/COMPUTER CONTROLLED
DEEP LEVEL TRANSIENT SPECTROSCOPY 9

sysTeM/
by

HEMANT MEHTA
B.E. (Hons) EEE

Birla Institute of Technology and Scilence
Pilani, India

1983

A MASTER'S REPORT
submitted in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
Durland Hall
Kansas State University

Manhattan, Kansas 66506

1986

Approved by:

e s

Major Praofessor (/

By
prﬁ T _

;iéﬁ, }E AlL202 bb3AL3
Mg TABLE OF CONTENTS

&
Acknowledgements

List of Figures

Page
Chapter One. Introduction..c.ccceccorsvscensossencarsnssssanssssa 1
Chapter Two. Theory Of DLTS.svevsconcrstovsoscastonvsenssnasnscans 4
Chapter Three. System HardwAre...seseeessersesccsaesossssconsses 22
Chapter Four. System SoftwaYe...iccscesssccsreeasssancsnsssersss 33
Chapter Five. Results and AnalysiS..ceseecceescscrocnseacscacaee 38
Literature Cilted...cceesvscencarocrconcorsastancnsccsasansneneses 49

Appendix Al Software Listing.‘.l'.l..I--l..ll'll'.'.l.l..ll.'.‘. 50

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH ILLEGIBLE
PAGE NUMBERS
THAT ARE CUT OFF
OR MISSING.

THIS IS AS
RECEIVED FROM
THE CUSTOMER.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ACKNOWLEDGEMENTS

I, hereby express my sincere gratitude to my major adviscr, Dr.
Andrzej Rys, for his excellent guidance, constant encouragement, and
firm support.

Sincere thanks are due to Dr. M. S. P. Lucas and Dr. Alvin
Compaan for serving on my advisory committee.

I also would like to express my sincere thanks to my friends at
the Department of Electrical and Computer Engineering for their
support throughout the process of working on this project.

Most of the material in chapters one and two is taken from the
first two references (papers by D. V. Lang and Wagner, Miller and

Mars). My thanks are due to the authorts of the papers.

List of Figures

Fig. Page

1. Schematic Summary of Emission and Capture Processges.......... 6
2. Injection Pulse SeqUeNCE..ccsvesasscsvsosssssssssassassssnnoarss 8
3. Majority-Carrier Pulse Sequence...cuisssscoscssscossnscassacss 9
4., Time Dependence of Pulse Biased Capacitance Transients....... 10
5. Basic Idea of DLTS Methodesiesevessorvessosscnsssoosssnrsnnes 12
6. Concept of DLTS SpecCtTuURccessssssssasssnssseenancansansssssss 13
7. System Block Diagramecscecececcsrsoncsesssvocnsssssesssnassses 19
8. Concept of Average-to—Center (ATC)..cesessccscevescssscescsss 27
9. Output Data Format from Digiltizer...csveeecesnsransessassssa, 29
10.-13. Raw Transient PlotS....csseencercssssscsacncsassasserees 39=42
14, Conventional DLTS Plot..cceccscesessessvsscsccncnssnssnssorsees 43
15. Arrhenius Plot.c.ccscesscsocscaotcnaerssossrsossvsasassosesnss 45
16. Signal as Seen on 08cilloSCOPE@eccssevraosnsacsnsussnsansonsss 46
17. Signal as Seen on XYZ Display.ssesscsscoccsscososcessssssrsas &7

18. Signal as seeﬂ onTVmnitor....‘.I.Ol...Il....l..l.'.......l 48

Figures (1) to (6) curtesy of D. V. Lang, Deep Level Transient
Spectroscopy: A new method to characterize traps in semiconductors.
J. Appl. Phy. 45, 3023 (1974).

Figure (7) curtesy of Wagner, Hiller, Mars, Fast digital apparatus for
capacitance transient analysis. Rev. Sci. Instrum. 51(9), 1205 (Sept.
1980). '

CHAPTER ONE

1.1 INTRODUCTION

A large variety of experiments in semiconductor physics rely on
the analysis of transient phenomena resulting from the return of a
system to equilibrium. They have in common the existence of (ideally)
exponential transients. In some fields the analysis of the transients
is done by direct evaluation of the transients with regard to the time
of decay; other fields make use of correlation-spectroscopic methods,
1if the dependence of the time constant on another experimental para-
meter is of interest. One of the latter areas is the analysis of deep
levels (DL) in semiconductors, experiments where the correlation
processing is usually performed on line by analog instruments.

The study of DL in semiconductors has become a widely used method
and an important analysis. One approach to the investigation of DL is
the analysis of transient phenomena caused by the slower response of
DL to abrupt changes of potential conditions. Thus the thermal
emission of charge carriers from DL into the corresponding band can be
monitored, e.g., by recording the depletion layer capacitance of a
diode vs. the time after electrical DL filling pulse.

Some early work on junction capacitance measurements was based on
the direct recording and analysis of capacitance transients and was
thereby restricted to very slow transients. In 1974, D. V. Lang of
Bell Labs suggested a relatively simple technique called "Deep Level
Transient Spectroscopy" (DLTS) which has become a commonly used method
to investigate deep impurities. Lang's method is similar to correla-
tion technique and is based on scanning the sample temperature (and

thereby changing the DL transient time constant) under a constant

decay time constant of the measuring apparatus. The strength of DLTS
is mainly the ease of the spectral analysis, since a maximum or mini-
mum always occurs when sample transient matches the time constant of
the apparatué. In the spectra which shows the DLIS signal as a func-
tion of the sample temperature therefore only the temperature of the
extremum has to be determined. (Chapter two discusses the DLIS in
more detail.)

On the other hand, the measurement of the spectra is not
optimized. The DLTS signal is the difference between two readings of
the capacitance transient taken at two different delay times after
f1lling pulse, and usually the signal is transferred directly to a
strip chart recorder. The relevant DLTS data are taken from an
Arrhenius plot, and one temperature scan provides one data point per
DL in that plot. Thus several scans have to be made to characterize
the DL. The presence of many DL considerably complicates this method.
This means that due to the loss of the original capacitance values,
readings even with the same delay time may have to be repeated in the
measurement runs to obtain the data for adjacent time constants. A
temperature scan in DLTS wmeasurements takes typically between one
quarter of an hour and two hours. The heating or cooling of the
sample cannot be done much faster for two reasons. Firstly, the
sample temperature has to be measured accurately by means of a neces-
sarily remotely mounted temperature detector. Thus, the measurement
becomes less accurate during fast temperature changes. Secondly, a
poasible_dependence of the sample equilibrium capacitance on tempera-

ture causes the transients to be measured superimposed on a base line

not constant in time, which can distort the signal and which is more
pronounced at a higher heating rate.

Thus it is desirable to design a system which is able to acquire
more data during a temperature scan than conventional DLTS does while
keeping the advantage of simple analysis of the correlation-type
spectra. Two requirements have to be fulfil;ed for a system to
provide these features:

(1) the data acquired on line have to be stored, and therefore

(ii) the measurement has to be done digitally.

The system described here is based on direct recording of the
transients rather than on scanning the temperature under fixed
apparatus time constants. Thus acquisition of the capacitance data is
separated from signal processing which is done by the computer after-
wards. The entire measurement is under computer control and the
experimental data are stored for the analysis. In addition to the
benefit of automation, this measurement concept reduces the total

measurement time comnsiderably.

CHAPTER TWO

2.1 THEORY OF DLTS

In an effort to characterize the traps present in a semi-
conductor, a preferred technique would be the one which is sensitive,
rapid, and straightforward to analyze. It should be able to distin-
guish between majority- and minority-carrier traps. In additiomn the
technique should be spectroscopic in the sense that the signals due to
different traps be resolved from one another and to be reproducible in
position when plotted against a single variable.

The most promising of the new techniques use the capacitance of
p-n junction. But most of these techniques have lacked either the
sensitivity, speed or spectroscopic nature. One such capacitance
transient thermal scanning technique which has all of the above
features is called "Deep Level Transient Spectroscopy” (DLTS) and is a
high frequency junction capacitance technique. .

Briefly, the DLTS measurement system consist of a sensitive capa-
citance measurement apparatus with good transient response, a pulse
generator to make rapid changes in the diocde bias, a signal integ-
rator, a X-Y recorder, and a variable temperature cryostat. The
presence of each trap is indicated by a peak on a flat baseline plot-
ted as a function of temperature. The heights of these peaks are
proportional to their respective trap conceantratiomns, the sign of each
peak indicates whether it is due to a majority- or minority-trap, and
the positions of the peaks are simply and uniquely determined by the
integrator settings and by the thermal emission properties of the

respective traps. By the proper choice of experimental parameters it

is possible to measure the thermal emission rate, concentration

profile, etc. of each trap.

2.2 PULSED BIAS CAPACITANCE TRANSIENTS

This technique is used to obtain information about an impurity
level in the depletion region of a p-n junction by observing the
capacitance transient associated with the return of thermal
equilibrium of the occupation of the level following an initial
nonequilibrium condition. One can measure the time constant of this
transient as a function of temperature and obtain the energy level.
The initial magnitude of the transient is related to the concentration
of the trap. The form of technique used in DLTS makes use of one or
more voltage pulses applied to the sample in order to define the
initial conditions. Here for discussion, we will consider an example
of n+;p junction.

Figure (1) is a schematic summary of the emission and capture
processes which characterize a particular trap. As shown in figure
(1), a capacitance change is caused by using a bias pulse to introduce
carriers, and thus changes the electron occupation of a trap from the
steady-state value. As this population returns to equilibrium, the
capacitance returns to qulescent value. The transient is an
exponential function of time with a rate consﬁant equal to emission
rate of trap fillers. The sign of the capacitance change depends on
whether the electron occcupation of the trap had been increased or
decreased by the pulse. An increase in trapped minority carriers
causes an increase in the junction capacitance. As indicated in the

figure, the capacitance transient due to a minority-carrier trap is

INJECTED

.gIANRORITY o.o-oooooooj
RRIE RS i
, € # - €2
i e c‘-pCzN ‘—""'C,. el_ me el¢ezN
CAPTURE EMISSION
C2 €2
| MAJORITY
. CARRIERS
(co00000000 BROUGHT
IN WITH
REDUCED
BIAS
l —————————————————
ny SATURATING INVECTION PULSE
wens .8 C
N e,-rez
€s
€j+€2 o |
0 MAJORITY CARRIER PULSE

time —=

MINORITY CARRIER TRAP

ﬂ|=0

MAJORITY CARRIER TRAP

Tl/“

Fig 1. Schematic summary of Emission and Capture Processes

always positive and is induced by injected minority carriers, whereas
the transient due to a majority-carrier trap is always negative and is
induced only by majority carriers.

There are two types of bias pulses, namely, an injection pulse
which momentarily drives the diocde into forward bias and injects
minority carriers into the region of observation, and a majority-
carrier pulse which momentarily reduces the diode bias and introduces
only majority carriers intoc the region.

In all the situations, the capture rates of the carriers are much
larger than their corresponding emission rates, which can be neglected
during the bias pulse. An injection pulse which introduces a large
enough number of electrons so as to make capture rate of minority-
carriers much greater than capture rate of majority carriers, will
completely fill the trap with electroms. ‘Such a pulse is called a
saturating injection pulse. A majority-carrier pulse, on the other
hand, introduces only holes, and thus tends to empty all traps of
electrons, i.e., £fill them with holes.

Figure (2) is an injection pulse sequence which is used to
produce a capacitance transient for the case of a minority-carrier
(electron) trap, while Figure (3) shows the analogous majority-
carrier pulse sequence for a majority—carrier (hole) trap. Both
Figures (2) and (3) show the depletion region, capture and emission
processes, and trap electron occupation before, during, and after the
appropriate bias pulse. Figure (4) is a schematic illustration of the

time dependence of the capacitance transients.

(® INJECTION

I

1

1

| PULSE
"E'“/; Aé t=0

7
.

(@ DECAY OF
7 r TRANSIENT
DUE TO
% / AC » THERMAL
é A 875 - EMISSION
. T Zh %
O) QUIESCENT \\ 2: /é
EVERSE . .;,’f;_.l
BIAS A T
1< 0 =
vz {1 >0
é
Z
@) BEGINNING
OF TRANSIENT

=0t

Fig 2. Injection Pulse Sequence

REVERSE BIAS
1<0

- Y '

(D QUIESCENT

j.

“MAJORITY
CARRIER PULSE"
//

r--1-f

=\
D

~—_

AARRAENNARN

=1
»
—
>
N

'——u-

. vas () DECAY OF

|—aa 47 TRANSIENT
%! a "/ - OUE TO
é: / THERMAL

! /. EMISSION

1>0

(3 BEGINNING

OF TRANSIENT

1=Ot

Fig 3. Majority Carrier Pulse Sequence

DIODE
BIAS
-V
B %
: MAJORITY
exp (-eot) CARRIER
- TRAP
DIODE o v |
CAPACITANCE] | e, e,
: /
|
)
: s
i t
]
e
o__.... [e -
DIODE
Bl1AS
-V
. b
B MINORITY
DIODE CARRIER
CURRENT : TRAP
v e, »e;
e
DIODE .
CAPACITANCE

'-_

Fig 4. Time dependence of Pulse Biased Capacitance Transient

10

2.3 DEEP LEVEL TRANSIENT SPECTROSCOFY

The physics of DLTS is in the capacitance transients as described
above. The primary contribution of DLTS scheme as presented here lies
in the convenience and speed with which the information inherent in a
series of capacitance transient experiments may be obtained. That is
to say, the information which may be obtained by several l0-minute
DLTS thermal scans could also be obtained from a more tedious and time
consuming point-by-point observation of the capacitance transients at
many different fixed temperatures. This latter alternative may be
helpful in the detailed study of a unknown trap since it can be more
precise, but in the initial characterization of many traps in an
unknown sample or in high-volume monitoring works the DLTS scheme has
distinct advantage.

The essential feature of DLTS is the ability to set an emission
rate window such that the measurement apparatus only responds when it
sees a transient with a rate within this window. Thus, 1f the
emission rate of a trap is varied by varying the sample temperature,
the instrument will show a response pesk at the temperature where the

trap emission rate is within the window (Figs. 5 and 6).

2.3A TRANSIENT ANALYSIS AND DEEP LEVEL PARAMETERS

The information DLTS provides about DL is the depth of the level
with respect to the corresponding band edge, the capture creoss-section
of the DL and its concentration in the crystal. The first two values
are derived from the time constant of the transient signal and from

its temperature dependence.

11

SYSTEM
RESPONSE

ION RATE)——

BASIC IDEA OF DLTS METHOD

— — — — S T S— A

LOG (THERMAL EMISS

WT ——

Fig: 8.

-12

—a—— SYSTEM RESPONSE

PEAKS WHEN
TRAP EMISSION -
RATE IS WITHIN
RATE WINDOW

b —— ")~ ADJUSTABLE

RATE WINDOW

34NLVH3IdWIL

-——-—_“-——_*

e e e g m—

T D G s S Sam S . ey e

— e e e e e G ——

e ey w— m— —

— e e e e P—

— ey w— w— e -~

- Gmy e eun T emn En S

— e w— e S — — —

- WD S A AN S Er e e Smm e
— e = e e SEn emm s we == P

— o — — —

—_——— e = —f

e it

SIUNLVHIIWIL SNOIYVA LIV SINIISNVYL IINVLIOVLY)

Cit-Cltp)

TIME

'Fig' 6. Concept of DLTS Spectrum

13

Time constant vs. temperature dependence is evaluated by the
spectra analysis. The spectra shows extremsz whenever the transient or
a contribution to it has the time constant Teo where

T, = (tl - tz)fln(tlltz), (1)
and where tl and t2 are the two delay times at which the capacitance
readings were taken.

The transient time constant can be expressed as

rt(T) =T exp(Et/kT). (2)
where
Tp = 1/(o<v>N))
where Et being the trap depth, k the Boltzmann constant, T the sample
temperature, o the capture cross-section of the DL, <v> the mean
thermal carrier velocity, and Hc the effective density of states of
the corresponding band.

The emission rate

& o Tze'AE,kT, (3)
where

e = 1/1‘t

Y= <v>¥clT2
simplifying equations 1, 2 and 3 together gives
1n(eT"2) = 1n(yo) - 1000AE/1000KT
If we put (represent) this equation in the form Y = A+BX, we have the
following results
A = In(yo)
and

B = -AE/1000k

14

if we choose
X = 1000/T and Y = la(eT 2).
Taking into account the temperature dependence of the <v> and Nc’ one
can use an Arrhenius plot for data analysis where ln[eT_Z] is plotted
vs. inverse sample temperature 1000/T. The slope of the curve gives
then the thermal activation energy as
AE = -1000kB
and the intercept is determined by the capture cross—section as
g = eA/Y.
assuming that Et is temperature independent. Y values are precalcu-
lated and are shown in table (1) for silicon and galium arsenide for
the cases of n-type and p-type.

The height of the transient signal on the other hand provides
information on the concentration of the DL. In the approximation of
DL concentration Nt much smaller than the concentration of shallow
impurities Ns,

Ht = ZNEAC/CO
with AC amplitude of the transient just after the trap filling pulse

(t = 0), C. equilibrium capacitance value.

0
2.3B TRANSIENT RECORDING AND SIGNAL PROCESSING

A variety of techniques have been developed to measure and
analyze the capacitance transients and their temperature dependence.
These techniques have in common that they analyze the tramsient with
respect to a particular time constant. Therefore the output is maxi-
mum if the sample time constant matches the apparatus time constant.

As all these techniques make use of analog instruments, the primary

15

7.20 E+21 2.94 E+21

2.28 E+20

— T S
— ——— i Ao———

|
|
1.70 E+21 }
|

Table 1. Gamma Values

16

information, i.e., the capacitance signal, is lost during the signal
processing, and the output is either the difference between readings
or convoluted signal. These techniques may have advantage in
simplicity or low cost, but they do not provide superior raw data or
have fundamental physical advantage over a technique which uses
capacitance readings as raw data.

The concept of the DLTS apparatus described here is to record the
entire transient at each temperature and store the sequentially ac-
quired transient data for analysis. Thus, only cne temperature scan
is necessary to acquire the entire set of data for amn Arrhenius plot.
As the data are acquired at least partially on line with the tran-
sient, the average data acquisition rate is much higher than in
conventional DLTS. The principle is also better adapted to automation
since one temperature scan can-be more easily automated and adjustment
have to be made only on electronic instruments during the measurement
run.

Retrieval of the stored data allows the generation of
conventional DLTS spectra. Also, it is possible to apply a software

correlation with a theoretical exponential decay functiom.

2.4 CAPACITANCE TRANSIENT MEASUREMENT

The automated DLTS system consists basically of three parts: the
instruments which handle the sample bias condition and measure the
capacitance, the part which takes care of the measurement and control
of the sample temperature, and the instruments for system control,

data storage, display and documentation.

17

In more detail, the capacitance measurement part includes:
1. A pulse generator, which outputs the sample reverse bias and
the filling pulse,
2. The capacitance measurement module having an analog voltage
signal output.
3. A fast triggerable digitizing unit.
Figure (7) shows various blocks of the DLTS measurement system.
The various tasks mentioned above are performed by various
instruments like a pulse generator from HP, DRC-81C temperature con-
troller from LAKE SHORE CRYOTRONICS, BOONTON capacitance meter and
7912AD Digitizer from TEKTRONIX. The next chapter covers the explana-

tions of some of the above mentioned instruments.

2.5 MEASUREMENT PROCESS AND CONTROL

The sample 1s mounted on a header and is attached to the sample
holder of the liquid nitrogen/helium cryostat. Initial set up
consists of adjusting the bias pulse, setting the pulse rate, pulse
wdith, trigger pulse for digitizer and feeding the information to the
computer regarding initial and final temperatures, heater controller
set up, digitizer set up, etc. After the sample is cooled down to the
desired temperature, the entire measurement process is controlled by
the computer. The experimental parameters are defined by the
following values:

i) reverse bias voltage;

ii) wvoltage of DL filling pulse;

iii) width of f£iling pulse;

18

1313WJOA W3)SAS o
3|npow
judwalinseaw
aouejioeded ¢

- as|nd o
Aiddns seiq e

INIW3HNSYIW O

1
b

elep

uoIRIUAWNIOP ¢
Aeidsip o
abei1o}s ssew o

11ndwod ¢

TJOHLNOD W3LSAS

elep

a|dwes -

1V1SOAHD

jonuod 2N
pinbij pue J3jeay e

6uipeas abeyjoa |
- g|dnosowiay] e

TOHLINOD
JHNLVH3IdN3L

Fig 7. System Block Diagram

19

iv) delay time;
v) minimum and maximum temperatures;
vi) number of readings as a function of time;
vii) number of readings as a function of temperature;
viii) number of readings for signal averaging.

The number of readings as a function of time means number of
points digitized for a transient. Now knowing that analeg to digital
conversion takes place at a fix rate, we are talking about the time
period over which a transient 1s digitized. The number of readings as
a function of temperature means number of data points on an Arrhenius
plot per degree Kelvin. The number of readings for signal averaging
means the number of transients acquired consecutively and averaged to
present a single point for a given temperature on conventional plot.

We usually take 32 (or 64) readings for signal averaging and
every reading consists of a digitized transient over a period of 10
msec and in this time period 512 digital points are obtained for the
signal transient. All the data together with the corresponding
temperature readings, are stored on the disk. The process takes
around two and half to three hours to go over a temperature range of
40K to 330K at the temperature rise rate of Ewo degrees per minute, to
acquire all the data needed for Arrhenius plot. This compares with
one data point per two hour obtained in the conventional DLTS
apparatus using analog equipment. Thus this system is considerably
faster than conventional analog DLIS, assuming the acquisition of the

gsame amount of information.

20

2.6 DATA ANALYSIS

The data array in the computer storage describes completely
(within the given windows in time and in temperature) the response of
the sample to the abrupt change in bilas vs. the time after the change
vs. the sample temperature. There are various ways to analyze these
dependences, implemented in the software. The following subsections

discuss some of these ways.

2.6A DIRECT ANALYSIS OF THE TRANSIENTS

As transients are recorded directly, there is a possibility to
analyze them with regard to exponential contributions. It has short-
comings of only being accurate in the presence of one level. Thus we
do not make use of this technique. However, the display of direct
transient data vs. fime is used to see the system performance against

present noise levels.

2.6B CONVENTIONAL DLTS SPECTRA

An ordinary DLTS spectrum is generated by subtracting readings at
two different delay times and plotting as a function of temperature.
The resulting action is equivalent to what we obtain by means of
conventional analog DLTS measurements. From this set of information,
the extrema and their corresponding temperatures are found to generate
the Arrhenius plot of ln[eT 2] vs. 1000/T, which then gives informa-

tion about capture cross-section and activation energy.

21

CHAPTER THREE

3.1. HARDWARE SETUP

As mentioned earlier in chapter two, the hardware of the system
consists of the following instruments:

1. A pulse generator;

2. Capacitance meter with analog output voltage;

3. Fast digitizing instrument -- a digitizer;

4. Temperature controller;

5. Cryostat with sample holder;

6. Personal computer system;

7. X=Y display unit;

8. TV screen.

In the system described here, a Z-158 computer with a hard disk
is used. The pulse generator is HP801l5A. It has two pulse outputs
with adjustable lower and upper levels, pulse width, rise and fall
times, delay period and a trigger output of the same frequency as
pulse ocutputs. At the beginning of the process, the pulse generator
is set up to provide required reverse bias voltage and filling pulses.
The pulse rate is adjusted to one pulse every 30 milliseconds. The
low level of the pulse is set at the required reverse voltage so that
we need not apply separate bilas voltage.

The capacitance is measured using a capacitance meter BOONTON
model 72B, which has an analog output voltage and has a fast response
time to any capacitance change at the input.

The analog output of the capacitance meter is fed to a fast
digitizing unit which is, in our case, 7912AD digitizer from

Tektronix. Digitizer is a wide bandwidth, high speed waveform

22

acquisition instrument which can be remotely controlled using an IEEE
488 interface. When in digital mode, it can acquire a repetitive
waveform within a time window of 5 nsec to 10 msec and output it on an
IEEE bus. Simultaneously, it can display the waveform acquired on
X-Y-Z display so we can see what we are digitizing. It has external
trigger input to synchronize the data acquisition operation with some
external event, like in the present case in which it is started at the
time when the filling pulse is removed.

The temperature controller is model DRC~81C from Lake Shore
Cryotronics. It can control the temperature within one tenth of a
degree. For controlling action, it uses what is called as "Three-
Mode" control.

The next two sections deal, in brief, with the functioning of the
two of important instruments namely digitizer and temperature

controller.

3.2 DIGITIZER

The digitizer has two operating modes. In the DIGITAL model, it
digitizes either a single shot or a repetitive waveform and stores it
for internal processing or for output on the IEEE bus. The analog
outputs are used to drive a XYZ display unit to show the digitized
waveform. In the TV mode, it converts the input signal to a composite
video output. This allows the input waveform to be displayed on a TV

monitor.

In either mode, digitizer can acquire the waveforms with high

bandwidths. The time window can be selected between 10 msec and 5

23

nsec., This is equivalent to sampling rate (in digital mode) from 50
KHz to 100 GHz.

In digital mode, it begins to store the data on the next time
base trigger after either the digital button is pressed from fromt
panel (in local mode) or a digitize command is received (in remote
mode). The signal is scanned top to bottom and left to right. Two
data values are stored for every vertical scan, one for the top of the
trace and one for the bottom of the trace. These data are stored in
péirs of top and bottom. From left to right it scans 512 vertical
arrays and thus generates 512 peints in the time window.

WAVEFORM STORAGE: Data values are stored in various arrays like
raw data array and processed data array. The raw data array, as the
name suggests, contains raw data whereas the processed data array
contains the data after some internal processing. The kind of
processing performed on the data is discussed later in the section.

XYZ DISPLAY: The digitizer automatically switches the XYZ
display to show the results of the last digitize operation or waveform
processing operation. For instance in the local mode when the
digitizer is switched to digital mode, the XYZ display shows whatever
is digitized as soon as the operation is complete. Under remote
control, waveform processing operations can be called. These include
digitize and signal average (SA) or average-to-center (ATC). The
display shows the results of processing as scon as it is complete. If
the digitize and signal average operatiom is called, for example, the

signal averaged waveform is displayed automatically.

24

The XYZ display mode can be changed under remote contrcl. For
instance, the display can be changed from that of the last waveform
digitized to show a signal averaged waveform previously acquired if it
is still in the memory. Or the display can be turned off.

Whatever XYZ display was called under remote control, the XYZ
display automatically changes to show the results of the last digitize

or waveform processing operatioﬁ that follows.

PROGRAMMING THE 7912AD

The digitizer can be operated by remote control over the bus
specified in IEEE 488 standards. After it is set to operate in remote
mode by the system controlier, front panel operating controls are
disabled and their functions can be set with mnemonics sent to it in
ASCII over the bus.

Data can be output by digitizer at the maximum rate of 710 kB per
gsecond. Waveform data is output in binary rather than in ASCII. This
enables greater throughput, in that data is moved faster in fewer
bytes and requires less bus time.

Some of the operations it performs for data acquisition and/or on
data acquired are of importance from the user point of view and are
mentioned here in brief (for details, please refer to the instrument
manuals).

DIGITIZE AND SIGNAL AVERAGE (SA) a repetitive waveform. The
digitize data operation is performed the specified number of times.
Each time ATC (average—-to-center, discussed later) algorithm is
performed on the raw data. The resulting ATC data are summed in the

SA array. Since the ATC operation sums each pair of vertical data

25

values (top and bottom edges of trace) from the raw waveform data, the
signal average algorithm performs a divide-by-twec operation on the
data after all waveforms have been summed in SA array. This also
prevents the summed data values in SA array from setting bit 16 of the
dataword, making later processing easier.

When the operation is complete, the last waveform acquired
resides in the raw data area and its simple ATC in the ATC array. No
division is performed to scale the SA data by the number of averages
performed. Since all averages are to be performed in integer power of
two, an implied binary point is used to scale the data to values from
0 to 511.

ATC: The average-to-center command causes the instrument to
process the raw data to obtain a simple average of the top and boptom
edges of waveform. The ATC routine sums the highest and the lowest
values, point-by-point from the raw vertical data. The routine fills
the missing points by linear interpolation, i.e., missing points are
set equal to the nearest data points. The effect of ATC command is
shown in fig (8). Because the values are summed top to bottom, they
range from 0 to 1023. However, a block binary point is assumed

between bit 0 and 1 for scaling purposes.

WAVEFORM DATA I/0

In general, the waveform data are transferred in order from left
to right of the trace. For transmission of data, block binary format
is used. The block binary format is:

% <BYTE COUNT>[<DATA VALUE><...>]<CHECK SUM>;

26

J191us)—01—obpioay jo 1dedsuo) g biyg

215 8 09 »°89€C° 852
. ars 9o 2 20€
- :" e Y . a
[eoc
L oov
[o0s
L 009
,. ‘
b
v
b
oos
vos

27

where

#%# 1s the ASCII percent character indicating beginning of a
binary block

BYTE COUNT is a 16-bit binary number indicating how many bytes
remain to be transmitted in the block including the check
sum, but not including the message delimiter. It is sent in
two bytes, more significant byte first.

DATA VALUE is a 16-bit binary number sent in two bytes, more
significant byte first. If the data value is less than 16
bits in length (which is always the case here), it is sent
right-justified with unused bits set to zero.

CHECK SUM is an eight-bit binary number sent in a single byte.
It is computed by taking the modulo-256 sum of all the
preceding bytes in the block except %, that is, by summing
in eight bits the value of preceding bytes and throwing away
the carry. The sum is converted to 2's complement before
transmission. This allows the receilver to compute the sum
in same manner and thereby check that it is zero after the
check sum byte is received.

is the ASCII semicolon character delimiting the message

-

unit. The binary block for a simple two-value array is

shown in fig (9).

SCALING THE OUTPUT WAVEFORM

The ATC array or normalized arrays can be scaled using ground

reference and vertical scale factor. In case of ATC arrays, values

should be divided by two before scaling.

28

Jozijibig 4oy ypwuog ynding oipg 6 biy

*t = Jajjuyjap jjun abessap @

00 =893+ 00 + 10 + 40 +

00 + S@ + @@) oi3z jenba pjnoys saywyap pue Jasied ay) jdaosxs

§3)Aq |je Jo wns ggz-ojnpow ay) snyj ‘(%) 19s1ed ay) ydaoxa sajhq
Buipasaid jje Jo wns 95z-ojnpow ayj Jo Juawd|dwod $,7 = wnsyd3yn @
*(s914q om) sainbai youwa) jewydap ‘96Z pue G| = sanjea ejeq @
*(wns)yoays Gulpnjou) ‘mojioj sajhq g) s = JuUNod ajhg @

*0), 40} 3POD ||DSY = J9ss8d Aieulg @

OO O———O—O

_A| INNOD 31A@ NI S3LAG ——»]
|+——— viva aawwnsoaHo ———

I . D078 AHVNIE —

ge

+X3H NI 3N

a3 | o0 | w | 20 | o0 | so | o0 | sz | Sya3ixe

#31A8

29

First, the ground reference is acquired by digitizing the wave-
form with signal input grounded. Then it is normalized using ATC
command and divided by two. Then ground level can be computed by
taking the average value of a portion of the center of the waveform.
Then the vertical scale factor can be read from digitizer.

Now data can be scaled point-by-point by subtracting the ground
reference, multiplying by the scale factor (volts/division), and

dividing by the number of data points per division.

3.3 TEMPERATURE CONTROLLER

Here, we will talk a little about the principle on which this
controller works. The so called "Three-mode" or "PID" controller,
utilizing proportional, integral and derivative functions is discussed
in this section.

For proportional control, the desired temperature setting is
compared to the sensor signal and the difference, or error signal is
amplified. When the sensor temperature corresponds to set point, the
sensor signal will be equal to but opposite in pol#rity to the set
point signal and error signal will be zero. Modern controllers like
the one used here have stored in them the appropriate voltage-
temperature sensor characteristics so that the set point is calibrated
directly in temperature. However, this convenient feature compromises
the resolution and accuracy of the controller.

The output of the controller is dc power to a resistive heater,
the output magnitude of which depends on the size of the error signal
and its sign. Hence it is evident that power output is "proportional"

to magnitude of error signal.

30

In order to maintain the desired temperature, some kind of power
output is necessary which requires a non-zero error signal or what we
call as temperature offset. It is proportional to power output level,
This offset can be reduced or sometimes eliminated by providing the
required power output without the need of an error signal to drive
output stage. A circuitry is added to the controller that senses that
there is a steady state offset signal and which makes az bit-by-
bit addition to the power output, proportional to the magnitude of
offset and continues the corrective action until offset is reset or
zero. The practical realization of this is what is known as
integrator. At this stage, another problem is faced and it is the
problem of overshoot. Since this system has finite thermal
resistance, there is a thermal lag which causes the overshoot of
temperature. This is more prominent during transient changes of the
_set point. It is significantly reduced by the addition of a third
control, called derivative control. Normally overshoot is attributed
to application of much more power than is required or fo the thermal
response as mentioned earlier. The second problem causes time lag
between a change in output power and the control sensor sensing this
change.

By means of a differentiator circuit which provides a signal
proportional to the rate of temperature change, and which is
subtracted from the proportional output signal, the rate action is
achieved to reduce the overall effective gain driving the output power
stage. This slows down the rate of temperature rise and allows more
time for thermal stability to be achieved. Consequently overshoot is

substantially reduced.

i1

The temperature controller used here can be effective to control
the temperature within one tenth of a degree. It has a wide range of
temperature that it can control and has remote control facility so
that it can be connected to the computer and can be set using IEEE 488
interface.

It has the facility to allow the user to program the temperature
voltage characteristics of the sensor in order to achieve a required
temperature rise/fall function of time. The set point and control
temperatures can be read remotely and also all the controls (propor-
tional, integral and derivative) can be set to desired percentages

remotely. This helps in dynamic control of temperature ramping.

32

CHAPTER FOUR

4.1 SOFTWARE SETUP

The software for the system is divided into tweo parts. One part
deals with data acquisition and other part is signal processing
software. In general the software runs in an interactive and user
friendly environment. User interaction is straight forward and easy
to understand. Programs are modularized and integrated to perform the
overall task. The overall operation is divided into several smaller
tasks, for example, data acquisition is subdivided into various tasks
like instrument set up, actual data acquisition, set up display.
Similarly processing task is subdivided into data I/0, generating data
arrays for conventional DLTS plots or generating data for Arrhenius
plot, calculations of various DLTS parameters, plet routines, curve
fitting. Each individual task is performed by a separate routine
which is integrated to main program by means of a global data area.

Discussion of the programs follow in next couple of paragraphs.

4,2 DATA ACQUISITION SOFTWARE

This progrﬁm is menu driven for ease of user interaction. Upon
start of the program, main menu is displayed after imitialization.
Initialization part takes care of connecting digitizer and temperature
controller on IEEE bus to the system and initlalizing the devices to
start up status. The main menu has the following broad optioms:

1. Status display of instruments

2. Instrument set ups
3. Data acquisition.

33

In status display the user can opt to see the present status of
either instrument. In the case of the digitizer, it displays the
present settings of mode, XYE display, main and graticule intensities,
focus, status of graticule mode, operatiocn complete mode, remote
request (for details on each of these functions, please refer to the
manual). Similarly in the case of temperature controllexr, it displays
the control temperature, display temperature, set point, gain, rate
and reset values and heater power range presently enabled. From each
of these display routines, the user can return to main menu by hitting
return. Another point to note is that switching between the various
options available through the main menu is possible only by returning
to the main menu and then choosing another optiom.

Among the set up options, the user can decide to choose between
the digitizer or the temperature controller. Some of the parameters
on these instruments are independently controllable and the user is
free to change their values. But certaln parameters are strictly
controlled by software and any request to make changes in their values
is simply ignored. For the changeable parameters, user is guided to
the possible values or range of values that can be assigned. Any
value which is out of range is simply ignored and present value
remains in effect. Certain parameters, which have only two possible
values, upon selection their value is simply toggled. Everytime a
parameter is changed, the display is immediately updated and usér can
right away see the new value in effect. The program remains in set up
subroutine until user gives a specific command to return to main menu.

In the data acquisition subroutine, the user is asked to specify

the data, temperature and status file names. Data and temperature

34

file names are stored in a status file along with some run time para-
meters (as mentioned later) for the use of processing routines. One
important point to notice is that data file has to be opened in binary
mode for any 1/0 operation. Before the data acquisition is started,
some user interaction is required in order to get some parameters like
ground reference (as discussed in waveform scaling), initial and final
temperatures, number of signal averages, slope of temperature ramp.
Upon getting all these informations, the program starts a clock
support routine, which every one second, sets a flag. This flag is
used to measure time lapse (in seconds) to check the temperature ramp
at the end of the period. If the temperature is not within 0.1 degree
of set point, the feedback parameters on temperature controller are
changed accordingly. And then digitization process 1s started.
Digitizer is sent a command to perform the digitize and signal average
the data number of times specified by user. The digitizer is
externally triggered with the same frequency pulse as applied to the
sample as filling pulses. After the specified number of samples have
been signal averaged, the digitizer asgserts the Service Request Signal
on IEEE bus. Once the request is received, the digitizer is serially
polled to check the exact cause of service request. If it is opeation
complete request, then digitizer is sent the command to read out the
signal averaged data, which is written out to the data file om the
disk and corresponding temperature reading is recorded in temperature
file. Then set point is changed by step size as specified by user
(incremented/decremented) and process is repeated until the set point
reaches the final temperature. At that point all the output files are

saved and program returns to main menu, Here user can decide to exit

35

the program by choosing appropriate option or can repeat the steps

mentioned above.

4.3 DATA PROCESSING SOFIWARE

Besides signal processing, data processing program includes
software for plotting the data at various stages of processing, i.e.,
plotting raw data, plotting conventional DLTS spectra or generating
Arrhenius plots.

User needs to specify the status file name at the beginning of
the data processing program. The data file and temperature file names
are read from status file, The data file is opened for read operation
in binary mode, whereas temperature file is opened in ASCII mode. The
temperature values are read from temperature file one at a time and
the corresponding digltized data are read from data file in the format
as explained in waveform I/0 section in Chapter 3. Then data is
checked for validity (should be +ve, i.e., bit 16 should be zero). If
data set is valid, it is scanned for various capacitance values at
different delay times as specified by user. Before this data is
normalized to undo the effect of summing for signal averaging. The
difference of capacitance values for timings tl and t2 are stored in
arrays for all combinations of tl and t2 given by no of trials and
type of variation in values as specified by user in the beginning of
program. Once all the data sets have been scanned and c(tl) - c(t2)
values have been calculated, user 1s asked if he wants to perform a
moving window averaging on data. Two options are available to select
from. A 3-point averaging or a 5-point averaging. For 3-point

averaging, the matrix used in (.25, .5, .25) and for 5-point

36

averaging, matrix used is (.1, .2., .4, .2, .1l). Data smoothing is
performed as many times as user wants and every time any window size
can be selected. After this, if user wants conventional DLTS plots
are generated. From the data arrays of conventional DLTS spectra, the
peaks are identified and their corresponding temperatures are found.
Then Arrhenious plot of log (1/Tmax Tz) vs., 1000/T is plotted. These
are nothing but individual points corresponding to each peak in
conventional DLTS spectra. Then a curve fitting routine is used to
fit a line through these points. The intercept on y-axis and slope of
this line are used to calculate activation energy and capture cross-
section of traps as discussed in the theory of DLIS.

Before plotting the data, they are sorted by x-variable and the
user can choose to scale them to any range. Plot routines are divided
into 3 parts to perform the tasks of initialization of plotter,
plotting of actual data and labelling of the plots. At the time of

labelling, user is asked to provide plot title, x and y axes units.

37

Chapter 5

5.1 RESULTS AND ANALYSIS

Figures (10) to (15) show the results obtained from this system
for a gold doped Silicon (p+-n type) diode. The time consumption to
carry out the data acquisition was around two and half hours and
signal processing required another twenty mintues. The signal
processing time includes time used in plotting the data, which took
most of the twenty minutes time. This compares to the time required
by analog methods, using boxcar integrator (as tested in the lab here)
which runs into two hours per point on an Arrhenius plot. Also all
the calculations need to be done by hand and then the plotting as
compared to all this being done by the computer and the plotter in the
system described here.

Figure (10) to (13) show the transients as captured by the
digitizer at various temperatures. Here they are represented in terms
of voltage vs. time. The equivalent capacitance values can be
calculated easily if the capacitance meter characteristics are known.
Figure (14) is the conventional DLTS plot as generated by signal
processing software. The time windows used were starting from tl =
0.05 msec and t2 = (.5 msec with the increment step of 0.05 msec
keeping the ratio ti/t2 constant. The plot shows only four peaks
although 20 peaks were generated (software allows to plot any number
of peaks). Values in the plot have been offsetted by a count of 256
(511 being the highest count possible as output of digitizer and
difference of two readings can not be greater than that. Offset value
is user selectable). Actual values are zero and below and for

plotting purposes, they are offsetted.

38

(OSSW) DWtj

00 "01 006 0o -8 00 "L 00 "9 00 °g 00 'v

00 "€

0o ¢

001

000

| s e naaal R ..-]I.-. eETtTYTT ||.|-..||-l.l|w;t.‘4.||1-\ll.\‘nu.l.lﬂ ||-I||i_.r.:i—a1 THETNE T T ‘_uld‘.llqll F=or .— el Bl 2 ol oo - e Srann bl il R \—wl PELTPTTITTITEY .—‘Eq}:q..: b ok -.anDD JD

M G 0Bc 2D udIsSuDd]

‘01 b1y

l i AP e

0c - 0

—0% "0

—08 0

i
Joo -1
91
4
I

08 °1

(A BBDQIOA

39

00 "ot
s

006

(0BSW) BwT |

QoL 00 "8 00 'S 0o ¥

| R e S

T ll T C Saras saghed cioaed |] T 8 il mgers ; T t T T T T T

M G "Che 3D JuUIsuUDU |

‘11 B14

av "0

l_l_lJ_l_l._ltI

I

08 -0

Lode bt caed 3

ao i1

(A) sboatop

—~00-e

40

00 "01
ey

(0BSW) Bwl |

0o '8 00 "4 008 00 'S 00 ¥

00 e 00 "¢

B il S s et Tt Sy stie Bt b et S S S A i M bl M St S S il it

T _LL—\ Tt I—w | el DA S

M 1°00E A0 JuBIsund}

21 b1y

0c -0

Oy "0

a9 o

08 ‘0

vy sboztop

0p-e

41

(ODSW) BWT |

G0 "0l 006 oo-8 0o "L 009 0a-°s 0o v

_r Bt e e i B |.—.! | Bl S et | |.—...| 1 T ﬂ R B S B l.— LR S G S I _|l. ToTATT O T T

et e

Do "E

Ll S | LI S B

M € "COE 3D U ISUDA]

=1 D14

00°I1 00 "0
s s Rl R | .‘_i‘AJDD -G

Aoz 0
Jov o

—=09 "0

0o "1

—0e "1

09 -1

g1

(A sboatop

42

(M) Bdniypuadwa |

0S "01€ SE "¥8c 0c¢ "BS¢ 50 "¢ee 06 "'502 SL°BLI 09 "EST S "L21 0t "101
| AR Bt S A B IR A AL AL A S A A A C A R A A R R B R A A A A A A T

Sl °GL 00 "Bt
S R— L

0118

02 el

0€ "eSl

Oy "¥0e

lJ_IIiJJ!rlJlllllll[IIJJ

l
t
]
)
E
b

0G "S5

09 "S0E

0L "LSE

08 "B0Y

06 "65¥

llJlIIIIIllIllI'lJIllIIIl

00 115

puqoadg g0 [puotqudAuog] brg

J1un AdDal1guy
43

Figure (15) is the Arrhenius plot as discussed earlier. Each
point on the plot represents a peak on DLTS spectra. Two attempts
were made to fit a straight line through these points. The first line
represents a fit through all the points whereas the second line was
drawn after rejecting the first point. The scftware lets the user
reject as many points as he wishes. This helps in removing the
occasional discrepencies which may have occurred, in users judgement,
by visual inspection.

From the Arrhenius plot, the slope and the y-intercept of the
line are obtained. These values are used to calculate the activation
energy and capture cross-section area as discussed in theory. These
values are compared to the values obtained for similar traps using
other techniques namely analog DLTS and the values are comparative.

Fig. (16) to (18) are the photographs of the signal captured from
scope, XYZ display and TV monitor. The comparison of XYZ display
picture and the raw data plot of the transient can give an idea about
how good resolution, for digitizatiom, we have.

Thus through the test runs, we could demonstrate that this
digital apparatus has served its purpose, i.e., reduce the run time to
perform the experiment and results are comparative and in some senses
better than those obtained from conventional methods. It has better
performance when comparing the presentation of the results, i.e., it
generates nice plots and reduces the time it takes to do so. In no
way is the accuracy of the results sacrificed. And as the raw data is
available to the user at all times, he can even perform different
waveform analysis than available through this software. So this
system has distinct advantages over other conventional methods on time

and analysis of the results.

44

nmn -y 06 "L 08 e

] (] v] " 1 r (] (] r T r [

wobs (220-369 *9)020-311 € St
>ﬂ
wobs (2z0-3€€ ") 610-370 '€ ST
>m

1/0001

0L e 09 g 0% e

uoI}09s_ss042 2dnadoo

(+0°'0-YEY "0 st Abusus
uoi1j309s-ssodo WLDHﬁ_DU

(v00->8% "0 st Abusus

3014 SNntuayddy

v]oro LA | 1 []] ' T v 1 [| [] ' [N |

Oy "€ QE e {1 'E 01 e an

PO S

£
nn "el-

0g2i-
N2l
08 °1L1-
oy "I1-
ﬂc.ﬁﬁl
09 ‘01~
Oc "01-
08 "6-

avy "6-

‘o1 bty

00 *6-

(2%%1/3) Bo-

45

Fig 16. Signal as seen on Oscilloscope

46

et S UL

Fig 17. Signal as seen on XYZ Display

47

Fig 18. Signal as seen on TV Monitor

43

Literature Cited:

1.

3.

4.

6.

D. V. Lang, Deep Level Transient Spectroscopy: A new method to
characterize traps in semiconductors. J. Appl. Phy. 45, 3023
(1974).

Wagner, Hiller, Mars, Fast Digital Apparatus for Capacitance
Transient Analysis, Rev. Sci. Instrum. 51 (9), 1205 (Sept. 1980).

Miller, Lang, Kimerling, Capacitance Transient Spectroscopy,
Ann. Rev, Master. Sci. 377 (1977).

Jack, Pack, Henriksen, A Computer Controlled Deep Level Transient
Spectroscopy System, IEEE Trans. Electron Devices, Vol. ED 27,
2226, (1980).

Instruction Manual, 7912AD Programmable Digitizer, Tektronix.

Instruction Manual, DRC-81C, Temperature Controller, Lake Shore
Cryotronics.

49

APPENDIX A

50

/*
dkhkkkkhhhkhhkhkhkhkkhkhkhkhkhhkhkhkkkhkhkhkhkhhhhhhhhhkhhhhhkhkhhkhhhdkhkhkhkhdhhdkhkhkkhk®x
*

* Programmer: HEMANT MEHTA Date: 6/25/86
%*

* Course: EECEB898 Masters Report
*

*
*
*
*
*
***/

#include <stdio.h>
$#include <decl.h>
#include "var.c"

main()

{

char c;

/* call init to attach and initialize the instruments on IEEE bus */
init();
do {

/* display the main menu */ .

dis_men():;
c = bdos(l) & Oxff;
switch(c) {

/* switch to subsection of the display as desired by user */

case 'l' : dig_stat(); /* digitizer status disp */
puts("Hit return to Continue");

bdos(1l);

break;

drc_stat(); /* temp controller status disp */
puts("Hit return to Continue”);

bdos (1) ;

break;

dig_set(); /* digitizer set up routine */
break;

drc_set(); /* temp controller set up routine */
break:; :

run(); /* data acqguisition routine */
break;

exit(0); /* quit */

break;

case 2!

case '3!

case '4!

case '5!

case '6'

}
} while(c 1= "'2");

init ()
{

extern int dgtzr,drc;
puts("Turn on the power of all the instruments and ");
puts("hit return when ready."):;
bdos (1) ;
/* connect the digitizer on IEEE bus */
if((dgtzr = ibfind("DEV1"))<0) finderr();
/* put digitizer online */
ibonl{dgtzr,1);
/* send a dummy digitize command to digitizer */

ibwrt (dgtzr,"DIG DAT:",8):;
if(ibsta & ERR) error();

/* connect temp controller on IEEE bus */
if((drc = ibfind("DEV12"))<0) finderr():
/* put it inline */
ibonl (drc,1);
/* select display B, heater on full power range and set to

communicate with gpib controller with EOI signal and no
extra terminator for read or write.

L]

ibwrt (drc, "ZOM2T3R4BS\0xA",11);
if(ibsta & ERR) error():

/* disable terminators set by default on controller for
temp controller */

ibeos(drc,0);

dis_men()

{
puts(™ %*%%* MATN MENU **%**"),
puts(” = o ————————- \n\n"};
puts (" 1) Digitizer Status Display");
puts(" 2) Temperature Controller Status Display"):
puts(" 3) Digitizer Set-up"):
puts(” 4) Temperature Controller Set-up"):;
puts("” 5) Run Data Aquisition Routine");
puts(” 6) Exit the Program");

puts("\n\n Enter your selection");

dig_stat()
{

extern int dgtzr,ibsta;
extern char set[];
int i;

/* read the settings from digitizer */

ibwrt (dgtzr, "SET?",4);
if(ibsta & ERR) error():

if(ibrd (dgtzr,set,90) & ERR) error();

/* print routine prints the values of various settings as read into
the string from digitizer.

*/

puts("” **%%% DIGITIZER STATUS DISPLAY *#*#&%").
puts (" - = \n\n") ;

printf(" a) Mode ")
i=4;

print(i);

i += 5;

printf("™ b) Graticule ")
print(i);

i+=3;

printf("™ c¢) TV Scale Factor Display ");
print(i);

i += 4&; .
printf(" d) XYZ Display "}:
print(i);

i+= 3; '

printf(" *e) Device Trigger Function ");
print(i);

i1 += 4;

printf(™ £) SRQ on REM 1
print(i);

i+= 4;

printf("™ *g) SRQ on Operation Complete"”):
print(i);

i+= 4;

printf£(™ h) Main Intensity ")
print{i):; -

i+= 4;

printf(" 1) Graticule Intensity ")
print(i);

i += 4;

printf£(®" Jj) Focus ");
print(i);

i+=3;

printf(" *k) Trace Width
print(i);

i+=3;

printf(" *1) Ratio
print(i);

")

")

drc_stat ()

extern int drc,ibsta;
extern char setl[100];

puts(" **** TEMPERATURE CONTROLLER STATUS **%%"),
puts(" e e o g \n\n") ;

/* read temperature values (display, sensor and setpoint) */

ibwrt (drc, "wO",2) ;
if(ibsta & ERR) error();

if(ibrd (drc,setl,25) & ERR) error();
%.7s\n",setl);

$.7s\n",&setl(8]);
$.7s8\n\n", &setl[16]);

printf(" *1) Display Temperature
printf£(" *2) Control Temperature
printf(®™ 3) SetPoint Temperature

/* read the gain,rate reset and heater range settings */

ibwrt (drc, "W1",2):;
if(ibsta & ERR) error();

if(ibrd (drc,setl,25) & ERR) error():

printf(" 4) Gain Setting = %,.28%%\n", &setl[10]);
printf(" 5) Rate Setting = §.28%%\n",&setl[13]);
printf(" 6) Reset Setting = %.28%3%\n",&setl[16]);
printf(" 7) Heater Power = %,1s \n",&setl[19]);

drc_set ()

extern int gain,rate,reset,drc,range,ibsta;
extern char al[]l;

extern float set_point;

char x;

do {
/* display the present status of controller */

drc_stat():

/* now let user select what he wants to change some of the
settings are program controlled and user can not change
them if he selects to change one of these, it will be

y simply ignored

*

puts("\n\n Enter your selection");
puts{"™ Type 0 to return to menu");
puts(" (you can't select * options)");

x = bdos(l) & Oxff;
puts("\n");

switch(x) {

case '3' : puts("Enter new value");
scanf("%f",&set_point); /* set point value */
set_temp();
break:

case '4' : puts("Enter new value (0-99 %)");
scanf("sd",&gain); /* gain setting */
sprintf(a,"P%d",gain);
ibwrt(drc,a,3);
if(ibsta & ERR) error();
break;

case '5' : puts("Enter new value (0-99 %)");

scanf("%d",&rate); /* rate setting */

sprintf(a,"D%d",rate);

ibwrt(drc,a,3):;
if(ibsta & ERR) error();

break;

case '6' : puts("Enter new value (0-99 %)");
scanf("3d4",&reset); /* reset setting */
sprintf(a,"I%d", reset);

ibwrt(drc,a,3);
if(ibsta & ERR) error():;

break;

case '7' : puts("Enter new value (0-4)");
scanf ("3d",&range); /* heater range setting */
sprintf(a, "R%d4d", range) ;

ibwrt(drc,a,2):
if(ibsta & ERR) error();

break;

}
} while(x t= '0');

dig_set()
{

extern int dgtzr,mode,grat,tv,mai,gri, foc,rem,ibsta;
char s,x;

do {
/* display present status of digitizer */
dig_stat();

puts("\n\n Enter your selection or x to skip");
puts(" (you can not change * options)");

s = bdos(l) & O0xff;

switch(s) {
/* toggle the mode tv/digital */
case 'a' : if((mode "= 1) == Q)
ibwrt(dgtzr,"MOD TV;:",7);
else
ibwrt(dgtzr, "MOD DIG:",8):
break;
/* toggle graticule on/off */
case 'b' : if((grat "= 1) == 0)
ibwrt (dgtzr, "GRAT OFF;",9);
else
ibwrt (dgtzr, "GRAT ON;",8);
break;
/* toggle tv scale factor display on/off */
case 'c' : if((tv "= 1) == 0)

ibwrt(dgtzr,"TV OFF;",7);

else
ibwrt(dgtzr,"TV ON;",6);
break;
/* select the display data type for XYz display */
case 'd' : puts(" XYZ Display\n");
puts("1l) on\n2) Off\n3) Raw");
puts("4) ATC\n5) SA\n"):
puts(' Enter your selection");
X = bdos(l) & O0xff;
switch(x) {

case '1' : ibwrt(dgtzr,"XYZ ON;",7):

break;

case '2' : ibwrt(dgtzr,"XYZ OFF;",8):
break;

case '3' : ibwrt(dgtzr,"XYZ RAW;",8):
break;

case '4' : ibwrt(dgtzr,"XYZ ATC;",8);
break;

case '5' : ibwrt(dgtzr,"XYZ SA;",7);
break;

}

break:;

/* set srq on/off from remote mode through remote button */
case 'f' : if((rem "= 1) == Q)
ibwrt (dgtzr, "REM OFF;",8);
else
ibwrt(dgtzr,"REM ON;",7):;
break;
/* set main intensity level */

case 'h' : puts("Enter new value (0-1023)");

scanf ("%d",&mai) ;
sprintf(a,"MAI %d4;",mai);

ibwrt(dgtzr,a,9);
if(ibsta & ERR) error():

break;
/* set graticule intensity level */
case 'i' : puts("Enter new value (0-255)");
scanf ("%d", &gri);
sprintf(a,"GRI %d;",gri);

ibwrt (dgtzr,a,8);
if(ibsta & ERR) error():

break;
/* set focus level */
case 'j' : puts("Enter new value (0-63)");
scanf("%d",&foc);
sprintf(a, "FOC %d;",foc);

ibwrt(dgtzr,a,7);
if(ibsta & ERR) error():;

break;

}

} while(s = 'x");

/* this routine acts as user timer interrup service in DOS
and sets a flag every one second

*/

int_serv{()

extern int flag,time_count;

time_count++;

if(time_count < 18) return;
time_count = 0;
flag = 1;

/* this routine sets the address of the above interrupt
service routine in DOS interrupt vector table

*/

int_set ()

time_count = 0;
intrinit(int_serv,256,0xlc);

/* This routine waits for no of seconds as determined in run
routine and after the delay checks the temperature against
set point and changes the gain setting if required.

v/

wait ()

{

extern int drc,dgtzr,flag,count,gain;
extern float set_point;

extern char *fp2;

float k_new;

int i;

char a[l0];

/* interrupt service routine sets the flag every one sec.
This routine continuously checks the flag and decrements
the count every time flag is set.

']
i=0;
flag = 0;
do {
if(flag !=0) {
flag = 0;
i++;

}
} while(i < count);

/* now read the temp from controller */

ibwrt (drc, "WC",2);
ibrd(drc,a,l10);
sscanf(a,"$£f", &k_new) ;

/* if the temp is wwithin 0.1 degree of the set point return
else change the gain to reduce/increase heating rate.
*/
if((k_new <= set_point+0.l) && (k_new >= set_point-0.1l)) return;
if(k_new > set_point)
gain--;
else
gain++;
/* write out the new value of gain */

sprintf(a,"P%d",gain);
ibwrt (drc,a,3);

printf("sdss %.2£f\n",gain,k_new);

/* This is the main data acquisition routine */

run{)

extern int dgtzr,drc,count, ibsta, ibent;

extern float set_point,k;

float k_init,k_£final,k_inc;

char name[25] ,namel [25] ,name2[25] ,spr,str[10],str2([50];

int i,direc,strglen,num _write,gndref,safe([2],k_slope,samples;
extern char *fp,*fpl,*fp2,*fopen();

unsigned char *buffer;

/* Get the data,temp and status file names. Open the files.
Make sure data file is opened in binary mode,whereas the
other two are in ascii mode same should be true while
reading the files,

o §
try:
puts("Enter the Data File Name");
scanf ("%¥s", name) ;
if((fp = fopen(name, "wb")) == NULL) {
printf ("ERROR! can not open %s\n",name);
goto try;
retry:
puts("Enter Temp File Name");
scanf("%s",namel) ;
if((fpl = fopen(namel,"w")) == NULL) {

printf ("ERROR! can not open %s\n",name);
goto retry;

puts("Enter Status File Name");
scanf ("%s",name2) ;

if((fp2 = fopen(name2,"w")) == NULL)
printf("Error in opening File %s\n",name);

4

/*

/*

/*
s/

/i

/*

write the data and temp file names in status file for
later checking during processing.

fprintf (£p2,"%s\n%s\n", name, namel) ;
get the initial and final temps */

puts("Enter Initial Temperature");

scanf ("$£f",&k_init);

puts("Enter Final Temperature");

scanf ("%f",&k_£final);
read the step to change the temp */

puts("Enter Set-Point increment/decrement");

scanf ("%£f",&k_inc);
set the direction flag for temp 1, if increasing 0, if
decreasing and in that case make step -ve.

direc = 1;

if((k_£final - k_init) < 0) {

k_inc *= (-1);
direc = 0;

get the rate of rise of temp */
puts("Enter slope(degree per min)");
scanf ("%d", &k_slope);

calculate the time for rise of temp by step size in secs */
count = (int) (60/k_slope*k_inc);

get the no of signals to be averaged for digitizer */
puts("Enter no of samples per set(max 64)");
scanf ("sd", &samples);

save it in status file */

/%
*/

/*

/*

/*

/'*

/*

/*

/*

fprintf(£fp2,"td\n",samples);
allocate the buffer in memory to read data from digitizer */
buffer = calloc(1029,1); |
set graticule and main intensities and enable digitizer to
assert srq when digitize operation is completed
ibwrt (dgtzr, "OPC ON;GRI 0;MAI 540;",21);
put digitizer in local mode */
ibloc(dgtzr);
puts("Do any setting,if needed, of V/D & T/D and hit return");
puts("Do not change intensity levels");
bdos (1) ;
this part digitizes the gnd level setting on digitizer */
puts("put digitizer input to GND and position GND level");
puts("hit return when ready"):
bdos (1) ;
give the digitize command and average to center */
ibwrt(dgtzr, "DIG DAT;ATC;",12);
wait for digitizer to assert srg */
ibwait (dgtzr,RQS);
read the status byte */
ibrsp(dgtzr, &spr);

read the averaged signal */

ibwrt (dgtzr, "REA ATC;",8);
ibrd(dgtzr,buffer,1029);

gndref = 0;
take the average of a portion of digitized signal */

for (i=415; i<615; i+=2)
gndref += (buffer[i]*256+buffer[i+l])>>1;

gndref = gndref/100;

/* save it in status file as gnd ref level */
fprintf (£p2,"sd\n",gndref);
/* put the digitizer in local mode again */
ibloc(dgtzr);
puts("put digitizer input to DC and hit return when ready");
bdos(1) ;
/* set the delay time count for wait routine. count off the data
acquisition time for digitizer (calculated by product of no of

samples and pulse rate, which is assumed to be 30 msec here)
and take off another sec for all other read write operations

¥
count = count - 1 - (int) (samples*30.0/1000.0);

/* set the first set point a step lower (or higher) than initial
temp

F
set_point = k_init - k_inc;
puts("Turn on cooling system and hit return when ready."f;
bdos (1) ;

/* this routine writes out the setpoint value to temp controller */
set_temp();

/* set the temp controller to send control temp whenever read

command is issued

ibwrt (drc, "WC",2);
if(ibsta & ERR) error():

/* read the scale setting V/D and T/D from digitizer */

ibwrt (dgtzr, "REA SC1;",8);
ibrd(dgtzr,str2,30);

/* save them in status file */
fprintf (£p2,"%s\n",str2);

/* wait till temp is close enough to set point */
do {

read_temp();
} while(k < (set_point-0.2)):

/* Generate the command string for digitizer to do digitize
operation

*/

sprintf(str,"DIG SA,%d;",samples);
strglen = strlen(str);

/* save the original timer interrupt address */

safe[0] = peek(0x70,0)
safe[l] = peek(0x72,0)

i
/* set the new timer interrupt address */
int_set();
do {
/* change the set point */
set_point += k_inc;
set_temp();
/* wait for the temperature to start to change */
wait();
/* trigger the digitizer */

ibwrt(dgtzr,str,strglen);
if(ibsta & ERR) error():;

/* wait for the digitizer to set srq line */
ibwait(dgtzr,RQS);
ibrsp(dgtzr, &spr);
/* if digitizer request is valid */
if((spr & OxAF) == 0x02) {
/* read the temperature */
read_temp();
/* send the command to digitizer to load the data */

ibwrt (dgtzr, "REA SA;",7);
if(ibsta & ERR) error():;

/* read the data */
if(ibrd (dgtzr,buffer,1029) & ERR) error();
/* write out the data to disk */

i=20;
if(ibcnt == 1029) {

do {
num_write = fwrite(&buffer[i],l,ibent, £fp);
if{num_write != ibecnt)
ibent -= num_write;
i += num_write;
} while(ibcnt != num_write):;
/* write out the temperature to file */
fprintf(fpl,"s.2£\n",k);
}
/* if there is a error in reading from the digitizer */
else {
ibrsp(dgtzr,&spr);
printf("Read error status for dgtzr %02x",spr);

}
/* if the digitizer request is invalid */

else
printf("dgtzr error status %02x",spr):

/* loop till the final temperature is reached */

} while(((set_poin£<k;fina1+k_inc)&&direc) I
({set_point>k_final+k_inc)&&!direc));

/* free the buffer */
free(buffer);

/* close the files */
fclose(fp);

fclose(£fpl);
fclose(£fp2);

/* restore the timer address */

pokew(0x70,0,safe[0]);
pokew(0x72,0,safe[l]);

#define ERR (1<K15)

print (i)

int i;

{

extern char set][],c:
do {

sscanf(c,"sc",&set[i]);
putchar (c) ;

} while(c 1= ";');

?et_temp()

extern int drc,ibsta;
extern float set_point;
extern char all;

sprintf(a,'s%06.2f',se£_point);

ibwrt (drec,a,7);
if(ibsta & ERR) error():;

fead_temp()

extern int drc;
extern char al]:;
extern float k;

ibwrt(drc, "wWC",2);
if(ibrd (drc,a,7) & ERR) error();
sscanf(a,"sf",&k);

error()

extern int ibsta, iberr, ibent;
puts("GPIB Function Call Error!");
printf("ibsta = ¥x iberr = $x ibcnt = $x\n",ibsta, iberr,ibcnt);
exit(0);

finderr ()
{

puts("Device open Error! Please check Power Condition"):
exit(0);

/%
dkkhkkhhkhkhkhbhhkhkhkhkhhhkhhkhkhkhhhhkhkhkhhhdhkhkhhhhkkkhhhkk
*
* Programmer: HEMANT MEHTA Date: 06/25/86
*

* (Course: EECEB898 Masters Report

*

khkkktkhkhhkkhkkhhkhkkkkhhhhhhhddkdkhddhhkhkkhhhkddkdkidkik

*/

*
%*
*
*
*
*

/* This routine is the data processing routine.
This routine calls some supporting routines
for the purposes of reading data, ploting sorting
etc,

*/

#¢include <stdio.h>
/* variable.c contains definitions of global variables */

#include "variable.c"

main()

extern int trial,count,reject,cl2[750] [25] ,buff[],*plotter;
extern float temp{750],peak_t[25],p_s_t[25];

extern double expn[25],e_s[25],log(),fit() ,siga,sigb,a,b,exp();
extern FILE *fp,*fpl,*fp2,*fopen();

int down,read £,sign,n_plot,1,k,i,cl{25],c2[25],flag,j,itemp;
int sample,gndref,amplf, offset;

char name[80] ,namel [25] ,response,select;

float t_unit,v_unit,b_temp,s_temp,ftemp,tl[25],t2[25],min_val;
float max_val,ratio,t_inc;

double c_cross,sigma,gamma,deltae, ftempl,ftemp2,pointl,point2;

/*
Read the status file name. Status file contains names of
of data and temp files and also the no of averages, gnd
referrence value and scale factors on digitizer.

*/

puts("enter stats file name");

scanf ("$s",name);

if((fp2 = fopen(name,"r")) == NULL) {
puts("Error in opening the file"):
exit(0);

/* Read the data and temperature file names */

fscanf(fp2,"%s%s", name, namel) ;

/* Read the no of samples for averaging and gnd ref */

fscanf (fp2,"%d%d", &sample, &gndref) ;

n_plot = 0;

puts("do you want raw data plots");
response = bdos(l) & OxFF;

if (response == 'y') {

puts("\nHow many?");
scanf("%d",&n_plot);

puts("enter begin temperaure");
scanf("%£",&b_temp);

puts("enter temp step”"):;

scanf ("$£f",&s_temp);

puts("enter voltage and time setting");
scanf("$£%£f",&v_unit,&t_unit);

} »

puts("\ndo you want any amplification of data? enter
a no or 1 if not");
scanf ("%d", samplf) ; gets():

puts("do you want any offset in the plot? enter a
no (0-256)"):
scanf ("3d", &offset); gets();

puts("The following options are available for time
settings:\n");

puts(™ 1) Keep Tl fixed, vary T2"):

puts(" 2) Keep T2 fixed, vary T1");

puts(™ 3) Keep T1/T2 fixed, vary both\n\n"):

puts(” Enter your option");

response = bdos(l) &0xFF;

puts("\nenter the starting values of Tl and T2 (T2>T1)
(0-10 msec)"):

scanf ("sfs£f",&t1[0],&t2[0]); gets();

ratio = t1[0]/¢2[0];

puts(“enter the time increment step");
scanf ("s$£",&t_inc); gets();

/* no of trials decides how many points will be there on

*/

Arrhenius plot

puts("enter no of trials (1-25)");
scanf ("sd", &trial); gets():

puts("Please wait...");

for{i=1; i<trial; i++) {
switch(response) {

/*
calculate all the time settings for which data points from
transient signal will be taken. (no of trials times)

*f

case '1' : t2[i] = t2[i-1]+t_inc;

break;

tl[i] = tl[i-1])+t_inc;

break;

case '3' : tl[i] = tl[i-1l]+t_inc;
t2[i] = tl[i])/ratio;
break;

case '2!

[1]

}

i=-=1;
response = 'y';
do {

if((fp = fopen(name,"rb")) == NULL) {
puts("error opening the file");
exit(0);
}
if((fpl = fopen(namel,"r")) == NULL) {
puts("error opening the file");
exit(0);
sign = 0;
do {
/* read the temp value */
_ read_f = fscanf(fpl,"sf",&ftemp);
/* if not end of file */
if(read_£f != 0) {
/* call routine to read the set of data points for a transient */

readdatal();

/* if data is ok go ahead and process */

if(reject == 0) {
i++;
/* store the temp in temp_array */
temp[i] = ftemp;

/* check if raw data is to be plotted. if yes go ahead
and plot
*/
if(n_plot 1= 0) {
if(ftemp > b_temp) {
puts("ready plotter and hit return");

bdos (1) ;
plot_init{);

/* signal average the data and subtract the ground ref level */

for (j=0; j<512; j++)

buff[j] = buff[j]/sample-gndref;
plot_raw();

printf("temperature is %.2f\n",ftemp);
plot_write(0.,0,t_unit*10,0,0,v_unit*10):;

n_plot--;
b_temp += s_temp;

}
/* calculate the value of C[tl]-C[t2] for all tl1 and t2 */

for (j=0; j<trial; j++) {

/*
there are 51,2 datapoints per division in digitizer output
assuming the setting for lmsec/div calculate the index of
datapoint to be extracted

87 .

cl[j]l = buff[(int) (t1[j]*51.1)];
c2[j] = buff[(int) (t2[j]*51.1)];

/%
devide by any averaging factor as read from status file,
amplify if user wishes ,

wf
cl2[il[3j] = (clljl=c2[j])/sample*amplf;

if(cl2[i][j]<0)
sign -= 1;

if(cl2[i][j]1>0)
sign += 1;

/* and add offset if desired by user */
cl2[i][j] += offset;

}
}

} while(read_£f 1= 0);

fclose (fp);
fclose(£fpl);

/* check if user wants to include any other set of files */

puts("do you want to read any other file");
response = bdos(l) & O0xFF;

if(response == 'y')
puts("\nenter data file name");

scanf ("¥s",name);
puts("enter temp file name");

scanf("%s",namel) ;

}

} while(response == 'y');

count = i+l;
printf("\ntd files read\n",count);

/*
smoothing routine for 3 or 5 point smoothing. matrix used for
3 point smoothing is (1/4,1/2,1/4) and for 5 point (1/10,1/5,
1/2.5,1/5,1/10)
o4

puts(®"do you want smoothening of the data"):;

response = bdos(l) & OxFF;

if(response == 'y') {

do {
puts("\nhow many point smoothening (3 or 5)");

scanf ("sd",&l);

for(j=0; j<trial; j++) {
for (k=(int) (1/2) 3 k<(i+l-(int) (1/2)); k++) {

if(1 == 3)

/*

e 4

/*

*/

cl2[k][j] = cl2[k=1][j]/4+c12[k][§]1/2+c12[k+1])[j]1/4;
else {

cl2(k][j] = cl2[k=-2][3j]/10+cl2[k=1][3]/5+c12[k]1[j]1/2.5;
?12[k][j] += cl2[k+1] [j]/5+c12[k+2][j]1/10;
}

puts("do you want smoothening again");
response = bdos(l) & OxFF;

} while(response == 'y');
}

here if user wishes, conventional DLTS spectrums are plotted
for various time settings as specified by user

puts("\ndo you want the DLTS plots");
response = bdos(l) & OxFF;

if(response == 'y')
puts("\nhow many");

j = trial;
scanf ("sd",&trial):;

call sort_f to sort the data by temperature values as they
will be plotted against temperature.

puts{"\nsorting the data");
sort_£(); _
puts("ready plotter and hit return");
bdos(1) ;
initialize the plotter (draw the axes and put tick marks) */
plot_init ();
plot the actual data */

plot();
getchar () ;

write division markings on axes and titles */

plot_write(temp[0] ,temp[count-1],0.0,511.0);

trial = j;

}

/* check if user wants arrhenius plots */

puts("\ndo you want arrhenius plot");
response = bdos(l) & OxFF;

if(response == 'y') {
/%

find the peaks for various time settings from conventional
DLTS data if majority of c[tl]=-c[t2] values were =-ve then we

will have a -ve peak otherwise a +ve peak.

e

for (j=0; j<trial; j++) {
itemp = cl2[0]([j]:
for(i=1l; i<count; i++) {
if(sign<0) {

/* look for a -ve peak */

if (itemp > c12[i][3]) {
itemp = cl2[i][]j];
peak_t[j] = temp[i];
}
/* if not look for a +ve peak */

else {
if(itemp < cl2[i]1[3j]) {
itemp = cl2[i][jl;
peak_t[j] = temp[i];

/t
calculate e = 1/tmax = log(tl/t2)/(tl-t2) and calculate
exp = e/T**2 for every tl and t2
*/
expn[j] = log(tl([jl/t2[j])/(tl[jl-t2[j1);
expn[j] /= (peak_t[j]*peak_t[j]):

/* now take log of exp */

expn[j] = log(expn[j]);
/* also calculate 1000/T */
peak_t[j] = 1000.0/peak_t[j];
}
/* sort them by 1000/t values for plotting . use bubble sort */

do {
flag = 0;
for(i = 0; i < trial-l; i++) {
if(peak_t[i] > peak_t[i+1l]) {
ftemp = peak_t[i];
peak_t[i] = peak_t[i+l];
peak_t[i+l] = ftemp;
ftempl = expnli];
expn[i] = expn[i+l];
expn[i+l] = ftempl;
) flag = 1;

}
} while(flag == 1);

min_val = peak_t[0];
max_val = peak_t([trial-1]:;

/* look for min and max of exp values */

ftempl = expn[0];
ftemp2 = expn[0];
for (j=1; j<trial; j++) {
if(ftempl > expn[j]) ftempl
31)

expn([j];
if (ftemp2 < expn| ftemp2]:

expn(j

/*
print min and max of 1000/T. They are already sorted so top
is min and bottom is max

*/

printf ("\nminimum value of 1000/T is %f\n",peak_t[0]):
printf("maximum value of 1000/T is $f\n",peak_t[trial-1l]);

/* check if user wants to change the range for plotting the
data

v d

puts("do you want to enter the new values of min and max");

response = bdos(l) & OxFF;
if(response == 'y') {
puts("\nenter new min and max values");
\ scanf ("3£%£",&min_val, &max_val) ;

/* print min and max of exp values */

printf("\nminimum value of exp is %g\n",ftempl);
printf("maximum value of exp is %g\n",ftemp2);

/* check if user wants to change the range for plotting */

puts("do you want to enter the new values of min and max");
response = bdos(l) & OxFF;
if(response == 'y') {
puts("\nenter new min and max values");
scanf ("S1f31£f",&ftempl,&ftemp2) ;

}

/* save the original values */
for (j=0; j<trial; j++) {

p-s_t[j] = peak_t[]];
e_s(j] = expn[jl;

Vi
scale the values as specified by user or else scale the
values to map from 0 to full scale on plotter

wr
for (j=0; j<trial; j++) {
peak_t[j] = (peak_t[j]l-min_val)*511.0/(max_val-min_val);
?xpn[j} = (expn[j]-ftempl)*511.0/(ftemp2-£ftempl) ;
l = trial;

puts("\nready the plotter and hit return");
bdos (1) ;

/* initialize the plotter if not already done so */
plot_init();

/* plot the poihts */
plot_c();

/* let user choose the value of gamma */

puts("The following gamma values are available");
puts("\n 1) Si-n-type 7.20E21");

puts(" 2) Si-p-type 2.94E21");

puts("™ 3) GaAs-n-type 2.28E20");

puts(" 4) GaAs-p-type 1.70E21"):;

puts("\n\nEnter your selection");

select = bdos(l) & OxFF;

switch(select) {

case

case

case

case

"1' : gamma = 7.20E+21;
break;

'2' : gamma = 2.94E+21;
break;

'3' : gamma = 2.28E+20;
break;

'4' : gamma = 1.70E+21;
break;

}
printf("\nGamma is %g\n",gamma);
puts("do you want to enter new value");
select = bdos(1l) & OxFF;
if(select == 'y') {

puts("\nEnter the new value");

scanf ("$1£f", &gamma) ;

}

down = (-1);

do {

/* call line fitting routine */

fit();

/*

line fit returns values for a and b in a+b*x

calculate two point
*/

pointl

point2

pointl

point2

from equn a+b*x and draw the line

b*p_s_t[0]+a;

b*p_s_t[trial-1]+a;

(pointl-ftempl) *511.0/(ftemp2-ftempl) ;
(point2-ftempl) *511.0/(ftemp2-ftempl) ;

sprintf(name,'SPI;PA,PU,%.4f,%.41f;',peak_t{0]*So,pointl*SO);
ibwrt (plotter,name,strlen(name));

sprintf(name, "PA,PD,%.4£,%.41£;",peak_t[trial-1]*50,point2*50) ;
ibwrt (plotter,name,strlen(name));

/*

calculate the y-intercept which is nothing but a, scale it
back to actual value . then calculate capture cross section

area as

sigma = 1/gamma* (exp a)

and slope b is proportional to delta E and calculate delta E
as

delta E = -1000*K*b

where K is boltzman constant.

*f

/* scale back the value of a, siga, deltae sigb(deviation in
deltae)
*/

sigma = exp(a)/gamma;
siga = exp(siga)/gamma;
deltae = (-1000.0)*(8.62E-5)*b;
sigb = (-1000.0)*(8.62E-5) *sigb;
/* write the energy, capture cross-section and their deviations */

sprintf (name, "PA,PU,13052,25550;CP0,%d;",down);

ibwrt (plotter,name,strlen(name));

sprintf(name, "LBenergy is %.2g(%.2g) eV\3;",deltae,sigb);
ibwrt (plotter, name,strlen(name));

down--;

sprintf (name, "PA,PU,13052,25550;CP0,%d;LBcapture ",down);
ibwrt(plotter,name, strlen(name));
sprintf (name, "cross-section is %.2g(%.9) sgcm\3;"sigma,siga);
ibwrt(plotter,name,strlen(name));
down--;
/* return the pen to 0,0 position */
ibwrt (plotter, "PA,PU,0,0;SP0;",14);
/* check if user wants to remove any point */
puts(®"\ndo you want to reject any point");
response = bdos(l) &0xFF;
/* if yes get the point number and remove it */
if(response == 'y') {
puts("\nenter the point number");

scanf ("%d", &k);
for (j=k-1; j<trial-l; j++) {

expn[j] = expn[j+l];

e_s(jl = e_s[j+l];

p_s_t[]j] = p_s_t[j+l];

peak_t[j] = peak_t[j+l];
trial -= 1;

/*
go back and fit another line and check if user wants still
more changes

v/
} while{response == 'y');
ibwrt(plotter, "PA,PU,0,0;SP0;",14);
/* c?lt plot write routine to lable the axes and title the
plo

*/
getchar();

plot_write{min_val,max_val;ftempl.ftempZ);

readdata()

{
extern int buff[512] ,reject;

extern char *fp;
int i,total, number,num_read;
unsigned char buffer[1028],str[3];

/* digitizer sends data in the following format -> % count data
checksum ; so when reading the data first look for % sign and
then read 1028 bytes-two for count,1024 for 512 datapoints, a
checksum and one terminator(;)

*/
do {
fread(str,1,1,£fp);
} while(str[0] 1= '%');
i=0;
total = 1028;
do {

num_read = fread(&buffer([i],l,total,fp);
total = total-num_read;
i += num_read;

} while(total > 0);

/* generate integer values for data points. First byte is high
byte and second is low.

*f
number = buffer[0]*256+buffer[l];
reject = 0;
for(i=0; i<1024; i+=2) {

/* if the number is greater than 15 bits, it is garbage and
reject the data set. set reject flag

73
buff[i/2] = (buffer[i+2]*256+buffer[i+3]);

if((buff[i/2] < 0) || (buff[i/2] > 32767))
reject = 1;

double fit{()

{

extern double e_s[25] ,a,b,siga,sigb,sqrt();
extern float p_s_t[25];

extern int trial;

double exp_s,chi2,sigdat;

float temp_s,st2,diff,temp_avg;

int j;

0; /* set constant term to 0 */
0; /* set slope to 0 */

; /* set y-data sum to 0 */
temp_s = 0; /* set x-data sum to 0 */

/* sum x and y data */

for (j=0; j<trial; j++) {
exp_s += e_s[j];
temp_s += p_s_t[]];
}

/* calculate average of x data */
temp_avg = temp_s/(float) (trial);

/* find the difference of every x data point from average value
sum the square of difference and calculate sum the diferrence
times corresponding y value,

*/
for (j=0; j<trial; j++) {

diff = p_s_t[j]l-temp_avg;

st2 += diff*diff;

: b = b+diff*e_s[j];

/* get slope-by aividing sum of product of ydata and diferrence
of x data from avg with sum of square of diferrence

L4
b = b/st2;
/* calculate y-intercept or constant term */
a = (exp_s—temp_s*b)/(£float) (trial):;
/* calculate the standard deviations */

siga = sqrt((l.+temp_s*temp_s/(trial*st2))/(float) (trial));

sigb = sqrt(l./st2);

chi2 = 0;

for(j=0; j<trial; j++) {

} chi2 += (e_s[jl-a-b*p_s_t[j])*(e_s[jl-a-b*p_s_t[]j]);

sigdat = sqrt(chi2/(trial-2));
siga *= sigdat;
sigb *= sigdat;

?ort_f()

extern float temp[750];

extern int cl2[750] [25] ,count,trial;
int i,itemp,flaqg,j;

float ftemp:

/* sort the temp and data arrays by temperature in ascending
order using bubble sort
'

do {
flag = 0;
for(i = 0; i < count-1l; i++) {
if(temp[i] > temp[i+l]) {
ftemp = temp[i];
temp([i] = temp[i+l];
temp[i+l] = ftemp;
for(j=0; j<trial; j++) {
itemp = cl12[i][]];:
cl2[i] [j] = cl2[i+1][3];
} cl2[i+1l] [j] = itemp;

flag = 1;

}
} while(flag == 1);

plot_init()
{
extern int *plotter;
int i,3;
unsigned char strl[80];
/* call up the plotter using the National Instrument
routines.
*/ _

plotter = ibfind("dev5");

/* initialize, default, select penl, window size, tick
length 1
%/

ibwrt (plotter, "IN;DF;SP1;IP 1000,1000,9000,7000;TL1;",37);
/* scale to data */
ibwrt (plotter,"sC0,25600,0,25600;",18) ;
/* draw x—-axis */
ibwrt(plotter, "PA,PU,0,0;PA,PD,25600,0;",24);
/* draw y axis */
ibwrt (plotter, "PA,PU,0,0;PA,PD,0,25600;",24);
/* draw tic marks, x-axis and then y-axis */
for (i =0; i < 25600 ; i+=2560) {
for (j = 1; j <=1 + 2560 - 2*512; j += 512) {
sprintf(strl,"TL.5,0;PA,PU,%d4,0;XT;",j+512);
ibwrt (plotter,strl,strlen(strl));
Sprintf(strlp'TLl,O;PA,PU,%d,D;XT:',i+2550):
ibwrt({plotter,strl,strlen(strl)):
}

for (i = 256003 i > 0 ; i-=2560) {
Sprintf(sttl,'TLI;O:PA,PU,D'%G:YT;',i);
ibwrt(plotter,strl,strlen(strl));

for (j=41; 3 > i - 2560 + 512; j -= 512) {
Bprintf(Strl,'TL.S,O3PA,PU,0,%d:YT:',j-512);
ibwrt(plotter,strl,strlen(strl));

?1ot_raw()

extern int *plotter;
extern int buff[512];
int i;

char strl[80];

/* move to first location before plotting the rest of the
data

*/

sprintf(strl,"SP1;PA,PU,0,%d;",buff[0]*50);
ibwrt(plotter,strl,strlen(strl));

/* now continue plotting the rest of the data */
for (i =1; i < 512; i++) {

sprintf(strl,"PA,PD,%d,%d;",1*50,buff[i]*50);
ibwrt(plotter,strl,strlen(strl));

ibwrt (plotter; 'PA' PU;D'O?SPO?"14) 7

plot()
{

extern int count,trial,cl2[750][25],*plotter;
extern float temp[750];

unsigned char strl([8l];

float min_val, max_val, tempf;

int i,3;

/* plot routine for conventional DLTS plots */
for (j=0; j<trial; j++) {

/* move to first location before plotting the rest of the
data

*/
sprintf(strl,"SP1;PA,PU,0,%d;",cl2[0][j]*50);
ibwrt(plotter,strl,strlen(strl));

/* now continue plotting the rest of the data */

for (1 =1; i < count; i++) {

tempf = (temp[i]-temp[0])*511.0/(temp[count=-1]-temp[0]);
sprintf(strl,"PA,PD,%.4f,%4;",tempf*50,cl2[i][j]1*50);
%bwrt(plotter,strl,strlen(strl));

ibwrt (plotter, "PA,PU,0,0;SP0;",14);

plot_c()
{

extern int trial;
extern double expn([25];
extern float peak_t[25];
extern int *plotter;

int j;

unsigned char strl[80];

ibwrt (plotter,"sSP1;",4);
for(j=0; j<trial; j++) {
/* plot the individual points on arrhenius plot*/
sprintf(strl,"PA,PU,%.4f,%.41£f;",peak_t[j]*50,expn[j]*50);

ibwrt(plotter,strl,strlen(strl));
ibwrt(plotter, "CP-.25,-.25;LB+\3;",17);

ibwrt (plotter, "PA,PU,0,0;SP0;",14) ;

plot_write(xmin, xmax,ymin, ymax)

float xmin,xmax,ymin,ymax;

extern int *plotter;

extern char *stdin;

int times,i;

unsigned char strl([81],str2[80],str3([80],str4[80];
float offset,x_scale,x_var,y_scale,y_var;

ibwrt(plotter,"PA,PU,0,0;SP1;",14);
/* divide x and y axes in ten parts */

x_scale = (xmax-xmin)/10;
y_scale = (ymax-ymin)/10;

/* label x and y tick marks */

times = 0;
for (i=0; 1<=25600; i+=2560) {
x_var = x_scale*times+xmin;

/* generate the character string to write to plotter */
sprintf(str2,"%.2f",x_var); :
sprintf(strl,"PA,PU,%d4,0;CP-%d,-1;LB%s\3;",1i,

(strlen(str2))/2,str2);
ibwrt (plotter,strl,strlen(strl));
| times +=1;

offset = 0;

times = 0;

for (i=0; i<=25600; i+=2560) {
y_var = y_scale*times+ymin;

/* generate character string to write to plotter */

sprintf(str2,"%.2£",y_var);

Bprintf(strl, “PA;PU'D p%d;CP"‘%d'--ZS:LB%S\3";‘ i'
strlen(str2),str2);
ibwrt(plotter,strl,strlen(strl)); o 2
times +=1;

}
/* write the title in the middle at the top */

puts("enter the plot title");

fgets(str4,80,stdin);
sprintf(strl,"sI.25,.4;PA,PU,12800,26800;CP-%d,0;",

strlen(strd)/2);
ibwrt (plotter,strl,strlen(strl));

sprintf(strl,"LB%s\3;",strd);
ibwrt(plotter,strl,strlen(strl)):

/* write x axis lable */

puts("enter x-axis units");
fgets(str4,80,stdin);

sprintf(strl,"s1.2,.32;PA,PU,12800,0;CP-%4,-3;",
strlen(strd)/2);
ibwrt(plotter,strl,strlen(strl)):;

sprintf(strl,"LB%s\3;",strd);
ibwrt(plotter,strl,strlen(strl)):;

/* write y axis lable */

puts("enter y-axis units");
fgets(str4,80,stdin);

sprintf(strl,"PA,PU,0,12800;D10,1;CP-%4,3;",
strlen(str4)/2);
ibwrt(plotter,strl,strlen(strl));

sprintf(strl,"LB%s\3;",str4);
ibwrt(plotter,strl,strlen(strl));

ibwrt (plotter,"PA,PU,0,0;SP0;",14);

COMPUTER CONTROLLED
DEEP LEVEL TRANSIENT SPECTROSCOPY

SYSTEM

by
HEMANT MEHTA

B.E. (Hons) EEE

Birla Institute of Technology and Science
Pilani, India

1983

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
Durland Hall
Kansas State University

Manhattan, Kansas 66506

1986

Abstract:

The analysis of transient phenomena originating from relaxation
process is a tool for material and device characterization. A con~
venient method for the analysis of exponential transients is the use
of correlation spectroscopic techniques. An example is deep level
transient spectroscopy (DLTS). It is demonstrated here how higher
flexibility is achieved by separating signal processing from the data
acquisition. A flexible microcumpute£ based automated DLTS system is
described. The hardware is a high resolution capacitance measurement
system. As a result of measurement which is considerably faster than
analog methods, a data array describes the response of the sample with
regard to time and temperature. Signal processing routines are then
applied to data. Critical trap parameters may be simultaneously

measured during one thermal scan.

130 AR7
AT

