“ AW INTERACTIVE BIBLIOGRAPHIC REFERENCE SYSTEM -

by

RATHLEEZN AHN g}LLER

BA, University of Southern Colorado, 1973

A MASTER'S REPORT

submitted ir partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Kanhattan, Kansas

-1984-

Approved by:

All202 kL0OO79ce

2L62

RY

e i C]ﬁ'f ACKNOWLEDGEKENTS

MmEe?

& 2

My Gaeartfelt appreciaticn is extended to Dr.
Elizabeth Unyer., She is a fine person, a corsclertious
educator, acd a dedicated computer scientist. It has been

my privilege to have known her and worked with her throuqgh
this project and in several classes.

I want to recognize my committee members, Dr. Rod
Bates and DT. Rich McBride, for their assistance.
Acknowledgement, too, goes to Harvard Townsend for his help
and advice on 0S/32 and UNIX.

T vant to extend a loving thanks to Framk Zacharias.
He has continually been a source of optinmisam, perspective,
and support for me. Finally, thanks to Brindie for her
sense of numor and for getting me into computers.

i

CONTENTS
Page
AcknowledgementS. « « « « o s = =2 2 & 2 + « = = o = o« = ii
Tigt of FIguTes = 5 ¢ s 4 ® » & ¢ &5 & 1 £ 8 p » = 5 = = vi
Chapter 1
Tobkrofnetlon, « 5 4 s = 5 8 2 ® ® = w o w % w B w = 1
Comparison of System Models
Information Retrieval Systems . o o« « s o « o = 4
Data Base Managemclit SYSEEMSs « « o o« = o o « o -
Managenent Information SystemS. « + + &+ o+ & . 6
Question-ADSWering SYStemSe « o = « « « o « o = 6
Decision SUpPPOTrt SYSTEMS.: 4+ s = = = = = &« s = = 7
System Functions to Consider
Considerations Related to *he US€r. « « « « - 8
Considerations Related to Hardvware/Software . . 10
This Problenm
Desired System Capabilities . « « « = =« « « . . 12
Which System Model? « « &« & o s+ o » = = « = = = 15
System Software Alternatives. « + + .+ . 16
Chapter 2
KES DevelOoplent « - & & & & & & & © o % & & & # % = 18
Operations
CPEANE S % % % % 5 @ ™ & # @ % & w 8w & 5 % w 19

Update- 19

Dele‘:e. - - - - - - - - -
RetTieve. « « o« s & s s o
Information « + « o « o

snmmary of KGS Capabilities

Chapter 3
Data Base File Structure. . .
Modes of Operation
Iser Mode
PAit (KGSEDIT)« « « -
Ex*ract (KGSEXIRT). -
Information (KGSINFO)

File Maintenance pMode . -

Chap*ter 4
IntroductionNs + o « o & o » =

@ill It Work on Our Computer?

Can You PReally Trust Documentation

How Do You Convert Fortran VII
How Do You Convert 0S/32 HMT to

what Test Procedures Should Be

Chkapter 5

Introduc*iONe = « = » = =« = =

Fortran VII to Fortrarn 77 Corversion

Ckaracter Type Declara*tion

Ssix-Ckhkaracter labels. . .

-

-

-

to

TRI¥?.

sed?.

For*rarn

Page

19
20
21
22

23

29
3l
35
36

40
40
41
43
a4
a4

46

46
47

iv

Page

Decode Boutines. +« o+ o« o« o s o s o s o & o o o 47
Tnit Reassigunment o« « o« o o + » = o = s + &« o 47
File Specificatiofe « « o« « o o 2 o o o« 2 = o« = 48
INQUIre{SIZE= . 4 o o 5 s o« s o o s s & o o » 48
Formatted FileS o o « o o o « o« « o « = = + =+ =« 49
SHARE CODETOL v o o = o & 5 & 4 6 & 3 % # % = « 19
Pile Status "PENER"™ & + o o o o o o o o o o+ . 0
Datz and Carcon RoutinesS. . « « o « « = « « s« = 51
EFD and EBE o o o o o o o o o 4 e o o o o o o . 0
0S/32 MT +o UNIX Conversion
CASES « o = = = = 2 o s = a = s = 2 s« = s = = = 54
Compile and Tink. « « o o & ¢ ¢ o o o = = = o = 54
Toade o @ @ 9 8 @ & % % 8 ® s w o8 & 3 o4 owm o om owm om 54
FNhanNCeMeNtSe =« = = = « = + a « a a = s = = = @ = 4 55

KGS = The Final PEOdUCt . s - = - - - - 56
Chapter B . ¢ ® - . * = + 8 e . . . ¢« = e) . . . a 59

Appendix
KGS USer'S GUide. + o s o = = o o o o s = o = o« o« . B3

KGS Source Code Listing « o« o o o o <« o o o & o s+ 74
Biblioqrap!‘:—?. - - - - - - - - - - - - - - - » - - - - - 155

Abstract

10,

LIST OF FIGU

,,
8]
9]

Nia e

Inter-relationships of Syster Models. . .

KGS Data Base File StTUCtUTrER. o o =« = = =

KGS Master File Record Format . « « « « &

Di-tionary Record Formats « « « « « =« « =«

Index Record FOTMALS. « = « = « = = s = =

KGS User Mcde - Program Callirg Struc*u

Sample KGS Output o « « « & « o & & & o

KGSINFO Sample Output for Authors . . « =«

KGSINFD Sample Cutput for RoywordsS. . »

KGS FPile Maintenance Mode-Program Calling

B
m

S+tructure

m

Vi

24

25

26

Pt

30

32

37

38

39

(0]

Chapter 1

Introducticn

It is an extraordinary era in which we live. It
is altaogether new. Tke world has seen nothing like
i+ before. I will not pretend, no one can pretend,
0o discern the end; but everybcdy knows that the age
is remarkable for scientific research into the
heavens, the earth, what is beneath the earth:; and
perhaps more remarkable still is the application of
+his scientific research to the ©pursuit of 1life.
The ancients saw nothing like it, The moderns have
seen nothing like it until +he present generation .
. . The progress of the age has almost outstripped
human belief. Daniel Webster, 1847

As we are stepping into a new age o0f technology, we
are plagued by an old, ever-exparding problem -—-—-
information explosion. Writ+*en materials are published
faster than any single human could ever cateqorize. The
nunber of articles published in periodicals, alone, nearly
doubled from 1,985,000 in 1960 to 3,780,000 in 1970 {HEAR78).

Previous estimates of rate increases were ounly for doubling

every fifty years (SAL83). Today, more than ever, our
lives, in both a global and private sense, involve the
collection of information. How can we deal with this

voluminous labyrinth of text?

Established paper-based information retrieval
+techniques are slow and ineffectual in tackling our present-
day information problen, Nevertheless, paper—based systens
are still the standard for most professionals (scientists,

rTesearchers, educators, Wwriters, etcC.)e. It is clear that

many people do not even rely on paper trails as clues to the
whercabouts of books and articles. If vyou ask for
information on a given subject from one of these
professionals, you are apt to become engaged in an adventure
through piles of dust-covered pages or shelf upon shelf of
orderlsss books. mI'p sure it had an orange cover and the
author started with 'Pyl' and I don't think it was the ore
that I had under that plant..." Even inquiring about your
subject with a professional who has maintained meticulous
card files of entries (including title, author, several
subject descriptions, etc.), alphabetically ordered by
author, may or may not be very effective, depending upon the
ability of that person to associate subject with author. If
there has been a break-down in that associative memory, then
you may be treated to thumbing through file boxes, reading
the subject lists on each card.

Even our nation's libraries remain paper-based in
retrieval tecknigues, though they have made it casier for us
(than our card-file persomn) with indexes by author, title
and subiject. This means at least two complete duplications
of the information on cards to accomplish this, however.
Again, we are thumbing through endless ranks of cards.
Researchingy a specific topic in the periodical room is even
more difficult since what you find is an index to an index
to an index, at which point you may still not Kkrnow if the
paper is even in the library.

what libraries and professionals need is an up-to-

date listing of all materials available on-site, which may
be indexed in any number of manners . ¢ w® author, title,
subject (or combirnation of subijects), related subjects({s). .
- and guickly! (Time is, indeed, monev.) Again, how can we
deal with this?

Luckily, some sophisticated solutions are available
througk advances in computer technclogy. Over the past 15
+o 20 years the trerd has been a doubling of computational
capabilities every 3 to 4 years, toqether with a decreasing
cost of those capabilities (SALB3). Efficiert access
technigues and cheap, improving storage rfacilities combine
to provide an excellent eanvironment <for the electronic
manipulation of text-related materials. Reference materials
may be managed interactively, allowing queries by author,
title, or subject kev(s). In a few minutes, our
professicnal could have an entire listing of alil related,
on-sit2 materials and their location. A syster like <his
could be heneficial to faculty members conducting Jjoint
research projects, individual writers of papers and dgrants,
as well as classes of students.,

Many models for information organization and
retrieval have been developing in recent years, including
systems such as Information Retrieval (IRKS), Data Base
Managemen* (DBMS), Management Information (MIS), Decision
Support (DSS), and Question-Answering (QA).

How does our professional choose a system to suit

particunlar reference needs? In order to approach this

question, we first take a gereral look at the major systen
models and =her at the functions whick we want +to consider

for any system we choose.

Comparison 9

I
Itn
[
I
|t
I
[1=]
=
lo}
=N
i
I
[1¥7]

Information Retrieval Systea

It

The basic element of +the IRS is information in
unstructured natural-language ({English) form, such as
complete documents and references. Though some indexes may
be stored in structured (i.e., static field length) records,
the actual information is stored in ar unstructured formar,
due primarily to the variable-leng*h nature of documents.
This kind of system usually requires excessive serial
searching “hrough large numbers of records, so may terd to
require long access times. IRS in the paper world might be
related to the activity of a person leafing through a boox
to find reguired information (with the assistance of a table
of contents and index).

An IPS is capable of satisfying approximate queries,
such as giving all information related to a specific English
wvord root (e.g., cComput¥*x), The result of the query is a

selection of information elements.

Data Base fdanagement Systems

Though similar to an IRS in the general concept of
retrievai, a DBMS is typically ccmposed of structured data
elements, such as numerical entries and character strings,

both of fixed length. These data elements are stored in

Natural Language
Processing for

Unstructured
Data \ Facts
Information Question- E
Retrieval Answering 2
Systems Systems :
|
~\ f 7
i /’ Extracts
\ Statistics
Data Y
Base 1 Management
i Management ; Information;
\ Systems] Systems
\ /
E A Y
Structured Decig}dﬁ Support
Data Systems

Special Purposé User Tool

Inter-relationships of System Models
-Figure 1-

tabular form and may only be accessed by an exact-match
guery, unless special front—-end software is ©provided that
allows a user to utilize a synonym or word-root table or
procedure that searches for all strings similar to the
target string or which include the target string. The

result of this query is a selection of data elements.

Management Information Systeams

Many businesses depended on non-automated MIS long
before automated DBMS allowed for gquick access to 1large
amounts of data. By analyziang a given data base, an HIS may
provide useful 4information regarding the statistics of the
data base. A good example of this is the statistics taken
from the J.S. National Census, which allows us to discover
totals, average and range of values on the U.S. population
da+ta base. These statistics are gquite interesting, but more
importantly, over time provide a sense of variation in
values that allow us to make meaningful projections based on

previous trends.

Ansvering Systems

If you could address a computer through a keyboard
with a question such as "Fow many days of rain did Phoenix
receive in 1970?Y and receive a response in natural language
form, you would most likely be working with a Question-
Answer System facility. The basic element of this system is
the fact. These facts may be drawn from an IRS or DBHS or

other systems. The important part of this system is the

intelligence recessary to interpret a user's question,
decide upon the proper procedurc for obtaining tle desired
fact, maneuver through systems to obtain the fact, and
finally deliver that fact to the user in understandable form
{English) . Artificial intellicence +technrology holds great
promisa in this area and we can expect to see at least
small, special purpose systems in the near future. At this
point, however, QAS are mostly in the <research and

development stage.

SIS =s ==

I+ is difficult to position DSS in a specific
positiosn in relation to IRS, DBMS, HIS and QAS since its
placemer+* is highly = dependent upon a user's particular
aﬁplication requirements. Different users, understandably,
have different areas of interest and different needs in
terns of information Tequired for making high-level
decisions. Dss is, then, a special purpose system designed
to meet one user's specific needs in supporting management
level decision-making efforts. Thoughk there may be some
similarities between DSS and KIS, it should be noted that
DSS may take statistics and derive tables, graphics, or
other formats for the presentation of facts or information.
Uolike the QAS, these fact-presentations are not ansvers to
spontaneous gquestions, but are designated as system
requirements at the time the software for the DSS is
designed. Therefore, the DSS is more static in nature than

the QAS. I+ is also more extensive than MIS because it may

draw facts from statistics. special tools such as computer
graprhics systems may be incorporated in order to provide

clear pictures of facts.

System Functions to Consider

The first step in the design of ary computer systenm

should be the analysis of the user population's
requirements, Consider how this relates *o our reference
problem. He can define at least two fundamental

requirements of our system:

1 The system must provide the user with the
ability to enter and update s*tored
references.

2) The system must provide the user with the
ability to retrieve stored references.,

Beyond these basic requirements, we can include additional
requirements of the design that take into corsideratior
special user and system (hardware and software)

considerations that define this prokblem for a specific user.

(=]

Considerations Relate

to the User

In a professional setting, a more user-friendly
system can realize a savings of time and money by improviag
performance. Therefore, special user requirements must be
important considerations. In writing on office systenms
development, Dimitris Chorafas asserts that user performance
relates to ease-of-use, transparency, response time and cost
(CHO82) .

Ease of use includes language, training,

communications and effort expectations. Must the system

irteract with the wuser in English or will simple character
prompts suffice? What is a reasonable training period for a
user to be £fluent in the system's basic features? Is
communication with the system accomplished with cards,
keyboards or other entry devices (e.g., Vvoice recognition,
light ©pern, kuman touch) in a batch or dinteractive
environment, or both? How much effort 1is involved in
completing the tasks of information entry or retrieval? Are
there alternative procedures for retrieval of a reference
(i.e., author, title, subject(s), otker)?

Transparency (data independence) 1is associated with
ecase of use issues. How much of the total system design
(L.e., data format, storage organizatiorn, and distribution)
does the user need to know and understand in order to use it
effectively?

What is the minimum tolerable response time for this
system? There may he several response time limits if there
are a variety of communication environments.

Finally, what are the mazximum time ard money
constraints in the development of this system? %ill there
also bte arny costs linked with usage? It is important to
realize +tha* cost constraints may be the determinant of
final performance requiremerts specifications. There is
always a higher cost associated with the more refined, user-
friendly facilities. Therefore, all aspects of user-
friendliness must be weighed against each other in light of

cost constraints.

There is one more factor of performance that I will
add to Chorafas' list: correctness. No matter how friendly
a system is to the user, it is worthless if it dces rot
accomplish the initial goal of providing accurate response

+0 a user's request for informaticn.

onsiderations Related to Hardware/Software

User requirements must be met through both hardware
and software support (CHO82). The greatest balancing in our
design-under-cost cones, then, betweenr +the user and the
system's hardware and software capabilities.

In order to satisfy the ease-of-use requirenents of
the user a great range of sophistication of
hardware/softwvare may be suqggested. The more user-friendly
system may requirerextensive menu display, graphics or even
voice synthesis capabilities. A less friendly system might
include only the minimum of hardware/software to display
simple one-character proapts, relying on the user to know
what information 1is expected. Therefore, the degree of
system sophistication relates directly to the amount of
training the user must complete to be proficient in its use.
A variety of communication environments will require aore
from a system - especially if it is +to accommodate
interactive devices among many users. System detail is also
a function of user effort as well as transparency. Must the
user know details of data format or does the system software
enforce correct format upon entry?

If the user's minimum response-time reguirement is

10

low, then hardware and software must be designed to meet
that requirement. This may mean using a faster, low-level
ilanguage, such as assembler, in order to provide fast
program performance. It may also impose the requirements of
using a special data orgacnization. For slower response
times, coupled with small amounts of da*ta, linear unsorted
file structures might be satisfactory. However, for faster
response times and larger amounts of data, structures from
ordered sequential or inverted files to faster pointer-based
or other devices would be needed.

Whken we begin to discuss a system's provisions for
correctness requirements, we nust discuss issues of
inteqrity, security and recovery. These issues also relate
to basic data organization within a system, bhut may, in
addition, necessitate physical access and device
requiremnents. Inteqgrity addresses the prevention of
nonmalicious errors (ULL8O0) . In order 0 insure
correctness, we must be able +to monitor the entering,
updating and deleting of data, with the «capability of
preventing or correcting thoughtless mistakes {e.g., masked
monitored screens with prompts). Security addresses the
issue of access control by restricting users to access
and/or modify only specified subsets of the data (ULLB80).
Security restrictions may be accomplished through software
{€e.q9., passvwords, read/write constraints), hardware {e.qg.,
only special keys on special machines) or physical location

access control (e.g., only special machines with physical

11

security constraints). Recovery involves the prevention of
loss of information due to hardware malfunctions. Recovery
can bhe accomplished through a wide wvariety of backup
schemes, including data duplication, regular dumping onto

magnetic tape and other methods.

This Problenm
The faculty of the Computer Science Department at
Kansas State University is actively involved in both
educating students and researching current topics in
conputer science and related fields. Accordingly, there is
a need for a bibliographic reference system in order that
facul+ty might:
1) direct students to available materials
related to class or proiject topics,
2) maintain an organized base of research
materials related to an indivicdual
faculty member's work and
3 provide faculty with access to other
faculty members' bases of resecarch
materials in order to facilitate
joint class or research project work.
These three points constitute our overall goal for a system.
In the next section, the desired system capabilities are
definei in more detail, followed by a section which examines

the criteria for choosing a system mnodel that might best

fulfill those capabilities.

Desired System Capabilities

If users find the system difficult to use, ther they

12

will be less apt to use this tool in their research efforts.
To be a useful tool, therefore, systen interaction must be
easy for the user. The language mnust be simple and
primarily in English. Simple 1logical commacds should form
the basis for the user-to-system langquage needed to enter,
retrieve, update and delete reference itenms. Training time
may be greatly reduced by having system prompts incorporated
into crucial branching points within the system progranms
(¢.g., "Do you wish to ENTER, RETRIEVE, UPDATE or DELETE
reference itemns?"). In addition, a HELP facility would be
useful for providing important information to first-time
users., Communications betweer user apd system ®might,
ideally, be voice-based, but more realistically could
adequately be accomplished with a terminal keyboard and
screen., Since new users require more help than experienced
users, the deqree of effort in use of the system is
dependent upon the skill level of the user. Therefore, the
system should include the ability to distinguish between the
beginner and the pro and adjust the mode of interaction,
accordingly.

The system should provide the user with a bhigh
degree of data independence., The user should not need to be
knowledgeable of data organization or formats. Even though
the users in this case are highly competent Computer Science
professionals, +they should be able to operate the systeam
without a sheet of acceptable data formats.,

System response time should be short (probably less

13

than ten seconds). Therefore, an interactive multi-user
system is needed. Tric allows users to combdunicate froam
+heir own termirals at any time, regqardless of the number of
other systam users, and expect a ainimum of waiting for a
response.

#flonetary cost constraints are, necessarily, a
limiting factor at this time of tight budgeting within the
education cormunity. Thus existing hardware (a Perkip-Elmer
8,32 minicomputer, operating with a Unix operating systen)
must Dbe utilized. The Perkin-Elmer hosts a variety of
peripheral devices, including a terminal in each faculty
pember's office and several printers within the department.
The limitation of <£funds also means little money for the
purchase or development of software. The time constraints

on this project are "do it as soon as you can.”

Finally, the important factor of correctness is
considered. Security measures should restrict access to
faculty members. After the initial entry of many reference
itens, it is estimated that information entry will be

limited to a small number per day, which would make daily
dumping of all references onto magnetic tape a sufficient
back-up/recovery technique. In order to preserve the
inteqrity of the information, the system hardware/software
must provide a means of accurately retrieving and updating
reference items with checks for «correct data values and
formats. Also, because the reference system will be

accessed by multiple-users, there must be facilities +to

14

prevent or eliminate update anomalies.

¥hich System Model?

2 examination of the desired capabilities of our
reference system, it becomes evident that this is a special-
purpose system that deals with English-form data f fairly
fixed length (i.e., author, title, descriptors). We want as
high a degqree of user-friendliness as possible at as low a
cost as possible, on existing hardware.

Upon re-examination of the system models available,
we eliminate Question-Answering Systems from our list of
feasible systems since it 1is still 1in the research and
development stage and would likely require more time than
our "as soon as you can" coastraint will allow.

Information Retrieval Systems have the dravback of
long response times, Also, IRS are more suited to extensive
widely-varying lengths of textual materials, which are not
the type of materials (reference items) with which we want
to work. (This kind of system would be more suitable if we
were going to store entire articles or chapters of text.)

Management Information Systems function more as
interpreting or analytical agents than as querying agents on
a base of data or information. Hence, this system, too,
seens inappropriate for our needs.

Finally, we are left with TData Base Management
Systems and Decision Support Systems. DBMS provide the
storage facilities that allow quick access of our reference

items through gueries. The DSS reflect the special-purpose

15

nature of our desired reference systerm. Remcmber, both DBMS
and DSS overlap into some capabilities of IRS, #IS and CAS.
We may want to pull some useful func*ions froa these other
system models, such as MIS's ability *o make summaries based
on referenced entries, QAS's attempt to communicate with and
understand natural language and IRS's ability to make
approximate gueries. Therefore, it seems that what we
really want is a synthesis of both the Data Base Maragemert
System and the Decision Support System models.

How that a decision has ©been made on which systen
podel is corsistent with the users' specific needs, the next

step is to acquire system software that follows tkat model.

System Software Alterratives

Ir implementing any system there 1is initially a
choice of how to acquire the necessary software: desigr and
write vyour own or obtain a software package authored by
others. There are advantages and disadvantages to either
alternative.

Designing and writing your own software can allow
you to custom "fit" the sfstem to vyour specifications.
However, i* will usually take more time to implement than an
available software package.

Acquiring someone else's soitware may cost more and
be less "fit" to your specific application, but it does,
typically, take less time to implement.

An initial search of available bibliographic

reference system software that could be implemented on the

16

Perkin-Elmer resulted in just one system: "EKGS: A Computer
Data Base System for Indexing Research Papers.® The
software cost satisfied our cost constraints; 1t was free
through a Perkin-Zlmer users' group library, Interchanqe.
Upon perusal of the the system documerntation, 1t became
clear that, with a few exceptions, this package satisfied
our reguirements. It seemed that with a minimum of effort

we could augment the software to fit our application.

The remainder of +this report outlines the
implemsntation of the KGS reference systen. Chapter 2

provides a detailed description of the capabilities of the
KGS data base. Chapter 3 provides a view of the logical
systen design. AL Jdescription of the details of necessary

implementation activities is included in Chapter 4, Caapter

5 covers the results of +the implementation, including
sdccessful as well as unsuccessful endeavors. Finally,
possible related future work is outlined in Chapter €. An

appendix irncludes a complete listing of source code for the

KGS system, as well as a users! guide.

17

Chapter 2

KEGS Development

The original KGS data base was developed in
conjunction with the O0ffice of Standards Development in the
Occupational Safety and Health Administration {OSHA). A
National Bureau of Standards project team of Lavrence
Kaetzel, Dr. Robert Glass, and George Smith (hence KGS)
developed the original data base software in Fortran V as a
support tool for organizing documents related to an OSHA
project. At a later date, Judith Calabrese made major
revisions to the system design and rewrote the programs to
confore to Fortran VII standards. The Calabrese revised
version of the KGS data base 1is the object of this
implementation and the subject of this report. Both
versions were developed under the Perkin-Elmer 0S/32 HT
software operating system which permits multi-user access to
the computer®s hardware and software resources.

This system was designed to help users of mediumr and
small computer systems organize, file and retrieve
documents. The software allows users to access an entire
data base or subsets of the data base via a computer
terminal, withk selected results returned to the terminal
screen and optionally routed for hard-copy printout.

Following is a description of operations available
for the user of KGS and a summary of the system

capabilities.

KGS allows the creation and f£filing of records which
each include the following reference information: three
authors, article title, publication name, publication date,
reference (a physical 1location idemntifier such as "file
draver" to direct the user to the actual document), six
keywords and a discipline indicator. In the APPEND mode a
user is prompted for all the above information. When all
informatiorn has been entered, the completed record is
displayed on the terminal screemn. The user may check the
input data and answer the prompt “SAVE 0.K.?", A "YES™®
:esults in the filing of the record. A "NO" results in the

discarding of the entered text.

Update

Any record stored in the KGS data base may be
retrieved by user entry of the desired record's unique
identification number, at which time the user 1is prompted
for the number of the line(s) to be changed (or ar "*" to
end the update). When the user kas completed all updates on
this record, the prompt "SAVE 0.K.2?" may be answered with
WYES® oi "§Oo" resulting, respectively, in the filing of the
updated version of the record or the discardinqg of the

update attempt.

Delete

Any record stored in the data base may be deleted by

19

user entry of the record's unigue number. The record is
displayed on the terminal screen and the user is prompted
with the message "DELETE THIS RECORD?". The user may

respond with a "YES" or "NOT7,

Retrieve

The user may retrieve records from the data base
according to several search criteria. Upon the prompt
WENTER EXTEACT CRITERIA (AUTHOR, KEYWORD, OR ALL)," the user
may specify any of the three criteria. If the user types
WAUTHORY a record may be retrieved by a match of an entered
author with any records tkat contain the exact same author
string in any of the three author fields. If the user
specifies "KEYWORD"™ as the criteria, another prompt of
MFIELD OR STRING SEARCH BY KEYWORD?" is posed by the
progran. If the user chooses "FIELD" then records may be
Tetrieved based on up to six keywords entered in the keyword
fieid. The field search also provides the user a check for
UNIGN (OR) and INTEBRSECTION (AND) conditions. If UNION (OR)
is selected, the retrieved record must contain at least one
of the input keywvords. However, Aif INTERSECTION {AND) is
selected, the retrieved record aust contain all iaput
keyvords, If the user chooses "STRING SEARCH" the entire
data base of records is searched {only within the title and
keyword fields) for a match with the user input string.
Finally, if the "ALLY criteria is selected by the user, a

listing of all records in the data base is retrieved.

20

Information

KGS allows the user to request anrd receive
information in the form of a listing, complete with nunber
of occurrences, of all authors and/or keywords currently

residing in the data base.

Summary of KGS Capabilities

¥hen exanmnining the KGS system with our desired
system capabilities in mind, it is clear that its ease of
use is marked by positive and negative features. The user
is prompted with alternatives at each operation decision
branch. Prompts are embedded in each operation to clue the
usef to each new step {prompts for choices, prompts for an
information field, prompts for end of the operation session,
etc.); This aspect makes the system easy for a new user
since no extensive training or manuals are required in order
to effectively utilize the systena Though a HELP facility
is described ir KGS documentation, it has been left to the
implementer %o provide.

One negative feature that relates to both ease of
use and transparency is that the user must consistently use
the same author format in record creation, update and
Tetrieval. Each author field is-seen by the system as orne
string and when a retrieval match is attempted, it must be
an exact match with the entire name in the field {(e.g., "Dr.
John Smith" would not match with "John Smith"™ or "Dr.
Smith"). KGSs does, however, provide the user with

transparency from the records' physical storage within the

2l

data base.

The response time should prove to be adequate since,
except for the use of "STRING SEARCH" (which sequentially
searches the entire data base), all retrievals are made by
use of an indexed directory look-up file structure.

Correctness of the data base is an issue that is
covered well by the KGS system. 2All supporting dictionaries
and indexes are wupdated at the time a record 1is created or
updated. Entries to the dictionaries and indexes are,
likewise, deleted at the time a record is deleted. To avoid
the storage and search problems inherent im files marred by
blank records, a file maintenance program may be triggered
by the system to run regularly during non-peak periods. One
problem which affects correctaess is that no back~
up/recovery procedures are included in the system software.

KGS software’s monetary cost to the department was
negligable because it was available through a free users?
sofiware library, Interchange. The software system cost is
75,000 bytes of memory while user operations are performed.
The file maintenance program requires 247,750 bytes of
mDemory. Disk storage capacity necessary to operate the KGS
system is determined by the anumber of Tecords in the data
base. An approximate calculation to determine disk storage
in bytes is 900 times the maximum number of records to be
stored. This allows for storage of all files, dictionaries

and indexes.

22

Chapter 3

This chapter gives a high-level descriptioa of the
overall KGS system design by its file structure and its
operations. Operations fall into two basic modes: user

mode and file maintenance mode.

Data Base File Structure

== -_— e e———

The KGS system uses an indexed directory look=-up
file structure {see Fiqure 2). The data base consists of a
master file, keyword dictionary, author dictiomary, keyword
index and author index.

The master file is unsorted and contains the details
of information on each reference stored. Each record
corresponds to one publication and is, therefore, identified
by a unique record number. The master file record format is
given in Figure 3.

Keyword and aunthor dictionary files provide for
direct retrieval of master file records without slow
sequential searching of that file, The keyword dictionary
contains every unique keyvord that has been entered in anay
keyword fields of the master file. Likevwise, the author
dictionary is a file of all authors entered. Keyword and
author dictionary =records have a set of pointers that
jdentify the record number(s) of the corresponding master

file record{s) (Figure 4). Both dictionary files are sorted

24

KGS Master File

User input
keyword "color"
| COLOR Keyword Index
¢ 20 Keyword

Dictionary

CODE 40,50

COLOR 10,25
User input %

author "Brown, J."

| BROWN, J Author Index
-
B 15 Author
Dictionary
BACH 5,15 |
BROWN, J 35

KGS Data Base File Structure
-Figure 2-

Author 1 (32 characters)

Author 2 (32 characters)

Author 3 (32 characters)

Publication Date (12 characters)

Publication Title (100 characters)

Publication Name (32 characters)

Reference (20 characters)

Keyword 1 (16 characters)

Keyword 2 (16 characters)

Keyword 3 (16 characters)

Keyword 4 (16 characters)

Keyword 5 (16 characters)

Keyword 6 (16 characters)

Discipline (16 characters)

KGS Master File Record Format
-Figure 3-

25

Keyword Dictionary Record Format

Keyword (16 characters)

1st Jocation on master file (4 characters)

ond location on master file (4 characters)

e g ki

st e p A s e

Last Location on master file (4 characters)

Author Dictionary Record Format

Author name (32 characters)

1st location on master file (4 characters)

ond location on master file (4 characters)

Last location on master file (4 characters)

Dictionary Record Formats
-Figure 4-

26

Keyword Index Record Format

Keyword Root (1 character)

Pointer to keyword dictionary (4 characters)

Author Index Record Format

Author Root (1 character)

Pointer to author dictionary (4 characters)

Index Record Formats

-Figure 5-

27

in ascending order when the file maintenance programs are
I un. However, between these times, an unsorted overflow
area is utilized for newly added keywords or authkors. It is
important that the file maintenance mode is run frequently
enough, recreating the dictionary files, to avoid overflow
becoming large enough to cause extended search and retrieval
tines;

In order to decrease retrieval times, index files
are provided for each dictiomary. The keyword index is a
sorted sequence of keyword roots {first character) and
pointers that mark the first dictionary entry with that
keyword root. Hhén a keyword or author rTetrieval is
requested, the root is obtainmed by a binary search (SEARCH
Toutine) of the corresponding index file. For exanple,
given the keyword "simulatioa," the root would be ¥s" and
the index pointer would give the dictionary starting address
of keyvwords beginning with the "s" root, The author index
is handled in the same manner, but pointing into the author
dictionary. Once the starting address is gqiven, a
sequential search is made from that address to the next
root's beginning address within the dictionary. If the
keyword {or author) has not been found, then the overflow

area is searched sequentially.

Modes of Operation

Oser HMode

Upon user entry of "KGS"™, a Perkin-Elmer Command

28

Substitution System (CSS) command file is invoked, which
loads the user mode supervisor program (KGSUPVR). This
supervisor program runs all subroutines within the user
mode, as diagrammed in Piqure €, vhich make up three user

sub-modes: EDIT, EBITRACT and INFORMATION (Figure 7a).

Edit (KGSEDIT)

Within the edit mode, there are four options:
APPEND, DELETE, UPDATE and STOP. All editing retrievals
require a record number within the master file. Because
character entry of "*" may be made at this point {to signal
the end of the editing session), user input must be read as
character data. Therefore, when a record number is entered,
the subroutine CONVERT right Jjustifies tha number and
changes it to an integer value. The naxinum number of
records on the master file is limited only by disk storage
capacity.

KGSADD is used when a new record is to be created
and appended to the master file. Wwhile in the append mode,
the system prompts the user for each element of the master
file record. The CRAM routine performs the caompression of
two title lines into one string before storage into record
format. Upon completion of record entry, the user is
prompted to check the information to determine whether or
not a save is desired. If the record is to be saved, author
and keyword fields are simultaneously added to the
dictionéry files. KGSPTRUP updates the index and dictionary

pointer fields.

29

KGSUPVR

KGSEDIT

{ KGSEXTRT

KGSINFO

30

KGSADD

CRAM
KGSDISLN

\| KGSDEL

KGSPTRUP
SEARCH

[CONVERT]

KGSDISLN
KGSPTRUP

SEARCH |

1

KGSDISLN |
KGSPTRUP
CRAM

CONVERT

ﬁ SEARCH

KGSAUTHX

KGSKEYEX

KGSALL

DATE

DATE
SEARCH]
KGSDSPLY

DATE
KGSTRING
KGSDSPLY

| STSRCH
[KGSDSPLY

DATE
KGSDSPLY

KGS User Mode - Program Calling Structure
-Figure 6-

KGSDEL provides the capability of deleting a record
from the master file. The to—-be-deleted record is displayed
and the user prompted for a delete determination. If the
user wants the record deleted, it is marked as a deleted
node, inaccessible to users, but is not physically removed
until the next file maintenance run. Author and keyword
pointers to that record are deleted from the dictionary
files.

KGSUP allows the user to update a record already
stored in the master file, The fields of the current master
file record are displayed in a 14-line format. This is
accomplished with routine KGSDISLN. The user 1is pronmpted
for a line number to update and for the updated value(s).
The entire new string must be keyed ing no string editing
facilities are available. After all updates are made, the
user may save the updated version on the master file or
discard it.

| To exit the edit mode, the user enters "“STOP", at

which time control is returned to KGSUPVR (Figure 7c}).

Extract {KGSEXTRT)

When information retrieval and display from the KGS
data base 1is desired, KGSEXTRT is called. The user may
chooée one of three methods for retrieval: AUTHOR, KEYWORD
or ALL.

KGSAUTHXY allows retrieval of records by author.
Index and dictionary files are utilized to locate nmaster

file records with a matching author field. As noted

31

KGS

el FOR ADDITIONAL HELP OR INFORMATION
it TYPE KGSHELP

EXTRACT

KGS PUBLICATTIONS DATA BASE

Il'"lllllIill.IlllllI"IGIII'lilllilllllll‘lll‘l!il

.

ENTER DESIRED RUN MODE

EDIT EXTRACT INFORMATION STOP

Sample KGS Output
-Figure 7a-

32

KGS PUBLICATTIONS

33

DATA B ASE RETRTIEVAL M O0ODE
ENTER EXTRACT CRITERIA (AUTHOR, KEY, OR ALL)
KEY
FIELD OR STRING SEARCH BY KEYWORD?
FIELD
UNION (OR) OR INTERSECTION (AND)
OR
ENTER KEYWORDS
ABSOLUTE HUE
XENON FLASHTUBE
COLQUR
KEYWORD NOT IN DICTIONARY - COLOUR
ALTERNATE PRINT OPTION?
NO
KEY WORD/S SELECTED WERE: ABSOLUTE HUE XENON FLASHTUBE COLOUR

SEARCH CRITERIA USED: UNION

- e e W e = m m e W W 2w e e e e 2w = = = = = = = = =

AUTHOR: AKITA, M. RECORD NO. 13

AUTHOR(2): GRAHAM, C. H.

AUTHOR(3) HSIA, Y.

FILE CODE: 0232

PUBLICATION DATE: 0464

TITLE: MAINTAINING AN ABSOLUTE HUE IN PRESENCE OF DIFFERE

NT BACKGROUND COLORS

PUBLICATION NAME: VISION RES.

REFERENCE: ' 4,539-556

— — KEY WORDS - - COLOR PERCEPTION COLOR CONTRAST ABSOLUTE HUE
BACKGROUND COLOR LUMINANCE RATIO BEZOLD-BRUCKE

-Figure 7b-

KEY WORD/S SELECTED WERE: ABSOLUTE HUE XENON FLASHTUBE COLOUR

SEARCH CRITERIA USED: UNION

AUTHOR: 9 RECORD NO. 11
AUTHOR(2): HENDLEY, C. D.
AUTHOR(3): KULIKOWSKI, J. J.
FILE CODE:
PUBLICATION DATE: 1972
TITLE: ELECTROPHYSIOLOGICAL AND PSYCHOPHYSICAL RESPONSES
TO MODULATION OF CONTRAST OF A GRATING PATTERN
PUBLICATION NAME: PERCEPTION
REFERENCE: 1,341-349
- - KEY WORDS - - XENON FLASHTUBE ELECTRONICS POWER SUPPLIES

DO YOU WISH TO CONTINUE?

NO
ENTER DESIRED RUN MODE
EDIT EXTRACT INFORMATION STOP
STOP
STOP
JuDyY -END OF TASK CODE= 0 CPUTIME=4.,442/0,830
LA FOR ADDITIONAL HELP OR INFORMATION
kot TYPE KGSHELP
11}
SIGNOF
ELAPSED TIME=3:44 CPUTIME=U4.442/0.830

TIME OFF=12/30/81 11:50:58

-Figure 7c-

previously, this requires an exact match. Fach record is
output to the terminal screen (or printer) in a report
format (by use of routine KGSDSPLY).

KGSKEYEX allovs the user to specify one of two
keyword search techniques: FIELD or SIRING (Figures 7b-c).

If field search is requested, up to six keywvwords to
be matched may be entered by the user. The system prompts
for UNION or INTERSECTION relations between the entered
keywords. If UNION (OR) is chosen, the selected record must
contain at least one of the input keywords. If INTERSECTION
{AND) is selected, the record mnust contain all input
keyvords.

KGSTRING allows the user to sequentially search all
publication title and keyword fields within the data base.
STSRCH compares the input string (maximum of 50 characters)
and record strings for a match. For each match made, a
record is output in report format to the terminal screer {or
printer).

KGSALL sequentially reads through the aut hor
dictionary, accessing and outputting to screean and/or
printer (again, in report format) all records for each
author. The user receives a complete listing of the KGS
master file in alphabetical order by author ({with duplicated

records for multi-authored entries).

Information (KGSINFQ)
KGSINF allows the user to receive a 1listing of all

dictionary entries and the number of occurrences of a

aB

keyword or author entry within the data base. The user is
prompted to choose which listings: KEYWORD, AUTHOR or BOTH

(Figures 8 & 9).

" Pile Maintenance Mode

File maintenance mode may be run by a time-sensitive
€SS command file. This is quite useful for <running this
mode unattended during non-peak periods of system use.
KGSDCNY provides maintenance by recreating dictionaries
(from previous dictionary and overflow areas) and recreating
indexes for each "new" dictionary. ({Overflow areas are then
discarded.) KGSRENEW searches for records marked for
deletion, removing them from the master file. Figure 10 is

a diagram of program calls within the file maintenance mode.

36

WOt THOLNADY
37 NGO
M Otd A
L W NI R U
U

B S I W P O I R4
M "HI3LSHYUE
‘H "H “NI3LSHY08
"9 "3 “INIH08
"1 "d “¥3Idoos
34 "H "¥3H008
" qagylooa
A Ta@ "A3NOG
4 "AM "1dNod
M "H "HNYWa08
‘I “d3aNTIom-siaod
"W "a@ "¥39NIaod
"3 "3¥0W3NENg
“173MAddYNg
“173AMAJIU78
“NUWY3LLIE
T "N3YYIg
"4 “N3¥NI8
*d "3 *3INNIAG
T Ty T¥3nsy3lg
n oW tAd1E
*H "M “HOLX34
"N "d "Ady3d
"Y “NI3LSNy38
‘W "Z11ADM439
U "3 “113NN3H
"W ¥ “NI8138
" "7 "¥3ri3g
"S "5 ‘592938
*r *sy33g

"3 "d¥ "qy04q39
*3 "H ‘113439
I '1¥34439 *°3 "M X034
"3 "M X239
r -AJ38

wrroow

v L e vt v vt v vt vt vt vt (4] (] e v et vt et et vt N vt et et (U] e v e (4] e v e (Y] vt o et ST e 1
. -—
.
wa =

S3INIFHAINII0 doHLNY
18-82-21

22z
[a -4 el e

I v A B 31 |
d TH T IaLatg
B I W S A B (e

B B

*NOSITILavE

Y " “S3N4v8
‘8 "H “M0Tyva
‘Y "0 "¥vg
M "y “A3lva
'3 "¥39UMHIS1NY

-
-

" INDYL SYY
*INOALSWYY

"3 "7 "AN3dY

I "P3IHZHY

‘W S “SILSNY

W

‘S “SI1SNY
1SHY
“4 "SM3FINY

'S "W "3 “NOS¥3IANY

‘3 "qd “NOSA3INY

'Y S3IY

‘Y ‘8 "d3nguy

‘W "Ni3d™
‘1 “NDSITW

"I "W "N3a1w

*d "N3ITW
'£°J "NITW

r "3 *NIT

h'r

“¥3INUX3TY

‘3 "y ‘NIgW

3 TENONSHY
"W "ULINY

‘8 "8 “Sduqy
‘T °Y "Skyqy

- B §

"NOSHILIY
*1 "ADWYyaY
6
x

JSI7 ¥0HLNY

S53IN3¥HNII0

d0HLNY
JSYE YLUd SNOILYIIENd SON -

KGSINFO Sample Output for Authors

-Figure 8-

38

o

v-'vv—N'ﬂﬂ—l—l—I--v—v—ﬂﬂ—lhﬂl-ﬂl———lﬂ-ﬂ——m—mm—-ﬂ.—._—,‘

Y Ao JL.LL0EAHD
HOWS3Y JLLULIGEND
LOMINT 21 LGEHEHD
ELITINIT DTG0
UBLHNOD 31 L8050
INNYHD 31 L U0daHD
4304908 JILUH0IHD
Uldudy I LUHO¥HD
J1 LUH0dHD
38Y7080HD
NUNIWOd Wag9333]
3anL AYd-3d0HLYD
13939147

NOI LYd91 Y]
J13LSIA SS3aNISNG
SAONIAING

3J343d SS3INLHITNE
HJLW! SS3INLHDI 38
3LNOJ SS3NLHII YA
SSANLHOI 48
THSH3ATA 1HOId8
SINIIAUy9 LHI1d4
JINUHNI LHOI 349
AJNULSNOD LHI1¥8
d3qA08
FANLYY3IAIEL AdO8
anna

LH911 ALIHM3NTE
S3NQI 3ng

MYy SHJI0T8

Jqua XJv8
A907033L3018
I WII907018
J3dsY WII1901018
NOISIA 3YTNJ0ONIB
AdWALY ¥YTINJIONIG
AHdY¥901 1818
ININ¥G-A0239
HLAIM 3v8
N9IS3d LSYTua

S3IINFHANIJ0

qQIoMAIN
18,0221

YHINSHL] THUINY0
Y0102 ANNDYEIY:)
ALAAYS NOLIWIAY
NOTLBIAY
IMUNIWNT S9HTAL
MOAJ3N J1HONDLMY
AdoLLAny
NOILIGNY

HSY14 NO¥HINASY
ANLIRIASY
HSILHIOLSY
1INNS WIJI41L3Y
I9WIT WIDI 1LY
307102 W3 4113y
HIU0AddY

SUALNOD 1N3dYddy
NLHI138 LN3¥Yddy
FANLy3dY

I1SNY
3d0ISOTHHONY
HJ¥Y3S3N THUINY
HOIAYH3A THHINY
ISYUIALY BHd Y
SNOIL dIY

INIIY

5133443 399
S39NYHI 39U

39y

NOI 1Ylduay
51233443 DJINILIY
a3d1Loy
S311SN0JY
1301514 J11snooy
§07102 J1LH0NHIY
NNYHD J11HJ0dHIY
21 LB0¥HIY
SLOWALSEaY

173dS NOI LJN0SEY
INH 3LN0SaY

SIINIFH¥NII0
1S177 QYOMAIN

QAOMAIA

3SuE Yilyd SNOILWDIENd S

KGSINFO Sample Output for Keywords

-Figure 9-

KGSDCNY

\ KGSDCKEYJ
] KGSDCAUT |

e

KGSINDEX

KGSRENEW

KGS File Maintenance Mode - Program Calling Structure

-Figure 10-

39

Chapter 4

Introduction

The implementation of the KGS data bhase sSystem, as
it has progressed, has involved activities directed towards
a variety of systemrelated questions as discussed in the

remainier of this chapter.

1111 It Hork on This dachimne?

It answering this gquestion there are four
considerations: machine configuration, available operatirng
system, available compilers and storaqge capacities.

Since KGS was origqginally implemented on the same
machine as +hat owned by the departmert (a Perkin-Elmer
8/32) , no configuration problenms, such as data
representation, were anticipated.

The original KGS was run on an 0S/32 MT operating
systen. The same operating system was used on the KSU
machine until recently when a switck to the popular ONIX
operating system was made. i1t seemed feasible that, since
other software had been converted from 05/32 HT +to UNIX,
that this software could also be converted.

KGS was compiled under a Fortran VII éompilez. The
only Fortrar version available under UNIX is Fortran 77.
Conversion +o Fortran 77, a popular update of previous

Fortran versions, was possible.

Since the KSU Perkin-Elmer has a core capacity of
750,000 bytes, the KGS maximum core requirement {under £file
main+tenance mode) of 300,000 bytes should not be a source of
trouble on this computer. At this time, the disk on which
the KGS data base resides is used by other students and
faculty. Since, under U¥IX, no single user is restricted in
the amount of disk space which they may use, it is
impossible %0 ©predict the amount of free disk space
available for KGS use. This means the maximum storage limit
is dictated, not by the computer system, but by the disk
requirements of all other disk users., Knowing the typical
disk usage on the Perkin-Elmer at KSU it is clear tkat an
jritial base of 1,000 records could easily reside on the
disk. As +the data base grows, however, one of two
alternatives may be necessitated:

1) The computer system operator monitors

disk use, freeing space in some manner,
to accommodate the growing data base.

2y The KGS system may need to be moved
to another disk withk Rmore capacity
or lower-volume users.

In the early stages of the implementation, it was
quickly apparent that eight subroutines described in the
provided documentation were not present in the provided
software. Furthermore, the documentation available was not

sufficiently <c¢lear in explaining the functions of these

41

missing routines to make rewriting the missing portions the
most time-effective alternative. The search began.

lpor re-exakination of the original tape fronm
Perkin-Elmer's Interchange library, three routines were
found. Their file names did not abide by +the naming
convention of other KGS files; they did not begin with the
"EKGS" root.

A phone call to the Interchange librarian was
returned within a few days confirming that, indeed, the
documentatiorn referenced the routines and that the routines
were nissing from his files also. He volunteered to query
the aunthors who had submitted the KGS software *o
Interchange about the missing routires.

Several months of letters and calls ensued until,
fipally, a "complete" working package arrived. On
examination, it was exactly the same software with which we

had started.

What happened? Four subroutines had been merged
into one routine after documentation had been printed. The
documentation had never been updated. The other "missinq"

routines turned out to be special utility programs that
provided a system date and handled the carriage control and
on/off switch on a printer., The authors didn 't think thenm
important enough to the basic logic of the program to note
them in docuzentation.

Eeliable documentation is a must for any software

implementers or maintenance personnel. Often the software

42

writer is no* available for questions so it is essential, as
the only source of information on a software system, that
documentation be clear and complete. Tkis is a real-world
problem - especially for frequently updated softwvare.
Perhaps someday we will have the facility of an integrated
documen t-generator that reads code and interprets it into
natural lanquage documentation, Until this kind of tool car
be developed and made operational, softwWware writers must
view documentation as a portion of a software system that is
just as dyramic a component as the software itself and aust

te handled in parallel.

How D¢ You Convert Fortran VII to Fortran 777

KGS was written in Fortran VII *o be run on 0S/32

HT. In order to convert to Fortran 77, the onrly Fortran
compiler available on the Ucix systen, a conversior of
source code was necessary. With no manuals available for

Portran VII, the best approach was to run the code through
the Fortran 77 compiler to £find potential syntactic

problens. With further familiarity with the system routines

and a little guesswork, some semantic conversion may bDe
made. Fortran 77 has evolved sirce Fortran VII and
therefore provides expanded capabilities. Another layer of

conversion may be made, then, taking advantage of the more

extensive facilities.

43

How Do You

Convert CSS/MT t2a Shell?

It is essential to first understand thke 0S/32 KT
environment (in which the origimal KGS version was writter)
and ways in which KGS interfaces GS/32 HT. To assist with
this +ask, the 0S/32 Operator's Reference Manual and a gquide
to MT may be referenced. The next step is to understand how
the same software interfaces are accoaplished in the UNIX
envirornment. Some helpful references are Bourne's UNIX book
{BOU82) and "An Introduction to the UNIX Shell,™ also by
S.R. Bourne.

Operating system conversior activities involved
include, but are not limited to file storage, £ile locking,
file access authority, program handlirg procedures (compile,

link, load), I/0 interface and error handling.

Fhat Test Procedures Shoul

[=3

Be Used?

System testing is an extremely important phase of
the software 1life cyclea Though KGS has reportedly been
operational at another site, it is imperative that testing
be done, especially because in this inmplementation a
different operating system and compiler are used.

Good test procedures include at least unit testing
and integration testing.

Unit testing is done at the module level. Some
module characteristics that should be evaluated during unit
testingy are module interface, local data structures,

"important" execution paths, error-handling paths and

44

houndary conditions related to the above (PREZB2).

In KGS there are three main modules: KGS (user
module) , RENE¥ and DICTIONARY (file maintenance module).
Though RENEW and DICTIONARY are not very complex, KGS does
necessitate extensive testing of file access and update
results, user-systen interface problens and software-
hardware problems (screen and printer options) among others.
Due to this complexity, as well as the size of the KGS
nodule, unit testing may be simplified by breaking down test
units to submodules of KGSEDIT, KGSEXTRT and KGSINFO (or
even further to KGSADD, KGSDEL, KGSUP, KGSAUTHX, KGSKEYEX
and KGSALL).

Once unit testing is completed, the integration

testiny of units (and sub-units) is accomplished in a
bot+om-up fashion. This means that the most atomic stand-
alone units (or in this case, sub-modules) will be

integrated and tested before inteqrating the next higher
level of modules. The last step (at the top) will be the
inteqration testing of the complete system with “real-life"

exanmnples.

45

Chapter 5

This chapter consists of lists of implementation
activities incurred during this project. Specific problenms
of conversion from Fortran VII to Fortrar 77 are included as
wvell as this implementer's solution. Similar listings are
given for the necessary adaptatiorns to the original KGS coce
wkich allowed the 0S/32 MT-based system to run or *he [NIX
operating system. Additional enhancemernts made to the KGS
system are also listed. Finally, a description of “he final
product is given in relation to the origiral desigr goals of

this implementation.

22 MR amam EmELlmma em-m m—————=———

Character Type Declaration
A first attempt at compiling the original KGS source
code on the Fortran 77 compiler produced pages of error
listinys. A conversion of the character type declarations
diminished the number of errors substantially. (The integer
type declaration is the same in both Fortran versions.)
Fortran VII enforces a character type declaration syntax of
<CHARACTER*><number_of_characters><,>{variable_label>
while Portran 77 requires a syntax of
<CHARACTER><b1ank{s)><variahle-labe1$<*>
<nuebker_of _characters>

In both ins*tances the number of characters refers *o the

length of a variable. For array variables a similar

conversion is made from
<CHARACTER><number_of_characters><,>
<array-variable_label><{><array_size><}>
+o
<CEARACTER><blank {s) ><array-variable_label><*>
<number_of_characters><{><array-size><)>
Examples are given below.
CHARACTER*100,TITLE to CHARACTER TITLE*100

CHARACTER#*32, AUTHOR {3) to CHARACTEE AUTHCR*32(3)

Six-Character Labels

Fortran 77 requires that labels must be =ro lorger
*han six <characters in length. For this —reason @manv
variables and subroutine names were changed (e.g., FGSDISLY

+o KGSDLN; LETTER1 to LET1).

Decode Routine

Portran VII provides a system utility program,
DECCDE, whick converts a character value %o an integer
value. There is no similar utility offered by Fortram 77 s9o
a section of code was necessary to serve this functior.
CONVRT {see Appendix) is such a routine which, af*ter righ+t-
justifying a character value, writes that ckaracter value *O
a formatted scratch file. The value is then read ir icteger

format.

Unit Reassignment

When assigning wunit numbers for external files in
vortran 77 units 5 and 6 serve special purposes. Unit 5 is
seen as the standard input device (e.g., terminal keyboard)

and unit € as the standard output device (e.g., +rermiral

47

screen) . This unit assigrment convention conflicted with
that of Fortran VII, which sees unit 6 as a compard device,
handling both input and output. In many instances in tlre
original KGS source code unit 5 was assigned for use with
the KGS master file. For this reasor, a consist*tert
reassijnnent of external file units was necessary to avoid
copflict with +the Fortran enforced units 0,5 or 6 (0 1is a
standard error device) as well as units already assigred to

otker KGS files within the progranms.

File Specification

criginally, file names given in OPEV statements ¥ere
suitable to Fortran VII in the 0S/32 MT eavironmen* (e.g.,
WEGS" and "IDX.DTA"). Given tke UNIX directory-based file
storage system, pathways were necessitated for locating KGS
files for any users. The KGS files reside on direc*ory
w/usr/kgs/data so file names were converted accordingly:
"KGS" to "susr/kgs/data/kgsmasterfile" and "IDX.DTA" *o
" susr/kgs/dataskeyindx . (Sirce lower case transactions are
+he preferred form in UNIX, £file pathways were giver in all
lower case. Longer file names were also acceptable and

changed for that reason.)

Ingquire (SIZE=

Both versions of Fortran include arc INQUIRE
statem2rt that may be used to inguire abon* properties of a
particular named file or unit. One specifier, SIZE, used ir

KGS is not supported by Fortram 77. SIZE gives a value

48

which specifies the number of records in a file - the file
size,. A section of code was needed, therefore, o serve
this function in KGSADD, EKGSDEL and EGSOP. This piece of
code is simply a read loop that counts records until +he
end-of-file record 1is detected (see Appendix for the code

created to replace this routine).

Formatted Files

211 reading and writing of files 1in ¥GS 1is
accomplished with format statements. However, Lo
specification was made in any OPEN control statements tha®
defined files as formatted. Because KGS relies heavily on
the usa of direct access files and because the defaul® form
specification on direct access files in Fortran 77 1is
“UNFORMATTED" it was necessary to add the control statemernt
"PORM='FORMATTED'" to each direct access file opening
statement. To be consistent in this enforcemen* by the RGS
programs, "FORM='FORMATTED'" was also added to OQOPE¥

statements for sequential access files as well.

In OPEN statements in Fortran VII a cortrol
specifier of "SHARE= " is available. This allows a file's
locking status to be specified as "SRO"™ (shared read orly),
"EWO" (exclusive write only), "ERW" (exclusive read write),
etc. Fortran 77 does not support this facility (nor does
this version of UNIX. This is an operating-systecm-level

problem that can not be addressed in this project. Tor *his

49

reason, any occurrences of SHARE were eliminated from OPE¥

specifier lists.

File Status "RENEW"
In addition to STATUS specifier values {ir an CPEY
statemant) of "CLD"™ and "NEW", Fortrar VIT allows a value of
HRENEW". Fortran 77 does not flag YRENEWY as as an
erroneous value but treats it as an unknown value. The
original intent of a "RENEW" status is apparently to allow a
file to be rewritten, and is used in KGS in connectior with
files used for dumping information to a printer - a oune *ime
occurrence, after which the file data is never used.

There are several ways in which this facility coul?l
be converted - within the program code or within a UNIZ
shell progran. Within the program code all instances of
"RENEW" could be replaced with "NEW". Fortran 77 under UNIY
truncates any existing file that is opened with a status of
"N EW". The alternative conversion method 1s with a UNIX
shell progranm. This method requires a few lines of code
just preceding shell commands to execute a progran. In
those few lines the MRENEW" files are removed. When an OPFEHN
statement on one of these files is performed ir the source
code, a new file is created (and writing begins at the ®op
of the file}. The later alternative to this cornversiohL was
implemented primarily because the intention of file rerneval
is moras apparent 1in that context. It should therefore be
more easily interpreted by those programmers doirg

subsequernt maintenance. One shell program for user mode

50

removes a printfile before user mode is run. Arother skell
program removes the key and author dictionaries and indexes,
as well as a temporary copy of the master file before file
maintenance mode is executed {see Appendix for the code of

this routine).

Date and Carcon Routines

Two subroutines mentioned in *+he KGS documenta*ion
were system utility routines not available in the UNIX
operating systeem - CARCON and DATE. CARCON was used to send
special carriage control values to a printer. This was not
reeded in +his implementation, In this conversior printing
specification is performed from within a shell progranm. -3
+he normal termination of a KGS session any ron-enpty
printfiles are automatically printed.

mke DATE routine provided a value for today's date
which was ipcluded 4in several hard-copy report headings.
Because hard-copy printing by UNIX provides today's date in
a heading on every page, all DATE calls and IDATE variables

were removed.

END and ERR

Many of the original KGS subroutines check for an
end-of-file condition in order to determine if a file is
initially empty or if further processing within a file is
necessary. This checking is accomplished in two different
vays. One way relies on the "ENRD=N" control specifier that

Fortran allows in a READ statement. If an end-of-file is

51

detected, control of the program is resumed at code lire
NN, The other way, a coanvention by the KGS writers,
determines end-of-file in a direct-access file (whick does
not inczlude a proper end-of-file record). This code recads
past the end of a {file and, upon detection of an
input/output error of end-of-file, uses a "GO TO NY control
+o dirsct the program to lime "N". This convention involves
a READ statement with no "END=N" control specifier and no
"ERR=M" control specifier (which would, upor detection of an
error - like end-of-file - resume the program at code line
nMHy Inmediately following the READ statemer+ are *the two
statements

IP (ISTAT.EQ.31.0R.ISTAT.EQ.32) GO TO N

IF (ISTAT.NE.O0) GO TO X

(ISTAT is a variable that may be assigned +he IOSTAT value
from an OPEN, READ, WRITE or CLOSE operatior 1f
WTOSTAT=ISTAT' is included in the control specifier list for
that operation. IOSTAT is some processor-dependent value
that may be thought of as amn error code for ircput/outpu+
performance.) These +wo lines of code screen end-of-file
and other input/ output errors.

Two problems were discovered ir an attempt to rurn
these parts of the code "as 1is". Though Fortran 77 is
documented to support END as a control specifier, it has
been determined by this writer that though the compiler is
sensitive to the end-of-file «condition {returning an

appropriate IOSTAT value), the code for transfering of

52

program control to code line "N" has not been implemented in
this release of Fortran 77. Furthermore, the samec prolrles
is experienced with +the ERR control specifier with reqgards
to inpu+t/ontpnt errors. Certain ONIX-specific errors arco
detectable with control transference effective {e.q., an
illegal pathway file specification) but repeatedly
input/outpu+ errors were not sensed by UNIX through Fortrar
77 even thougk UNIX error reporting should be sensitive to
input/output errors (i.e., 5 EIDO i/o error (BCOUS83)). It is
this implementer's contention that this suggests a buy it
this compiler or reflects inconmplete implementation »Of *tre
compiler (lacking conmunrication between 8/32 processor
IOSTAT code handler and ONIX ERR handler).

In addition, wupon run attempt, though end-of-file
was encountered, ISTAT values of "31" or "32" failed +o
occur. Instead, an ISTAT value of "-1" was repor*ted each
time the end-of-file was encountered. Therefore a check for
a value of ¥-1" was added to each KGS convention to result
in the statement

"IF {ISTAT.EQ.-1.0R.ISTAT.EQ.31.0R.ISTAT.EQ.32) GO TO N“.
Because of the problems with END and ERR, additional KGS-
form checks for end—-of-file and errors were added througkout
the program source code.

The lack of proper error and end-of-file specifier
support in tkhis version of Fortran 77 represents a
substantial threat to the inteqrity of this data base

system. Input/ouput error handling has been improved, as

53

described, by the addition of end-of-file and input/outpur
error checks. It is unknown, however, what other error

problems might occur with no warning.

All of the KGS data base systemn source code ¥as
written in upper case alphabetical characters. Assorted
problems, mostly related to external file defirition and
formatting through OPEN, WRITE and READ statements, were
encountered in an attempt to run upper case code in *the TNIX
environment. Therefore, all upper case alphabe*tic
characters in *the source code were converted +to lower case
alphabetic (utilizing the UNIX conversion facility "DD
IF=uppar_case_filename OF=lovwer-case-filename CONV=LCASE"

{ROUE3Y).

Compile and Link

0S/32 MT requires CSS command programs to be used
for compiling and 1linking Fortran VII prograns. NHIX
provides a nice alternative called "MAKE" whick allows a
programmer to compile programs, linking them into executable
modules {(BOUS83). This facility was used to compile and lirk

the three KGS system modules KGS, KCNY and KRENWEW.

Load

Instead of using provided CSS programs for loading

the KGS system modules, two UNIX shell programs were written

54

to load and run the two KGS modes - user and file
paintepance. The KRGS shell, invoked by a user typing "KGs",
rermoves a renewable printfile, loads and runs *he KGS5 systen
module and handles optional tard-copy printing. The
KGSRENEW shell, dinvoked by a user typing "KGSRE¥EW" or by a
pre-specified system state (probably a time-of-day}. This
shell program copies the existing KGS master file into a
backup holding file, removes the KGS renewable temporary
file, loads and runs the KRENEW module, upon successful
completion changes the temporary file name +o0 KGS master
file, removes renewable files (dictionary dump, Xxev ard
author dictionaries and 1indexes), loads and runs the KCNMNY
module and finally, prompts the operator *o remove *the KGS

hold file if the program terminated normally.

Enhancements

Most enhancements to the KGS systen provide
increased user ease. All entry by the user is to be done in
lower case {as opposed to the previous all upper case
format) . The user is remirnded of the lower «case ard
critical formats through prompts on the screen. For
example, in the append mode, *he user is prompted with
"enter first author - lower case orly - 1in format:
<last_name> <,>< ><first_name> example: doe, jane ". The
all-lower-case format should prove easier for user entry anc
be less prone to retrieval matching problems irherent in

upper-and-lower-case formats.

55

References by prompts to PUBLICATION TITLE vwere
changed to ARTICLE TITLE since there seemed due cauce for
confusion botween PUBLICATION TITLE and PUBLICATICY YAME
{referring to a Jjournal name) in the original KGS code.
Also prompts for REFERENCE were changed to REFERENCE LOCATCR
to further «clarify the intent of this value - a physical
location of +he companion reference in someone's file drawver
or elsevhere.

A jood error-reporting message system was included
within the KGS code, especially for OPEN, WRITE, EEAD ard
CLOSE errars. Typical of these mnessages was "ZEROR OY
READING FILE - ISTAT = x" {where "x" was some ICSTAT code).
Cne enhancement to these messages is the inclusion of the
specific subroutine or program within which the message was
writ*en. This enhancement has made debugging and testing of
this system much easier and should aid anyone maintaining or
enhancing the system in the future.

Finally, another enhancement for any succeeedirg
programmers is the clarification of some bits of code by

additional source-code-context documentation.

EGS — The Final Product

This implementation of KGS at +*he Kansas State
University Computer Science Department has been completed.
What do we have as a result?

In an operational sense, we have a bibliographic
reference system +hat is capable of handling editing,

extracting and information gathering endeavors by a group of

56

users., Faculty members will be able +to mairtain ar
organized base of research materials which they may share
with students or other faculty members. This is wha* we
specified in the beginning.

To the user, the resultiaq product is one which
should be relatively easy to use. There are sufficien+
clear prompts to lead any new user through the activities of
adding, updating and deleting reference records. aAn
inexperienced user should also be able to easily extrac*
records by authors, keys or title strings, especially with
the use of a general HELP facility. Listings of an*hor ard
key dictionary entries or the entire data base may be made
with little or no knowledge of the peculiarities of file
structures so there is a high degree of data independence.
Transparency is aided with clear prompts where critical
vailue formats are needed {e.g., authors). Response time is
good - less than five seconds in all but the most lengthy

processes (string search of the entire data base).

Though much time was spert 1in understanding the KGS
system, overall 1less time was spent in implementing this
system than probably would have been spent in writing and
implementing a system from "scratch®. However, a %otally
new system design might have beer able to avoid some of thsa
peculiar compiler-operating system problems experienced in
Fortran77-0N1I1. A system designed in C languaqe would seen
to have been a superior alternative on this wmackine.

Perhaps, too, a new design could have prevernted some of the

57

problems that may plaque the integrity of this da*a base -
especially in the area of error control. The lack of file-
locking capabilities by any language run on this version of
UNIX also suggests potential problems for any data base that
is utilized by many users.

Despite these problems, however, tke KGS da*ta base
reference system presents itself as the first version of
what should be a valuable tool for busy education
professionals trying to orgarize large amounts of varied

information for *heir use.

58

Chapter €

There are still possibilities for future
enhancements to the KGS data base reference systen. These
areas of future work are described in this chapter,

There are many improvements that could increase
ease-of-use. KGS supports only very simple lipe-editing
activities ({actually line replacement). Inprovements in
this area would be a move to full-screen editing of special-
purpose formatted screens. This could make editing
procedures much simpler for the user, with less prompting
for line and replacement values. This could mean greater
ease of use for any level of user, but especially for orne
who is acquainted with full-screen editing features. A less
complicated but handy improvement to the editing facilities
of KGS would be the ability to do string manipulation {e.q.,
ch/striiing/string) instead of full-line replacenment.

KRGS is restrictive in its editing mode in that a
user may only retrieve a mode for editing by submitting the
appropriate record number. It might be handy to designate
the record by the types of activities used in the extract
mode (e.g., keywords, authors). Also, for some users, the
ability to extract a reference (probably very gquickly, too)
by designation of the target record number could be a nice
inprovement.

Improvements migqht be made in the mamner in whickh
the user could specify keyvord, author or strings for

retrieval. A front-end synonym table for keywords and for

authors might help when similar meanings and spellings {or
frequent wmispellings) of words or authors are involved
(¢«g., for keyvords: DATABASE, DATA BASE; for authors:
WEISNER, WIESNER) . It would be quite convenient to bhe able
to specify the retrieval of all records related to a keyword
root or suffix instead of picking through the system one
keyword at a time {e.g., COMNP* would retrieve all records
with COMPUTE, COMPUTER, COMPUTING, etc. or * RETRIEVAL
SYSTEMS would retrieve DATA BASE RETRIEVAL SYSTEMS, DATA
RETRIEVAL SYISTEMS, FILE RETRIEVAL SYSTEMS, INFORMATION
RETRIEVAL SYSTEMS, etcC.).

KGS does not allow +he user to retrieve using
logical operators (AND, OR) on the author fields. At times
it might a valuable time saver if the user could retrieve in
this manner (e.g., only references writtem Dby BEERI 2KD
BERNSTEIN). It might also be convenient for the user if the
system supported more complex combinations of AND and Ok
{(€<G., (BEERI AND BERNSTEIN) OR RISSANEN). 2 future
enhancement could be made that would increase this logical
handling of record fields.

Another improvemeant to this system would be the
enforcement of an author field format. This could be
accomplished in a number of ways, such as breaking the
author into first-, middle- and last-name fields. An
adjustment to retrieval procedures would have to be made if
this method were used but might logically accompany a switch

to full-screen facilities with enforced cursor movement from

60

one name sub-field to another.

Users might want to retrieve on values other than
title, author and keywords. Future work might be related to
allowing retrieval by REFERENCE {e.g., get all references
that are in Professor I's office, in File Cabinet n), range
of PUBLICATION DATE valoes (e.q., published after 1980), or
other fields.

KGS currently provides a hard-copy listing of a
selection of references 1in KGS report format. One future
improvement would be to give the user the choice of the
current report format or a bibliography format. The
bibliography format would produce references in tte
traditional bibliographic form, which would be ordered
alphabetically by author (vith the elimination of duplicate
entries) .

Cne last ease-of-use improvement could be the
conversion of the gemneral HELP facility to a context-
sensitive HELP facility. This means that if the user
requests "HELP" while in the update sub-mode, the HELP
response would relate specifically to activities involving
updating.

Response time in KGS could be improved vwith more
complete semantic conversion to Portran 77 or newer Fortran
releases supported on UNIX. For example, more sophisticated
string manipulation capabilities could eliminate the need
for procedures like CRAM and CONVERT.

since exclusive access of files is not supported in

61

the current version of UNIX, should a new version becone
available, a change to exclusive accessing of all or
portions of the KGS data base would provide greater
integqrity in this systen. Greater personal-data base
integrity could be maintained if there were a means of
designating record-ownership within the KGS data base. Ornly
the owner of a record would be able to execute updates and
deletes on that record.

Finally, an important future improvement to this
system, especially as the data base becomes larger, would be
the development of back—-up/recovery procedures. This could
be as simple as a reqular dumping of the data base onto
magnetic tape once a wveek. I+ could, alternatively, Dbe a
more complex scheme that would, after a specified number of
updﬁtes to the KGS data base, dump the updated data onto

tape or other back-up mediunm.

62

APPENDIX

KGS User's Guide

KGS is a data base syster which may be used for the
organization of research materials (articles, papers, €¢%C.).
In order to utilize KGS, a user needs an account establiskted
on the Perkin-Elmer 8/32 mini-computer in the Kansas S*tate
University Computer Science Departnment. Access @may be
obtained through one of many terminals in the department or

through a call-in line.

1. Logon Procedure

UNIX provides a prompt for a user idertificatiorn to
which the user must enter an account 1identification. If
+his identification is correct, UNIX will prompt for a user
password. If this, too, is correct, a page of messages 1is

displayed. The user must wait for the "S" +o appear on *he

screen before entering any characters from the keyboard.

2. Activating the KGS Data Base

-

There are two modes of interaction with which the
user should be familiar: user mode and file maintenance
mode. Most users will only interact with KGS in user node.
This 1is the mode in which editing, ex+trac+ing and
information listing 1is done. User mode is activated by
entering the command "kgs®. File painternance mode should
only be run during times of non-peak system usage because it

is a lengthy process. (There is no real reed for most users

to concern themselves with file maintenance because it is

run automatically and needs no command by the user (though,

64

if it is needed, may be executed by entering the comzmand
Hkgsrenew").)

All commands and data used by KGS must be in lower
case letters. Whenever an entered string exceeds a sys*en
specified string length, the string is truncated *o the
accepted length and saved in this form (with a correspording
message to the screen) or the user is prompted to re-enter a

shorter length string.

3. User Mode

Upon the "kgs" command, the message "KGS PUBLICATICY

DATA BASE - ENTER DESIRED ROUN HODE - ErI

-3
ty

DXTRACT
INFORMATION STOP"™ is displayed on the user's screer. This
is a prompt for the user to enter "edit®, "extract",
"information" or "stop" to designate a choice of rur rode <o

enter.

3. 1. Edit Mode

Upon the command Hedit®, tke message "EGS
PUBLICATIORS DATA BASE EDIT MODE - ENTER EDIT MCDE - append
delete update stop" is displayed. This is a prompt for the

user to enter "append", "delete", nypdate”™ or "stop" as a

desired edit mode.

3.1.1. Append Mode

The command "append" results in the message "ENTER
FIRST AUTHOR - LOWER CASE LETTERS ONLY -~ 1IN FORMAT:
<last_name><,><blank><first_name> EXAMPLE: doe, jare - OR A

BLANK LINE TO END". It is important that all authors are

65

entered in lower case letters only and in the format of last
name immediately followed by a comma "," iepmnediately
followed by only ome blank followed by the author's first
nape or initial. Any author name longer than 32 characters
is truncated and saved. Up to three authors may be entered
or a blank line entered to designate no more aunthors. (The
second author may be entered after the prompt "SECCND AUTHOR
- LOWER CASE LETTERS CNLY®" ard the third author after "THIED
AUTHEOR - LOWER CASE LETTERS ONLY". Each should be entered
in the same format as the first author.) Next KGS prompts
"ENTER PUBLICATION DATE"™ which may te responded to with up
to 12 characters. WENTEE FIRST LINE CF ARTICLE TITLF IW
LOWER CASE ONLY" appears on the screen. Line 1 of the title
may be up to 78 characters long and line 2 up +o 35
characters. "ENTER PUBLICATION MAME® refers to a journal or
similar publication name and may be a maximum of 32
characters. The prompt for reference locator speciiies a
loose format of <reference owner name><{physical location>
<file number> for use in physically locating the paper copy
of the recorded reference. The reference locator mnmust be
given with 20 characters or less so brevity in owner name is
important - maybe just first or 1last nagme. Next up =o six
keywords may be entered after the prompt "ENTER UP TC ¢
KEYWORDS — ONE KEYWORD PER LINE AND ALL LOWER CASE". Tach
keyword may be 1€ characters maximum length or skipped by
entry >f a blank line. Again, all entry must be in lower

case only. Finally, "ENTER DISCIPLINE"™ prompts for a 16

66

character string that describes the discipline under which
this reference might be best represented (e.gd., computer
science) . This is an optioral piece of data whick, at *his
time, is not referenced in any data base guery of FGS.

The prepared record 1is displayed ard tke nmessage
"SAVE J2.K.?" may be responded to with "yes" (the record is
added to the data base) or "no" (the record is discarded).
The user is prompted with "“DO YOU WANT TO CONTINUE IN APFEND
MODE?" A user?s "yes" begins the cycle of prompts over
again. A "no" returns the user to the choices wi+hin +ke

edit mode.

3.1.2. Dele+e Mode

The command "delete" begins the delete mode. KG3
prompts "ENTER # OF RECORD TO BE DELETED". The user may
enter the nunber of a record whick is to be deleted from tne
KGS data base. A record number not within the rangc o:i
records on +the master £ile triggers a "RECORD ENTERED IS
PAST END-OF-FILE, LAST RECORD NUMBER IS n" where "r" is th=2
largest record number on file. A message of "RECORD NUMEBER
HAS ALREADY BEEN DELETED™ may appear if the record Las been
deleted since the last file maintenance run. If the record
nupber entered by the user is suitable, the candidate record
is displayed for viewing by the user before the messaqc
“WDELETE THIS RECORD?” is seen. "yes" deletes the record
and "no" does not delete the record. The user is then
prompted "DO YOU WANT TO CONTINUE IN DELFTE MODE?" and may

then continue in delete mode or return to edit mode.

67

3.1.3. UOpdate Mode

Upon the entry of "update" thke update node is

entered. The system prompts "ENTER # O©F RECORD TO BF
TPDATED". Messages similar to those described 1in "Dele*e

Mode"™ are seen if the entered record numbker is too large or
is of an already-deleted record. Cnce the candidate update
record is fourd it is displayed on the screen with +tke
message "ENTER # OF LINE TO BE UPDATED OR AN * TO ZND". As
an example, entry of "1" will cause "OLD FIEST AUTHOD I35
XXXXXXXXXXx, ENTER MNEW FIBRST AUTHOR (DPCE, J) - LOWER CASE
CNLY - 1IN FORMAT: <last_name><,><blank><firs*_namec>
EXAMPLE: doe, jane" to appear and the system wai*ts for the
updated first line author. At this point the "IENTER & OF
LINE T2 BE UPDATED OR AN * TO END" pmessage appears again., A
response of "*" will cause the entire record to be displaved
in its updated form and the message "SAVE 0.K.?" to appear,
A "yes®" saves the record in its updated form and "no"
discards the update (so the record will remain in its pre-
update attempt form on the master file). "DO YOU WANT TO
CONTINUE IN UPDATE MODE?" appears and may be answered "yes"

to remain or "no" +o return to edit mode.

J.1.4. Stop
A user response of "stop" returns the system %o run
mode where the 1initial choice of editing, extracting,

information listing or stopping is again offered.

68

9hen extract mode is entered (Yextract™) t+he screen
greets the user with "KGS PUBLICATIONS DATA 3ASE RETFIFVAL
MCDE - ENTER EXTRACT CRITERIA (AUTHOR, KEY OR ALL)". The
user may now choose on which criteria their record querying
will be based. "author" allows guerying of record authors.
"key" allows querying of record keywords. "all" provides a

listing of all records in the KGS data base.

3.2.1. Author Extract Mode

The user is prompted +o "ENTER AUTHOE HAKE - (DOE,
J) = FDRMAT MUST MATCH RECORD". An exac* match is necessary
so care should be taken irn entry of an author name (lower
case and same format as used in append nmode). If ary
records are found whichk match the entered author the message
Y"ALTERNATE PRINT OPTIOR?" is shown. A "yes" peans a hard-
copy of the retrieved record{s) will be printed ir addition
+o0 being displayed on tke =screen. On completion of author
retrieval, +he system automatically returns to <retrieval

mode.

3.2.2. Key Extract Mode

Within the key extract mode is a choice of two types
of key searching - field or string - "FIELD OR STRING SFARCH
BY KEYWORD?"

A user choice of "field" causes *the system to ask
"UNION (OR) OF INTERSECTION (AND)?". A field search peans
that only the keyword fields of the data base will be

searched for an exact match. The union of user-entered

69

keywords means that a data base record could be retrieved if
i+ is matched with any of tke ertered keywords. The
intersection of user-entered keywords means tha* only a data
base record that contains all of the user-entered keyworés
can be retrieved., Following the user's entry of "urnion" (or
"or") or "intersection" (or "and") the user is asked for the
list of keywords "ENTER KEYWORDS {LOWER CASE ORNLY)". An
alternate print option is also available for field-queried
record copies.

If "strirg" search is desired, the message "ENTER
KEY WORDS FPOR SEARCH (LOWER CASE ONLY)" nmay be answered with
a string of up to 16 characters. A serial search of the
entire data base is done, checking all title and keyword
fields for a match. Alternate print option is available.

Completion of either field or strirg search results

in a return to retrieval mode.

3.2.3. All Extract Mode

A user response of "all" results in a hard-copy of
the entire KGS data base. Note that there is no copy shown
on the terminal screen. This copy of all da*ta base records
is displayed or the page in a report format similar to that
seen in Fiqures 7b-c.

Upon completion of any sub-mode within +he retrieval
pode, the user is prompted with "DC YOT WISH TO CONTINUE?".

A "yes" allows a reselection of retrieval sub-mode. A "no"

returns to run mode.

70

T

fter entry to information mode the screen will show
"KGS INFORMATION MODE - ENTER IFFORMATICON DESIRZD - AUTHOR
KEY or BOTH". Reply of author designates a listing of the
author dictionary. A listing of +the keyword dictiomnary or
both dictionaries may also be specified. The chosen
dictionary is read, 1listing all nunique author (or keyword)
entries as well as the number of times each ertry occurs.

The listings are given in report format on hard-copy only.

3.4. Stop
The choice of "stop" while in rumn mode causes *he
KGS user mode program to ke terminated. The user 1is

returned to the UNIX environment.

4. Logoff Procedure
In order to logoff the 8,32 UNIX systerm, *he user
must specify either “login" or press the "control'" key

followed by the ®4" Xkey.

5. KGS Error Hessages

There are many hessages prompting the user for
information, re-entry of information or system choices. It
is important to note that messages of "ENTRY TOO LONG -~
TRUNCATED" or "ENTRY TOO LONG - BE-ENTER" are not considered
EGS system error messages. KGS system error messages are
marked with a "kv-prefaced message that includes an
abbreviated subroutine title (e.g., "KINFO: ERROR ON READIHG

FILE - IOSTAT = 115). {(This message denotes the subroutire

71

in whichk the program was running when the error occurred, so
serves as a valuable de-bugging aid.) Should the use:z
encounter such a message, they should terminate thelr use of
KGS and contact the 8/32 system operator to report the error

message.

6. File HMaintenance Hode

File maintenance mode includes two main processes.
The KRENEW progral looks for delete-marked records 1in *he
master file, discarding them in an updated form of the
master file. The following KCNY program updates all
dictionaries and indexes from the new form of *he paster
file. After this mode has been executed, a file "KGSHOLD"
holds a copy of the pre-delete process. (This file could be
used t> reconstruct the master file 1in case o0of a systco
crash during processing of KRENEW or KCNY.) The file

"KGSDIZTDUMP" contains a complete 1listing of +hke keyvords

and authors of the updated dictionaries.

7. Arcay Limitationms

As the data base of references increases +there may
be need +to change the present KGS size specifications for
internal arrays. Though external file space may bhe
seemingly limitless, some 1limitations nust be specified
within a Fortran program on data arrays used, bu* these may
be changed as needed. Thke file main*tenance Pprogrags

presently specify a 1limit of 800 entries in the Xkeyword

dictionary, 1000 entries in the author dictionary. Also

72

keyword dictioraries are 1limited to 60 master file pointer
fields and author dictionaries are limited to 50 master file
pointer fields. A change to *ke number of pointer fields
would necessi*ate the respecifying of a longer £file lerg+n
in every instance of the keyword and author dictionaries

within the KGS source code.

73

00000000

0000000000000 00000000

0000

kgsadd

subroutine kgsadd(istat)

written by judith calabrese - 25 sep 81
fortran77/unix conversion by kathy miller - dec 83
provides the append mode of the kgs retrieval system.

subroutine called from kgsedit

Runan logical unit assignment Renaw

lul = kgs author index file (sequential)
lu2 - kgs author dictionary file (direct-opened in kgspir)

lus = standard input device

lub = standard output device

1u7 - kgs keyword index file (sequential)

1u8 - kgs keyword dictionary file (direct-opened in xgsptr)
1u9 - kgs data base master file (direct)

kgs data base data elements

character author#32(3)

character
character
character
character
character
character

character
character
character
character
character
character
character
character

pubdat#12
title®100
pubnam#32
refer#20

keywrd#16(6)

discpn®*16

buffer®l
title1#78
title2%#35
autidx(30)
wrdidx(30)
spaces¥#2
astrix
iresp#*i

integer#*2 autptr(30),wrdptr(30),authect
integer#®2 wrdet,irec,krec
integer®2 iline,itype

initialize values

spaces=' '
astrix="'%!

74

authet=0
wrdet=0
c
c open kgs index files = author & keyword
c
open (1,iostat=istat,err=8010,file="/usr/kys/data/authiax’,
- recl=5,form="formatted')
open (7,iostat=istat,err=8010,file="/usr/kgs/data/keyidx',
- recl=5,form="'formatted"')
s}
c build index arrays
c for dictionary search
c
do 2 i=1,30
read (1.9180,iostat=istat,end=3) autidx(i),autptr(i)
c
¢ check for end-of-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 3
c
authet=authet+1
2 continue
3 do 5 i=1,30
read (7,9180.iostat=istat.end=10) wrdidx(i),wrdptr(i)
c
c check for end=-of=file condition
if (istat.eq.=-1.or.istat.eq.31.or.istat.eq.32) go to 10
c
wrdet=wrdet+1
5 continue
e
c close indexes
e
10 close (1)
close (7)
c
c
c open kgs data base
c
open (9,iostat=istat.err=8010.file='/usr/kgs/data/kgsmaster'.
- recl=372,access="direct', form="formatted"')
c
c find end of file
]
irec=1
15 read(9,9005,iostat=istat,rec=irec) author(1)
e
e check for end-of-file condition
if (istat.eqg.-l.or.istat.eq.31l.or.istat.egq.32) go to 17
c
irec=irec+1
go to 15
17 continue
irec=irec-1
e
e SRREE input mode #HAEE

c

75

c set input field = spaces

20 do 30 i=1.3
author(i)="
30 continue
pubdat="' !
titlel=?
title2=!
pubnam="
refer="! !
do 40 i=1.6
keywrd(i)=" '
40 continue
discpn=" !

authors

-0 000

00 iline=1
write (6,9000,err=8000)
read (5.9010,err=8000) author(1),buffer
if (author(1).eq.spaees.or.author(1).eq.astrix) go to T000
if (buffer.ne.spaces) go to 8020

120 iline=2
write (6,9020,err=8000)
read (5,9010,err=8000) author(2),buffer
if (author(2).eq.spaces) go to 200
if (author(2).eq.astrix) gec to 7000
if (buffer.ne.spaces) go to 8020

140 iline=3
write (6,9030,err=8000)
read (5,9010,err=8000) author(3),buffer
if (author(3).eq.spaces) go to 200
if (author(3).eq.astrix) go to T000
if (buffer.ne,spaces) go to 8020

c publication date

200 iline=4
write (6,9040,err=28000)
read (5,9050,err=8000) pubdat,buffer
if (pubdat.eg.astrix) go to 7000
if (buffer.ne.spaces) go to 8020

¢

c title

[
write (6,9060.err=8000)
read (5,9070,err=8000) titlel
if (titlel.eq.astrix) go to 7000
write (6,9065.err=8000)
read (5,9075,err=8000) title2,buffer
if (title2.eq.spaces) go to 350

c

c remove extra spaces from title field

c
call cram(titlel,title2)

(o]

c

c create 100 character title field

C

350 title(1:78)=titlel(1:)
title(79:)=title2(1z)

c

c publication name

c
400 iline=5
write (6,9080,err=8000)
read (5,9010,err=8000) pubnam,buffer
if (pubnam.eg.astrix) go to 7000
if (buffer.ne.spaces) go to 8020

c reference

500 iline=6
write (6,9090,err=8000)
read (5,9100,err=8000) refer.buffer
if (refer.,eg.astrix) go to 7000
if (buffer,ne.spaces) go to 8020

¢ key words

write (6,9110,err=8000)
do 650 i=1.6
read (5,9120,err=8000) keywrd(i),buffer
if (keywrd(i).eqg.astrix) go to 7000
if (keywrd(i).eq.spaces) go to T00
if (buffer.eq.spaces) go to 650
write (6,9140,err=8000) keywrd(i)
650 continue

c discipline

700 iline=T
write (6,9130,err=28000)
read (5.9120,err=8000) discpn,buffer
if (discpn.eg.astrix) go to 7000
if (buffer.ne.spaces) go to 8020

¢
c display record
c
krec=irec+1
call kgsdln (author, pubdat,title, pubnam,
- refer.keywrd, discpn, krec)
c
c
c save record?
c
e
1000 write (6,9150,err=8000)

read (5,9160.err=8000) iresp

i

c

c
c

2000

00000

7000

9999

Q000

o

8000
8005

8010
8015

8020
8025

8030
8035

8040
8045

if (iresp.eq.'yes ') go to 2000
if (iresp.eq.'no ') go to 7000
iline=1

go to 8030

write record to kgs data base

irec=irec+]

write (9,9170.iostat=istat,err=8040,rec=irec)
- (author(i),i=1,3),pubdat,title, pubnam,
- refer, (keywrd(j),j=1,6),discpn

ss#%* ypdate kgs dictionary files - ##¥id

itype=1
call kgsptr (author,keywrd,irec,autidx,wrdidx,

- autptr,wrdptr,authet, wrdet, itype)
if (itype.eq.9) go to 9999

continue

write (6,9210.err=8000)

read (5,9160.err=8000) iresp

if (iresp.eq.'yes ') go to 20
iline=2

if (iresp.ne.'no ') go to 8030
istat=0

return

close (9)
return

error reporting and formatting

write (6,8005,err=9999)

format (/1x, 'kadd:coumand device error'/)

istat=1

go to 9999

write (6,8015,err=8000) istat

format (/1x,'kadd:error on opening file - iostat = '.i4/)
go to 9999

write (6,8025,err=8000)

format (/1x,'line too long - please enter again'/)

go to (100,120.1“0.200,“00,500,700),iline

write (6,8035,err=8000)

format (/1x,'please respond yes or no'/)

go to (1000,7000),iline

write (6,8045,err=8000) istat

format (/1x,'kadd:error on writing file - iostat = 1,14/7)
go to 9999

78

000

9005
9010
9020
9030
9040
9050
9060

9065
9070
9075
9080
9090

9100
9110

9120
9130
9140
9150
9160
9170
9180
9210

format

format
format
format
format
format
format
format

format
format
format
format
format

format
format

format
format
format
format
format
format
format
format
end

79

i/o formatting

(/1x, 'enter first author - lower case only ='/,1x,
¥ in format: <last_name><,>< ><first_name>'/1x,
! example: doe. Jjane'/1x,
'or a blank line to end'/)
(a32,a340)
(a32,a4)
(/1%, 'enter second author if appropriate'/)
(/1x, 'enter third author if appropriate'/)
(/1x, 'enter publication date'/)
(a12,a4)
(/1x,'enter first line of article title'/,1x,
' in lower case only'/)
(1x, "enter second line of title (in lower case, too) ')
(a78)
[a35.aﬂ)
(/1x, 'enter publication name'/)
(/1x, 'enter reference locator'/,1x,
' in format:'/,1x,
' <ref owner name>{physical location><{file number>'/)

(a20,ak)

(/1%, 'enter up to 6 keywords = one keyword per line'/,1X,
' and all lower case'/)

(a16,aH)

(/1x,'enter discipline')

(/1x, 'too long!!! = keyword truncated to '.al16)
(1x, 'save o0.k.?")

(ali)

(3a32.a12,a100,a32,2a20,6a16,a16)

(a1,il)

(1x,'do you want to continue in the append mode?')

000000000

0000000 NDOOOO0ROOO0O0O0

00

0000

000000

80

all

subroutine kgsall(istat)

written by judith calabrese = 3 sep 81
fortran77/unix conversion by kathy miller - dec 83

produces listing of all records on kgs data base
sorted by author - duplicate records (with nmultiple
authors) will appear.

records in dictionary overflow will not be sorted.
logical unit assignment *

lu2-kgs author dictionary file (direct)
lu3-print file (sequential)
luS=standard input device

lu6-standard output device

lu9-kgs data base master file (direct)

character dennam#32
character inkey*16(6)

data elements read from kgs data base record

character author#32(3)
character pubdat#12
character title®100
character pubnam#32
character refer#20
character keywrd®16(6)
character discpn#*16

integer#2 recno(50),irec, iprtsw, ipage, iprtect, krec

initialize values

irec=1
iprtsw=1
ipage=0
iprtet=0

open author dictionary
open kgs data base
open print file

00000

0 oon0o

open (9,iostat=istat.err:BOlO,file:'fusrfkgs/data/kgsmaster'.

- recl=372,access="'direct',form="formatted")
open (2,iostat=istat,err=8010,file='/usr/kgs/data/authdict’,
- recl=232,access="direct', form="formatted')

open (3,iostat=istat,err=8010,file="'/usr/kgs/data/printfile’,
- recl=132)

read author dictionary
to determine start of
overflow records

read (2,9000,iostat=istat.err=8020) iovflw
irec=irec+!

read author dictionary

read (2.9010,iostat=istat,rec=irec)
- dennam, (recno(i),i=1,50)

irec=irec+1

iprtet=0

ipage=ipage+1

check for end=cf=file

if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 500
if (istat.ne.0) go to 8020

retrieve records from kgs data base

do 200 i=1,50
if (recno(i).eq.0) go to 100
read (9,9020.iostat=istat.err:BOZO,rec:reeno(i))
- (author(j), j=1,3),
- pubdat,title.pubnam.refer.(keywrd(k),k=1,6),discpn

print out record

krec=recno(i)
call kgsdsp (inkey,dcnnam,krec,
- iandor, iprtsw, ipage, iprtct,
- author,pubdat,title,pubnam,refer.keywrd,disepn)

continue
go to 100

closeout
close (2,iostat=istat,err=8030)
close (3,iostat=istat,err=8030)
close (9,iostat=istat,err=8030)
istat=0
write (6,9030,err=8000)

return

81

9999

c
8000
8005

8010
8015

8020
8025

8030
8035

9000
9010
G020
9030

82
return

error reporting and formatting

write (6,8005,err=9999)

format (/1x, 'kall:command device error'/)
istat=1

pause

go to 9999

write (6,8015,err=8000) istat

format (/1x,'kall:error on opening file - iostat = r,iQ)
pause
go to 9999

write (6,8025,err=8000) istat

format (/1x,'kall:error on reading file - iostat = v.ik)
pause

go to 9999

write (6,8035,err=8000) istat

format (/1x,'kall:error on closing file - iostat
pause

go to 9999

"

',il)

i/o formatting

format (il)

format (a32,50i4)

format (3a32.a12,a100,a32,a20,6a16,a16)

format (/1x,'#%R%s kgs print file EREREL))
end

00000000

00000000 OO0 0000000

(¢]

0

kgsauthzx

subroutine kgsaut(istat)

written by judith calabrese - 31 august 1981
fortran77/unix conversion by kathy miller - dec 83

subroutine called by kgsextrt.

searches the author fields for a matech
with a user-supplied author name.

logical unit assignments ¥

lul-kgs author index file (sequential)
lu2-kgs author dictionary file (direct)
lu3-print file (sequential)
lus-standard input device

lué-standard output device

1ug-kgs data base master file (direct)

character inauth#32
character dcnnam#32
character inkey#16(6)
character index(30)
character hldechr
character iresp#*l

data elements read from kgs data base record

character author#32(3)
character pubdat¥#12
character title#100
character pubnam#32
character refer#20
character keywrd#®16(6)
character discpn#16

integer®2 recno(50),pointr(30),istat
integer#2 icell, iovflw, iprtsw, iprtet, idxct
integer#2 iovfli.ipage,krec

initialize values

idxet=0
isub=0
iprtsw=0
iprtect=0
ipage=1
iandor=0

83

84

]
c
c accept author name from user
c
write (6,9000,err=8000)
read (5,9010,err=8000) inauth
if (inauth.eg.' ') go to 9999
hldehr=inauth
]
c build index array from index file
e
open (1,iostat=istat,err=8010,file="/usr/kgs/data/authidx’,
- recl=5,form="formatted')
do 100 i=1.30
read (1,9020,iostat=istat,err=8020,end=150) index(i),pointr(i)
c
c check for end-of=file condition
if (1stat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 150
if (istat.ne.0) go to 8020
¢

idxect=idxect+1
100 continue
150 close (1,iostat=istat,err=8030)

c
e} open dictionary
c
open (2,iostat=istat.err=8010,file:'/usr!kgs/data/authdiet',
- access='direct',form="'formatted')
c
c find start of overflow records on dictionary
¢
read (2,9030,iostat=istat,rec=1) iovflw
c
c check for end-of-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 8060
if (istat.ne.0) go to 8020
c
c
c binary search of index
c)
call search (index,idxet,hldchr,icell)
irec=pointr(icell)
if (icell.gt.0) go to 200
go to 220
c
c find author in dictionary
e
200 read (2,9040,iostat=istat,rec=irec)
- dennam, (recno(i),i=1,50)
c
c check for end-of=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to B0OuO
if (istat.ne.0) go to 8020
e

irec=irec+1
if (dcnnam.lt.inauth) go to 200

220
250

wooneaoeao

wWooooooo

450

500

if (dennam.eq.inauth) go to 300
search dictionary overflow for author

iovfli=iovflw
read (2,.,9040,iostat=istat,rec=iovfl1)
= dennam, (recno(i),i=1,50)

check for end=-of-file condition
if (istat.eg.=-1.or.istat.eq.31.or.istat.eq.32) go to B8040
if (istat.ne.0) go to 8020

iovfli=iovfl1+1
if (dcnnam.eq.inauth) go to 300
go to 250

close author dictionary
open kgs data base

close (2,iostat=istat,err=8030)
open (9,iostat=zistat,err=8010,file="/usr/kgs/data/kgsmaster’,
- recl=372.access="direct', form="formatted')

alternate print option

hard copy output - iprtsw=1
output only on terminal - iprtsw=0

write (6,9050,err=8000)

read (5,9060,err=8000) iresp

if (iresp.eq.'no ') go to 400

if (iresp.ne.'yes ') go to 8050

open (3,iostat=istat,err=8010,file="/usr/kgs/data/prile'’)
iprtsw=1

retrieve records from kgs data base

do 450 i=1,50

if (recno(i).eq.0) go to 500
read(9,9070.iostat:istat.err:BOZO.rec:recno(i))(autnor(j),3=1,3),
- pubdat.title,pubnam,refer.(keywrd(k),k:I,6),discpn

display record

krec=recno(i)
call kgsdsp(inkey,inauth, krec,

- iandor, iprtsw, ipage, iprtct,

- author.pubdat,title,pubnam,refer,keywrd,disepn)
continue

closeout
close (9,iostat=zistat,err=8030)

close (3,iostat=zistat,err=8030)
istat=0

85

return
return
error reporting and formatting

write (6,8005,err=9999)

format (/1x, 'coumand device error'/)

go to 9999

write (6,8015,err=8000) istat

format (/1x,'kauthx:error on opening file - iostat =
pause

go to 9999

write (6,8025,err=8000) istat

format (/1x, 'kauthx:error on reading file - iostat
pause

go to 9999

write (6,8035,err=8000) istat

format (/1x,'kauthx:error on closing file - iostat
pause

go to 9999

write (6,8045,err=8000) inauth

format (/1x,'author name not in dictionary = ',a32/)
go to 500

write (6,8055,err=8000)

format (/1x,'please respond yes or no'/)

go to 350

write (6,8065,err=_8000)

format (/1x,'no names in author dictionary'/)

go to 500

i/o formatting

format (/1x,'enter authors name - (doe. i) '
'~ format must match record!'/)

format (a32)

format (a1.il)

format (il)

format (a32,50il4)

format (/1x,'alternate print option?'/)

format (al)

format (3a32,a12,a100,a32,a20,6a16,a16)

end

'.il4/)

'.i4/)

',i4/)

86

00000000000 000000 O0O0

0 Q0

Q000

program kgsdeny

written by judith calabrese - 20 october 1981
fortran77/unix conversion by kathy miller = dec 83

main program of the kgs dictionary mode.

calls subroutines to create keyword and author dictionaries
and indexes.

logical unit assignments

lu3 - print file (sequential)
lub = standard output device

header
write (6,9000,err=28000)

open print file

open (3,iostat=istat,err=8020,file="'/usr/kgs/data/kgsdictdunp’,

- form="'formatted')

create dictionaries
and indexes

call kgsdky
call kgsdat

closeout
stop

error reporting and formatting

write (6,8005,err=9999)
format (/1x,'kdeny:command device error'/)

go to 9999
write (6,8025,err=8000) istat
format (/1x,'kdeny:error on opening file - iostat = '.i4/)

go to 9999
i/o formatting

format (/10x,'k gs dictionary mwmode'//,

- 10x, 'this routine creates both the author and'/,
- 10x, 'keyword dictionaries and indexes'/,
- 10x, 'it is a lengthy process and should be'/
- 10x, 'run overnight'//)
end

87

c
c kgsdeckey
c
c
c
]
subroutine kgsdky
c
c written by judith calabrese 14 july 1981
c fortran77/unix conversion by kathy miller - dec 83
c
c creates a sorted dictionary of keywords for the kgs data base.
c
c P00 logical unit assignment <LK
c
c lul - kgs data base master file (direct - read only)
c lu2 - kgs key dictionary output file (direct)
c lu3 - print file for list of keys (opened in main)
c lué - standard output device
c
c
character keynam#16(800)
character iname#*16(6)
character spaces#*16
integer#2 keyrec(800,60),holdet, irec
c
c initialize values
c
spacess" !
do 20 i=1,800
keynam(i)=spaces
do 10 j=1,60
keyree(i, j)=0
10 continue
20 continue
ict=0
iree=0
]
c build array of first-master=file-record keywords
c

open(1,ioatat=istat,err=8010,file='/usr/kgs/datafkgsmaster'.
- recl=372.form:'formatted',access:'direct‘)
100 irec=irec+1
read (1.9000,iostat=istat, err=8020,rec=irec) {(iname(i),i=1,6)

c

c check for end=of-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 8050
if (istat.ne.0) go to 8020

¢

do 120 i=1,6
if (iname(i).eq.spaces) go to 120
keynam(i)=iname(i)
keyrec(i,1)=irec
ict=ict+1

120 continue
if (iect.eqg.0) go to 100

88

Q

140

160

nNe oo

Q0

Q

210

220

240

250

258

260

sort first keywords

if (iect.eq.1) go to 200
ict2=ict=1

iflag=0

do 160 i=1,iect2

if (keynam(i).le.keynam(i+1)) go to 160
iflag=1
iname(1) =keynam(i)
keynam(i) =keynam(i+1)
keynam(i+1)=iname(1)
continue .

if (iflag.eq.1) go to 140

read rest of master-file-records keys = sort into key array

irec=irec+1
read (1.9000,iostat=istat,err=8020.rec:irec)(iname(i),i=1,6)

check for end=-of-file condition
if (istat.eq.-l.or.istat.eq.31.or.istat.eq.32) go to 300
if (istat.ne.0) go to 8020

do 280 i=1.6

if (iname(i).eq.spaces) go to 280

do 260 j=1,ict

if (keynam(j).ne.iname(i)) go to 220

input key already on array

do 210 k=1,60

if (keyrec(j.k).ne.0) go to 210
keyrec(j,k)=irec

go to 280

continue

add input key to array = sort

if (keynam(j).lt.iname(i)) go to 260
holdet=ict+1

keynam(holdet) =keynam(holdet=1)

do 250 k=1,60
keyrec(holdet, k) =keyrec(holdet=1,k)
continue

holdet=holdet-1)

if (holdet.gt.Jj) g0 to 240

keynam(j)=iname(i)

keyrec(j.1)=irec

do 258 k=2,60

if (keyree(j.k).eq.0) go to 270
keyrec(j.k)=0

continue

go to 270

continue

89

c append input key to array

keynam(ict+1)=iname(i)
keyrec(ict+1,1)=irec
270 iect=ict+1
280 continue

<}
go to 200
c
e write array to key dictionay
c

300 close (1,iostat=istat,err=8040)
open(2.iostat=istat,err:8010,filez'/usrfkgs/data/keydict‘,
- recl=256,form="'formatted',access="'direct')
iovfet=ict+1
write (2,9120,err=8000,rec=1) iovfct
do 420 i=1,ict
write (2,9060,err=8000,rec=i+1) keynam(1i),(keyrec(i, J),J=1,60)
write (3,9080.err=8000) keynam(i)
420 continue

closeout

(o]

call kgsidx (0)
write (6,9100,err=8000) ict
9999 return

¢ error reporting and formating

e

8000 write (6,8005,err=9999)

8005 format (1x,'kdky:command device error')
go to 9999

8010 write (6,8015,err=8000)istat

8015 format (1x,'kdky:error on opening file - iostat
go to 9999

8020 write (6,8025,err=8000) istat

8025 format (1x,'kdky:error on reading file - lostat = 1,i4)
go to 9999

8040 write (6,8045,err=8000) istat

8045 format (1x,'kdky:error on closing file - iostat
go to 9999

8050 write (6,8055,err=8000)

8055 format(1x,'no records in kgsmaster file')

1,.14)

'.i4)

go to 9999
c
c i/o formating
c

9000 format (260x,6a16,16x)
9005 format(a32,a340)
9060 format (a216,60i4)
9080 format (1x,a16)
9100 format (1x,'keywords in dictionary = ',i8)
9120 format (il)
end

c
c . kgsdcaut
e!
c
c
¢
c
subroutine kgsdat
c
c written by judith calabrese 14 july 1981
c fortran77/unix conversion by kathy miller - dec 83
!
c creates a sorted dictionary of authors on the kgs aata base.
c
c >>>»>> logical unit assignment — <<<<X
c
c lul - kgs data base master file (direct = read only)
c lu2 - kgs author dictionary output file (direct)
c lu3 - print file for list of authors (opened in main)
c lué - standard output device
c
c
character author#32(1000)
character inauth#32(3)
character spaces#32
integer#2 keyrec(1000,50),holdct,irec
c
c initialize values
c
spaces="! '
do 20 i=1,1000
author(i)=spaces
do 10 j=1,50
keyrec(i, j)=0
10 continue
20 continue
iet=0
irec=0
c
c build array of first-master-file-record authors
c

open(1,iostat:istat,err=8010,file='/usr/kgs/datafkgsmaster'.
- rec1=372.form:'formatted',access:'direct‘)

100 irec=irec+1
read (1,9000,iostat=istat,err=8020,rec=irec) (inauth(i),1=1,3)

c check for end=-of=-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) £0 to 8050
if (istat.ne.0) go to 8020

do 120 i=1,3
if (inauth(i).eg.spaces) go to 120
author(i)=inauth(i)
keyrec(i,1)=irec
ict=ict+1

120 continue

a1

(o]

140

210

220

240

250

258

if (ict.egq.0) go to 100 3

sort first authors

if (ict.eq.1) go to 200
iet2=ict=1

iflag=0

do 160 i=1,ict2

if (author(i).le.author(i+1)) go to 160
iflag=1

inauth(1)=author(i)
author(i)=author(i+1)
author(i+1)=4inauth(1)
continue

if (iflag.eq.1) go to 140

read authors and sort into author array

irec=irec+1
read (1.9000,iostat=istat,err=8020,rac:irec)(inauth(i),i=1,3)

check for end-of=-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 300
if (istat.ne.0) go to 8020

do 280 i=1.3

if (inauth(i).eq.spaces) go to 280

if (inauth(i).eq.'deledeledeledeledeledeledeledele') go to 2%
do 260 j=1.,ict

if (author(j).ne.inauth(i)) go to 220

input key already on array

do 210 k=1,50

if (keyrec(j,k).ne.0) go to 210
keyrec(j,k)=irec

go to 280

continue

add input author to array = sort

if (author(j).lt.inauth(i)) go to 260
holdect=ict+1
author(holdct)=author(holdct=1)

do 250 k=1,50
keyrec(holdet, k) =keyrec(holdet=1,k)
continue

holdet=holdet=1

if (holdet.gt.j) go to 240

author(j)=inauth(i)

keyrec(j.1)=irec

do 258 k=2,50

if (keyrec(j.k).eq.0) go to 270
keyrec(Jj.k)=0

continue

go to 270

260 continue
o] append input author to array

author(ict+1)=inauth(i)
keyrec(ict+1,1)=irec
270 ict=ict+1
280 continue

c
go to 200
c
c write array to author dictionary
]

300 close (1,iostat=istat,err=8040)
open(z.iostatzistat.err=801D,file='/usr/kgs/data/authdict',
- recl=232,form="'formatted',access="'direct')
iovfet=ict+1
write (2,9120,err=8000,rec=1) iovfect
write (3.9130,err=8000)
do 420 i=1,iect
write (2.9060,err=8000,rec=i+1) author(i),(keyrec(i,j),Jj=1,50)
write (3,9080,err=8000) author(i)
420 continue

c
c closeout
c
close(3,iostat=istat, err=8040)
call kgsidx (1)
write (6,9100,err=8000) ict
9999 return
e}
c error reporting and formating
¢

8000 write (6,8005,err=9999)

8005 format (1x,'kdat:eommand device error')
a go to 9999

8010 write (6,8015,err=8000)istat

8015 format (1x,'kdat:error on opening file - iostat = v, i4)
go to 9999

8020 write (6,8025,err=8000) istat

8025 format (1x,'kdat:error on reading file - iostat = ',il)

go to 9999

8040 write (6,8045,err=8000) istat

8045 format (1x,'kdat:error on closing file - iostat = ',14)
go to 9999

8050 write (6,8055,err=8000)

8055 format (1x,'no records in master file')

c i/o formating

go00 format (3a32,276x)

9060 format (a32,50i4)

9080 format (1x,a32)

9100 format (1x,'authors in dictionary = ',i8)
9120 format (id4)

9130 format (1h1//1x)

00000 00000 0000 O00000D600600O0

00

00000

Q

0

end

kgsindex

subroutine kgsidx (ifile)

written by judith calabrese - 15 july 81
fortran77/unix conversion by kathy miller = dec 83

creates the index used to access the kgs dictionary
>>>>> logical unit assignments <LLLL

lu2 - kgs key or author dictionary (opened in kdky or kdat)

lul - kgs key or author index file (each sequential)
(depends upon ifile parameter passed)

lué - standard output device

character letl
character let2#2
integer recno,irec

initialize values

recno=1
irec=2

open index file
ifile = - open keyword index
ifile = 1 - open author index

if (ifile.eq.0)
-open (4,iostat=istat,err=8010, file-'/usr!kgs/data/keyldx'
- recl=5,form="'formatted')

if (ifile.eq.1)
=-open (4,iostat=istat,err=8010,file="/usr/kgs/data/authidx’',
- recl=5,form="'formatted')

read in overflow pointer from dictionary

if (ifile.eq.0) read (2,9000,iostat=istat,err=8000,
- rec=1) let1

if (ifile.eg.1) read (2,9010,iostat=istat, err=8000,
- rec=1) let1

read in first key from dictionary

94

if (ifile.eq.0) read (2,9000,iostat=istat,err=8020,
@ rec=2) letl

if (ifile.eq.1) read (2,9010,iostat=istat, err=8020,
- rec=2) letl

recno=recno+1

write (4,9020,.iostat=istat,err=8040) letl,recno

c
c read remaining keys and compare
c
10 irec=irec+1
if (ifile.eq.0) then
read (2,9000,iostat=istat,err=8020,rec=irec) let2
c
e check for end=-of-file condition
if (istat.eq.-1.or.istat.eg.31.or.istat.eq.32) go to 9999
if (istat.ne.0) go to 8020
e
end if
if (ifile.eq.1) then
read (2,9010,iostat=istat,err=8020,rec=irec) let2
¢ .
c check for end-of=file condition
if (istat.eg.-1.or.istat.eq.31.or.istat.eq.32) go to 9999
if (istat.ne.0) go to 8020
e
end if
recno=recno+1
if (letl.eq.let2) go to 10
write (4,9020,iostat=istat,err=8040) let2,recno
leti=1let2
go to 10
9999 return
c

a>>>>> error reporting & formating <LK

¢

8000 write (6,8005,err=9999)

8005 format (1x,'kidx:command device error')
go to 9999

8010 write (6,8015,err=8000) istat

8015 format (1x,'kidx:error on opening file - istat = ',i4)
go to 9999

8020 write (6,8025,err=8000) istat

8025 format (1x,'kidx:error on reading file - istat = ', ih)
go to 9999

8040 write (6,8045,err=8000) istat

8045 format (1x,'kidx:error on writing file - istat = ', i4)
go to 9999

c

c D35> i/o formatting <KLLKL

¢

9000 format (a1,240x)

9010 format (a1,231x)

9020 format (al.i¥4)
end

c
e
c
!
e!
e
c convert
c
c
c
c
subroutine convrt (ascii,intger)
c
c written by judith calabrese - 13 october 1981
e fortran77/unix conversion by kathy miller - dec 83
c
c converts ascii value to integer
c after right justifying field
c
el ¥ logical unit assignment 8
c
c lu4¥ - temporary scratch file
c lué - standard output device
c
!
character ascii®ly
character field#y
character hldchr
c
integer#*2 intger
c
field=aseii
J=1
c
c right justify aseii field
!
do 20 i=4,1,-1
J=Jj+1
hldchr{1:1)=ascii(i:i)
if (hldchr.ne.! ') go to 40
field=" !
field(j:)=ascii(1:)
20 continue
e
c convert field to integer
c
c open scratch file and rewind
c
40 open (H,iostat=istat,err=8010,recl=u,status='scratch‘.
- file="'/usr/kgs/data/t',form="'formatted")
rewind U
c
e write character value
c

write (4,9000,iostat=istat,err=8080) field
rewind 4

9%

8065
8080
808

9000
9010

read integer value
read (4,9010,iostat=istat,err=8060) intger
close (4,iostat=istat,err=8030)
return

##288 error reporting and formatting ##%#%

write (6,8005,err=9999)

format (/1x, 'kconvert:command device error'/)
go to 9999

write (6,8015,err=8000) istat

format (/1x,'kconvert:error on opening file
go to 9999

write (6,8035,err=8000) istat

format (/1x,'kconvert:error on closing file
go to 9999

write (6,8065,err=8000) istat

format (/1x,'kconvert:error on reading file
go to 9999

write (6,8085,err=8000) istat

format (/1x,'kconvert:error on writing file
go to 9999

format (ali)
format (il)
end

iostat

iostat

iostat

iostat

n

'.14/)

',i47)

',i4/)

',il/)

a7

OO0 0000000 0O0

QOO0 O0O0O0DO0O0 00000000

0 000 Q

Q

50

100

cram

subroutine cram (titlel,title2)

written by judith calabrese - 25 september 1981
fortran77/unix conversion by kathy miller - dec 83

this subroutine removes extra spaces from first line of the

title field.
it also joins the second line to the first.

arguments

titlel - first line of title field (78 characters).
title2 - second line of title (35 characters).

character title1#78
character title2#35

character spaces#*2
character hold¥2

initialize values

spaces=' !
ibyte=0

remove spaces from first line

do 100 i=1,T77

ibyte=ibyte+1

last=ibyte+1
hold(1:2)=titlel(ibyte:last)
if (hold.eg.spaces) go to 50
ictr=0

go to 100

j=ibyte+1
titlel(ibyte:)=titlel1(j:)
ibyte=ibyte-1

last=last-1

ictr=ictr+1

continue

calculate # of trailing spaces on first line

98

Q

0000w 00 WwWwoo ooomao
O o o
{¥e] o o
(Ve

Q

8000
8005

8010
8015

ifill=78=(ictr=1)

if (ifill.gt.78) go to 300
ifill2=ifill+1

ibyte=0

add second line to first
do 200 i=1,35
ibyte=ibyte+1
hold(1:1)=title2(ibyte:ibyte)
title1(ifill:ifill)=hold(1:1)
j=ibyte+1
title2(ibyte:)=title2(j:)
ifill=ifill+1
ifill2=ifillz2+
if (ifill.gt.78) go to 300
ibyte=ibyte=1

continue
check for line too long

hold(1:2)=title2(23:24)
if (hold.ne.spaces) go to 8010

return

return
error reporting & formatting

write (6,8005,err=9999)
format (1x,'kceram:command device error')

go to 9999
write (6,8015,err=8000) titlel,title2

format (/1x,'title too long - truncated to'/,1x,a78/,1x,a22/)

go to 9999
end

99

00000000000

00000000000 ODOORODOON0NO00O0O0

k

subroutine kgsdel(istat)

written by judith calabrese - 9 october 1981
fortran77/unix conversion by kathy miller - dec 83

allows the user to delete records from

gsdel

the kgs data base

note: records are marked for deletion.
this subroutine does not resequence the data base.

this subroutine is called from kgsedit

#RFER

1u1

1lus

lul
1lu9

kgs data base data elements

character
character
character
character
character
character
character

character
character

character

integer#2
integer#2

initialize values

authect=0

kgs author index file (sequential)

1u2 - kgs author dictionary file (opened in Kgsptr)
standard input device

lué - standard output device

1u7 - kgs keyword index file (sequential)

kgs keyword dictionary file (opened in kgsptr)
kgs data base master file (direct)

author#32(3)

pubdat#12
title®100
pubnam#32
refer#*20

keywrd®16(6)

discpn#16

autidx(30)
wrdidx(30)

iresp¥*y

autptr(30),wrdptr(30),authet, wrdet
irec, itype, endrec

logical unit assignments

100

101

wrdet=0
c
c open kgs index files - author & keyword
c
open (1,iostat=istat,err=8010,file="/usr/kgs/data/authiax',
- recl=5,form="formatted')
open (7,iostat=istat,err=8010,file="'/usr/kgs/data/keyiax’,
- recl=5,form="formatted"')
c
e build index arrays
c for dictionary search
c
do 2 i=1,30
read (1,9000,iostat=istat,end=3) autidx(i),autptr(i)
" .
] check for end-of=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 3
e
authect=authect+1
2 continue
3 do 5 i=1,30
read (7,9000,iostat=istat,end=10) wrdidx(i),wrdptr(i)
e
c check for end-of=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 10
c
wrdet=wrdet+1
5 continue
c
c close indexes
c
10 close (1)
close (T)
e
c
c open kgs data base
c
open (9,iostat=istat,err=8010,file='/usr/kgs/data/kgsmaster‘.
- rec1=372.aecess='direct'.form:'formatted')
e
c find end of file
e
endrec=1
15 read (9,9005,iostat:istat.rec:endrec) author(1)
c
c check for end-of=file condition
if (istat.eg.-1.or.istat.eq.31.or.istat.eq.32) go to 17
c
endrec=endrec+1
go to 15
17 continue
endrec=endrec=1

RSN delete mode HRNER

0000

102

c accept record number from user

20 write (6,9010,err=8000)
read (5,9020,err=8000) iresp

c
c convert record number to integer value
¢
call convrt (iresp,irec)
e
c check for record past end=of=file
c
if (irec.gt.endrec) go to 8050
c
c read kgs data base record
[¢]
read (9,9030,iostat=istat,err=8020,rec=irec)
- (author(i),i=1,3),pubdat, title, pubnam,
- refer, (keywrd(j),j=1,6),discpn
if(author(1).eq.'deledeledeledeledeledeledeledele')go to 8040
c
e display record
c
call kgsdln (author, pubdat,title, pubnam,
- refer,keywrd,discpn, irec)
[
c delete this record?
c
write (6,9040,err=8000)
read (5,9020,err=8000) iresp
if (iresp.ne.'yes ') go to T000
]
c update kgs dictionary files
C
itype=2
call kgsptr (author,keywrd,irec,autidx,wrdidx,
- autptr,wrdptr, authet,wrdet, itype)
if (itype.eq.9) go to 9999 '
e
o] rewrite deleted record
e

do 100 i=1.3
author(i)='deledeledeledeledeledeledeledele’

100 continue
write (9,9030,iostat=istat,err=8030,rec=irec)

- (author(i),i=1,3),pubdat, title, pubnam,
- refer, (keywrd(j), j=1,6),discpn
continue

¢
c
¢
7000 write (6,9050,err=8000)
read (5,9020,err=8000) iresp
if (iresp.eqg.'yes ') go to 20
if (iresp.ne.'no ') go to 8060
istat=0

103

c

c return

c

c

9999 close (9)
return

c

c

c error reporting and formatting

c

c

8000 write (6,8005,err=9999)
8005 format (/1x,'kdel:command device error'/) -
istat=1
go to 9999
8010 write (6,8015,err=8000) istat
8015 format (/1x,'kdel:error on opening file - iostat
go to 9999
8020 write (6,8025,err=8000) istat
8025 format (/1x,'kdel:error on reading file - iostat
go to 9999
8030 write (6,8035,err=8000) istat
8035 format (/1x,'kdel:error on writing file - iostat
go to 9999
8040 write (6,8045,err=8000)
8045 format (/1%,'record has already been deleted'/)
go to 7000
8050 write (6,8055,err=8000) endrec
8055 format (/1x,'record entered is past end=of-file'/,
- 1x, 'last record number is ',il/)
go to 7000
8060 write (6,8065,err=8000)
8065 format (/1x,'please respond yes or no'/)
go to T000

'.i4/)

',il/)

',il/)

i/o formatting

0000

o

9000 format (al,il)

9005 format (a32.a340)

9010 format (/1x,'enter # of record to De deleted'/)

9020 format (al)

9030 format (3a32.a12.a100,a32,a20,6316,a16)

9040 format (/1x,'delete this record?'/)

9050 format (/1x,'do you want to continue in delete mode?'/)
end

[T N = O - O O S+ T = O e B e O e N I O

104

kgsdisln

subroutine kgsdln (author,pubdat,title, pubnam,
- refer,keywrd, discpn, irec)

written by judith calabrese - 25 september 1981
fortran77/unix conversion by kathy miller - dec 83

DOO0D0OO0O 00000

Q

0O0o0Oo0

displays kgs record with line # for

modes.

add
delete
update

character author#32(3)
character pubdat®*12
character title#100
character pubnam#32
character refer#20
character keywrd#16(6)
character discpn#16

character titlel1#50(2)

integer#2 irec

split title field

title1(1)(1:50)=title(1:50)
title1(2)(1:50)=title(51:)

write
write
write
write
write
write
write
write

(6,9000, err=8000)
(6,9010, err=8000)
(6,9020, err=8000)
(6,9030, err=8000)
(6,9035,err=8000)
(6,9040,err=8000)
(6,9050,err=8000)
(6,9060,err=8000)

irec

author(1)
author(2)
author(3)

pubdat
(title1(i),i=1,2)
pubnam

refer

0000wYo 00
O
O
(Vo]

o

8000

00 000 8
o
(8]

o
o
o
o

9010
9020
9030
9035
9040

9050
9060
9070
90 80
9090
9100
9110
9120
9130
9140

write
write
write
write
write
write
write
write

return

(6,9070,err=8000)

(6,9080,err=8000)
(6,9090,err=8000)
(6,9100,err=8000)
(6,9110,err=8000)
(6.9120, err=8000)
(6,9130,err=8000)
(6,9140.err=8000)

return

error reporting

write (6,8005,err=9999)

format (/1x,'kdisln:command device error'/)

go to 9999

format
format
format
format
format
format

format
format
format
format
format
format
format
format
format
format

end

i/o formatting

(/ 13, TREBRERTRES

(1x, 'line
(1%, 'line
(1x, 'line
(1x, 'line
(1x, 'line
11x%,a50)

(1%, 'line
(1x,'line

(1x, ' uusas

(1x,'line
(1%, 'line
{1x,'line
(1%, 'line
(1x, 'line
(1x,'line

(/1x,'1line 14 - ',a16/)

1 - t.,a32)
2 = ',a32)
3 = "332)
4 - ',a12)
5 - ',ak0/,
6 - '|a32)
7 - '.a20)

keywords
8 - ',al16)
9 - '-316)
10 - ',al1b)
11 = ',al16)
12 - ',a16)
13 - ',al6)

keywrd(1)
keywrd(2)
keywrd(3)
keywrd(4)
keywrd(5)
keywrd(6)
disepn

and formatting

record # t,i4,? HERBRIBUBEL)

105

00000000006

0000000000000 0D ROO0O0O0000000 0000000000

kgsdsply

subroutine kgsdsp(inkey,inauth, irec,
- iandor, iprtsw, ipage, iprtct,
- author, pubdat, title, pubnam, refer,keywrd,discpn)

written by judith calabrese - 20 august 1981
fortran77/unix conversion by kathy miller - dec 83

displays kgs record on crt and optionally prints hard copy
arguments passed

inkey = array of keywords input by user (ai1b format)
inauth = author's name input by user
irec - record number on kgs data base

iandor - switch signifying union or intersection
O=intersection
1=union
2=string search
iprtsw = switch indicating optional print
1=hard copy

ipage - page counter
iprtct - record counter

##% Kkgs data base fields ~ ###

author
pubdat
title

pubnam
refer

keywrd
disepn

logical unit assignments

lu3-printer file (optional - already opened)
lub6-standard output device

character inauth#32
character inkey#16(6)
character iextrt#12
character title1#50(2)

data elements from kgs record

106

107

c
character author#32(3)
character pubdat#12
character title®*100
character pubnam#32
character refer#20
character keywrd#16(6)
character discpn®*16
c
integer#®2 irec, iprtsw,ipage,iprtct
c
c initialize values
c
if (iandor.eq.0) iextrt='intersection'
if (iandor.eq.1) iextrt=‘'union '
if (iandor.egq.2) iextrt='string srch'
c
c
c divide title field
c
title1(1)(1:)=title(1:50)
title1(2)(1:)=title(51:100)
c
c check print switch for optional hard copy
c
if (iprtsw.ne.1) go to 200
c
o] headings output to printer
c
if (iprtect.gt.0) go to 50
write (3,9000,err=8000)
write (3,9010,err=8000)
if (inauth.ne.' ') then
write (3,9020,err=8000) inauth,ipage
else
write (3,9030,err=8000) (inkey(i),i=1,3),1ipage,
- (inkey(J),J=4.6)
write (3,9040,err=8000) iextrt
end if
write (3,9010,err=8000)
¢
o] records output to printer
&)

50 write (3,9050,err=8000) author(1),irec
write (3,9060,err=8000) author(2)
write (3,9070,err=8000) author(3)
write (3,9140,err=8000) discpn
write (3,9080,err=8000) pubdat
write (3,9090,err=8000) (titlel(i),i=1,2)
write (3,9110,err=8000) pubnam,refer
write (3,9120,err=8000) (keywrd(i),i=1,3)
write (3,9130.err=8000) (keywrd(i),i=4,6)
write (3,9010,err=8000)

records output to crt

o

200

Q

9020
9030

9040
9050

9060
9070
9080
9090
9110

write (6,9010,err=8000)
if (inauth.ne.! ') then

wri
else

wri

- (

wri

end if
write
write
write
write
write
write
write
write
write
write
write
write

te (6,9020,err=8000) inauth, ipage

te (6,9030,err=8000) (inkey(i),i=1,3),ipage,
inkey(Jj), j=4,6)
te (6,9040,err=8000) iextrt

(6,9010,err=8000)

(6,9160,err=8000) author(1),irec
(6,9060.err=8000) author(2)
(6,9070,err=8000) author(3)
(6,9140.err=8000) discpn
(6,9080,err=8000) pubdat
(6,9090,err=8000) (title1(i),i=1,2)
(6,9170,err=8000) pubnam
(6,9180,err=8000) refer
(6,9120,err=8000) (keywrd(i),i=1,3)
(6,9130,err=8000) (keywrd(i),i=4,6)
(6,9010,err=8000)

increment and set counters

iprtet=iprtet+1
if (iprtet.ne.3) go to 9999
iprtet=0

ipages=

return

write
format

ipage+1

closeout

error reporting and formatting

(6,8005,err=9999)
(1x, 'kdsply:command device error')

go to 9999

i/o fo;%atting

format (1h1,1x///20x,'k gs publications ', 1x,
-'database retrieval')
format (1X,'= = = = = = = = = = == === == =+=-< ', 1x,
e e e s e == == == === === == == ',1%,
T N S R 17)
format (1x, 'author extracted was: ',a32,1x, 'page ',il4)
format (1x,'key word/s selected were: '.3(a16,2x),5x,
- 'page ',il,/28x,3(a16,2x))
format (1x,'search criteria used: ',al2)
format (1x, 'author: ',a32,
- 10%, 'record no. ',il4)
format (1x,'author(2): 1,a32)
format (1x, 'author(3): ',a32)
format (1x,'publication date: 1,a12)
format (1x,'article title: '.a50/,22x,a50)
format (1x,'publication name: ',a32,1x,

108

9120
9130
9140
9160

9170
9180

- 'ref locator: ',a20)

format (1x,'- = key words - - ',3(a16,4x))

format (20x,3(a16,4x))
format (1x,'file code:
format (1x,'author:
- 5x,'record no. ',il)
format (1x,'publication name:

format (1x, 'reference locator:

end

t.al1b)
',a32,

'.a32)
',a20)

109

[¢]

00

00000000 0000000000000 OO0 0000000

0000

100

110

subroutine kgsed(istat)

written by judith calabrese - 17 sep 81
fortran77/unix conversion by kathy miller = dec 83

provides 3 functions for the kgs publications data base system.
add - allows the user to enter new records.

delete = allows the user to remove existing records
from the kgs data base.

note: this function actually marks records
for deletion rather than physically
removing the record.
update - allows the user to update existing records,
in all cases the kgs dictionary is revised.
##R##% Jogical unit assignment — ##¥EE

lubé - command device

the following logical units are
opened and closed within subroutines

lul - kgs data base

lu2 - kgs author index

lu¥4 - kgs author dictionary
lus - standard input device
lub = standard output device
lu7 - kgs keyword index

lu8 - kgs keyword dictionary

character iresp#y

header
write (6,9020,err=28000)
user enters mode of operation

write (6,9000,err=8000)

read (5,9010,err=8000) iresp
if (iresp.eq.'appe') go to 200
if (iresp.eqg.'dele') go to 300
if (iresp.eq.'upda') go to 400
if (iresp.eg.'stop'!) go to 9999
if (iresp.eq.' ') go to 9999
go to 8020

append
call kgsadd(istat)
if (istat.ne.0) go to 9999
go to 100

delete
call kgsdel(istat)
if (istat.ne.0) go to 9999
go to 100

update
call kgsup(istat)
if (istat.ne.0) go to 9999
go to 100

return

return

error reporting and formatting

write (6,8005,err=9999)

format (/1x,'kedit:command device error'/)

go to 9999
write (6,8025,err=8000)

format (/1x,'invalid response - please enter again'/)

go to 100

i/o formatting

format (/////20%,'enter edit mode = '//5x,

- 'append delete
format (al)

format (//////71////7//20%,'k g s P u b
o

- 10x,'da t a base
end

update stop'////77)

1 ca
d e'////

tions',//1%,
edit)

111

112

[¢]

subroutine kgsext(istat)

written by judith calabrese - 21 july 1981
fortran77/unix conversion by kathy miller - dec 83

main program of the kgs extract mode.

provides for retrieval of kgs data base records
based on the following parameters:

author
keywords (1 to 6)
logical unit assignments

luS=standard input device
lub=standard output device

[T o T e O o T o T T o~ T S o O = B T = N o T o T~ 2 T & B O]

character iparam#}j
character iresp#4

write main heading

0000

write (6,9000,err=8000)

c accept parameters from user

100 write (6,9010,err=8000)
read (5,9020,err=8000) iparam
if (iparam.eq.'auth') go to 200
if (iparam.eq.'key ') go to 300
if (iparam.eg.'all ') go to 400
if (iparam.eq.! ') go to 9999

go to 8010
c
c author extract
c

200 call kgsaut(istat)
if (istat.ne.0) go to 9999

go to 500
c
c key extract
c

300 call kgskey(istat)
if (istat.ne.0) go to 9999

go to 500
c
c all extract
e

400 call kgsall(istat)
if (istat.ne.0) go to 9999
go to 500

c
c

c
500

continue

write (6,9030,err=8000)

read (5,9020,err=8000) iresp

if (iresp.eq.'yes ') go to 100
if (iresp.eg.'mo ') go to 9999
go to 8020

closeout
return
error reporting and formatting

write (6,8005,err=9999)

format (/1x,'kextrt:command device error'/)

go to 9999

write (6,8015,err=9999)

format (/1x,'invalid response - please enter again'/)
go to 100

write (6,8025,err=8000)

format (/1x,'please respond yes or no'/)

go to 500

i/o formatting

format (///7///7/1/////20x,'k g s publications',//lx
- 10x,'d a t a base retrieval mode'////)

format (/1x,'enter extract criteria (author, key or all)'/)

format (a4)

format (/1x,'do you wish to continue?'/)

end

113

114

c
(¢}
subroutine kgsinf (istat)
e
c written by judith calabrese - 27 october 1981
c fortranT7/unix conversion by kathy miller - dec 83
c
c provides information on keywords and authors
@ from kgs dictionaries.
e
o] 1lists name and number of times a keyword or
c author name appears in the kgs data base.
c
c logical units
c
e lul - kgs author dictionary file (direct)
c lu2 - kgs keyword dictionary file (direct)
c 1u3 - printer file (sequential)
e lus - standard input device
c lué = standard output device
c
c
character frm#*20
character bnk#20
character author#32(2)
character keywrd#16(2)
character iresp#j
¢
integer®2 keyrec(60),iovflw,icnt1,icnt2,ireecl,irec2
integer#®2 iboth,iline, iendsw
c
c 3
c initialize values
c
iboth=0
iendsw=0
e
c open print device
c
open (3,iostat=istat,err=8020,file="/usr/kgs/data/ printfile’,
- form='formatted!')
c
c
c user enters mode
c

write (6,9000,err=8000)
20 write (6,9010,err=8000)
read (5,9020,err=8000) iresp
if (iresp.eq.’! 1) go to 900
if (iresp.eq.'key ') go to 500
if (iresp.eq.'auth') go to 100
if (iresp.eq.'both') then
iboth=1
go to 100
endif
go to 8010

115

#3888 author mode ~ ¥#¥E¥

open author dictionary

-0 00 00

00 open (1,iostat=zistat,err=8020,file="'/usr/kgs/data/authdict’,
= recl=232,access="direct!, form="formatted')
inquire(1, form=frm, blank=bnk)

c find start of overflow records

e
read (1.9030,iostat=istat,err=8030,rec=1) iovflw
inquire(1, form=frm, blank=bnk)
ireci=2

c

c write report headers

c

110 write (3,9040.err=8000)
write (3,9050,err=8000)
write (3,9060,err=8000)
iline=0

e
c read first and 40th record on author dictionary
¢ (LOth record is read for 2=-column print)
[¢]
120 read (1,9080,iostat=istat,rec=irec1) author(1),
- (keyrec(i),i=1,50)
c
c check for end-of=file condition
if (istat.eq.=-1.or.istat.eq.31.or.istat.eq.32) go to 400
if (istat.ne.0) go to 8030
c
ireci=ireci1+1
ient1=0

do 140 i=1,50
if (keyrec(i).eq.0) go to 160
icnti=icnt1+1

140 continue

160 if (iendsw.eg.1) go to 200
irec2=irec1+39
read (1,9080,iostat=istat,rec=irec2) author(2),
- (keyrec(i),i=1,50)

c check for end=of=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) then

iendsw=1

go to 200
end if
if (istat.ne.0) go to 8030
icent2=0
do 180 i=1,50
if (keyrec(i).eq.0) go to 200
icnt2=icnt2+1

180

200

o000
o
o

Voo o000

000

510

Noooo

Q0

continue
write out information

if (iendsw.eq.1) then

write (3,9070,err=8000) author(1),icnt1
else if (iendsw.eq.0) then

write (3,9070,err=8000) author(1),ient1,author(2),icnt2
end if
iline=iline+1
if (iline.eq.40) then

irecizirec1+i0

go to 110
end if
go to 120

close author dictionary
close (1)
if (iboth.eq.0) go to 900

#R%¥% Keyword mode @ REERE

open Keywrd dictionary

open (2,iostat=istat,err=8020,file="/usr/kgs/data/keydict’,

- recl=256,access='direct', form="'formatted')
find start of overflow records

read (2,9030,iostat=istat,err=8030,rec=1) iovflw
ireci1=2
iendsw=0

write report headers

write (3,9090,err=8000)
write (3,9100,err=8000)
write (3,9060,err=8000)
iline=0

read first and 40th record on keywrd dictionary
(40th record is read for 2-column print)

read (2,9120,iostat=istat.rec=irec1) keywrd(1),
- (keyrec(i),i=1,60)

check for end-of=file condition
if (istat.eq.-1.or.istat.eg.31.or.istat.eq.32) go to 800
if (istat.ne.0) go to 8030

ireci=irec1+1
icnti1=0
do 540 i=1,60

116

if (keyrec(i).eq.0) go to 560 17

icnti=icnt1+1
540 continue
c
c
560 if (iendsw.eq.1) go to 600
irec2=irec1+39
read (2,9120,iostat=istat,rec=irec2) keywrd(2),

- (keyrec(i),i=1,60)
c
c check for end-of=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) then
iendsw=1
go to 600
end if
if (istat.ne.0) go to 8030
c
icent2=0
do 580 i=1,60
if (keyrec(i).eq.0) go to 600
ient2=icnt2+1
580 continue
c
c write out information

c
600 if (iendsw.eq.1) then
write (3,9110,err=8000) keywrd(1),icnti
else if (iendsw.eq.0) then
write (3.9110,err=8000) keywrd(1),icnt1,keywrd(2),icnt2

end if
iline=iline+1
if (iline.eg.40) then
irec1=irec1+i0
go to 510
end if
go to 520
c
c close keywrd dictionary
c
800 close (2)
c
c
e closeout

c
900 close (3)
istat=0

c
c return

[¢]

9999 return

c

e error reporting and formatting

c

8000 write (6,8005,err=8000)

8005 format (/1x,'kinfo:command device error'/)
istat=1

8010
8015

8020
8025

8030
8035

9000
9010

9020
9030
9040
9050
9060
9070
9080
9090
9100
9110

9120
9130

go to 9999

write (6,8015,err=8000)

format (/1x,'invalid response - please enter again'/)

go to 20

write (6,8025,err=8000) istat

format (/1x,'kinfo:error on opening file - iostat ='.ili/)
go to 9999

write (6,8035,err=8000) istat

format (/1x,'kinfo:ierror on reading file - iostat = ',14/)
go to 9999

i/o formatting

format (//////10x,'k gs information mod e'//1)

format (/10x,'enter information desired',//15x, tauthor',.5x,
'key',5x, 'both'//)

format (al)

format (il4)

format (1h1//////,10%,'kgs publications data base',5X,
tauthor list'//)

format (10x,'author'.15x,'oceurrences',ZSx,‘author'.16x,
'occurrences')

format (1x,’' - Vg
1 1

e et 22

format (1x,a32,1x,i4,20x,a32,1x,il)

format (a32,50i4)

format (1h1//////,10%,'kgs publications data base',5X,
tkeyword list'//)

format (10x,'keyword'.20x,'occurrences‘,15x,'keyword',zox,
'occurrences')

format (5x,al16,17x,i4,18x,a16,15x,i4)

format (a216,601i4)

format (a250)

end

118

00000000

0OOOQGOOOGO()OOOQODQOOOOOGDGDOOOOQDOOO

kgskeyex

subroutine kgskey(istat)

written by judith calabrese - 12 august 1981
fortran77/unix conversion by kathy miller - dec 83

subroutine called by kgsextrt.
provides the keyword retrieval function.
field ®

a field search searches the kgsdetny file for the
direct address of all kgs records containing the
entered keywords. only the keyword field of the
data base is searched.

this mode also provides union(or)/intersection(and)
capability for record retrieval.

® string ®

a string search searches the title field of all
records on the kgs data base for a match with
entered keywords. the kgs data base is read
sequentially.

logical unit assignments *

lul-kgs key index data file (sequential)
lu2-kgs key dictiomary file (direct)
lu3-print file (sequential)
lul=temporary scratch file

luS=standard input device

lué=-standard output device

lug-kgs data base master file (direct if field search)
(sequential if string search)

character inkey#16(6)
character denkey®16
character inauth#32
character index(30)
character hldchr(6)
character idummy
character iresp#li

data elements read from kgs data base record

119

000Qo

= 0 0 0 00 =

00000

Q0000000

character
character
character
character
character
character
character

integer#2
integer#2
integer#®#2

_ integer®2

author#32(3)
pubdat#12
title#*100
pubnam#32
refer#®20
keywrd®*16(6)
discpn®*16

recno(60) ,pointr(30),istat,iline, inkyct

icell, isub, iovflw, iprtsw, iprtct, idxect
itimes, iscrct,iovfli.ierrct
ipage, iscrec,ierrsw

initialize values

inkyct=0
idxect=0
isub=0
itimes=0
iscret=0
iprtsw=0
iprtet=0
ierrct=0
iandor=0
ipage=1
inauth="
ierrsw=0

do 10 i=1,
inkey(i)="'

continue

6

input parameters
for field or string search

write (6,9000,err=8000)
read (5,9010,err=8000) iresp

if (iresp.eq.'

') go to 7000

if (iresp.egq.'fiel') go to 500

iline=1

if (iresp.ne.'stri') go to 8020

(1§11 string search $EREE

call kgstrg (istat)
go to 9999

ssss% field search Weess

union or intersection
parameters entered by user

120

o oo o

00

Q

520
540
c

c
c
c

560
580
c
c
c

intersection - iandor=0
union - iandor=1

write (6,9020,err=8000)

read (5,9010,err=8000) iresp

if (iresp.eq.' ') go to T00O

if (iresp.eq.'unio') then
iandor=1

elseif (iresp.eq.'or ') then
jandor=1

elseif (iresp.eq.'inte') then
iandor=0

elseif (iresp.eq.'and ') then
jiandor=0

else
iline=2
go to 8020

endif

accept key words from user

write (6,9100,err=8000)

do 520 i=1,6

read (5,9030,err=8000) inkey(i)

if (inkey(i).eq.' ') go to 540
hldehr(i)=inkey(i)

inkyct=inkyect+1

continue

if (inkyct.eg.0) go to T000

build index array from index file

open (1,iostat=istat,err=8010,file="'/usr/kgs/data/keyidx',
- form='formatted')
do 560 i=1,30
read (1.9040,iostat=istat.err=8060,end=580) index(i),pointr(i)
check for end-of-file condition

if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 580

if (istat.ne.0) go to 8060

idxet=idxct+1

continue

close (1,iostat=istat.err=8030)

open dictionary and scratch files
open (2,iostat=istat.err=8010,file='/usr/kgs/data/keydict',
- recl=256,acceas='direct'.form:'formattad')
open (H,iostat:iatat,err=8010,rec1=5,file='usr/kgs/data/t'.

- status="'scratch', form="'formatted')
rewind U

find start of overflow records on dictionary

read (2,9120,iostat=istat,rec=1) iovflw

121

122

c

c check for end-of-file condition
if (istat.eg.-1.or.istat.eq.31.or.istat.eq.32) go to 8100
if (istat.ne.0) go to 8060

c

[&]

c binary search of index

c

600 isub=isub+1

if (isub.gt.inkyct) go to 900
idummy=hldchr(isub)
call search (index,idxct,idummy,icell)

irec=pointr(icell)
if (icell.gt.0) go to T0O
ierrct=ierrct+1
go to T40
c
c find keyword on dictionary

c
700 read (2,9050,iostat=istat.rec=irec)
- denkey, (recno(i),i=1,60)

c

c check for end-of=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 8070
if (istat.ne.0) go to 8060

e
irec=irec+1
if (denkey.lt.inkey(isub)) go to T00
if (dcnkey.eq.inkey(isub)) go to 800

c

(¢}

c search overflow for keyword

¢

T40 iovfli=iovflw

750 read (2,9050,iostat=istat,rec=iovfl1) dcnkey,
- (reeno(i),i=1,60)

c
c check for end-of=-file condition
if (istat.eq.-1.or.istat.eg.31.or.istat.eq.32) go to 8070
if (istat.ne.0) go to 8040
c
iovfli=iovili+1
if (dcnkey.eq.inkey(isub)) go to 800
go to 750
C
c create scratch file of record numbers
C
c
c write first record
c .
800 if (iserct.ne.0) go to 830

itimes=1

do 820 i=1.60

if (recno(i).eq.0) go to 825

write (4,9060,iostat=istat,err=8080) recno(i),itimes
" iscrct=iscret+1

[¢]

80

870

o000

000000000

[#]

continue 123

rewind 4
go to 600

write additional record numbers
to scratch file

do 860 i=1,60
if (recno(i).eq.0) go to 870
read (4,9060,iostat=1istat,err=8060,end=850) iscrec,itimes

check for end=of-file condition
if (istat.eq.-1.or.istat.eg.31.or.istat.eq.32) go to 850
if (istat.ne.0) go to 8060

if (recno(i).ne.iscrec) go to 840

backspace 4

itimes=itimes+1

write (4,9060,iostat=istat.err=8000) iscrec,itimes
rewind 4

go to 860

itimes=1

write (4,9060,.iostat=istat,err=8000) recno(i),itimes
iserct=iscrect+1

rewind 4

continue

rewind 4

go to 600

close dictionary file
open kgs data base
rewind scratch file

eclose (2,iostat=istat,err=8050)

open (9,iostat=istat,err=8010,file="/usr/kgs/data/kgsmaster’,
- recl=372.aeeess='direct',form:'formatted')

rewind 4

#as8## pecord retrieval from kgs data base REERR

alternate print option

hard copy output = iprtsw=1
output only on terminal - iprtsw=0

write (6,9070,err=8000)

read (5,9010,err=8000) iresp

if (iresp.eq.'no ') go to 1000

if (iresp.ne.'yes ') go to 8050

open (3,iostat=istat,err=8010,file="' /usr/kgs/data/printfile’,
- form="'formatted')

iprtsw=1

union (or)

1000
1020

o

1250

7000

e
9999
c

e
8000

if (iandor.eq.0) go to 1200

read (4,9060,iostat=istat, err=8060,end=7000) iscrec,itimes

check for end-of-file condition

if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 7000

if (istat.ne.0) go to 8060

read (9,9080,iostat=istat,err=8060,rec=1iscrec)

- (author(i),i=1,3),
- pubdat, title, pubnam, refer, (keywrd(j), Jj=1,6),discpn

display record

call kgsdsp(inkey,inauth, iscrec,
iandor, iprtsw, ipage, iprtet,

- author,pubdat, title, pubnam, refer, keywrd, discpn)

go to 1020
intersection (and)

if (ierrct.ne.0) inkyct=inkyct-ierrct

read (U4,9060,iostat=istat.err=8060,end=1250) iscrec,itimes

check for end-of=file condition

if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 1250

if (istat.ne.0) go to 8060

if (itimes.ne.inkyect) go to 1220
read(9,9080,iostat=istat,err=8060,rec=iscrec)

- (author(i),i=1.3),
- pubdat, title, pubnam,refer.(keywrd(j),Jj=1,6),discpn

ierrsw=1
display record

call kgsdsp(inkey,inauth,iscrec,
iandor, iprtsw, ipage, iprtect,

- author.pubdat,title,pubnam,refer,keywrd,discpn)

go to 1220
if (ierrsw.eq.0) go to 8090

closeout
close (4,iostat=istat.err=8030)
close (9,iostat=istat,err=8030)
close (3,iostat=istat.err=8030)
istat=0

return
return

s#88%# grror reporting and formatting — #E###

write (6,8005,err=9999)

8005

8010
8015

8020
8025

8030
8035

8ouo
8045

8050
8055

8060
8065

8070
8075

8080
8085

8090
8095

8100
8105

000

Q

9000
9010
9020
9030
9040
9050
9060

125
format (/1x, 'kkeyex:command device error'/)

istat=1

pause

go to 9999

write (6,8015,err=8000) istat

format (/1x, 'kkeyex:error on opening file - iostat = ',il/)
istat=1

pause

go to 9999

write (6,8025,err=8000)

format (/1x,'invalid response - please enter again'/)

go to (100,500),iline

write (6,8035,err=8000) istat

format (/1x,'kkeyex:error on closing file - iostat = 1,i4/)
istat=1

pause

go to 9999

write (6,8045,err=8000) inkey(isub)

format (/1x,'keyword not in dictiomary - ',a16/)

rewind 2

go to 600

write (6,8055,err=8000)

format (/1x,'please respond yes or no'/)

go to 900

write {6,8065,err=8000) istat

format (/1x,'kkeyex:error on reading file = istat = v,il)
pause

istat=1

go to 9999

write (6,8075.err=8000) inkey(isub)

format (/1x,'keyword not in dictiomary - ',al6)
ierrct=ierrct+1

go to 600

write (6,8085,err=8000) istat

format (/1x,'kkeyex:error on writing file = iostat = '.i4/)
istat=1

pause

go to 9999

write (6,8095,err=8000)

format (/1x,'#%#% no files on data base'.
- ' containing all selected keywords ###1/)
go to 7000

write (6,8105,err=8000)

format (/1x,'no records in dictionmary'/)

go to T000

EERRSERNEE j/o formatting HERERERRER

format (/1x,'field or string search by keyword?')
format (al) i

format (/1%,'union (or) or intersection (and)')
format (a16)

format (a1,il)

format (a16,60i4)

format (i4,i1)

9070
90 80
9100
9120

format (/1x,'alternate print option?')

format (3a32,a12,a100,a32.a20.6a16,a16)

format (/1x,'enter keywords (lower case only)"')
format (i#4)

end

126

OO0 00000000

NDNOO0DO0O0DODODO OO0 DDOODODO0D0OO0OO0

kgsptrup

subroutine kgsptr(author,keywrd, irec,autidx, wrdidx,
autptr.wrdptr,authct,wrdct,itype)

written by judith calabrese - 7 october 1981
fortran77/unix conversion by kathy miller - dec 83
updates pointers on kgs dictionary files

#E##% Jogical unit assignments @ #E#EE
lu2 - kgs author dictionary file (direct)
1lu8 - kgs keyword dictionary file (direct)
lué = standard output device

arguments passed

author - read from kgs data base

keywrd - read from kgs data base

irec - record number on kgs data base

autidx - author index (points to dictionary file)
wrdidx - keyword index (points to dictionary file)
authet - count of cells on author index

wrdet = count of cells on keyword index

itype -1 append mode

delete mode
return code error

2
9

character author#32(3)
character keywrd®#16(6)

character autidx(30)
character wrdidx(30)

character hldchr
character spaces#2

character authdc#32
character wrdden®*16

integer#2 autptr(30),wrdptr(30),icell.recno(60)
integer#®2 krec,wrdct,authet,irec, iovflw.itype

initialize values

127

128

e
spaces=' !
e
[
c ERNER author RERES
e
e
c open author dictionary
¢
open (2,iostat=1istat.err=8010,file='/usr/kgs/data/authdict?’,
- recl=232,access="direct', form="'formatted’)
c
c find start of overflow records in dictionary
c
read (2,9000,iostat=istat.rec=1) iovflw
e
c check for end-of-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) then
iovflw=1
write (2,iostat=istat.err=8040,rec=1) iovflw
end if
c
c search index for pointer to dictionary
c
do 700 i=1,3
if (author(i).eq.spaces) go to T00
hldchr(1:)=author(i)(1:1)
call search (autidx,authet,hldchr,icell)
if (icell.eq.0) go to 200
krec=autptr(icell)
c
c find author in dictionary
e

100 read (2,9010,iostat=istat,rec=krec) authde, (recno(j), j=1,50)

o] check for end-of=-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 300
if (istat.ne.0) go to 8020

e
kreec=krec+1
if (authde.lt.author(i)) go to 100
if (authde.eg.author{i).and.itype.eq.1) go to 400
if (authde.eq.author(i).and.itype.eq.2) go to 500
Cc
c search overflow for match
c L

200 krec=iovflw+1
220 read (2,9010,iostat=istat,rec=krec) authde, (recno(j), j=1,50)

e

c check for end-of=file condition
if (istat.eqg.-1.or.istat.eq.31.or.istat.eq.32) go to 300
if (istat.ne.0) go to 8020

e .

krec=krec+1
if (authde,ne.author(i)) go to 220
if (authdc.eq.author(i).and.itype.eq.1) go to 400

300

350

koo

450

500

520
550

c
600

o
o

00000030

00

129
if (authde.eq.author(i).and.itype.eq.2) go to 500

author not in dictionary

recno(1)=irec
do 350 j=2,50
recno(j)=0
continue
krec=krec+1
go to 600

add record number to author in dictionary

do 450 j=1,50

if (recno(j).ne.0) go to 450
recno(j)=irec

go to 600

continue

icell=1i

go to 8030

delete record number from dictionary

do 550 j=1,50

if (recno(j).eg.0) go to 600

if (recno(j).ne.irec) go to 550
do 520 k=j.50
recno(k)=recno(k+1)

if (recno(k).eq.0) go to 600
continue

continue

rewrite author dictionary record

krec=krec=1
write(2,9010,iostat=istat.err=8040,rec=krec)
- author(i), (recno(j),j=1,50)

continue

REEER keywrd (2211

open keyword dictionary

open (8,iostat:istat.err=8010,file='/usr/kgsldata/keydict'.
- recl=256,access="'direct', form="'formatted')

find start of overflow records in dictionary
read (8,9000,iostat=istat.rec=1) iovflw

check for end=-of-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) then

iovflw=1
write (8,9000.iostat=istat.err=80h0,rec=1) iovflw

1200
1220

1300

1350

1400

1450

end if
search index for pointer to dictionary

do 1700 i=1,6

if (keywrd(i).eq.spaces) go to 1700
hldchr(1:)=keywrd(i)(1:1)

call search (wrdidx,wrdct,hldchr,icell)
if (icell.eq.0) go to 1200
krec=wrdptr(icell)

find keywrd in dictionary
read (8,9020,iostat=istat,rec=krec) wrdden, (recno(j), j=1,60)

check for end-of-=file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 1300
if (istat.ne.0) go to 8020

krec=krec+1

if (wrdden.lt.keywrd(i)) go to 1100

if (wrdden,eq.keywrd(i).and.itype.eq.1) go to 1400
if (wrdden.eq.keywrd(i).and.itype.eq.2) go to 1500

search overflow for match

krecziovflw+1
read (8,9020,iostat=istat.rec=krec) wrdden, (recno(j), j=1,60)

check for end-of-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 1300
if (istat.ne.0) go to 8020

krec=krec+1

if (wrdden,ne.keywrd(i)) go to 1220

if (wrdden.eq.keywrd(i).and.itype.eq.1) go to 1400
if (wrdden.eq.keywrd(i).and,itype.eq.2) go to 1500

keywrd not in dictionary

recno(1)=irec
do 1350 j=2,60
recno(j)=0
continue
krec=krec+1

go to 1600

add record number to keywrd in dictionary

do 1450 j=1.60

if (recno(j).ne.0) go to 1450
recno(j)=irec

go to 1600

continue

icell=1i

go to 8050

130

1500

8000
8005

8010
8015

8020
8025

8030
8035

8040
8ous

8050
8055

delete record number from dictionary

do 1560 J-"-T 160

if (recno(j).eq.0) go to 1600

if (recno(j).ne.irec) go to 1560
do 1520 k=j,60
recno(k)=recno(k+1)

if (recno(k).eq.0) go to 1600
continue

continue

rewrite keywrd dictionary record

krec=krec=1
write(8,9020,iostat=istat, err=8040,rec=krec)
- keywrd(i),(reeno(j), j=1,60)

continue
return

close (2)
close (8)
return

error reporting and formatting

write (6,8005,err=9999)

format (/1x,'kptrup:command device error'/)
itype=9

go to 9999

write (6,8015,err=8000) istat

format (/1x,'kptrup:error on opening file = iostat
itype=9 :

go to 9999

write (6,8025,err=8000) istat

format (/1%,'kptrup:error on reading file - lostat
itype=9

go to 9999

write (6,8035,err=8000) author(icell)

format (/1x,'kptrup:dictionary overflow on author = ',a32/)
itype=9

go to 9999

write (6,8045,err=8000) istat

format (/1x, 'kptrup:error on writing file - iostat = ',i4/)
itype=9

go to 9999

write (6,8055,err=8000) keywrd(icell)

format (/1x,'kptrup:dictionary overflow on keyword - ',a16/)
itype=9

go to 9999

t,il4/)

',i4/)

i/o formatting

131

9000
9010
9020

format (i4)
format (a32,50ik4)
format (a16,60i4)
end

132

133
program kgsrenew

written by judith calabrese - 21 october 1981
fortran77/unix conversion by kathy miller - dec 83

removes deleted records from the kgs data base
logical unit assignments

lul - kgs data base master file (direct-read only)

lu2 - kgstemp - output file (direct-write only)

lué - standard output device

kgs data items

0000000000000 O0O0

character author#32(3)
character pubdat®12
character title#100
character pubnam#®32
character refer#20
character keywrd*16(6)
character discpn#*16

integer#2 inct,outet,irec,orec
c initialize values

inct=0

outet=0

irec=0

orec=0

open files

Q

open (1.iostat:istat,err=8010.file='usr/kgs/data/kgsmaster'.
- recl=372.form='formatted',access:'direet')

open (2,iostat=istat,err=8010,file= tusr/kgs/data/kgstemp’,
- recl=372.form='formatted',access:'direct')

(o])
c read kgs records

¢
100 irec=irec+1
read (1.9000,iostat:istat.err=8020.rec=irec)

- (author(i),i=1,3),pubdat,title, pubnam, refer,
- (keywrd(j),Jj=1.6),discpn
c check for end-of=file condition

if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 500
if (istat.eq.0) go to 8020
inect=inct+1

c check for deleted records
c

if (author(1).eq.'deledeledeledeledeledeledeledele') go to 100
c

c write out good record

134

¢
orec=orec+1
write (2.9000,iostat:istat.err=8030,rec=orec)
- (author(i),i=1.3),pubdat.title,pubnam,refer.
- (keywrd(j),j=1,6),discpn
if (istat.ne.0) go to 8030
outct=outet+1
go to 100
c
c closeout
e
500 write (6,9010,err=8000) inct,outct
close (1)
eclose (2)
9999 stop
c
c error reporting and formatting

[
8000 write (6’ 80051 err:gggg) :
8005 format (/1x,'krenew:command device error'/)

go to 9999
8010 write (6,8015,err=8000) istat

8015 format (/1x,'krenew:error on opening file = iostat = '.il/)
go to 9999

8020 write (6,8025,err=8000) istat

8025 format (/1x,'krenew:error on reading file - iostat = 1,il/)
go to 9999

8030 write (6,8035,err=8000) istat

8035 format (/1x,'krenew:error on writing file - iostat = ',i4/)
go to 9999

¢

c i/o formatting

9000 format (3a32.a12.a100,a32,320.6a16,a16)
9010 format (/1x,'input records = ',i4,/1x, 'output records ='.il/)
end

135

c
c
]
e search
¢
c
&
c
subroutine search(index,ictidx,idummy,i)
e
e written by judith calabrese - 23 july 1981
c fortran77/unix conversion by kathy miller - dec 83
e
c performs binary search of index array
o]
character index(30)
character idummy
integer#2 i,hi,lo,mid,ictidx
c
c initialize values
c
if (ietidx.le.0) go to 9999
hiziectidx
lo=1
]
c calculate mid point
]
10 mid=(hi+lo)/2

o

search

Q

if (idummy.eq.index(mid)) go to 50

if (idummy.gt.index(mid)) lo=mid

if (idummy.lt.index(mid)) hi=mid
c check for last 2 records

if ((hi=lo).eq.1) go to 30

go to 10
c
c final search
c
30 mid=hi
if (idummy.eq.index(mid)) go to 50
mid=1lo
if (idummy.eq.index(mid)) go to 50
c
c not on index
c
go to 8000
e
c closeout
c
50 i=mid

9999 return
c

136
c error reporting

c

8000 write (6,8005,err=9999) idummy

8005 format (1x,'input key or author root not on index - ',al)
i=0

go to 9999
end

OO0 O0OO

D000 O0O000000O0

00 00aQO0

137

kgstring

subroutine kgstrg (istat)

fortran7T/unix conversion by kathy miller - dec 83

logical unit assignments

lu3-print file (sequential)
lus-standard input device
lub=standard output device

lu9-kgs data base master file {direct)

character inauth#32
character inkey#®16(6)
character instrg®16
character field#16
character iresp#}

data elements read from kgs data base record

character author#32(3)
character pubdat®12
character title®100
character pubnam#32
character refer#20
character keywrd¥16(6)
character discpn#16

integer#®2 inkyct, iprtsw, ipage, iprtect,irec
initialize values

inauth=" !
inkyct=0

iree=0

iandor=2

iprtsw=0

ipage=1

iprtet=0

istyp=" '

alternate print option

hard copy output - iprtsw=1
output only on terminal - iprtsw=0

30

0000

50
80

c
c
c
200

0000

OO0 OOO0O0

400

0000

write (6,9030,err=28000) 138

read (5,9040.err=8000) iresp

if (iresp.eg.'no ') go to 40

if (iresp.ne.'yes ') go to 8030

open(3,iostat=istat,err=8010,file="/usr/kgs/data/printfile’,
form="'formatted"')

iprtsw=1

accept input keys from user

write (6,9000,err=8000)

do 50 i=1,6

read (5,9010,err=8000)inkey(i)
if (inkey(i).eq.' ') g0 to 80
inkyct=inkyct+1

continue

if (inkyct.eq.0) go to 900

open kgs data base

open (9,iostat=istat,err=8010,file='/usr/kgs/data/kgsmaster’,
recl=372.form="'formatted',access="direct')

read data base records

irec=irec+1
read (9,9020,iostat=istat,err=8020,rec=irec)
(author(i),i=1,3),pubdat,title,
pubnam, refer. (keywrd(j),j=1,6),discpn

check for end-of=-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 900
if (istat.ne.0) go to 8020

check for deleted record

if (author(1).eq.'deledeledeledeledeledeledeledele') go to 200

perform string search
on title field

do 400 i=1,inkyect
instrg=inkey(1i)

call stsrch (title,instrg,match)
if (match.eq.1) go to 800
continue

perform string search
on key word fields on kgs data base

650
600

00000

9000
9010
9020
9030
9040

139
do 600 i=1,inkyct
instrg=inkey(i)
do 650 j=1,6
field=keywrd(j)
call stsrch (field,instrg,match)
if (match.eq.1) go to 800
continue
continue

no match

go to 200

match -
display record

call kgsdsp (inkey,inauth.irec,

- iandor, iprtsw, ipage, iprtct,

- author, pubdat, title, pubnam, refer.keywrd,disepn)
match=0

go to 200

closeout

close (9,iostat=istat,err=8030)
close (3,iostat=istat,err=8030)
istat=0

return
return

error reporting and formatting

write (6,8005,err=9999)

format (/1x,'kstrng:command device error'/)

istat=1

go to 9999

write (6,8015,err=8000) istat

format (/1x,'kstrng:error on opening file - iostat = ', i4/)
go to 9999

write (6,8025,err=8000) istat

format (1%, 'kstrng:error on reading file - iostat = ',il})
go to 9999

write (6,8035,err=8000)

format (/1x,'please respond yes or no'/)

go to 30

i/o formatting

format (/1x,'enter key words for search (lower case only)'/)
format (a16)

format (3a32.a12.a100.a32.320.6a16,a16)

format (/1x,'alternate print option?'/)

format (al)

140
end

OCO0O0O0O0O0O000O0

0000000000 00O0

stsrch

subroutine stsrch (field,instrg,match)

written by judith calabrese - 22 september 1981
fortranT7/unix conversion by kathy miller - dec 83

performs string search on field up to 100 characters long
using an input string up to 50 characters long for comparison.

field - field to be searched
instrg - input string searching for
matech = 1 = match

0 = nomatch

character field#*100
character instrg¥#50
character hldstr#50
character hldear(2)
character hold#2(2)

initialize values

length=0
match=0

calculate length of input string

do 20 i=1,50

j=i+1

hldear(1)(1:)=instrg(i:i)

hldear(2)(1:)=instrg(j:j)

if (hldear(1).eq.' '.and.hldecar(2).eq.' ') go to 40
length=1length+1

continue

load portion of field into hold area

do 100 i=1.100
last=i+(length-1)
hldstr(1:)=field(i:last)

if (hldstr.eq.instrg) go to 200
if (hldstr.eq.' ') go to 9999

compare input string to hold area

141

ictr=0

do 60 j=1,length

K=j+1
hold(1)(1:)=hldstr(j:k)
hold(2)(1:)=instrg(j:k)

if (hold(1).ne.hold(2)) go to 60
ictr=ictr+1

continue

if (ictr.eq.length) go to 200
continue

go to 9999

match
match=1
return

return
end

142

OO0 000000000

DO0OO0OO00DOOO0OO0DODO0OO0O0O0O0C0O00O0

kgsup

subroutine kgsup (istat)

written by judith calabrese - 13 october 1981
fortran77/unix conversion by kathy miller - dec 83

provides the update mode of the kgs retrieval systemn.
subroutine called from kgsedit

#3%#8% Jogical unit assignments @ #EEEd

lu1 kgs author index file (sequential)
1u2 - kgs author dictionmary file (opened in kgsptr)

lus - standard input device

lué - standard output device

1u7 - kgs keyword index file (sequential)

1u8 - kgs keyword dictionmary file (opened in kgsptr)
1u9 - kgs data base master file (direct)

kgs data base data elements

character author#32(3)
character pubdat®12
character title#100
character pubnam#32
character refer#20
character keywrd®16(6)
character discpn#®*16

character hauthr#32(3)
character hldkey®*16(6)

character dauthr#32(3)
character diskey#16(6)

character
character
character

character
character

character
character
character

buf fer#i
title1#78
title2#35

autidx(30)
wrdidx(30)

spaces#2
astrix
iresp®}

143

144

c
integer#2 autptr(30),wrdptr(30),authect,wrdet
integer®2 irec,iline,itype,endrec
Cc
c initialize values
c
spaces=' !
astrix="%#¢
authet=0
wrdet=0
c
c
c open kgs index files - author & keyword
c
_open (1,iostat=istat.err=8010,file="/usr/kgs/data/authidx’',
- recl=5,form="'formatted'’)
open (7, iostat-istat.err-ao‘m file:'/usr/kgs/data/keyidx'
- recl=5, form-'formatted')
c
c build index arrays
] for dictionary search
c
do 2 i=1,30
read (1,9000,iostat=istat,end=3) autidx(i),autptr(i)
c
c check for end=-of=file condition
if (istat.eq.-T.or.istat.eq.31.or.istat.eq.32) go to 3
e

authet=authet+1
2 continue
3 do 5 i=1,30
read (7,9000,iostat=istat,end=10) wrdidx(i),wrdptr(i)

e
¢ check for end-of=-file condition
if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 10
c
wrdcet=wrdect+1
5 continue
c
c close indexes
c
10 close (1)
close (7)
[e]
c
c open kgs data base
c
open (9,iostatzistat,err=8010,file="/usr/kgs/data/kgsmaster’,
- recl=372.access="'direct', form="formatted')
c
e find end of file
c
endrec=1
15 read(9,9005,iostat=istat.rec=endrec) author(1)
c

c check for end=-of-file condition

nNoe 0o o

30

0000w

70

if (istat.eq.-1.or.istat.eq.31.or.istat.eq.32) go to 17
endrec=endrec+1
go to 15
continue
endrec=endrec=1

2RHRRE update mode $EEER

user enters record # to be updated
write (6,9010,err=8000)
read (5,9020,err=8000) iresp
if (iresp.eq.astrix) go to 9999
if (iresp.eq.spaces) go to 9999

convert record # to integer value
call convrt (iresp,irec)

check for record past end-of=file
if (irec.gt.endrec) go to 8060

read kgs data base record

read (9,9030,iostat=istat,err=8020,rec=irec)

- (author(i),i=1,3),pubdat, title, pubnam,
- refer, (keywrd(Jj),j=1,6),discpn
do 30 i=1,3

if(author(i).eq.'deledeledeledeledeledeledeledele')go to 8070

dauthr(i)=author(i)
continue

do 35 i=1.6
diskey(i)=keywrd(i)
continue

initialize author and keyword fields to spaces

do 70 i=1,3
hauthr(i)=spaces
continue

do 80 i=1.6
hldkey(i)=spaces
continue

display record

call kgsdln(dauthr.pubdat,title,pubnam,
- refer,diskey,discpn, irec)

enter line # to be updated

write (6,9040,err=8000)

145

0D 0000

500

520

read (5,9020,err=8000) iresp

if (iresp.eq.astrix) go to 2000
if (iresp.eq.spaces) go to 2000
call convrt (iresp,iline)

check for valid line #

if (iline.lt.1.or.iline.gt.14) go to 8030

update based on line selection

go to (100,200,300,400,500,600,700,800,
- 800,800'800.800,800,1’400),iline

update first author field

write (6,9050,err=8000) author(1)

read (5,9060,err=8000) hauthr(1),buffer
if (buffer.ne.spaces) go to 8040
dauthr(1)=hauthr(1)

go to 40

update second author field

write (6,9070.err=8000) author(2)

read (5,9060,err=8000) hauthr(2),buffer
if (buffer.ne.spaces) go to 8040
dauthr(2)=hauthr(2)

go to 40

update third author field

write (6,9080.err=8000) author(3)

read (5,9060,err=8000) hauthr(3),buffer
if (buffer.ne.spaces) go to 8040
dauthr(3)=hauthr(3)

go to 40

update publication date

write (6,9090.err=8000) pubdat

read (5,9100,err=8000) pubdat,buffer
if (buffer.ne.spaces) go to 8040

go to 40

update title field

title1(1:65)=title(1:65)
title2(1:35)=title(66:100)

write (6,9110,err=8000) titlel,title2
read (5,9120,err=8000) titlel

read (5,9130,err=8000) title2,buffer
if (title2.eq.spaces) go to 550

146

1400

nNoe oo oo

0000

remove extra spaces from title field
call cram (titlel,title2)

create 100 character title field
title(1:78)=title1(1:)
title(79:)=title2(1:)
go to 40

update publication name

write (6,9140.err=8000) pubnam

read (5,9060,err=8000) pubnam,buffer
if (buffer.ne,spaces) go to 8040

go to 40

update reference field

write (6,9150,err=8000) refer

read (5,9160,err=8000) refer,buffer
if (buffer.ne.spaces) go to 8040

go to U0

update keyword fields

i=iline=T7

write (6,9170,err=8000) keywrd(i)

read (5,9180,err=8000) hldkey(i),buffer
diskey(i)=hldkey(i)

if (buffer.ne.spaces) go to 8040

go to 40

update discipline field

write (6,9190.err=8000) disepn

read (5,9180.err=8000) discpn,buffer
if (buffer.ne,spaces) go to 8040

go to 40

save updated record?

000 call kgsdln (dauthr,pubdat, title, pubnam,
- refer.diskey,discpn, irec)

write (6,9200,err=8000)

read (5,9020,err=8000) iresp

if (iresp.eq.'yes ') go to 2100
if (iresp.eq.'no ') go to T000
iline=1

go to 8050

update dictionary files

147

148

c setup arrays

2100 do 2140 i=1,3
if(hauthr(i) .eq.spaces.and.dauthr(i).ne. spaces)author(i)=spaces
2140 continue

do 2160 i=1.6
if(hldkey(i).eq.spaces.and.diskey(1i).ne.spaces)keywrd(i)=spaces
2160 continue

c
c delete old authors and keywords
¢
itype=2
call kgsptr (author,keywrd,irec,autidx,wrdidx,
- autptr,wrdptr,authet, wrdet, itype)
if (itype.eq.9) go to 9999
c
c add new authors to dicticnary
c
itype=1
call kgsptr (hauthr,hldkey,irec,autidx,wrdidx,
- autptr,wrdptr.authet, wrdet, itype)
if (itype.eg.9) go to 9999
c
¢
c rewrite updated record
c
C
write (9,9030.iostat=istat,err=8020,rec=irec)
- (dauthr(i),i=1,3),pubdat,title, pubnam,
- refer, (diskey(j), j=1.6),discpn
c
c
c continue
c
c
7000 write (6,9210,err=8000)

read (5,9020,err=8000) iresp
if (iresp.eq.'yes ') go to 20

iline=2
if (iresp.ne.'no ') go to 8050
istat=0
c
e closeout
c
9999 close (9)
return
c
c
c error reporting and formatting
c
¢

8000 write (6,8005,err=9999)
8005 format (/1x,'ksup:command device error'/)
istat=1

8010
8015

8020
8025

8030
8035

8040
8045

8050
8055
8060
8065

8070

0000

(2]

9000
9005
9010
9020
9030
9040

9050

9060
9070

9080

9090

9100
9110

9120
9130
9140

go to 9999
write (6,8015,err=8000) istat
format (/1x,'ksup:error on opening file - iostat
go to 9999
write (6,8025,err=8000) istat
format (/1x,'ksup:error on reading file - iostat
go to 9999
write (6,8035,err=8000)
format (/1x,'line number is out of range - '/,
- 1x, 'please enter again'/)
go to 50
write (6,8045,err=8000)
format (/1x,'line too long!!! - please enter again'/)
go to (100,200,300,”00,520,600,700,320,
- 820,820, 820,820,820,1400) ,iline

',i4/)

',i4/)

write (6,8055,err=8000)
format (/1x,'please respond yes or no'/)
go to (2000,7000),iline
write (6,8065.err=8000) endrec
format (/1x,'record entered is past end of file'/,
- 1x, 'last record # is ',i4)
go to 7000
write (6,8075,err=8000)
format (/1x,'record has been deleted'/)
go to T00O
i/0 formatting
format (al,il)
format (a32.a340)
format (/1x,'enter # of record to be updated'/)
format (alf)
format (3a32,a12,a100,a32,a20,6a16,a16)
format (/1x,'enter # of line to be updated'/,
- 1x,'or an * to end'/)
format (/1x,'old first author is ',a32/,
- 1x,'enter new first author (doe. J) - lower case only'/,
- 1%, 'in format: <last><,>< ><first>'/)
format (a32.ali)
format (/1x,'old second author is ',a32/,
- 1%, 'enter new second author (doe. j) = lower case only'/,
- 1x,'in format: <last><,>< ><first>'/)
format (/1x,'old third author is ',a32/,
- 1x,'enter new third author (doe, j) - lower case only'/,
- 1%, 'in format: <last><,>< ><first>1/)
format (/1x,'old publication date is ',al2/,
- 1x, 'enter new publication date'/)
format (al12,al)
format (/1x,'0ld title is ', /1x,a78/,1x,a35/,
- 1x,'enter new title (lower case only)'/)
format (a78)
format (a35,alt)
format (/1x,'old publication name is ',a32/,

- 1x, 'enter new publication name'/)

149

9150

9160
9170

9180
9190
9200
9210

format (/1x,'old reference locator is ',a20/,
- 1x, 'enter new reference locator in format:'/,1x,
- ' <ref owner><physical location>{file number>'/)
format (a20.al)
format (/1x,'old keyword is ',alé/,
- 1x, 'enter new keyword (lower case only)'/)
format (a16,a4)
format(/1x,'old discipline is ',a16/,1x,'enter new discipline'/)
format (/1x,'save 0.k.?'/)
format (/1x,'do you want to continue in update mode?'/)
end

150

D000 O0O0DO0OO

000000 0000

0o

o
o

0

151

program kgsupvr

written by judith calabrese - 19 october 1981
fortran77/unix conversion by kathy miller - dec 83

drives the kgs data base retrieval system

character iresp®j

lub - standard input device
luf - standard output device

header
write (6,9000,err=8000)
enter mode of operation

write (6,9010,err=8000)
read (5,9020,err=8000) iresp

if (iresp.eq.'edit') go to 100

if (iresp.eg.'extr') go to 200

if (iresp.eq.'info') go to 300

if (iresp.eq.'stop') go to 9999
if (iresp.eq.! ') go to 9999
go to 8010

edit mode

call kgsed (istat)
if (istat.ne.0) go to 9999

go to 50

extract mode

call kgsext (istat)
if (istat.ne.0) go to 9999
go to 50

information mode
call kgsinf (istat)
if (istat.ne.0) go to 9999
go to 50

stop

AV o I » B o B]

000

9010
9020

stop

error reporting and formatting

write (6,8005,err=9999)

format (/1x, 'ksupvr:command device error')

go to 9999

write (6,8015,err=8000)

format (/1x,'invalid response - please enter again'/)
go to 50

i/o formatting

format (//////////10x,'k g s publications ',
- 'data base'/10x,
SRR RN RN RN R NN RN RN R ERRRRRRT /)
format (/////20%,'enter desired run mode'///,
- 10x, 'edit extract information stop'//)
format (al)
end

152

kgsrenew

command file rewrites the kgs data vase
removes deleted records

creates author and keyword dictionaries

creates author and keyword indexes

copy kgs data base master file into hold file

e Sk N W Gk NhoSk ¥ Nk Sh Sk Nk S

ep /usr/kgs/data/kgsmaster /usr/kgs/data/kgshold
rm /usr/kgs/data/kgstemp

#

remove deleted records

#

cmd/Krenew

it

#

mv /usr/kgs/data/kgstemp /usr/kgs/data/kgsmaster
f

-

create dictionaries and indexes
#

rm /usr/kgs/data/kgsaictdump

rm /usr/kgs/data/authdict

rm /usr/kgs/data/authidx

rm /usr/kgs/data/keydict

rm /usr/kgs/data/keyidx

2

w

cnd/keny

f#

if program terminated normally
please delete kgshold file

#

type rm /usr/kgs/data/kgshold

#

#

153

kgs

loads the kgs program

the extract mode includes
author, key word or all

the edit mode includes
add, delete or update

m /usr/kgs/data/printfile

Bk Y oHh Shodh Sh T Sh Sk 5k S5k Hh Sk N5 Sk S

Q
B
="
~
Ly

m
/]

#
provide carriage control conversion

#

ex /usr/kgs/data/printfile << !
1.$s/"L/"L/

W

q

!

i

print kgs printfile

pr /usr/kgs/data/printfile

#

154

Bibliography

Bourne, S.R. "An Introduction to the UONIX Shell.™ Bell
Laboratories, Murray Hill, RJ.

Bourne, S.R. The DONIX System. Reading, MA: Addison-Wesley
Publishing Compamry, 1982.

Calabrese, Judith T., Lawrence J. Kaetzel, Robert A. Glass &

George R. Smith. A Computer Data Base System for
Injexing Research Papers. NBS Technical Note 11€7:

0.S. Government Printing Office, 1982.

Chen, Ching-chih. Online Bibliographic Searching. New

e e

York: UHNeal-Schuman Publishers, Inc., 1981.

Chorafas, Dimitris N. Office Automation: The Productivity
Challenge. Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1980.

Date, C.J. An Introduction to Database Systems - Volume II.
Reading, MA: Addison-Wesley Pub. Co., 1983.

Feldman, S.I. and P.J. Weinberger. nA Portable Fortram 77
Compiler." Bell Laboratories: Murray Hill, NJ, 1978.

Heaps, H.S. Information Retrieval: Computational and

Theoretical Aspects. New York: Academic Press, 1978.

0S/32 Operator Reference Manual. Perkin-Elmer (Interdata
Division), Oceanport, NJ, 1978.

Pressman, Roger S. softvare Engineering: A Practitioner's
Approach. New York: McGraw-Hill Book Company, 1982.

Pylyshyn, Zenon W. Perspectives on the Computer Revolution.
BEnglevwood Cliffs, NJ: Prentice-Hall, Inc., 1970.

Salton, Gerard, and Michael J. McGill. Introduction to
Modern Information Retrieval. New York: McGraw—-Hill
Book Company, 1983.

155

Ullman, Jeffrey
Rockville, MD:

D. Principles of
Computer Science Pres

AN INTERACTIVE BIBLIOGRAPHIC REFERENCE SYSTEM

by

KATHLEEN ANN MILLER

BA, University of Southern Colorado, 1973

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattanz, Kamsas

-1984-

ABSTRACT

In our world of information explosion, professionals
need tools with which to organize their research materials.
In this report, several system models are examined for their
suitébility as such a tool. One specific system, the KGS
data base réfezence system, is found that can provide such
facilities for the users - KSU Computer Science Department
facﬁlty. KGS will allow individual faculty members to
pmaintain a data base of on-site reference materials which
may be retrieved by author(s), keyvword (s} or title.
Software file structures, operations and maintenance
procedures are described.

This report also covers tke implementation and
enhancement of KGS. This implementation has involved
conversion of the software from Fortran VII to Portran 77.
It has also necessitated changes from the operating systen
under which the original KGS system was run, 05/32 MNT, to
the KSU Computer Science's current UNIX operating system on
the Perkin-Elmer 8/32.

- The final form of KRGS 1is described in detail,
including a discussion of the implementation activities and
results, directions for fature vork, a listing of the

complete source code, and a users’ guide.

