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Abstract

Integer programming (IP) has been and continues to be widely used by industries to

minimize cost and effectively manage resources. Faster computers and innovative IP tech-

niques have enabled the solution to many large-scale IPs. However, IPs are NP-hard and

many IPs require exponential time to solve.

Lifting is one of the most widely used techniques that helps to reduce computational

time and is widely applied in today’s commercial IP software. Lifting was first introduced

by Gomory for bounded integer programs and a theoretical and computationally intractible

technique to simultaneously lift sets of variables was introduced by Zemel in 1978.

This thesis presents a new algorithm called the Maximal Simultaneous Lifting Algorithm

(MSLA), to simultaneously uplift sets of binary integer variables into a cover inequality.

These lifted inequalities result in strong inequalities that are facet defining under fairly

moderate assumptions.

A computational study shows that this algorithm can find numerous strong inequalities

for random Knapsack (KP) instances. The pre-processing time observed for these instances

is less than 1
50

th
of a second, which is negligible. These simultaneously lifted inequalities

are easy to find and incorporating these cuts to KP instances reduced the solution time by

an average of 41%. Therefore, implementing MSLA should be highly beneficial for large

real-world problems.
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Chapter 1

Introduction

Integer programming (IP) has been and continues to be used by industries to minimize cost

and effectively manage resources. Faster computers and innovative integer programming

techniques has enabled the solution to many large-scale integer programs. As a result,

integer programs are being used more and more to obtain quality solutions to practical

problems.

For instance, $100 million per year is saved by Delta Airlines by using an integer pro-

gramming model for their fleet assignments. This IP provides assignments to over 450

airplanes and more than 2500 domestic flights every day. Similarly, American Airlines have

an annual savings of over $20 million by using an integer program to solve a crew scheduling

problem on a monthly basis.

Integer programs are typically used in business and economic situations, but they have

also been applied to varieties of other problems. Some industries that frequently use integer

programming models include: transportation [16, 17, 69, 74], energy [60, 63, 73], telecom-

munications [16, 50], and manufacturing [1, 28, 46].

This thesis focuses on a classical IP, called the Knapsack Problem (KP). The name

knapsack draws an analogy with the problem faced by a camper who needs to fill her

knapsack with objects while being restricted by the overall weight. Among the n objects
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the camper can select each object has an associated benefit that the camper gets for taking

the object and an associated positive weight. The camper is unable to carry more than a

maximum overall weight. Therefore, a choice has to be made between the n objects such

that she gets the maximum benefit and obeys the overall weight constraint.

A single constraint from a integer program can be transformed to a knapsack constraint

and therefore, most theoretical results for a KP can be extended to IP. Hence, the knapsack

problem is widely studied for its theoretical benefits [4, 6, 24, 26, 51, 58, 62, 77]. Additionally,

the knapsack problem has been widely studied for its numerous applications. Some common

applications include resource allocation [12, 75], cutting stock [55, 29] and capital budgeting

[12, 54, 57].

1.1 Integer Programming

Integer programs are optimization problems, which enforce integer constraints on all of the

variables. IPs try to get the best outcome (e.g. maximum profit) subject to list of constraints

(e.g. budget constraints) using a linear mathematical model. IP problems have the general

form:

Maximize cT x

Subject to Ax ≤ b

x ∈ Zn
+.

where A ∈ Rm×n, c ∈ R1×n and b ∈ Rm×1. The expression to be maximized or minimized

is called the objective function, which is cT x in this case. The constraints are inequalities

given by Ax ≤ b and restrict the solution space and the constraint x ∈ Zn
+ restricts the

value of xi to positive integers.

If only some of the unknown variables are required to be integers, then the problem is

called a mixed integer programming (MIP) problem [2, 3, 14, 40, 44, 58, 64]. Traditionally,

IPs have linear objective functions and much work done in this area by [14, 15, 22, 31, 52, 53].

In this thesis we concentrate on IPs with linear objective functions and constraints, but the
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results can be easily extended to IPs with non-linear objective functions.

1.2 Solving Integer Programs

In contrast to linear programming, which can be solved efficiently in the worst case, integer

programming problems are NP-hard [47]. Many integer programs require exponential time

to solve and thus, the optimal solutions for many practical problems still cannot be obtained.

The simplest of algorithms to solve an IP is enumeration. In this methodology all the

IP solutions for a problem are enumerated and the one that has the best value for the

objective function is selected. Consider a IP problem with 50 binary decision variables then

the number of possible solutions is 250 = 1.1 ∗ 1015, which is a very large number and can

take years to solve. As the number of decision variables increase the number of possible

solutions also become exponentially high. Therefore, enumeration is computationally too

expensive to solve large IPs [59].

Due to the drawback in the enumeration technique there have been many algorithms for

solving integer linear programs. The two most frequently used ones are branch and bound

and cutting-planes, which are discussed in the following sections.

1.2.1 Branch and Bound

Branch and Bound was first proposed by A. H. Land and A. G. Doig [49] in 1960 and

is the most widely used method to solve integer programs. Branch and Bound is also an

enumeration process, but this method differs from the enumeration method described above

in that not all the feasible solutions are typically enumerated.

In simple terms, branch and bound can be outlined as an enumeration tree of linear

programs in which each problem has the same constraints and objective except for some

additional bounds on certain components of the decision variables xi. Consider the problem

max cT x, subject to Ax ≤ b, x ∈ Rn
+. At the root of the branch and bound tree is the
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original problem without the integer constraint x ∈ Zn
+ i.e. the linear relaxation (LR) given

by max cT x, subject to Ax ≤ b, x ≥ 0. The solution ZLR ∗ to this root problem may not

have all integer components and hence, xLR ∗ represents the optimal solution of the linear

relaxation.

If xLR ∗ is not integer then two new child nodes are created by finding an i such that

p < xi < p + 1 and p ∈ Z+. The first child node has the same linear relaxation as its parent

node plus the additional constraint xi ≤ p; while the second child node has the additional

constraint xi ≥ p + 1. This branching process can be carried out recursively and each of

the two new problems may give rise to two more problems when branching is performed on

one of the non-integer components of their solutions. It can be seen that the enumeration

tree obtained in branch and bound is binary. This branching process continues until all leaf

nodes are fathomed. A node can be fathomed if the solution to the LR is integer, infeasible,

or if ZLR ∗ < ZIP where ZIP is the best integer solution found so far. Once all of the leaf

nodes are fathomed, the algorithm returns the best integer solution or that the problem is

infeasible.

The efficiency of branch and bound depends critically on the effectiveness of the branch-

ing method used. A bad choices could lead to repeated branching without any fathoming.

In this case, the method would be similar to enumeration. There are different methods to

search the branching tree with the most common ones being depth first search, breadth first

search and best child node. The depth first search searches along one branch till a node is

fathomed and then back tracks to the parent node and goes down the other branch. The

breadth first search goes down the branching tree one level at a time. The best child node

always picks the child node with the best ZLR ∗.

There are advantages and disadvantages for all the above mentioned methods. Most

common IP softwares use best child search strategy as default settings. Though this strategy

is good it may still require exponential time to solve the problem. There is no search method

that works best for all problems.
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1.2.2 Cutting Plane

The cutting plane method was introduced by Gomory [32, 33, 34]. This technique aims at

generating valid inequalities or cuts which eliminate some portion of the linear relaxation

without cutting off any feasible solutions. A valid inequality for an IP is an inequality,∑n
i=1 αixi ≤ β, that satisfies every feasible point. The cuts generated by this method are

added to the linear relaxation as new constraints and are useful if they eliminate critical

portions of the linear relaxation.

The cutting plane method is widely used as it can reduce the computational time for

solving the problem. A lot of research has been done in this area some of which are [10, 13,

21, 32, 33, 34, 35, 37, 38]. Not all cuts developed are important or useful. The strongest

valid inequalities generated are facet defining inequalities. A more detailed discussion on

this topic is presented in Chapter 2.

Branch and cut is typically the most commonly used method to solve integer programs.

This is a hybrid of branch and bound method and the cutting plane method discussed above.

Branch and cut method first solves the linear relaxation of the IP to obtain the optimal

solution ZLR ∗ and xLR ∗. Cutting plane algorithms are then used to find a few cutting

planes. This process is repeated until either an integer solution is found or until no more

cutting planes are found. Finally, if some of the variables xLR ∗ are still not integer then

branch and bound is performed.

1.2.3 Lifting

Lifting is one of the most widely used techniques to generate strong cutting planes. Lifting

was first introduced by Gomory [36] and has been an area of research ever since. Lifting is a

useful technique used to strengthen valid inequalities. Lifting starts with a valid inequality

and makes it stronger by introducing more variables or changing the coefficients of existing

indices. In certain instances the resulting lifted inequality could be facet defining inequali-

ties. These lifted inequalities can be used as a cutting plane and should help to reduce the
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computational time for the IP.

There are numerous different types of lifting. They includes up, down and middle lifting.

Each of these types of lifting can be performed sequentially and probably simultaneously.

This thesis deals mainly with simultaneous lifting and a more detailed discussion is presented

in the next few chapters.

1.3 Research Motivations

The technique of simultaneous lifting sets of integer variables was introduced by Zemel [76]

in 1978. This method was restricted to binary variables and furthermore, his method was

based on finding the extreme points from the solutions of exponentially many IPs and found

all simultaneously lifted facets. A few years ago, Easton and Hooker [26] improved this result

and found a polynomial time algorithm to simultaneously lift a single set of binary variables

into a cover inequality for a KP. However, their research left the open question of how to

choose the lifting set. The motivation for this research is to determine the appropriate

simultaneous lifting sets.

1.4 Research Contributions

This thesis presents a new algorithm, MSLA, to simultaneously uplift sets of binary variables

in a KP instance. These uplifted inequalities result in cutting planes for KP. Furthermore,

these inequalities result in strong inequalities that are facet defining under fairly moderate

assumptions.

An additional advancement of this thesis is that this algorithm runs in O(|E||C| +

|C|log|C| + |E|log|E|) effort. This running time is theoretically faster than iteratively ap-

plying the result from Easton and Hooker [26].

A computational study shows that this algorithm can find numerous strong inequalities
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for random KP instances. These simultaneously lifted inequalities are easy to find and

by including these cuts to a KP instance, the solution time decreased by an average of

41%. Therefore, I postulate that implementing MSLA would be highly beneficial for large

real-world problems.

1.5 Thesis Outline

The basic fundamentals of integer programming that are required to understand this thesis

are presented in Chapter 2. A brief introduction to the knapsack problem, covers and cover

inequalities, is given. Also, this chapter discusses some established lifting techniques.

Chapter 3 gives a formal presentation of the simultaneous lifting technique proposed

in this thesis. It gives the details of the new maximal simultaneous lifting algorithm and

discusses the main theoretical benefits. The chapter walks through an example to help

illustrate the algorithm and its critical steps and benefits.

A computational study is performed to clearly establish the benefits of the algorithm

proposed in this thesis. Chapter 4 presents the results of this study that strongly show

the computational efficiency of this algorithm. Finally, Chapter 5 contains the concluding

remarks. A few challenging questions are raised that could be future research topics.
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Chapter 2

Background Information

For a better understanding of the core concepts of this research, a brief introduction of the

various fundamentals of integer programming is presented in this chapter. Consider the

integer program (IP), maximize cT x, subject to Ax ≤ b, x ∈ Zn
+ where A ∈ R is an m× n

matrix and b is an m × 1 matrix . The feasible region, P , is the set of integer points that

satisfy all the constraints, P = {x ∈ Zn
+|Ax ≤ b}. Let N = {1, 2, 3, ..., n}, represent the

indices.

Integer programming problems are NP-hard [47] in general. So all known algorithms

require exponential time to solve. Thus, many practical IP problems have unknown optimal

solutions since they are currently not solvable even on today’s fastest machines.

There have been many techniques used to solve integer programs. These techniques

fundamentally rely on the linear relaxation of the integer program. The linear relaxation

takes the form max cT x, subject to Ax ≤ b, x ≥ 0, which is the integer program without the

integer constraint. Let PLR represent the feasible region for the linear relaxation, PLR =

{x ∈ Rn
+|Ax ≤ b}. One of the most widely used methods to solve integer programs is

branch and bound, which is a glorified enumeration algorithm and is discussed in Section

1.2.1. Branch and bound has proved an effective tool to solve integer programs. However,

this method may solve exponentially many linear relaxations.
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Figure 2.1: Cutting Plane Method

Another frequently used technique to solve integer programs is the use of valid inequalities

discussed in Section 1.2.2, which was introduced by Gomory [32, 33, 34]. A valid inequality

for an IP is an inequality,
∑n

i=1 αixi ≤ β, that satisfies every point in P . Valid inequalities

are also known as cuts or cutting planes. This technique aims at generating cuts which

eliminate some portion of the linear relaxation without cutting off any feasible solutions.

These generated cuts are added to the integer program as new constraints.

Example 2.1 Consider the following integer problem

Maximize x1 + 2x2

Subject to 4x1 + 3x2 ≤ 12

3x1 + 2x2 ≤ 8

x1, x2 ∈ Z+.

Figure 2.1 provides a graphical view of this problem. The first constraint 4x1 +3x2 ≤ 12
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passes through the points (0,3), A and D. The second constraint 3x1 + 2x2 ≤ 8 passes

through the points (0,4), D and C. The linear relaxation is defined by the constraints

4x1 + 3x2 ≤ 12, 3x1 + 2x2 ≤ 8, the axis x1 and x2. Within this space the solid circles show

the feasible integer solutions to the problem.

The aim of a cutting plane is to eliminate some portion of the linear relaxation without

cutting off any integer solution. The dashed line represents a valid inequality 2x1 + x2 ≤ 4

and passes through the points (2,0) and (1,2). It can be seen that the inequality cuts off

the region ABCD of the linear relaxation without eliminating any feasible integer point.

Clearly, this is a strong cut and this cut is further discussed in Example 2.3.

2.1 Polyhedral Theory

Polyhedral theory provides the basic and fundamental concepts of many optimization topics.

It deals with the feasible sets of linear programming problems, which are called polyhedra,

convex sets and convex analysis. A more detailed discussion on polyhedral theory and its

core concepts is presented in this section and a more extensive coverage can be found in

[56].

A set S is called a convex set if for any two points p and q in S, λp + (1− λ)q ∈ S for

each λ ∈ [0, 1]. It can be noted that λp + (1 − λ)q represents a point on the line segment

joining p and q. Any point of the form λp + (1 − λ)q where 0 ≤ λ ≤ 1 is the weighted

average of p and q. Thus, a set S is called a convex set if for any two points p, q in S the

straight line segment between p and q is entirely contained in S.

A halfspace is the solution space for a single linear inequality, i.e. all x ∈ Rn such that∑n
i=1 αixi ≤ β. A polyhedron is the intersection of a finite number of halfspaces and

hence the feasible region of a linear program is a polyhedron and is also convex. A bounded

polyhedron is called a polytope.

The solutions to an integer program are neither convex nor a polyhedron, which requires
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the introduction of a convex hull. A convex hull of a set S is defined as the intersection of all

convex sets that contain S. Let P again be the set of feasible solutions of an integer program.

Define the convex hull of P to be P conv. The P conv is critical in integer programming

research, because solving a linear program on P conv results in the optimal integer solution

and therefore there is no need to perform branch and bound. Furthermore, it is well known

that P conv is a polyhedron.

The dimension of a polyhedron plays a critical role in determining useful cutting planes

and P conv. Typically, dimension is defined as the number of linearly independent vectors con-

tained in the polyhedron. However, since the desired polyhedron is derived from a collection

of points, affine independence is commonly used. A collection of points x1, x2, x3, ..., xr ∈ Rn
+

are affinely independent if and only if
∑r

i=1 λixi = 0 and
∑r

i=1 λi = 0 is uniquely solved by

λi = 0 for all i = 1, ..., r.

The dimension of a convex set is defined as the maximum number of linearly independent

vectors. Alternately, the dimension of a convex set is the maximum number of affinely

independent points minus one. Conventionally, an empty set has dimension equal to -1.

With dimension defined, one can now formally describe which cutting planes are necessary

to describe P conv by examining faces. Every valid inequality of P conv induces a face of P conv.

Given a valid inequality,
∑n

i=1 αixi ≤ β, its induced face is {x ∈ P conv :
∑n

i=1 αixi ≤ β}.

One can determine which inequalities are necessary in the description of P conv through

the dimension of a face. If {x ∈ P conv :
∑n

i=1 αixi = β} = ∅, then the face is called a

trivial face and the inequality is not necessary in the description of P conv. Furthermore,

any inequality that does not define a face that has dimension exactly one less than the

dimension of P conv is not necessary in the description of P conv. Inequalities that induce a

face of dim(P conv) − 1 are called facet defining inequalities. Each facet defining inequality

could be represented by infinitely many inequalities, but including one such inequality for

each facet will result in P conv, which has integer corner points and so there is no need to

perform branch and bound. Facet defining inequalities have been an important part of IP

research over many years. A few of these references are [2, 4, 5, 7, 20, 24, 25, 39, 44, 48, 58].
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A commonly used theorem to check if an inequality is facet defining is as follows:

Theorem 2.2. [56] Let αT x ≤ β be a valid inequality, then if there exists a point x ∈ P conv

such that αT x < β, then the dim({x ∈ P conv : αT x = β}) ≤ dim(P conv)− 1.

Proof: For proof refer [56].

Example 2.3 Revisiting the previous Example 2.1, the solid circles in Figure 2.1 repre-

sent the feasible integer solutions. The dim(P conv) ≤ 2 since there are 2 variables. The

three points (0,0), (1, 0) and (0, 1) lie in P and are affinely independent. Therefore, the

dim(P conv) ≥ 3 - 1 = 2. From the 2 arguments we can see that the dim(P conv) = 2.

By inspection it can be clearly said that the cut 2x1 + x2 ≤ 4 is valid. It can be noted

that the inequality cuts off some of the linear relaxation space enclosed by ABCD without

eliminating any integer points. We can see that the cut passes through the points (1, 2) and

(2,0) which satisfy the inequality at equality and so the dimension of the face is at least 2 -

1 = 1. The dimension of the face ≤ dim(P )conv ≤ 2 - 1 = 1 by Theorem 2.2 because (0,0) is

feasible and 2(0)+0 < 4. Therefore, the above inequality induces a face that has dimension

equal to 1 and it is a facet defining inequality.

2.2 Introduction to Knapsack Problem

As discussed in Chapter 1, the Knapsack Problem (KP) is a special class of integer programs.

The name knapsack draws an analogy with the problem faced by a camper who needs to

fill her knapsack with objects while being restricted by the overall weight. Recall that there

are n objects the camper can take and each object has an associated benefit, ci, that the

camper gets for taking the object. On the other hand, each object also has an associated

positive weight, ai, and she is unable to carry more than an overall weight of b. Therefore,

a choice has to be made between the n objects such that she gets the maximum benefit and

obeys the constraint of the maximum overall weight.
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Knapsack Problems are NP-Hard [47] in general and may require exponential time to

solve. Dynamic programming can be used to solve KPs with peudo-polynomial time algo-

rithms [11, 29, 30, 67]. Mathematically, a knapsack problem can be solved as an IP.

The knapsack can be modeled by letting xi be 1, if the object is selected; and 0, if the

object is not selected. An IP formulation for a KP is as follows:

Maximize
∑n

i=1 cixi∑n
i=1 aixi ≤ b

xi = Z+ ∀i = 1, 2, ...n.

Let the feasible region of a KP be PKP = {x ∈ Bn :
∑n

i=1 aixi ≤ b} and P conv
KP =

conv(PKP ). Without loss of generality assume that the variables ai are sorted descending

order. This means ai ≥ aj where i < j and i, j ∈ N . It is assumed that ai ≥ 0 ∀ i ∈ N ,

if this is not true, then if ai = 0, then xi can be easily eliminated from the problem. On

the other hand, if ai < 0 then xi can be replaced by 1 − xi and ai > 0. Now if a1 ≥ b,

then x1 = 0 in all feasible solutions and x1 can be eliminated from the problem. With these

assumptions we can clearly see that P conv
KP is full dimensional with the affinely independent

points 0 and ei ∀ i = 1, 2, ...n where ei is the ith identity vector. The following example

presents a knapsack instance.

Example 2.4 Consider the following knapsack problem. Going back to the analogy of

the camper in this problem there are a total of 11 objects. The associated benefits and

the weight for each object is given in Table 2.4. Also, the camper is constrained by the

maximum weight of 90. The main objective of the problem is to maximize the benefit while

satisfying the constraint. The IP can be written as:
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objects 1 2 3 4 5 6 7 8 9 10 11

benefit 10 7 9 4 10 2 7 8 6 5 2

weight 29 29 27 25 14 14 12 11 11 10 10

Table 2.1: Associated Weight and Benefit

Maximize

10x1 + 7x2 + 9x3 + 4x4 + 10x5 + 2x6 + 7x7 + 8x8 + 6x9 + 5x10 + 2x11

Subject to

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90

xi = {0, 1} ∀ i = 1, 2, ..., 11.

The solution to the above problem is (1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0) with the camper

having a benefit given by the objective value z∗ = 46. From the solution we can see that the

camper has selected objects 1, 5, 7, 8, 9 and 10 which have an overall weight = 29 + 14 + 12

+ 11 + 11 + 10 = 87. The above problem will be used throughout this thesis to illustrate

the research results.

Knapsack problems is an area of particular interest to researchers. This is because any

IP constraint can be transformed into a KP. The transformations are as follows: if the IP

constraint is of type ‘ = ’ then it is transformed into two sets of constraints one with ‘ ≤ ’

and other with ‘ ≥ ’. Greater than or equal to constraints are multiplied by -1 and become

less than or equal to constraints. If any ai < 0, then xi is substituted with x′i = 1− xi and

the equivalent problem now has ai > 0. Therefore, any cutting of a KP can be applied to any

single IP constraint. Thus, finding stronger cutting planes to KP is of critical importance

to integer programming research.
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2.3 Cover and Cover Inequalities

As mentioned in Section 1.2.2, cutting planes are a very useful technique for solving IPs.

Commonly, used cut for a KP instance is a cover. A cover is a set of indices, which if

the corresponding variables are selected together would violate the constraint inequality.

The cover can include any number of variables such that together they would be infeasible.

There can be exponential number of covers for a given problem. A cover is called a minimal

cover if the removal of one variable from the set makes it feasible. Covers have been the

focus of research for many years, a few references are [5, 40, 41, 58, 62].

Formally, a cover, C ⊆ N , is a set of indices where ΣiεC ai > b. Covers are very

important and induce a cover inequality, which is valid and given by ΣiεC xi ≤ |C| − 1. A

cover is called minimal if ΣiεC−{j} ai ≤ b for each j ∈ C. Minimal covers generate inequalities

of dimension at least |C| − 1.

Theorem 2.5. [56] If C is a minimal cover, then∑
i∈C xi ≤ |C| − 1 (I)

is a valid inequality for P conv
KP .

Proof: For proof refer [56].

Example 2.6 Reconsider the constraint of the knapsack problem in Example 2.4.

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90.

Clearly, a cover C is {2, 3, 4, 5} because the sum of the coefficients 29 + 27 + 25 + 14 =

95 which is greater than the right hand side of the above constraint inequality (90). This

is also a minimal cover since if any variable from the cover is removed the sum is less than

90. Clearly, the cover inequality is x2 + x3 + x4 + x5 ≤ 3 and is valid.

A set E(C) = C ∪ {j ∈ N − C : aj > ai ∀ i ∈ C} is called an extended cover

of C or an extension of C. E(C) can be used to generate valid inequality, called an
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extended cover inequality (ECI), which takes the form,
∑

i∈E(C) xi ≤ |C|−1. The following

theorem provides the necessary and sufficient conditions for an extended cover inequality

E(C) to be facet defining.

Theorem 2.7. [56] Let C = {i1, i2, ..., ir} be a minimum cover with i1 < i2 < ... < ir. If

any of the following conditions hold then the extended cover inequality is a facet defining

inequality of P conv.

a. C = N .

b. E(C) = N and (i) (C\{i1, i2}) ∪ {1} is not a cover.

c. C = E(C) and (ii) (C\{i1}) ∪ {p} is not a cover, where p = min{i : i ∈ N\E(C)}.

d. C ⊂ E(C) ⊂ N and (i) and (ii).

Proof: For proof refer [56].

In the above example we can extend the cover C to E(C) by including the variable x1

and E(C) = {1, 2, 3, 4, 5} and the extended cover inequality is x1 + x2 + x3 + x4 + x5 ≤

3 . Clearly, C ⊂ E(C) ⊂ N and this satisfies item d of the above Theorem 2.7. Since

(C\{i1}) ∪ p = {3, 4, 5, 6} is not a cover and (C\{i1, i2}) ∪ {1} = {1, 4, 5} is not a cover;

therefore, the extended cover inequality x2 + x3 + x4 + x5 ≤ 3 is facet defining.

Minimal cover inequalities describe faces of dimension at least |C|−1. These inequalities

are facet defining if one restricts P conv to small dimensions. Formally, define Px1=0 = {x ∈

Z : Ax ≤ b, x1 = 0} with its convex hull denoted by P conv
x1=0. This definition can be extended

to any number of equalities or inequalities in the obvious fashion. A common result is that

a minimal cover C induces a facet defining inequality over the convex hull of C defined as

PKP conv
C = PKP conv

xj=0 ∀j∈N\C . Frequently, variables in N \ C are lifted so that the resulting

inequality, called Lifted Cover Inequality (LCI), is facet defining for P conv.
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2.4 Lifting Variables

Even though an extended cover inequality can be facet defining, lifting provides facet defin-

ing inequalities in more circumstances. Lifting is one of the most widely used techniques to

generate strong cutting planes and is widely applied in today’s commercial integer program-

ming software. Lifting was first introduced by Gomory [36] for bounded integer programs.

Since that time, lifting has been an active area of research with substantial contributions

being made by [2, 7, 8, 9, 18, 20, 23, 24, 25, 27, 43, 40, 41, 48, 58, 62, 64, 77].

There are numerous different types of lifting. They includes up, down and middle lifting.

Each of these types of lifting can be performed sequentially and probably simultaneously.

In addition, the lifting coefficient can be either an exact value or an approximate value.

Gutierrez [43] provides an excellent review of these various lifting techniques. The contribu-

tion of this thesis involves simultaneous uplifting over cover inequalities and so this thesis

only provides a thorough review of uplifting.

2.4.1 Sequential Uplifting

The most commonly used lifting technique is sequential uplifting [4, 5, 44, 61, 70, 71]. In

binary sequential lifting, the lifting coefficients are determined one by one. This is done by

solving a series of optimization problems for each coefficient as discussed below.

Consider a valid inequality
∑n

i=2 αixi ≤ β that is valid for P conv
x1=0. Solving Z∗ =

max{
∑n

i=2 αixi : Ax ≤ b, x1 = 1, x ∈ Bn}. If this is infeasible, then x1 = 0 is a valid

inequality. If not, then the inequality
∑n

i=1 αixi ≤ β is valid for any α1 ≤ β − Z∗.

To illustrate sequential uplifting, let us reconsider Example 2.4. In the following example

the cover is modified and now C = {1, 2, 3, 4}. Therefore, the valid inequality is x1 + x2 +

x3 +x4 ≤ 3 will be used. Since C is minimal, this inequality is facet defining over PKP conv
C .

The variables to be sequentially uplifted are x5, x6, x7, x8, x9, x10 and x11 in that order.

Example 2.8 Beginning with x5 it becomes necessary to solve the following integer pro-
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gram:

Maximize

x1 + x2 + x3 + x4

Subject to

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90

x5 = 1

xi = {0, 1} ∀ i = 1, 2, ..., 11.

The optimal solution for the problem is (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0) and the objective func-

tion has the value Z∗ = 2. Therefore, the coefficient for lifting x5 is α5 = 3 - 2 = 1. The new

uplifted inequality can now be written as x1 + x2 + x3 + x4 + 1(x5) ≤ 3. The next variable

to lift is x6 and the following integer program needs to be solved.

Maximize

x1 + x2 + x3 + x4 + x5

Subject to

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90

x6 = 1

xi = {0, 1} ∀ i = 1, 2, ..., 11.

The optimal solution for this problem is (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0) and the objective

function has the value Z∗ = 3. Therefore, the coefficient for lifting x6 is α6 = 3 - 3 = 0. It

can further be noted that all other variables from x7 to x11 have coefficients less that x6 and

hence the optimal solution Z∗ will at least be 3. It can thus be concluded that the coefficient

for lifting αi = 0 ∀ i = {6, 7, ..., 11}. Therefore, no more variables can be lifted into this

inequality and the final sequentially lifted inequality can be written as x1+x2+x3+x4+x5 ≤

3. The affinely independent points for this inequality as shown in the matrix below. Each

column represents a unique point and so the matrix below should be read vertically.
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0 1 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

Sequential lifting of variables is highly dependent on the sequence of the lifting. Hence, if

the order of the variables being lifting is changed, the coefficient of lifting may also change.

In this example, we lift 7 variables and hence there are 7! ways the sequence can vary.

Notice that a different lifting order would lead to different coefficient of lifting; i.e. if x11

is lifted first; then its coefficient is set to 1 and all other coefficients become 0. Therefore,

there are 6! ways to get a 1 as a coefficient for a variables out of the total 7! ways to

sequentially uplift the 7 variables not in the cover. The 7 sequentially uplifted inequalities

are: x1 + x2 + x3 + x4 + x5 ≤ 3, x1 + x2 + x3 + x4 + x6 ≤ 3, x1 + x2 + x3 + x4 + x7 ≤

3, x1 + x2 + x3 + x4 + x8 ≤ 3, x1 + x2 + x3 + x4 + x9 ≤ 3, x1 + x2 + x3 + x4 + x10 ≤ 3

and x1 + x2 + x3 + x4 + x11 ≤ 3. The average of all the coefficients of lifting (α) for the

sequentially lifted inequalities is x1 + x2 + x3 + x4 + 1
7
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤

3. It will be discussed later that simultaneously lifted inequalities can dominate the average

sequentially lifted inequality.
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2.4.2 Simultaneous Uplifting

Simultaneous lifting was introduced in 1978 by Zemel [76] for binary variables. The method-

ology was based on finding the extreme points from the solutions of exponentially many IPs.

After work Zemel’s work this area of research had been dormant for around 2 decades. Later,

from around 1999 much research has been done through what is known as sequence indepen-

dent lifting [3, 42, 66]. Sequence independent lifting tries to do away with the main drawback

in lifting i.e. solving many integer programs and sacrifices the tightness of the cutting plane

for a fast cut inequality. That is, sequence independent lifting is an approximate lifting

technique and the inequalities formed could often be made stronger.

Simultaneous lifting has been an area of research for my advisor Easton [26] and his

research student Kevin Hooker. They proposed a linear time algorithm to simultaneously

lift a set of variables into a cover inequality for a binary knapsack problem. Let C represent

a cover and E ⊆ N\C. Variables in E are simultaneously lifted into the cover inequality;

which takes the form
∑

i∈C xi + α
∑

j∈E xj ≤ |C| − 1 where α is the coefficient of lifting.

This algorithm takes O(|C| + |E|) time to generate a valid inequality assuming C and E

are sorted descending.

Going back to Example 2.8 using Easton and Kevin Hooker’s simultaneous lifting algo-

rithm one generates the inequality as x1+x2+x3+x4+
1
3
(x5+x6+x7+x8+x9+x10+x11) ≤ 3.

It can be seen that the simultaneously lifted inequality dominates the average of the sequen-

tially lifted inequality, x1 + x2 + x3 + x4 + 1
7
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 3.

Recently, Gutierrez [43] developed a technique to simultaneously lift sets of general

integer variables. In her research work Gutierrez introduced Simultaneous Lifting Sets of

Integer Variables Algorithm to simultaneously lift sets of general integer variables. Given a

set E ⊂ N = {1, 2, ..., n} and F ⊂ N \ E and F 6= ∅. The constraint set
∑

i∈E αixi ≤ β

is a valid inequality of P IP
xi=0 ∀ i∈F . The simultaneously lifted inequality takes the form of

α
∑

i∈F wixi +
∑

i∈E αixi ≤ β where α is the lifting coefficient and wi ≥ 0 is the scaling

coefficient for variables i.
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The newly introduced algorithm can be implemented with at most one integer program,

that is α can be determined by a single IP. However, it should be noted that this technique

requires a good guess for the appropriate scaling coefficients, to create a facet defining

inequality by solving a single integer program.

Example 2.9 The algorithm introduced by Gutierrez [43] is illustrated using the KP in

Example 2.4. For ease of understanding here the method with multiple IPs is presented

to obtain the best lifting coefficient. However, it is possible to perform this simultaneous

lifting with a single IP.

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90.

The cover used in this problem is {1, 2, 3, 4} and the problem aims to simultaneously

lifting x5, x6 and x7 into the cover inequality x1 + x2 + x3 + x4 ≤ 3. For this example the

scaling coefficient is set to wi = 1 such that there is no priority among any of the indices

to be lifted. The coefficient of lifting α is initialized to a arbitrarily high value (M). The

problem is now changed as follows:

Maximize

x1 + x2 + x3 + x4 + M(x5 + x6 + x7)

Subject to

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90

xi = {0, 1} ∀ i = 1, 2, ..., 11.

The optimal solution for the above problem is (0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) and the objective

function has the value Z∗ = 1 + 3M which is greater than the right hand side of the cover

inequality constraint i.e. 3 since M is a high value. Since 1+3M > 3 the coefficient of lifting

α can be obtained by using the optimal point obtained in the objective function which gives

us, 0 + 0 + 0 + 1 + (α ∗ 3) = 3, thus α = 3−1
3

= 2
3
. The new proposed uplifted inequality can

now be written as x1 + x2 + x3 + x4 + 2
3
(x5 + x6 + x7) ≤ 3. Using this value of α the next

IP problem is:
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Maximize

x1 + x2 + x3 + x4 + 2
3
(x5 + x6 + x7)

Subject to

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90

xi = {0, 1} ∀ i = 1, 2, ..., 11.

Solving the above problem again with the new coefficient of lifting α the optimal solution

obtained is (1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0) and Z∗ = 3.33 which is again greater than 3. Therefore,

the new coefficient of lifting α = 3−2
2

= 1
2

and the proposed inequality is x1 + x2 + x3 + x4 +

1
2
(x5 + x6 + x7) ≤ 3.

Using α = 1
2

in the above problem and resolving we get the new optimal solution is

(0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0) and the Z∗ = 3. At this step the Z∗ is not greater than the right

hand side of the cover inequality and hence, the algorithm terminates. The final value of

the coefficient of lifting is 1
2

and the simultaneously lifted inequality is x1 + x2 + x3 + x4 +

1
2
(x5 + x6 + x7) ≤ 3.

The above example does not bring out the use of the scaling coefficient. The same

example can be solved using scaling coefficients wi = 2 for i = {5, 6, 7} and wi = 1 for

i = {8, 9, 10, 11}. This would mean that there is twice as much weight for indices {5, 6, 7}

compared to {8, 9, 10, 11}.

Example 2.10 Reconsidering the previous example the problem can now be written as:

Maximize

x1 + x2 + x3 + x4 + M(2x5 + 2x6 + 2x7 + x8 + x9 + x10 + x11)

Subject to

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90

xi = {0, 1} ∀ i = 1, 2, ..., 11.

Solving the above problem the optimal solution is (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1) and Z∗ =

10M > 3. Therefore, α = 3−0
10

= 3
10

. The proposed uplifted inequality now becomes is
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x1 + x2 + x3 + x4 + 3
10

(2x5 + 2x6 + 2x7 + x8 + x9 + x10 + x11) ≤ 3.

Now, replacing the new coefficient of lifting in the above problem and resolving the IP the

value for the objective function is Z∗ = 3.5 and optimal solution is (0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1).

Here since 3.5 > 3 the lifting coefficient is re-calculated using the optimal point obtained,

α = 3−2
2∗1+1∗1 = 1

5
. The proposed lifted inequality now becomes x1 + x2 + x3 + x4 + 2

5
(x5 +

x6 + x7) + 1
5
(x8 + x9 + x10 + x11) ≤ 3.

Resolving the problem again we get the new optimal solution is (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

and the Z∗ = 3. At this step the Z∗ is not greater than the right hand side of the cover

inequality and hence, α is not changed anymore and the algorithm terminates. The final

value of the coefficient of lifting is 1
5

and the simultaneously lifted inequality is x1 + x2 +

x3 +x4 + 2
5
(x5 +x6 +x7)+ 1

5
(x8 +x9 +x10 +x11) ≤ 3. Observe that this inequality dominates

the average sequential lifted inequality.
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Chapter 3

Finding Maximal Simultaneously

Lifted Inequalities for Binary

Knapsack Problems

The major contribution of this research is presenting a fast algorithm, called the Maxi-

mal Simultaneously Lifted Algorithm (MSLA). MSLA simultaneously lifts variables into

cover inequalities for a binary knapsack problem. This algorithm quickly generates several

inequalities, which can be used as cuts for solving large IPs. The proposed algorithm gen-

erates many inequalities, each such inequality frequently induces a large dimensional face.

First, two definitions are needed.

Let S = {s1, ..., s|S|} ⊂ N where S is sorted in ascending order so that asi
≤ asj

for all

i < j. Now define Sr = {s|S|−r+1, ..., s|S|} and is the set of r elements of S that correspond

to the smallest a values. Similarly, define Sr = {s1, ..., sr} and is the set of r elements of S

that correspond to the largest a values.

The input to MSLA is a knapsack constraint
∑n

i=1 aixi ≤ b, a minimal cover C =

{i1, i2, i3, ..., ic} and a set E = {j1, j2, ..., je} such that E ⊂ N \ C . The sets C and E are

arranged in descending order of their a coefficients such that ai ≤ ai+1 and aj ≤ aj+1 for

24



sets C and E, respectively.

Let 0 ≤ p ≤ |C| − 1, where p represents the indices that correspond to the smallest a

coefficients in the cover are selected and set to 1. The sum of these ai values is given as csum.

A variable Enum is used to record how many indices are chosen for lifting from E. In selecting

Enum indices from E, these indices are always selected to be the indices that correspond to

the largest a coefficients. A value q is maintained, which indicates the maximum number

of indices that can be selected from {j1, ..., jEnum} and is initially set to 1. The algorithm

begins by selecting the first element in E, setting esum to aj1 value, Enum = 1, q = 1 and

α = ∞. Finally, esum is always equal to ajEnum−q+1
+ ... + ajEnum−1

+ ajEnum
.

The main idea behind the algorithm is that if csum+esum ≤ b, then p elements from C

and q elements from {j1, ..., jEnum} are not a cover and so there exists a corresponding feasible

point. Therefore, the lifting coefficient must be changed and α′
p,Enum

is changed so that this

point with p and q elements meets the new inequality at equality (α′
p,Enum

= |C|−1−p
q

).

Furthermore, both q and Enum increase by one. In contrast, if csum + esum > b; then p

indices from the cover and any q indices selected from from {j1, ..., jEnum} are a cover and

so the lifting coefficient need not change (α
′
p,Enum

= α
′
p,Enum−1

). Now only Enum increases

by one. These if statements are repeated until the size of Enum equals E.

This entire process iterates through all p ∈ {0, 1, ..., |C| − 1}. Upon completing this,

let α∗
Enum

be equal to the minimump∈{0,1,...,|C|−1}{α′
p,Enum

}. Thus, α∗
Enum

is the optimal

lifting coefficient for simultaneously lifting these Enum variables. Once this is obtained, one

can easily generate the maximal simultaneously lifted inequalities by selecting inequalities

that have Enum as large as possible for a particular value of α∗
Enum

. The final maximal

simultaneously lifted inequality can be written as
∑

i∈Cp xi + α∗
Enum

∑
j∈EEnum xj ≤ |C| − 1

where EEnum represents the currently lifted Enum variables of set E.
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3.1 Maximal Simultaneously Lifting Algorithm

Initialization

C := set of variables a in minimal cover; { i1, i2, . . . ic}

E := set of variables to be simultaneously lifted; {j1, j2, . . . je}

Sort C, E in descending order;

p := |C| − 1

Main Step

while p ≥ 0 loop

csum :=
∑|C|

r=|C|−p+1 air

α
′
p,0 := ∞

q := 1

Enum := 1

while Enum ≤ |E| loop

esum :=
∑Enum

r=Enum−q+1 ajr

total = csum + esum

if (total ≤ b) then α
′
p,Enum

:= |C|−1−p
q

; q := q + 1

else α
′
p,Enum

:= α
′
p,Enum−1

Enum := Enum + 1

end loop

p := p− 1

end loop

Termination

For each Enum between 1 and |E| report Enum with minp∈{0,...,|C|−1}{α
′
p,Enum

}.
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The above algorithm can now be illustrated using the same example discussed in Chapter

2.

Example 3.1 Reconsider the knapsack constraint from Example 2.4.

29x1 + 29x2 + 27x3 + 25x4 + 14x5 + 14x6 + 12x7 + 11x8 + 11x9 + 10x10 + 10x11 ≤ 90.

Clearly, a cover is {1, 2, 3, 4} because the sum of the coefficients 29+29+27+25 = 112

is greater than the right hand side of the above constraint inequality (90). This is also

a minimal cover since if any index is removed from the cover, it is no longer a cover.

Clearly, the valid cover inequality is x1 + x2 + x3 + x4 <= 3. Beginning with the above

cover we simultaneously lift all other variables in the knapsack constraint; hence, E =

{5, 6, 7, 8, 9, 10, 11}.

To begin the iteration p is set to |C|−1 = 3 and csum is given by the sum of the smallest ai

= a2+a3+a4 = 29+27+25 = 81 and the lifting coefficient α
′
3,0 is initialized to ∞. The main

step begins with selecting the first index in set E i.e. 5, set q = 1, Enum = 1, the sum of the

coefficients of E is given by esum = a5 = 14 and total = csum+esum = 81+14 = 95. Since

total is greater than the right hand side of the constraint inequality (90) and α
′
3,1 = α

′
3,0 = ∞.

The next iteration q remains unchanged i.e. q = 1, Enum = 2, esum = a6 = 14 and

total = csum + esum = 81 + 14 = 95. Again the total is greater than b and so α
′
3,2 = ∞.

Incrementing Enum = 3, q = 1, esum = a7 = 12 and total = 81 + 12 = 93 which is greater

than 90, therefore, α
′
3,3 = ∞.

In the next iteration Enum = 4, q = 1 and esum = a8 = 11 therefore, total = 81+11 = 92

and again α
′
3,4 = ∞. Incrementing, Enum = 5, q = 1, esum = a9 = 11, total = 81+11 = 92

thus, α
′
3,5 = ∞. Again Enum = 6, q = 1, esum = a10 = 10, total = 81 + 10 = 91 and

therefore, α
′
3,6 = ∞. The last step Enum = 7, q = 1, esum = a11 = 10, total = 81+10 = 91

and total is still greater than the right hand side. Therefore, when p = 3 no variables can

be to lifted from E and α
′
3,. = ∞. Moving to the next iteration begins with decrementing p.

Now, p = 2, csum = a3 + a4 = 52, q = 1, Enum = 1, esum = a5 = 14 and total =
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csum + esum = 52 + 14 = 66. Since 66 is less than 90 the lifting coefficient is α
′
2,1 =

(3−2)
1

= 1. The proposed inequality with Enum lifted variable can be written as x1 + x2 +

x3 + x4 + 1x5 ≤ 3. Since the total is less than 90, one more variable may be added into

the set Enum and therefore, both q and Enum are incremented. In the second iteration

q = 2, Enum = 2, esum = a5 + a6 = 14 + 14 = 28 and total = 52 + 28 = 80. Again 80 is

less than 90; therefore the lifting coefficient α
′
2,2 = (3−2)

2
= 1

2
and the potential inequality is

x1 + x2 + x3 + x4 + 1
2
(x5 + x6) ≤ 3.

Next q and Enum are incremented to q = 3, Enum = 3, esum = 14 + 14 + 12 = 40 and

total = 52 + 40 = 92. Here the total greater than 90; hence α
′
2,3 = α

′
2,2 = 1

2
and so the

proposed inequality is x1 + x2 + x3 + x4 + 1
2
(x5 + x6 + x7) ≤ 3.

Now Enum increases to 4 and q remains at 3. This indicates that 3 of the 4 indices can be

chosen. So esum is now equal to a6+a7+a8 = 37, csum = 52 and total = esum+csum = 89.

For computational and theoretical speed, this can be determined by taking the prior value of

esum + csum = 92 and subtracting a5 = 14 and adding on a8 = 11. This operation results

in the same value of 89, which is less than 90 and so the new lifting coefficient is α
′
2,4 =

(3−2)
3

= 1
3
. Therefore, the proposed inequality is x1 +x2 +x3 +x4 + 1

3
(x5 +x6 +x7 +x8) ≤ 3,

and both Enum and q increase by one.

Now q = 4, Enum = 5, total = 89 + 11 = 100. The value of total is greater than

90; therefore, a6 swaps with a9, increment Enum to 6 and q remains at 4. Now total

equals 100 − 14 + 11 = 97, which is greater than 90; therefore, swapping a7 with a10,

total = 97− 12 + 10 = 95. The sum of the coefficients is still greater than 90. Again, Enum

increase by one to 7 and a8 swaps with a11 and total = 95− 11 + 10 = 94. The sum is still

greater than 90 but Enum = 7 = |E| and hence the p = 2 iteration is complete. The last

proposed inequality would be x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 3.

For the next iteration decrement p, thus, p = 1, q = 1, Enum = 1, esum = a5 =

14, csum = a4 = 25 and total = 25+14 = 39. Since 39 is less than 90, α
′
1,1 = (3−1)

1
= 2 and

the potential inequality is x1+x2+x3+x4+2(x5) ≤ 3. Since the total is less than 90, lift one

more variable and increment q and Enum. In the second iteration q = 2, Enum = 2, esum =
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a5 + a6 = 14 + 14 = 28 and total = 25 + 28 = 53. Here, 53 less than 90; therefore, lifting

coefficient α
′
1,2 = (3−1)

2
= 1 and the potential inequality is x1 +x2 +x3 +x4 +1(x5 +x6) ≤ 3.

Again incrementing q = 3, Enum = 3, esum = a5 + a6 + a7 = 14 + 14 + 12 = 40, total =

25 + 40 = 65 and α
′
1,3 = (3−1)

3
= 2

3
. This makes the potential inequality x1 + x2 + x3 + x4 +

2
3
(x5 + x6 + x7) ≤ 3. In the next iteration q = 4, Enum = 4, esum = a5 + a6 + a7 + a8 =

14 + 14 + 12 + 11 = 51, total = 25 + 51 = 76 and since 76 is less than 90 α
′
1,4 = (3−1)

4
= 1

2
.

This makes the inequality x1 + x2 + x3 + x4 + 1
2
(x5 + x6 + x7 + x8) ≤ 3.

Further, q = 5, Enum = 5, esum = a5 + a6 + a7 + a8 + a9 = 14 + 14 + 12 + 11 + 11 =

62, total = 25 + 62 = 87 and α
′
1,5 = (3−1)

5
= 2

5
. This makes the potential inequality

x1 + x2 + x3 + x4 + 2
5
(x5 + x6 + x7 + x8 + x9) ≤ 3. In the next step q = 6, Enum =

6, esum = a5 + a6 + a7 + a8 + a9 + a10 = 14 + 14 + 12 + 11 + 11 + 10 = 72 and total =

25 + 72 = 97. Here 97 is greater than 90 and α
′
1,6 = α

′
1,5 = 2

5
and the proposed inequality is

x1 + x2 + x3 + x4 + 2
5
(x5 + x6 + x7 + x8 + x9) ≤ 3.

Now Enum = 7, q = 6, esum = a6 +a7 +a8 +a9 +a10 +a11 = 14+12+11+11+10+10 =

68, total = 25 + 68 = 93 where 93 is greater than 90. Thus, α
′
1,7 = 2

5
and the inequality is

x1 + x2 + x3 + x4 + 2
5
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 3.

For the last iteration decrement p = 0 and q and Enum increase between 1 and 7 to get

various values for α
′
0,. = 3, 3

2
, 1, 3

4
, 3

5
, 1

2
and 3

7
since every time the total ≤ 90.

The various valid combinations of p, q, α
′
p,Enum

and Enum obtained from MSLA are re-

ported in Table 3.1. The table shows all the values for the combination of p and q. The last

column shows the minimum coefficient of lifting α∗
Enum

for lifting Enum variables, which is

reported. Thus, for the above example the simultaneously lifted inequalities are as follows:

x1 + x2 + x3 + x4 + 1(x5) ≤ 3,

x1 + x2 + x3 + x4 + 1
2
(x5 + x6) ≤ 3,

x1 + x2 + x3 + x4 + 1
2
(x5 + x6 + x7) ≤ 3,

x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8) ≤ 3,
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p = 3 p = 2 p = 1 p = 0

Enum q α
′
3,Enum

q α
′
2,Enum

q α
′
1,Enum

q α
′
0,Enum

min α∗
Enum

1 1 ∞ 1 1 1 2 1 3 1

2 1 ∞ 2 1
2

2 1 2 3
2

1
2

3 1 ∞ 2 1
2

3 2
3

3 1 1
2

4 1 ∞ 3 1
3

4 1
2

4 3
4

1
3

5 1 ∞ 3 1
3

5 2
5

5 3
5

1
3

6 1 ∞ 3 1
3

6 2
5

5 1
2

1
3

7 1 ∞ 3 1
3

5 2
5

7 3
7

1
3

Table 3.1: Output Values Generated by the Algorithm

x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9) ≤ 3,

x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9 + x10) ≤ 3 and

x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 3.

Although the algorithm reports many inequalities (in this case 7), many of these in-

equalities are dominated by other inequalities. For instance, the fourth inequality given

by, x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8) ≤ 3 is dominated by the seventh inequality

x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 3. Thus, the non-dominated

inequalities are precisely the inequalities with the largest number of variables for a particular

α value. From this example, there are three non-dominated inequalities. They are when

q = 1, 3 and 7 and are as follows:

x1 + x2 + x3 + x4 + 1(x5) ≤ 3,

x1 + x2 + x3 + x4 + 1
2
(x5 + x6 + x7) ≤ 3,

x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 3.

From the above example it is clear that MSLA generates strong maximal lifted inequal-

ities. That is, the inequalities are defined over the entire set E. The next section further

30



introduces theoretical results that show the benefits of MSLA.

3.2 MSLA Theoretical Results

MSLA generates many inequalities, which can each be facet defining. This section provides

the necessary points to show that the dimension of each of these inequalities is sufficiently

high to be facet defining inequalities in this particular example. This section also provides

a strong theoretical result, which shows that this is frequently the case.

As mentioned earlier some of the inequalities are dominated by others. In this case each

of these non-dominated inequalities is a facet defining inequality PKP conv
C∪E , which is equal

to PKP conv in this particular case. The next part of this section deals with checking if the

above non-dominated inequalities are facet defining.

Considering the first non-dominated inequality is x1 + x2 + x3 + x4 + 1(x5) ≤ 3. Here,

Enum = 1, q = 1, p = 2 and α∗
2,1 = 1. The following matrix in Table 3.2 provides 11 affinely

independent points. Again, as mentioned earlier each point is represented as a column and

hence, the matrix should be read vertically.

As seen in the Table 3.2 the first four points are given by the affinely independent points

from the minimal cover {1, 2, 3, 4}. The next point (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0) is obtained

by choosing the next 2 largest indices in C (since p = 2) and 1 index from Enum (since

q = 1). The last set of 6 points are obtained by choosing one of the remaining indices this

gives us 6 affinely independent points. Each point is feasible and satisfies the inequality

x1 + x2 + x3 + x4 + 1(x5) ≤ 3 at equality and so this inequality is facet defining.

The second non-dominated inequality is x1 + x2 + x3 + x4 + 1
2
(x5 + x6 + x7) ≤ 3. Here,

p = 2, q = 2, Enum = 3 and α∗
2,3 = 1

2
. The dimension of the face of the inequality is again

10 by the 11 affinely independent points shown in the Table 3.3. These points meet the

inequality at equality and hence are facet defining over the entire space.

Again the first four points are obtained from the minimal cover C. The next set of 3
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0 1 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

Table 3.2: Affinely Independent Points for Enum = 1, q = 1, p = 2 and α∗
2,1 = 1

0 1 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 1 1 1 1 1

0 0 0 0 1 1 0 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

Table 3.3: Affinely Independent Points for Enum = 3, q = 2, p = 2 and α∗
2,3 = 1

2
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0 1 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 0 1

0 0 0 0 1 1 1 1 1 1 0

Table 3.4: Affinely Independent Points for Enum = 7, q = 3, p = 2 and α∗
2,7 = 1

3

points are obtained by the cyclical permutation of the combination of p = 2, q = 2 and

Enum = 3, which indicates that 2 out of the 3 indices in Enum can be selected. The last

set of 4 points are obtained by choosing one of the remaining indices this gives 4 affinely

independent points with the largest indices in C and Enum.

The third non-dominated inequality is x1 + x2 + x3 + x4 + 1
3
(x5 + x6 + x7 + x8 + x9 +

x10 + x11) <= 3. This inequality is obtained when p = 2, q = 3, Enum = 7 and α∗
2,7 = 1

3
.

The dimension of the face of the inequality is again 10 by the 11 affinely independent points

as shown in Table 3.4. These points prove it is a facet defining inequality since each of these

points satisfy the inequality at equality and are feasible.

Therefore, the maximal simultaneously lifting algorithm has generated 3 facet defining

inequalities. These inequalities can now be used as cuts to decrease the computational time

for solving the IP. The following theorem shows that these maximally lifted inequalities are

facet defining over PKP conv
C∪E under very weak assumptions.

Theorem 3.2. Any nondominated inequality reported from MSLA is facet defining over
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PKP conv
C∪E as long as all of the following conditions are satisfied.

i) The inequality dominates another inequality reported by MSLA.

ii) If Enum − q ≥ 2, then the set {i|C|−p+1, i|C|−p+2, ..., i|C|, j1, j|E|−q+2, j|E|−q+3, ..., j|E|}

is not a cover,

iii) If EEnum 6= E, then αp,Enum > αp,Enum+1.

where Enum, p and q are the numbers reported by the algorithm.

Proof:

We begin by showing that each inequality generated by MSLA is a valid inequality.

MSLA proves validity by exhaustively checking every single relevant point that may make

the inequality invalid. For a given p value, MSLA calculates
∑

i∈Cp ai = csum and a Enum

is steadily increased from 1 to |E|. For each Enum a q value is maintained. This q value

represents the number of Enum elements that are need to be valid. Thus, the esum =∑
j∈Eq

num
aj. If this total (csum + esum) is less than b, then αp,Enum is changed so that this

point with p element in C and q elements in Enum satisfies
∑

i∈C xi +αp,Enum

∑
j∈EEnum xj =

|C| − 1. If this total is greater than b, then this point is not feasible and the αp,Enum value

remains unchanged and is equal to αp,Enum−1. Thus, for a fixed p value, the inequality∑
i∈C xi + α′

p,Enum

∑
j∈EEnum xj ≤ |C| − 1 is valid for any α′

p,Enum
≤ αp,Enum−1.

The algorithm terminates by selecting the minimum αEnum across all of p. Since the

minimum is taken, the inequality is valid for each of the above feasible points. Therefore,

the reported inequalities are valid.

Clearly, the dimension of PKP conv
C∪E is |C| + |E|. Furthermore, the origin does not meet

any simultaneously lifted cover inequality at equality and so by Theorem 2.2, the dimension

of the face induced by any reported inequality,
∑

i∈C xi+ αEnum

∑
j∈EEnum xj ≤ |C|−1, can

be at most |C|+ |E| − 1.

It suffices to find |C|+ |E| feasible and affinely independent points that satisfy
∑

i∈C xi+

αEnum

∑
j∈EEnum xj = |C| − 1. MSLA also reports both a p and q value. Observe that if

34



there are p variables set to one corresponding to elements in C and q variables set to one

corresponding to elements in E that such a point meets
∑

i∈C xi + αEnum

∑
j∈EEnum xj ≤

|C| − 1 at equality.

MSLA requires that C is minimal and so
∑

i∈C\{k} ei for each k ∈ C is feasible and meets

this inequality at equality.

Since
∑

i∈C xi + αEnum

∑
j∈EEnum xj = |C| − 1 dominates at least one inequality. So

αEnum−1 = αEnum . Therefore, the point
∑

i∈Cp
ei +

∑
j∈E

Enum−1
q

ej is feasible. Since E is

sorted, the points
∑

i∈Cp
ei +

∑
j∈EEnum

q+1 \{k} ej are feasible for all k ∈ EEnum
q+1 .

By assumption, if Enum − q ≥ 2, then the set {i|C|−p+1, i|C|−p+2, ..., i|C|, j1, j|E|−q+2,

j|E|−q+3, ..., j|E|} is not a cover. So the points
∑

i∈Cp
ei+ejk

+
∑

i∈EEnum
q−1

ei for k = 1, ..., Enum−

q − 1 is feasible and meets the inequality at equality.

If EEnum 6= E and αp,Enum > αp,Enum+1, then MSLA changed αp,Enum during the Enum +1

iteration of the pth iteration. Therefore, the point
∑

i∈Cp
ei +

∑
j∈EEnum+1

q+1
ej is feasible.

Thus, the points
∑

i∈Cp
ei +

∑
j∈EEnum q−1

ej + ek are feasible for all k ∈ E \ EEnum .

These points are clearly affinely independent as the matrix has two cyclically permuted

matrices with only one 0 over these permutations. In addition, there are several rows with

only a single 1 in them.

2

Reexamining Example 3.1 helps to describe the above theoretical result. As mentioned

earlier MSLA requires a minimal cover. The above example has 4 indices in C. Hence, for

all the reported inequalities the first |C| affinely independent points are given by the cyclical

permutation of this set of cover indices.

In the above theorem part i) states that any inequality that dominates another inequality

reported by MSLA is facet defining over PKP conv
C∪E . From the example it can be seen that

the inequality at p = 2, q = 2 and Enum = 3 dominates p = 2, q = 2 and Enum = 2

with α
′
2,2 = α

′
2,3 = 1

2
. The iteration p = 2 and Enum = 2 is valid therefore, the point

(0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0) is feasible. Now since E is sorted descending, it can be seen that
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selecting any 2 indices out of 3 possible is feasible and so the points (0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0)

and (0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0) are both also feasible.

Condition iii) provides the other four affinely independent points for this inequality.

Observe that αE3 = α2,E3 = 1
2

and α2,E4 = 1
3

and so condition iii) is met. Therefore, the

point (0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0) is feasible or α2,E4 would have remained 1
2
. Again by the

sorted order of a, this final one can be moved to any single one of the final 4 xi values.

Condition ii) is satisfied when Enum = 7. The returned values for this inequality are

p = 2, q = 3, Enum = 7 and α = 1
3

and so 7 − 3 > 2. In this case one cover must

be checked to get the affinely independent points. Since the set is not a cover, the point

(0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1) is feasible and therefore, the value of x5 can be swapped with x6

and x7. Since the inequality dominates another inequality, the final four affinely independent

points are generated similar to condition i).

Easton and Hooker [26] presented an algorithm that can simultaneously lift a set of

variables. Their algorithm takes O(|F | + |C|) time to generate one simultaneously lifted

cover inequality by lifting all of the variables in F . This result assumes that the sets are

sorted. Obviously, one could apply Easton and Hooker’s algorithm |E| times to generate

the output of MSLA. However, their check for facet defining would only be facet defining

over PKP conv
C∪F where F is the number of variables lifted in the set. Since only the last case

would have F = E, their theoretical results are weaker than the results presented here.

Besides providing stronger theoretical results, MSLA is also faster than iteratively ap-

plying Easton and Hooker’s algorithm. Iteratively applying their algorithm would have a

running time of O(|E|2 + |C||E| + |C|log|C|) effort. MSLA improves the running time by

eliminating the |E|2 coefficient. Formally,

Theorem 3.3. MSLA requires O(|E||C|+ |C|log|C|+ |E|log|E|) effort.

Proof:

The two main input sets C and E are arranged in descending order and would take

O(|C|log|C|) and O(|E|log|E|) time, respectively. Next the algorithm takes a constant p
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number of indices from the cover C and iterates it for all indices in E. Each iteration

requires O(|E|) effort since each of the sums can be maintained cumulatively as described

in Example 3.1. This iteration is then repeated for varying values of p, which can have a

maximum number of |C|. It can be clearly seen that the main step would take a maximum

running time of O(|E||C|). Thus, MSLA requires a running time of O(|E||C|+ |C|log|C|+

|E|log|E|).

2

With the theoretical improvements established, the attention now turns toward the

computational advantages of MSLA. This topic is the focus of the next chapter.
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Chapter 4

Computational Results

The most important result of this thesis is to generate many maximal facet defining inequali-

ties by simultaneously lifting variables into the cover inequality. These simultaneously lifted

cover inequalities are used as cuts and added to the problem as constraint inequalities, which

cut off some portion of the linear relaxation without removing any integer point. This pro-

cess may or may not solve problems faster and this chapter focuses on the computational

benefits of MSLA.

The computational study uses randomly generated knapsack problems. The coefficient

of the variables ai are uniformly generated between 50,000 to 100,000. Each ci is equal to

ai. The value of the right hand side b is calculated as a fraction of the sum of the coefficients

given by s
∑n

i=1 ai. The fraction s called the slackness ratio used for this analysis are 1
4
,

1
2

and 3
4
, which helps gauge the efficiency of the cuts between varied types of knapsack

problems.

The study is carried out for different values of n, which varies between 50 and 200 and

this presents a comprehensive view of the computational time for different sizes of problems.

To avoid anomalies 50 KPs are created for each instance size which means for each instance

of n and s 50 KPs are created and hence, a total of 600 instances are generated and solved.

All the variables in the constraint are arranged in descending order based on their co-
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efficients ai. The cover C is chosen as the first i variables that form a minimal cover. To

ensure that the coefficient of lifting α is greater than 0, the set E is chosen such that the ai

for each variable in E was greater than the b−
∑|C|

i=2 ai.

Most solvers can quickly solve knapsack problems. Some knapsack problems that require

exponential time are provided in [19]. The result has been further strengthened to show

that there are KPs that require exponential branches even if all of the of the sequence

independent lifting covers are added to the formulation [45]. These results use large random

numbers for ai solution and force ci = ai. Therefore, in this computational analysis ci = ai

is used to generate hard KPs.

The computational study is done on Pentium IV 2.2 GHz processor with 384 MB of

RAM and the integer programs were solved using CPLEX 10.0 [68] at its default settings.

The upper limit to solve a problem using CPLEX is set at 3600 seconds. This setting is

chosen because the problems included in this analysis are large and hard. Therefore, if a

problem runs for 3600 seconds it terminates at that point and outputs the current integer

solution Z∗.

The algorithm reports several inequalities and the average number of cuts generated is

given in Table 4.1. It can be seen that the number of cuts generated with different slackness

ratios are different. It is observed that the number of cuts generated by the algorithm also

is larger when the set |E| is larger. As expected this would be when the slackness ratio is

the 0.25 or 0.5. For example, when slackness ratio is 0.25 and n is 150 then the number

of indices in E is 105 and therefore, the number of cuts generated is 18, which is high.

Therefore, the larger the set E, the higher the number of cuts generated. When s = 0.5 the

number of cuts generated are still similar to the number in s = 0.25 since |E| is sufficiently

high to generate cuts. On the other hand, when the slackness ration s = 0.75 the number of

cuts generated is between 7 - 14. This could be attributed to the number of indices selected

for the cover C is highest for the slackness ratio of 0.75.

Among the 600 instances for the various types of problems used it was observed that there

were some instances when n = 50, 100 that no cut was generated. Again, such instances were
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Num Slackness Num Num Num

of Ratio in in of

Vars C E Cuts

0.25 11 36 7

50 0.50 23 16 7

0.75 36 8 4

0.25 21 46 11

100 0.50 45 31 12

0.75 70 13 6

0.25 32 105 18

150 0.50 66 48 17

0.75 105 21 8

0.25 42 106 19

200 0.50 88 58 20

0.75 140 37 14

Avg - 57 44 12

Table 4.1: Cuts Generated

found when s = 0.75 which can be attributed to the fact that in these instances |E| = 8, 13.

The number of such instances are 4-8 in a total of 600 instances. This indicates that when

KP instances have large slack, then |C| is large which would be generally expected and the

number of cuts is lower.

Clearly, as the problem size increases the number of cuts output by MSLA also increases

significantly. On an average 12 cuts are generated for all types of the problem.

The only overhead introduced by the lifting process is in the form of preprocessing. The

preprocessing step involves determining a minimal cover C and the set E for lifting the

variables. It runs through the iteration and as discussed in Chapter 3 the running time was

calculated as O(|C||E|+ |C|log|C|+ |E|log|E|) to generate the maximal lifting inequalities.
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Num Slackness Preprocessing

of Ratio Time

Vars (sec)

0.25 0.000

50 0.50 0.000

0.75 0.000

0.25 0.005

100 0.50 0.001

0.75 0.000

0.25 0.014

150 0.50 0.000

0.75 0.006

0.25 0.012

200 0.50 0.016

0.75 0.003

Table 4.2: Preprocessing Time

These inequalities are then passed into CPLEX as additional constraint to the KP before

CPLEX solves the IP. From the table it is noted that for a 200 variable problem and lifting

106 variables requires 0.012 seconds.

As mentioned in theoretical results in Section 3.2 MSLA reduces computational effort

to generate the cut. Also from Table 4.2 notice that |C| < |E| in many instances where

s = 0.25 or 0.5 and these instances generate a higher number of cuts. Therefore, eliminating

the |E|2 term from Eason and Hooker’s [26] running time is computationally very beneficial.

It can be observed that since preprocessing is dependent on |C| and |E| thus, the prepro-

cessing time increases as the cover set and lifted set are increased in number. From Table

4.2 we can see the pre-processing time observed for the IPs solved for this analysis is less
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than 1
50

th
of a second for all the observations. Clearly, the preprocessing time would not

be considerable compared to the enormous reduction in computational time for solving the

IP and will not cause any kind of serious slow down even on easy to solve IPs. Therefore,

we can confidently say that the processing time for this algorithm is negligible and MSLA

could be implemented even on easy to solve IPs.

MSLA aims to reduce computational time by adding additional cuts to the KP. These

cuts are generated by simultaneously lifting variables into the cover inequality. Therefore,

the cover inequality is further strengthened to generate stronger cuts. The next analysis

deals with the time required to solve the problem. Obviously, the a good cover inequality

would also reduce computational time; however, MSLA further improves this and greatly

reduces computational time.

Table 4.3 gives an overview of the relative decrease in computational time when using

this algorithm compared to the time taken by CPLEX to solve the IP. The first column lists

the different combinations of the number of variables and the slackness ratio. As mentioned

earlier the number of variables vary between 50 - 200 and slackness ratio s is varied between

0.25 - 0.75.

It is interesting to see the difference in the computational time while generating cuts using

MSLA. As mentioned earlier the cuts were generated using the cover inequality. Therefore,

it should be necessary to check if this reduction in computational time is just due to the

cover inequality or by the simultaneously lifting of variables into this inequality. Table 4.3

gives this comparison of different cuts used to solve the KPs. The third column in the table

shows the time taken to solve the original KP using CPLEX 10.0. This would be CPLEX at

its default settings. The fourth column lists the time taken to solve the KP using CPLEX

with the additional cover constraint. The fifth column gives the time required to solve the

KP instances using MSLA and adding all the generated cuts. Finally the last two columns

contrast the results obtained from MSLA with those of CPLEX. Hence, the table brings out

the increased efficiency gained by using MSLA.

From the computational study conducted it can be seen that the algorithm is extremely
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CPLEX 10.0 Cover MSLA Comparison

Num Slackness Time to Time to Time to Diff in Percent

of Ratio Solve Solve Solve Time Improvement

Vars in Time

0.25 29.03 29.6 28.1 0.91 3

50 0.50 19.75 31.5 18.9 0.87 4

0.75 30.16 42.7 22.9 7.3 24

0.25 40.3 66.4 40.1 0.15 3

100 0.50 81.1 67.7 63.6 17.5 22

0.75 57.2 57.6 54.2 3.01 5

0.25 140.9 276.9 58.2 82.7 59

150 0.50 64.0 72.5 57.5 6.5 10

0.75 86.0 99.4 75.9 10.12 12

0.25 187.7 150.9 87.2 100.4 53

200 0.50 333.3 208.7 51.9 281.3 84

0.75 162.5 146.5 157.5 5.08 3

0.25 99.5 130.9 53.4 46.1 46

Avg 0.50 124.5 95.1 46.6 66.7 58

0.75 83.9 86.6 78.1 1.9 23

Total - 102.7 104.2 59.7 42.9 41

*Time provided in seconds

Table 4.3: Comparing Computational Time For Different Techniques

43



Num Slackness Num Nodes Num Nodes Using

of Ratio by Cut From

Vars CPLEX Algorithm

0.25 89912 90082

50 0.50 46939 58266

0.75 96741 70809

0.25 104567 101759

100 0.50 100694 178670

0.75 113180 158934

0.25 230071 112631

150 0.50 148131 144037

0.75 192191 184416

0.25 38778 120476

250 0.50 190472 117649

0.75 232981 275010

Table 4.4: Nodes Fathomed To Solve The IP

efficient when compared to CPLEX for larger problems. It can be seen from Table 4.3

that the problems with 50 variables CPLEX performs equally good as the problem with

additional cut generated from MSLA. This could be because the problems are so quickly

solved.

However the for the larger problems the benefit is substantial. The time required to solve

the IP is reduced by 10 - 59% for just 150 variables while for 200 variables the improvement

is between 18 - 97 %. This huge improvement is also expected for many large real world

problems. It is postulated that the reduction in computational time increases as the problem

becomes larger. Therefore, MSLA should be added as a module in leading software packages.

From Table 4.4 reports the average numbe rof nodes in branch and bound tree and it

provides an explanation on why MSLA is so much faster than CPLEX. The number of
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nodes taken to solve the large optimization problems is immensely reduced by adding the

cuts generated by MSLA. Clearly, the improvement in time is greater for larger problems

with more variables. This could be attributed to the fact that large problems require large

number of nodes that need to be fathomed by the branch and bound method used by

CPLEX.

From the above discussion it can be concluded that not only does the algorithm proposed

in this thesis solve problems faster but it also reduces the number of nodes that need to

be fathomed by CPLEX. I stongly suggest that MSLA should be used as a module in any

leading software to help solve large complex IPs.
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Chapter 5

Conclusion and Future Work

The most important result for this thesis is the Maximal Simultaneously Lifting Algorithm

(MSLA). This algorithm quickly generates numerous valid inequalities, which can be used

as cuts for solving large IPs. Each such generated inequality induces a large dimensional

face as discussed in Chapter 3

One advantage of MSLA is that it is computationally fast. The running time for this

algorithm is given by O(|E||C|+ |C|log|C|+ |E|log|E|). This running time is an improve-

ment over the previously existing method proposed by Easton and Hooker [26]. Besides an

improved running time, an additional benefit of MSLA is that its generation of inequalities

provides stronger theoretical results than the results presented by Easton and Hooker.

On an average 12 cuts are reported by MSLA for random knapsack problems varying in

size from 50 - 200. The additional pre-processing time observed for these IPs is less than

1
50

th
of a second for all the observations. Clearly, this preprocessing time is acceptable and

will not cause any kind of serious slow down of the process even on simple IP problems.

From the computational study conducted it can be seen that the algorithm is extremely

efficient when compared to CPLEX for larger problems. The time required to solve the

IP is reduced by 10 - 59% for just 150 variables while for 200 variables the method is 18

- 97 % faster. It is postulated that the reduction in computational time increases as the
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problem becomes larger. This huge improvement is also expected for many large real world

problems. Therefore, MSLA should be added as a module in leading software packages.

5.1 Future Research

Simultaneous lifting of variables through MSLA has generated interesting results and this

thesis has opened numerous avenues for further research in the area of simultaneous lifting

of variables some of which are discussed in this section. These research areas can be broadly

classified into theoretical research and computational work.

5.1.1 Theoretical Research Areas

MSLA takes an input of C, E and a single knapsack constraint. However, an IP can have

multiple knapsack constraints. An logical area of research could extend MSLA for knapsack

problems with multiple constraints. It would be a challenging to find lifting coefficients that

would be feasible over all constraints. That is first choose a cover over the set of constraints.

Once a variable is lifted into the cover inequality with coefficient α this point should be

feasible for all the constraints in the knapsack problem. It would be a very challenging area

to be able to satisfy multiple constraints simultaneously and still be feasible. However, this

would provide a very strong cut and may give substantial computational improvements to

extremely hard problems.

MSLA chooses a single set E for lifting variables, but there could be multiple sets say

E, F, G and H. The variables for these sets could be chosen from different areas of a very

large instance. These variables once lifted could form a very strong inequality and prove

to be very beneficial. Thus, the reported inequalities would likely be facet defining over

PKP conv
CUEUFUGUH .

The algorithm proposed in this thesis deals with lifting binary integer variables for a

knapsack problem i.e. xi = {0, 1} ∀ i = {1, 2, ..., n}. These results could be extended to a
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knapsack problem with general integer variables. Research must be done to account for the

changes by removal of the binary assumptions.

Similarly, simultaneous lifting technique could be applied to general IP problems. The

algorithm proposed in this thesis is restricted to knapsack problem and it would be an

interesting study to extend this research into general IPs, but this appears to be a daunting

task.

5.1.2 Computational Areas

In the computational study the variables in C and E are arranged in descending order with

respect to their coefficients ai. The first i variables are taken as the cover C and the next j

variables are taken as the lift set E. Choosing the variables in C and E are important for

the kind of inequality generated by MSLA. The study could be expanded to choose a cover

C that would be most beneficial and extend the cover on both sides to include variables

with greater than and less ai values than the cover variables. This would bring forward

interesting results and may lead to better cuts.

Also a more extensive computational study could help bring out more detailed analysis

and give further insight in areas that could potentially reduce the computational time for an

IP. It would also provide further evidence that MSLA should be implemented in commercial

code.

48



Bibliography

[1] Ahmed, S. and N. V. Sahinidis (2003). “An approximation scheme for stochastic integer

programs arising in capacity expansion ,” Operations Research, 51 (3), 461-471.

[2] Atamtürk, A. (2003). “On the facets of the mixed-integer knapsack polyhe-

dron,”Mathematical Programming, 98 (1-3), 145-175.

[3] Atamtürk, A. (2004). “Sequence independent lifting for mixed-integer program-

ming,”Operations Research, 52 (3), 487-491.

[4] Balas, E. (1975). “Facets of the knapsack polytope,” Mathematical Programming, 8,

146-164.

[5] Balas, E. and E. Zemel (1978). “Facets of the knapsack polytope from minimal covers,”

SIAM Journal of Applied Mathematics, 34, 119-148.

[6] Balas, E. and E. Zemel (1980). “An algorithm for large zero-one knapsack problems ,”

Operations Research, 28 (5), 1130-1154.

[7] Balas, E. and E. Zemel (1984). “Lifting and complementing yields all facets of posi-

tive zero-one programming polytopes,” Proceedings of the International Conference on

Mathematical Programming (R.W. Cottle et. al., ed.), 13-24.

[8] Balas, E. and S. M. Ng (1989). “On the set covering polytope. II, Lifting the facets

with coefficients in 0,1,2,” Mathematical Programming,45 (1), 1-20.

[9] Balas, E. and M. Fishetti (1993). “Lifting procedure for the asymmetric traveling sales-

man polytope and a large new class of facets,” Mathematical Programming,58 (3),

325-352.

49



[10] Benders, J. F. (1962). “Partitioning procedures for solving mixed variables program-

ming problems,” Numerische Mathematik 4, 238-252.

[11] Bertsimas, D. and Demir R. (2002). “ An Approximate Dynamic Programming Ap-

proach to Multidimensional Knapsack Problems,” Management Sciences 48 (4), 550-

565.

[12] Bitran G. R. and A. C. Hax (1981). “Disaggregation and resource allocation using

convex knapsack problems with bounded variables ,” Management Sciences 27 (4),431-

441.

[13] Blair, C. (1976). “Two rules for deducing valid inequalities for 0-1 problems,” SIAM

Journal of Applied Mathematics 31, 614-617.

[14] Borchers, B. and J. E. Mitchell (1997). “A computational comparison of branch and

bound and outer approximation algorithms for 0-1 mixed integer nonlinear programs,”

Computers & Operations Research, 24 (8), 299-701.

[15] Bretthauer, K. M., and B. Shetty (1995). “The nonlinear resource allocation problem,”

Operations Research, 43 (4), 670-684.

[16] Campbell. J. F. (1994). “Integer programming formulations of discrete hub location

problems,” European journal of operational research, 72 (2), 387-405.

[17] Caprara. A., M. Fischetti, P. Toth, D. Vigo, P. L. Guida (1997). “Algorithms for railway

crew management ”, Mathematical Programming, 79 (1-3), 125-141.

[18] Carr, R. (1996). “Separating over classes of TSP inequalities defined by 0 node-lifting

in polynomial time,” Integer Programming and Combinatorial Optimization. 5th Inter-

national IPCO Conference Proceedings, 460-474.

[19] Chavatal, V. (1980). “Hard knapsack problems,” Operations Research, 5, 266-277.

50



[20] Cho C., D., M. Padberg, and M. Rao (1983). “On the uncapacitated plant location

problem. II. Facets and lifting theorems,” Mathematics of Operations Research, 8 (4),

590-612.
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