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I. PHA ; ANGL I LOCI

1.1 Introduction

In the frequency domain study of feedback control systems, the Myquist

Criterion, the Bode riot, and the Nichols Chart are very powerful tools of

analysis. These techniques lead to the design of a feedback control systems

from the frequency domain point of view with the system performance specifi-

cations given in terms of gain margin, phase margin, resonant peak, bandwith,

etc.

However, by narrowing the region of analysis from the entire s~plane to

the j -axis in the above mentioned techniques, the capability of maintaining

control over both frequency and tims domain responses is discarded.

During the last two decades, much work has been done on the development

of design techniques which simultaneously control both frequency and til

domain responses of linear feedback control systems. The most basic and

important contributions were accomplished by:

1)* Wiener (ref. 9), in his presentation of a statistical design method,

considers the actual input signals to a system as described in terms

of statistical average properties;

2). Guillomin (ref. 8), who applied the concepts of network synthesis to

the synthesis of feedback control systems thus forcing the system to

meet specif icationL. in both the frequency and time domains; and

3). Evans (ref. 7), in his development of the root-locus method, adopted

one of the basic viewpoints of the frequency domain in attempting to

modify the open-loop system tics. Evans* work considers

both the frequency and ti ' vs.



The rcot locus method was first introduced by Evans in 1948, and has

been g: developed in l st two de ies. In his technique, the

Laplace tr« ( iplex function theory are the basic tools and design

is guided by the behavior of variation of the closed-loop transfer function

poles with system parameters. The rcot-locus method can be used to adjust

system gain, guide the design of compensation networks as need to satisfy a

given set of specifications on transient or steady state performance of the

system*

Although the conventional root-locus method seems to be a very good

tool in analyzing feedback control systems, it is found that a more general

and systematic technique of analysis enn be derived from Evans 1 root-locus

method. This is the Phase Angle Root Loci method of analyzing feedback

control systems in the entire s-plane. By this technique, which combines

the Phase Angle Root Loci and Constant Gain Root Loci, a more systematic

and clear technique for designing a feedback control systeja and in reshaping

the conventional root-locus to satisfy certain desirable specifications can

be developed. This report is mainly dedicated to the study of this technique,

1.2 Phase Angle Root Loci (PARL) ——Definition

From the open loop transfer function G(s)H(s) of a given system, it is

possible to obtain a family of loci by letting the phase angle of G(s)H(s)

be equal to a constant angle. This family of loci on the s^plane is called

the ihase Angle Root Loci (PARL) of the transfer function, G(s)l;(s),

In a lir.sar feedback control system without transportation lag, the

i loop '. fer fi is a rati Ion of s which can

be writ



WS+Z, H3+zO (S+Z )'

G(s)H(s) - K • ~~T (I * 1)

Consider the following expression where is treated as a parameter

G(s)H(s) = K

(S-i-Zj
) (
s+z

2) (
s4g

3) (
s-^

m) j0

(s+
Pi

)(s+p
2
)(s+p

3
) „ C V 6 * • • • (S+p

)v n

(1.2)

Those z *s and p *s are zeros and poles of the open-loop system.
.1 i

R(s)
0(s)

H(s)

C(o)

Therefore

Fig. 1.1 A Feedback Control Syr,

e Arg (G(s)H(s) ) a Arg

f (
s+z

i:

i=i

n

Jl"
s+P

k'
k=l

Til _n

Arg TTC^i) - Arg TT<**k > (1.3)
i=l k=l

or



= i?Arg< > - ^ A"s(s+Pk ) (1.4)

i=l ' fc=l

By definition, the PARL (Phase Angle Root Loci) are constructed by

setting equal to a constant arid varying the open-loop gain K in such a

manner as to always satisfy Eq. (!.?.)•

Furthermore, it can be shown that the PAEL of G(s)H(s) can ba determined

by superposition techniques. It is worthwhile to point out that the conven-

tional root locus of Evans (rof* 7) is only one member of the family of loci

that comprise the PARL. It is ol i by setting = ± 180°«

That is, the conventional root locus is derived from

G(s)H(s) = ff^n = -I (1.5)

or

1 -:- G(s)H(s) s C (1.6)

Equation (It 6) is the conventional characteristic equation for a feedback

control system.

1.3 Constant Gain Root Loci (CGRL)

For any open-loop transfer function, G(s)H(s), Eq. (1.2) can be used

to obtain a family of constant gain contours. For each member of this family

the gain K is fixed and is allowed to vary.

The equation

G(s)H(s) =

i .ies

|
G(s)H(s)| = i



or„ referring to Eq. (1»2) again, it is found that

or

w

J
l-l

K . —— ~ 1
n

s rp
k

K =

n

I IN
JTi

for 0<K«<»

(1.7)

It is interesting that the Constant Coin Root Loci in the s=*plane

depend only on the relative locations of poise and zeros cf the open»icop

transfer function and has nothing to do with the PARI, It can be shown

that the PARL are orthogonal to the CGRL. (ref . 1,2,& 3). A fe"? examples

follows*



pic 1. G(s)H(s) = K. -
1

-.-

s+2

K=2
j

/ K=l \
i

i

i

/
/7

a

Fig. 1.2 CGRL for G(s)H(s) = K
s+2

Example 2. G(s)H(s) =
s(s+l)(s44)
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II. THE CONS • )N OF ] \NGLE ROOT LOCI

2.1 s of Construction of ]

It was found that a set of rules for constructing PARL exists. These

rules, in any case, should be regarded only as an aid to the construction

of the PARL; they do not provided the c:;nct plot* They are given as follows:

1). The starting points of the PAUL.-. (K - 0)

PARL start at the poles of G(s)H(s).

Proof

:

The PARL ere co- d to stare at the points where the

opsn-loop gain K is z

From" equation (1.2) it can bo found that

i~I i .',

K . _- B c-.. (2#1)

Tf(^pk )

k=l

Taking the absolute value o-? both sides of Eq. (2.1)

k . i±_ = i Ba
ttK|

(2.2)

#K|
K— J.

where only positive values of K are. considered, this last equation

i as



h ii

T <2 - 3 >

'

k=l

As K approaches infinity which implies that s approaches the poles

of G(s)H(s); that is, s approaches p .
K

2). The terminal points of the PART,. (K = <*>)

The PAUL terminates at the zeros of G(s)H(s).

Proof

:

The PARL are considered to end at the points where K becomes

infinite. With reference to equation (2.3), as K approaches

infinity, the value of the equation approaches zero, which requires

that s roust approaches to the zeros of G(s)H(s); that is: s approaches

z..

3). Number of separate branches for each phase angle.

Lot

N s Number of separate branches for a given phase angle.

Z - Number of finite zeros of G(s)M(s).

P ~ Number of finite poles of G(s)H(s).

then H = Nax(Z,P).

Apparently there must be as many separate branches for each given

phase angle, as the larger value of Z and P, since the loci must

start at the poles and end at the zeros of G(s)H(s).

*)• Mirror i ge property of the PARL with respect to the real axis in

''

- to a p] . ngle of -0 and
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the portion of to a ] ! of + are mirror

image of or. s anothc;r with respect to the rc^al axis in the S"plane.

if:

From equation (1.4)

<

s «5L Arg 1

i> - 25 ArS<s+V B Arg(Gfe)H(s)) (2.4)

i-1 k=l

Let

r = number inite real zeros of G(s)H(s)«

V = number of pairs of complex conju;;;:te zeros of G(s)H(s).

t = number of finite real poles of G(s)H(s).

q - number of pairs of complex conjugate poles of G(s)H(s).

It 5,s evidently true that 2v -1- r = rn and 2q + t = n«

Witt i

s , a + p, z = a + j8 « p •- y + j&.
i i i k k k

equation (2.4) can be rewritten as

V
Arg (G(s)H(s): \ - 5?Arg(o + jw+a. + j{J.)

1=1 * *

V
+ 2 Arg (a + j*> + a. - j$.)

i=l *
x

+ Z Arg (a + jft>+a.)
i=v+l l

q
- '

' ;(a + j«+Y + J 6 >

k=l k k

q
: -

.

; " '
: Y, - J 6

,
)

k k

- S Arg(a + j*> + y, )•
!:- .7+1 k
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or

so

= ^ tan"
1^) + ZT tan'

1 (_L> + S tan 1(^_)
i=l _

L
«i i=v+l um

i

q <U4fi q ft) -6 n

-2 tan^C—H) - F, tMi-^—i) - S tan"
1 ^-)

k=l o-!Y
k k=1 o-,Yk k=q+l a'rYk

rt+3 w-p
j __i_

v
'

.
m

= 2? tan"
1 *- + 2 tan^-f

1*1 J-p
2 l=v+l °'°i

(o;a )

k k
n _1 ^5

k-1 wY,, k~ <l~ 1 k

1 -

(a%)
2

= JS tan i + 2f tan
i=l 2 2 2 i=v+1 cMct

q , gj2 ( o+y. ) n

J£ tan , £_j- - 2^ tan *£L_ (2.5)
*=* (a-: Yl )

2
- (JU2

) k=<l+l a ' Y
k

K K

Since 0(0,^) is en odd function in «*, as can be concluded fro:n Eq. (2.5).:

0(cr»*a) T.
Tili changa sign when the PARL pass through the real axis.

S(a,«) = -0(a, -fc>), a two portions of PA) ler consi-

. :
'

: with respect to th



5). Asymptotes of PARI,.

For very large values of s, the PA L are asymptotic to straight

lines with slopa angles given by

e - 2kTT -

k P -' Z

where k = 0»l,2 9 3 s
«*»' .«••»•••• (P - Z).

Proof:

Tho gansral form of tha op^n-loop transfer function can bs

written as

s
m 4 a^ 1"" 1

-! a, 5
m " 2 4 4 a

G(s)H(s) = K •

l.i-fp (p-1 ;>-2

s -:- b s 4 b. s + + b
1 2 m4p

- v 1

= K

m-fp Hp-1 m-fp-2
S •!• b s 4 b.s 4....... 4 b

1 2 m4p
m n-i m-2

s 4 as 4 a-s 4 .....+ a12 m

s"-Kb, -a
1
)3

P " 1
+ + f£l11 P (s)

where p - P - Z, and R(s) is a polynomial in s T?ith degree less

than n, and

PCs) = s
rn 4a,sTn" 1 4 4a

1 m

The PARL is cor 1 by setti
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- r J0 p f,\

P . P-1 R(s)
s + (b. » a. )s -(-»••••••.««•. 4- Trp—

r

1 1 P(s;

or

s
P + (b - a ) S

P- ! + ............ 4 *<s > = to"* (2.7)11 P(s)

As s becomes very largo, the last term R(s)/P(s) becomes very

small and relatively not significant when compared with the other

terms. Only the first two terms of Equation (2.7) are considered

significant. This approximation leads to

s
P
+ (b - a te

1*"1
= Ke"j0 (2.8)

for vary large values of s . And (2.8) can be written as

sU-A"
a
i)|

. |Kl?. e
j(2k,T - 0)/P (2.9)

S

Using the binomial theorem the factor

b - a 1

(1 + _J L)P
s

is expanded into an infinite series, with tha result

.(1 + !lL!l + } =
|

K|K.JC2^-0)/P (2 . 10 )

wh ' -. . '
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s +
1 1

|
K|P.,J(2toT

- 0)/p
(2.11)

Substituting s --• a + j« into Eq. (2.11) yields

b - a 1

„ . J, L . IM i.,i p 2krr -
J . . 2krr -

(2.12)

Equating the real and imaginary parts of Equation (2.12) yields

a + ~

—

= Jkjp.cos^IjlA (2.13)

f!P. e *«2krr- 55* |K|P.sinfi (2.14)

with k = 0,1,2 9 3 9 (p _z),
1

Solving for K p from the last two equations leads to

\4
to

, 2kr; •

sin—

CT-,
1 1

p

2lcrr-
cos

(2.15)

and solving for <o yields

tan ( ~
2JHLZ.!

)

< b - a ^

. 1 1
° " P— (2.16)

) ".its a :
' ;ht line in the s-plane. It in
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(0 - m (a - a )

re m is the sic. : a
1
is the intercept on the a -axis.

Thus

ra = tan— — = Inn--—-—- (2.17)
p V " L

and

1 P - Z
a. = . 4—J. (2.18)

re k= 0,1,2,3, • v....
y (p - z).

6). Intersection of PARL asymtotes on real axis.

a). The intersections of the asymptotes lie on the real axis,

b). The intersection of t! iptotes on the real axis is given

by

ZiPoleo of G(s)H(s) -^ Zeros of G(s)H(s)
a
i

~
P- Z

u,l9)

Proof

:

a). From the proven property that the 40 and the -0 loci are mirror

images of one another with respect to the real axis and the

phase angle of the loci changes sign after crossing the a -axis,

it is clear that the intersection of asymtotes must lie on

the real axis.

b). This statement follows directly from Equation (2.18), since

-b = sum of tl _• r< "
' ator polynomial of

G(s)l . G(s)H(s).
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-a = sum of the roots of arator polynomial of

G(s)H(s), . of the zeros of G(s)H(s)

therefore

b -a
. - <-L_ L)

p - z

S Poles of G(s)H(s) -^ZiTos of G(s)H(s)

P - Z

7). PARL on real axis.

There exists no loci on the real axis except the loci with phase

angle - ±kn» and k is a certain defined constant. On a given

section of the real axis, PA] ;ists only for 0= ±kiT, with k

equal to the resultant of the number of zeros minus tl ber of

poles on the real axis to the right of the given section.

A simple example will illustrate this clearly. A certain

feedback control system has the open-loop transfer function:

G(S)H(S) = £(i±L±5;
2

s (s-!4 ) (s+5 ) (s+6 ) (s -:-2s+10

)

As was shown in Fig. 2,1 y at any point s in the given section

of real a:cis between poles s = -4 and s = -5, the phasors from the

conjugate poles and zeros have phase angle of equal magnitude bv'c

opposite signs, therefore these poles and zeros contribute nothing

to the phase angle of G(s)H(s). It is quite evident that those

to ''
' ct of ths given region

;le of G(s)H(s).
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Fig. 2.1 PARL on tha real axis.

If it is assu

rp - number of polos to right of tha given region

rz = number of zeros to right of the givrn region

then at any point of the given region of real axis

Arg ( G(s)H(s) ) = ±(rz ~ rp)n

Thus it can be concluded that any portion of the PARL which exists

in the given region must have a constant phase angle ±(rz - rp)Tr.

8). Breakaway points for PARL on real axis.

Breakaway points on real axis exist only for = ±k!T, in this

case the PARL roust approach and leave a breakaway point on the real

axis atai angle of 180°/n apart, when n is the total nt Bber of

leci approaching and leaving the point.

Proof: S . E \ s 233-265.



18

9). Angles of departure (fro.:n polos) and angles of arrival (to zeros)

' the PA 10,.

jles of depart . les and angles of arrival at

zeros can bs determined readily from the relation

in n

= Arg ( G(s)H(s) ) ~ ££ ArS <s -f z > - S Arg (s + p )

Is 1 * k=l k

for each fixed value of <.

For instance, consider the pole-zero configuration given in

Fig. (2«.2) e It is desired to determined the angle at which the

PARI, with = ±60° leaves the pole at s = -4 + jl. A test point

s is selected cv.oa that s is only slightly displaced from the pole.

The angles contributed by all critical frequencies except the pole

at -4 + jl are determined approximately by th3 phasors from those

poles and zsros to -4+jl. Ti;-j single angle contributed by the pole

at -4 + jl is th^n just sufficient to make the total phase angle at

the test point equal to as shown in Fig (2.2).

In the example case under consideration the phase angle of the

PARL is as I to be 60°. So

-(0,-8,) = -60°
Pi P2

cr

so

-90° - . = -60°
pl

. =
pl

10). Calculation of K on PARL.
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Referring to Equation (2.3), it can bo found that

Tr|s+ p
k |

K =
k=l

TTJS+.

(2.21)

1=1

Thus K can bo det ned either graphically or analytically.

Fig. 2.2 Departure Anglo at p

2.2 Method of Construction of PARL.

Construction of PARL is a task much more elaborate than that of a

conventional root locu3 even in the cimplest cases. As was i sntioned in

section 1.2, it i; \ngle

•- Tli bor can be reduced al
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it is still vary ted.

By the metl d of superposition, the first step is to factor the- given

open-loop transfer function into several simpler component transfer functions,

Then by superposing two of the component transfer functions loci at a time,

finally fcha required given function can be obtained.

The amount of work required will depend on the degree of complexity of

the gi . msfer function.

It is found that most of the open-loop transfer functions of interest

can be constructed by superposing several basic forms of PARL. They are so

called basic because of their simple geometrical fonr.s. Each one of them is

studied in the following:

l)o Simple Pole. The transfer function considered has only one real

pole in the left half of the s-plane with no finite zeros:

G(s)H(s) = -%— (2.22)
S + p

The corresponding loci are shown in Fig. (2.3a). The loci of

constant phase are radial lines emanating from the pole at s = -p.

2). Simple Zero. The transfer function considered has one real zero in

the left half of the s-plane and no finite poles:

G(s)ll(s) = K» (s + z) (2.23)

The corresponding loci are shown in Fig. (2.3b).

3). Simple Dipole. The transfer function to be considered is to have

the folic Ing form:

Gt .
* - ... s *• z

S -,
\~^-'J
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><r

Fig. 2.3a PARL for a simple pole.

Fisc 2.3 PARL for a simple :
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with both the pole and the zero on negative real axis.

Therefore

Arg (G(s)H(s) ) = A: hz ) - Arg ( s +p ) (2.25)

let s - o 4- j6>, and - Arg ( G(s)H(s) ) ? so

= Arg ( a + j^+ z ) - Arg ( a + jc»?+ p )

-lft? ,
-I t> .

°1 (p-z)
/o 0/-%= tan ~r— » tan '--r~r ~ tGn ~T

—

o—5 (2.26)
a + E a + p *»W4p2

-ta(P +z)

For a given constant phase cngle 0, this leads to

tan0 =
2 ^

P '

2

Z)
(2,27)

#> ^ -:p -:a (p+z)

or

2 2 2 f 7
G + 0(prz)-Kj Tp = (p - Z ) COt I W

so that

2 2 2 f 1
O +(j(p + z)+p -ft'i) •• l(p- z ) cot 0Jft> =

This last equation can ba written as

^ .<£-> cot0 ] +
^
a+ <p*z>] = ^0^(p+z)2^ p2

O
(2.27)

Evidently it can be concluded from Eq. (2.27) that the loci of

the simple dipole for constant phase angles are portions of the

clr< 3 center at (a = - ^-j—
»

Ws E-™ cot



23

r = l£^i!^(p -, 2 )

2
- 2pZ cos

2

0J

2
(2.28)

correspos loci for phase lead and phase leg transfer

functions are v. ., in Fig. (2.4) and Fig. (2*5) respectively.

It should be noted that t1 of positive and the PARL

cf negative are mirror image of one another with respect to the

real axis in each of the previous cases.

In order to u md the advantages of the superposition

method, an example will bo presented.

.pie. Suppose that the open-loop transfer function is

given t

G(s)ll(s) = K
(2.29)

s (s-H)(s-f4)

By definition, the PARL of G(s)H(s) satisfy

= Argl+ Arg— + Arg-L- (2.30)
s s+1 s44

and naturally each point on the PARL satisfies Eq. (2.29).

First, './rite this equation as follows:

Argl+Arg-1-- = 0. (2.31)
s s+1 A

Arg-L. +0 = (2.32)
s 1

Eq. (2.31) I a certain cc

of 1/s
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zr.:\ that of l/(s + l) of the sain.- phase angles individually a

shown in Fig„ (2.6). Than by super] g. tha PAKL of l/(s+4) on

thoss of Eq. (2.31) for tha '.iase angle individually one can

obtain the required PAKL for the transfer function given by

Eq. (2.29).

Fig. (2.7) shows the result of this superposition.

2.3 Simple Geoaietrical Method of Construction of the PAKL of Simple Dipole.

As has bscn mentioned previously, the PARL of a simple dipole is a very

basic one. This is because of: the 2th which the loci of roots of contant

phase for such an open-loop transfer function can be obtained.

Shown in Fig. (2.8) is a phase load dipole with the open-loop transfer

function

G(s)H(s) = K»il— (2.33)
3 +p

It was found by the author that the PARL for a given phase 0-0 of

G(s)H(s) can be obtained by constructing a circle passing through the pole A

and the zero B and containing an inscribed angle equal to the given phase

angle 0-. The portion of the circle in upp-jr half of the s-plane is tha

required PARL. The portion below the real axis is the locus for 0=0- 180°

in this case of phase lead open-loop transfer function, otherwise the portion

below is the locus for 0=0+ 180°.

Since at any point P on the upper half of the s-plane it was found f

Fig. (2.8) that

)) = Arg(s+z)- Arg(s+p) = (2.
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And . jha inscribed angle subtended by the chord AB forbad by

ths p zero, it nust always ba true that is

>.! to 0. or the constant pi angle.

PARL

A^.

-
1

- 180*

Fig. 2.8 Construction of PARL of a simple dipole.
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III. COM lTION of feedback control sys:

FROM '! 01 PAR] Al ) CGRL .

3.1 Introduction

Generally it is difficult or even impossible to design a feedback

control system satisfying the performance specifications given for both the

steady state response (steady state error) and the transient response

(stability requirement) simultaneously. Usually the simple method of increas-

ing the forward gain K can lead to an unsatisfactory transient response,

although the system steady state error may b:> reduced.

Therefore it is usually necessary to insert some sort of compensation

network or device into the system in addition to adjusting the forward gain

in order to have the system satisfy both the steady-state and transient

performance specifications. Although there has bsen a considerable amount

of work devoted to this design problem, it is believed by the author that the

compensation technique presented in this report represents another approach

to the problem. It differs from the classical compensation techniques in

that the PARL and the CGRL form the basis for the design decisions.

3.2 Application of PARL and CGRL to the Compensation Problem

It is assumed that the open-loop transfer function G(s)!I(s) is a rational

function of a complex variable defined In a certain region on the s-plane.

At any point s belonging to the defined region on the s-plane, G(s)H(s) has

a definite magnitude and phase. In other words, thj open-loop transfer

function G(s)H(s) at a given point on the s-plane will be completely deterr.il

'

'

" of G(s)H(s) :ified at th

poir
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From this point of view, it is found that compensation of a feedback

control system can be achieved by first developing a technique of finding

a network which will successfully compensate the phase at a certain point

in the s-plane where the transient specifications are satisfied. Fhase

compensation is achieved by forcing the PARL with an phase angle of ± 130°

of the compensated system through the? desired operating point. An adjust-

ment of the open-loc; ' gain will be necessary in order to satisfy

the steady state specifications. Tn other words, the compensation problem

in the s-plane is composed of two steps, on? dealing with phase compensation

and one dealing with the forward gain adjustment.

Consider a linear feedback control system with the open-loop transfer

function

(s+z )(s4z ) (s-:z )

G(s)H(s) =
, L

*
,

?
? ~r = K.F(s) (3.1)

(s-l-p ) (s+p ;• ... (s-rp )

1 2 n

It is assumed that the given system is operated with a forward gain

K which satisfies the steady state requirements of the system. The open-

loop transfer function becomes

G(s)HCs) = K^ F(s) (3.2)

A portion of the PAUL and CGRL of the uncompensated system is shown in

Fig. (3.1). The notation of Fig. (3.1) is defined as

(PARL)^ = PAPX of the uncomp d system with open-loop transfer

"' '•"' gi^ t b; Eq. (3.1).

'

j -\.
= with open-loop transfer

LI * *

•"' ;tion given by Eq. (3.1),



31

(PARL) vithdcci **.

Pig. 3.1 Application of PARI and CGHI to

the compensation oroblem.



3?.

(PARL) = PARL of the compensation network transfer function.
c

P. (0/°. ) - One of the dominant of the uncompensated closed-li •

loop system with open-loop forward gain K = K .

P (a ,^> ) = Cue of the desired dominant pole of the compensated closed-
o o o

loop system,

5 = Desired damping coefficient of the dominant poles of the compensated

system.

co - Desired undamped natural frequency of the dominant poles of the
n

compensated system,

a = £ CO = Damping constant (actual damping).

o
10 =/./!-§ - Conditional frequency.

As shown in Fig. (3.1), the uncompensated system hss a dominant closed-

loop pole located at the intersection of the (PARL) with = ±180° and

the (CGRL)
u

with K = K . In such a case, the transient response would be

completely undesirable although the steady state response satisfies the system

specifications as mentioned previously. Suppose that it is found that both

the transient and the steady state response would satisfy the system require-

ments if the dominant closod-lcop poles were moved to ooint P . F is the
o o

intersection point of the (PARL>
u
with <p -

2
ana the (CGRL) for K = K .

Clearly both phase and gain compensation are needed to achieve this relocation

of the operating point.

The first step in the compensation procedure is to determine the amount

of phase shift that the compensation network must supply at P . This can be
o

found by 3 he phase i gle at P from the (] \RL) diagram. Ino u

network musi ifficient phase shift, ,
c

at P to '-
-

'-' the ce ated system has a branch
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corresponding to a phase of ±180 degrees at .V « That is

+ O = ±180° (3.3)
c 2

or,

r.- «(0 ± 180°) . (3.4)
C l.

In these last two equations -180 degrees should be used if the conventional

root locus of the (PARL) under consideration was a lagging phase loc

• otherwise +180 degrees should be used in Eq e (3.3). Evidently phase lead

compensation is needed when

(0
2
± 180°) ^- , (3.5)

or phase lag compensation is needed when

(0
2
± 180°) ^ . (3.6)

Now suppose that phase lead compensation is needed for the curre

consideration. Due to the simplicity and convenience of the geometry in the

• construction of both the PAPvL and CGRL for simple dipoles, the suggested

compensation network has the form

s+z
c

G = K (3.7)
c c s+p vj./>

c

A few branches of the PARL of the dipole are plotted in Figure 3.2.

It is assumed that

re K* is an arbitrary 1 j factor K* is greater than 1 for
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a phase lead compensation network and less than 1 for a phase lag compensation

network, (See paragraph 2.2,, f phase lag dipole transfer

function PAPJu).

Fig. 3.2 PARL of G (s) = K • -~
c c s+p

A forward gain K is inserted zo that the desired steady state error

coefficie bs obtained. ' to a compensated open-loop

transfer the fo
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(G(s)H(s)) - K • (G(s)H(s)) • K . i~£ (3.9)CI C s-rp
"c

- KlVc • P(.) . |~£ (3.10)

since the open-loop transfer fmiction corresponding to the branch of the

(PABL) passing through P is
u o

G(s)H(g) = K
2

. F(s) (3.11)

Suppo :

: the steady state error specifications require a positional

error constant of K . Equation (3.2) implies

K = lira(K . F(s)) e K . limF(s) (3.12)
P &*0

1 l
s-X)

and for the compensated system the positional error constant K can be foi
P

from

K b lira ( G(s)H(s) ) = llm(K,«K,»K , F(s) * ~—

)

p
s->0 c

£->o
x 2 c S+P

c

z
= KLK • -- • limF(s) « n \

i 2 c P c^o w.u;

Since the steady state error must to maintained within the specifications,

the valua < E K must fee the before and after the c< :. . ;ation network

is : '-
(3,12), (3.13), find (3,8) reveals that



35

or when it is solved for K ,

K = K • limF(s) = K K.K — • lim F(s)
P 1 i 2 c>

Q

K,K'

K, = ^ (3.14)
1 k

2
K
c

where K is the gain of the compensation network at P .

c o

With Equations (3.S) and (3.14) substituted into Eq. (3.10), the

compensated open-loop trai function turns out to be

K K1 s-J-z

(G(s)H(s))
c

* ^K; P(.).—£.K
o

2 c c

S-rZ

= K K» • F(s) £ (3.15)
1 s+P

c

Futhennore, it is found by the author that z or p , K' , O , ft> , w ,
c c o o n

and are related to one another by the following formula
c

2 2 If 2 2
'

' i

"2 * 2)
K»a - a (K'-M)z +ftJ''.;-(s -a ) W+(K'z -a ) I • cos s

c o c n *• o c o ' ^ o co-' c

(3.16)

Iu other words, the suggested procedure of compensating a feedback

control system can be s Ized as folio: •

1). Specify a ,£>,** for the c : closed-loop poles. This determines
o o n

P in l lane,
o



37

2), Determine frc i Eq. (3<>4)»
c

3)t. Deterroii . vh sr phase lead < sation should be

employed from Equations (3.5) and (3 a 6),

4)„ Specify K' or a .

c

5). Obtain either z or K' from Eq. (3,16) or construct the branch of
c

the FAPX of the sir.plo dipole transfer function of Eq* (3.7) that passes

through P and z as mentioned in section 2,2 and determine p by inspection*° o c c

(See Fig. 3„1).

6). Determine the value of K at point P on the branch of PARI, of theCO
simple dipole that passes through P .

o

7). Subtitute the resulting values into Eq. (3.15) and obtain the

desired open-loop transfer function.

An example illustrating the results derived in this section follows.

Suppose that a certain feedback control system has the open-loop

transfer function

(s-*4 ) (s+5 ) (s -fO.4 s + 9. 04 )

It is desired to compensate the system in such a way that the transient

resp:>i:so has

£ a 0.56

oi = 1.80
n

•' ;i
". error constant,

thj un ted s;

con. id. On the s-] :;ent
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.

;•'
. cl< :

ole in the upper half s- . be

re ! . i P . The PA;
o

2
= „150°

K = 61.7

For l' a of pi c :ation 9 the corapensation network must

have a p] such tl t
c

C
+

2
=

0J
= -180°,

or

c
= - (0

2
-

X
) •= - (-5.50° ~ (-180°) )

.

e -30° (3.24)

Thus phase lag compensation is required. Therefore according to the

previous!Ly assumed criterion* Kc must be chosen loss t;

K- - ^?. <. 1
z
c

1 fOJ

(3.25)

Kowe ass -

. it z is chosen with a valva of
c

z ss 3 5
c

-

'

as shown in Fig. (3.3). Connect points P and the zero at -z \
c

:-ith

strain line AP . Construct an angle vith line AP as ono
o o

and P the
o

vertex. angle AP C nust ba equal to , where C is theo ' c
intercept of the

ot ith the real axis. t bo to the? right of point A in

! . , r.
'

. to f:ie left of

•

• «

»

:
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P «= 1.85 (3.26)
c

so that

K» = -
1—

- = 0.53 -< 1
3.5

b.s required.

And it was found that t:h3 gain at P on the branch of (PARL) with a

phase angle of is
c

K = 1.72
c

According to Eq, (3.7), the c . nsation nstvorlc transfer function

vould be

G
c
(s) HMn!jy

L
°-">

and according to Eq. (3.15) the compensated system oran-loop transfer

function would b2

2

( c t~yi(~) ) - f»5<n m <m s+3.5 (s +S+1.25)

s+1.85 (s-f4)(s+5)(s
2
+0.4s + 9.04)

137 (s+3.5)»(s2+s+1.25)

(s+1.85).(s-f4).(s+5).(s
2
+0.4 s + 9.04)

(3.23)

as requir

A -

.

• previous
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] ~
j s retain the correct . ite error she:;.- that for the

uncompensated sysl

•

(259) (1.25)

P ~ 4.5;
-1.8

and for the compensated syst

•

, (137) (3.5) (1.25) „

4.5(1. 85) (9.1

The rz conventional root locus diagram is shown in Fig. 3.4.

3.3 Derivation of Equation (3*16)

unique relation between variables s «, p t a , to ,a> , K' and 6 is
c c o o n c

so important in the compensation procedure that a detailed derivation of the

equation is necessary.

The magnitude of the phsors PD.PE and DE in Fig. (3.1) are related
o o

a?; follows:

P D = / P E
2
+ D2

2
= J<% + (p - a )

2
(3.17)

o o oco
P B = J:} + (z - cr )

2
(3.18)

o o c o

DB = p - z = (K» - 1)?. (3.19)
c c c

From an elementary trigonometric formula, it is found that

2 2 2
-:• F D - 1

- (3.20)
2> P D

o o
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and substitution of the result:: of Equations (3.17) s (3.18) and (3.5.9) into

Eq, (3. 20) leads to

2 2 2 2 2
(w + (p ~a ) ) -;- {cm '

r (z -a ) ) - (p -z )
- rf _ ___0 C O O CO c c_

c 2 2 2 2 I
2((A> -;- (z -a ) )•<*> + (p -a ) ) )s

O CO O CO
2 2 2 2 2 2

2 («-:</ ) + p -;• z - 2a (p -fz ) - (1C
: -2K»+l)z

_ o o c c o c c c

2 2 2 2 —
2( (o -}- (z -aJ") (» + (p -a ) ) )s

O CO O CO

2 2 2 2 2 2
2(o >.- (K» +l)z - 2a z (K'-fl) - K» z + 2l*.«z -z

n j: o c c c c

2 <<"o +(V°o )2) ^o +(Va
o>

2>^

2 2
K'z -a (K« +1) z +<oco en
2 2 2 2 I

2( (W + (z -a) ) (A> + (K'z -a ) ) )a
O CO O CO

(3.21)

This last equation can ba rearranged to yield

K'z
2
-a (K'+l)z +

2
-((w+((z -a )^)(«

2
-;-(X'z -a )

2
))s cos =co cnoco o co c

(3.22)



IV. SUMMARY

Th .
' characl :rirtin equation

1 -I- G(s)H(s) = (4.1)

of a feedback control system maker; the studying of the characteristics of

a feedback control system on the s-plans possible. The problem of reshaping

the conventional root locus on the s*>plana in such a vay as to meet a certain

set of requirements can be accomplished bj using conventional frequency

resp< d sign t< :hniques i ' then interpretating the results in the s-plane.

The principle difficulty with this technique is that the designer can not

Lntain adequate control of the system transient response. The generalized

root contours of Kuo (ref. 6) rep-resent on effort to overcome this difficulty.

In this report it is shown that the phase angle root locus and constant gain

can be used to c -ate a linear feedback control system in such

a way as to give the designer simultaneous control of both the transient a

steady state performance.

Fron; a phase angle point of vio" 9 the conventional characteristic

equation can be generalized into

G(s)H(s) - e j ^ = (4.2)

where Is t] ph se parameter of the open-loop transfer function. When

is set equal to 180°, Eq. (4.2) reduces to the conventional closed-loop

characteristic equation. It is note,' that according to Eq. (4.2) each point

in tl '
'

• with it. In other

g to a given

-ion. It is
j the difference in phase i
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any tr.ro points in s-plans. Tha phase angle root loci as defined in this

report, depicts Has phase dil in sue] y as to aid in the

compensation problem. Furl >re, each point in tho s~plane corresponds

to a v "loop forward gain K» Tho constant gain root locus depicts

this gain relationship in such a vray as to be useful in tho compensation

t,:oblen.

A procedi t -it utlises pha ;le root locus and constant gain root

locus d is as tools for determinii.g the pole ar.d zero location of simple

dipole compensation network is presented. The procedure is illustrated by

an example. Althoi le is a simple one in terms of the number of

open^loop poles and seres and in terms of the complexity of the compensation

network, it is clear that the computational problem is a difficult one.

Kovvover, it appears that tho problem is amenable to digital computer ir.ple»

mentation.
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ABSTRACT

Loci in the s-plane of < open-loop transfer

function < are called phase angle root

loci (FA'<L). Loci . of constant open-plai tn ore t

constant gain root lcci (CGRL). Various characteristics of these loci are

derived and discussed.

A procedure that utlizes . le root loci and constant gain root

loci diag as tools for determining the pole and zero location of simple

dipolo c sation network is pre! The procedure is illustrated by

an example. Although the example is a simple one in terms of the number of

poles and zeros and in terms of tha complexity of the compensation network,

it is clear that the computational problem is a difficult ona. However, it

appears that the problem is amenable to digital computer imp! ttaticn.


