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N OT.SMI C LA TUR E 

a Subscript, indicates values of surrounding air. 

b Shape factor to be used in defining the jet boundary of 

zero downward velocity. 

Subscript, indicates values on axis of jet. 

C Constant of integration. 

Natural logarithm. 

g Gravitational acceleration; 32.2 feet per second. 

h Vertical coordinate from the imaginary point source 

k Thermal conductivity of air. 

k 
I 

Shape factor to be used in recirculating type velocity 

distribution. 

k2 Shape factor to be used in error function type velocity 

distribution. 

k3 Shape factor to be used in error function type tempera- 

ture distribution. 

kb Shape factor to be used in defining the jet boundary of 

the zero downward velocity. 

L Vertical coordinates from the nozzle outlet. 

m Subscript, indicates values at the end of the jet. 

o Subscript, indicates values at the orifice. 

p Subscript, indicates values at the beginning of the 

principal zone. 

r Radial distance from axis of jet to point of jet under 

consideration. 
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rf Radial distance from axis of jot to point of outside 

jet boundary established as surface of zero down- 

ward velocity. 

T Temperature. 

V Velocity. 

Denotes value based on temperature. 



INTRODUCTION 

From the thermodynamics viewpoint, the air jet can be 

classified into isothermal jet and non-isothermal jet, accord- 

ing to the thermal state of the fully developed jets. If the 

mixing of the jet with the surrounding stationary air takes place 

at an approximately constant pressure, the significant difference 

in the internal mechanism between these two jets is mainly due 

to the temperature variations that occur in the non-isothermal 

jet but not in the isothermal jet. 

For the non-isothermal jet, the temperature variations pro- 

duce the variations in both air density and turbulent kinematic 

viscosity. The variations of the air density will produce buoy- 

ant forces which will act on the fluid elements as external 

forces. The variations in the turbulent kinematic viscosity will 

produce a complicated variation in the pattern of viscous force 

which will also act on the fluid elements as external farces. 

With this complicated internal mechanism, together with the 

phenomenon of heat transmission in the non-isothermal jet, the 

theoretical analysis is much more difficult even with some 

plausible assumptions. However, the non-isothermal heated jet 

has been studied from its microscopic viewpoint, and correspond- 

ingly the internal mechanism of the air was not considered in 

the overall treatment_ 

The isothermal jet, due to its much more simplified internal 

mechanism than that of the non-isothermal jet, has been studied 

by solving the equation of continuity. The hyperbolic 
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distribution of center-line velocity of the isothermal jet, 

which has been obtained experimentally at the Experiment Station 

at Kansas State College, was obtained by solving an equation of 

continuity which employed spherical coordinates. 

CHARACTERISTICS OF THE HEATED JETS 

The Velocity Distribution of Heated Jets 

For heated Jets projected downward from a nozzle into a 

stationary air space, there will be viscous forces and buoyant 

forces acting on a fluid element. These farces will balance the 

rate of change of momentum of the fluid element, and the dynam- 

ically steady state can be obtained. 

Due to the predominant buoyant force acting on a fluid 

element, the downward directed component of velocity decreases 

with travel and near the bottom of the jet the air leaves the 

jet boundary and turns upward. The buoyant forces are considered 

to be greatest at the center line of the jet, and to decrease as 

the distance from the center line increases. Within the region 

of the boundary of zero downward velocity, the air flow is di- 

rected downward across the jet section, and in the region out- 

side the jet boundary the air which has been turned upward at 

the bottom of the jet continuously flows upward. 

This dynamical picture suggests a velocity profile which 

has the maximum downward velocity at the center line of the jet, 

then decreases to zero velocity at the jet boundary and has an 
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upward velocity distribution in the region outside the jet bound- 

ary. Consequently, the velocity distribution was assumed to 

have the form 

[1. 0-ki(r/rf)2 (1) 

uc rf 

in which ki is a shape factor, and rf is the radial distance of 

the jet boundary measured from the jet axis. The value of the 

shape factor, k1, can be determined In such a way that the net 

mass flow at each level is zero. 

The total mass flow at a section can be integrated as 

Since 

= 2ir f urdr 
0 

1 - 

r 
e Ll(r/rf) 

2 

uc rf 

M = 2tt if% {1 - ( 

r \ 

)-je-ki(r/rfi 
2 

rdr 
rf 

If the air density is treated as a constant, 

it fue2 rf2 1 

M = 1 - -- (4) 

ki kZ 

For the net mass flow at each level to be zero, it is obvious 

that ki = 1. 

The maximum upward velocity can be obtained by differenti- 
r 

ating equatian 1 with respect to --. This will result in the 

( 2 ) 

(3) 

simple relation 
rf 

(5) 



For k = 1, 
, 

r 
= 1.414 

rf 

1 
-(k1+1) 

Correspondingly, (--) = - 0 

uc max.up 
ki 

For kl = 1, 

(6) 

4 

(--) = -0-2 = -0.135 
u 

max.up 

The velocity profile for shape factor k equal to 1 was 

plotted (Plate I). The velocity profile has its maximum down- 

ward velocity at the axis of the jet and reaches zero at the 

boundary of the jot (i e r = re). For x, rf, the velocity be- 

comes negative; in other words, it is directed upward. It first 

increaned until r = rmax.upP which was found to be 1.414 rf for 

maximum upward velocity. The upward velocity decreases for r 

greater than this value, and becomes zero when r is infinity. 

The Boundary of the Heated Jets 

The location of the boundary of zero downward velocity- - 

inside of which the velocity is downward, while on the outside 

the velocity is upward --was determined by the following method. 

The empirical equation for the boundary of jet velocity 

was assumed to be 

re2 + h2 = hm2 cos b 9 

rf 
= tan 9 

h 



EX P Lf ATI 0:I 0i,' PLATE 

Downward volocity profile of recirculating flow 

= [1 (__)2j 0-ki(r/r/)2 
e rf 
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in which rf is referred to as the radial distance of tho bound- 

ary measured from the jet axis. 

Eliminating h in equations 7 and 8, there follows 

rf 
cos b 61 sin 9 (9) 

h 

rf 
-- was calculated by equation 9 for given --, and the cor- 

hm 
responhm ding boundary was plotted in Plate II for the case of 

b = 9. The other experimental equation for the jet boundary was 

assumed to have the form 

2 

= e -k b - 2 - (10) 
hm 

in which kb is a shape factor of the jot. 

The shape of the jet was determined by the shape factor of 

kb and for various kb the shapes of the jet change as shown in 

Plate 

If equation 10 is differentiated with respect to h, the 

maximum rf is obtained, and also the level, h (distance downr.Trd 

from the point source), of the maximum rf is determined. 

If one takes logarithmic differential on both sides of 

equation 10, 

log -- = -kb(--rf ) 
2 

hm 

dh 2 rf drf rf 
2 dh 

= kb 4. 2h 
h h h2 



EXPLANATION OF PLATE II 

Jet boundary of zero downward velocity dofined by 

rf 
cos b 9 sin 9 

hm 
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EXPLANATION OF PLATE III 

Jet boundary of zero downward velocity defined by 

r 
-kb(-h 

f 
) 

2 

e 
hm 
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Therefore 

2 kb(-f -)" - 1 
dr f 

dh rf 
2 kb( -f 

h 

By letting equation 11 be zero, 

rf 2 
2 kb (--) - 1 = 0 

h 

1 
(r--f ) 

2 
= --- 

h 2 kb 

rf 1 rf max 
- , 

h 7/2 kb 

If we substitute equation 12 back in equation 10, 

1 

(--) = e-kb 5i; = e-2 = .606 

hm for rfmax 

and rf can be calculated correspondingly as 

1 .428 
(rf), 

8-14 = -,7== hmax rax T2 kb 7 kb 

FOr kb = 2, 

.428 

rf mnx 
1.414 

hmax = 0.302 hmax 
- 

( 12 ) 

12 

The jet will spread more widely as the value of k decreases 

finally for kb = 0. rf tends to infinity. 

The Pecirculating Stream Lines 

In the flow of a jet, it is known that the stream line can 

be maintained only near the exit of the nozzle. At the 



downstream the flow is turbulent so that the stream line will 

not exist in reality. But it is of interest to represent equa- 

tion 1 by means of plotting the stream function, and corre- 

spondingly get the flow pattern for the particular type of re- 

circulating flow. The stream function was introduced thus: 

-"=fur 
a r 

The stream function V')can be solved for this particular case. 

(13) 

x 

T= r dr f(h) (14) 

If one substitutes the expression of u, equation 14 can be 

integrated as: 

f rf2 ue -k (r/r )2 2 kl-1 
e 1 f (-r -) + f(hc) (15) 

2 kl ki 

in which f(h c) is a function of h and can be determined by 

the initial condition, namely, T/ = 0 for r = 0. Thus 

Therefore 

,Pr f2 ue 
0 - 

2 lc' 

f(h c) = 

kl - 

ki 

, frf2 tic 

f(h 

t- kl 
kl - 1 

c) 

(16) 
2 kl kl 

Thus the stream function was found as 

erf2 

2 kl 

2 
(_ )2 e-kl(r/rf) 

rt. 

ki - 1 

ki 
(e-kl(r/rf)2 - 1)11(17) 

For the particular case of ki = 1, the equation can bo re- 

duced to a simple form: 

fr2 

2 

c (_r _)2 e-1(r/rf)2) 

rf 
(18) 



Since 
uc 
--. 

lac 

= 
h 
P 

Ci - 
h 

[1 
h 

2 - (---)- 
h m 

/ 

- ! n / 
' 1 / I 1--' ,t 

: i 

i f 
f 1 

in which 

cp 1, 4_ 1 - 
(_h _)2 

n 
(_r _)2 o-(rirf)2 

1h hm rf 
.-, 

,i, 

2 hm hp u 
1 "" () --,-2-'n.- cp = -___ 

hp hm k)rf.7) 

14 

The stream lines were constructed and are shown in Plate IV. 

It is obvious that for a given value of Ti and h, there will 

exist two roots of corresponding r/rf, single root, and none, 

for 
Cp 111 

greater than e-1, equal to e-1, and less 
hm h 

- (--)21 
n 

h L hm JJ 

less than e-1, respectively. 
1 

If two roots of r/rf exist, one of which will be loss than 

one, which is nothing more than the downward path, the other is 

greater than one, which is for the upward path. 

Single roots, then, correspond to a point of turning when 

the upward flow will turn downward, or the downward flow will 

turn upward at the point, namely, r = rf. Thus the stream lines 

form individual recirculating flow paths. 

The stream line of T= 0 is constructed by a line of jet 

axis, a horizontal infinite line at. h = hm, and also the boundary 

of top ceiling, and the vertical line at r is finity. 

1 The maximum value of (r/rf)2 
2 e-(r/rf) - occurs where 

r/rf = 1. For this case, r/rf has only one value, i.e., unity. 

For other values of (r/rf)2 e-Wrf,-12 , (r/rf) will have two 

values, one less than unity, the other greater than unity. 



EXPLANATION OF PLATE IV 

Recirculating; flow stream lines. 

e-(r/rf)2 

nr. 
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71omentum Analysis 

Fro-,T1 hh foregoing velocity distribution equation, the 

homentura of tha jet at a given cross section can be evaluated. 

Cl - e-kl(rirf)'?' 

uc rf 

2 -(r r I = 0 f for ki = 1 

rf 

Let = x r = rf x u = tic (1 - x2)e-x 
rf 

For given h, rr is fixed. 

dr = rf dx 

( 

TT 
1rf2 u02 

I( -) 

If J rf-- 

dI = J u' Py r dr 

( 0 ) 

= fu2 PTY rf9 x dx 

I = 2ITfrf2 uP x dx (21) 

)( 
= PIT frf2 ue2 (1- x2)2 e-Pxf' x dx 

Let x2 = y 

I = Trfrf2 ue2 
)( 

(1 - y)2 e-PY dy 

(1 - y2)2 e-2Y dy (P2) 

oc 

(1 - e-PY dy (23) 

re 
- E3-22C- 

0 2(4' 

0 
n 1 

e-2 + * 21 
'M i 1 

xl I(+) 

1 0 
= - (1 - e 

4 

0 



x4 

Troerf2 ue2 2 

1 
= e-- 

4 

2 
- 1 

-2x2 -2x2 - 0 - - 
0 4 

(25) 

'net I(+) + I(-) 1 1 1 

(1 - e-2) - 0-2 = (p6) 

rr frg 11,0 P. n trf2 ue- 4 4 4 

Therefore 
1 

'net Ilf2 
u02 

( 2.7 ) 

Hence the net momentum at each section is a quarter of the 

momentum which the jet would have if it had a uniform velocity 

equal to the center-line velocity over the circular area of 

radius rf. 

Asymptotic Incoming and Outgoing Stream Lines 

Many experimental studies on the downward projection of air 

jets have shown that velocities alonr the vertical axis of the 

jet will take a form as 

h n 
ri (--)2 7 

ue hp hm = 
110 

1 - (-E)2 

hm 

in which n is an exponent which has been assumed of the order of 

one-half and one-third for the case of heated jeti and 0 for an 

isothermal Jet. Also many experiments show that the normal 

1 "Characteristics of Downward Jets from a Vertical Unit 
Heater," by Linn Helander, S. M. Yen, and L. B. Knee. 



probability type curve is a satisfactory representation of the 

cross-sectional velocity profile of a free jet. Thus 

= e " -ke)(r/h)2 

ue 

If we combine equation 2E1 and equation 29, we get 

uo 

h 9- n 
1 - (--)- 

hm 

1 - (--hP ) 
p 

- 'h 

e-kp(r/h)2 (30) 

It is instructive to investigate the stream function which 

will be derived from equation 30, and thus we can compare the 

pattern of stream path with the previously described recircu- 

lating stream lines. 

If we introduce the stream function 

a 4# 
J u, r 

ar 
(31) 

Substitute equation 30 in equation 31, and we get the stream 

function as a function of h and r. Thus 

h 
" 

_n 

ir uo hp 4m 
(ij = f 

Jo h hp 
1 ( --)'_ 

hm 

h 
1 - ( - 

)per 

Uoh hp 

2k 

hra 

hP 

hm 

when r = 0, 9-1= 0, and f(h c) = O. 

-kr/h)2 
e - r dr + f(h c) 

1 - e 
-kp(r/h) 

2 

+ f(h c) 
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After rearrangement, 

0 
hm 

we get 

1- 1- e-k (r/h)2 (32) 
hm 

2k2 
in which C3 = 

uohph, 
1 (--hp ) 

hm 

The stream lines on Plate V were construct,,:d according to 

equation 32 for the case of n = and k2 = 70. 

The shapes of the stream lines are quite different from 

those of the recirculating stream lines. 

The individual stream line has upper asymptote and lower 

asymptote. 

The upper and lower asymptote can be found for a particular 

stream line. For n = 2, equation 32 becomes 

.% 
, (11_)7] e-k2(r/h)2j 

hm hm 

For any given particular stream line, say cri, 

C3 
Ti [3. 

- 
(__h )2j [1 

- 
e-k2(r/h)7] 

(33) 

hm hm 

For r eqUal to infinity, it follows: 

h 
C3T1 = 1- (--)` 

hm hm 

If squared on both sides, 

(IL)2 !:1 i - ( 

C 
(C3 11)2 (34) 

hm L hm 

h 
This is a quadratic of (--)'. 

hm 



EXPLANATION OF PLATE V 

Asymptotic incoming and outgoing stream lines. 

-- 1 - C3 e ie h 
rlce( /h)21 

/1 mi { 
hm hm 
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h 
Obviously, (--) 

hm 

1 - 4 C3" P 2 

h 
Therefore (--) 

hm upper 

h 
(--) 

hm lower 

2 

1/1 - 4 C32 y 12 

2 

1 + 1/1 - C32 it, 12 

2 
h 

Thus for Wi = 0, equation 36 gives -- = 0, corresponding 
hm 

to h = 0, which represents the upper branch asymptote, and equa- 
l: 

tion 37 gives -- = 1, corresponding to h = ham, which repro- 
hm 

sonts the lower branch asymptote. However, if two asy:vtotes 

(35) 

(36) 

(37) 

r)0 ,7, 4. 

are correspondents, the equation 34 should have two equal roots 

which require 

Then 

1 - 4 C32 tl2 = 0 

C32 ttf l2 = 1/4, or (c3 y 1) = 1/2 

1 
Hence (--) = = 0.707 

hm uL 12 

The characteristic difference between the asymptotic type 

air Inflow, outflow, and the recirculating typo of air flow is 

obviously justified by the existence of a boundary of zero 

velocity at finite distnco fro::: the axis of the jet In the 

latter case, and at Infinite distance frcyA the axis of the jot 

in the former case. 

If the surrounding space has no finite boundary, and in ex- 

treme cases the jet has no great temperature difference between 

surrounding space, then the fluid on the axis will travel ver- 

tically downward to the level of hmax., horizontally to infinity, 

and then upward. 



On the other hand, if the surrounding space is confined to 

finite walls and the averae temrerature difference is high, the 

buoyant force will act on the downcoming jet and push up the air 

flow which has been decelerated never the bottom of the jot. Due 

to this upwardly directed flow, t.he jet, which was ori6inally 

blowing down, will be decelerated and then turn upward. Thus it 

will construct the recirculating flow pattern. 

The Temperature Distribution of Heated Jets 

Several experiments show that the normal probability func- 

tion is a satisfactory representation of temperature difference 

ratio for a heated jet. Thus 

T - Ta 
a-k3(r/h1)2 

(38) 
Ta 

and for the center-line temperature difference ratio is ex- 

pressed by 

To Ta hp' 

To - Ta hl 

h' 
1 - 

hm' 

11 
1 - (1)1 --) 

2 

hml 

in which n is an exponent thich can be found from the experiment. 

(2n-1) 

(30) 

Finally, if we combine equations 38 and 39, we fet 

ht ,(2n-1) 

1 - (---) 
2 

T - Ta h hm' 2 
0-k3(r/ht ) (40) 

To - Ta h' 
1 - (---hp' ) 

2 

hint 



The temperature distribution curve is drawn for the case 

of k3 = 40, n = 2/3, and 1/2. The constant temperature contour 

lines are also plotted to show that these lines are spread out 

radially from the imaginary source. This fact shows the corre- 

seondence of the constant temperature contour line and stream 

lines, which are also spread out radially from the point source. 

One can easily expect that there would be no heat transmission 

along the stream line except by convection, and, on the other 

hand, since no flow would cross the stream line, there would be 

no heat flow to the tangential direction of the stre-m line ex- 

cept by conduction due to temperature gradient. However, with 

this fact it is better to employ spherical coordinates, and thus 

take advantage of the radial lines as stream lines so that the 

heat conduction is assumed to occur in a tangential direction, 

and heat convection is assumed to occur only stn a radial direc- 

tion (along stream line). 

The onere:y balance equation is derived, together with the 

following assumptions: 

1. Ignoring the energy losses which were caused by the 

viscous effects. 
T T a 

2. Temperature difference ratio is a function of 
To - Ta 

angle A, which is an angle made by the radial line and the 

center line of the jet. 

3. No velocity exists in tangential direction. 

The energy equation is expressed as: 

J2Cp VT=kV2 T 



EXPLANATION OF' PLATE VI 

Temperature profiles. 
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lines are temperature distribution, according to equation 

46. 



PLATE VI 

TEMPERATURE PROFILES 

.0I .02 .03 .04 05 .06 .07 
r7 , hm 

.08 .09 .10 .12 .13 .1 4 

9 



EXPLANATION OF PLATE VII 

Constant temperature contour lines according to 
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I 

in which n = 2/3, k3 = 40, 

1 

e -k3(r/h02 
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k 
or -i, V T = --- 

f 
- 72 T (41) 

If equation 41 is expanded into spherical coordinates, 

since for axial symmetric jet no circumferential velocity ex- 

ists, i.e., V0 = 0, we get: 

---- -,.z (- (r __-) + ____ (1 -A,(2) !I k 1 gT 8 0 2 
f co r2 0 r gr g 

a T 8T 
= Vr --- + Ve (42) 9r r 

Hero cos 9. 

If radial lines are assumed to be contour temperature 

lines, 

0T 
= 0 

2r 

(That is, no temperature gradient exists on the constant temper- 

ature contour lines.) Then the energy equation reduces to: 

k 1 d dT 1 ..(2 gT 
--- (1 -,c(2) = +Ve (43) 

C-pr 2 c114 r azzl 

From the third assumption we can neglect the right-hand 

side of equation 43, which expresses the heat convection in 

tangential direction. Finally, equation 43 reduces to a simple 

form: 

d dT 
--- (1 -,442) = 0 
d/.4 d 

( 4 ) 

The solution for this is obviously 

1 +,k 
T - Cl = C2 log (45) 

1 - 
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or, in more convenient form, 

T - Te 1 -4- .6( 
log (46) 

Tc - T a 1 - 

With this expression the temperature ratio becomes inf in- 

ity at ,4 = 1, i.e., when 9 = 0. Actually, this corresponds to 

the imaginary point source, because when Gf approaches 1 the 

radial constant temperature lines will squeeze to a point which 

corresponds to the imaginary point source, where the temperature 

is theoretically infinity. 

The calculated data are shown and compared with the exper- 

imental result. However, the temperature ratio curve which is 

based on equation 46 and fits the experimental equation at 0, 

is not very large. For a laa7,er 

a higher temperature ratio than the experimental result. This 

could be explained by the fact that the tangential velocity was 

neglected; namely. Ve = 0. 

Since V8 ti 0 at the region of small 8, no heat convection 

can be expected in a tangential direction, and the assumption 

of Ve = 0 leads us to equation 44 which neglected the heat con- 

vection in a tangential direction. So the solution of equation 

44 agrees with the experimental result for small values of 9. 

However, for a larger value of 8, Ve is no longer equal to zero 

and the heat convection will take place in a tangential direc- 

tion. This will cause a reduction of temnerature since heat 

will be carried away to the surroundl:v air space by the con- 

vection. 



Thermal Energy Balance 

For a surface of a volume V fixed in the space, the two 

basic laws, namely, tl-ie law of conservation of mass and the 

conservation of energy, should be satisfied. 

For the conservation of mass, 

lv 

32 

p 
2-, [ J2dV + 

r 
Juini ds = 0 

et Iv JO 

(47) 

For the conservation of energy, 

2Q, ;YTI 
- -- dV + f ui(Lijni)ds - rutuinids - ( -k ----ni)ds 

t 
/1;3 

/13 i$ 3"xl. 

d uJPdV 
t I 

(48) 

d Q 
in which --- is the rate of heat production per unit volume in 

(Yt 
by external agencies. u Is the total energy. of the system 

per unit mass. 

u = a ului + p + E + Wf = p H 

H = the enthalpy of the system per unit mass 

E = the internal anerGy of the system per unit mass 

p = the potential energy of the system per unit mass 

ni = the ith component of the outer normal 

Wf = the flow work per unit mass 

For the heated jet operatncat a steady state, these two 

principles require that the net increase of the mass and the 

energy be zero within a volume V. Then equations 47 and 48 

reduce to: 



ui ni ds = 0 

f 
vg q 

dv + fui (Tiini)ds - fu 
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(49) 

(-k 1 - - 
8 
-- 
T 
- ni) ds = 0 (50) 

8 xi 
If one takes a finite volume w,lich is bounded by the con- 

stant temperature surface and ignores the potential energy and 

kinetic energy, the energy equation reduces to: 
aQ 
--- dv +rut (Tijni)ds _rf,{ ujnj ds 

iv a t 

1 T 
- - (k ---- ni)ds 22 0 (51) 

8 xi 
This energy equation can be further reduced if the energy dis- 

sipation due to the viscous effect is ignored. 

g Q a T 
--- dv - fH uj nj ds - (-k ---- ni) ds = 0 (52) 
at 3 xi 

By assuming the air is a perfect gas, the enthalpy H can be ex- 

pressed as 

H C T = 

in which C is a specific heat at constant pressure and T is an 

absolute temperature in degree Rankine. Since the temperature 

is constant on the constant temperature surface, equation 52 

becomes 

8Q T 
dv - CpT fuj nj ds - -(k ni) ds 0 (53) 

Tv t xi 

According to equation 49, the first term in the left-hand side 

vanishes, and finally 



ila 29T 
--- dv + (k ---- ni) ds = 0 

v a t. s 8 xi 
( 54) 

Equation E4 states that the net amount of heat transmitted 

across the constant tetperature surface is equal to the rate of 

heat generated within the volume. The amount of heat conducted 

to the particular constant temperature surface was evaluated 

numerically from constant temperature surface profiles plotted 

- on Plate VIII. 1 The results shdw tut the amount of heat con- 

ducted across the constant temperature surfaces is a constant, 

which in turn shows that the heat generated within the hypo- 

/ 
gq 

thetical jet and evaluated as --- dv is generated at the 

v at 
point source. 

CHARACTERISTICS OT THE ISOTHEMAL JETS 

The law of conservation of mass rives the equation of con- 

tinuity: 

+ - f = 0 (55) 
at 

in which Pis the density of the fluid and V its velocity. For 

a steady isothermal jet we assume is constant. Then equation 

55 reduces to 

V V= 0 

If we expand the equation 56 in spherical coordinates 

(r e 0), there follows 

( 56 ) 

1 Temperature gradients at constant temperature surfaces 
were evaluated graphically from Plate VIII, and the heat flow 
was calculated from these evaluations. 



EXPLANATION OF PLATE VIII 

Numerical evaluation of heat conduction across the 

individual constant temperature surface. 

pn 
Qi = the amount of heat conducted from ith surface 

to (1 + 1) surface. 

C Ql = 560.5 C 444 = 562.1 

C Q2 = 549.3 C Q5 = 554.6 

C Q3 = 557.2 C Q6 = 553.5 



PLATE VIII 



d , 
--- kr' sin e Vr) (r sin V9) (r VO) = 0 

r e a0 
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(57) 

For axially symnetric jet VO = 0; hence the third term vanishes 

and equation 57 becomes: 

gVr glre 

ar sin G Vr + rn sin A ---- r cos 9 V@ + r sin G = 0 (M) 
dr de 

Since tit the vicinity of the jet axis, the velocity com- 

ponent in the direction perpendicular to the jet axis is negli- 

gibly small, correspondingly Vr and Ve have a relation as 

VT = Vr sin + Ve cos e = 0 (59) 

If we substitute equation 59 into equation 5, we Let 

gVe 
sin 8 + r sin Vr + r sin 9 = 0 (GO) 

r d e 

Diviciinr by r2 sin e, 

Vr Vr, a ve 

r r ra8 
The velocity component in tangential direction is much 

smaller than the velocity component in radial direction, and the 

third term in equation 61 which expresses the partial increment 

in tangential direction is small compared to the first two terms, 

so by neglecting the ti rd term we have 



3f1 

dVr vr 

= 0 
dr 

The solution of equation 62 is clearly 

C 

Vr =- r 

C can be determined by the initial condition. 

For r = r 
P' 

V = Vo, there follows: 

Vr rp 

Vo r 

( 67) 

(63) 

(64) 

This equation gives a hyperbolic distribution of the 

velocity at the vicinity of the jet axis which corresponds to 

the experimental results. 

CONCLUSION 

1. For heated jets of the recirculating flow, the velocity 

distribution co'dd be expressed as: 

u Cl 

(__v] 0-ki(r/rf)2 
o rf 

The individual stream line follows the recirculating path shown 

in Plate I. 

P. For a heated jet, if its temperature difference is not 

too high, the velocity distribution might be expressed as: 

u -a hp 
uo h 

h 
1 - ( --)2 

hm 
e 
-kp(r/n)P 
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The stream lines cone into the jet body asymptotically from 

the surroundinr space and leave the jet body asymptotically to 

the wurroundinE space. 

3. The jet boundary of zero downward velocity might be 

defined by the following e:;.Dressions: 

rf 
(i) (cos 139)2 sin e 

hm 

(ii) 
e-kb(rf/h)2 

tin 

4. The total amount of heat crossing a constant temperature 

surface was constant and this fact proved the consistency of the 

shapes of the constant temperature contour lines. 

5. The hyperbolic distribution of center-line velocity is 

an accurate flow pattern for isothermal jets. 
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The characteristics of mathematical models of non-isother- 

mal and isothermal jets were studied under the cuidance of tae 

Department of :lechanical Engineering at Kansas State College. 

The objectives of the studies were: 

1. To find the flow patterns represented by the models, 

and, by comparison with the flow pattern of the actual jet, to 

determine the validity of the equations employed to describe 

the model. 

P. Investigate the thermal characteristics of the models. 

3. Investigate empirical equations for the boundary of 

zero downward velocity. 

4. Obtain the pattern of center-line velocity distribution 

of the unheated jet model for comparison with the corresponding 

distribution for the actual jet. 

5. Obtain guidance for future research. 

The conclusions obtained from the study were: 

1. For 'seated jets of the recirculating flow type, the 

velocity distribution could be expressed as 

= 1-1 - e-ki(r/rf)' 

uc rf 

P. The jet boundary of zero downward velocity might be de- 

fined by the following expressions: 

r 
(1) 

f 
- cos b e sin e 

hm 

(ii) = e -k b (r f /h)2 

hm 

3. The constant temperature contour lines, which were 



p 

obtained from the. experimental equation, converge to the imagin- 

ary heat source, and the energy balance on the surface of con- 

stant temperature shows that the net amount of heat conducted 

across constant temperature surfaces is approximately equal to 

a constant. 

1. Loth experimental results and the theoretical analysis 

show t!lnt the hyperbolic distribution of center-line velocity 

in the isothermal jet is an accurate flow pattern. 


