/%ESGRIPTIO! OF A FILE ACCESS PROTOCOL
FOR COMPUTER IETHORIS/

by
LARRY EDWARD %ELLETIER

B. 8., Loyola University of Los Angeles, 1970

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF COMPUTER SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Apprived by:

LD
368
. BY
198>

Ce
1.0 Introduction . .« ¢« « ¢ ¢« &« o « ¢ s « o«

2.0 Concepts .« ¢« ¢« o o o o o o o o s o o @
2.1 Application Example . . + « + o o
2,2 The Server . .« « « s s o« s s » s o
2.3 Users of the Server « . . .
2.4 Flow of Inter-machine Communication
2.5 Messages and Fields+ . &
2.6 Status Fields . . + « ¢« & « o o « =«
2.7 Commands . « « ¢ ¢ o « « s o = o =
2.8 Use of Attributes + « + « &
2.9 Catalogs .+ ¢« « o« 1+ o« s &« » o o o =
2.10 Access Metheods . « « ¢ & & o + + &
2.11 Separation of Logical and Physical
2.12 Open-ended Physical Formats . . .
2.13 Application Walkthrough

3.0 Logical Formats . . ¢ ¢ « o « = s 4« =
3.1 TerminologY « « « =« s s o s s & « =
3.2 Message Header . « « ¢« « o o o =
3.3 Logical Command Formats

3.3.1 File Commands . .« « « o+ &
3.3.2 User Commands . . « + « &
3.3.3 Catalog Commands

3.3.4 Utility Commands . . « . .

Py IABLE OF CONTENTS | 11202 9b454Y

10
12
13
14
14
15
16
16
18
18
19
22
22
22
25
25
26
27
27

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

3.4 Command Summaries
3.4.1 File Commands . , . .
3.4.,2 User Commands ., . . .
3.4.3 Catalog Commands . . .
3.4.4 Utility Commands . . .

3.5 Common Field Descriptions . .

3.6 Attribute Descriptions . . .
3.6.1 Catalog Attributes . .
3.6.2 Server Attributes . .
3.6.3 User Attributes . . .

3.7 Status Values . .« « « « « o =
3.7.1 Common Values
3.7.2 File Commands
3.7.3 User Commands
3.7.4 Catalog Commands . . .
3.7.5 Utility Commands . . .

4,0 Physical Formats . . « « o« « o o &

4,1 Field Implementation

4.2 Data Types . + « o« o o« o = s

4,3 Physical Field Descriptions . .

4.4 Physical Attribute Descriptions

5.0 Summary . « « + s s e o o s s+ s s

6.0 References . . + « « « s s o s o« s =

29
29
33
34
35
38
48
48
52
57
57
58
58
60
60
61
63
63
64
65
74
78
80

CALENDAR APPLICATION - APPLICATION

CALENDAR NETWORK . .

PROTOCOL ENVIRONMENT

END TO END PROTOCOL DEFINITION

EXAMPLE PROGRAM FLOW

FILES

12

21

ACKNOWLEDGMENTS

I would like to thank Dr. Wallentine of Kansas State
University for his guidance and input. I would also like to
thank Ray Jantz, Raul Cartaya and Diana Foley of NCR for
their input and review of the technical portion of this

paper.

SNA and VSAM are trademarks of IBM

UNIX is a trademark of AT&T Bell Laboratories
CP/M is a trademark of Digital Research
ETHERNET is a trademark of Xerox

IMOS is a trademark of NCR

1.0 INTRODUCTION

The purpose of this paper is to define a File Access
Protocol suitable for use with 0SI (Open Systems Inter-
connection)[4], SNA (System Network Architecture)[14],
ETHERNET[15] or some other network protocol. O0SI 1is an
International Standards Organization (ISO) standard for the
exchange of information between different computer systems,
08I is organized into seven layers: the Physical Layer,
which provides the physical connections between systems; the
Data Link Layer, which provides control and error correction
for the physiéal layer; the Network Layers which provides
routing services for the connections; the Transport Layer,
which provides end to end control and optimized data trans-
fer between system entities; the Session Layer, which
organizes and synchronizes exchanges between systeﬁ enti-
ties; the Presentation Layer, which normalizes the syntac-
tic view of data transferred between systems; and the
Application Layer, which contains the corresponding
entities. The protocol described in this paper would reside
in the Application Layer of OSI since it provides logical
communication between a normalized file system and an appli=-

cation or end user.

SNA (System Network Architecture) is IBM's network
description for communicating between multiple IBM (and IBM
compatible) systems. It is organized into seven layers: the
Link Layer, which corresponds to 0SI's physical layer; the
Date Link Control Layer, which corresponds to 0SI's data
link layer; the Path Control Layer, which corresponds to
08I's network and transport layers; the Transmission Control
and Data Flow Control Layerz which correspond to O0SI's
session layer; the Presentation Services Layer which corres=-
ponds to 0SI's presentation layer; and the End User Layer,
whieh corresponds to 08SI's application layer. This protocol
would reside in the End User Layer of SNA.

Ethernet 1s a Local Area Network specificationl[15]
supported by Xerox, DEC, and Intel. It 1s generally des-
cribed as a layered architecture along the lines of 0SI but
only the layers corresponding to 0SI's physical and data
link layers have been standardized. The other layers are
vendor dependent. This protocol would reside in these upper
layers.

This protocol provides complete file management facil=
ities for a user on the network. The protocol supports
record oriented functions, file oriented funections, catalog
oriented functions, utility functions and user oriented
functions. The protocol supports these functions for disec,

tape and printer operations. Cross device operations are

also supported. Access rights and concurrency control are
included within the protocol. The functions described in
this paper were complied through a survey of the following
sources: CP/M(Control Program/Monitor)[12], an operating
system for micro computers from Digital Resource Corp.;
UNIX[9,10,11], an operating system for micro and mini compu-
ters from AT&T(Bell Labs); IMOS[13] an operating system for
mini computers from NCR; VSAM(Virtual Storage Access Met-
hod)[1,2], a file management system for mainframe computers
from IBM; ANSI(American National Standards Institute)
COBOLI[3], a programming language with complete file manage-
ment facilities; and ISO0's File Transfer, Access and Manage-~
ment Application Layer protocol for 0SI[5,6,7,81.

The supported file functions ineludg: select and de=
select, which cause a file to be chosen and released; open
and close, which ready a file for processing and shut it
down; and copy and concatenate, which cause files to be
duplicated and combined. The record functions include:
read, which causes a record to be transferred froma file to
memory; write, which causes a new record to be transferred
from memory to a file; rewrite, which causes a record to be
replaced in a file; position, which moves the point of
referance within a file; and lock and unlock, which provide
concurrency protection. The catal&g functions include con=

figure catalog and query catalogs which allow the user to

change file catalogs and retreive information about files.
The utility functions 1include: server attach and server
detach, which establish and release a session with the
server; back=up, archive and restore,; which allow files to
be saved and restored from magnetic tape; de-spool, which
allowa stored print files to be printed; media-initialize,
which allows fresh removable media suc¢ch as magnetic tape or
floppy dises to be readied for processing; and server-
configure, and server-query, which allow the user to change
and inquire about the characteristics of the server, The
user functions include: sign-on and sign=-off, which identify
the user to the server; and user-configure and user~-query;
which allow the user to change and inquire abdbout his own
characteristics as the server sees then.

A list of attributes describe the server and each user
and catalog associated with the server. An example of a
server attribute is the server's free space, which indicates
how much storage is still available on the server. An
example of a user attribute is the user password, which
provides a security check when the user signs on. An
example of a catalog attribute is the creation time, whiqh
identifies the date and time the catalog was created. These
attributes are accessible for change or viewing via the
configure and query commands for the server, user and

catalog.

This paper contains four sections. This introduction
section is followed by a section on concepts, a section on
logical formats and a section containing an example physical
format.

The c¢oncepts section contains a discussion of the
various concepts around which this paper, the protocol and
the functionalism are built and an example of how it would
be used in an application. Some of the concepts that are
covered are: the server, users of the server, flow of
inter-machine communication, status, commands, messages and
fields, use of attributes, catalogs, access methods, con-
currency control, access rights, division of protocol des-
eription into logical and physical parta, and ocpen ended
physical formats.

The logical formats section describes all logical parts
of the protocol. This section includes a description of
message headers, the logical foruats of the various com=-
mands, a summary of the functionalism of each command, and a
description of the parameters used by the commands. It also
includes a description of the attributes that may be asso-
ciated with servers, catalogs and users, and a list of

possible return status.

The physical formats section describes a possible phys=-
ical implementation for a typical network. It includes a
description of the physical represéntation of messages and
fields and 1lists of the physical values assigned to fields

and attributes.

2.0 CONCEPTS
2.1 APPLICATION EXAMPLE

Throughout this section a computerized calendar appli-
cation will be used as an example for showing how the proto=-
col concepts may be applied. The application consists of a
set of programs and files that interact with a set of users
allowing them to set up meetings, appointments and remin-

ders, and display or print schedules on a daily or weekly

basis.

JOOMS CATALOG USERS CATALOG

] | | |

! SP 101 ==>] ! Dr. James }==>]

| FA 207 =>11 | Dr. Foy J=>11

1 CH 300 I>111 1 Dr, Smith (>}

il P11

| il] L}
! | —1 (. —_— 1
| v v 1 v v
| EA 207 SP_101 | Dr. Foy Dr. Jampes
; N i A ¥ : 4 1 !
i |
v v .
CH 300 Dr, Smith
| 8:00 8:59 Chem Dept | | 8:00 8:59 Dept Mtg CH 300}
| 9:00 9:59 Alumni Assol }] 9:10 9:29 H Rodgers Office|
110:00 10:29 Chess Club | 110:00 10:09 Call Home Officel
113:30 14:29 Budgets ! 113:30 14:29 Budgets CH 300!

415:00 15:59 Math Dept | 119:15 19:44 B McGpraw Officel

CALENDAR APPLICATION - APPLICATION FILES
FIGURE 2-1

A central catalog contains the user's names. Another
contains a list of meeting roomé. Each user has a c¢corres=-
ponding file that contains his schedule. Each room has a
corresponding file associated with it., Both these files are
indexed files. The records contain a description of a time
slot with the record key being the date and starting time of
a scheduled event.

For the purpose of this paper, it will be assumed that
this calendar application is implemented on a network with
the files at one location (called the server) and the
programs run from many locations (such as personal computers

in the users' offices).

%ﬁ&:ﬁiﬁnf %£J‘J£m§?
/i_£4_£4_l\ /J.E;.E;.l\
FILES |]
] | | !
| E { | !
| R ! l LAN |
| v i | !
| E | | |
! | ! !
/ \ L \
Dr. Foy Pr, Smith

CALENDAR NETWORK
FIGURE 2-2

2.2 THE SERVER

The protocol defined by this paper is for a multi-
computer network such as our example in figure 2-2. When
combined with appropriate lower level protocols such as
those defined by ETHERNET[15] or OSI[4] this protocol will
allow entities associated with computers on the network such
as the calendar programs to control and access. files in

other computers on the network. See figure 2-3,.

| OPERATING | | OPERATING |

| SYSTEM | | SYSTEM |
/ A\ I FILE i (v \

] LOCAL {_lI |APPLI~|<=-ACCESS~->|SERVER! |_| LOCAL |} .

! FILES | | {CATION| PROTOCOL }APPLI-} | | FILES |
N / L H] JCATIOR! L \ /

! ! |

LAYERS ! LOWER | LAYERS |

]

!

|
|
| 1T06 I<-=LEVEL->! 1 TO 6
| | PROTOCOLS]
I !
4 _COMMUNICATIONS LINE |

PROTOCOL ENVIRONMENT
FIGURE 2-3
Whether these entities use this protocol directly or
indirectly through translation of the computer's normal file
management functions is beyond the scope of this paper.
However, some mechanism will exist on that computer that

will drive the protocol.

The computer thét controls the files contains an entity .
that handles requests. This entity is referred to as the
server. Whether the server is a special application or a
utility for handling these requests or an integrated part of
the operating system, 1s agaln beyond the scope of this
paper.

This protocol, then, defines the conversation between
requesting entities and the servers across the network. It
can also be used to normalize the differences between file

management systems of different computers.

2.3 USERS OF THE SERVER

The users of the server are divided into three classes:
Systems; Requestors and Users,. These are directly
associated with information the server uses to fulfill
requests made upon it. The information is location, concur-
rency control and aceess control.

The System (i.e. host, application processor or intel-
ligent terminal) is the location on the network that
requests to the server are coming from. It may provide
requests for a single requestor/end-user combination, or
for multiple requestors and multiple end-users, or for
everything in between. In our calendar example, a system is

one of the personal computers in the professors! offices.

10

It provides requests for the program running in the personal
computer and the person running the program.

The Requestor signifies the unit of concurrency for the
host system. Each requestor from a system will signify a
concurrent thread for that system. Regquestors may be
associated with a job, program, process, or task., There may
even be conly one requestor per host system on some uni-
processing systems. In our example, the Requestor is the
program running in the personal computer and accessing the
calendar files.

The User is the entity that has access rights to ob-
jects in the server. Objects include files, catalogs, and
server functions. Access rights include read, write, modi=-
fy, delete and execute, The user has an optional password
associated with it and may have other passwords signifying
permission to use an access right/object combination. With-
in the system the user may be & terminal operator, a program
submitter, a program or a system process. In the calendar
example, the user is the professor who is currently running
the calendar application. No matter what office and what
personal computer he or she runs on, that professor is
always considered the same user and has the same access

rights.

11

2.4 FLOW OF INTER-MACHINE .COMMUNICATION

The requestors and servers communicate with each other
as peers. In order to perform a file management function,
the communications between them must be orderly and
reliable. This requires that this protocol must be defined

as an end to end protocol [14,16].

(Request-Data=to~Follow) ==e=e=>

Request-Complete @ = = c=cea -2

{mmmmn= (Intermediate-Response)
(Inquiry-Request) = | ==ec=a ->
{Suspend-Request) ——————)

(emmmw= (Intermediate-Response~

w/Suspension)

({Continue~Request) = = = =ec=a- ->
(Cancel-Request) —m———D

mmmmm= Final-Response

END TO END PROTOCOL DEFINITION
FIGURE 2-4
An end to end protocol between the requestor aﬁd the
server is a seriass of requests and replies. The requests
and replies are implemented as a series of messages sent
from the requestor to the server and vice versa. Each

request with response or responses and any later request-

12

follow up for the request is identified by a unique number
for that requestor on the system. Figure 2-% shows the
possible request messages and response messages that can be
contained in a series. Optional messages are in paren-
theses.

Any number of "Request=-Data-to-Follow" messages may
precede the "Request-Complete™ message. The other optional
messages may occur at any time between the "Request-
Complete™ and the "Final-Response™ except the "Continue-
Request" can only occur after an "Intermediate-Response-

w/Suspension”.

2.5 MESSAGES AND FIELDS

A message is the implementation of a request or reply.
It contains the information that is passed back and forth
between requestor and server. The request from the reques-~
tor may be for reading a record in a file. The reply from
the server would be the data in the record. The message
consists of a group of fields, some of which make up the
envelope of the message while other fields make up the body
of the message. The envelope fields contain control infor-
mation that is implemented in lower level protocols in
layered protoccls,

Each field contains a logically different part of the

13

information in a message. Fields may be implemented as an
offset into the message or via a separator or via an identi-
fier. Some of the types of information that may be con-
tained in fields are: message identifiers, command types,
command paramaters, status and response data. Fields are
also used in this paper to implement attributes. For field
definitions see the message header, common field descrip=-

tions, and attribute descriptions sections of this paper.
2.6 STATUS FIELDS

Status fields are part of every response message.
Multiple status are allowable, There are three types of
status: Intermediate, Suspension, and Final. Only inter-
mediate status are allowed in an intermediate response.
Intermediate status may be included in an intermediate res-
ponse with suspension and a final response. At least one
suspension status must be included in an intermediate res-
ponse with suspension and at least one final status must be

included in a final response,
2.7 COMMANDS

A command tells the server what the requestor wishes
the server to do. An example of a2 command is a request to
read a record of a file. The command set described in this

paper was chosen to provide functionality with a varilety of

14

existing file systems. These range from primitive file
systems such as provided by the personal computer operation
system CP/M[12] to sophisticated file systems such as
VSAM[1]. A special emphasis is pléced on the requirements
for the standard COBOL language[3] as it containes a sophis=-
ticated file access description for a widely used language.
Other commands were selected to provide support for a dis=-
tributed processing environment such as is described by
0SI[4] (Open System Interconnection). Commands to address
the problems of individual files distributed physically
across the network and coordinating the updates of these
distributed files are not included as these problems are

beyond the scope of this paper.
2.8 USE OF ATTRIBUTES

While parameters of commands allow the manipulation of
object characteristica, there is a need for some of these
characteristies to span the scope of individual commands.
This need is fulfilled by the attribute concept. Attributes
are characteristics of objects that are more permanent than
the scope of one command such as the creation date of a
file. The objects that have attributes defined in this
paper are: servers, users, catalogs and files. Attributes
are global, permanent fields within the scope of the server.

They are set by or during one command and used by or during

15

another. Some attributes are only set by the server impli-
¢itly. They are read only attributes. Other attributes may
be modified under certain conditions. A special set of
commands is provided to view attributes and to explicitly
add, change and delete them. These are the query and

configure commands.
2.9 CATALOGS

Catalogs contain lists of files. This allows the
requestor to group logically related files together. A
catalog is implemented as a file itself as required by
UNIX[9]. This allows catalogs to be organized in hierar-
chies. A current catalog is kept for each user of the
server, Each server has a unique catalog that is the root

of the hierarchy for that server.
2.10 ACCESS METEODS

An access method is a logical appqoach used for reading
and writing files. The protocol defined by this paper
supports four access methods.

The simplest access method is the sequential access
method. It is required by the most basic operating systems
such as CP/M[12] and by file transfer protocols such as the
one defined by 0SI[5], In the sequential access method,

access starts with the first record of the file and proceeds

16

in sequential order to the last record of the file. The
server keeps track of the current record.

& variation of the Sequential access method 1s the FIFO
{(first in, first out) access method. This method is used by
UNIX[10] to implement its standard I/0. In the FIF(C access
method, reads are always from the beginning of the file and
include a delete of the record. Writes are always to the
end of the file. Files accessed via the FIFO access method
may be used as queues and may be used effectivly to coordi-
nate processes in different systems that have access to the
server.

The random access method is a more sophisticated access
metﬁod. It is also required by basic operating systems such
as CP/M[12]. 1In the random access method, records may be
accessed in any order. Records are accessed by record
number or by a record key (which may be indexed).

The dynamic access method is a combination of the
sequential and random access methods., It is required by
ANSI COBOL[3] and by sophisticated operating systems such as
IMOS[13] and VSAMI[1]. In the dynamic access method, records
may be accessed in any order by key as the random access
method or a record may be located by key via a position
command and then records may be accessed sequentialy as in

the sequential access method.

17

2.11 SEPARATION OF LOGICAL AND PHYSICAL DESCRIPTIONS

In this paper, the description of the logical aspects
of the protocol are seperated from the physical description
of the protocol. The logical description of the messages,
commands, parameters, attributes ete. without committing te
how they are implemented in terms of bits and bytes. The
physical description takes the logical description and shows
how it is to be implemented in bits and bytes. This sepera-
tion of logical and physical description allows one logical-
ly distinect protocol to be implemented in different physical
envirionments in a manner efficient to the environment. If
these physically different implementations are required to
communicate with each other, translation can achieved in a
presentation layer such as O0SI layer six[4]. This transla=-
tion 1s eased by the fact that the implementations are based

on the same logical definition.

2.12 OPEN-ENDED PHYSICAL FORMATS

An open-ended physical format provides for the future
inclusion of new commands, new fields and new attributes.
One example of an open-ended physical format is a parsable
free format as will be used in this paper. This allows
smooth migration from release to release and the sharing of

a common interface among hosts of different cpabilities.

18

2.13 APPLICATION WALKTHROUGH

In order to illustrate how this protocol works, we will
use a possible program from the calendar application. This
program would allow a user to add a reminder to his
calendar, An example flow for the program 1s shown in
figure 2-5. The highlighted steps require access to the
server. It is assumed that the system (personal computer)
that the program is running on is already attached to the
server.

In the first highlighted step(1), the users id (name)
and access password ia passed to the server in a user sign
on command as a request-complete message. The good status
is returned (assuming the user and password are valid) in a
final response message. In this step a concurrency thread
for the program as a requestor is established in the server.
In all following steps the command will be passed in a
request-complete message and the status returned in a final
response message.

In (2), the catalog is readied for use as an indexed
file via an open command. If the catalog is available a
good status will be returned. In (3), catalog is searched
for the user's file via a read command with the user's name
as the index key. If the record is found, a good status is
returned along with the record data inm a final response

message. An intermediate response of record unavailable at

19

this time might be returned first if another requestor 1is
using the record. In (4), the catalog is released via a
close command.

In (5), the user file is opened as an index file much
like the catalog was opened in (2). In (6), a read command
is sent to the server. 1In this read, the index key is the
time and date but the search is made for a matech or the
record with the next earliest time. The start and stop
times in this record can be compared with the event time to
see if there is a conflict. If there is no earlier event a
beginning of file intermediate status would be sent along
with the record not found final status. Both would be sent
in a final response message. In (7), the command to write a
record might be sent in a regquest-data to follow message,
with the record data sent in a request-complete message.
In (8), the server is told that the user file is no longer
needed for processing.

In (9), the server is told via a user sign off command
that the user will no longer access the server via this
program. This program's concurrency thread on the server is

then relinquished.

20

START PROGRAM
GET USE;'S NAME
GET USER'; PASSWORD
SIGN USER ;! TO SERVER(1)
OPER CLTLL;G OF USERS(2)
READ USER'S E;TRY IN CATALOG(3)
v

DOES ENTRY EXIST? => NO mecemcccmccmmeece- >
v YES |
CLOSE CATALOG OF USERS(H) v

v SAY INVALID USER
OPEN USER FILE(5)

- GET DATE FOR REMINDER *
| v !
! GET TIME FOR REMINDER H
| v |
| GET EVYENT TO BE REMINDED OF |
| v |
! READ USERS FILE FOR EVENT |
! AT OR PROCEEDING REMINDER TIME(6) |
| v H
| IS THERE AN EXISTING EVENT? => NOwwewa>| |
] v YES v |
! NOTIFY USER OF CONFLICT WRITE REMINDER |
YES v INTO FILE(7) |
“¢{=- ASK IF EVENT TO BE RESCHEDULED? | |
! NO v !

|

|

ASK IF MORE REMINDERS TO BE SCHEDULED? => YES ===>
CLOSE U;E§0FILB(8)
SIGN USER OFF OF SERVER(S) 7T
END OFvPROGRAH

B i e i, e e i . e e e i s . it b’

EXAMPLE PROGRAM FLOW
FIGURE 2-5

21

3.0 LOGICAL FORMATS
3.1 TERMINOLOGY

In describing the logical formats the following conven=-
tions are used:

[] signifies an optional field

(}) signifies an either/or situation

{ } signifies one or more instances may occur
The commands are expressed in the following format:

Command (Input fields){(Qutput fields)
3.2 MESSAGE HEADER

All messages, no matter what low level protocols they
are built on, must contain certain information. This infor-
mation may be physically in the lower level protocols or in
the message header itself. For the purpose of this paper,
the required information will be specified as the message

header.

Logical Format
Host=-1id Requestor-id Message-Number Message-Flag

[Command~Type] [Message-Datal

22

Field Descriptions

Host=id: A unique identifier of the processor that sent
the message.

Requestor-id: A unique identifier per host-id of the
requestor that sent the message. The granularity
of the requestor (host, end-user, program,
process, task) is host dependent.

Message-Number: A unique identifier per requestor to
identify a unique request and its reponse,

Message-Flag: Message flag identifies the direction and
purpose of the message. It may assume the
following values:

Request~Complete: This value signifies a compléte
request message or the last of a series of
messages making up a request.

Request-Data-to=-follow: This value signifier a
request message that is not the last message.

Inquiry-Request: The inquiry requests the status
of a previous request. It uses the same
message number as that request.

Cancel-Request: The cancel requests processing to
stop on a previous request., It uses the same

message number as that request.

23

Suspend=Request: The suspend requests processing
to stop on a previous request until a Continue
request is sent.

Continue=-Request: The continue requests processing
to continue on a message that was suspended by
the server or the requestor.

Intermediate~Response: This response returns a
status and implies that the service requested
is continuing.

Intermediate-Response-w/suspension: This response
returns a status and implies that the service
requested will remain suspended until the
requestor sends a continue.

Final-Response: This response returns a status and
implies that the service requested 1is
finished.

Command-Type: The command type 1is valid only on the
initial request message. The command section will
contain the different commands.

Message-data: The message data contains all other
fields. This inc¢ludes command parameters, status

and response data.

24

343 LOGICAﬁ COMMAND FORMAT

3.3.1 FILE COMMANDS

Select

([User-Instance] File-Name [Select-Typel [File-
Typel] [File-Password] [Allocation] ([Organization]
[Rec=Type) [Exp~date] [Max-Rec-Sizel [{[Key=-1d]
Key-Position Key-Lengthl] [Reference-Rights]

[Select-Rights]) (Status File-Instance)

Print-Select [User-Instance] (Queue | Printer-Type) [Media-

Namel) (Status File-Instance)

De-Select (File-Instance [Delete-Flagl]) (Status)

De-Select-411 () (Status)

Open

Close

Position

Read

(File-Inséance [Select-Typel] [File~Typel [File-
Password] [Organization] [Rec-Typel [Exp=-Datel
[Max-Rec-Size] [{[Key-1id] Key-Position Key-
Length}] [Reference-Rights] [Select-Rights] [Open-
Typel [Share-Model [Access-Model) (Status)
(File-Instance) {Status)

(File-~Instance ([Key-id] Record-Key [Match-Key-
Condition] | Record-Number) [Directionl]) (Status
[Record-Key | Record-Number])

(File-Instance [[Key-id] Record-Key | Record-
Number] [No-Records | Blocking-Sizel) (Status
{Record-Length Record-Content} [Record-Key |

Record-Number])

25

Write (File-Instance [[Key-id] Record-Key | Record-
Number] [No-Records] {Record-Length Record-
Content}) (Status [Record-Key! Record-Number])

Rewrite (File-Instance [[Key-id] Record-Key | Reoord-
Number] Record-Length Record-Content) (Status)

Delete (File~Instance [[Key-id] Record-Key | Record-
Number] [No-Records]) (Status [Record-Key |
Record-Number])

Lock (File-Instance [[Key-id] Record-Key | Record-
Number] Lock-Type) (Status)

Unlock (File-Instance [[Key-id] Record-Key | Record-
Number]) (Status)

Unlock-All (File-Instance) (Status)

3.3.2 USER COMMANDS

Dser-Sign-on (User-id [User-Passwordl]) (Status User-
Instance)

User-Sign-off (User-Instance) (Status)

User-Configure (User-Instance {Action Object Valuel)
(Status)

User-Query (User-Instance {Object} [Output-File-Name [File;

Password]]) (Status [{Object Valuel}l)

26

3.3.3 CATALOG COMMANDS

Catalog-Configure ([User-Instance] Catalog-Name [Catalog-
Password] File-Name [File-Passwordl] {Action
(Object Value)}) (Status)

Catalog=-Query ([User-Instancel] Catalog-Name [Catalog-
Password] {File-Name [File-Password] {Objectl}}
(Output-File-Name [File-Passwordl]) (Status

[{File-Name {Object Valuell}l])
3.3.4% UTILITY COMMANDS

Copy ([User-Instance] Destination-File-Name [File-
Password] Source=-File-Name [File-Password]
[Different]) (Status)

Back-Up=-File ([User-Instance] {(File-Name [File-Password]}
(Tape-Name | Tape-id)) (Status)

Restore-File ([User-Instance] {File-Name [File-Password]}
(Tape-Name | Tape-id)) (Status)

Despool-File ([User~Instance] {File-Name [File-Passwordl
[Media-Namel]} (Queue | Printer-Type)) (Status)

Media-Initialize ([User-Instance] Device-id Media-Format
Media~Name [Media-Text]) (Status)

Server-Configure ([User-Instancel] {Action Object Valuel})
(status)

Server-Query ([User-Instance] {Object} [Output-File-Name

[File~Prsswordl]l) (Status [{Object Valuell)

27

Acrhive ([User-Instance] File-Name [File-Password] [Tape~-
Name | Tape-id) (Status)
Attach {[System=Password]) (Status)

Detach () (Status)

28

3.4 COMMAND SUMMARIES

3.4.1 FILE COMMANDS

Select

This command fulfills the requirement of O0SI file

protocols([6] and operating system JCLs[2,13] of

ecreating a relationship between the user and a

file. Selecting a file readies it for subsequent
open and record access, Access rights checking
takes place at this time. The file is checked and
protected with regards to simultaneous access at
this time. Creation parameters may be supplied at
this time or at "open" time. A unique "file in-
stance™ is returned to identify this usage of the
file by this "user". This identifier must be used

for subsequent calls for this instance.

Print-Select

This command 1s a special case of select that
provides printer support. A print select creates
a printer type file which is automatically routed
to the specified print "queue"™ or "printer type"
which must be assigned to a queue. Optionally a
"media name" may be specified. This is the name
of the speclal form to bz mounted while this file
prints. A unique "file instance" is returned to

identify this usage of the file by this "user".

29

This identifier must be used for subsequent calls

for this instance.

De=Select This command fulfills the requirement of 0SI file

protocols[6)] and operating system JCLs[2,13] of
removing a relationship between the user and a
file. De-selecting destroys a "file instance" and
all concurrency controls associated with it. The
physical file may be deleted at this time, if

security allows, via use of the "delete flag“.

De-Select=-A11

Open

Close

All selected files for a requestor may be de-
assigned via this command. Deletion is not
alléwed.

This command fulfills a requirement common to
operating systems[1,11,12,13], network file proto-
cols{6] and ANSI COBOL[3]. Opening a particular
"file instance®™ readies it for record access. The
access mode, I/0O type, and share mode if applic=-
able are specified at this time.

This command fulfills a requirement common to
operating systems[1,11,12,13], network file péoto-
cols[6] and ANSI COBOLI[3]. When a particular
"file instance™ 13 closed, that instance is no
longer available for record access. All record

resources for the instance are released.

30

Pesition

Read

Write

This command provides the functionality provided
by the COBOL[3] start, VSAM[1] point and UNIX[11]
seek commands. A position is used to position a
dynamically accessed "file instance™ prior to
sequential access and specify direction of that
access. The "file instance™ may be positioned at,
before, or after a particular record depending on
file type.

This command fulfills a requirement common to
operating systems[1,11,12,13], network file proto-
cols[6] and ANSI COBOL[3]. A read operation on a
file returns the content of a particular record
and optionally the contents of a specified number
of records following that record. In the dynamie
or sequential mode, if no particular record 1is
specified the record content will be for the next
or last sequential record(s) depending on speci-
fied direction.

This command fulfills a requirement common to
operating systems[1,11,12,13], network file proto-
cols[6] and ANSI COBOL[3]. A write operation on a
file places the specified record content into a
previously non=-existing record or set of records.
In the dynamic¢ or sequential mode for non-sequen-
tial files, if no particular record is specified,

31

Rewrite

Delete

Lock

Unlock

the record content will be placed after the last
or next existing record found sequentially from
the current position depending on direction.

This command fulfills a requirement common to
operating systems[1,11,12,13], and ANSI COBOL[31.
A rewrite operation on a file places the specified
record content into a previously existing record.
If no particular record is specified the record
content will be placed in the current record.

This command fulfills a requirement common to
operating systems[1,11,13], and ANSI COBOLI[3]. A
delete operation on a file makes the specified
record(s) non-existent. If no particular record
is specified, the current record(s) is made non-
existent. Records in a file opened as FIFQC may
not be deleted.

This command provides user controlled concurrency
control. A specified record may be locked using a
"lock-type" of either exclusive or shared. If no
particular record is specified, the current record
is locked.

This command provides user controlled concurrency
control. The lock on the specified record is
released. If no particular record is specified

the current record is unlocked.

32

Unlock-All
This command provides user controlled concurrency
control, All records for the requestor on the
specified file are unlocked. If no file is speci-
fied, all record locks on all files for this

requestor are released.

3.4.2 USER COMMANDS

User-Sign-0On
This command provides for multiple users accessing
the server simultaneously. The sign on function
allows the end user to identify himself to the
server for security checks. After the user is
signed on, his "user instance"™ can be used with
other commands to c¢lear security checks.

User=-Sign-0ff
This command provides for multiple users accessing
the server simultaneously. After a user signs
off, his "user instance®™ is no longer valid in
security checks.

User-Configure
This command provides for control of multiple
users. Defaults and Options for a user may be
changed via a configure c¢ommand. An "“action®

(e.g. add, delete, change) is performed on one of

33

the user's "objects®" (e.g. password) given a
"yvalue".

User-Query
This command provides for control of multiple
users. The "value"(s) of specified user's "ob-
jeet"(s) may be obtained via query. The
"value™(s) may optionally be placed in a specified

file.
3.4,3 CATALOG COMMANDS

Cat-Configure
This command supports the catalog concept support=-
ed by UNIX[11] and the virtual filestore concept
of 0SI file protocqls[ﬁ]. Information about the
files contained in a catalog may be added, changed
or deleted via a configure command. This ineludes
adding and deleting files themselves. An "action™
(e.g. add) is performed on one of the catalog
"objects" (e.g. exp-date) given a "value". Some
operations can be performed only in specific cir-
cumstances., See Catalog Attributes for specifics.

Catalog-Query
This command supports the catalog concept support-
ed by UNIX[11] and the virtual filestore concept

of OSI file protocols[6]. Information about the

34

files contained in a catalog may be retrieved vis
a query command. The "value"(s) of specified
catalog "object"(s) may be obtained via query.
The "value™(s) may optionally be placed in a

specified file.
3.4.4 UTILITY COMMANDS

Copy This command fulfills a requirement commecn to
operating systems[2,10,12,13]. The copy creates a
copy of the source file in the destination file.
If "different®™ is specified the destination will
be placed on a different physical unit, if pos=
sible. "Don't care®™ characters are valid in the
file name(s).

Back-Up=File
This command fulfills a requirement common to
operating systems[2,10,12,13]. The specified file
is copied to the specified tape. If a catalog
file is specified, all files in that catalog will
be backed up. "Don't care®™ characters are valid
in the file name(s).

Restore<File |
This command fulfills a requirement common to
operating systems(2,10,12,13]. The specified file

is restored from the specified tape. If a catalcg

35

was backed up, all files will be restored. "Don't
care"™ characters are valid in the file name(s).
Despool=File
This command fulfills a requirement common to
operating systems[10]. The specified file is
routed to the printer queue or printer type speci=-
fied. Optionally a media name, signifying the
form to be used while printing, may be specified.
Only files with a "file type" of "Printer™ may be
selected. "don't care" characters are valid in
the file name(s).
Media-Initialization
Thié command fulfills a requirement common to
operating systems[10,13]. The removable media on
the specified device is initialized in the speci-
fied "media format™ with the specified "media
name™ and the optional "media text".
Server-Configure
This command supports the concept of server attri-
butes. The server's configuration, defaults and
options may be modified. An "action" is performed
on one of the system "objects"™ with a given
"yvalue"™. The "object"™ may optionally be protected

with a password.

36

Server=Query

Archive

Attach

Detach

This command supports the concept of server attri-
butes. The "value"(s) of specified system "ob-
jJect"(8) may be obtained via query. The
"value™(s) may be placed in a specified file,
This command fulfills a requirement common to
operating systems[10,12]. All files in the given
catalog that have an archive attribute and have
been changed since the last archive of that cata-
log will be backed up. If no tape is specified
the tape specified as the catalog's attribute will
be used. "file name™ must be a catalog file.

This command provides the connect functionality of
0SI file protocols[8]. The first access from a
system must by an attach.

This command provides the dis-connect function=-
ality of O0SI file protocols[8]. After a system
detaches, no more requests from that system will

be recognized.

37

3.5 COMMON FIELD DESCRIPTIONS

Access~Mode This field specifies the kind of access which
a requesting program will use. Valid values
are:

Sequential - Records to be accessed in
crder

Random - Records to be accessed by
a key or record number

Dynamic - Records to be accessed eilther
in order or by a key or
record number (default)

FIFO - Records to be read and
deleted from the beginning of
the file and written to the
end of the file

Action This field describes the kind of operation to
be performed in a configure command. Valid
values are:

Add Delete Change

Allocation This field designates a file's original
allocation size in bytes. It may be set in a
new file at or before the first open of the
file. If this field is not specified, no
space will be allocated to the file until the

first write.

38

Blocking=Size

Catalog-Name

This field contains the maximum number of
bytes that may be used to contain logically
sequential complete records starting with the
one specified in the request.

This field is a special case of "File-Name"

that applies to a catalog. See "File-Name",

Catalog~-Password

Delete-Flag

This field contains the password that allows
the current user to access the specified
catalog.

The presence of this flag in the de-select
command indicates that the file should be
deleted. The flag is ignored if the file is

selected by other users.

Destination=-File-Name

Device~id

Different

This field describes a file to be used as a
destinatien in an operation that requires
source and destinationm files. See "File-
Name".

This field contains a logical identifier for
a phy=ical devine.

The presence of this field specifies that the
destination file be placed on a different

physical unit from the source.

39

Direction

Exp=Date

File~-Instance

File-Name

File-Password

File~Type

This field specifies whether the file is to
be accessed in the forward or backward
direction for subsequent sequential access,
Valid values are:

Forward Backwards
This field contains the date on which this
file becomes invalid and automatically
deleted. Absence of a date means automatic
deletion will not occur.
This field 1s a unique identifier of a
particular instance of a file. It is used to
1dehtify what flle instance a particular
operation is to be performed on.
This field contains the full path file name
from the current catalog or one of its
ancestors to the file. The catalog names and
the file name are all separated from each
other by the name separator. (See HXX-Name-
Separator in the server attributes section.)
This fleld contains the password that allows
the current user to access the specified
file.
This field is used to define file types that
require special handling. Valid values are:

Normal(default) Spool Catalog

ko

Key-id This field contains a unique identifier for
eath key in a multi-key index file. It is
used only in multi-key index files,

Key-Length This field is used with indexed files. It
specifies the length of the key in bytes.

Key-Position This field defines the position (relative to
zero) within a data record where the key
begins.

Lock~Type This field indicates whether a lock is shared
or exclusive. Items locked as shared may
have multiple owners, Items locked as
exclusive may have only one owner. VYalid
values are:

Shared Exclusive

Match-Key-Condition

This field is used to position a data file or
catalog. The file 1s searched until the
following condition is true: "Primary Key"
"Match-Key-Condition®™ "Match Key" where
"Primary Key" is the portion of the record
that identifies it and "Match EKey"™ is the
record key, record number or file name. The
valid values are:

Equal Greater-Than Not=-Less=Than

b1

Max-Record-Size

Media-Format

.Hedia-Name

Media-Text

No=-Records

Objeat

This field specifies, in bytes, the actual
record length for fixed length records and
the maximum record length for variable length
records,

This field specifies what format ¢the
removable media at the specified location
should be initialized at.

This field specifies the identifier for the
removable media of the special print form.
This field specifies what text should be
placed in the media header. The exact
contents depend on what fornﬁt the media was
initialized with.

This field indicates the number of additional
logically sequential records that are to be
included in the request.

This field describes what an "action®™ in a
configure command will be performed upon}
The "objects"™ are attributes of the systemnm
and users. Valid "objects"™ are described in
the user attributes, catalog attributes and

server attributes sections.

52

Open=Type - This field describes the kind of capability

requested for an opened file. Valid values

are:

Input - Pile to be opened for input
only (default - new files)

Output = File to be opened for output
only

I/0 - File to be opened for input
and output (default - old
files)

Extend - Records to be added to the

end of the file

'Organization This field describes a file's internal
organization, as viewed by the requestor.
Valid values are:

Sequential Relative (default) Indexed

Output-File-Name
This field describes a file in which the
information from the server is to be
contained. See "File-Name".

Printer=Type This field describes a usér defined, generic
printer type to be used to pick a printer for
file despocling. Each "Printer~Type"™ is
associated with a queue. "Printer-Type™s are

assigned via "Server=Configure"™ command.

43

Queue

Rec=Type

Record-Content

Record=-Key

Record-Length

Record=Number

Thiﬁ field specifies a server print queue.
This field indicates whether a file's data
records are fixed or variable in length.
Valid values are:
FPixed-Length-Records (default)
Variable-Length=Records
This field contains the contents of a record.
This field is used in record I/0 messages to
identify the current or desired position
within a file. It contains the key value of
a record in an indexed or catalog file. For
random I/0 requests, it represents the key of
the deaired record. For sequential read
responses, it represents the key of the
record read. For position responses and
certain falled responses, it specifies the
current position of the file as seen by the
server.,
This field contains the length of the
"Record-Content™ field.
This field is used in record I/0 messages to
identify the current or desired position

within a file. It contains the relative

by

record number for files with relative
organization, For usage see description of
"Record-Key".
Reference-Rights
This field specifies the degree of file
interlocking for this file instanace. Valid
values are:
Exclusive - only one accessor at a
time. (default)
Shared - multiple accessors reading
and writing the file.
Read-only - multiple acecessors only
reading the file.
Select-Rights This field specifies the selection access
rights accorded to other users of a file by
the owner of thewrile. Valid values are:
Sharable - This file can be selected by
other users. (default)
Private - This file can be selected
only by the owner.
Select-Type This field specifies the manner in which a
file is to be used. Valid values are:
New - The file is to be created.

It must not already exist.

45

01d -~ The file must already exist.
(default)
Replace - The file is to be created.
If it already exists it will
be deleted first.
Guarantee - If the file does not exist,
1t will be created.
Share-Mode This field specifies what kind of locking is
to be performed. Valid values are:
Explieit - Lock requests come from
requestor (default)
Implicit - Locks supplied by server
Source-File-Name
This field describes a file to be used as a
source in an operation that requires source
and destination files. See "File-Name".
Status This field contains an intermediate or final
status in a response message. For\valid
values see separate status section.
System-Password
This field contains the password that allows
the requesting system to sign om to the
server.
Tape=id This field describes a "Device-id" that

applies to a tape. See M"Device-id",

46

Tape-Name

User-id

User~Instance

User-Password

Value

This fleld contains the name by which a tape
may be 1dentified; For tapes it 1is
synonymnous with "Media-Name". See "Media=-
Name®,

This field contains the information that
uniquely identifies an end user. The end
user may be a person, process, program, job
or system that has a8 set of attributes and
capabilities.

This field uniquely identifies an end
user/requestor combination that has cleared
security checks at sign on.

This field contains the password that allows

the specified user to access the server.

This field contains the contents of system or

user attributes as required by the configure
and query commands. For a list of attributes
and their values see the catalog attributes,
user attributes and server attributes

sections.

b7

3.6 ATTRIBUTE DESCRIPTIONS

3.6.1 CATALOG ATTRIBUTES

Name

File-Type

Allocation

Organization

Rec=Type

Exp-Date

Max-Reec-Size

This field contains the name of the file or
catalog described by this record. This name
is the name known within the parent catalog
and does not include ancestor catalog names.
See "File-Type"™ in command field descrip-
tions. This attribute may be modified only
if saize 13 equal td Zero.

See "Allocation" in command field descrip-
tions. This attribute may be modified only
if size is less than allocation.

See "Organization"™ in command field descrip-
tions. This attribute may be modified only
if size is equal to zero.

See "Rec-Type" in command field descriptions.
This attribute may be modified only if size
is equal to zero.

See "Exp-Date"™ in command field descriptions.
The format is YYMMDD where YY is year, MM is
month and DD is day.

See "Max-Rec-Size™ in command field deserip-
tions. This attribute may be modified only

if size i3 equal to zero.

48

Key=-id

Key-Position

Key-Length

Size

Data-Size

Index-Size

Creation=-Time

See “Key-iﬁ" in command fiéld descriptions,
This attribute may be modified only if size
is equal to zero. This field may have more
than one appearance.

See "Key-Position" in command field descrip-
tions. This field occurs once for every key
id. This attribute may be modified only if
size is equal to zero.

See "Key-Length" in command field descrip-
tions, This field occurs once for every key
id. This attribute may be modified only if
size 1s equal to zero.

This field contains the size of the.file in
bytes including index space and fill space
for inactive records. This 18 a read only
attribute.

This field contains the size of the active
data for this file in bytes. This is a read
6n1y attribute.

This field contains the size of all indexes
for this file in bytes. This is a read only
attribute.

This field contains the date and time that
the file was created. This is a read only

attribute, The format is YYMMDDhhmmss where

hg

YY¥ is year, MM is month, DD is day, hh 1is

hour, mm is minutes, ss i3 seconds.

Last-Use-Time This field contains the date and time that
the file was last accessed. This 1s a read
only attribute., For format see "Cpeation-
Time",.

Last-Mod-Time This field contains the date and time that
the file was last modified. This is a read
only attribute. For format see "Creation-
Time".

Last-Archive-Time
This field contains the date and time that
the file was last archived. This is a read
only attribute. For format see "Creation-
Time™,

No-Opens This field contains a count of the number of
times the file has been opened since
creation. This 1s a read only attribute.

Archive-Tape This field contains the tape name of this
default tape for archiving a catalog. This
is valid only for catalog entries,

Archive This field indicates whether the file is to

be archived. Valid values are:

True False

50

No=-Records

Deleted=Records

Owner

User-id

Read

This field contains a count of the number of
aotive records the file contains. This is a

read only attribute.

This field contains a count of the number of
deleted records the file contains. This is a
read only attribute.

This field contains the user id of the user
who owns this file. The creator in the
original owner. This attribute may be read
or modified only by the owner.

This field contains the user id of a user who
is allowed permission on this file. This
attribute may be read, added or modified only
by the owner. This field may have more than
one ;ceuranca.

This field indicates whether the associated
user may read the file. This attribute may
be added or modified only by the owner. It
occurs once for every user of the file and
may only be modified or added or read when
the associated user id is modified, added or
read. Valid values are:

True False

51

Write

Execute

Append

Password

3.6.2 SERVER AT

Server=-Identity

This field indicates whether the associated
user may write to the file. Valid values,
and usage are the same as for "Read",

This field indicates whether the associated
user may execute the file. Valid values, and
usage are the same as for "Read®,

This field indicates whether the associated
user may append additional reccords to the
file. Valid values, and usage are the same
as for "Read".

This field contains the password that allows
the associated user to access the file
according to the associated read, write,
append and execute permissions. It ocours
once for every user id and may be modified,
added or read when the associated user id is
medified, added or read. Itr may also be

modified by the user.

TRIBUTES

This field provides a unique identity for the

server.

52

No=Files

No-Open=Files

Total-Space

Free-Space

Password

Device~id

This field contains a count of the number of
files currently being managed by this server.
This 1s a read only attribute.

This field contains a count of the number of
files managed by this server that are
currently open. This is a read only
attribute.

This field contains the total capacity
available from this server excluding
removable media. "This is a read only
attribute.

This field contains a count of the number of
bytes of free space available from this
server excluding removable media. This is a
read only attribute.

This field contains the password that allows
systems to attach t§ the server.

This field contains a unique identifier for
each peripheral on the server, This field

may occur multiple times.

53

DXX-Type This field contains the type of device that
device "XX" is. Valid values are:
Sequential-Output-Device (Printer)
Sequential-Device (Tape)
Fixed-Random-Device (Disk)
Removable-Random-Device (disk)
DXX-State This field describes the current state of
device "XXIV, This is a read only field.
Valid values are:
Ready
Not=-Ready
Empty (Removable media only)
Unknown
DXX~-Media-Name This field is valid for removable media and
printers only. It contalins the name of the
media or form currently on device "XIX",
DXX-No-I/0's This field contains a count of the number of
I/0's to device "XX" since the last time this
statistiec was gathered. This is a read only
attribute.
DXX=Free=Space This field contains the number of bytes of
unallocated space on device "XX", This is a
read only attribute,. It may not apply to

some device types.

54

DXX-Max-Size This field contains the size in bytes of the
maximum amount of data that may be stored on
this device. This field may not apply to
some device types.

QXX-Printer-Id This field contains the device id of a
printer on which queue XX's files may be
printed. More than one device id may be
specified per queue. If no device id 1is
specified, the files may be printed on any
ASCII printer.

QXX-Printer-Type
This field contains a printer type that is
assigned to queue XX. More than one prianter
type may be specified.

QXX-Priority This field contains a priority specifing how
important it i1s that queue XX's files be
printed. The lower the priority number the
more important the queue.

QXX-Flag This flag indicates whether queue XX is
active or on hold. Valid values are:

Active Heold
Host-1id This field contains a unique identifier for

each host that may request services from the

server, This field may occur multiple times,

»

55

" HXX-State

HXX=No=Requests

This field describes the current state of
host "XX", This is a read only field. Valid
values are:

Ready Not=Ready Unknown

This field contains a count of the number of
requests that have been received from host
m"XX" since the last time this statistic was

gathered, This is a read only attribute.

HXX-DC=Character

HXX-DC=-String

This field specifies what character is a
"Don't Care" character replacement for Host
"XX", The default value of this field is
nan.
This field specifies what character is a
"Don't Care" string replacement for Host
rxXX"™, T"he default value of this field is

H‘!l

HXX-Name-Separator

This field specifies what character 1s to be
used to separate catalog and file ﬁames for
Host "XX"™., The default value of this field

is m/w,

56

3.6.3 USER ATTRIBUTES

User-id This field contains an identifier that is
unique for each end user of this server. The
user 1d is independent of host 1id or
requestor id,

No-Requests This field contains a count of the number of
server requests that tﬁis user has issued
since the last time‘ﬁhis statistic was

- gathered. This is a Eead only attribute,

Home-Catalog This field contains the catalog currently
being used as default by this user.

Password This field contains the password that allows

this user to sign on to the server.
3.7 STATUS VALUES

In the folloﬁing description of status values, the common
values section cecontains those =s=tatuses that may be
applicable to all commands. The other sections list
statuses applicable to that family of commands with valid
individual commands listed for each status. Following each
status is an indication as to whether the status in an

intermediate, suspension or final status (e.i. I, 38, F).

57

3.7.1 COMMON VALUES

Operation-Initiated (1)
Operation-Proceeding- (1)
Normally
Unknown-Parameter(s) (I)
Operation~Suspended (8)
Operation-Successful (F)
Server=-Busy (F)
Command-Unknown (F)

Insufficient=-Parameters (F)

Parameter-Value-Illegal (F)

Access=-Violation (F)

Password-Violation (F)

Server-Internal-Error fF)

No-Storage-Available (F)

Operation-Cancelled (F)

Operation-Partially- (F)
Completed

3.7.2 FILE COMMANDS

File-Created (I) Select, Open

File-Selected (I) Select, Open

File-Unavailable-at- (I) Select, Open
this-Time

File-Replaced (I) Select, Open

Record=Truncated (I} Write, Rewrite

58

Beginning-of-File

End-of~File

Record-Unavailable-at=-
this=-Time

File-Closed

File-Deleted
File-Not-Deleted
User~Instance-Unknown
File=Not~Found
File~Already-Selected

File-Already-Exists

File~Parameters-Mismatch

File=Already-Opened
Flle-Not=Extendable

File-Instance-Unknown

File-in-Unrecovered-State

Record-Not-Found

File=-Boundry-Error

59

(1)
(1)

(1)

(I)

(1)
(F)
(F)
(F)
(F)
(F)
(F)
(F)
(F)
(F)

(F)
(F)

(F)

Position, Read, Write

Position, Read, Write,
Delete
Rewrite,

Read, Write,

Delete, Lock
Deselect, Deselect-All,
Close
Deselect
Deselect
Select, Open
Select, Open
Select
Select, Open
Select, Open
Open

Open

All except Select,

Deselect-All

All

Position, Read, Write,
Rewrite, Delete, Lock,
Unlock

Position, Read, Write,
Rewrite, Delete, Lock

File-Not-Opened

Operation-Cancelled-
Deadlock

Primary-EKey-Duplicated

3.7.3 USER COMMANDS

File-Created
File-Closed
User-id-Unknown

Object=-Unknown

User-Instance-Unknown

3.7.4 CATALOG COMMANDS

Catalog-Unavailable-at-
this-Time
File-Created
User-Instance-Unknown
Catalog-Not=-Found
Object~Unknown

File=-Not-Found

60

(F)

(F)

(F)

(1)
(1)
(1)
(F)

(F)

(1)

(1)
(F)
{F)
(F)
(F})

Position, Read, Write,
Rewrite, Delete, Lock,
Unlocks Unlock=All
Read, Write, Rewrite,
Deletes Lock

Write

User-Query
User-Sign-0ff
User-Sign=-on
User-Configure,
User-Query
User-Configure,
User-~Query,

User-Sign-0ff

A1l

Catalog-Query
All
All
Ali

All

3.7.5 UTILITY COMMANDS

File-Created (I) Copy, Restore-File,
Server-Query
File-Unavailable-at- (I) Copy, Back-Up=File,
this-Time Despool-File, Archive
‘No=-Different-Device~- (I) Copy
Available
Device-Unavailable-at-~ (I) Back-Up-File, Archive
this-Time Restore-File, Despool-

File, Media-Initialize

Media-Unavailable-at- {I) Back-Up=File,

this-Time Restore-File
Tape-at-End-of-Reel (S) Back-Up-File, Archive,

Restore~File

Printer-OQut-of-Paper (S) Despool=File
Device-Inoperative (s) Back-Up-File, Archive,

Restore-~File, Despocl-

File, Media-Initialize

User-Instance=-Unknown (F) All except Attach,
Detach
File-Not-Found (F) Copy, Back=-Up-File,

Despool=File, Archive
Object=-Unknown (F) Server-Query,

Server-Configure

61

File-in-Unrecovered-State (F) -Copy. Back-Up-Fiie
Despool~File, Archive

Device=Unknown (F) Back=-Up=-File, Archive
Restore~File, Despocl-

File, Media-Initialicze

Media-Unknown (F) Back=-Up=-File, Archive,
Restore-File

Format-Unknown (F) Despool=File,
Media-Initialize

Unknown-Print-Queue (F) Despool=File

62

4.0 PHYSICAL FORMATS
4.1 FIELD IMPLEMENTATION

All fields and attributes are described by a field
header that identifies the field or attribute and specifies
its length. Field headers precede the field.

Special fields are used to group together related
fields and to separate groups of repeating fields. These
are the "start group®™ and "end group” fields. They may be
used recursivly. Group fields must be used whenever {}
appears in the logical message. They may also be required
in some instances that are described below in the physical
field definitions.

The format of the field header 1s as follows:

byte 1: bits 0-7: 8 bits of field ID.

byte 2: bit O: 0 - Length is 7 bits

1 - Length 1is 15 bits
bits 1=7: High order 7 bits (or all) of
field length.

byte 3: bits 0=7: Low order 8 bits of field length.

' NOTE: byte 3 is ommitted if bit 0

of byte 2 is off.

63

4,2 DATA TYPES

This section describes the data types specified for

fields and attributes in the following sections.

Alphanumeric

Binary

Boolean

Data

Date

This 1is an ASCII string that allows alphabetic,
numeric and special characters. If less than
maximum is specified, filling 1= done with spaces
on the right and truncation is from the right.
This field contains an unsigned binary number. If
less than maximum 1is specified, filling is done
with binary zeros on the left and truncation is
from the left.
This is always a one byte field. 0dd binary
numbers mean "true" (least significant bit on).
Even binary numbers mean W"false"™ (least
significant bit off). '
This field contains unformatted data.
This field has the format YYMMDDhhmmss, ‘where:

YY is years ranging from ASCII 0 to 99

MM is months ranging from ASCII 1 to 12

DD 1s days ranging from ASCII 1 to 31

hh is hours ranging from ASCII 0 to 23

mm is minutes ranging from ASCII 0 to 59

88 is seconds ranging from ASCII 0 to 59

64

Hexadecimal
This field contains a unsigned hexadecimal number.
If less than maximum is specified, filling is done
with hex 00 on the left and truncation is from the

left.
4,3 PHYSICAL FIELD DESCRIPTIONS

This section provides the physical characteristies of
the fields described in the logical formats section. These
descriptions are in the format:

Field Name Code Data type Length range

If logical field values were listed in the logical
format section, they will be listed here with their physical
values.

Field Descriptions:

Acess-mode - 59 alphanumeric 1 byte
Sequential S
Random R
Dynamie D
FIFO F
Action 10 alphanumeric 1 byte
Add A
Delete D
Change ' c
Allocation k3 binary 1-4 bytes

65

Blocking-Size 68 binary 1-2 bytes

Catalog=-Name 1C alphanumeric 1-17 bytes
Command-Type 05 hexadecimal 1 byte
Archive 60
Attach 01
Back-Up-File 61
Catalog=-Configure 42
Catalog=-Query k3
Close 34
Copy 63
Delete 34
De-Select © 31
De-Select-All 32
Despool=-File 65
Detach 02
Lock : 3B
Media-Initialize 64
Open 33
Position 35
Read T
Restore=-File 62
Rewrite 39
Select / Print-Select 30
Server-Configure 12
Server-Query 13

66

Unlock
Unlock-All
User-Configure
User-Query
User-Sign-0ff
User-Sign-On
Write

Cataolg-Password

Delete-Flag
Destination-File-Name
Device-id
Different
Direction
Backwards
Forwards
End-Group
Exp=-Date
File-Instance
File-Name
File-Password
File=Type
Normal
Spool

Catalog

3C
3D
72
73
71
70
38

Same as File-Password

(Must be used with brackets)

5F no value
2F alphanumeric
20 binary
22 no value
69 alphanumeric
B
F
0E no value
by date
0B binary
4o alphanumeric
41 alphanumeric
2 alphanumeriec
N
S
c

67

0 bytes
1=-17 bytes
1 byte

0 bytes

1 byte

0 bytes
2-6 bytes
1-2 bytes
1=17 bytes
1-8 bytes

1 byte

Host=-1id
Key-id
Key=-Length
Key=-Position
Lock=-Type
Shared
Exclusive
Matech-Key-Condition
Equal
Greater-Then
Not-Less~Then
Max-Record-Size
Media-Format
Media-Name
Media-Text

Message-Flag

Request-Complete

Request=-Data-to=-Follow

Inquiry-Request
Cancel-Request

Suspend-Request

Continue-Request

01
he
4p
LE

6F

6C

49
25
24
26
08

Intermediate-Response

hexadecimal
alphanumeric
binary
binary
alphanumeric
S
E
alphanumeric
E
G
N
binary
alphanumeric
alphanumeric
alphanumerie
hexadecimal
00
10
20
80
co
40

21

Intermediate-Response-w/Suspension 31

Final-Response

68

01

1 byte
1-6 bytes
1 byte
1=2 bytes

1 byte

1 byte

1=-2 bytes
1-6 bytes
1-8 bytes
1=-40 bytes

1 byte

Massase-ﬁumher

Object

See attribute descriptions

Open=Type
Input
Output
I/0
Extend

Organization

Sequential

Relative

Indexed

Output=-File-Name

Printer=-Type
Queue

Rec-Type

03

11

58

45

1F
28
29
48

Fixed=-Length=-Records

Variable-Length-Records

Record=Contents

Record-Key
Record=Length

Record=Number

60
61

62

69

binary

hexadecimal

alphanumeric

I

0

U

E
alphanumeric

S

R

I
alphanumeric
alphanumeric
alphanumeric
alphanumeric

F

v
data

alphanumeric

binary

1~4 bytes

1=2 bytes

1 byte

1 byte

1-17 bytes
1-6 bytes
1 byte

1 byte

1-2048 bytes

1-2048 bytes

Contained in length of Record-Content

1-4 bytes

Reference-Rights 52 alphanumeric 1 byte

Exclusive E
Shared S
Read-0Only R
Requestor-id 02 hexadecimal 1-3 bytes
Select-Rights 50 alphanumeric 1 byte
Sharable S
Private P
Select=Type 51 alphanumeric 1 byte
New N
01ld o
Replace R
Gaurantee G
Share-Mode 5A alphanumeric 1 byte
Explieit E
Implicit 5
Start=-Group OF no value 0 bytes
Status 08 hexadecimal 1 byte
Access-Violation 0B
Begining-of-File 94
Catalog-Not=-Found 20

Catalog-Unavailable-at-this-Time A8
Command=-Unknown 5A
Device=Inoperative FO

Device-~Unavailable=at=tlhiis~Time B9

70

Device-Unknown

End-of-File
File~Already-Exists
File-~Already-Opened
File-Already-Selected
File-Boundry-Error
File-Closed

File-Deleted
File-Instance-Unknown
File-in-Unrecovered-State
File-Not-Deleted
File-Not-Extendable
File-Not-Found
File-Not=0Opened
File-Parameters~Mismatch
File-Replaced

File-Selected
File-Unavailahle-at-this-Time
Format-Unknown
Insufficient-Parameters
Media-Unavailable-at-this-Time
Media-Unknown
No-Different-Device=Available
No-Storage=-Available

Object-Unkncwn

71

30
9B
12
14
19
1F
93
94
10
16
18
14
11
1B
13
92
91
98
F6
09
BA
34
B8
o4

22

Operation-Cancelled
Operation-Cancelled-Deadlock
Operation-Initiated
Operation-Partially-Completed
Operation-Proceeding-Normally
Operation-Sucessfull
Operation-Supended
Paramater-Value=Illegal
Password-Violation
Primary=-Key-Duplicated
Printer-Qut-of-Paper
Record-Not-Found

Record-Truncated

Record-Unavailable-at-This-Time

Server-Busy
Server-Internal-Error
Tape-at-End-of-Reel
Unknown-Parameter(s)
Unknown=Print-Queue
User-id-Unknown

User-Instance-Unknown

T2

03
1C
80
02
81
00
co
04
ocC
1D
F8
17
99
9C
01
a7
FC
88
38
A0

21

Tape-id
Tape=-Name
User-id
User-Instance
User-Password
Value

Length,

Same as Device=id

Same as Media-Name

18 alphanumeric
OA alphanumeric
19 alphanumeric
12

type and values depend on object

73

1-8 bytes
1=-4 bytes

1-8 bytes

4.4 PHYSICAL ATTRIBUTE DESCRIPTIONS

This section provides the physical characteristies of
the attributes described in the Catalog, Server and User
Attributes sections as seen by the protoceol. This does not
necessarily reflect the physical formats of the attributes
internal to the server. The attributes are "Objects" of the
Configure and Query commands. These descriptions are in the
format:

Attribute Nanme Code Data type Lenéth range

Attributes that include a host or device id have two
byte codes. The second byte is the host or device id. It
is represented by "xx" in the description.

If logical attribute values were listed in the logical
format section, they will be listed here with their physical
values.

Attribute Descriptions:

Allocation 43 binary 1=4 bytes
Append 87 boclean 1 byte
Archive 82 boolean 1 byte
Archive=-Tape 83 alphanumerie 1-8 bytes
Creation-Time 8C date 12 bytes
Data-Size 91 binary 1=4 bytes
Deleted-Records 99 binary 1-4 bytes
Device-id 20 binary 1 byte
DXX-Free-Space Alxx binary 1=4 bytes

74

DXX-Max-Size AS5xx
DXX-Media-Name ACxx
DXX-No-I/0's ABxx
DXX-State A2xx

Ready

Not-Ready

Empty

Unknown
DXX~-Type Alxx

Sequential—Outputhevice
Sequential-Device
Fixed-Random-Device

Removable-~-Random=Device

Execute 86
Exp-Date 4y
File-Type 42

Normal

Spool

Catalog
Free-Space 95
Home-Catalog 88
Host-id 01
HXX-DC-Character Bixx
HXX~-DC=String B5xx
HXX-Name-Separator B6xx

75

binary
alphanumerie
binary
alphanumeric

R

N

E

U
hexadecimal

02

01

8o

00
boolean
date
alphanumeric

N

S

c
binary
alphanumeric
hexadecimal
alphanumeric
alphanumeric

alphanumeric

1=4 bytes
5 bytes
1-3 bytes

1 byte

1 byte

1 byte
6 bytes

1 byte

1-4 bytes
1-1T7 bytes
1 byte
1 byte
1 byte

1 byte

HXX-No=-Requests
HXX-State
Ready
Not-Ready
Unknown
Index-Size
Key=-id
Key-Length

Key=-Position

Last=Archive-Time

Last=-Mod=Time
Last-Use-Time
Max-Record-Size
Name
No=Files
No-Open-Files
No~-Opens
No-Records
No-Requests
Organization
Segquential
Relative
Indexed
Owner

Password

B8xx

BOxx

92
4C
4D
4E
8F
8E
8D
49
40
9c
9B
94
64
98
45

80
51

76

binary
alphanumeric

R

N

U
binary
alphanumeric
binary
binary
date
date
date
binary
alphanumeric
binary
binarf
binary
binary
binary
alphanumeric

'S

R

I
alphanumeric
alphanumeric

1=3 bytes

1 byte

1-4 bytes
1-6 bytes
1 byte
1=-2 bytes
12 bytes
12 bytes
12 bytes
1=-2 bytes
1-17 bytes
1=2 bytes
1-2 bytes
1-2 bytes
1-4 bytes
1-3 bytes

1 byte

1-8 bytes

1-8 bytes

QXX-Flag
Active
Hold

QXX-Priority

QXX-Printer-id

QXX-Printer-Type

Read

Rec-Type

C2xx

C3xx
COxx
Clxx
84
48

Fixed-Length-Records

Variable=Length-Records

Server-Identity

Size
Total-Space
User-1id

Write

84
90
94
18
85

77

boolean

True

False
binary
binary
alphanumeric
boolean
alphanumeric

F

v
hexadeximal
binary
binary
alphanumeric

boolean

1 byte

1 byte
1 byte
1-6 bytes
1 byte

1 byte

-1 byte

4 bytes
1-4 bytes
8 bytes

1 byte

5.0 SUMMARY

This paper describes a file protocol that could be used
with a variety of layered architectures. An example of how
the protocol can be used with a distributed calendar
application i1s included. This example shows how some of the
more common functions of the protocol would be used 1in a
program by describing the program flow.

The protocol provides a comprensive file access func-
tionality that can be used with various operating systems
and in various environments. By interfacing different
operating systems and environments to a common file access
protocol, heterogeneous systems can share data. This will
allow a large varity of equipment to be used together. This
gives a user more flexibility in equipment selection.

Thé logical definition of the protococl is separated
from the physical definition in this paper. This is to
allow the same protocol to be implemented on different
physical networks, Again this approach provides for a
larger selection of equipment on which the protocol can be
implemented. This also gives a user more flexibility.

This paper gives only an example of a physical
implementation of the protocol. In future work, a physical
implementation of the protocol could bé defined for a

particular network such as ETHERNET. The functions in this

78

paper were distilled by examining a limited number of
source systems, These systems were selected to cover a very
wide range of requirements; however, not all possible
functions are included. 1In future work, the protocol could

be expanded through inclusion of functions of other systems.

79

6.0 REFERENCES

Guide, GC26-3838-3, 1978, IBM Corporation, San Jose,
California.

2., 08/VS2 Access Method Servies, GC26-3841-3, 1980, IBM
Copporation. San Jose, California.

3.

ANSI X3.23-1974, American National Standards Institute Inc.,
New York, New York.

4. Inpformation processing systems - Open systems
interconnection - Basic referepce model, DRAFT INTERNATIONAL
STANDARD ISO/DIS 7498, 1982, International Organiza:ion for

Standardization.
5.
Jupne 1982 - General Description, ISO/TC97/8SC16 N1190,

International Organization for Standardization.

6.

June 1982 - The Virtual Filestore, ISO/TC97/SC16 N1222,

International Organization for Standardization.

June 1982 - The File Service Definitiom, ISO/TC97/SC16

N1223, International Organization for Standardization.

80

Jupne 1982 - The File Protoccol Specification, ISO/TC97/5C16

N1224, International Organization for Standardization.

9. Rebecca Thomas PhD, Jean Yates, A USER GUIDE TO THE UNIX

SYSTEM, 1982, OSBORNE/McGraw-Hill, Berkeley, California.

10. Richard Gauthier, USING THE UNIX SYSTEM, 1981, Reston

Publishing Company Inc., Reston, Virginia.

Seventh Edition, Volume 1, 1979, Bell Telephone Laboratories

Incorporated, Murray Hill, New Jersey.

12. CP/M OPERATING SYSTEM MANUAL, 1982, Digital Research,
Pacifiec Grove, California.
13.,&Q&_lﬁﬁﬁ_ggﬂgL_ﬂﬁnggnL_Ig;L. 1977, NCR Corporation,
Dayton, Ohio.

14. Paul E. Green, COMPUTER NETWORK ARCHITECTURES AND
PROTOCOLS, 1982, Plenum Press, New York.

15. Ihe Ethernet - A Local Area Network, Data Link Layver and
Physical Layver Specifications, 1980, INTEL CORPORATION,
Santa Clara, California,

16. Davis, Barber, Price, Solomandies, COMPUTER NETWORKS AND
THEIR PROTOCOLS, 1979, John Wiley and Sons, New York.

81

DESCRIPTIOR OF A FILE ACCESS PROTOCOL
FOR COMPUTER NETWORKS

by

LARRY EDWARD PELLETIER

B. S.» Loyola University ef Los Angeles, 1970

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF COMPUTER SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1985

ABSTRACT

This paper describes a high level file access protocol
suitable for use with a variety of layered network
architectures. A wide varity of systems was used to select
the functionality for the protocol. An example of how the
protocol may be used is given using a distributed calendar
application. The concepts of servers, attributes, catalogs,
access methods, concurrency control and access rights are
discussed as they pertain to the defined protocol. The
logical description of the protocol is separated from the
physical description for ease of application in a variety of

enviornments. An example physical description is included.

