at neutron absorption sites. From another point of 

view, research on heavily disordered h-BN may yield desirable results on the basis where some 

disordered solids, not necessarily h-BN however, do possess charge carrier transport properties 

(Baranovski, 2006), however, whether heavily or slightly disordered h-BN does possess adequate 

charge carrier transport properties can only be answered through further research. 

Finally, considering the possibility of an h-BN semiconductor based detector, optimized 

efficiency requires maximum neutron absorption and a large percentage of energy deposition 

within the h-BN detector’s active volume. The spectrum pertaining to the 7 micron thick h-BN 

layer in Fig. 2-34 generated by the Monte Carlo code shows complete energy continua pertaining 

to the resulting charged particles from the reactions in Eq. 1-1.2 suggesting that 7 microns of h-

BN manufactured with natural boron is sufficient for signal generation above noise levels. 

Furthermore, Fig. 2-37 shows approximately 85% averaged energy deposition in 7 microns of h-

BN while Fig. 2-38 shows less than 5% neutron absorption for 7 microns of h-BN made with 

natural boron. Thus a detector employing 7 microns of h-BN made with natural boron as the 

active volume of the detector may not exceed efficiencies beyond 5%, for the detector cannot 

absorb more than 5% of impinging neutrons.  

An argument of employing enriched h-BN would increase neutron detection efficiency 

by increasing neutron absorption is plausible. Thicknesses of 7 microns and 30 microns of h-BN 

made with 100% 
10

B enriched boron would absorb approximately 25% and 40 % of impinging 

neutrons, respectively. Employing such highly enriched boron to manufacture h-BN dramatically 

decreases the mean free path
17

 of neutrons in the h-BN and most reactions would take place near 

the surface being impinged on increasing escapes and reducing average energy deposition. 

However, considering the opposite directions the resulting particles from the reactions in Eq. 

1-1.2 travel, and considering an absorption taking place at the surface exactly; one of the 

particles will ultimately escape while the other travels into the h-BN medium depositing the 

totality of the energy the particle was born with in the h-BN medium. Under such circumstances, 

                                                 

17
 The mean free path is the average path length travelled by a particle in a medium prior to an interaction event taking place. 
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the counts under the continua will increase at a higher rate than counts under the total energy 

peaks as the enrichment fraction increases. Future analysis using the Monte Carlo code written 

for the project should reveal design parameters necessary for absorption and energy deposition 

optimization in a simultaneous fashion.      
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