A SNOY OE PUNSE AKIS ROOT LOCT TECH TOUES

LJ

Yünoshin waio

\qquad

A WASTARS REFOL

```
subuicted in partial fulim{ment of the
    requirenents for the degree of
        MASTER OF SCIENOE
        Department of Electxical Engineswing
        Kansas Stcto Maiversity
        Mamhattor:% Ransas
```


$\angle D$
2668
$R 4$
1968
13
1.2

Page

2.1 Introtvetion ... 1
1.2 Fhase Angle noot Thei (PAM) Definition 2
1.3 Canstant Gain Poot Jooi (CGiL) ... 4
II. THE CONSTRUCTION OF PHSEZ AKLLE NOOT LOCI 8
2.1 Pules of Constivetion 0 PARH, ... 8
2.2 Methot of Cometzitction of DAtt, ... 19

OF RARL AK CGKL .. 29
3.1 Introduction .. 29
3.2 Application of RARE and CGRZ to the Compensation Prosioms 29
3.2 Derivation of Equation (3.16) ... 41

IV。 SLaskiky ... 4
BIBLIOGRAYK .. 46

I P PWCF ANGL: ROOT LOCJ

1.1 Introduction

In the frequericy donain stuciy of foedback control systems, the ivquist Criterion, the Bode Flot, and the Nichols Chart are very powerful tools of analysis. Those techniques lead to the design of a feedback control systems from the frequancy domain point of view with the system performance specifications given in terms of gain maxgin, phase margin, resonant peak, bandwith, etc.

However, by narrowing the region of analysis from the entire s-plane to the $\mathbf{j}-\mathrm{axis}$ in the above mentioned teciniques, the capability of maintaining control over both frequency and tine domain responses is discarded.

During the last two decades, fuch work has been cione on the deveIomant of design techaiques which simultaneously control both frequency and tiria domain responses of 1 inear feectbact: control systens. The most basic and important contributions were accompIished by:
1). Wiener (ref. 9), in his presentation of a statistical design method, consiciers the actual input signals to a system as described in terma of statistical average propertios;
2). Guillomin (ref. 8), who applied the concepts of network synthesis to the synthesis of feedback control systens thus forcing the systern to meet specifications in both the frequency and time domains; and
3). Evans (ref. 7), in his development of the root-locus nethod, adopted one of the basic viempoints of the frequency dorain in attempting to modify the ofnulonp syacon characteristics. Evans' work consicers botr the fregumay ace time duan s.

The reat Iocus wathod tras finst introsuend by Evens in 19\%8, and has been greatyy developad in thic pust tro couctor In his tecliniques the Laplace twernfom and complex. fureticn theory are the basic tools and design is guided by the bohavior of variation of the closed-loop transfex function poles with systen paraneters. The ricot-locus method can be used to adjust systein geing gutie the design of compensotion netrorks as need to satisfy a given set of specifications on transiont or steady state perfomance of the systeri.

M1thotgh the co..ventional rootolocus method seens to be a very good tool. in analyzing feodback control systens, it is found that a more general and systematic technicue of araiysis cm be dorived from Evans' root-locus method. This is the Phase Argle Root Loci nethod of analyzing foedback control systems in the entire smpans. By this technique, vinich combines the Thase Angle Root Loci and Constent Coin Poot Locis a riore systomatic and cloar technique for designing a feedback control systen and in reshaping the conventional root-locus to satisfy certain desirable specifications can be developed. This report is mainly ciedicated to the study of this techrique.

1. 2 Ehase Angle Root Loci (PARL) $-\cdots \infty$ Definition

From the open loop transfer function $G(s) H(s)$ of a given systen, it is possible to obtain a family of loci by letting the piase angle of $G(s) H(s)$ be equal to a constant angle. This fanily of loci on the seplane is called the Finase Angic Root Loci (PARL) of the transfer function, $G(s) H(s)$.

In a inear feedback control systen without transportation Iag, the

$$
\begin{equation*}
G(s) H(s)=k \cdot \frac{\left(s+z_{1}\right)\left(s+z_{2}\right)\left(i+z_{3}\right) \ldots \ldots .\left(\frac{\left(s+z_{n}\right)}{\left(s+r_{1}\right)\left(s+\eta_{2}\right)\left(s+p_{3}\right) \ldots \ldots \ldots\left(s+p_{n}\right)}\right.}{(s)} \tag{1.1}
\end{equation*}
$$

Consilier the folloming enpression where ρ is treated as a paraneter

$$
G(s) H(s)=K \cdot \frac{\left(s+z_{1}\right)\left(s+z_{2}\right)\left(s+z_{3}\right) \ldots \ldots\left(s^{\left(s+L_{m}\right)}\right.}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right) \ldots \ldots \ldots\left(s_{n}\right)}=e^{j^{\phi}}
$$

Those $\ddot{i}_{i}^{\prime} s$ and $p_{i}{ }^{\prime} s$ are zeros and poles of the openoloop systca.

Fig. 1.1 A Feeciback Control Systc-

Therefore

$$
\begin{aligned}
D=\operatorname{Arg}(G(s) H(s)) & =\operatorname{Arg}\left(K \cdot \frac{\prod_{i=1}^{n}\left(s+z_{i}\right)}{\prod_{k=1}^{n}\left(s \div p_{k}\right)}\right) \\
& =\operatorname{Arg} \prod_{i=1}^{m}\left(s+z_{i}\right)=A r g \prod_{k=1}^{n}\left(s+p_{k}\right) \quad(1.3)
\end{aligned}
$$

$$
\begin{equation*}
\phi=\sum_{i=1}^{n 1} \operatorname{Arg}\left(\sigma \therefore \sigma_{j}\right) \quad \sum_{k=1}^{n} \operatorname{Arg}\left(s+\mathrm{p}_{k}\right) \tag{1.4}
\end{equation*}
$$

By definition，Whe RNRi（Fnase Arsle Root Loci）are constructed by setting ϕ equal to a constant and varying the openoloop gain K in such a manner as to always satisfy Eq e（1．02）．

Furthemrore，it can be shom that the PARC，of $G(s) H(s)$ can be detemmined by supezyosition technicyas．It is voriminile to point out that the conven－ tional root locus of Evens（ref．7）is only one nember of the family of loci thnt comprise the PARU．It is obtained by setting $\emptyset= \pm 180^{\circ}$ 。

That is，the conventional root iocus is derived from

$$
\begin{equation*}
G(s) H(s)=e^{ \pm i \Pi}=-1 \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
I \div G(s) H(s)=0 \tag{1,6}
\end{equation*}
$$

Equation（ 1.6 ）is the conventional characterisitc equation for a feedback control systen．

1． 3 Constant Gain Root Looi（CGRI）

Fox any ofarmioop transfer fluction，$G(s) H(s), E q$ ．（1．2）can be used to obtain a family of constant gain contours．For eacin rember of this family the gain K is fixed and 6 is alloned to vary．

The equation

$$
G(s) H(s)=e^{j j}
$$

2・やがいに

$$
|G(s) H(s)|=1
$$

or, teforriug to Eq. (1.2) Eging, it is fermed qliat

02

$$
\begin{equation*}
\left.K=\frac{\prod_{k=1}^{n}\left|s \div \eta_{k}\right|^{n}}{\prod_{i=1}^{n} \mid s+z} \frac{1}{i} \right\rvert\, \tag{1.7}
\end{equation*}
$$

It is interesting tiat tho Constant Gin foot Loci in the suplene depend only on the relative loeations of poles and zeros of the open.loop tuansier function and has nothing to co with the PARE. It can be showa That the PARL are orthogonal to the CGRL。 (ret. $1,2, \& 3$). A fem examples Eollows

Example 1. $\quad \therefore(s) H(s)=K \cdot \frac{1}{s+2}$

Fig. 2.2 CGRL for $G(s) H(s)=\frac{K}{s+2}$

Example 2. $G(s) H(s)=\frac{K}{\left.s(s+1)\left(s s^{\prime}\right\}\right)}$

2.1 Putes of Constiuction of PitR,

It vas found that a set of rutes for corstructing RiAl exists. These rules, in any case, should be regazded only as an aid to the conctruction of the PARis; thoy do not provided the catact plot. They are given as follows:
1). The starting points of the PAWHen $(\mathbb{K}=0)$

The EARL start at the poles of C(s)H(s).
Froos:

The PARE dye coinitarad to starc at tho points where the open-100p gain K is ze\%o,

Fron equatios (2.2) it can be foumd that

$$
\begin{equation*}
K \cdot \frac{\prod_{i=1}^{m}\left(s+z_{i}\right)}{\prod_{k=1}^{n}\left(s+p_{k}\right)}=e^{j 0} \tag{2.1}
\end{equation*}
$$

Taking the absolute value 0 : both sides of Eq. (2.1)

$$
\begin{equation*}
K \cdot \frac{\prod_{i=1}^{m}\left|s+\pi_{i}\right|}{\prod_{k=1}^{n}\left|s+p_{k}\right|}=\mid e^{j s j^{i}} \tag{2.2}
\end{equation*}
$$

Wheic only positive valuos of K eve considzzed, this last equation

$$
\frac{\prod_{i=1}^{n}|5+z|}{\prod_{k=1}^{n}\left|S+i_{i}\right|}=\frac{1}{k}
$$

As K^{-1} approaches infinity wich implies that s appronches the poles of $\mathrm{C}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ ；that is，s arrancins p_{k} ．

2）．Tha temaine？puinte of the PARJ，$(k=\infty)$
The PAri terminates at the zetos of $G(s)$ Mis）．
Pioof：
The EAKG aro considered to end at the points where K beconss infinite．With reforeace to equation（2．3），as K approachas infinity，the value of tio equation approaches zero，which requires that s mitst approaches to the zeros of $G(s) H(s)$ ；that is：s approaches z_{i} 。

3）．Number of separate branches for ach phase angle．
Let

```
    N = Numer of soparate Dranches for a given phase angle.
    Z = Nimber of finite zeros of G(s)H(s).
    P = lumer of finite polus of G(s)H(s).
thon N = Nax(Z, P).
```

Apparently there mute be as many separate branches for each given phase angle，as the latger value of Z and p ，since the loci must start at the poles and end at the zeros of $G(s) H(s)$ ．

4）．Miryo image proparty of tion pape with respect to the real axis in だンにがごいる。

the fortion of the Tate corrammaing to a phase of $+\$$ are nirror itiage of oro anochar wiin respect to tho ronl axts in the suplane. Fioos:

From equation (z. (s)

$$
\begin{equation*}
\xi=\sum_{i=1}^{m} A_{i} g\left(s+\eta_{i}\right)=\sum_{k=1}^{n} \operatorname{Arg}\left(s+p_{k}\right)=\operatorname{Arg}(G(s) H(s)) \tag{2.4}
\end{equation*}
$$

Now let

```
r = number oi finite roal zeros of G(s)H(s).
v}=\mathrm{ numbar of fairs of complex conjuzate zoros of G(s)H(s).
t = nubor of finite roai poles of G(s)H(s).
q = number of pilis of complex conjugate poles of C(s)H(s).
```

It is evidently true that $2 \mathrm{v}+\mathrm{x}=\mathrm{m}$ and $2 \mathrm{q}+\mathrm{t}=\mathrm{n}$ 。 With

$$
s=\sigma+j \omega_{i} \quad z_{i}=\alpha_{i}+j \beta_{i}, p_{k}=\gamma_{k}+j \delta_{k}
$$

equation (2.ti) can be rowricten as

$$
\begin{aligned}
\operatorname{Arg}(G(s) H(s))= & \sum_{i=1}^{v} \operatorname{Arg}\left(\sigma+j \omega+\alpha_{i}+j \beta_{i}\right) \\
& +\sum_{i=1}^{v} \operatorname{Arg}\left(\sigma+j \omega+\alpha_{i}-j \beta_{i}\right) \\
& \div \sum_{i=v+i}^{m} \operatorname{Arg}\left(\sigma+j \omega+\alpha_{i}\right) \\
& =\sum_{k=1}^{n} \operatorname{Arg}\left(\sigma+j \omega+\gamma_{k}+j \delta_{k}\right) \\
& \cdots \sum_{i=1}^{n}:\left(\sigma+j \omega+\gamma_{k} \omega j \delta_{k}\right) \\
& \cdots \sum_{i=-i+2}^{n} \operatorname{Arg}\left(\sigma+j \omega+\gamma_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{k=1}^{q} \tan ^{-1}\left(\frac{1}{\omega+\gamma}\right)-\sum_{k=1}^{q} \tan ^{-12}\left(\frac{k}{\sigma+\gamma_{k}}\right)-\sum_{k=q+1}^{n} \tan ^{-1}\left(\frac{a)}{\sigma+\gamma_{k}}\right)
\end{aligned}
$$

OL

$$
\begin{align*}
\phi= & \sum_{i=1}^{v} \tan ^{-1} \frac{\omega^{2}\left(\sigma \div \alpha_{1}\right)}{\left(\sigma+\alpha_{i}\right)^{2}-\left(\omega-\beta_{i}^{2}\right)}+\sum_{i=v+1}^{n} \tan ^{-1} \frac{\omega}{\sigma+\alpha_{i}} \\
& -\sum_{k=1}^{q} \tan ^{-1} \frac{\omega^{2}\left(\sigma \div \gamma_{k}\right)}{\left(\sigma+\gamma_{k}\right)^{2}-\left(\omega^{2}-\delta_{k}^{2}\right)}-\sum_{k=q \div 1}^{n} \tan ^{-1} \frac{\omega}{\sigma+\gamma_{k}} \tag{2.5}
\end{align*}
$$

Since $\$(\sigma, 4)$ is an cid furction inc\%, as can be concludad fron Eq. (2.5)
$\phi\left(\sigma,{ }^{i 3}\right)$ will change sign when the PAlL pass through the real axis.

5). Asymptotes of PARI,

For very large valus of s, tho bach are asyaptotic to stralght lines with slope anglos given by

$$
\theta_{k}=\frac{2 k \pi-\beta}{P-Z}
$$

where $k=0,1,2,3, \cdots \ldots \ldots \ldots(p-z)$.

Proof:

The general form of the open-loop transfer function can be written as

$$
\begin{aligned}
G(s) H(s) & =K \cdot \frac{s^{n}+a_{1} s^{m \cdots 1}+a_{2} s^{m-2}+\cdots \cdots \cdots \cdots+a_{n}}{s^{m+p} \div b_{1} s^{n+p-1}+b_{2} s^{m+p-2}+\ldots \ldots+b_{m+p}} \\
& =K \cdot \frac{1}{s^{m+p}+b_{1} s^{m i p-1}+b_{2} s^{m+p-2}+\ldots \ldots+b_{m+p}} \\
& =K \cdot \frac{s^{m}+a_{1} s^{m-1}+a_{2} s^{m-2}+\ldots \ldots \ldots+a_{m}}{s^{p}+\left(b_{1}-a_{1}\right) s^{p-1}+\ldots \ldots \ldots \ldots+\frac{R(s)}{p(s)}}
\end{aligned}
$$

where $p=: P$. Z, and $R(s)$ is a polyncaial in s with degree less than m, and

$$
P(s)=s^{m}+a_{1} s^{n-1}+\ldots \ldots \ldots \ldots \ldots \ldots+a_{n}
$$

The PARL is conserveted by setting
or

$$
\begin{equation*}
s^{p}+\left(b_{1}-a_{1}\right) e^{p-1} \div \ldots \ldots \ldots \ldots+\frac{R(s)}{P(s)}=K e^{-j p} \tag{2.7}
\end{equation*}
$$

As s becones very larve, the last tern $R(s) / P(s)$ becones very small and relatively not significant when conpared with the other terms. Only the first tro terms of Equation (2.7) are considered significant. This approxination leads to

$$
\begin{equation*}
s^{p}+\left(b_{1}-a_{1}\right) s^{p-1}=K e^{-j,} \tag{2.8}
\end{equation*}
$$

for very large valuas of s. And (2.8) can be written as

$$
\begin{equation*}
s\left(1+\frac{b_{1}-a_{1}}{s}\right)^{\frac{1}{p}}=|x|^{\frac{1}{p}} \cdot e^{j(2 \operatorname{lar}-\emptyset) / p} \tag{2.9}
\end{equation*}
$$

Using the binowlal theorem the factor

$$
\left(1 \div \frac{h_{1}-a_{1}}{s}\right)^{\frac{1}{p}}
$$

is expanded into an infinite series, ifith the resuit

$$
\begin{equation*}
\left.s\left(1+\frac{b_{1}-a_{1}}{p s}+\ldots \ldots \cdot\right)=|:|^{1} \cdot e^{j(2 \pi \pi}-j\right) / p \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
s+\frac{b_{1} \cdots a_{1}}{p}=|N|^{\frac{1}{p}} \cdot e^{j(2: \tilde{I}-\emptyset) / p} . \tag{2.11}
\end{equation*}
$$

Suistituting $s=\sigma \div j^{\prime \prime}$ into Eq. (2.11) yieids

$$
\begin{equation*}
\sigma+\frac{b_{1}-a_{1}}{p}+j \omega=|k|^{\frac{1}{p}} \cdot \cos \frac{2 k \pi-\theta}{p}+j \sin \frac{21 \pi-\phi}{p} \tag{2.12}
\end{equation*}
$$

Equting the real and imazinary parts of Equation (2.12) ylelds

$$
\begin{align*}
\sigma+\frac{b_{1}-a_{1}}{p} & =|K|^{\frac{1}{p}} \cdot \cos \frac{21 \pi-\psi}{p} \tag{2.13}\\
& =|K|^{\frac{1}{p}} \cdot \sin \frac{2 \operatorname{lin}-\phi}{p} \tag{2.14}
\end{align*}
$$

with $k=0,1,2,3, \ldots \ldots \ldots \ldots \ldots(p-z)$.
Solving for $K^{\frac{2}{p}}$ from the last two equations leads to

$$
\begin{equation*}
|\mathrm{K}|^{\frac{i}{p}}=\frac{\omega}{\sin \frac{2 \operatorname{kin}-p}{p}}=\frac{\sigma+\frac{b_{1}-a_{1}}{p}}{\cos \frac{2 k \pi-\sigma}{p}} \tag{2.15}
\end{equation*}
$$

and solving for ${ }^{\text {a }}$ yieids

$$
\begin{equation*}
=\tan \left(\frac{2 l \pi-d}{p}\right) \cdot\left[\sigma+\frac{\left.b-a_{1}-\frac{1}{p}\right]}{}\right] \tag{2.16}
\end{equation*}
$$

 of 1: in in.

$$
w=n\left(\sigma-\sigma_{1}\right)
$$

where m is the sion and σ_{1} is tra intercert on the σ moxis. Thus
and

$$
\begin{equation*}
\sigma_{1}=-\frac{b_{1}-a_{1}}{P-Z} \tag{2.18}
\end{equation*}
$$

wiere $k=0,1,2,3, \ldots \ldots \ldots \ldots . \ldots,(p-z)$.
6). Intersection of palu asjntentes on real axis.
a). The intorsoctions of the asymptotes lie on the real axis.
b). The interscction of the asyaptotes on the real axis is given by

Proof:
a). Froan the proven property that the $+\$$ and the 0ϕ loci are mirror inages of one another with respect to the real $0 \times i$ is and the phase angle of the loci changes slgn after crossing the $\sigma-\overline{\mathrm{c}} \mathrm{i}$, , it is ciear that the intersection of nsymotes must lie on the real axis.
b) This statment follows directly fron Equation (2.18), since

$$
\begin{aligned}
-a_{1}:= & \text { sum of tis roots of the mumator polymaial of } \\
& G(s) H(s) \text { : of sun of the zeros of } G(s) H(s)
\end{aligned}
$$

therefore

$$
\begin{aligned}
\sigma_{1} & =-\left(-\frac{1-a_{1}}{P-Z}\right) \\
& =\frac{\text { Poles of } G(s) H(s)-\sum \text { Pros of } G(s) H(s)}{P-Z}
\end{aligned}
$$

7). Patir on real axis.

There exiots no 100 i on tive real axis excopt the loci with phase angle $\rho=$ sint, and k is a cortain dofined constant. On a given section of the real axis, Pari exists only for $\phi=$ that, with k equal to the resultant of tho number of zeros minus the nower of poles on the real axis to the rigite of the given sectien.
A simple example vill iliustrate this clearly. A certain
feedback control systen has the open-100p txansfer function:

$$
G(s) H(s)=\frac{K\left(s^{2}+4 s+5\right)(s+3)}{s(s+4)(s+5)(s+6)\left(s^{2}+2 s+10\right)}
$$

As thas shown in Fig. 2.1, at any point s in the given section of real axis tatween poles $s=-4$ and $s=-5$, the phasors from the conjugate poies and ascos have phase angle of equal nagnituuie but opposite sizns, therefore these polos and zeros contribute nothing to the phase angic of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$. It is quite evident that those real poles og mazos in cated to tion iost of the given razion

Fig. 2.1 PARJ on tha real exis.

If it is assuriad

$$
\begin{aligned}
& I p=\text { nuaber of poles to right of the given region } \\
& r z=\text { number of zeros to right of the given region }
\end{aligned}
$$

then at any point of the given region of real axis

$$
\operatorname{Arg}(G(s) H(s))= \pm(2 z \cdots 2 p) \pi
$$

Thus it can te concluled that any portion of the PARL which exists in the given region nust have a constant phase angle $\pm(x z-I p) \pi$.
8). Baeakavay points for PARi on real axis.

Breakaray points on real axis caist cnly for $\emptyset=4$, in this case the PARL must approach and leave a breakaray point on the real axis atia angle of $280 \% / n$ apart, when n is the total nunber of Icci. otproaching and Icaving tha point.

9). Angles of ceparturc (fich poles) and angles of arrival (to zoros) of the PAFi.

The engles of dopartuce frum poles and angles of arrival at zeros can bo defermined reodily fron the relation

$$
\emptyset=\operatorname{Arg}(G(s) H(s))=\sum_{i=1}^{n} \operatorname{Arg}\left(s+z_{i}\right)-\sum_{k=1}^{n} \operatorname{Arg}\left(s+p_{k}\right)
$$

for each fixed valua of ϕ 。
For instance, consider tho poleezero configuration given in Fige (2.2), it is desiret to detesinined the angie at which the PAR, with $\emptyset= \pm 60^{\circ}$ Icaves the polo at $s=-4+31$. A test point s_{1} is selected suich that s_{1} is only s?ightly displaced from the pole. The angles contributed by ail critical frequencios except the pole at $\cos ^{+j 1}$ are dotemanod appioximately by the phasurs from those poles and zaros to $\cdot \frac{1}{+}+\mathrm{jl}$. The single angle contributed by the fole at $-4+j 1$ is than just sufficient to make the total phase angle at the test point equal to b as shom in Fig (2.2).

In the exanple case under consideration the phase angle of the FARL is asstmed to be 60°. So

$$
-\left(\theta_{\mathrm{P} 1}-\theta_{\mathrm{P} 2}\right)=-60^{\circ}
$$

or

$$
-90^{\circ}-\theta_{\mathrm{p} 1}=-60^{\circ}
$$

so

$$
\theta_{p 3}=-350
$$

Roferring to Eywation (2.3), it can be found that

$$
\begin{equation*}
K=\frac{\prod_{i=1}^{n}\left|s+p_{1}\right|}{\prod_{i=1}^{m}\left|\leq+z_{i}\right|} \tag{2.21}
\end{equation*}
$$

Thus K con be detemmined eithor graphically or analytically.

Fig. 2.2 Departure Ancic at P_{I}.
2.2 Yethed of Construction of PARL.

Construction of PARL is a task nuch more elaborate than that of a conventional root lone:s even ia the citplost onses. An whs fantionad in

it is still very conp?icated.
By the mathot of suporposttien, the first step is to factor the given open-100p transfer furction into savaral siupior component trensfer functions. Then by superposing two of the comporant transfer functions loci at a tine, finally the requirad mand of the givan function can be obtained.

The amorat of nozt required vill depend on the degree of complexity of the given transfer function.

It is found that most of the op:n-loop transfer functions of interest can be constructed by superposing several basic forms of PARJ. They are so called basic bacause of their simple geometrical forms. Each one of them is studied in the following:
1). Simple Pole. The transfor function consiciered has oniy one real Fole in the loft half of the s-plane with no finite zeros:

$$
\begin{equation*}
G(s) H(s)=\frac{K}{s \div p} \tag{2.22}
\end{equation*}
$$

The corresponding loci are shown in Yig. (2.3a). The 1.001 of constant phase are radial lines oranating from the pole at $s=-p$.
2). Simple Zero. The transfer function considered has one real zero in the left half of the s-plans and no finite poles:

$$
\begin{equation*}
G(s)!!(s)=K \cdot(s+z) \tag{2.23}
\end{equation*}
$$

The corresponding loci are shorn in Fig. (2.3b).
3). Simple Dipole. The transfer function to te consldered is to have the following fom:

$$
G(3) \cdot(:)=\because \cdot \frac{n+3}{s+3}
$$

Fig. 2.3a PARI for a staple pole.

Fage 2.3 b Mas fur a simple expo.

With both the pole nid the zezo on rozative real axis.
Therefiore

$$
\begin{equation*}
\operatorname{Arg}(G(s) 1!(s))=\operatorname{Arg}(s+z)-\operatorname{Arg}(s+p) \tag{2.25}
\end{equation*}
$$

let $s=\sigma+j \omega_{\text {, }}$ and $\beta=\operatorname{Arg}(G(s) H(s))$, so

$$
\begin{aligned}
\phi & =\operatorname{Arg}(\sigma+j \omega+z)-\operatorname{Arg}(\sigma+j \omega+p) \\
& =\tan ^{-1} \frac{\omega}{\sigma+z}-\tan ^{-1} \frac{\omega}{\sigma+F}=\tan ^{-1} \frac{(p-z)}{\omega^{2}+\sigma^{2}+p^{2}+\sigma(p+z)} \quad(2.26)
\end{aligned}
$$

For a given conctont Fhase angle ϕ, this leads to

$$
\begin{equation*}
\tan \phi=\frac{(p-z)}{\sigma^{2}+\sigma^{2} \div p^{2}+0(p+z)} \tag{2,27}
\end{equation*}
$$

or

$$
\sigma^{2}+\sigma(p+z)+s^{2}+p^{2}=[(p-z) \cot \eta] \omega
$$

so that

$$
\sigma^{2}+\sigma(p+z)+p^{2}+\omega^{2}-[(p-\varepsilon) \cot \theta] \omega=0
$$

This last equation can be wiften as

$$
\begin{equation*}
\left[\omega-\frac{(p \cdot z)}{2} \cos \theta\right)^{2}+\left(0+\frac{(p+z)}{2}\right)^{2}=\frac{\csc ^{2} \theta}{4}\left[(p+z)^{2}-2 p z \cos ^{2} \phi\right) \tag{2.27}
\end{equation*}
$$

Evidently it can be concluded from Eq. (2.27) that the loci of the simple dipole for constant phase angles are portions of the ciactes assing timouth p and 2, atim canter at $\left(\sigma=\frac{p^{+}+2}{2}\right.$,

$$
\begin{equation*}
r=\frac{|\csc |}{2}\left[(p ; z)^{2}-2 F \sigma \cos ^{2} f\right]^{\frac{1}{2}} \tag{2.28}
\end{equation*}
$$

The comenpoding loci for phase lead and phase lay transfer functions aro (orn in Mig. (2.k) and Fig. (2.5) respectively.

It should be noted that tho BarL of positive D and the FARL of nagative ρ are miztor inage of ons another with respect to the real exis 3 n each of ti:z previous cases.

In orior to madorstand the advantages of the suparposition method, in example will be presented.

Eraviple. Supposo that the open-100p transfer function is given e:

$$
\begin{equation*}
G(s) H(s)=\frac{K}{s\left(s \sigma_{-}\right)(s+s)} \tag{2.29}
\end{equation*}
$$

By definition, tha RARI of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ ectisfy

$$
\begin{equation*}
\phi=\operatorname{Arg} \frac{1}{s}+\operatorname{Arg} \frac{1}{s+1}+\operatorname{Arg} \frac{1}{s+1 / 4} \tag{2.30}
\end{equation*}
$$

and naturaily each point on the Mry setisfies Eq. (2.29).

First, urlte this equation as follors:

$$
\begin{align*}
& \operatorname{Arg} \frac{1}{s}+\operatorname{Arg} \frac{1}{s+1}=\sigma_{1} \tag{2.31}\\
& \operatorname{Arg} \frac{1}{s+4}+\beta_{1}=\rho \tag{2.32}
\end{align*}
$$

Fig. 2.4 PARI for a simple phese leed aipole.

$$
-30^{\circ}
$$

and that of $I /(s+1)$ of the samb phase angles indivictulily as tras shown in Fig. (2.6). Then by eup.rposing, the FiRT of $1 /(s+4)$ on those of Eq. (2.3i) for tha site phase angle individually one can obtain tile requisod fate for the trancfer function given by Eq. (2.29).

Fig. (2.7) shows tho result of this superposition.
2.3 Simple Goonatrical Mothod of Construction of the PARE of Smple Difole

As has baon rationed previously, the RARL of a siraple dipole is a very basic one. This is because of the ease with thich the loci of roots of contant phase for sweh an open-loop transfen function can be obtalnad.

Shown in Fige (2.8) is a fhase lead dipole vith the open-loop transfer function

$$
\begin{equation*}
G(s) H(s)=K \cdot \frac{s+z}{s+p} \tag{2.33}
\end{equation*}
$$

It vas found by the author that the RARS for a given phase $\emptyset=\zeta_{1}$ of $G(s) H(s)$ can $b a$ obtained by constructing a circle passing through the pole A and the zero B and containing on inscribed angle equal to the given phase angle 0_{1}. The portion of the circle in uppor half of the s-piane is the required EARL. The portion below the real axls is the locus for $\rho=\phi_{1}-180^{\circ}$ in this cace of phasa lead opan-lopp tranwer function, otherwise the portion belory is the loeus for $\phi=\emptyset_{1}+180^{\circ}$.

Since at any point P on the upear half of the soplane it was found froan Flg. (2.8) cint

$$
Z=A, s(G(0) A(a))=A, y(s+b)-A z g(s+p)=\xi_{1}(2,34)
$$

 ecuat to ϕ_{I} or thr ecnitant puas angie.

Fig. 2.8 Construction of PART, of a simple dipole.

FROM THZ VILFOTNT OR LANL AliD CGRL

3.1 Introduction

Generaliy it is difficult or evon impossible to design a feedback control systea satisfying the performance specifications given for both the steady siate recponse (steady state exror) and the transient response (stability requizcmont) simultenconsiy. Jeualiy the simple nathol of increasing the formard gain K can iead to on unsatisfactory transient response, although the systcin steady statz croor may ba reduced.

Therefore it is usualiy necessary to insert some sort of compensation netror* ow cevice into the system in addition to adjusting the formard gain in order to have the systeil satisiy both tha steady-state and transient performance specificetions. Although thore has been a considerable amount of work devoted to this design pxobiens it is bslicved by the author that the compensation technique presented in this report represents another approach to the problow. It differs frou the classical corpensation techniques in that the PARL and the CGPL forn the basis for the design decisions.

3.2 Application of PANL and CGRL to the Compensation Problen

It is assumed that the on $2 \pi-100$ transfer function $G(s) H(s)$ is a rational function of a conplex vasiable defland in a certain region on the s-plane. At any point sbelonging to the defined region on the s-plane, $G(s) H(s)$ has a definlte macnitwic and phass. In other vords, tha open-loop transfer function $G(s) \|(z)$ at a giv?n point on the s-plare will be conpletcly determind
 pol.2.

From this point of view, it is found that compnsation of a reedback control systom can be achleve己 by first dovoloping a techniquo of finding a network whilch will successfully compersate the phase at a certain point In the s-plane where the transfent sfccifications are satisfied. Phase compensation is achieved by forcing the Pari with an phase angle of $\pm 180^{\circ}$ of the componsated system through the desired operating point. An adjustment of the open-loop fornazd gain vill be necessary in order to satisfy the steady state spəcifications. Th othor wödis, the compensation problem In the $s-p l a n e$ is composed of tro steps, one clealing with phase compensation and one cicallng with the formad gain adjustment.

Consider a linear feedbact control system with the open-1oop transfer function

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s}) H(\mathrm{~s})=\frac{\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{\mathrm{n}}\right)}{\left(s+p_{2}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)}=\mathrm{K} \cdot \vec{r}(s) \tag{3,1}
\end{equation*}
$$

It is assmed that the given system is operated with a forward gain K_{1} which satisfies the steady state requirenents of the system. The openloop transfic function becomes

$$
\begin{equation*}
G(s) H(s)=K_{1} \cdot F(s) \tag{3.2}
\end{equation*}
$$

A portion of the PARL and CGRL of the uncompensated systen is shom in Fig. (3.1). The notation of Figr (3.1) is defined as

$$
\begin{aligned}
& \text { (PAPL) }{ }_{u}=\text { PATJ of the uncompensated systen with open-loop transfer }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fruiction givos by Ti. (3.1), }
\end{aligned}
$$

 the compensaiion problem.

```
(PARL) \({ }_{c}=\) PARL of the corgonsation netroak transfer function.
\(P_{i}\left(0, \omega_{i}\right)=\) One of the sonisant polas of the uncompensated closed-
                                    loop systen with oper-100? forward gain \(K=K_{1}\).
\(P_{0}\left(\sigma_{0}, \omega_{0}\right)=\) Cne of the desired dominent pole of the compensated closed-
                                    loop systern.
\(\xi=\) Desired damping coefficient of the doainant poles of the compensated
                                    systom.
\(\omega_{n}=\) Desired undamped natural frequeney of the dominant poles of the
    compensated systen.
\(\sigma_{0}=\xi \omega_{11}=\) Demping constent (actual damping).
\(\omega_{0}=\sqrt{1-\xi^{2}}=\) Conditional Erequency.
```

As shorn in Fig. (3.1), the uncompensated system has a doninant closedloop pole located at the interscetion of the (PARL) with $\phi=\emptyset_{1} \pm 180^{\circ}$ and the (CGRL) ${ }_{u}$ with $K=K_{1}$. In such a case, the transjent response would be completcly tudesirable although the stoady state response satisfies the system specifications as nentioned previously. Suppose that it is found that both the transient and the steady state response vouid satisfy the systen requirements if the dominant closed-loop poles were moved to point $P_{0}{ }_{0} P_{0}$ is the intersection point of the (PARJ) ${ }_{u}$ vith $\psi=\nabla_{2}$ and the (CGRL) for $k=K_{2}$. Clearly both phase and gein compensation are needed to achieve this relocation of the operating point.

The first step in the compensation procedure is to detemine the amount of phase shift that the compensation netrork must supply at $P_{0}{ }_{0}$. This can be foum by insmecion of the finss ancue at form the (PANI) diagran. In

correspeting to a plase of ty 80 degrone at P_{0}. That is

$$
\begin{equation*}
\theta_{c}+\theta_{2}=+150^{\circ} \tag{3.3}
\end{equation*}
$$

0:8

$$
\begin{equation*}
\theta_{c}=-\sigma_{2} \pm 280^{\circ} ; \tag{3.4}
\end{equation*}
$$

In thase last tio equations -180 dogrees should be used if the conventional root locus of the (PART) under consideration was a lagging phase locus, otherwise +180 degrees should be vsed in Eq. (3.3). Evidently phase lead compensation is necdod thon

$$
\begin{equation*}
\left(\oiint_{2} \therefore 180^{\circ}\right) \leqslant 0 \text {, } \tag{3.5}
\end{equation*}
$$

or phase lag conparsation is neeted when

$$
\begin{equation*}
\left(\oint_{2} \pm 180^{\circ}\right) \geqslant 0 . \tag{3.6}
\end{equation*}
$$

low suppose that phase lead compensation is needod for the current consideration. Des to the simplicity and convenionce of the goonetry in the conctruction of woth the PARJ and CGRL for simple dipoles, the suggested compensation netrork: has the form

$$
\begin{equation*}
G_{c}=K_{c} \cdot \frac{s+z_{c}}{s+p_{c}} \tag{3.7}
\end{equation*}
$$

A fe:t bransins of the EARS of the dipole are plotted in Figure 3.2.
It is assumed that

$$
\begin{equation*}
P_{C}=K^{2} \cdot z_{c} \tag{3.3}
\end{equation*}
$$

a phose Iewd compensation motworts and less than I for a phase lace componsation netrork: (sec parazanh 2.2, for prase inad and phase lag dipole transfer function PAFi.).

Fig. 3.2 PARE of $\mathrm{G}_{\mathrm{c}}(\mathrm{s})=\mathrm{K}_{\mathrm{c}} \cdot \frac{\mathrm{s} \dagger \mathrm{z}_{\mathrm{c}}}{s+\mathrm{p}_{\mathrm{c}}}$

A forward gain k_{i} is inserted so that the cosired stoady state error

$$
\begin{align*}
(G(s) H(s))_{c} & =K_{i} \cdot(C(s) H(s)) \cdot K_{c} \cdot \frac{s+z_{c}}{s^{*} p_{c}} \tag{3.9}\\
& =K_{i} K_{2} K_{c} \cdot F(s) \cdot \frac{s+z_{c}}{s+p_{c}} \tag{3,10}
\end{align*}
$$

since the oran-loop trensfer function correspuning to the branch of the (PARL) ${ }_{\text {L }}$ passing through P_{0} is

$$
\begin{equation*}
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\mathrm{K}_{2} \cdot \mathrm{~F}(\mathrm{~s}) \tag{3.11}
\end{equation*}
$$

Suppose that the steady state orror specifications require a positional exror constant of K_{p}. Equation (3.2) frpites

$$
\begin{equation*}
K_{p}=\lim _{s \geqslant 0}\left(K_{I} \cdot F(s)\right)=K_{1} \cdot \lim _{s \geqslant 0} F(s) \tag{3.12}
\end{equation*}
$$

and for the compensated systen the positional error constant K_{p} can be fourd Erom

$$
\begin{align*}
K_{p} & =\lim _{s \geqslant 0}(G(s) H(s))_{c}=\lim _{s \rightarrow 0}\left(K_{i} \cdot K_{2} \cdot K_{c} \cdot F(s) \cdot \frac{s+z_{c}}{s+p}\right) \\
& =K_{i} K_{2} K_{c} \cdot \frac{z_{c}}{p_{c}} \cdot \lim _{s \rightarrow 0} F(s) \tag{3.13}
\end{align*}
$$

Since the steady state crror nust be maintained within the specifications, the valus of K_{p} rust to the s before and after the compansation netrork

$$
K_{P}=K_{1} \cdot \lim _{5 \rightarrow 10} F(s)=K_{1} K_{2} k_{c s^{2}} \cdot \frac{1}{s \rightarrow 0} \cdot \sum_{s \rightarrow 0} F(s)
$$

or thon it is solved for K_{1}.

$$
\begin{equation*}
K_{i}=\frac{K_{1} K^{\prime}}{K_{2} K_{c}} \tag{3.14}
\end{equation*}
$$

where K_{c} is the gath of the compencition natwork at $P_{0}{ }^{\circ}$
With Equations (3.8) and (3.14) substituted into Eq. (3.10), the compensated open-10op transicn function turns out to be

$$
\begin{align*}
(G(s) H(s))_{c} & =\frac{K_{\gamma} K^{\prime}}{K_{2} K_{2}} F(s) \cdot \frac{s+z}{s+p_{c}} \cdot K_{c} \\
& =K_{1} K^{2} \cdot F(s) \cdot \frac{s+2}{s+p} c \tag{3.15}
\end{align*}
$$

Futheriore, it is fourd by the author that z_{c} or $P_{c}, K^{\prime}, \sigma_{0}, \omega_{0}, \omega_{n}$, and \# ${ }_{c}$ are related to ons another by the following formula

$$
K_{c}^{0} z_{c}^{2}-\sigma_{0}\left(K^{0}+1\right) z_{c}+\omega_{n}^{2}-\sqrt{\left[c_{0}^{2}+\left(z_{c} \sigma_{0}\right)^{2}\right]\left[\begin{array}{c}
2 \tag{3.16}\\
0
\end{array}+\left(K^{\prime} z_{c}-\sigma_{0}\right)^{2}\right]} \cdot \cos \phi_{c}=0
$$

In other words, the suggested procedure of compensating a feedback control systea can be sumnzlized as follows:
1). Spacify $\sigma_{0}, \omega_{0},{ }_{n}$ for the doninant closed-loop poles. This determines

2). Detomine ${ }_{c}$ frov Efo (306).
3). Dotermina vinther phase load or pinsie lay companeation should be employed fava Equations (3.5) and (3.6).
4) Siveify K^{\prime} or Z_{c}.
5). Citain eithor z_{c} or \mathbb{K}^{2} fron Eq. (3.16) or construct the branch of the PARL of the situplo dipole trensfer function of Eq. (3.7) that passes through P_{0} and z_{c} as rentioned in section 2.2 and detemans P_{c} by inspecticno (See Fig. 3.?).
6). Detemaine the valuo of K_{c} at point P_{o} on the branch of PARL of the simple dipola that passes through P_{0} e
7). Sublitute tha resuiting valuas into Eq. (3.15) and ostain the desired opan-loop transfex Function.

An crample illustrating the results derived in this seetion foliows.
Suppose that a cortain feodback control systen has the openoloop transfer function

$$
\begin{equation*}
G(s) H(s)=\frac{259\left(s^{2}+s+1.25\right)}{(s \div 4)(s+5)\left(s^{2}+10.4 s+9.04\right)} \tag{3.23}
\end{equation*}
$$

It is desired to compensate tha systen in such a way that the transient response has

$$
\begin{aligned}
& \xi=0.50 \\
& \omega_{n}=1.80
\end{aligned}
$$

2:. relacitat on P_{0} The Phit and C whow thet

$$
\begin{aligned}
& \wp_{2}=-150^{\circ} \\
& \mathrm{K}_{2}=61.7
\end{aligned}
$$

For the perfoss of phase ccipunsation, the compensation netyork rust have a phase anglo of such that

$$
\phi_{c}+\phi_{2}=\phi_{1}=-180^{\circ}
$$

or

$$
\begin{align*}
\zeta_{c} & =-\left(\sigma_{2}-\emptyset_{1}\right)=-\left(-150^{\circ}-\left(-280^{\circ}\right)\right) \\
& =-30^{\circ} \tag{3.24}
\end{align*}
$$

Thus plase lag conpanetion is rasuired. Tharcfore acco:iling to the previously assurad criterion, ixe nust bo chosori loss than i for

$$
\begin{equation*}
K^{v}=\frac{p_{c}}{z_{c}} \leqslant 1 \tag{3.25}
\end{equation*}
$$

Norio assual that z_{c} is chosen vith a value of

$$
z_{c}=3.5
$$

as shom in Figo (3.3). Commet pointe ${ }^{\circ}{ }_{0}$ and tion zero $2 t \quad \mathrm{wz}_{\mathrm{c}}$ with straight inna $A P_{0}$. Construct an angie with line $A P_{0}$ as one edge and P_{0} the verter. Tho angle AP C_{0} rust be equal to ${ }_{c}$, whoze C is the intercept of the othzi edes :ith tio real aris. Point C must be to the right of point A in

$$
\begin{equation*}
p_{c}=1.85 \tag{3.26}
\end{equation*}
$$

so that

$$
K^{\prime}=\frac{1.85}{3.5}=0.53 \leqslant 1
$$

as requartar.
Aral it was found that tho gain at P_{0} oin the branch of (PARL) with a phase angle of $\hat{\psi}_{c}$ is

$$
K_{c}=1.72
$$

According to Eq. (3.7) s the ce pencation network transfer function vourci be

$$
\begin{equation*}
G_{c}(s)=\frac{1.72(s+3.5)}{(s+1.85)} \tag{3.27}
\end{equation*}
$$

and according to Eq. (3.15) tile compensated systcan ofen-10op transfor function motid be

$$
\begin{align*}
&(G(c) H(s))_{c}=(259) \cdot(0.53) \cdot \frac{s+3.5}{s+2.85} \cdot \frac{\left(s^{2}+s+1.25\right)}{(s+4)(s+5)\left(s^{2}+0.4 s+2.0 \%\right)} \\
&=\frac{137(s+3.5) \cdot\left(s^{2}+s+1.25\right)}{(s+1.85) \cdot(s+4) \cdot(s+5) \cdot\left(s^{2}+0.4 s+9.04\right)} \tag{3.28}\\
& \text { A convec (3.28) }
\end{align*}
$$

â zacuitud.
proc-intes retain 46 cortact hendy state earor shors that for the Uncomensated syater

$$
K_{p}=\frac{(259)(3.25)}{4.5(9.65)}=2.8
$$

and for the compensated systen

$$
K=\frac{(1.37)(3.5)(1.25)}{4.5(1.85)(5.0 .4)}=1.8
$$

The reshapad conventional root loous ciagran is shown in Fig. 3.4.

3.3 Derivation of Equation (3.16)

The unique relation batreen varlables $z_{c}, p_{c}, \sigma_{0}, \omega_{0}, \omega_{n 1}, K^{r}$ and ρ_{c} is so mportant in the compensation procedure that a detalled derivation of the equation is nocessary.

The riagnitude of the phors $P_{0} D_{2} P_{0} E$ and DE in Fig. (3.1) are related as follows:

$$
\begin{align*}
& P_{0} D=\sqrt{P E_{0}^{2}+D E^{2}}=\sqrt{a_{0}^{2}+\left(p_{c}-\sigma_{0}\right)^{2}} \tag{3.17}\\
& P_{0} B=\sqrt{a_{0}^{2}+\left(z_{c}-\sigma_{0}\right)^{2}} \tag{3.18}\\
& D B=P_{c}-z_{c}=\left(K^{\prime}-1\right)_{c} \tag{3.19}
\end{align*}
$$

From an elcuentaiy trispa :etric fomala, it is found that

and substicuition of the rosidits of Equation (3.17), (3.18) and (3.1.9) into Eq. (3.20) Iunts to

$$
\begin{align*}
& \cos \phi_{c}=\frac{\left(\iota_{0}^{2}+\left(p_{c}-\sigma_{0}\right)^{2}\right)+\left(\omega_{0}^{2}+\left(z_{c}-\sigma_{0}\right)^{2}\right)-\left(p_{c}{ }^{-2} c^{2}\right)^{2}}{2\left(\left(\omega_{0}^{2}+\left(z_{c}-\sigma_{0}\right)^{2}\right) \cdot\left(\omega_{0}^{2}+\left(p_{c}-\sigma_{0}\right)^{2}\right)\right)^{\frac{1}{z}}} \\
& =\frac{2\left(\omega_{0}^{2}+\sigma_{0}^{2}\right)+p_{c}^{2}+z_{c}^{2}-2 \sigma_{0}\left(p_{c}+z_{c}\right)-\left(\alpha^{2}-21^{1}+3\right) z_{c}^{2}}{2\left(\left(\omega_{0}^{2}+\left(z_{c}-\sigma_{0}\right)^{2}\right)\left(\omega_{0}^{2}+\left(p_{c}-\sigma_{0}\right)^{2}\right)\right)^{\frac{1}{3}}} \\
& =\frac{2 \omega_{n}^{2}+\left(K^{0}+1\right) z_{c}-2 \sigma_{0} z_{c}\left(N^{0}+1\right)-K_{0}^{2} z_{c}^{2}+2 K^{0} z_{c}^{2} c_{c}^{2}{ }_{c}^{2}}{2\left(\left(\omega_{0}^{2}+\left(z_{c} \sigma_{0}\right)^{2}\right)\left(\sigma_{0}^{2}+\left(p_{c}-\sigma_{0}\right)^{2}\right)\right)^{\frac{1}{z}}} \\
& =\frac{K^{2} z_{c}^{2}-\sigma_{0}\left(K^{0}+1\right) z_{c}+\omega_{n}^{2}}{2\left(\left(\omega_{0}^{2}+\left(z_{c}-\sigma_{0}\right)^{2}\right)\left(\omega_{0}^{2}+\left(K^{\prime} z_{c}-\sigma_{0}\right)^{2}\right)\right)^{\frac{1}{2}}} \tag{3.21}
\end{align*}
$$

This lase equation can ba rearranged to yiold

$$
\begin{equation*}
K^{0} z_{c}^{2}-\sigma_{0}\left(K^{1}+1\right) z_{c}+n^{2}-\left(\left(\omega_{0}^{2} \div\left(\left(z_{c}-\sigma_{0}\right)^{2}\right)\left(\cos _{0}^{2}+\left(K^{\prime} z_{c}-\sigma_{0}\right)^{2}\right)\right)^{\frac{2}{3}} \cos \phi_{c}=0\right. \tag{3.22}
\end{equation*}
$$

$$
\begin{equation*}
1+G(s) H(s)=0 \tag{1,1.1}
\end{equation*}
$$

of a foedback continol syston matses tho sthiying of the chnracteristics of a feedback contrel systen on the s-nlene possible. The problem of roshaping the conventional root locus on the suplane iu such a vay as to reet a certain set of requirementes can be accouplishci by using conventional Erequancy response disign teciniques ani thon intoxprotating the rosults in the smplane. The puinciple difficulty with this technique is that the designer can not raintain edoquate contiol of tho system tronsiont response. The genexalized root conioves of F wo (rof. 6) rempesent on effort to overoone this difficuity. In this repozt it is sho\%n that tha phase angle root locus and constant gain root locus can be used to comiensate a inasi feedback control systeat in such a way es to give the designer sinuttaneous control of both the transiont and steady stato perforismice.

Fron a finse angle point of vien, the conventional characteristic cquation cani se generalizod into

$$
\begin{equation*}
G(s) H(s)-e^{\frac{j}{j} u}=0 \tag{4.2}
\end{equation*}
$$

whene fis tho piase patamatč of tha opanmloop transfer function. When \emptyset is sat equal to $180^{\circ}, \mathrm{Eq},(4.2)$ roturas to the conventional closscimloop chazacieristic equelon. It is notci tiat accorting to Eq. (4.2) each point

any tor points in suplane. The fouse angle foot loci as dofined in this repart, dopicts this prace ditanathe in such a ryay as to aid in the coapansation problent. Iurthentata, each posmit in the saplane corresponds to a wique cpar-100p formard gain K , The constant gain root locus depicts this gain relationchip in sucin a vay as to be useful in the compensation probic.

A procedire that utlizes phase ansle root locus and constant gain root Loous diagrans as tools for detemming the pole and zero location of simple dipole compensation natwork is presentod. The procedure is illustrated by on exanple. Althougin the example is a simple one in terms of the nunber of opanmoop folos and zeros and in toms of the complexity of the compensation netivork, it is cloar that tho computational prob?cn is a difficult one. Forsovar, it appears that the pooblon is amonable to digital computer impleo nentation.

EINZIOGERPIY

1．Join Go Tivial，Conlal Slata Syntlesiso MoGrumbHilu Fook Coaniny，Incer 1935。

2．Otto Jo Mo Smiths Joadbeck ControI Systenso McGrawmHill Book Conpany， Inco，1956．

3．Co Je Soveni：J2\％，Insic Thociback Contro Systen Designo McGram－Hill Book Company，Ince， 1958 。

4．Yoohan Chu，＂Synthesis of Feediback Controj Systen by Phasemangle Loci，＂ AIEE Transo on Applicaticns and Inlustry，vole $71, \mathrm{pp} .330-339,1952$.

5．Gesrge Jo Thaler，Sorvorachanisn fnalysiso NoGramayill Book Company， Inc． 1953.

6．Benjatin C．Kuo，Autonatic ControI Systariis．Prenticemilall Inco， 1955.
7．Wo To Evaris＂Giaphical Analysis of Control Systoms，＂Transactions AIEE， vo1．67，PP．547．551．s 1943；
＂Contral Systen Synthesis by Root Locuc Methocig＂Transaction AIEE，vol． 69．pp．65－69，1950．

8．Cuisioming E。A．s Comuncation Natrovils，vol．IIo John Miley \＆Sons， Trice，Niet Yosk，1942：
＂A Simmary of Kodezn Method of l＇atwork Synthesis，＂Advances in Ezectronics， vol．III，Acadcinic Press Inc． Naw York，1951．

9．Wiener，Vonisert，Yoniman Eroblens in random Theoryo Cembridge Technology Fress of $\mathrm{V} \circ I_{0}$ To， 1958.

Intorpolationg．and Sroothing of Stationary Tima Saries with Engineering Applicat ions．Canbsidge Tochmology Eress of Morop i950．

1.C. DiL Men mex

The autho wish to enfocs hise apotbet eion for tio guicance and suratvision given by Dre Floyd Mands duairg the preparetion of this xeport.

A STUNY U: ERNSE NTGL TVOT LOCI
 1.C1 \times rowics

by

YUAN-SHIN YALIG
E. S., National Teivan Universit:y, Taiman, Chins, 1963

AN ABSTRACT OZ A MASTER'S REEORI

subaitted in partial fuifillment of the requiremasits for the degree of
MASTER OF SCIENCE
Departmont of Electrical Engineering
KANSAS STATE UNIVERSITY
Manhatten, Kansas

1968

sibscinct

Loci in tho suplethe of cun, tent pinss of the open-loup transfer function of a ilsear feadbaci concro: systen axe called plase anglo root loci (fARL, \}oci in the smplame of constant oper-plane gain are tempad constant gain root loci (CGl). Various chnacteristics of these loci are derived and discussed.

A proceduce that utlizes phase artige root loci and constant gain root: loci diagtens as tools for deteraining the polc and zero location of simple dipole compensation network is preseztod. The procedure is illusirated by an example. Although the exmaple is a simpe one in terms of the nuber of poles and zetos and in temis of the complexity of the compenseticn networks it is cigar that the compucational problom is a difficult one However, it appeara that the problen is amenable to digital conputer inplarsittaion.

