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I Introduction

Often it is desiraple to estimate the average life of a product on
the basis of a random sample. For example, the average life of a production
lot of dry cell battries may be estimated by taking a random sample of
si;e N from the lot, putting a "load" across each one, and keeping track
of the amount of time required for the output of each dry cell to fall
below a specified limit. This is a tvpical life testing situation.
However, the amount of time required for the last battery to go bad may
be quite long, especially if N is large. In order to reduce the time
required to finish the test, one may stop the test when the Kth battery
goes bad, where K is an integer less than N, HNotice that the observations
become available in an ordered manner,i.e., the smallest value (lifetime)
first, the second smallest next, and so on, up to the largest value last.
Thus, if the test is terminated when the Kth failure occurs, the data
consist of the first K order statistics from a random sample of size N.

Davis (1952) has analyzed data from life tests on different products.
Although many products have lives that are exponentially distributed, a
few products have lives that are normally distributed. In particular,
the "lifetimes in minutes of 100 flashlight cells" were normally distri-
buted with a mean of 746 and a standard deviation of 40. Also, the
"lifetimes in hours of 417 forty watt 110-volt internally frosted incan-
descent lamps" were approximately normally distributed with a mean of
about 1070 and a standard deviation of about 200. Finally, the number
of miles to the first major breakdown of 191 bus motors were normally
distributed with a mean of 97,000 miles and a standard deviation of about
30,000 miles. In this report, we will be concerned only with the case
where the lifetimes are normally distributed. For treatment of the ex-

ponential case, the reader is referred to a series of articles by B.
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Epstein (1960 a,b). The statistical problem, then, is to estimate the mean aad

Vthe variance of a normal distribution based on the first K order statistics from
a random sample of size N. The sample is said to be censored on the rightc; the
largest (N-K) observations are the censored observations. The sample is of size
N, and K/N is the proportion of uncensored observations. It will be assumed

the sample is taken from an infinite population.

Several estimators have been derived to solve this problem. The most im-
portant estimators are the maximum likelihood estimators and the best linear
unbiased estimators. First, I will derive the maximum likelihood estimators and
then-the best linear unbiased estimators, in both cases following the work of

Gupta (1952) closely.



II Maximum Likelihood Estimators

Let Xl, Xz,

sample of size N. The joint density of these order statistics is:

§ ke XK be the first K order statistics from a random

K
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For the normal distribution, the likelihood function is:
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The natural logarithm of the likelihood function is:
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Then we can write (2.2) as
K

1n L(u,dzlxl, ...,XK) =¢=Klnog - (1/202) Z (xi—u)2 + (N-K) 1n @(n)
i=1

(2.3)
The next step is to take the derivative of the logarithm of the likelihood

function with respect to u.
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The next step is to find the derivative of the likelihood function with
respect to o.
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Therefore:
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3.

+ (N-K) A(n/a).
ag i=1

(2.10)

Next we set equations (2.7) and (2.10) both equal to zero, then solve the

first for A, and substitute this wvalue for A into (2.10). We obtain:

T “ o
A= [:E .E (xi-u)] K (2.11)
g i=1
K . _a) r K
(- R/G) + [ Y (x-m? s 3J - /5% ] x-w) = 0. (2.12)
i=1 * i=1

Now we multiply equation (2.12) by 83 and expand the second term by adding

K
and subtracting x inside the square, where x = } xi/K. We obtain
i=1
2 X 9% . B oo e om E ,
- Ko® + } (x;=%)" + } - -no ] (x,-p) = 0. (2.13)
: . : i
i=1 i=1 i=1

Now divide equation (2.13) by K, and substitute (xK-ﬁ)fa for n and we obtain

~2

-0 + 52 4 (:_:—ﬁ)2 - (xK“ﬁ)(§—;) =0 (2.14)
K
where * = ) (x.—i)Z/K.
i=1 "
Rewrite equation (2.14) as:
G-? - ) G-i) = 6%-6” (2.15)

By expanding the square of the first term, multiplying the factors of the
second term, and combining terms, we obtain:
- —a - - ~2 2
X=X - XK + uxK =g -8
which can be rewritten as:

2

MOgR) - (%) = i 5 (2.16)

Now letting d = (xK-E), equation (2.16) can be rewritten as
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The maximum likelihood equations contain only the two unknown parameters,
the known constants N, K, and the observations. However, algebra will not
solve the two equationé in two unknowns because they contain the function A.
Hence a table will be needed to solve the maximum likelihood equations. The
purpose of rewriting the maximum likelihood equations is to obtain a con-
venient form for the table. Cohen (1961) has called the quanity that is
looked up in the table an auxiliary estimating function. Gupta (1952) and
Cohen (1961) use different auxiliary estimating functions. The estimates
obtained will be the same except for rounding error.

Set equation (2.7) equal to zero.

~2 K - .
(1/6%) izl (x;~1) + (%K) A/o = 0 (2.18)

Multiply equation (2.18) by (GZIK) and we obtain:
(x=1) + Eig AG = 0 (2.19)

The first term of equation (2.19) can be rewritten:
G-i) = Gex) + (=) = -d + oh
Therefore equation (2.19) becomes

o[h + (N-K) A/K] = d (2.20)

Let z =10 + (N-K) A/K and equation (2.20) becomes:

~

gz=d or o= d/é (2.21)
Equation (2.21) is used to obtain the maximum likelihood estimate of o.
Also, z is the auxiliary estimating function. It is necessary to obtain
expressions for determining the value of z. Let us first write equation
(2.14) as

5P il m® & ey (G-3) (=) = 0. - (2.22)



By expanding the square in the third term and using the definitions of 4
and fi, we obtain:

2 2 2 2a

52 + 2 + a2 + 6%32 + 2(-a) &h - G- (x-0) = 0. (2.23)

The last term can be rewritten:
(x - % +x - ﬁ)(xK-ﬁ)

(-d + on) (o)

Gm) (=)

Then multiplying equation (2.23) by minus one and collecting terms, we ob-
tain:
5% - (s%+a®) + fi6a = o. (2.24)

~

Now we substitute o = d/z into equation (2.24) and obtain:

a2122 + 7d%/z - (2% = 0. (2.25)
2 .2
d  + gd z _ S2 i d2
Z
1+ hz _ so+d’
7 Z
2 d

Now subtracting one from each side:

1+ 7z - 22 _ 52

22 d2

22 d2

+1===+1
1+ fiz + 32 32

2> 4 1+ Nz + 22) _d+s

2 2
z s

- 2
-]ill_{z_-—'ﬁzz— =Yy where ¥ = 25
5 +d

3 (2.26)

Note the ¥ can be calculated from the data. Gupta (1952) has provided a
table (table 1, p. 262) for looking up the value of z from ¥ {row headings)
and p (column headings), where p is the proportioﬁ of uncensored obser-

vations.
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Once z is determined, the maximum likelihood estimate of ¢ is obtained

from equation (2.21). The maximum likelihood estimate of y is obtained by
substituting the estimate of 02 into equation (2.17).

Gupta also derived the asymptotic variances and covariance of the
ma#imum likelihood estimators of the mean and standard deviation. He gives
these as coefficients of the variance divided by N, the sample size. The
coefficients are presented in table 2 (Gupta, 1952,p.263) indexed by p, the
proportion of uncensored observations in the sample. In a given problem,
multiply the table entry by-the estimate of the variance divided by N to
obtain an estimate of the asymptotic variance or covariance. One may use
the asymptotic variances of the maximum likelihood estimators to calculate
large sample confidence intervals for the parameters, based on Halperin's
(1952) results and generalizations: the maximum 1ikelihood estimators from
a censored sample are asymptotically normally distributed. Cohen (1961)
also gives in table 3, p.539, the coefficients for the asymptotic variances
and covariance, and includes the correlation coefficient already calculated
for the reader.

Worked Example: Suppose the City Transit Co. purchased 50 new buses
with improved motors. It is desired to estimate the average number of
miles to the first major motor breakdown of these buses after the first
25 buses have had their first major motor breakdown. The data for the

first 25 are (assume the remaining 25 buses have milages greater than

101770):

42850 55039 63040 82540 93850
43390 55720 66700 83830 96850
51970 56620 71410 87730 98230
54400 56980 76300 88390 98800

55030 61420 81610 92470 101770



We have N =50, K=25, p=K/N= .50, x= 72677.2,

2

s~ = 343038836.2, s = 18521.30763;

[

¥ = s2/(s? + d%) = 0.2884061105; d = x,~X = 29092.8; a? = 846391011.8;

z is found by linear interpolation in the table provided by Guptz (1952,
table 1,p.262). The value of z is .8563896094, and the estimates of the
parameters are:

d/z = 33971.45374, 6% = 1154059669, 1 = % + (92-s2)/d = 100554.2291.

o
Using Gupta's table 2 (1952, p.263) to find therasymptotic variances and
standard errors of the estimates of the mean and standard deviation, we

have:

82/N = 23081193.39; estimated variance of n = 35016247.68; estimated
standard error of ﬁ‘= 5917.452803; estimated variance of

o = 28654147.53; estimated standard error of 6 = 5352.956896.

Using the standard errors and the asymptotic distribution of the estimators,
ﬁe can find confidence intervals for the mean and standard deviation. The

95% confidence interval for the mean is

~

W= 2Z 976 SE(n),

SE(u) <u<u+ Z 975

or (88956.02, 112152.43), where 2 975 = 1.96.

The 95% confidence interval for the standard deviation is

o - 2.975 SE(o) <o <o + 2'975 SE(a),

or (23479.66, 44463.25).
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ITI. Best Linear Unbiased Estimators

Let X' = (X .,XK) be the first K order statistics from a random

12 &y
sample of size N from a distribution which depends only on a locatiecn
parameter,u, and a scale parameter,o. Let ui be the expected value of

the ith order statistic from a random sample of size N from the standardized

distribution. Then
E(Xi) = u Hou, (3.1)

Let V be the covariance matrix of the first K order statistics from a random
sample of size N from the standardized distribution. Then o2V is the

is the covariance matrix for X. We have:

Fi My
1 ] EZ

L
E(X) = B8 where §_=[_c ] and B =|» - (3.2)

LI

1 uKJ

The best linear unbiased estimato; of @ is the value, say 8%, that minimizes

Q= (X-B8)' vl (X-B8) {3..3)

We will find the minimum by taking the derivative of (3.3) with respect to

9 and setting it equal to zero,

an  an 3 (X-B8)
30 3(x-BO) 38

= zv'l(g_—Bg) (-B) = 2(-B)'V'1(_}g-3_e_)

1 1

= -2B'V "X + 2B'V 'B@ (3.4)
Setting (3.4) equal to zero, we obtain:
-2B'v"Ix + 2B'v"132* =0
&% = (B‘V"IB)'lB'V'lg{_ (3.5)

Also, the covariance of the estimators of y and g is:
cov(g®) = o2(p'v lp)7! (3.6)
The best linear unbiased estimators, u* and o*, are just linear com-—

binations of the observations:

K
e = z B X and a% = § y X
i=1 * i 121 i1
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The coefficients, Bi and Yy have been calculated and tabled. At the time
Gupta (1952) computed the coefficients, the variances and covariance of
the order statistics from the standard normal distribution were available
only for samples of size ten or less. Later tables, which also had zcre
significant digits, gave the variances and covariances for samples of size
twenty or less. For the coefficients of the best linear unbiased estimators
computed from these later tables, see Sarhan and Greenberg (1956,1958a,1958b,
1962).

Worked Example: Suppose eight light bulbs are put on test and the first
six lives (Xi) are as given below, along with the coefficients, Bi and Yy
for calculating the best linear unbiased estimates of u and og. The coefficients
are taken from tables 3 and 4 in Gupta (1952), pp.267-268.

Xy By ByXy Yy Y&y
832.0 .05692 47.357 -.36376 -302.65
877.4 .09621 84,415 -.17876 -156.84
943.8 .11532 108.839 -.08808 - 83.13

1102.2 .13090 144,278 -.01320 - 14.55
1152. 4 14512 167,236 .05698 65.66
1219.6 . 45552 555,552 .58682 715.69

——

1107.677 224,18
We have u*= 1107.677, o*= 224.18, and g2%= 50256.67, Using coefficients
(.13988 and ,11707) given by Gupta (1952) in his tables 5 and 6, p,269,

we obtain the estimated variances of u* and g%t

var(u*)= ¢2%(.13988)= 7029,90

var(o*)= g2*(,11707)= 5883,55
The coefficients used here (.13988 and .11707) apply only to the case N=8,
K=6. Gupta (1952) does not give the coefficient of o2* for estimating the
covariance of u* and o*, but Sarhan and Greenberg (1956,1962) do. The

estimated covariance of u* and g% is
cov(u*,0%)= g2*(,0250)= 1256,42

Because Gupta could only compute the coefficients for the best linear
unbiased estimators for samples of size ten or less, and because he thought
that censored samples of sizes slightly larger than ten would be not suffici=-
ently large for the asymptotic properties of the maximum likelihood estima-

tors to hold reasonable well, he proposed alternative lincar estimators.
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The alternative linear estimators are found by assuming the covariance
matrix of the order statistics is the identity matrix, that is, V=I. Gupta
(1952) gives formulae (equations 33,34,35, p.269) for computing the cceffici-
ents for the alternative linear estimators directly from the expectsd walues
of the order statistics, At that time the expected values of the order
statistics from the standard normal distribution were available for samples
of size fifty or less.

It may be that the alternative linear estimators are no longer needed,
due to the extension of the coefficients for the best linear unbiased
estimators for samples up to size twenty. Also, a Monte Carlo simulation
study of the maximum Iikelihood estimators shows that the maximm likelihood
estimators are quite pgood, even for sample sizes as small as ten (Harter and

Moore, 1966).
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IV. Monte Caro Simulation of the Maximum Likelihood Estimators

Harter and Moore (1966) did a computer simulation study of the maximum
likelihood estimators of i and o based on censored samples. They obtained
the means, variances, covariance, and mean square errors of the estimates
of u and ¢ in 1000 samples of sizes ten and twenty from the standard normal
distribution. The 1000 samples of each size were subjected to varying
degrees of censoring. Hence the estimates of ¢ and ¢ for different degrees
of censoring. are not independent, as they are based on the same 1000 samples.
The proportion of censored observations in the samples of size ten went
from 0 to .8 by increments of .1, and for samples of size twenty, the propor-
tion of censored observations ranged from 0 to .9, again by increments of
one-tenth. My major criticism of their work was their failure to construct a
histogram of the 1000 estimates of p and ¢ for any combination of sample
size and percent censoring. Hence the sampling distribution of the maximum
likelihood estimators remains unknown for small samples, and the problem
of setting confidence intervals on u and ¢ has no adequate solutionm.

Parts of their tables 2 and 3 (p. 210) are reproduced in table 1. We
may conclude that the maximum likelihood estimators of p and ¢ are negatively
biased in a life testing situation, where the largest (N-K) observations are
censored. The bias of thé estimator of o is approximately equal to -1/K,
that is, the average of the estimates of o is about 1-(1/K) or (K-1)}/K of the
true value of o.

Harter and Moore (1966) also compare the exact variance of the best linear
unbiased estimators of 1 and o with their empirical estimates of the mean
squared errors of the maximum likelihood estimators of u and o. This com-
parison is the correct one to make because the maximum likelihood estimators
are biased while the best linear unbiased estimators are unbiased. Even for

a sample of size ten, the maximum likelihood estimators are more precise than
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the best linear unbiased estimators, that is, they have smaller mean squared

errors. Parts of their tables 4 and 5 (p. 211) are reproduced in table 2.
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V. Censorship and Truncation

Up to now we have discussed only the case where N items are placed on
test and we wait until the Kth item fails, where K is a preassigned number.
This is referred to as index termination (K is the index) or type II censoring.
Also possible is termination of the test at a predetermined time, say x0=1000
hours. This is called time termination or type I censoring. Note that in
type I censoring, K is a random variable. Cohen (1961) gives formulae
for the maximum likelihood estimators of u and ¢ for both type I and type II
censoring. There are other generalizations of censored samples. A discussion
of them follows.

A sample censored such that the largest values are not available (as
in life testing situations) is said to be censored on the right. A sample
censored such that the smallest observations are not available is said
to be censored on the left. A sample censored such that some observations
at both ends are not available is said to be doubly censored, as opposed to
singly censored. The work of Sarhan and Greemberg (1956, 1958z, 1958b,

1962) on the best linear unbiased estimators takes into consideration all
possible cases of single or double censcring at the extremes for samples
of size twenty or less. (It does not cover censoring of the middle values
of a sample.) Cohen's work (1961) covers single censoring on either the
right or the left, but not double censoring.

It is also desirable to distinguish between censored samples and
truncated samples. In censored samples, the values of some observations
are unknown, but the observations are known to exist, and in fact are counted.
In a truncated sample, no observations exist beyond (either to the right
or to the left) some point, X The values of all observations are known.

It may be that no observations beyond X, occur due to the limitation of some
measuring device. In this case it should be cleaf that the sample is

truncated, but the population itself extends beyond X, The other possibility



16
is that the population is truncated, i.e., no values beyond X, occur in the

population. Cohen (1961) gives the maximum likelihood estimators of u and o
based on truncated samples from a normal population.

The above generalizations are obviously valuable extensions of the
problem of estimating the parameters of the normal distribution on the
basis of the first K order statistics from a sample of size N. Many of these
generalizations are not particularly relevant to life testing situations.
Type I censoring clearly is, and a worked example will be given later. A
truncated population model may be relevant to life testing because obviously
no values below zero can occur. Therefore I will briefly cover the case of
truncated populations.

Cohen (1961) says that the method of estimation is the same for truncated
populations as for truncated samples. This may be, but only if you realize
that you are estimating the mean and standard deviation of the (imaginary)
non-truncated population, not of the actual population which has no elements
beyond the truncation point. Consider a population that is distributed
normally, with mean 1, and standard deviation 1, then truncated at zero (so
all elements of the population below zero are lost).

First of all, note that the mean of the populaticn is no longer 1, but
some value greater than 1. Also note that the new (truncated) population is

skewed to the right. The p.d.f. of the new population is:

_ 1.18863664 .
) =5 % expl=s(x-1)") . 50

=0 for x < 0
In some sense L = 1 and o2 = 1 may be considered the parameters of this
distribution, but they are not the mean and variance. In general the p.d.f.

of a truncated normal population in a life testing situation is:

f(x) {C/(Zﬂ)%d} exp {(—1/202)(x—u)21 for x 2 0

=0 for x < 0
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We are assuming Xo = (0 is the trucation point; the value of ¢ depends on the

amount of area that is truncated below zero, i.e., on the values of p and o.
Worked example: The following 20 observations are a random sample from a

population'that is believed to be approximately normal, except that a sizeable

portion of the population is truncated below zero.

1.01 4.46 4,87 5.12 5.28 6.43 6.46 7.39 7.70 8.50

11.37 12.25 12.80 13.58 15.35 15.98 17.56 21.80 26.78  28.27

Using Cohen's (1961) formulae (4) and (1), page 536:

52 = 53.648276 x =0

Il
—
=t
L=}
-
[0.]

X
il =% -8(%x-x) = 8.653

62 = 8249(%-x,)2 = 88.53 G = 9.409
¥y = 82/(x-x )? = _3954 8 = .25712 (interpolated from Cohen's (1961)

table 1, p. 537)

If we had a truncated sample, we could obtain the asymptotic variances and
covariance of the estimators by using Cohen's (1961) table 3, page 539.
However, we have a truncated population, and Cohen's table 3 does not apply.

Worked Example: Time termination or type I censoring. Suppose fifty
buses with new improved motors are purchased by City Transit Co. We wish to
estimate the average number of miles until the first major motor breakdown of
these "new improved" buses. It is convenient to terminate the test when each

bus has gone 100,000 miles. We have N=50 xo=100,000. The data are:

42880 66820 75640 85150 93310

46210 67450 77470 85360 95260
52870 67600 77860 86380 98590
56380 73420 77890 88510 99190
58570 73450 81520 91180
61120 74050 82090 91330

X = 75983.92857 S2 = 227535523.9

io= z-i(i-xo) = 94994 ,552

52 = s2+i(ﬁ-xo)2 = 684096014.1
(R-x) = -24016.07143

(i—xo)z = 576771686.9
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N
X = £(h,¥) = .7915792341 (interpolated from table 2, p. 538, Cohen, 19581)

y = Szf(i-xo)z = .3944984282 h b

To find the asymptotic wvariance and covariance, we need to find E =

(x -f) ~2
-g— = ,1913746564. The coefficients of-% to obtain the estimated asymptotic

variances are found by interpolation to Cohen's (1961) table 3, p. 539, using

n =—€. They are (to seven digits):

”11 = 1,319517 Uiy = .3945325 Moy = 1.045810
" 52

var(y) = ﬁéull = 18053526
2y -

var(o) N Yoo 14322370

A

/"-..An__ci =
covar(u,a) = N “12 5397962.

Note that we calculated 32, but then the estimated variance of G.

~

o= Vo2 = 26155.22919, The estimated correlation of fi and &, calculated from
figures above, is p(§H,8) = .3358; from interpolation of Cohen's (1961) table 3,

p. 539, p({i,8) = .3479. The estimated standard errors of {i and § are:

S.E.(0) = 4.249 x 10°  S$.E.(8) = 3.784 x 107

Using the normal distribution and Z = 1.96, large-sample 95% confidence inter-

vals are:

8.667 x 10% < 1 < 1.033 x 10°

1.874 x 10° < o < 3.357 x 10°
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VI. Cost, Time Savings, and Efficiency

For the exponential distribution, the cost of a life test based on K
out of N items includes the cost of the K items; the {(N-K) items that domn't
fail are as good as new {(the '"memoryless'" property of the expdnential distribu-
tioﬁ). For the normal distribution, the cost of a 1life test based on K out of
N items includes the cost of all N items minus the salvage value of the (N-K)
partially used items.

Another application where K out of N items may be used is destructive
quality control tests., It may be possible to put N items in a testing device
and gradually increase the stress. As the items fail one by one, the failure
peint for each one is recorded and the test is stopped when the Kth item
fails. In this case the items which have not failed may be as good as new.

Of course, the guestion arises, is there any advantage to testing K out of N
items instead of just testing K items until they fail? To answer this question,
let us compare the mean squared errors of the maximum likelihood estimators

of u and o based upon a complete sample of size K with the mean squared

errors of the maximum likelihood estimators of u and ¢ based upon a censored
sample of size N, where N is greater than K. The maximum likelihood estimator
of y based upon a complete sample of size K is X, which is unbiased and has
variance (and mean squared error) equal to 1/K for the standard normal distri-
bution. The mean squared error of the maximum likelihood estimator of w from
a censored samples of sizes ten and twenty are available from the Monte Carlo
study of Harter and Moore (1966). The variances of X and the empirically
obtained values of the mean squares errors of ﬁ from the censored samples are
presented in table 3. For larger values of N, one could use the asymptotic
variance to estimate the mean squared error of j based upon a censored sample.
An example using N=100 is given in table 3. The coefficient %1 is taken

from Gupta's table 2 (1952, p. 263), where p-K/N. See table 2 in this report

for a comparison of the mean squared error ard the asymptotic wvariance of the
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estimators of the mean and standard deviation based upon censored samples of
sizes ten and twenty.

The maximum likelihood estimator of the standard deviation is biased for
both complete and censored samples. Hence I use asymptotic results to compare
the estimator based on a complete sample of size K with the estimator based
upon K uncensored observations from a sample of size N, The results are given
in table 4. Harter and Moore (1966) give the coefficient of g2/N for the
asymptotic variance of § for complete samples as well as censored samples.

The value is 0.500000 for complete samples. The values of the coefficient
(622) for censored samples are taken from Gupta's table 2 (1952, p. 263).

On the basis of the examples in table 3, we may conclude that it may
be beneficial to use a censored sample (K out of N) in a destructive quality
control test when estimating the mean. Unless the amount of censoring is
extreme (70 percent or more), the censored sample will provide a better
estimator of the mean than a full sample of size X. Also, based upon the
results presented in table 4, it seems that it is never beneficial to use the
censored sample when estimating the standard deviation.

In planning a 1life test, the decision between a censored sample and a
complete sample must include the expected length of the test, as well as the
cost of the articles and the efficienty of the estimators.

For the exponential case, Epstein (1960a) gives a table showing the
ratio of the expected waiting time for a life test based on K out of N to
the expected waiting time for a life test based on K out of K. For the normal
case, such ratios depend upon the parameters of the distribution as well as
K and N. For a normal distribution to be a reasonable approximation to the
distribution of lifetimes of a product, the mean must be about three standard
deviations above zero. In order to compare norma% distribution results with
the exponential case, I decided to compute the ratio of expected waiting times,

assuming the mean is three times the standard deviation. The use of the mean
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equal to three standard deviations produces ratios that are small compared to

using a mean larger than three standard deviations. To show this let u=co

and consider the ratio as a function of c.

+
E(XKLN) R % N ¢t g N

B +
Eg ) vtogy co + oMy x ¢tk

where P is the expected value of the ith order statistic in a sample of
: 3
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gize j from the standard normal distribution.

Note that 2 0 and < U
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The derivative, f'(c), is greater than zero for all values of c. Hence f(c)

is an increasing function of ¢ and the minimum value of f£(c) in the interval
(3,») is at c=3. Therefore these ratios represent the best (smallest) savings
ratios possible for the normal case. The results are presented in table 5.

The table entries are E(XK,N)/E(XK,K)' Epstein's figures for the exponential
case are given in parentheses. As these ratios are based on the assumption

that the mean is three times the standard deviation, it may be more convenient
to have a table showing the amount of time saved, which depends only on the
standard deviation and not the relative sizes of the mean and standard deviation.

The expected value of the time saved is E(XK K)-E(XK N }. Hence
'y 3

y=oluy kYK, N
the expected time savings can be expressed in standard deviations. The figures
are presented in table 6.

Another way of looking at the waiting time problem is to see what
combinations of K and N give the same expected waiting time as N' out of N'
(N' is less than K). Table 7 contains the expected values of the order
statistiecs from the standard normal distribution for selected values of K and
N. GSome remarkable comparisons can be found in this table. For example, the

value of N=100 and K=90 is 1.250 while the value for N=K=6 is 1.267. This

means that the expected waiting time for a life test based on 90 out of 100
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items will be less than the expected waiting time for a life test based on

6 out of 6 items.

Also, the phenomenon of diminishing returns can be found from table 7
by finding the reduction in waiting time for each observation censored. For
example, for N=10, censoring the largest observation (so that K=9) results
in a reduction in expected waiting time of 1.539-1.001=0.538 standard deviations;
but censoring the 9th observation, (so that K=8) produces an additional
reduction in expected waiting time of only 1.001-0.656=0.345 standard
deviations. Likewise, for N=100, censoring the largest 10 percent of the
observations results in a time savings of 1.258 standard deviations, but an
additional censoring of 10 more observations produces a further time savings
of only 0.428 standard deviations. The diminishing returns for additional
censoring continues to hold until the sample median is censored, then each
additional observation censored will produce a larger time saving than the

observation previously censored, i.e., we get increasing returns.



VII. Conclusions

Both maximum likelihood and best linear unbiased estimators have been
derived to solve the problem of estimating the parameters of the pormal
distribution from a censored sample. When the censoring is on the right, as
in life tests, the maximum likelihood estimators are negatively biased, i.e.,
they underestimate the parameters. However, they are asymptotically unbiased
and their asymptotic distribution is normal. Therefore, for large samples,
the maximum likelihood estimators can be used to set confidence intervals on
the parameters. To obtain unbiased estimators when the sample size is small,
best linear unbiased estimators have been derived. The coefficients of the
observations for the best linear unbiased estimators are available for samples
of size twenty or less. The small sample distributions of both the maximum
likelihood and best linear unbiased estimators are unknown, and therefore
there is no method for obtaining confidence intervals on the parameters for
small samples. A computer simulation study of the maximum likelihood estimators
indicates that the maximum likelihood estimators are superior to the best
linear unbiased estimators for samples of size ten or more. The efficiencies
of the maximum likelihood estimator and the best linear unbiased estimator
of the mean based on a censored sample relative to a complete sample remain
high as long as the central values are not censored. The efficiency in
estimating the standard deviation from a censored sample relative to a complete
sample is not very high when the censoring is at the extremes. In fact,
using asymptotic theory for the maximum likelihood estimator, it was found
to be better to use a complete sample of size K, rather than the first K
observations from a larger sample. The time savings from censoring the
largest values in a life test were found to show the concept of diminishing
returns. That is, each additional observation ceqsored produces less time
savings than the previous censored observaticn. This helds true only for

censoring the largest half of the sample.



TABLE 1

Monte Carlo Simulation of Maximum Likelihood (ML) Estimators

N K E(D) E(5) V(i) Cov(i,8) v(5)
10 10 -0.00 0.93 0.100 0.000 0.049
10 9 -.01 .92 .101 .003 .057
10 8 -.02 .90 .104 .009 .067
10 7 -.04 .88 114 .019 .078
10 6 -.07 .85 .125 .028 .084
10 5 -.11 .81 .146 047 .101
10 4 -.19 .76 .184 .075 123
10 3 -.31 .67 .265 .130 .160
10 2 -.57 .51 L412 .210 . 204
20 20 0.01 0.97 0.048 0.000 0.023
20 18 .01 .96 .048 .002 .027
20 16 -.00 .95 .050 .005 .032
20 14 -.01 .94 .054 .010 .038
20 12 -.03 .93 061 .017 .045
20 10 -.04 .91 .073 .029 . 057
20 8 -.07 .89 .095 .048 .075
20 6 -.13 .85 142 .083 .100
20 4 -.27 .76 .257 .151 141
20 2 -.73 <h2 .563 .289 .202

E(1) - average value

of ML estimates of u

E(o) - average value of ML estimates of ¢

V(u) - variance of ML estimates of u in 1000 samples
Cov(ﬁ,e) — covariance of ML estimates of u and o in 1000 samples

V(0) - variance of ML estimates of o in 1000 samples

in 1000 samples

in 1000 samples
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TABLE 2

Comparison of Maximum Likelihood (ML)
and Best Linear Unbiased (BLU) Estimators

N K v(u™) MSE (1) AV(i1) v(a") MSE (&) AV(3)
10 10 0.100 0.100 0.100 0.058 0.053 0.050
10 9 .102 .101 .102 .068 .064 .059
10 8 .107 .105 .106 .081 .076 .069
10 7 117 115 J114 .099 .092 .082
10 6 134 .130 127 12k .106 .099
10 5 .166 .159 .152 .161 .136 124
10 4 237 . 959 .199 285 184 ~LEL
10 3 417 .359 .302 .354 .269 . 225
10 2 1,187 w133 .578 . 749 AN .354
20 20 0.050 0.048 0.050 0.027 0.024 0.025
20 18 .051 .048 .051 .032 .029 .029
20 16 .053 .050 .053 .037 034 .034
20 14 .058 .054 .057 .045 .042 .041
20 12 .065 .061 .064 .055 .050 .050
20 10 .079 .075 .076 .070 .065 .062
20 8 .108 .100 .099 .094 .087 .081
20 6 175 .158 «151 .139 122 w122
20 4 .383 .331 .289 244 .198 177
20 2 1.871 1.089 .890 .786 430 .376

V(u*) - exact variance of BLU estimator of u

MSE({i) - mean squared error of ML estimator of p in 1000 samples
AV({l) - asymptotic variance of ML estimator of u

V(G*) - exact variance of BLU estimator of o

MSE(6) - mean squared error of ML estimator of ¢ in 1000 samples

AV(G) - asymptotic variance of ML estimator of o



TABLE 3

Precision of the Maximum Likelihood Estimators
of ¢ from Complete and Censored Samples

N=K  Nelo el L

Var(X)=1/K K MSE(f) var(X)=1/K K MSE ()
.500 2 .733 .500 2 1.089
.333 3 .359 .250 4 .331
.250 4 .220 .167 6 .158
. 200 5 .159 .125 8 .100
167 6 .130 .100 10 .075
.143 7 115 .083 12 .061
.125 8 .105 .071 14 .054
JLL 9 .101 .062 16 .050
.100 10 .100 .056 18 .048
.050 20 .048

N=K N=100
Var(X)=1/K K asymptotic var(fi)=011/100

.100 10 .1779

.050 20 .0578

.033 30 .0302

.025 40 .0199

.020 50 .0152

0167 | 60 .0127

.0143 70 .0114

.0125 | 80 .0106

0111 | 90 .0102




TABLE 4

Precision of Maximum Likelihood Estimators of o from
Complete and Censored Samples

N=K k=100
1/2K K 022/100
.05 10 .0751
.025 20 .0354
0167 30 .0225
.0125 40 .0162
.0100 50 .0124
.0083 60 .0099
.0071 70 .0082
.00625 80 .0069
.005556 90 .00586
.0050505 99 .0050843

1/2K=asymptotic variance of G based upon a
complete sample of size K from the standard

normal distribution

022/100=asymptotic variance of G based upon
‘the first K observations of an ordered sample
of size N=100 from the standard normal dis-

tribution.
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TABLE 6

Savings in Time for Life Tests Based on K out of N
instead of K out of K Observations

K L 2 3 4 5 10 15 20
4 .56 .85 1,03 1.16 1.54 1.74 1.87
2 0 .56 .86 1.06 1:57 1.81 1.97
3 0 .55 .85 1.50 1.79 1.98
b 0 .53 1.41 1.74 1.95
5 0 1.29 1.68 1.91
10 0 1.20 1.60




Expected Values of Standard Normal Order Statistics

TABLE 7

for Selected Values of K and N

N K= K=.9N K=.8N K=.7N K=.6N
1 0

2 .564

3 .846

4 1.029

5 1.163

6 1.267

7 1.352

8 1.424

9 1.485

10 1.539 1.001 0.656 0.356 .123
20 1.867 1.131 745 448 .187
30 2,043 1.179 777 473 .209
40 2.161 1.203 .793 .486 .220
50 2.249 1.218 .802 494 297
60 2.319 1.229 .809 .499 .231
70 2.377 1.236 .813 .502 .234
80 2.427 1.242 .817 .505 .237
90 2.470 1.246 .820 .507 .238
100 2.508 1.250 .822 .5309 .240
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ABSTRACT

In life testing, the problem of estimating the parameters of a distribution
from the first K order statistics of a random sample of size N often arises.
The case of a normally distributed population is considered, and both
maximom likelihood estimators and best linear unbiased estimators are derived.
A simulation comparison of the maximum likelihood and best linear unbiased
estimators indicates that the maximum likelihood estimators are superior for
at least all sample sizes of ten or more. A distinction between censorship and
truncation is made, as well as between type I and type II censoring. There
is also a discussion of cost, time savings, and efficiency of the estimators
based on censored and complete samples. Worked examples are given for maximum
likelihood estimation from both type I and type II censored samples, a sample
from a truncated population, and for best linear unbiased estimation from a

type II censored sample.



