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Abstract 

The helix is an important chiral motif in nature, there is increasing development in field 

of helical transition metal complexes and related supramolecular structures. Hence, the goals of 

this work are to apply the principles of helicity in order to produce metal complexes with 

predictable molecular shapes and to study their properties as asymmetric catalysts. 

Computational studies suggest that the (1R,2R)-cyclobutyldiamine unit can produce 

highly twisted salen complexes with a large energy barrier between the M and P helical forms. 

To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and 

condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes 

chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical 

coordination complexes. These ligands were metallated with zinc, iron and manganese salts to 

produce salen metal complexes which were characterized by NMR analysis, high-resolution 

mass spectrometry, and IR spectroscopy. 

A second ligand type, neutral bis(pyridine-imine) has also been synthesized from 

(1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine)  ligands 

was conducted using greener method, solvent assisted grinding. These ligands, in-situ with 

nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. 

The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These 

were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-

cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and 

dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear 

complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were 

found to be ineffective.  
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Chapter 1 - Introduction 

 1.1 Schiff base ligands 
In 1864, Hugo Schiff described the condensation between an aldehyde and an amine 

leading to a Schiff base, Figure 1.1.1 Schiff base ligands have the capacity to coordinate metals 

through their imine nitrogen and are often key components of chelating ligands. Schiff base 

ligands are considered ‘‘privileged ligands’’ due to easy synthesis by the condensation between 

aldehydes and amines and the fact that stereogenic centres, planes or axes can be readily 

introduced in the synthetic design.2 Many thousands of chiral ligands have been prepared in 

recent decades but only a handful, the so-called privileged ligands; have found wide applicability 

and effectiveness in asymmetric catalysis. Most privileged ligands have C2 symmetry, which 

limits the number of possible reaction pathways and often leads to enhanced selectivity. Schiff-

base ligands can coordinate to many different metals, and stabilize a variety of oxidation states, 

allowing the use of Schiff-base metal complexes for a large number of useful catalytic 

transformations. Chiral Schiff-base complexes have proven to be effective asymmetric catalysts 

for producing nonracemic products, yet the scaffold is so versatile that there remain many 

avenues of exploration available to exploit.3 

                
AmineAldehyde Schiff base

C
R R

O

+ R'NH2
C

R R

NR'

+ H2O

 
Figure 1.1  Synthesis of Schiff-base ligand by the condensation of diamine and aldehyde. 

 1.2 Preparation of Schiff-bases 
The condensation between aldehydes and amines can be carried out under a variety of 

reaction conditions, and in many different solvents. The presence of dehydrating agents usually 

favors the formation of Schiff-bases. The water produced when reactions are run in low polarity 

solvents such as toluene can be removed by using a Dean Stark apparatus or by placing agents 

such as 3Å or 4Å molecular sieves in the reaction mixture. Ethanol is an effective solvent for the 

preparation of Schiff bases either at room temperature or under reflux conditions. Decomposition 

http://en.wikipedia.org/wiki/Condensation_reaction
http://en.wikipedia.org/wiki/Ethylenediamine
http://en.wikipedia.org/wiki/Salicylaldehyde
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of the Schiff-bases can occur during purification. For example, chromatography of Schiff bases 

on silica gel can cause some degree of decomposition through hydrolysis due to the acidic nature 

of silica. In such cases purification by recrystallization is preferred. The Schiff bases are usually 

insoluble in hexane or cyclohexane, therefore they can be purified by stirring the crude reaction 

mixture in these solvents, sometimes adding a small portion of a more polar solvent such as 

(Et2O, CH2Cl2), in order to extract impurities. Usually, Schiff bases are stable compounds and 

can be stored without much precaution.3  

Salicylaldehydes bearing different substituents are obtained by the introduction of a 

formyl group, using a simple and well established reaction, into the corresponding phenol 

derivative, Figure 1.2. The combinatorial approach to the discovery of new catalysts is an 

innovative and exciting area of research. Schiff bases are suitable ligands for the preparation of 

libraries due to the easy reaction conditions and the variety of chiral amines and aldehydes used 

as precursors.4 

 
 

Figure 1.2  Preparation of salicylaldehydes and their condensation to form Schiff-bases 

and salens. 

R2

R2

N

N OH

OH

R1

R1

R1

R1

R1
OH

R1

R1
OH

R1

CHO

R1
OH

R1

N

R2

R2

Salen

R1 = tBu
R2 = H
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 1.3 Salen ligands 
Condensation of salicylaldehydes or salicylaldehyde derivatives with 1,2-diamines leads 

to the formation of one extremely important class of ligands, known as ‘‘Salens’’. The ligand has 

four coordinating sites and, when coordinated to an octahedral metal center, leaves two sites 

(often axial) open to ancillary ligands, substrates, or reactants. This parallels the coorination 

properties of porphyrins, but salen ligands have the distinct advantage of being synthetically 

more accessibleh. Although the term salen (a contraction of the salicylaldehyde and 

ethylenediamine) was used formerly only to describe the tetradentate Schiff-bases derived from 

ethylenediamine, the more general term Salen-type is used in the literature to describe the class 

of [O,N,N,O] tetradentate bis(Schiff-base) ligands, Figure 1.3.  The condensation of the C2-

symmetric trans-1,2-diaminocyclohexane with 3,5-di-tert-butylsalicylaldehdye gives a chiral 

salen ligand that forms complexes with many metal ions. Among these, complexes with Cr3+, 

Mn3+, Co3+, and Al3+ have proven particularly useful for asymmetric transformations. 

N

N OH

OH N
M

N O

O

Salen

N

N OH

OH

Salophen Achiral Salen Metal Complexes

N

N OH

OH

R

R

R

R

R = H
R = tBu

Chiral Salen

H

H

N

N O

O

R

R

R

R

R = H
R = tBu

Chiral Salen Metal Complexes

H

H

M

 
Figure 1.3  Different Salen ligands and M(II) Salencomplexes.3 
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 1.3.1 Background of salen metal complexes 
Some of the most important synthetic ligand systems, especially in the context of 

asymmetric catalysis, are the tetradentate Schiff bases known as salen (N,N-

bis(salicylaldehydo)ethylenediamine). In 1889, while studying the effect of diamines on 

diketones, Combes prepared the first salen ligand and its copper(II) complex.5 Since then, salen 

derivatives and their metal complexes have been synthesized and characterized and gradually 

their value as catalysts has become recognized.6 With the growth in interest in enantiomerically 

pure compounds for the pharmaceutical and agrochemical industries, it is perhaps not surprising 

that in the last few decades attention has focused on chiral salen ligands, and in particular on the 

use of their optically pure metal complexes as asymmetric catalysts. Applications have grown 

rapidly and a broad range of asymmetric catalysis have now been described including oxidations, 

additions and reductions.7  

The first reports on the stoichometric epoxidation of unfunctionalized olefins using 

achiral Cr(III)(salen) complex were published by Kochi et al. in 1985 and by Burrows et al. three 

years later.8,9,10 In contrast to metalloporphyrins, salen complexes are non-planar, a property that 

could explain the stereoselection obtained using these systems.11,12,13 Houk and his group 

observed a twisting of the two salen’s aromatic rings. The dihedral angle arising between the 

aromatic rings (ɸ) is 73°. This twisting of aromatic ring might be the source of the chiral 

induction in these catalysts, Figure 1.4.14  

Salen complex

N
NO

O
M

R

H

H

R

R = Ph
M = Mn(O-iPr)2

N

N

N

N

Mn

Metalloporphyrins  
 

Figure 1.4  Chiral Mn-salen complex and metalloporphyrins. 

ɸ= 73° 
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In further studies Kochi and coworkers found that Mn(salen)s can also catalyze alkene 

epoxidation.15  In contrast to their Cr(salen) systems, Mn(salen)s were able to epoxidize 

unfunctionalized acyclic alkenes more efficiently. Enhanced reactivities and a greater substrate 

scope were also demonstrated. Due to the fleeting nature of the intermediate the active species 

was not directly observed, but was postulated to be an O=Mn(V)(salen)+ complex. This work set 

the stage for the development of chiral salen catalysts independently by Jacobson and 

Katsuki.16,17 The main differences between their systems lie in the presence of four stereogenic 

centers in the Katsuki catalysts and in the replacements of the stereocenters at C3 and C3’ with 

bulky t-butyl groups in the Jacobsen complexes.18,19 Katsuki’s catalysts exhibit similar 

enantioselectivities for cis olefins compared to Jacobsen’s but afford greater enantioselectivities 

in the epoxidation of trans-alkenes (66% vs 25-33% ee for trans-stilbene oxide). 

R2R2

NN

O O
R1 R1

HH

Mn

Cl

RR

NN

O O

HH

Mn

X
Ph Ph

(S,S)(S,S)
Jacobsen's catalyst Katsuki's catalyst  

                  J1: R1, R1= -(CH2)4-  R2 = t-Bu                                                 K1: R = 3,5-Me2C6H3   X = OAc 
                  J2: R1= Ph               R2 = Me                                                   K2: R = Ph                   X = PF6

ˉ 
                  J3: R1, R1= -(CH2)4-  R2 = OSi(i-Pr)3 

Figure 1.5 Jacobsen and Katsuki’s catalysts for epoxidation. 

 

Following this initial work, reports detailing metallo-salens containing various substituent 

groups at the 3-5 and 8 positions were published. In one of these, the well-known Jacobsen’s 

catalyst, Figure 1.6 was first described, wherein, the inclusion of t-butyl groups at the 3,3’ and 

5,5’ positions markedly improved enantioselectivities. It was suggested that the effect of the t-

butyl groups was steric in nature. It is determined that while the 3,3’ t-butyl groups play mainly a 

steric role, the effect of those at the 5,5’ positions is principally electronic.20 
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Figure 1.6  Different approaches of Substrate to Jacobsen's catalyst. 

 

  1.3.2 Conformational effects in Salen Catalyst 
The stereoselectivity of a catalyst often depends on its conformation, and this is very true 

in the case of salen-type ligands.21 The incorporation a flexible trans substituted ethylene bridge 

into the backbone of the salen molecule allows a substantial degree of conformational mobility. 

The flexibility and chirality of this ethylene bridge results in two ‘stepped’ conformations, Figure 

1.7. Between these two, steric factors favor the diequatorial structure, although in solution an 

equilibriating diaxial-diequatorial mixture can exist.22 The conformation of salen catalyst can be 

easily altered by changing the metal, its oxidation state and/or counter ion. Conformational 

control of the metallo-salen is necessary in order to achieve high levels of stereochemical 

induction in catalysis. 
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Figure 1.7  Diaxial and diequitorial conformers in a salen catalyst. 

 

There are some critical factors for highly-stereoselective atomic transfers reactions such 

as olefin epoxidation  - i) the selection of central metal ions that are suitable for the formation of 

reactive intermediates after reaction with transfer reagent and  ii) the suitable design of salen 

ligands that takes into consideration the structures of the intermediates. In 1986, Fujita et al. 

reported the asymmetric oxidation of sulfides using optically active vanadyl salen complex as the 

catalyst.23 In 1990, Jacobsen et al. reported on asymmetric epoxidation using manganese 

complexes, which revealed the usefulness of salen ligands bearing bulky constituents at the 3-

position, Figure 1.8.24 These studies explained the initiation of asymmetric oxidation using 

metallosalen complexes. The stereoselectivity of the reactions like epoxidation are dependent on 

the direction from which the oxo species are approached by the substrate and the orientation of 

the substrate during this process, Figure 1.8. In other words, high-stereoselectivity can be 

achieved during the reaction by controlling the direction of approach and the orientation. Oxo 

compounds, MO(salen) can adopt the stepped conformation as suggested by the experimental 

results of asymmetric epoxidation using achiral salen complexes. This assumption is supported 

by the calculated results. In the case where bulky substituents (R1) exist at the 3,3'-positions, 

olefins approach the oxo compound along the N-M bond axis near to the downward-bent 

benzene ring, thereby directing the bulkier substituent (RL) away from the bulky 3- or 3'-

substituents (R1) , Figure 1.8.  The alternative approach pathway along the N-M bond axis is 

=  Ar Or (CH2)4
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considered to be less effective due to a repulsive interaction with the upward-bent benzene ring. 

With a bulky substituent (R2) at the 5-position, an approach from the direction of the upwardly-

bent benzene ring becomes even less effective, and thus the enantioselectivity of the reactions 

improves.25 

 

 

 
 

Figure 1.8  Approach of the substrates to the manganese complex by different pathways. 

 

The steric role of the alkene and its attached substituents must also be considered. With 

the related porphyrin systems the incoming alkene is thought to orientate ~90° to the M=O  bond 

to allow favorable orbital overlap.26 The same general orientation of approach is predicted in 

salens also.  For a trans alkene (I), this would necessitate one of the substituents being directed 

downwards into the salen ligand; an unfavorable interaction, Figure 1.9. Differentiation due to 

sterics therefore is expected between the stereoselectivities of cis- and trans-alkenes, and this is 

indeed the case. Cis-alkenes (II) are in general observed to give higher ee’s than corresponding 

trans-alkenes. However, if the salen were ‘deeply twisted’ or ‘stepped’ steric repulsion for trans-

alkenes (III) is minimized, allowing the preferred direction of approach. Higher ee’s would 

therefore be expected, and in a few instances this has been observed.27,28 
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Figure 1.9  Stereoselectivities based on steric role of cis- and trans-alkenes. 

 

As mention above, there are various factors those can affect stereochemical outcome. 

Nonetheless, the salen with ‘deeply stepped’ conformation is one of them which can have a 

major impact on stereoselectivity. A helical molecule can be thought of as adopting this single 

‘locked’ conformation. It would only be necessary to extend the ligand arms in order to obtain a 

true helix. Interconversion between conformers would be restricted, Figure 1.10, and a ‘deeply 

stepped’ structure is likely to result from steric repulsion between the overlapping ligand arms.  

 

  
 

Figure 1.10  General design of monohelical metal complex with a chiral backbone. 

 

The other notable advantage of a helical ‘deeply stepped’ structure isthat it has potential 

to be efficient and stereoselective for epoxidizing trans-alkenes. The chirality at C-8 and C-8’ 
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positions predetermines the conformation of this helix, where the chirality is transferred and 

amplified throughout the metallo-salen. The use of, (R,R) stereochemistry in backbone biases the 

free ligand toward formation of the M-helix, thus, only one helical type is expected to form. 

However, creation of a limited quantity of the minor helical type cannot be ruled out. 

 

 1.4 Helical Complexes 
A helix is defined as a twisted shape like a coil spring or spiral staircase.  Helices are 

important in biology, as the DNA molecule is formed as two intertwined helices, and many 

proteins have helical substructures. For the classification of absolute configuration of helices the 

(P,M nomenclature) is used. P (plus) is a right-handed helix, where M (minus) is a left-handed 

helix. The P/M or terminology is used particularly for molecules that actually resemble a helix, 

such as hexahelicene, Figure 1.11. Control of absolute helicity in metal salen complexes is of 

great interest since metal complexes serve as exceptionally useful asymmetric catalyst in many 

organic reactions.29 

 
Figure 1.11  M and P configurations of heptahelicene. 

 

 1.4.1 Monohelices and Helicates 
Molecular complexes of transition metals can be classified in to two general groups, 

monohelices and helicates. Monohelices complexes contain a single metal ion and can have 

single, double, or triple strands depending on the nature of the ligand. Examples of these 

complexes are showed in Figure 1.12. A single stranded monohelix can be formed when a single 

M Helicity P Helicity
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multidentate ligand wraps around a single metal center, as for the europium complex shown.30 A 

double stranded helix is made when two chelating ligands coordinate to the same metal, as for 

the platinum complex.31 Triple-stranded monohelices can be formed when three chelating 

ligands coordinate to a single metal center such as [Co(en)]3+. Double and triple stranded 

monohelices resemble two and three-bladed propellers, respectively.  

  

 
 

Figure 1.12  Examples of monohelices with single, double, and triple-strands. 

 

The term helicate was introduced by Lehn and coworkers in 1987 for the description of a 

polymetallic helical double-stranded complex, in effect a metal containing helix.32 This original 

definition has been expanded to include all helical complexes with two or more metal centers. 

There is a wide array of different helicates, but some of the most common forms are double and 

triple stranded dihelicates produced when ligands with two chelating sections coordinate to two 

metal centers, Figure 1.13. 
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Figure 1.13  Double and triple stranded helicates. 

 1.4.2 Types of Single-Stranded Monohelices 
A primary goal of the research presented in this thesis is the production of transition 

metal complexes of predetermined shapes.  Our particular focus has been on producing small 

molecules with helical shapes that can be used as asymmetric catalysts. In order for these 

complexes to be useful as catalysts, they should have two labile coordination sites. One way of 

achieving this, is to coordinate a tetradentate ligand to an octahedral metal center, therefore there 

remain two reactive positions. There are three different morphologies; trans, α-cis and β-cis, 

Figure 1.14. Of these complexes, trans-complexes have been widely used as catalysts for various 

asymmetric reactions. The different arrangements are likely to lead to complexes that exhibit 

very different selectivities and catalytic activity. For four coordinate metal centers there is no 

distinction between these, since the tetradentate ligand coordinates to all available coordination 

sites.33 
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Figure 1.14  Morphologies for single-stranded monohelices of octahedral 

metals ions 

 

Single-stranded monohelices are very important as asymmetric catalysts because of their 

well-defined reaction centers and their deeply stepped conformations. In order to be suitable as 

catalysts a complex should exist in a single helical type (M or P). Predetermination of helical 

chirality around a metal center can be achieved if ligands themselves are chiral. The chirality can 

be introduced in the central section of the ligand i.e. the backbone, or at the ends of the ligand i.e. 

the sidearms. The metal complexes to be studied in this work will include chiral elements in the 

central section of the ligand (backbone). Below is an example where chiral cyclohexyl 

backbones are utilized in salen type ligands. A series of monohelical salen Fe(II) and Zn(II) 

complexes have been synthesized previously in the Levy group.3435 Ligands bearing phenanthryl 

and benz[a]anthryl siderams attached to a binaphthyl or cyclohexyl backbone bridging groups 

were utilized, Figure 1.15.  

 

trans cisβ cisα 
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Figure 1.15  Salen ligands with phenanthryl and benz[a]anthryl siderams. 

 

 1.5 Design of new ligand system 
The innovation of new asymmetric catalysts requires the development of new ligands, which 

should have the capacity to support the central metal ions and give the required enantioselectivity 

in asymmetric reactions. The development of ligands is the collective effect of rational design, 

perception, trial and error. Successful ligand design/synthesis/test cycles are greatly assisted by 

the following controlling principles.36  

 

(1) Proposed synthesis should be by modular means; it should be possible to produce many 

different members of a ligand family using the same reaction simply by varying the 

combination of starting materials. 

N N

OH HO OH HO

N N

N N

OH HO OH HO

N N
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(2) Ligands should be easy to synthesize in very few steps, and the diversification step 

should be placed as close as possible to the end of the synthetic route. 

(3) Simple, high-yielding reactions should be used whenever possible. 

(4) It should be possible to install multiple stereocentres that are independently variable. This 

in turn should allow for trivial expansion of ligand families. 

(5) Basic ligand frameworks should be easily modifiable to allow production of “next 

generation” ligands of higher complexity. 

 

In this thesis, we are going to present the development of asymmetric catalysis by metal 

complexes of chiral tetra- and polydentate nitrogen-donor ligands. We describe various strategies 

for the design and synthesis of a number of different types of ligands, asymmetric catalytic 

applications, structure and bonding in coordination complexes, and limitations and future 

challenges. 
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Chapter 2 - Selection and synthesis of (+)-trans-Cyclobutane-1,2-

diamine backbone  

 2.1 Introduction 
For the preparation of a monohelical salen or related complex it is desirable that certain 

criteria be met. New catalyst with desirable properties can be achieved with the modification of 

backbone, sidearm and central metal atom of existing salen, Figure 2.1. 

 

                              

O

M

N

O

N

Backbone

Sidearm

Metal  
Figure 2.1  General design of salen metal complex. 

 

 2.1.1 Design of New Chiral Ligands: Chiral Backbones 
Chirality must be incorporated into any new ligand system in order to produce 

monohelical complexes of only one conformation (P or M). It has been shown that the chiral 

components can either be located at the ends of the ligand (sidearm) or in the central portion 

(backbone). Primarily, the ligand should incorporate groups that influence the structure towards 

helix formation. This requirement can be partially fulfilled through the use of a chiral directing 

backbone, to provide a sense of ‘handedness’ or ‘twist’.  Locating the chirality in the backbone 

section of the ligands allows the ligands arms to be roughly planar and avoid unfavorable steric 

interactions that would prevent the ligand wrapping around the metal. If at the same time the 

backbone group is relatively inflexible, the probability that unwanted arrangements and 

geometries form is decreased.1 
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  2.1.2 Design of New Chiral Ligands: Sidearm 
In order to obtain monohelical complexes, the ligand sidearms should be rigid and have 

relatively low steric bulk so that they do not interact strongly upon wrapping and overlap. It is 

also desirable that sterically large ligand arms be employed, so as to yield slightly over one 

helical turn, in effect ‘locking’ the structure. Aryl rings typically comprise the arms of salen 

complexes; consequently this objective can be accomplished through either replacement with 

extended polyaromatic ring systems, and/or by appending on the appropriate substituents. 

Saturated rings are unattractive for use in this respect due to their flexibility, and to the 

conformational mobility that subsequently results. Modeling studies indicate that both 

methodologies are feasible and that for polyaromatic arms, nonlinear, i.e curved polyaromatics, 

are required for the adoption of a ‘locked’ helix, Figure 2.2. Additionally, if the second approach 

is to be followed, the appended substituents must be positioned on the inward side of the ligand 

arms close to the donor atoms, for ‘locking’ to take place. 2 

                         
 
 

Figure 2.2  Extended planar polyaromatic ring systems for producing monohelical 

complexes. 

 

 

 2.1.3 Design of New Chiral Ligands: Metal 
 In addition to the ligand, the metal must also be carefully selected. In this work there are 

three main considerations for the choice of metal; ease of characterization, ease of handling, and 

M = Zn, Ni, Mn, Fe. 
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potential for high catalytic activity. Zinc(II) complexes are diamagnetic and so can be readily 

characterized via NMR spectroscopy. Furthermore, they are typically stable to air and 

consequently meet the second requirement also. For high catalytic activity potential metals 

include cobalt, iron, and manganese, where, in the context of salen and pyridyl-imine catalysis 

iron is the least studied. For metals in the 2+ oxidation state no counterions are present when two 

anionic donors are employed, as in M(salen) and M(binap-salen) complexes. 

 

 2.1.4 Previous studies 
Different helical tetradentate salen ligands with cyclohexyl and binaphthyl backbones and 

phenanthryl and benz[a]anthryl side arms were synthesized and characterized in our 

group.3These ligands possess unique stepped helical conformations. Vanadium (IV) complexes 

of these ligands with cyclohexyl backbones adopt M helical conformations in the solution as 

observed from the CD spectra of these complexes. However, in the solid state these complexes 

form 1:1 mixtures of both M and P conformations. Asymmetric sulfoxidations by these 

complexes showed moderate ee. We concluded that chiral cyclohexyl diamine is a weak director 

of chirality and this hypothesis was previously presented by Fox et al.4 

 

 2.2 Cyclobutyl backbone 

 2.2.1 Selection criteria 
The non-planarity in the salen ligands arises as a result of the sp3 centres on the diimine 

bridge.5 Thus, the N-C-C-N dihedral angle between the two nitrogen atoms of the ligand is a 

measure of the resultant twist or step in the complex, Figure 2.3. For complexes derived from 

trans-cyclohexane-1,2-diamine the rigid nature of the cyclohexane ring, with a set N-C-C-N 

dihedral angle, is a major influence on the complex conformation. It has been previously 

suggested that salen complexes facilitate selective epoxidation of alkenes by their stepped nature. 

Smaller ring diamines might lead to more enantioselective epoxidation catalysts by increasing 

the N-C-C-N dihedral angle and thus altering the ligand conformation in a favorable manner.6 
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 Figure 2.3   Illustration of the N-C-C-N dihedral angle.6 

 

 

                 

 2.2.2 Synthesis 
There are two routes reported for the synthesis of trans-cyclobutane-1,2-diamine; one 

with iminonitrile as staring material and other with adipic acid as starting material. The process 

with adipic acid was recently revised by the Gilheany group.6 We have followed the same 

procedure with required modification as mentioned in the experimental section. The general 

scheme of this synthesis includes the conversion of adipic acid 1 into the dibromo-dimethyl ester 

2 of adipic acid. Then the ring-closure step was carried out using potassium cyanide on the 

dibromo-dimethyl ester 2. In this manner a mixture of the two isomers of nitrile diester 3 was 

obtained. The mixture of isomers was directly used for subsequent hydrolysis to get triacid 4, 

heating of which at 180°C yields cyclobutane-1,2-diacid 5 as a mixture of trans- and cis-isomers. 

The mixture of isomers was equilibrated by heating in 12 M HCl at 120°C for 6 days. 

Subsequent cooling leads to crystallisation of pure trans-isomer 6. This trans-isomer was then 

converted into the foul smelling diacid chloride 7 using thionyl chloride. The di(acid chloride) 

was then converted into the diamine dihydrochloride 8 using sodium azide in a one pot reaction. 

Finally the resolution of trans-cyclobutane-1,2-diamine was done using the ‘Dutch resolution’ 

technique.6 
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Figure 2.4  Synthesis of trans-cyclobutane-1,2-diamine backbone. 

 

 

 2.2 Experimental 

 2.2.1 Synthesis 
1H and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz or 200 MHz 

spectrometer in CDCl3 or D2O. Data is expressed in parts per million (ppm) downfield shift from 
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tetramethylsilane or residual protiosolvent as internal reference and are reported as position (in 

ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (J in Hz) 

and integration (number of protons). Infrared spectroscopy (IR) was done on neat sample using 

Nicolet 380 FT-IR . 

 

2.2.1.1 meso-Dimethyl 2,5-dibromohexane-1,6-dioate, 2 6 

                                            
OHO

OHO

1. SOCl2

2. Br2
3. MeOH

OMeO

OMeO

Br

Br

1 2  
 

Thionyl chloride (32.3 g, 0.271 mol) was added in 7 mL portions over 2 hrs to adipic acid 

(19.7 g, 0.135 mol) heated at 80°C in a two-neck 250 mL round bottom flask equipped with a 

reflux condenser and a pressure equalized dropping funnel. On heating, after some time gas 

evolution ceased, some solid (adipic acid) still remained in the reaction. Therefore, additional 10 

mL of thionyl chloride was added and heating continued until gas evolution ceased completely. 

The addition took 7 hrs in total. Following this, bromine (47.3 g, 0.290 mol) was added dropwise 

to the pale yellow hot reaction mixture over 12 hrs and heating was then continued for a further 3 

h. After cooling to rt, N2 was passed through the reaction for removal of excess bromine. The 

resulting brown reaction mixture was added dropwise to MeOH (27.5 mL) in a 250 mL round 

bottom flask cooled in an ice bath. A white precipitate formed during the addition and this was 

filtered as soon as addition was complete and recrystallised from MeOH (20.1 g, 45.0 %). On 

further standing precipitate formed in the mother liquor which was also recrystallised from 

MeOH (5.2 g, 12%) 1H NMR (400 MHz, CDCl3) δ 4.28–4.25 (m, 2H, CHBr), 3.81 (s, 6H, 

OCH3), 2.33–2.30 (m, 2H, CH-CBr), 2.09–2.05 (m, 2H, CH-CBr); 13C NMR (100 MHz, CDCl3) 

δ 169.69, 53.21, 44.34, 32.49. 
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2.2.1.2 1-Cyano-cyclobutane-1,2-dicarboxylic acid dimethyl ester, 3 6 

 
OMeO

OMeO

Br

Br

KCN, MeOH,

75oC

CN

COOCH3

COOCH3

2 3
 

 

meso-Dimethyl 2,5-dibromohexane-1,6-dioate (20 g, 0.060 mol) and potassium cyanide 

(8.83 g, 0.136 mol) were added to a 250 mL round bottom flask containing MeOH (40 mL). The 

reaction mixture was heated at 75 °C for 56 hrs. After cooling to rt, methanol was distilled at 

atmospheric pressure and the residue was flushed through a pad of silica with CH2Cl2. The 

solvent was removed in vacuo to yield a yellow liquid (8.41 g, 71.0 %). 1H NMR indicated this 

to be a mixture of the two isomers of the product. The mixture of isomers was used for the next 

step without purification.  1H NMR (400 MHz, CDCl3) δ 3.85 (s, 3H, OCH3), 3.79–3.72 (m, 1H, 

cyclobutyl-H), 3.72 (s, 3H, OCH3), 2.75–2.53 (m, 3H, cyclobutyl-H), 2.42–2.26 (m, 1H, 

cyclobutyl-H); liquid isomer 1H NMR (270 MHz, CDCl3) δ 3.88 (s, 3H, OCH3), 3.83–3.76 (m, 

1H, cyclobutyl-H), 3.80 (s, 3H, OCH3), 2.69–2.53 (m, 3H, cyclobutyl-H), 2.35–2.27 (m, 1H, 

cyclobutyl-H); 13C NMR (400 MHz, CDCl3) δ 170.26, 169.93, 167.89, 118.72, 117.52, 54.09, 

53.80, 52.65, 52.42, 45.36, 43.99, 43.73, 42.27, 29.08, 28.53, 21.44, 20.23.  

 

 

2.2.1.3 Cyclobutane-1,2-dicarboxylic acid, 4 6 
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A mixture of the two isomers of 1-cyano-cyclobutane-1,2-dicarboxylic acid dimethyl 

ester  (4.63 g, 0.0234 mol) and 6 M HCl (11.7 mL) were refluxed for 12 hrs. The mixture was 

concentrated in vacuo until a white solid precipitated. Et2O (20 mL) was added to the residue 

and the mixture was filtered. The filtrate was washed with water (3 x 50 mL), dried over Na2SO4 

and the solvent was removed in vacuo to yield a pale yellow liquid (3.34 g). This liquid was 

heated at 180°C under vacuum (water pump) until gas evolution ceased (~2.5 hrs). On cooling, a 

brown solid was formed (2.10 g, 62%). 1H NMR indicated this to be a mixture of the trans and 

cis diacids: 1H NMR (400 MHz, D2O) δ (trans isomer) 3.37–3.34 (m, 2H, CHCO), 2.07–2.09 

(m, 4H, cyclobutyl-H); 1H NMR (400 MHz, D2O) δ (cis isomer) 3.45–3.47 (m, 2H, CHCO), 

2.16-2.18 (m, 4H, cyclobutyl-H). 

 

2.2.1.4 trans-Cyclobutane-1,2-dicarboxylic acid, 6 7 
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The mixture of cis- and trans-cyclobutane-1,2-dicarboxylic acid (1.890 g, 0.0131 mol) 

was placed in 100 mL, round-bottom flask. 12M HCl (4 mL) is added and the mixture is heated 

at 120°C  for 160 hrs. It was then cooled down slowly (overnight) , giving a white crystal which 

was filtered from the brownish mother liquor, washed quickly with ice cold 12M HCl (1 mL) 

and dried under vacuum overnight to afford grey crystal of pure trans-diacid (1.0 g, 54%). 1H 

(400 MHz, D2O) δ 3.46–3.42 (m, 2H, CHCO), 2.18–2.16 (m, 4H, cyclobutyl-H); 13C NMR (400 

MHz, D2O)  δ 178.02, 40.11, 21.36. 
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2.2.1.5 trans-Cyclobutane-1,2-dicarbonyl dichloride, 7 

 

HOOC COOH

6

SOCl2

O

O

Cl

Cl

7  
trans-Cyclobutane-1,2-dicarboxylic acid (7.99 g, 55.4 mmol) and 

http://onlinelibrary.wiley.com/doi/10.1002/anie.201305549/abstracthttp://onlinelibrary.wiley.co

m/doi/10.1002/anie.201305549/abstractthionyl chloride (15.0 mL, 206 mmol) were heated at 

70°C in benzene (35 mL) for 24 hrs. Benzene and excess thionyl chloride were distilled off and 

the brown residue dried under water pressure and purified by Kugelrohr distillation to yield a 

colorless liquid (9.41 g, 94.0 %). 1H NMR (400 MHz, CDCl3) δ 3.94–3.90 (m, 2H, CHCO), 

2.44–2.34 (m, 4H, cyclobutyl-H); 13C NMR (400 MHz, CDCl3) δ 173.45, 77.48, 77.16, 76.84, 

50.57, 22.12. 

 

2.2.1.6 trans-Cyclobutane-1,2-diamine dihydrochloride, 8 

1. NaN3

2. 50oC
3. HCl, 90oC

H2N NH2

2HClO

O

Cl

Cl

7 8  
A solution of trans-cyclobutane-1,2-dicarbonyl dichloride (9.50 g, 52.5 mmol) in 

benzene (60 mL) was added dropwise over 5 min to a solution of sodium azide (11.9 g, 184 

mmol) in water (60 mL) cooled to 0°C. The resulting two phase mixture was stirred vigorously 

for 2 hrs after which time the phases were separated and the organic phase was washed with 5% 

NaHCO3 (20 mL), water (20 mL) and dried over CaCl2. This benzene solution of diacyl azide 

(CAUTION: explosion risk) was decanted into a fresh flask equipped with a reflux condenser 

and oil bubbler and heated slowly to 50°C. Initial slow evolution of gas became vigorous at ~ 

40°C, so heating was stopped. After gas evolution had ceased, the reaction mixture was heated at 

50°C for 1 hour. After cooling to rt 20% HCl (20 mL) was added and the reaction heated to 90°C 
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for 4 h, then allowed to cool to rt overnight. The benzene layer was separated and washed with 

water (50 mL). The aqueous layers were combined and washed with benzene (100 mL). Water 

was removed in vacuo to yield a brown solid which was recrystallised from MeOH/Et2O to give 

a white solid (6.29 g, 46%). 1H NMR (400 MHz, D2O) δ 3.82–3.76 (m, 2H, CHN), 2.17–2.14 

(m, 2H, cyclobutyl-H), 1.82–1.80 (m, 2H, cyclobutyl-H); 13C NMR (400 MHz, D2O) δ 48.38, 

20.59. 

 

2.2.1.7 (±)-trans-Cyclobutane-1,2-diamine, 9 

 

H2N NH2

2HCl

H2N NH2

KOH

8 9  
trans-Cyclobutane-1,2-diamine dihydrochloride (1.22 g, 7.67 mmol) was dissolved in 

water (3 mL) and added to a separatory funnel containing freshly ground KOH (1.72 g, 30.7 

mmol). The mixture was shaken vigorously and then extracted with CHCl3 (4×10 mL). The 

CHCl3 extracts were dried over Na2SO4 and the solvent was removed in vacuo to a pale yellow 

liquid (612 mg, 93%). 1H NMR (400 MHz, CDCl3) δ 2.86–2.82 (m, 2H, CHN), 2.04–2.00 (m, 

2H, cyclobutyl-H), 1.82 (br s, 4H, NH2), 1.22–1.17 (m, 2H, cyclobutyl-H); 13C NMR (400 MHz, 

CDCl3) δ 59.25, 25.73. 

 

2.2.1.8 Resolution of trans-cyclobutane-1,2-diamine, 10 8 

H2N NH2

H3N NH3

OHHO

COOHOOC

HO OH

OOC COOH

9 10  
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(±)-trans-Cyclobutane-1,2-diamine (2.11 g, 24.5 mmol) was added to a solution (+)-tartaric 

(8.64 g, 57.6 mmol) acid and 1 mL of methanol in 7 mL of water. At 40°C, 12 mL of methanol 

was filtered, washed with 10 mL of methanol and dried in air to give a white precipitate (1.95 g, 

containing a 2:1 ratio of (+)-tartaric acid and trans-cyclobutane-1,2-diamine: 1H NMR (400 

MHz, D2O) δ 4.47 (s, 4H), 3.96–3.93 (m, 2H), 2.32–2.29 (m, 2H), 1.97–1.95 (m, 2H); Three 

recrystallisations of this material from MeOH/H2O (1:1) gave white crystals (961 mg, 10%); 

[α]D2O = +32.0 (c 1, H2O ) ;13C NMR (400MHz, D2O) δ 179.10, 75.53, 51.06, 23.25. 

 

 2.2.2 Calculations 
Semi empirical calculations have been the best in predicting the geometric properties and 

vibrational frequencies of transition and organometallic metal complexes. 9 Therefore we have 

used this method for the salen conformer. 

The molecular structures were constructed using Spartan ’08 (Wavefunction, Inc. Irvine, 

CA). For construction of structure, we have used teradented Zn metal. In the following 

structures,  

                          

Color Atom 

Grey Carbon 

White Hydrogen 

Blue Nitrogen 

Red Oxygen 

Green Zn metal 

 

We have calculated the heat of formation (E) for following transition metal complexes in 

their M and P forms using semi-empirical AM1 calculations. The obtained results are as follows, 
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P-type complexes, E= 912.555 kJ/mol 

 

Figure 2.5  Results of  Semi-empirical AM1 calculation for P-type of Zn complexes with 

4-ring sidearm. 

 

 

          
M-type complexes, E= 923.348 kJ/mol 

 

 

Figure 2.6  Results of  Semi-empirical AM1 for M-type of Zn complexes with 4-ring 

sidearm. 
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P-type complexes, E= 1573.029 kJ/mol 

 

Figure 2.7  Results of Semi-empirical AM1 calculation for P-type of Zn complexes with 

3-ring sidearm. 

 

 

 

 

  
M-type complexes, E= 1598.190 kJ/mol 

 

Figure 2.8  Results of Semi-empirical AM1 calculation for M-type of Zn complexes with 

3-ring sidearm. 

 

 



30 

 

 2.3 Results & Discussion  
 

As previously mentioned, it is important to have conformational control of catalysts in 

order to achieve high enatioselectivity in asymmetric catalysis.  We have used the Spartan ‘08 

program to perform semi-empirical AM1 calculations, with the primary aim of geometry 

optimization and single-point energy determination. Using this method we have calculated the 

energy difference between P and M conformers of complexes with different backbones and 

sidearms. The energy differences reported in Figure 2.9show that in case of the 1,2-cyclobutyl 

backbone, we can expect a significant difference (> 10 kJ mol-1) in the helical conformers. In 

case of a backbone with bigger rings, we predict lower energy differences between helical 

conformers and also have more flexibility. 6 For the  cyclopropyl backbone, it is possible to have 

inconvertible conformer due to high energy difference between P and M conformer’s 

nevertheless high flexibility of cyclopropyl ring might affect its ability to bind metals. 

  

 

 
Figure 2.9  Energy difference between P and M conformer with respective backbone. 
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For the synthesis of trans-cyclobutane 1,2-diamines, we have mainly used literature 

procedures with following modifications : 

1) In step two, 1-cyano-cyclobutane-1,2-dicarboxylic acid dimethyl ester,  was prepared 

from meso-dimethyl 2,5-dibromohexane-1,6-dioate and KCN using methanol as the 

solvent. The reaction was carried out for 67 h. After addition of water, the product 

was extracted in ethyl acetate and the solvent was removed using vacuum. The 

obtained product was directly used for next step without further purification.   

2) Instead of converting tartrate salt to pure diamine, the ligand synthesis was carried 

out using the tartrate salt of trans-cyclobutane-1,2-diamine to avoid yield loss during 

conversion. 

 

We have measured the specific rotation of the bis(tartrate) salt of trans-cyclobutane-1,2-

diamine by using polarimeter. Observed data as follow; 

[α]D
20 = 100α/l*C 

(α = +0.32, l= 1 dm, C=1.09 g/100 ml)              

[α]D
20=+31.19 (c 1, H2O) 

 

The specific rotation value ([α]D 
20 ) indicates that the formed enantiomer  is dextrorotary 

enantiomer. In literature, the specific rotation value for the bis(tartrate) salt of trans-cyclobutane-

1,2-diamine is  [α]D
20=+28 with this result they have reported presence of only one enantiomer 

of the diamine derivative.6  Therefore in our case also we expect to have single enantiomer 

i.e.(R)-enantiomer. 

 2.4 Conclusion 
In conclusion, the modeling and the calculations presented us the opportunity to take a 

critical look at this novel salen complex. On the basis of our computational study of various back 

bone for salen ligand and also the literature study shows that the cyclobutyl ring could be good 

replacement for cyclohexyl backbone. To synthesize monohelical salen complexes, we have 

chose trans-cyclobutane-1,2-diamine as the source of chirality and we were able to synthesize 
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trans-cyclobutane-1,2-diamine with  few modification to the literature procedure. The analysis of 

synthesized tartrate salt of diamine confirms formation of enantiopure  product and the formed 

salt will be directly used for ligand synthesis explained in  coming chapter. 
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Chapter 3 - Synthesis and characterization of novel ligands with 

(1R,2R)-cyclobutyl backbone 

 3.1 Introduction 
Chiral tetradentate Schiff-base ligands have numerous attractive features that constitute 

the basis for their effectiveness in asymmetric reactions. Salens are a type of tetradentate Schiff-

base ligand which commonly prepared by the condensation of two equivalents of a 

salicylaldehyde derivative with a 1,2-diamine. Chiral versions of this tetradentate bis(imine) 

ligand are prepared simply by using chiral 1,2-diamines, although ligands derived from other 

diamines (1,3-, 1,4-, etc.) are often included in this class. Related tetradentate Schiff-base ligands 

with neutral pyridine-type donors can be produced by condensing a diamine with a pyridine 

aldehyde. These ligands are overall neutral in their binding to metal ions. The condensation to 

generate the tetradentate Schiff-base ligands generally proceeds in nearly quantitative yield 

(Figure 3.1). 

NH2

OH

CHO

NH2

N

OH

N

N

CHO

HO

N

N

N

N

+

Diamine

Salicylaldehyde

Pyridine aldehyde  
 

Figure 3.1 General scheme of  tetradentate Schiff-base ligand formation from 1,2-

diamines. 
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Metal complexes of above mentioned salen ligands are readily prepared from a variety of 

first row and second row transition metal salts as well as main group metals, with the ligand 

being dianionic after the loss of phenoxy protons. Once the suitable metal for the preferred 

reactivity has been identified, the modularity of synthesis of ligands permits the systematic 

tuning of catalyst steric and electronic properties by alteration of the metal counterion, the chiral 

diamine or the salicylaldehyde components.1 It is striking that salen ligand has often been found 

to be the optimum ligand for a broad range of reactions catalyzed by several different metals.2  

 
Figure 3.2 shows a few examples of ligands available with a 1,2-cyclobutyl backbone 

that have been prepared for previous studies.3,4  

        

N N

OH HO

CF3
F3C            

N N

OH HO

 

N N

OH HO  
 

Figure 3.2  Some previously synthesized ligand with cyclobutyl backbone. 

 
In this chapter, we will be discussing synthesis and characterization of novel ligand 

bearing cyclobutyl backbone. For synthesis of these ligands, We have used three different types 

of sidearm according to their functional advantages in asymmetric catalysis.  

 3.2 Experimental 

 3.2.1 Synthesis  
1H, 2D and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz or 200 

MHz spectrometer in CDCl3 or DMSO-d6. Data is expressed in parts per million (ppm) 

downfield shift from tetramethylsilane or residual protiosolvent as internal reference and are 
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reported as position (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), 

coupling constant (J in Hz) and integration (number of protons). IR spectra were collected on 

neat sample using Nicolet 380 FT-IR (Thermo Scientific, Madison MN) at room temperature. 

UV-Vis spectra were obtained on a Varian Cary 500 scan UV-Vis-NIR spectrophotometer 

(Agilent Technologies) in tetrahydrofuran (THF). The solution samples for UV-Vis were 

prepared at room temperature, with the concentrations ranging between 1.5 and 2.5 × 10-5 M. A 

1.00 cm path length quartz cell was employed for analyses. High resolution electrospray 

ionization (HR-ESI) mass spectra were acquired on a LCT Premier (Waters Corp., Milford MA) 

time of flight mass spectrometer. 

 

3.2.1.1 1-Hydroxybenz[a]anthracene-2-carboxaldehyde, 115 

Synthesis was carried out using literature procedures5 and 1H NMR data collected for the 

pure material was consistent with literature. 

 

3.2.1.2 4-Hydroxy-3-phenanthrenecarboxaldehyde, 126 

Synthesis was carried out using reported procedures and 1H NMR data collected for the 

pure material was consistent with literature. 

 

3.2.1.3 2-Formylbenzoquinoline, 147 

 

N N

CHO

SeO2
Dioxane/H2O

Reflux, 26 h

13 14
 

 

Synthesis was carried out using literature procedures except purification the crude 

material was achieved by sublimation. 1H NMR (CDCl3, 400 MHz): δ 7.75 (d, 1 H, CH), 7.79 (t, 

1 H, CH), 7.84 (t, 1 H,CH), 7.95 (d, 1 H, CH), 7.97 (d, 1 H, CH), 8.19 (d, 1 H, CH), 8.34 (d, 1 H, 
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CH), 9.44 (d, 1 H, CH), 10.37 (s, 1 H, CH). 13C NMR (CDCl3, 100 MHz): δ 194.21, 151.29, 

146.57, 136.93, 133.91, 131.63, 130.83, 129.12, 129.04, 128.17, 127.94, 125.04, 124.69, 118.60. 

 

3.2.1.4 2-Formylquinoline, 168 

 
N N CHO

SeO2, dioxane

70%TBHP, 
50 oC, 1 h

15 16  
To a solution of SeO2 (2.55 g, 23.0 mmol) in dioxane (20 mL) was added dropwise 70% 

TBHP (10 mmol) and the mixture was stirred for 0.5 h at room temperature to form the complex. 

After the qunaldine  15 (1.43 g, 10.0 mmol) was added to the mixture, the resulting solution was 

heated for 1 h at 50°C. The reaction mixture was filtered and the solvent was evaporated to give 

the residue which was, after addition of a little amount of water, extracted with CHCl3. The 

CHCl3 fraction was evaporated. The residue is purified by sublimation to afford white crystalline 

product 16 (1.25 g,  80%).  1H NMR (CDCl3, 400 MHz): δ 7.70 (t, 1 H, CH), 7.83 (t, 1 H,CH), 

7.92 (d, 1 H, CH), 8.04 (d, 1 H, CH), 8.26 (d, 1 H, CH), 8.32 (d, 1 H, CH), 10.24 (s, 1 H, 

CH). 13C NMR (100 MHz) δ 193.92, 152.53, 147.84, 137.28, 130.60, 130.54, 129.31, 127.97, 

77.48, 77.16, 76.84, 28.45. 

 

3.2.1.5 5-methyl-3-formyl Salicylic acid, 179 

 

OHC

HO

COOH

CH3

HO

COOH

CH3

Hexamethyleneteramine

TFA, 900C

17  
A solution of 5-methylsalicylic acid (5.0 g, 33 mmol) and hexamethylenetetramine (22 g, 

150 mmol) in TFA was warmed to 90 °C and stirred for 14 h. The orange solution that resulted 

was poured into dilute hydrochloric acid (1 M, 500 mL) and the solution was stirred for a further 
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6 h. The white precipitate that resulted was filtered and then dried in a vacuum desiccator for 2 

days. 5-methyl-3-formyl salicylic acid 17 (5.7 g, 97 %) was obtained as a damp off-white 

solid. 1H NMR (DMSO, 400 MHz): δ 2.20 (s, 3 H, CH3), 7.61 (d, 1 H, CH), 7.81 (d, 1 H, CH), 

10.22 (s, 1 H, CH).  13C NMR (100 MHz, DMSO) δ 189.43, 172.08, 162.06, 137.55, 134.35, 

128.76, 123.84, 115.00, 20.19. 

 

3.2.1.6 5-methyl-3-formyl salicylic ester, 1810 

H3COOC

HO

CHO

CH3

HO

CHO

CH3

Thionyl Chloride

MeOH, Reflux
HOOC

17 18
 

The 5-methyl-2-formyl salicylic acid (193 g, 1.07 mol) 17 was dissolved in methanol, 

thionyl chloride (150 mL) was added and the mixture was refluxed till NMR showed absence of 

starting material peaks. After cooling, the precipitate was collected by filtration and dried to 

obtain methyl 5-methyl-3-formyl salicylic ester 19 (190 g, 91%).1H NMR (400 MHz, CDCl3): δ 

2.33 (s, 3 H, CH3), 3.98 (s, 3 H,OCH3), 7.83 (s, 1H, CH), 7.91 (s, 1H, CH),  10.47 (s, 1H, CHO), 

11.31 (s, 1H, OH) .  13C NMR (100 MHz, CDCl3) δ 189.39, 169.95, 161.94, 136.86, 135.11, 

128.67, 124.12, 113.97, 52.75, 20.33. 

 3.2.2 Synthesis of ligands 

 3.2.2.1 2,2'-[(1R,2R)-1,2-Cyclobutanediylbis(nitrilomethylidyne)]bisbenz[a]anthracen-1-ol, 

((R,R)-20) 

N N

OH HOH3N NH3

OHHO

COOHOOC

HO OH

OOC COOH

CHO
HO

+

Ethanol/H2O

K2CO3, reflux

10 11 20

2
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To a solution of (R,R)-1,2-dimmoniumcyclobutane bis-(+)-tartrate salt (10, 418 mg, 1.08 

mmol) in 100 mL of EtOH and 5 mL of H2O was added K2CO3 (543 mg, 3.93 mmol). The 

mixture was heated at 70°C for 10 min. To this solution was added 1-hydroxybenz[a]anthracene-

2-carboxaldehyde (11, 554 g, 2.16 mmol) and the resulting yellow mixture was heated at reflux 

for 30 min. The reaction was cooled to room temperature, and the volume reduced to 

approximately 50 mL. At that point, H2O (200 mL) was added to induce the precipitation of the 

title compound. The yellow precipitate was filtered and redissolved in 120 mL of CH2Cl2, and 

washed with 100 mL of brine followed by 100 mL of distilled water. The solution was then dried 

over anhydrous Na2SO4 and filtered. The solvent was removed in vacuo to give the ligand (R,R)-

20 (610 mg, 95.0 % yield) as a powder. 1H NMR (400 MHz, CDCl3) δ 2.27−2.26 (m, 2 H, CH), 

2.48−2.47 (m, 2 H, CH), 3.34−3.32 (m, 2 H, CH), 7.24 (d, 2 H, CH), 7.38 (d, 2H, CH), 7.52 (d, 2 

H, CH), 7.57−7.55 (m, 4 H, CH), 7.90 (d, 2 H, CH), 8.05−8.02 (m, 2 H, CH), 8.25−8.23 (m, 2 H, 

CH), 8.36 (s, 2 H, CH), 8.42 (s, 2 H, N=CH),10.66 (s, 2 H, CH), 15.72 (s, 2 H, OH).13C NMR 

(100 MHz, CDCl3) δ 165.74, 164.25, 137.31, 132.87, 131.31, 131.27, 131.15, 129.88, 129.61, 

129.28, 128.14, 127.51, 127.21, 126.67, 125.99, 125.60, 120.21, 118.74, 115.30, 68.10, 24.34. 

ESI-MS (MeOH) m/z: Calc M+H = C42H31N2O2 = 595.2386, 3.2 ppm; found 595.2405, Calc 

M+Na = C42H30N2O2Na = 617.2205, 4.1 ppm; found 617.2230. 

 

 3.2.2.2 3,3'-[(1R,2R)-1,2-Cyclobutanediylbis(nitrilomethylidyne)]bis-4-phenanthrenol, ((R,R)-

21) 

N N

OH HOH3N NH3

OHHO

COOHOOC

HO OH

OOC COOH

CHO
HO

+

Ethanol/H2O

K2CO3, reflux

10 12 21

2

 

To a solution of (R,R)-1,2-diammoniumcyclobutane bis-(+)-tartrate salt (10, 418 mg, 1.08 

mmol) in 100 mL of EtOH and 5 mL of H2O was added K2CO3 (543 mg. 3.93 mmol). The 

mixture was heated at 70°C for 10 min. To this solution was added 4-Hydroxy-3-
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phenanthrenecarboxaldehyde (12, 484 mg, 2.16 mmol) the resulting yellow mixture was heated 

at reflux for 30 min. The reaction was cooled to room temperature, and the volume was reduced 

to approximately 50 mL. At that point, H2O (200 mL) was added to induce the precipitation of 

the title compound. The yellow precipitate was redissolved in 120 mL of CH2Cl2, and washed 

with 100 mL of brine followed by 100 mL of distilled water. The solution was then dried over 

anhydrous Na2SO4 and filtered. The solvent was removed in vacuo to give the ligand (R,R)-21 

(512 mg, 96.0 % yield) as a powder. 1H NMR (400 MHz, CDCl3) δ 2.22−2.21 (m, 2 H, CH), 

2.46−2.45 (m, 2 H, CH), 4.28−4.26 (m, 2 H, CH), 7.22 (d, 2 H,CH), 7.31 (d, 2 H,CH), 7.63−7.56 

(m, 4 H, CH), 7.73−7.69 (m, 2 H, CH), 7.87 (d, 2 H, CH), 7.89 (dd, 2 H, CH), 8.33 (s, 2 H, 

N=CH), 10.11 (d, 2 H, CH), 15.45 (s, 2 H, OH). 13C NMR (100 MHz, CDCl3) δ 168.28, 163.68, 

137.37, 132.47, 131.71, 130.93, 129.20, 128.47, 128.23, 127.44, 127.02, 126.00, 121.06, 118.25, 

113.93, 67.37, 24.29. ESI-MS (MeOH) m/z: Calc M+H = C34H27N2O2 = 495.2073, 4.4 ppm; 

found 495.2052, Calc M+Na = C34H26N2O2Na = 517.1892, 0.6 ppm; found 517.1895. 

 

 3.2.2.3 (1R,2R)-N,N’-Bis[(2-benzoquinolyl)methylene]-1,2-cyclobutanediamine, ((R,R)-22) 

N N

N NH3N NH3

OHHO

COOHOOC

HO OH

OOC COOH
N

CHO

+

10 14 22

2

 

 

2-Formylbenzoquinoline (14, 25.0 mg, 0.125 mmol), trans-cyclobutane-1,2-diamine (10, 

22 mg, 0.075 mmol) and sodium methoxide (15.0 mg, 0.375 mmol) were added in a porcelain 

mortar and pestle. To this mixture 4-5 drops of ethanol were added and the mixture was ground 

at room temperature for 5 minutes. The product was then extracted in chloroform and vacuum 

dried to give pure product 22 in (33 mg, 98%) in high yield. 1H NMR (400 MHz, CDCl3) δ 2.23-

2.21 (m, 2 H, CH), 2.43-2.42 (m, 2 H, CH), 4.53-4.51 (m, 2 H, CH), 7.67 (d, 2 H,CH), 7.69 (t, 2 

H, CH), 7.71 (t, 2 H, CH), 7.82 (d, 2 H, CH), 7.91 (d, 2 H, CH), 8.22 (d, 2 H, CH), 8.36 (d, 2 H, 

CH), 8.74 (s, 2 H, N=CH), 9.35 (d, 2H, CH). 13C NMR (100 MHz, CDCl3) δ 161.81, 153.68, 
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146.15, 136.36, 133.86, 131.66, 128.77, 128.41, 128.00, 127.35, 127.21, 125.33, 124.56, 119.20, 

69.87, 23.94. Calc M+H = C32H25N4 = 465.2079, 2.8 ppm; found 465.2066. 

 

 3.2.2.4 (1R,2R)-N,N’-Bis[(2-quinolinyl)methylene]-1,2-cyclobutanediamine), ((R,R)-23) 

N N

N N
H3N NH3

OHHO

COOHOOC

HO OH

OOC COOH

N CHO
+

10 16 23
 

 

2-Formylquinoline (16, 17.0 mg, 0.125 mmol), trans-cyclobutane-1,2-diamine (10, 22 

mg, 0.075 mmol) and sodium methoxide (15 mg, 0.75 mmol) were combined in a porcelain 

mortar and pestle. To this mixture 4-5 drops of ethanol were added and ground at room 

temperature for 5 minutes. The product was then extracted in chloroform and vacuum dried to 

give a pure product in high yield (27 mg, 99%). 1H NMR (400 MHz, CDCl3) δ 2.18-2.16 (m, 2 

H, CH), 2.40-2.38 (m, 2 H, CH), 4.48-4.45 (m, 2 H, CH), δ 7.60-7.56 (m, 2H, CH), 7.75-7.72 

(m, 2 H,CH), 7.86-7.82 (m, 2 H,CH)8.12 (d, 2 H, CH), 8.22 (d, 2H, CH), 8.32 (d, 1 H, CH), 8.59 

(s, 1 H, N=CH). 13C NMR (100 MHz, CDCl3) δ 161.25, 155.06, 147.97, 136.65, 129.92, 129.75, 

128.96, 127.88, 127.56, 118.63, 69.74, 23.85, 0.15. Calc M+H = C24H21N4 = 365.1766, 2.8 

ppm; found 365.1725. 

 

 3.2.2.5 3,3'-[(1R,2R)-1,2-cyclobutanediylbis(nitrilomethylidyne)]bis[2-hydroxybenzoic acid], 

((R,R)-24a) 

N N

OH HO

H3N NH3

OHHO

COOHOOC

HO OH

OOC COOH
CHO

HO
+

Ethanol

H3COOC CH3 COOH

H3C CH3

HOOC
NaOMe, Refulx

10 18
(R,R)-24  

 

To a solution of (R,R)-1,2-diammoniumcyclobutane bis-(+)-tartrate salt (10, 192 mg , 

5.00 mmol) in 100 mL of  dry EtOH was added NaOMe (216 mg, 40.0 mmol). The mixture was 
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heated at 70°C for 10 min. To this solution was added 3-formylsalicylic acid ester (18, 180 mg, 

10 mmol) and the resulting yellow mixture was heated at reflux overnight. The reaction was 

cooled to room temperature, and the volume reduced to approximately 50 mL. The yellow 

precipitate was filtered and washed with CH3Cl to remove unreacted sidearm. Finally (161 mg, 

79.0 %) of yellow product, (R,R)-24, was obtained. 1H NMR (400 MHz, DMSO) δ 1.88-1.86 (m, 

2 H, CH), 2.28 (s, 3 H, CH3), 4.06-4.04 (m, 2 H, CH), 7.58 (s, 4H, CH), 8.58 (s, 2H, N=CH), 

17.25 (s, 2 H, COOH). 13C NMR (100 MHz, DMSO) δ 171.39, 161.81, 155.11, 133.22, 128.66, 

123.59, 122.01, 120.71, 70.39, 40.26, 40.05, 39.84, 39.42, 39.21, 39.00, 23.57, 20.26. (One 

backbone signal overlap with side arm methyl signal), Calc M+H = C22H23N2O6 = 411.1556, 

2.4 ppm; found 411.1546, Calc (M+Na)+ = C22H22N2O6Na = 433.1376; found 433.1349.  

 

 

 3.2.2.6 3,3'-[(1R,2R)-1,2-cyclobutanediylbis(nitrilomethylidyne)]bis[2-hydroxybenzoic acid], 

((R,R)-24b) 

N N

OH HO

H3N NH3

OHHO

COOHOOC

HO OH

OOC COOH
CHO

HO
+

Ethanol

HOOC COOH HOOC
NaOMe, Refulx

10 19
(R,R)-25

 

To a solution of (R,R)-1,2-diammoniumcyclobutane bis-(+)-tartrate salt (10, 192 mg , 

5.00 mmol) in 100 mL of  dry EtOH was added NaOMe (216 mg, 40.0 mmol). The mixture 

heated at 70°C for 10 min. To this solution was added 3-formylsalicylic acid (19, 180 mg, 10 

mmol) the resulting yellow mixture was heated at reflux overnight. The reaction was cooled to 

room temperature, and the volume reduced to approximately 50 mL. The yellow precipitate was 

filtered and washed with CH3Cl to remove unreacted sidearm. Finally (161 mg, 79.0 %) yellow 

product, (R,R)-25, was obtained. 1H NMR (400 MHz, DMSO) δ 1.88-1.86 (m, 2 H, CH), 2.28 (s, 

3 H, CH3), 4.06-4.04 (m, 2 H, CH), 7.58 (s, 4H, CH), 8.58 (s, 2H, N=CH), 17.25 (s, 2 H, 

COOH). 13C NMR (100 MHz, DMSO) δ 171.39, 161.81, 155.11, 133.22, 128.66, 123.59, 

122.01, 120.71, 70.39, 40.26, 40.05, 39.84, 39.42, 39.21, 39.00, 23.57, 20.26. Calc M-H = 

C20H17N2O6 = 381.1087; found 381.1077, 2.5 ppm. 
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3.3 Results & Discussion  
 

The precursors for the ligand synthesis are prepared first (Figure 3.3).  The chiral diamine 

salt, trans-cyclobutane-1,2-diamine, 10 was prepared by the procedure outlined in chapter 2.  

H3N NH3

OHHO

COOHOOC

HO OH

OOC COOH

10

CHO

HO

11CHO

HO

12

N CHO

16
OHC

HO

COOH

CH3

17

 
Figure 3.3 The precursors for ligand synthesis. 

 
 

Synthesis of ligands (R,R)-20 and (R,R)-21 involves a simple Schiff base condensation 

reaction of 10 with the appropriate sidearm, 11 or 12 respectively, Figure 3.4. The neutral 

diamine is subject to oxidation, so we have used the tartaric acid salt of the diamine instead, to 

avoid yield loss during conversion. First the diamine salt was stirred with base (K2CO3) for in 

situ conversion into diamine and then the respective sidearm was added in the same pot. After 

reaction completion, water was added to induce precepitate formation. Further product was 

redissolved and washed with brine to afford pure product. Synthesis of ligands was carried out 

without using inert conditions, however subsequent analysis (1H/13C NMR) required the use of 

dry solvent as there is facile decomposition in solution via hydrolysis of the imine bond. As 

solids, the ligands are stable to decomposition from atmospheric moisture. 
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CHO
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OH HO
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2

2

 
Figure 3.4 Synthetic scheme for ligands (R,R)-20 and (R,R)-21. 

 
The ligands (R,R)-22 and (R,R)-23 were synthesized by solvent assisted grinding. 

Initially, we tried the condensation reaction using ethanol as the solvent, but this resulted in low 

yields and impure product. Solvent assisted grinding is a 'greener' process, which also gives very 

high yields and pure products for these ligands. In this method, the diamine salt 10 is ground 

with the appropriate sidearm, 14 or 16, respectively in presence of base and few drops of solvent 

(Figure 3.5). The (1H/13C NMR) analysis required the use of dry solvent due to facile 

decomposition of the imine bond via hydrolysis.  The ligands are stored under an inert 

atmosphere to avoid decomposition from atmospheric moisture. 
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Figure 3.5 Synthetic scheme for ligands (R,R)-22 and (R,R)-23 by solvent-assisted 

grinding. 

 
 

Synthesis of ligands (R,R)-24 and (R,R)-25 is accomplished by Schiff-base condensation 

reactions of the diamine salt 10 with sidearm 18 or 19 (Figure 3.6). The reaction involves 

conversion of the diamine salt into the free diamine using sodium methoxide as base and then in 

the same reaction mixture the respective sidearm was added. After completion of the reaction the 

solid product was purified by chloroform washing. Synthesis of ligands was carried out without 

using inert conditions, however subsequent analysis (1H/13C NMR) required the use of dry 

solvent as there is facile decomposition via hydrolysis of the imine bond. As solids, the ligands 

are stable to decomposition from atmospheric moisture. 
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 Figure 3.6 Synthetic scheme for ligands (R,R)-24 and (R,R)-25.  

 
 

 3.3.1 NMR spectroscopy 

 3.3.1.1 NMR spectroscopy of ligands (R,R)-20 and (R,R)-21 

A similar 1D and 2D NMR analysis was undertaken of the ligand, (R,R)-20. The 1H 

NMR spectrum of (R,R)-20 with specific assignments is shown in Figure 3.7. Complete 

assignment of the cyclobutyl backbone was not attempted due to the appearance of broad 

multiplet peaks in the aliphatic region. This is likely due to fluctuation of the ring and second 

order effects, not to the presence of multiple conformers. The total number of resonances is half 

of that possible since the molecule is C2 symmetric. The imine proton is unique in that it appears 

as a singlet peak at 8.42 ppm. The doublet peak at 10.66 is also easily assigned as there is a 

characteristic upfield shift due to a ring current effect in the bay region of the molecule. 
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Figure 3.7 The 1H NMR spectrum of (R,R)-20 with specific assignments. 
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Figure 3.8 The 1H NMR spectrum of (R,R)-21 with specific assignments. 

 
 

The assignments described above for ligand (R,R)-20 are also based on 2D COSY NMR 

spectroscopy. The distinct aromatic bay proton doublet at 10.66 ppm allows for a convenient 

starting point to assign the remaining aromatic protons of the molecule using the COSY spectra 

(Figure 3.9). A correlation between the imine proton and the phenolic hydrogen at 15.45 ppm 

was observed in the COSY. The COSY spectra also allowed the general assignment of signals 

corresponding to the protons of the cyclobutyl backbone. 
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Figure 3.9 The  1H-1H  COSY NMR spectrum of ligand (R,R)-20.  

 

  

 3.3.1.2 NMR spectroscopy of ligands (R,R)-22 and (R,R)-23 

A similar 1D and 2D NMR analysis was undertaken of the ligand, (R,R)-22. The 1H 

NMR spectrum of (R,R)-22 with specific assignments is shown in Figure 3.10. Complete 

assignment of the cyclobutyl backbone was not attempted due to the appearance of broad 

multiplet peaks in the aliphatic region. This is likely due to fluctuation of the ring and second 

order effects, not to the presence of multiple conformers. The total number of resonances is half 

of that possible since the molecule is C2 symmetric. The imine proton is unique in that it appears 

as a singlet peak at 8.74 ppm. The doublet peak at 9.33 is also easily assigned as there is a 

characteristic upfield shift due to a ring current effect in the bay region of the molecule. 
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Figure 3.10 The 1H NMR spectrum of (R,R)-22 with specific assignments. 
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Figure 3.11 The 1H NMR spectrum of (R,R)-23 with specific assignments. 

 

 

For ligand (R,R)-22, the assignments described above and the distinct resonances of the 

bay proton (9.33 ppm) to the nearest aromatic proton allows for a convenient starting point to 

assign the remaining aromatic protons of the molecule using the COSY spectra (Figure 3.12). 

For example there is a COSY correlation between the doublet resonance at 8.35 ppm and the 

doublet at 8.21 ppm. 
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Figure 3.12 The  1H-1H  COSY NMR spectrum of ligand (R,R)-22. 

 

 3.3.1.3 NMR spectroscopy of acid functionalized ligand, (R,R)-24 

 

Figure 3.13 shows the 1D-1H-NMR spectrum of (R,R)-24 along with the specific peak 

assignments. The number of peaks depicted in the NMR spectra is half the number of possible 

resonances, indicating the presence of a C2-symmetrical molecule. The imine peak appears at 

8.58 ppm as a singlet, corresponding to two hydrogens. The two benzyl hydrogens appeared as 
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singlet at 7.58 ppm. The cyclobutyl backbone hydrogens appear as broadened multiple peaks in 

the aliphatic region and one backbone peak is under the methyl proton signal at 2.18 ppm. Due to 

the rapid hydrogen exchange processes between the phenol and a carboxylic acid with the 

solvent deuterons we just see one sharp singlet at 17.25 ppm for phenol. 

 
 
 

 
 

Figure 3.13 The 1H NMR spectrum of (R,R)-24 with specific assignments. 
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Figure 3.14 The hydrogen bonding between the phenolic hydrogens, the imine nitrogens 

and the carboxylate oxygens. 

 
 

The molecule is set up for facile hydrogen bonding between the phenolic hydrogens, the 

imine nitrogens and the carboxylate oxygens, Figure 3.14. Hydrogen bonded 

phenols/carboxylates usually appear as sharp signals in the 1H NMR spectrum as the proton 

exchange process is restricted in the presence of such bonding. We observed one sharp peak at 

17.25 ppm which is significantly sharper than a regular phenol peak, indicating the presence of 

hydrogen-bonding between phenol and the imine group. We also expect to have hydrogen 

bonding between the acid protons and the phenol oxygen, but this signal is not present due to 

H/D exchange.  
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Figure 3.15 The 1H-1H COSY NMR spectrum of ligand (R,R)-24. 

 

 3.3.2 Electronic and infrared spectra 
Most absorption spectroscopy of organic compounds is based on transitions 

of n or π electrons to the π *excited state. This is because the absorption peaks for these 

transitions fall in an experimentally convenient region of the spectrum (200 - 700 nm). In our 

case, UV-vis spectra of the ligands were collected on THF solutions. The ligands ((R,R)-20 to 

(R,R)-24) exhibit absorption bands in a range of 265 nm and 335 nm, Table 3.1.  The band at 265 

nm has been assigned to the benzene ring and the one at 335 nm, to the imino groups.  

IR spectra of ligand samples were collected on neat samples. The presence of the imine 

bond band for Schiff-base ligands ((R,R)-20 to (R,R)-24) in the frequency range of 1690-1590 
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cm-1 confirms their formation, Table 3.2.11 The ligands (R,R)-20, ((R,R)-21 and ((R,R)-24 showed  

characteristic C–O stretching vibrations of the phenolic OH group which are expected to shift  at 

higher frequency after metalation. 

 
 
Table 3.1  Characteristic UV-vis absorption bands for ligands. 
 

Compound Benzene ring Imino group 
(R,R)-20 265 334 
(R,R)-21 248 335 
(R,R)-22 220 347 
(R,R)-23  241 316 
(R,R)-24                       234 318 

 
 

 
Table 3.2  Characteristic IR absorption bands for ligands. 
 

Compound υ(C=N)/cm-1 υ(C-O phenolate)/cm-1 
(R,R)-20 1591 1297 
(R,R)-21 1625 1264 
(R,R)-22 1615 - 
(R,R)-23 1613 - 
(R,R)-24 1629 1252 

 
 

 

 3.3.3 Mass spectral analysis 
The mass spectra of ligands provided valuable information concerning ligand 

compositions and structures. Structural information can be provided from the mass peaks in the 

molecular ion cluster and from the isotope patterns which are matched to those calculated for 

particular chemical compositions. The MALDI-TOF mass spectra of these ligands showed the 

expected molecular ion peaks that compared with the simulated values to fourth decimal places. 

The molecular ion peak for all the ligands (both calculated and found) and the isotopic pattern 

peak numbers are shown in the experimental section. The isotopic pattern also matches well with 

the simulated isotopic pattern. This is strong evidence that we have successfully synthesized the 

described ligands with the cyclobutyl backbone. The mass spectra of the ligands are shown in 

Figure 3.16 to Figure 3.21. 
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N N

OH HO

Chemical Formula: C42H30N2O2
Exact Mass: 594.2307

       
      

 
 

Figure 3.16  The simulated isotopic pattern (top) and observed mass spectrum of ligand 

(R,R)-20 (bottom). 
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N N

OH HO

Chemical Formula: C34H26N2O2
Exact Mass: 494.1994

    
 

 

 
 

Figure 3.17 The simulated isotopic pattern (top) and observed mass spectrum of ligand 

(R,R)-21 (bottom). 
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N N

N N

Chemical Formula: C32H24N4
Exact Mass: 464.2001

       
 

 

 

         

 
 

Figure 3.18 The simulated isotopic pattern (top) and observed mass spectrum of ligand 

(R,R)-22 (bottom). 
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N N

N N

Chemical Formula: C24H20N4
Exact Mass: 364.1688          

 

 

 
 

Figure 3.19 The simulated isotopic pattern (top) and observed mass spectrum of ligand 

(R,R)-23 (bottom). 



60 

 

 

N N

OH HO

H3C CH3

COOH HOOC

Chemical Formula: C22H22N2O6
Exact Mass: 410.1478

     
 

 

 
Figure 3.20 The simulated isotopic pattern (top) and observed mass spectrum of ligand 

(R,R)-24 (bottom). 
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N N

OH HO

COOH HOOC

Chemical Formula: C20H18N2O6
Exact Mass: 382.1165

     
 

 

 
Figure 3.21 The simulated isotopic pattern (top) and observed mass spectrum of ligand 

(R,R)-20 (bottom). 
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 3.4 Conclusion 
We have synthesized and characterized Schiff-base ligand with cyclobutyl backbone 

incorporating three different types of sidearms. Also, we have explored a new method i.e. solvent 

assisted grinding for the synthesis of ligand with bis(imine-pyridine) sidearm, which allows us 

greener synthesis with minimal use of organic solvents. All synthesized ligands showed half 

number of 1H NMR signals which indicate C2 symmetry. The 1R,2R-cyclobutyl derived ligands 

are stable in air therefore can be store without much precaution.  We were unable to crystallize 

ligands, always ending up with powdery or sticky product. In coming chapters, we will be 

discussing complexation and applications as catalyst of cyclobutyl derived ligands. 
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Chapter 4 - Synthesis and characterization of complexes with 

cyclobutyl backbone 

 4.1 Introduction 
Over the past decade, the number of applications for metal salen complexes has grown 

rapidly to incorporate an extremely broad range of chemical transformations, containing the 

asymmetric ring-opening of epoxides, aziridination, cyclopropanation, and the epoxidation of 

olefins.1 This versatility in chemical reactivity and selectivity is a result of the ability of salen-

type ligands to complex a variety of metals with a large number of oxidation states in an easily 

tunable chiral environment. As such, there has been considerable interest in the synthesis of new 

salen-type complexes of transition and main group metals to further develop applications in both 

catalysis and materials chemistry.2,3,4 

The formation of metallosalen complexes can be achieved by simply mixing the ligand 

with a metal ion after its conversion to the corresponding phenoxide ion derivative or under basic 

conditions, Figure 4.1. Most metal ions can form salen complexes, with the exception of alkali, 

alkaline-earth and some of the rare-earth metals.5 

 

 
Figure 4.1  Synthetic scheme for metallosalen complex. 

 

 4.2 Synthesis 
The ligand (R-R)-20 was metallated with zinc chloride to afford the mononuclear 

complex (R,R)-25. The complex, (R,R)-25 is afforded as a pale yellow colored precipitate and is 

of high purity, as was indicated by 1H/13C NMR. The high solubility of the ligand versus the high 

insolubility of the complex in toluene allows for facile purification by washing with solvent. 
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Similarly, the complex (R,R)-26 is also synthesized using manganese(II) chloride. Four 

equivalents of sodium methoxide were added into the reaction mixture. The role of NaOMe is to 

deprotonate the two phenolic oxygens from the salen ligand to facilitate the metallation. The by-

product, methanol, can be easily removed by vacuum drying. Dioxygen gas was bubbled through 

the pale brown suspension for 2 h to oxidize Mn(II) to higher oxidation states. Dark green was 

obtained upon Soxhlet extraction in CH2Cl2 in moderate yields. 

 

N N

O O
Zn

N N

OH HO

ZnCl2, CH2Cl2:Ethanol, 

NaOMe

RT

20

25

N N

O O
Mn

MnCl2, CH2Cl2:Ethanol, NaOMe

RT

26
 

Figure 4.2  Synthetic scheme for complex (R,R)-25 and (R,R)-26. 

 

Similarly, the ligand (R-R)-21 was metallated with zinc(II) chloride in the presence of the 

base sodium methoxide to afford the mononuclear complex (R,R)-27. The complex, (R,R)-27 is 

afforded as a greenish yellow colored precipitate and analyzed by 1H NMR. (R,R)-27 showed 

low solubility in most NMR solvents, making 13C NMR analysis difficult. The complex (R,R)-28 

is also synthesized  using  iron chloride. The metalation gave a brown colored product. The 

paramagnetic nature of complex (R,R)-28 doesn’t allow detailed NMR analysis. 
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Figure 4.3  Synthetic scheme for complex (R,R)-27 and (R,R)-28. 

 

Acid-functionalized salen ligands such as ligand (R,R)-24 have a great potential as 

versatile ligands that can produce a variety of coordination environments for metal ions. Their 

two metal binding pockets have significantly different binding abilities; the salen pocket, 

consisting of two imine-nitrogen donors and two phenoxide donors, can be activated by the 

addition of a mild base while the phenoxide/carboxylate pocket requires a stronger base for 

deprotonation. Both binding pockets are suitable for coordinating to transition metals of different 

geometries. In further studies, ligand (R,R)-24 was metallated with nickel(II) acetate, to afford  

dinuclear complex, but instead, we obtained mononuclear complex (R,R)-29. Nickel complex 

(R,R)-29 was afforded in moderate yields, and 1H NMR spectra the indicated paramagnetic 

nature of the complex. The reaction of ligands (R,R)-24  with different metal salts such as nickel 

perchlorate also gave the mononuclear nickel complex. Previously our research group mentioned 

that using strong base in reaction with acid functionalized ligand can give dinuclear complexes 

but in case of ligand (R,R)-24 only mononuclear complexes obtained. 
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Figure 4.4  Synthetic scheme for nickel complex (R,R)-29. 

 4.2 Experimental 

 4.2.1 Synthesis  
1H and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz or 200 MHz 

spectrometer in CDCl3 or DMSO-d6. Data is expressed in parts per million (ppm) downfield 

shift from tetramethylsilane or residual protiosolvent as internal reference and are reported as 

position (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling 

constant (J in Hz) and integration (number of protons). IR spectra were collected on a Nicolet 

380 FT-IR (Thermo Scientific, Madison MN) at room temperature. UV-Vis spectra were 

obtained on a Varian Cary 500 scan UV-Vis-NIR spectrophotometer (Agilent Technologies) in 

tetrahydrofuran (THF). The solution samples for UV-Vis were prepared at room temperature, 

with the concentrations ranged between 1.5 and 2.5 × 10-5M. A 1.00 cm path length quartz cell 

was employed for analyses. HR-ESI-Mass spectra were collected by electrospray ionization and  

acquired on a LCT Premier (Waters Corp., Milford MA) time of flight mass spectrometer. 
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 4.2.1.1 Zn(II)-(R,R)-20-complex, ((R,R)-25) 

N N

O O
ZnN N

OH HO

ZnCl2, CH2Cl2:Ethanol, 
NaOMe

RT

20 25  
Zinc chloride (0.079 g, 0.58 mmol), sodium methoxide (0.093 g, 1.73 mmol) and ligand 

(R,R)-20 (0.345g, 0.58 mmol) were suspended into a 2:1 mixture of methylene chloride/ethanol 

(15 mL). After stirring overnight the reaction mixture was concentrated to a yellow solid that 

was dissolved into THF (20 mL). The solution was carefully filtered to remove fine insoluble 

solids, and the clear filtrate was diluted with ethanol (40 mL). Stirring for 3 h resulted in the 

gradual formation of a yellow precipitate. The precipitate was collected and consecutively 

washed with methylene chloride (5 mL) and ethanol (5 mL) to afford (R,R)-53 (0.37 g, 98% 

yield). 1H NMR (400 MHz, CDCl3) δ 2.20−2.18 (m, 2 H, CH), 2.43−2.42 (m, 2 H, CH), 

4.59−4.57 (m, 2 H, CH), 6.93 (d, 2H, CH), 7.07 (d, 2 H, CH), 7.37−7.34 (t, 2 H, CH), 7.45−7.41 

(t, 2 H, CH), 7.59 (d, 2 H, CH),  7.79 (d, 2 H, CH), 7.96−7.93 (m, 4 H, CH), 8.14 (s, 2 H, CH), 

8.33 (s, 2 H, CH),10.98 (s, 2 H, CH). 13C NMR (100 MHz, CDCl3) δ 172.98, 170.55, 139.42, 

134.44, 132.79, 131.94, 130.99, 130.51, 129.54, 128.15, 127.43, 126.52, 125.64, 125.37, 123.07, 

116.36, 116.06, 68.21, 30.18, 26.08.. 

 4.2.1.2 Mn(IV)-(R,R)-20-complex, ((R,R)-26) 

N N

O O
MnN N

OH HO

MnCl2, CH2Cl2:Ethanol, 
NaOMe

RT

20 26  
  Manganese(II) chloride (0.12 g, 0.96 mmol), sodium methoxide (0.10 g, 1.9 mmol) and 

ligand (R,R)-20 (0.30 g, 0.502 mmol) were suspended into a 2:1 mixture of 
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dichloromethane/ethanol (15 mL) and stirred overnight. The reaction mixture was oxidized by 

oxygen gas for 2 hours followed by soxhlet extraction in dichloromethane (100 mL). The filtrate 

was concentrated to yield a dark green powder (0.13 g, 41 %).   

 4.2.1.3 Zn(II)-(R,R)-21-complex, ((R,R)-27) 

N N

O O
ZnN N

OH HO

ZnCl2, CH2Cl2:Ethanol, 
NaOMe

RT

21 27
 

Zinc chloride (0.079g, 0.58 mmol), sodium methoxide (0.093 g, 1.73 mmol) and ligand   

(R,R)-21 (0.286 g, 0.58 mmol) were suspended into a 2:1 mixture of methylene chloride/ethanol 

(15 mL). After stirring overnight the reaction mixture was concentrated to a yellow solid that 

was dissolved into THF (20 mL). The solution was carefully filtered to remove fine insoluble 

solids, and the clear filtrate diluted with ethanol (40 mL). Stirring for 3 h resulted in the gradual 

formation of a yellow precipitate. The precipitate was collected and consecutively washed with 

methylene chloride (5 mL) and ethanol (5 mL) to afford (R,R)-27 (0.307 g, 95% yield). 1H NMR 

(400 MHz, DMSO) δ 2.18−2.16 (m, 2 H, CH), 4.76−4.54 (m, 2 H, CH),6.98 (d, 2 H, CH), 7.23 

(d, 2 H, CH), 7.56−7.52 (m, 2H, CH), 7.64−7.61 (m, 4 H, CH), 7.84 (d, 2 H, CH), 7.90 (d, 2 

H,CH), 8.52 (s, 2 H, N=CH), 10.38 (d, 2 H, CH). One backbone signal overlaps with the solvent 

peaks.  
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 4.2.1.4 Fe(III)-(R,R)-21-complex, ((R,R)-28) 

N N

O O
FeN N

OH HO

Fe(ClO4)3 , CH2Cl2:Ethanol, 
NaOMe

RT
ClO4

21 28
 

 

Iron (II) perchorate (0.168g, 0.480 mmol), sodium methoxide (0.078 g, 1.450 mmol) and 

ligand (R,R)-21 (0.237 g, 0.48 mmol) were suspended into a 2:1 mixture of methylene 

chloride/ethanol (15 mL). After stirring overnight the reaction mixture was concentrated to a 

solid that was dissolved into THF (15 mL). The solution was filtered to remove fine insoluble 

solids, and the clear filtrate diluted with ethanol (15 mL). Upon stirring for 30 minutes a black 

precipitate formed, and this was collected to afford (R,R)-28  (0.211 g, 68% yield). 

 4.2.1.5 Ni(II)-(R,R)-24-complex, ((R,R)-29) 

 

N N

O O

H3C CH3

COOH HOOC

Ni

N N

OH HO

H3C CH3

COOH HOOC

Ni(AcO)2·4H2O

 EtOH, Refulx

24 29
 

To a solution of Schiff base ligand (R,R)-24 (820 mg, 2.0 mmol) in EtOH (10 mL), was 

added Ni(OAc)2.6H2O (995 mg, 4.0 mmol), and the mixture was stirred for 12 h under reflux. 

After cooling down to room temperature, the precipitate (Ni2/Schiff base complex) was collected 

by filtration. Then, the solid was washed with H2O (x 3), EtOH (x 3), and Et2O. The solid was 

dried under reduced pressure to afford the Ni2 -Schiff base (R,R)-29  complex (860 mg, 92 %) as 

a blue green solid. 
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 4.3 Results and discussion 

 4.3.1 NMR spectroscopy 

After completion of synthetic steps, 1H spectroscopy were employed to characterize the 

prepared zinc(II) complexes . Table 4.1, includes the 1H NMR chemical shifts of the ligands and 

diamagnetic zinc(II) complexes. Absolute assignment of all signals was not attempted due to the 

intricacy of the spectra, although those readily identifiable were assigned. For both complexes, a 

single set of proton resonances was observed, suggesting the existence of only one discrete 

species in solution, and the absence of dinuclear complexes (helicates) in the case of the zinc 

salens. The number of resonances was half that possible in total, as is expected for C2 symmetric 

molecules. 

 
Table 4.1  Ligand and Zn(II) complex 1H NMR chemical shifts. 

 
 Imine 

C–H 
O…H…N Aliphatic C-H Aromatic C–H 

Ligand (R,R)-20 8.42 15.72 2.27−2.26 (m, 2 H, CH), 
2.48−2.47 (m, 2 H, CH), 
3.34−3.32 (m, 2 H, CH). 

7.24 (d, 2 H, CH), 7.38 (d, 
2H, CH), 7.52 (d, 2 H, 
CH), 7.57−7.55 (m, 4 H, 
CH), 7.90 (d, 2 H, CH), 
8.05−8.02 (m, 2 H, CH), 
8.25−8.23 (m, 2 H, CH), 
8.36 (s, 2 H, CH), 10.66 
(s, 2 H, CH). 

Complex(R,R)-25 8.33  2.20−2.18 (m, 2 H, CH), 
2.43−2.42 (m, 2 H, CH), 
4.59−4.57 (m, 2 H, CH). 

6.93 (d, 2H, CH), 7.07 (d, 
2 H, CH), 7.37−7.34 (t, 2 
H, CH), 7.45−7.41 (t, 2 H, 
CH), 7.59 (d, 2 H, CH),  
7.79 (d, 2 H, CH), 
7.96−7.93 (m, 4 H, CH), 
8.14 (s, 2 H, CH),  10.98 
(s, 2 H, CH). 

Ligand (R,R)-21 8.33 15.45 2.22−2.21 (m, 2 H, CH), 
2.46−2.45 (m, 2 H, CH), 
4.28−4.26 

 7.22 (d, 2 H, CH), 7.31 
(d, 2 H,CH), 7.63−7.56 
(m, 4 H, CH), 7.73−7.69 
(m, 2 H, CH), 7.87 (d, 2 
H, CH), 7.89 (dd, 2 H, 
CH), 10.11 (d, 2 H, CH). 

Complex (R,R)-27 8.52  2.18−2.16 (m, 2 H, CH), 
4.76−4.54 (m, 2 H, CH) 
(One backbone signal 

6.98 (d, 2 H, CH), 7.23 (d, 
2 H, CH), 7.56−7.52 (m, 
2H, CH), 7.64−7.61 (m, 4 



71 

 

overlap with solvent 
peak).  
 

H, CH), 7.84 (d, 2 H, CH), 
7.90 (d, 2 H,CH), 

 
 
 
 

 

 

 

 
 

 

Figure 4.5 The 1H NMR spectrum of complex (R,R)-25 with specific assignments. 
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Figure 4.6 The 1H NMR spectrum of complex (R,R)-27 with specific assignments. 

 
 
 

 4.3.2 Electronic and infrared spectra 
The characteristic IR bands of complexes are summarized in Table 3.2. Compared to the 

free ligands Zn(II) salen complexes showed a red shift in the position of v(C=N) in the 

corresponding complexes indicating  the coordination of imine N to the metal ion, Figure 4.7 to 

Figure 4.10. Furthermore, the phenoxo v(C-O) bands are blue shifted in the corresponding 

complexes, which indicates the coordination of phenol O to the metal center. The characteristic 

bands derived from the aromatic region in the salen ligand and in the complex are very 

complicated, and most are in the fingerprint region and very hard to assign. The IR spectra of the 

Ni complex a shows a sharp v(-COOH) band near 2918cm-1which specifies the absence of 

hydrogen bonding between carboxylic acid and hydroxyl groups. Also ,this shows that the metal 

ion attached through the hydroxyl group. 



73 

 

 

 
Figure 4.7 The IR spectra of ligand (R,R)-20. 

 

          
Figure 4.8  The IR spectra of Zn complex (R,R)-25. 
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Figure 4.9 The IR spectra of ligand (R,R)-21.  

  
 

 
Figure 4.10  The IR spectra of  Zn complex (R,R)-27. 
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Figure 4.11 The IR spectra of ligand (R,R)-24a. 

 

  
Figure 4.12  The IR spectra of Ni complex (R,R)-27. 
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 4.3.3 Mass spectra analysis 
Mass spectroscopy can directly measure the molecular weight of a molecular 

ion/fragment derived from a complex. In addition, the isotopic pattern may be quite distinct 

which can help to identify the compositions of species in solution.  

The mass data of 25-29 were collected in methanol by HR-ESI-MS. The Zn complex 

(R,R)-25 and (R,R)-27  showed molecular ion peak with one mole  of molecular water. The Ni 

complex (R,R)-29 formed doubly charged species indicated by peak near 465amu and also shows 

absence of dinuclear complexes. 

           

N N

O O
Zn

. H2O

 
Figure 4.13  Observed mass spectrum (top) for Zn salen complex (R,R)-25 with simulated 

isotopic pattern (bottom). 
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N N

O O
Zn

.H2O

 
 

Figure 4.14  Observed mass spectrum (top) for Zn salen complex (R,R)-27 with simulated 

isotopic pattern (bottom). 
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N N

O O

H3C CH3

COOH HOOC

Ni

Chemical Formula: C22H20N2NiO6
Exact Mass: 466.0675

 
 

Figure 4.15  Observed mass spectrum  for Ni salen complex (R,R)-29 by negative ESI. 
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Figure 4.16  Observed mass spectrum  for Ni salen complex (R,R)-29 indicating absence of 

dinuclear complex. 

 

 4.4 Conclusion  
The salen complexes with chiral cyclobutyl backbone have been synthesized and 

characterized. ESI-MS reveals the presence mononuclear complexes. 1H NMR studies showed 

that Zn complexes have C2 symmetry. The IR spectrum of these solids contained the 

characteristic imine stretch. However, the electrospray mass spectrum indicated the Zn 

complexes have molecular water attached. The manganese and iron complexes are not readily 

identifiable from their mass spectrum or IR spectrum. This indicates that manganese and iron 

metal are not suitable to form metal complexes with highly twist cyclobutyl backbone. 
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Chapter 5 - Catalytic study of complexes with cyclobutyl backbone 

 5.1 Introduction 
Enantioselective synthesis is also called chiral synthesis or asymmetric synthesis. This 

enantioselective synthesis is generally defined as a chemical reaction (or reaction sequence) in 

which one or more new elements of chirality are formed in a substrate molecule and which 

produces the enantiomeric or diastereoisomeric products in unequal amounts. More simply, it is 

the synthesis of a compound by a method that favors the formation of a specific enantiomer or 

diastereomer.1,2 

Enantioselective synthesis is a key process in modern chemistry and is particularly 

important in the field of pharmaceuticals, as the different enantiomers or diastereomers of a 

molecule often have different biological activity. As an example Figure 5.1, shows enantiomers 

of the chiral drug Thalidomide.3 

 

 

         

 

Figure 5.1 Enantiomers of chiral drug Thalidomide. 

 

http://en.wikipedia.org/wiki/Chirality_(chemistry)
http://en.wikipedia.org/wiki/Enantiomer
http://en.wikipedia.org/wiki/Diastereomer
http://en.wikipedia.org/wiki/Enantiomeric_excess
http://en.wikipedia.org/wiki/Pharmaceuticals
http://en.wikipedia.org/wiki/Enantiomer
http://en.wikipedia.org/wiki/Diastereomer
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 5.1.2 Catalysis 
In considering the properties of catalysts and their commercial importance, we have 

chosen Diels-Alder and Mannich-type reactions to illustrate the catalytic activity of our catalyst 

systems.  

 5.1.2.1 Diels-Alder reaction 
Diels–Alder reactions1 have been one of the most powerful organic synthetic methods for 

the construction of 6-membered cyclic compounds.4 In particular, asymmetric catalytic variants 

of Diels–Alder reactions have received special attention due to their potential ability to rapidly 

provide enantiomerically pure and complex compounds from simple substrates.5 Chiral Lewis 

acid catalysts have played an important role in these Lewis acid-promoted reactions. From a 

practical point of view, developing highly efficient chiral Lewis acids with low catalyst loading 

and minimal deactivation by moisture is one of the most important objectives in organic 

synthesis. Diels–Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazolidinones have also 

been used as model systems for developing new chiral Lewis acid catalysts and testing the 

degree of asymmetric induction.5  

O N

O
O

Bis-imine ligand
Ni(ClO4)2

- 40o C, CH2Cl2

N

O

O

O

 

Figure 5.2  Diels–Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazolidinones. 

 5.1.2.1 Mannich-type reaction 
Chiral α,β-diamino acids are crucial structural components in various biologically active 

compounds.6 Among possible routes for their synthesis, asymmetric synthesis via direct 

Mannich-type reactions of a glycine Schiff base are one of the most effective and straight 

forward route for producing chiral syn-α,β -diamino acids.7,8 Considering the importance of α,α-

disubstituted α-amino acids as chiral building blocks for pharmaceuticals and artificial peptides, 
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a new catalyst for chiral α-tetrasubstituted α,β-diamino acid synthesis with a broad substrate 

scope is in high demand.9,10 

 

O

NO2

O
N

Ar

Boc

O

O

Me NO2

NH

Ph

Boc

Catalyst (5 mol %)

THF, 0 oC

 

 Figure 5.3 Mannich-type reactions of N-Boc imines and α-substituted nitroacetates. 

 5.2 Experimental 

 5.2.1 Synthesis  
1H and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz or 200 MHz 

spectrometer in CDCl3 or DMSO. Data is expressed in parts per million (ppm) downfield shift 

from tetramethylsilane or residual protiosolvent as internal reference and are reported as position 

(in ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (J in 

Hz) and integration (number of protons). IR spectra were collected on a Nicolet 380 FT-IR 

(Thermo Scientific, Madison MN) at room temperature. UV-Vis spectra were obtained on a 

Varian Cary 500 scan UV-Vis-NIR spectrophotometer (Agilent Technologies) in tetrahydrofuran 

(THF). The solution samples for UV-Vis were prepared at room temperature, with the 

concentrations ranging between 1.5 and 2.5 × 10-5M. A 1.00 cm path length quartz cell was 

employed for analyses.  

5.2.1.1 t-butyl 2-bromo-propanoate, 31 

O

Br

H3C

Br

DMAP, t-Butanol

Triethylamine O

Br

O

30 31  
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2-Bromopropionyl bromide 30 (2.00 g, 9.26 mmol) was dissolved in dichloromethane (10 

mL) followed by the addition of t-butanol (1.03 g, 13.9 mmol), triethylamine (0.94 g, 9.3 mmol) 

and DMAP (20 mg).  After stirring for 16 hours the solution was washed with 10% HBr and 

saturated solution of NaHCO3, dried over anhydrous MgSO4, and concentrated under reduced 

pressure, yielding a tan oil 31 (1.42g, 73% yield). 1H NMR δ 4.23 (q, 1H,CH), 1.71 (d, 3H, CH), 

1.43 (s, 9H, 3CH3); 13C NMR δ 169.4, 82.3, 42.1, 27.8, 21.7. 

5.2.1.2 t-butyl 2-nitro-propanoate, 32 

 

O

Br

O

O

NO2

OPhlorogucinol
dihyrate

NaNO2, DMF

31 32
 

 Tertiary-butyl 2-bromo-propanoate 31 (400mg, 1.91 mmol) was dissolved in 5 mL 

dimethyl formamide along with phloroglucinol dihydrate (310 mg, 1.91 mmol) and sodium 

nitrite (145 mg, 2.10 mmol).  After stirring for two hours, the solution was separated between 

diethyl ether and water.  The organic layer was washed with brine, dried over MgSO4, and 

concentrated to dryness under reduce pressure.  The resulting brown solid was purified by flash 

chromatography using dichloromethane as the eluent, yielding 32 (93 mg, 28%) of a clear oil. 1H 

NMR 5.10 (q, 1H, CH), 1.75 (d, 3H, CH), 1.50 (s, 9H, 3CH3); 13C NMR (400 MHz, CDCl3) δ 

164.18, 84.40, 84.07, 27.63, 15.65. 

 5.2.1.3 α-sulfonyl amine, 34 

Ar

O NH2Boc,
PhSO2Na

HCOOH
MeOH/H2O

HN

Ph SO2Ph

Boc

33 34
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A mixture of benzaldehyde 33 (2.10 mL, 20.0 mmol), tert-butyl carbamate (1.17 g, 10.0 

mmol), benzenesulfinic acid sodium salt (4.11 g, 25.0 mmol) and formic acid (0.760 mL, 20.0 

mmol) in methanol (10 mL) and water (20 mL) was stirred at room temperature for 24 h. The 

resulting precipitate was filtered and washed well with diethyl ether. After drying under reduce 

pressure, the product 34 was obtained as a white solid (2.61 g, 75%). 1H NMR (CDCl3, 400 

MHz) δ 1.24 (s, 9H, 3CH3), 5.73 (d, 1H, CH), 5.90 (d, 1H, NH), 7.43-7.40 (m, 5H, Ar-H), 7.54-

7.51 (m, 2H, Ar-H), 7.62-7.64 (m, 1H, Ar-H), 7.89 (d, 2H, ArH); 13C NMR (CDCl3, 400 MHz) δ 

27.96, 73.90, 81.16, 128.72, 128.90, 129.00, 129.44, 129.80,129.91, 133.89, 136.93, 153.46. 

 5.2.1.4 N-Boc imine, 35 

HN

Ph SO2Ph

Boc
N

Ar

Boc

K2CO3, Na2SO4

THF, reflux

Boc =

O

O

34 35

 
A 100 mL round bottom flask with potassium carbonate (4.14 g, 30.0 mmol) and sodium 

sulfate (4.97 g, 35.0 mmol) was dried in oven at 200 °C. After the flask was cooled down to 

room temperature under N2, sulfonyl amine 34 (1.74 g, 5.00 mmol) was added along with dry 

THF (20 mL). The mixture was refluxed under N2 for 18 h. It was then allowed to cool to room 

temperature, filtered through Celite, and the filtrate was concentrated to give the imine 35 as a 

colorless oil (1.00 g, 5.00 mmol, 99%) which was used without further purification for the 

catalysis reaction. 1H NMR (CDCl3, 400 MHz) δ 1.47 (s, 9H,3CH3), 7.46-7.33 (m, 3H, Ar-H), 

7.81-7.78 (m, 2H, Ar-H), 8.75 (s, 1H, CHN); 13C NMR (CDCl3, 400 MHz) δ 27.93, 82.28, 

128.85, 130.19, 133.49, 134.10, 162.64, 169.64.  
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 5.2.1.5 3-acryl-2-oxazolidinone, 38 

O NH

O

OH

O
DCC, DMAP

CH2Cl2
O N

O
O

36 37 38

 

To a suspension of oxazolidinone (1.13 mmol), DMAP (0.15 mmol) and acrylic acid 

(1.47 mmol) in CH2Cl2 (1.5 mL) at 0 °C, under an argon atmosphere, was added DCC in one 

portion (1.47 mmol). After 10 min the temperature was raised to r.t. and stirring was continued 

until no starting material has left, as confirmed by TLC. The dicyclohexylurea formed was 

filtered and the precipitate washed with CH2Cl2 (10 mL). The filtrate was washed with saturated 

NaHCO3 (10 mL), dried with anhydrous Na2SO4 and concentrated at reduced pressure to furnish 

the crude product, which was purified by silica gel chromatography (30% EtOAc in hexanes). 1H 

NMR (CDCl3, 400 MHz) δ 4.10 (t, 2H, CH), 5.92 (d, 1H, CH), 6.58 (d, 1H, CH), 7.50 (q, 1H, 

CH). 13C NMR (400 MHz, CDCl3) δ 165.19, 153.52, 131.95, 127.11, 62.29, 42.76. 

 

 5.2.1.6 3-(Bicyclo[2.2.1]hept-5-en-2-ylcarbonyl)-2-oxazolidinone, 39 

O N

O
O

Bis-imine ligand
Ni(ClO4)2

- 40o C, CH2Cl2

N

O

O

O

38 39
 

 
To a mixture of Ni(ClO4)2·6H2O (18 mg, 0.05 mmol) and powdered molecular seives 

(4Å, 0.125 g) was added a solution of (R,R)-22 (23 mg, 0.05 mmol) in CH2Cl2 (2 mL); the 
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mixture was then stirred at room temperaturefor 6 h. To the above mixture was added a solution 

of 3-acryloyl-2-oxazolidinone 38 (72 mg, 0.50 mmol) in CH2Cl2 (1 mL). After cooling to -40 

°C, the mixture was allowed to react with cyclopentadiene (0.33 g, 5.0 mmol) for 17 h. The 

reaction mixture was quenched with a saturated NH4Cl solution (3 mL) and then filtered .The 

filtrate was extracted with CH2Cl2 (5 mL × 3). The combined extracts were dried over 

anhydrous MgSO4 and evaporated in vacuo. The residue was chromatographed on silica gel with 

hexane–diethyl ether (7:3 v/v) to give cycloadduct 39 (0.098 g, 92%). 1HNMR (CDCl3, 400 

MHz)  1.36–1.48 (3H, m), 1.89–1.96 (1H, m), 2.91 (1H, m),3.28 (1H, m), 3.87–4.03 (3H, m), 

4.32–4.42 (2H, m), 5.84 (1H,dd), 6.21 (1H, dd). 

 

5.2.1.7  tert-Butyl3-(tert-Butoxycarbonylamino)-2-methyl-2-nitro-3-, 40 
 
 

O

No2

O
N

Ar

Boc

O

O

Me NO2

NH

Ph

Boc

Catalyst (5 mol %)

THF, 0 oC

 
Powdered molecular seives (4Å, 75 mg), the Ni catalyst 29 (7.0 mg, 0.015 mmol) and 

THF (750 μL) were added 50 ml flask under argon. To the mixture at 25 °C was added 

nitroacetate (57.8 mg, 0.33 mmol) and the mixture was cooled down to 0 °C. After stirring for 15 

min at 0 °C, N-Boc-imine  (61.6 mg, 0.3 mmol) was added. The reaction mixture was stirred for 

12 h at 0 °C. The reaction mixture was evaporated under reduced pressure, and the crude product 

40 was analyzed by 1H NMR. The yield was very low; therefore product was not able to be 

satisfactorily purified. 

 5.3 Results & Discussion 

 5.3.1 Diels–Alder reactions with bis-imine catalyst 
Initially, an uncatalysed Diels–Alder reaction of cyclopentadiene with 3-acryloyl-2-

oxazolidinone was conducted in CH2Cl2 at room temperature for 1 hour. The obtained product 

NMR spectrum is as shown in Figure 5.4 which indicated ≤ 56% conversion as reported 

previously.11 
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Figure 5.4 1H-NMR spectra of 3-alkenoyl-2-oxazolidinones (top) and H-NMR spectra of 

Diels–Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazolidinones without catalyst. (* 

shows peak indicating conversion) 
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Diels–Alder reaction of cyclopentadiene with 3-acryloyl-2-oxazolidinone proceeded 

smoothly (yield = 92%) with 10 mol% of chiral bis(iminoquinoline)-Ni(II) catalyst with 

diastereomer ratio (endo:exo = 99:1). For this reaction, we have done in situ catalyst preparation 

by using ligand (R,R)-22 and Ni metal salt. 

N N

N N

Ligand (R,R)-22

 
Figure 5.5 Ligand used in catalyst preparation (top) and 1H-NMR spectra of Diels–Alder 

reactions of cyclopentadiene with 3-alkenoyl-2-oxazolidinones with catalyst. (* shows peak 

indicating conversion) 
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 5.3.2 Mannich-type reactions with acid fictionalized catalyst 
Controlled Mannich-type reactions of N-Boc imines and α-substituted nitroacetates 

showed that mononuclear salen Ni-complex are not effective for the present reaction catalysis 

and gave poor reactivity, Figure 5.6.  This suggests that binuclear Ni-complexes are important 

for achieving high yields. As previously explained by the Shibasaki group, we need to have 

binuclear Ni-complex salen to accomplish our goal of high yields and enatioslectivity. 

 

 

 
 

Figure 5.6  1H-NMR spectra of Mannich-type reactions of N-Boc imines and α-substituted 

nitroacetates. 
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 5.4 Conclusion 
A chiral bis(iminoquinoline) Ni(II) complex, was prepared from the chiral ligand and 

Ni(ClO4)2
.6H2O in the presence of powdered 4Å molecular seives in CH2Cl2. This was an 

efficient chiral Lewis acid catalyst for the asymmetric Diels–Alder reaction of cyclopentadiene 

with several 3-acryloyl-2-oxazolidinones, which yielded greater than 99% endo-cycloadduct.  In 

the case of Mannich-type reactions with acid-functionalized catalyst, we assume that cooperative 

functions of the two Ni metal centers in the catalytic complex would be important for achieving 

high stereoselectivity as well as reactivity. 
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Chapter 6 - Overall conclusion and future work 

In order to produce Schiff base, a chiral C2-symmetric diamine can be employed: the 

ligands are prepared by condensation reactions with these backbones. For our study, we have 

selected the cyclobutyl backbone. Since the smaller ring diamines might lead to more 

enantioselective catalysts by increasing the N-C-C-N dihedral angle and thus altering the ligand 

conformation in a favourable manner. Also, the computational studies suggest that the (1R,2R)-

cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy 

difference between the M and P helical forms. It has alkyl substituents on the amine groups, 

making them relatively basic. This will result in stronger imine or amide donors in the ligands 

produced after condensation. The electron rich nature of the imine groups of Schiff bases with 

this backbone make them relatively inert to hydrolysis.  

Some novel ligands using chiral cyclobutyl backone were prepared and consequently 

metallated with Zn(II), Ni(II), Mn (II) and Fe(II). The greener solvent assisted grinding method 

was introduced in synthesis of bis-imine ligands. The synthesized mononuclear complexes were 

characterized with different techniques. It was hoped these ligands would consistently form 

monohelimeric complexes but due to lower solubility of formed complexes we were unable to 

get crystallographic data. The asymmetric catalysis reaction using bis-imine cyclobutyl ligand 

with Ni metal showed great potential. It will be interesting to study more catalysis reaction with 

different component using bis- imine cyclobutyl ligand.  The acid fictionalized mononuclear 

complexes showed lack in reactivity in Mannich-type reactions which can be improve in future 

by incorporating second metal. 

The goal of this project was to synthesize metal complexes that would act as catalysts for 

asymmetric reactions. As we have had some success in catalysis of Diels-alder reaction, in future 

our group will explore other aspects of reaction such as, 

 

1. Investigate the catalysis mechanism  

2. Examine different substrate  

3. Optimize the reaction conditions  
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Appendix A – 1H and 13C NMR 
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