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Abstract 

The cement industry is an important component in the quest to reduce global greenhouse 

gas emissions because of vast amounts of cement used annually. Incorporating supplementary 

cementitious materials (SCMs) into concrete is one alternative to reduce cement production and 

thereby reduce greenhouse gas emissions. This study investigated three types of agricultural 

residues, namely corn stover, wheat straw, and rice straw, in addition to bioethanol byproducts as 

potential resources for SCM production for concrete applications. Pretreatments, commonly used 

in bioethanol production, were used to improve pozzolanic reactivity of corn stover ash (CSA), 

wheat straw ash (WSA), and rice straw ash (RSA) in cementitious systems.  

In the first part of this research, the impact of distilled water and dilute hydrochloric acid 

pretreatments on pozzolanic reactivity of WSA, RSA, and CSA were studied. Results showed 

that pretreatments, particularly dilute acid, improved pozzolanic properties of CSA, WSA, and 

RSA by removing potassium and phosphorous from the biomass prior to ashing. In addition, 

WSA and RSA were shown to have similar pozzolanic reactivity to that of silica fume. 

In the second part of this study, suitability of high lignin residue (HLR), a bioethanol 

byproduct, for SCM production was investigated. It was shown that burning high lignin residue 

produces HLR ash that is very reactive in cementitious materials and can be used as a reactive 

SCM in concrete.  

The impact of each step in the production of bioethanol on the quality of bioethanol 

byproduct for subsequent burning and use in concrete was also studied. Sodium hydroxide and 

sulfuric acid pretreatments and enzymatic hydrolysis were used. Results revealed that sodium 

hydroxide pretreatment of the biomass have negative impact on biomass ash properties for 

concrete use because sodium hydroxide pretreatment did not remove phosphorous and other 

crystalline phases out of the biomass. However, sulfuric acid pretreatment of biomass greatly 

improved ash properties. It was also shown that enzymatic hydrolysis could have beneficial 

impact on ash properties because, during enzymatic hydrolysis, some phosphorous was leached 

out of the biomass.  
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Abstract 

The cement industry is an important component in the quest to reduce global greenhouse 

gas emissions because of vast amounts of cement used annually. Incorporating supplementary 

cementitious materials (SCMs) into concrete is one alternative to reduce cement production and 

thereby reduce greenhouse gas emissions. This study investigated three types of agricultural 

residues, namely corn stover, wheat straw, and rice straw, in addition to bioethanol byproducts as 

potential resources for SCM production for concrete applications. Pretreatments, commonly used 

in bioethanol production, were used to improve pozzolanic reactivity of corn stover ash (CSA), 

wheat straw ash (WSA), and rice straw ash (RSA) in cementitious systems.  

In the first part of this research, the impact of distilled water and dilute hydrochloric acid 

pretreatments on pozzolanic reactivity of WSA, RSA, and CSA were studied. Results showed 

that pretreatments, particularly dilute acid, improved pozzolanic properties of CSA, WSA, and 

RSA by removing potassium and phosphorous from the biomass prior to ashing. In addition, 

WSA and RSA were shown to have similar pozzolanic reactivity to that of silica fume. 

In the second part of this study, suitability of high lignin residue (HLR), a bioethanol 

byproduct, for SCM production was investigated. It was shown that burning high lignin residue 

produces HLR ash that is very reactive in cementitious materials and can be used as a reactive 

SCM in concrete.  

The impact of each step in the production of bioethanol on the quality of bioethanol 

byproduct for subsequent burning and use in concrete was also studied. Sodium hydroxide and 

sulfuric acid pretreatments and enzymatic hydrolysis were used. Results revealed that sodium 

hydroxide pretreatment of the biomass have negative impact on biomass ash properties for 

concrete use because sodium hydroxide pretreatment did not remove phosphorous and other 

crystalline phases out of the biomass. However, sulfuric acid pretreatment of biomass greatly 

improved ash properties. It was also shown that enzymatic hydrolysis could have beneficial 

impact on ash properties because, during enzymatic hydrolysis, some phosphorous was leached 

out of the biomass.  
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Chapter 1 - Introduction 

1.1 Background: 

Concrete is the most commonly used construction material worldwide, and second only 

to water in terms of resource usage on Earth [1.1]. Widespread use of concrete compared to other 

building materials is attributed to its excellent fire and water resistance, ease of transporting and 

shaping to desired forms, and wide availability at low cost [1.2]. Concrete consists of three main 

ingredients: portland cement, water, and aggregate. Portland cement comprises 10-15% of 

concrete by weight and strengthens the concrete through hydration, a chemical reaction with 

water.  

Portland cement is produced by heating calcium and silica-bearing minerals, such as 

limestone and clay, to approximately 1450
o
C in a kiln. The calcium-bearing mineral, usually 

limestone, is heated to drive off carbon dioxide (CO2) from the raw material, leaving calcium 

oxide. The material feeds into a rotating kiln and is heated up to 1450°C. The material is then 

sintered together, forming nodules of clinker that are cooled rapidly upon exiting the kiln. The 

most important phases of clinker are tricalcium silicate (3CaO.SiO2), dicalcium silicate 

(2CaO.SiO2), tricalcium aluminate (3CaO.Al2O3), and tetracalcium aluminoferrite (4CaO. Al2O3. 

Fe2O3). Proportions of these phases depend on the proportion of raw materials and kiln 

temperatures. Finally, the clinker is mixed with gypsum, ground to become portland cement, and 

distributed for use. The cement manufacturing process is summarized in Figure ‎1.1. 

The process of cement production is an energy intensive process. Production of one tonne 

of cement in the United States generates nearly one tonne of CO2 [1.3]. Approximately 50% to 

60% of this carbon dioxide originates from calcination of raw materials, while the remainder is 
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produced from manufacturing and fossil fuel burning to heat raw materials [1.3]. Because of the 

vast amount of cement used worldwide, the cement industry is responsible for the release of 

large quantities of CO2 into the atmosphere. The industry, however, is currently seeking 

strategies to mitigate CO2 emissions from cement production. Incorporating supplementary 

cementitious materials (SCMs) into concrete is a potential viable alternative to reduce portland 

cement use and, hence, reduce CO2 emissions [1.4].  

 

Figure ‎1.1: Simplified cement production process  

(figure by Atia Ataie and used with permission) 

Currently, SCMs, particularly industrial by-products, are used to partially replace 

portland cement in concrete. Fly ash, silica fume, and slag cement are examples of SCMs that are 

waste products from industrial processes. However, these materials are not available in large 

quantities at a low cost uniformly around the world. Natural SCMs such as volcanic ash, calcined 

clays, and agricultural residue ash (ARA) are gaining more attention for use as SCMs because of 

their low cost, availability, and excellent reactivity in concrete. 
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 Every year, millions of tonnes of agricultural residues such as corn stover, wheat straw, 

and rice straw are produced worldwide [1.5]. Agricultural residue ash (ARA) such as corn stover 

ash (CSA), rice straw ash (RSA), and wheat straw ash (WSA) are potential resources for SCM 

production. Although pozzolanic properties of rice husk ash (RHA) are well established [1.6] 

[1.7], few studies have been performed on utilization of WS and RS for SCM production for 

concrete use [1.7] [1.8] [1.9] [1.10] [1.11]. Various pretreatments, including dilute hydrochloric 

acid, improve pozzolanic behavior of RHA by increasing the ash surface area and amorphous 

content [1.6]. Surface area and amorphous silica content of SCMs are important factors for 

determining potential reactivity of materials because they provide nucleation sites and reactive 

silica for calcium silicate hydrate (C-S-H) precipitation and production in cementitious systems 

[1.12]. Production of reactive agricultural residue ash is of great interest, particularly for 

developing countries where agricultural residues are widely available but other SCMs are not 

available at low cost. 

Agricultural residues are potential renewable resources for biofuel production [1.13] 

[1.14] [1.15]. As lignocellulosic materials, corn stover, wheat straw, and rice straw are converted 

to liquid fuels by using either thermochemical or biochemical pathways [1.16] [1.17]. In the 

thermochemical route, lignocellulosic materials undergo either pyrolysis or gasification to 

produce syngas. Syngas is then upgraded to fuels such as ethanol and methanol [1.18] [1.19]. In 

the biochemical pathway, microorganisms convert lignocellulosic materials to fuels such as 

ethanol and methanol [1.18] [1.20]. During biochemical conversion, lignocellulosic materials 

undergo pretreatments, enzymatic hydrolysis, and fermentation [1.18]. Pretreatment methods 

such as dilute acid have been used to reduce the degree of cellulose polymerization and remove 

and breakdown hemicellulose and lignin structures in lignocellulosic materials [1.21]. The 
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primary purpose of pretreatments is to increase available surface area of the cellulose to 

hydrolytic enzymes, thus increasing bioethanol yield [1.18] [1.17] [1.16]. Enzymatic hydrolysis 

is used to breakdown cellulose and hemicellulose to glucose and other sugars. After enzymatic 

hydrolysis, sugars are fermented to ethanol.  

Utilization of agricultural residues in concrete and biofuel industries may create future 

concerns about sufficient availability of agricultural residues. Biofuel byproducts are potential 

feedstock material for making SCMs for use in concrete. Byproducts of biofuel are biomass char 

and high lignin residue (HLR). Thermochemical conversion of biomass produces biomass char, 

and biochemical conversion of biomass produces HLR. Utilization of these byproducts for SCM 

production could create new revenue for the biofuel industry, leading to a more sustainable 

biofuel production and more sustainable and durable concrete. 

1.2 Portland cement hydration: 

Hydration of portland cement consists of multiple simultaneous and interdependent 

chemical reactions of its major phases.  Notations and abbreviations used in cement chemistry 

are shown in Table 1.1.  

Table ‎1.1: Common notations and abbreviations in cement chemistry 

Oxide  

Oxide 

abbreviation Compound Name Compound Formula 

Compound 

notation 

CaO C Ticalcium Silicate 3CaO.SiO2 C3S 

SiO2 S Dicalcium Silicate 2CaO.SiO2 C2S 

Al2O3 A Tricalcium Aluminate 3CaO.Al2O3 C3A 

Fe2O3 F Tetracalcium aluminoferrite 4CaO. Al2O3. Fe2O3 C4AF 

SO3 Ŝ gypsum CaSO4.2H2O CŜH2 

H2O H Calcium Silicate Hydrate 3CaO.SiO2.3H2O C3S2H3 

 

Hydration reactions of C3S and C2S are shown in Eq.1.1 and Eq.1.2, respectively. Both reactions 

produce calcium silicate hydrate (C-S-H) and calcium hydroxide (CH), but the quantity of CH 
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produced by C2S is less when compared to C3S.  Eq.1.3 and Eq.1.4 give the hydration reaction of 

C3A and C4AF phases, respectively. 

))(.(362 23233 OHCaHSCHSC     Eq.1.1 

23232 )(42 OHCaHSCHSC     Eq.1.2 

323623 263 HSACHHSCAC


    Eq.1.3 

3323624 ),(),(213 HAFHSFACHHSCAFC 


  Eq.1.4 

Portland cement hydration can be divided into four stages, as indicated in Figure ‎1.2 

[1.22] [23]. The first stage is called the dissolution period, followed by a slow reaction or 

induction period. The third period is the acceleration period, and the fourth period is 

deceleration.  Upon direct contact with water, some tricalcium silicate (C3S) rapidly dissolves in 

water. The dissolution reaction is shown in Eq.1.5 [1.22]. This reaction dissipates high amounts 

of heat, as indicated by stage 1 in Figure ‎1.2. As dissolution of C3S continues, the solution 

saturation, with respect to Ca and Si ions, increases in a few minutes. As solution saturation 

approaches supersaturation, the reaction rate of C3S decreases, as does the heat evolution [1.23]. 

This induction period of hydration is indicated as stage 2 in Figure ‎1.2. When the solution is 

supersaturated with respect to Ca and Si ions, calcium silicate hydrate (3CaO.SiO2.8H2O) 

nucleates and grows. This process decreases the concentrations of Ca and Si ions in the solution, 

and C3S dissolves again at a higher rate. The higher rate of C3S dissolution, nucleation and 

growth of C-S-H, and calcium hydroxide precipitation seen in the acceleration period as stage 3 

in Figure ‎1.2 is also accompanied by a large heat release. The complete chemical reaction of 

tricalcium silicate with water is shown in Eq.1.1. Growth of C-S-H consumes water, reduces free 

space, and reduces cement grain access to water. As a result, the reaction slows down, as shown 

in the deceleration period in stage 4, Figure ‎1.2. Although the reaction rate of portland cement 
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becomes slow after 24 hours, hydration continues until all the portland cement is reacted or until 

the system is depleted of free water to react. 

  12

42

2

22 )(433.3 OHSiOHCaOHSiOCaO   Eq.1.5 

 

 

Figure ‎1.2: Portland cement hydration 

1.3 Behavior of SCMs in cementitious systems: 
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pozzolanic and hydraulic. Pozzolanic SCMs, such as silica fume, react with calcium hydroxide in 

cementitious systems to produce calcium silica hydrate (C-S-H). Hydraulic SCMs, such as class 

C fly ash and blast furnace slag, react with water to form binding phases in addition to 

pozzolanic reaction [1.12]. The pozzolanic reaction is a reaction that occurs between a siliceous 

material and calcium hydroxide (CH) underwater to form C-S-H, as shown in Eq.1.6. As 

previously discussed, hydration silicate of phases of portland cement produces C-S-H and 
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CH has a tendency to precipitate onto the aggregate surface in concrete, leading to a weak zone 

around the aggregate, called the interfacial transition zone (ITZ) [1.24] [1.25].  When SCMs are 

added to concrete, the silica compound in SCM reacts with CH to produce additional C-S-H. 

Reduction of CH in concrete improves the ITZ and increases C-S-H production in concrete. Over 

time, the pozzolanic reaction reduces porosity of concrete and size of the interfacial transition 

zone (ITZ) while increasing concrete strength [1.12] [1.26] [1.25] [1.27] [1.28] [1.29] [1.30]. 

Depending on the composition of SCMs, they can replace large percentages of portland cement 

used in conventional concrete. Utilization of SCMs in concrete materials reduces the cement 

content of concrete, reduces the carbon footprint of concrete materials, and improves the 

durability of concrete.  

HSCHSCH     Eq.1.6 

The rate of pozzolanic reaction depends on the chemical and physical properties of 

SCMs, but the rate is much slower as compared to that of C3S. Amorphous content and surface 

area are important factors affecting the pozzolanic reaction rate. ARAs can be highly reactive 

SCMs. ARAs can have high amorphous content and high surface area. The production process of 

ARAs, however, largely influences the composition and, hence, the pozzolanic reactivity of 

ARAs. 

1.4 Scope of the research: 

The goal of this research was to apply biofuel pretreatment methods to agricultural 

residues in order to produce highly reactive SCMs. Knowledge gained about the effects of 

biofuel pretreatments was used to examine the suitability of cellulosic ethanol byproducts for use 

as an SCM in concrete. Objectives of the research were accomplished by: 
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1- Studying the impact of distilled water and dilute acid pretreatments on pozzolanic 

properties of rice straw ash (RSA), wheat straw ash (WSA), and corn stover ash (CSA). 

Several burning conditions were used to prepare the ash samples. The impact of 

pretreatments on physical and chemical properties of ARA samples were also determined 

based on surface area, loss on ignition (LOI), and amorphous silica content of the ash 

samples. Reactivity of the ARAs was quantified using heat of hydration, calcium 

hydroxide consumption of cement paste samples containing ash samples, and mortar cube 

compressive strength. Twenty percent of the cement was replaced by ash when used, and 

results were compared to ash samples without pretreatments. 

2- Studying the suitability of high lignin residue (HLR) for producing reactive SCMs. The 

influence of distilled water and dilute acid pretreatments on pozzolanic properties of CSA 

was also studied. HLR was a byproduct of bioethanol production from corn stover. 

Pozzolanic behavior of HLR ash was determined using methods mentioned previously. In 

addition, reactivity of HLR ash was compared to that of the CSA. 

3- Exploring the impact of sodium hydroxide and dilute sulfuric acid pretreatments and 

enzymatic hydrolysis on properties of CSA, WSA, and RSA for concrete use. This was 

performed to study the impact of various bioethanol pretreatments on properties of 

bioethanol byproduct for SCM production.  

4- Studying the influence of pretreatments on thermal degradation of agricultural residues.  

5- Comparing pozzolanic behavior of pretreated ARA with that of silica fume.  

1.5 Organization of dissertation: 

Chapter two discusses details and findings as to the impact of pretreatments on 

pozzolanic properties and behavior of wheat straw ash and rice straw ash.  Pozzolanic behavior 
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of high lignin residue ash and the impact of pretreatments on pozzolanic properties of corn stover 

ash are documented in the third chapter. Chapter four explores the impact of pretreatments and 

alkali and alkaline earth metals (AAEMs) on the thermal degradation of corn stover, wheat 

straw, and rice straw. The impact of enzymatic hydrolysis and sodium hydroxide and sulfuric 

acid pretreatments on corn stover, wheat straw, and rice straw is documented in chapter five.  

The influence of rice straw ash on the adsorption of air entraining agents in cementitious systems 

is discussed in chapter six. Chapter seven compares pozzolanic behavior of pretreated wheat 

straw ash and rice straw ash with that of silica fume. Although each chapter draws unique 

conclusions, generalized conclusions and recommendations for future research are explained in 

chapter eight. References are given in chapter nine. 
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Chapter 2 -  Thermochemical Pretreatments for 

Agricultural Residue Ash Production for Concrete 

 

Abstract: 

 Agricultural residue ash is known to be a very reactive source of supplementary 

cementitious material (SCM) for use in concrete. The influence of thermochemical pretreatments 

on the reactivity of agricultural residue ash (ARA) for use as an SCM was studied. It was shown 

that pretreatments are effective in partial removal of alkali metals and other impurities out of 

both wheat straw and rice straw leading to ARA with lower loss on ignition (LOI), higher 

internal surface area, and higher amorphous silica content than that of unpretreated ARA. It was 

shown that the ash alkali content correlated with the ash LOI and amorphous silica content. 

When used at a cement replacement rate of 20% by mass, pretreated ARA accelerated the 

hydration of cement paste samples while unpretreated ARA retarded the cement hydration. 

Pretreatments were found to increase ARA reactivity as measured by calcium hydroxide content 

reduction with time. ARA increased compressive strength of mortar samples by 25% when used 

as 20% replacement of cement in the samples. It was found that the CH content of paste samples 

and mortar compressive strength were correlated to the amorphous silica content of the ash.   
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2.1 Introduction: 

The use of supplementary cementitious material (SCM) can reduce the energy and CO2 

intensity of concrete. Natural SCMs have received increasing interest because of their high 

reactivity, low cost, and availability in some regions where other SCMs are not available. 

Agricultural residue ash (ARA) such as rice husk ash (RHA) and sugarcane bagasse ash have 

been championed as SCMs that can greatly enhance strength and durability of concrete  [2.1] 

[2.2] [2.3] [2.4] [2.5] [2.6]. Other agro-biomass such as wheat straw (WS) and rice straw (RS) 

could be a potential source for SCMs with similar pozzolanic reactivity to RHA. Pozzolanic 

reaction is a reaction between a siliceous material and calcium hydroxide (CH) under water to 

form a cementitious material, as shown in Eq.2.1. 

CSHHSCH    Eq.2.1 

Note: Oxide notation is used throughout this paper, C = CaO, S = SiO2, H=H2O, A = Al2O3, 

F=Fe2O3.  

The pozzolanic reaction kinetics is known to be affected by many factors such as ash 

mineralogy, surface area, and carbon content of the pozzolanic materials [2.7] [2.8]. 

Agro-biomass pretreatment processes can enhance ARA reactivity for use in concrete. 

Thermochemical pretreatment techniques, such as dilute acid, have been shown to improve 

pozzolanic reactivity by increasing surface area and amorphous silica content and decreasing 

carbon content of RHA [2.7] [2.9]. In the biofuel industry, thermochemical pretreatment of 

lignocellulosic biomass has proven to be very effective hydrolysis process for ethanol production 

[2.10] [2.11] [2.12]. The dilute acid pretreatments are effective in removal of some 

hemicellulose; breakdown, re-localization, and structure change of lignin; and 

defibration/decrystallization of cellulose of the biomass cell wall. Pretreatment of agro-biomass 
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has been shown to improve combustion properties of biomass for use as a fuel as a result of 

leaching impurities such as Na, K, Ca, and Mg [2.13]. These metals decrease the biomass 

melting temperature and promote the release of unwanted byproducts during combustion [2.13]. 

The pozzolanic properties of rice straw ash (RSA) and wheat straw ash (WSA) have been 

examined by only a few researchers. WSA that has not been pretreated has been found to be 

pozzolanically reactive when burned at 570
o
C and 670

o
C for 5 hours [2.14]. Al-Akhras and Abu-

Alfoul [2.15] have reported that mechanical properties of autoclaved mortar specimens were 

improved with by WSA made by burning wheat straw at 650
o
C for 20 hrs.  RSA has been shown 

to improve mechanical properties of mortar and concrete specimens through a pozzolanic 

reaction [2.16]. One study showed that rice straw pretreated with hydrolysis could produce good 

quality ash for use in concrete; however no comparison with unpretreated rice straw ash was 

made to quantify the benefits of pretreatment [2.17]. The impact of thermochemical 

pretreatments on the RSA and WSA sensitivity to burning conditions and subsequent reactivity 

in a cementitious system has not been studied. Additionally, the mechanism by which 

pretreatments improve ARA pozzolanicity has not been fully established. 

This paper documents the effects of thermochemical pretreatments on the physical 

properties, chemical properties, and reactivity of WSA and RSA in a cementitious system. 

Employing several pretreatments techniques and burning conditions, this study attempts to 

examine the mechanism(s) by which pretreatments enhance ARA reactivity. Distilled water 

(DW) and 0.1 N hydrochloric acid (HCl) were used to pretreat the biomass at 23
o
C, 50

o
C and 

80
o
C for several soaking durations followed by burning at 500

o
C, 650

o
C, 700

o
C, and 800

o
C. 

Loss on ignition (LOI), internal surface area, and amorphous silica content of ARA were 

measured for these ashes. Isothermal calorimetry, thermogravimetric analysis, electrical 
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conductivity measurements, and mortar compressive strength were used to quantify the ARA 

reactivity. 

2.2 Materials: 

 An ASTM [2.18] Type I/II portland cement was used for this study with the cement 

properties shown in Table ‎2.1. Standard graded sand (ASTM 2006) was used for the mortar 

experiments.‎Wheat‎ straw‎ (WS)‎was‎ purchased‎ from‎Britt’s‎ farm‎ in‎Manhattan,‎KS‎ and‎Rice‎

straw (RS) was obtained from Missouri Rice Research Farm, Glennonville, Missouri. Reagent 

grade HCl was obtained and diluted to 0.1 N for use in the study. 

Table ‎2.1: ASTM C 150 Type I/II ordinary portland cement (OPC) Composition 

Chemical 

Composition (wt%) 

SiO2 21.85 

Fe2O3 3.4 

Al2O3 4.35 

CaO 64.19 

MgO 1.79 

K2O 0.52 

Na2O 0.17 

SO3 2.77 

LOI 0.89 
Blaine Surface area= 

362 m
2
/kg 

2.3 Experimental methods: 

Hydrothermal and thermochemical pretreatment methods were performed on the WS and 

RS using distilled water (DW) and 0.1 N HCl. To pretreat the biomass, 250 g of biomass was 

immersed in 3100±100 mL of the solution in a 4000 mL glass jar. The sample was stored 

undisturbed at a constant temperature for the immersion period of interest. Three different 
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temperatures, 23
o
C, 50

o
C, and 80

o
C, were used to make ash for each pretreatment method which 

will be referred to as DW23
o
C, DW50

o
C, and DW80

o
C for the distilled water pretreatment at 

23
o
C, 50

o
C, and 80

o
C and  HCl23

 o
C, HCl50

o
C, and HCl80

o
C for the 0.1 N HCl pretreatment at 

23
o
C, 50

o
C, and 80

o
C, respectively. AR samples were immersed for 0.5, 1, 2, 4, 8, and 24 hrs 

before burning.  Leachate samples were collected from two separate containers of pretreated AR 

for each time and temperature.  The Mg, Ca, K, and Na concentration was measured using 

atomic absorption spectroscopy (AAS) for each container. The Mg, Ca, K, and Na concentration 

was reported as the average concentration of the two containers. After pretreatment, the biomass 

was rinsed twice with distilled water and dried at 80
o
C for storage until burning. 200 g of 

biomass was burned in each ARA batch made.  A stainless steel cage with two wire mesh 

shelves was used to hold the biomass during burning.  A stainless steel pan was placed below the 

cage to catch any ash that fell through the mesh.  A programmable electric muffle furnace was 

used to heat the samples to a predetermined temperature and hold time. Samples were heated to 

500
o
C, 650

o
C, 700

o
C, or 800

o
C using 1, 2, or 3 hr soak times. Finally, the ash was ground for 

one hour at 85 revolutions per minute (rpm) in a laboratory ball mill. 

Particle-size distribution and internal surface area of the ground ARA were determined 

using a laser diffractometer and BET nitrogen adsorption respectively. LOI of ARA was 

determined by measuring the mass loss after heating one gram of dry ARA (WSA or RSA) to 

800
o
C for 3 hrs. LOI was calculated as the percentage mass loss during firing. 

To measure the amorphous silica content of ARA, the ash impurities and soluble material 

content were measured [2.3]. The impurities content was measured by first boiling 0.5 g of ARA 

after the LOI test in 25 mL of 10% nitric acid. After boiling in acid the sample was filtered 

through a glass microfiber filter paper with 1.1 µm openings and rinsed with deionized water. 
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The sample was then dried at 90±10
 o

C and weighed. To measure the ash soluble material 

content, 3 g of ARA was boiled in 200 mL of 10% sodium hydroxide solution (2.5 N NaOH) for 

5 minutes. After boiling, the sample was cooled to room temperature, filtered through a 1.1 µm 

glass microfiber filter paper, and washed with deionized water. The residue and filter paper was 

then heated to 800
 o

C for 3 hrs. The ash weight change after boiling in the sodium hydroxide and 

heating was recorded.  The ARA amorphous silica content was then calculated using Eq.2.2: 

imsolam wLOIwSi    Eq.2.2 

Where Siam is the amorphous silica content of the ash (%), wsol is the ash weight loss after boiling 

in sodium hydroxide and heating (%), LOI is the ash loss on ignition (%), and wim is the weight 

of impurities (%).  

The decrease in electrical conductivity of a calcium hydroxide solution mixed with SCMs 

has been used by other researchers as a simple reactivity index for pozzolanic behavior of SCMs 

[2.19] [2.20] [2.21] and was used in this study. One gram of ARA was mixed with 100 mL of 

saturated calcium hydroxide solution at 23±2
 
°C.  The‎solution’s‎electrical‎conductivity‎was‎then‎

measured for 7 days.  

For the cement paste experiments, ARA was used at a 20% replacement level by mass of 

cement when used.  A water-cementitious materials ratio (w/cm) of 0.5 was used for all paste 

samples. The paste samples were mixed using a procedure previously used [2.22]. Distilled water 

was added to the cementitious material and mixed using a vertical laboratory mixer at 500 rpm 

for 90 seconds, followed by a 120 second rest period, and finally mixed at 2000 rpm for 120 

seconds.   

Isothermal calorimetry was used to study the reaction rate of ARA in a cementitious 

system.  An eight-channel isothermal calorimeter was used in this study at 23°C.  Paste samples 
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of approximately 30 g each were used. The calcium hydroxide (CH) content of cement paste 

samples was measured by thermogravimetric analysis to study the pozzolanic consumption of 

CH by ARA. Samples were wet cured starting at 24 hrs after casting at 23
o
C. Cement paste 

hydration was stopped at 7, 28, and 90 days after mixing by means of solvent exchange with 

isopropanol. 3-5mm thick samples were cut and placed in isopropanol for 7 days.  After 7 days 

in isopropanol, the samples were dried in a vacuum for at least 3 days.  For thermogrametric 

analysis, samples were heated at 20°C/min up to 900
o
C in a nitrogen environment.  

Mortar cube compressive strength was measured according to ASTM C 109 [2.23] with a 

sand to cementitious material ratio of 2.75. A w/cm of 0.55 was used for all mortar samples 

because of the decreased workability of systems with ARA. ARA was used at a 20% 

replacement level by mass of cement when used. Mortar cube compressive strength was tested at 

7 and 28 days with the results reported as the average of the compressive strength of three mortar 

cubes. 

2.4 Results and discussion: 

2.4.1 Pretreatments and alkali leaching 

Pretreatments were very effective in altering the chemical and physical structure of the 

straw and removing K, Ca, and Mg. Figure ‎2.1 shows the leachate K concentrations for different 

pretreatments used for WS. The sodium concentrations were found to be much lower than K, and 

varied only slightly by pretreatment method. Figure ‎2.2 shows the calcium (Ca) and magnesium 

(Mg) leachate concentration for WS. HCl and higher temperatures increased the leaching rates of 

K, Ca, and Mg.  A much larger difference between HCl and DW pretreatments was seen 

however with Ca and Mg removal from WS than K and Na. Similar trends were observed for 

RS.  
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Figure ‎2.1: Potassium (K) concentration for wheat straw 
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Figure ‎2.2: Ca (a) and (b) Mg concentration for wheat straw 
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calculating the dissolution activation energy. First, the leachate K concentration with time for a 

given pretreatment temperature was fit to Eq.2.3 [2.24]: 
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of potassium dissolution. The Arrhenius plot was made by plotting the natural log of the rate 

constant K against the reciprocal of the pretreatment temperature in Kelvins.  Figure ‎2.3 shows 

the Arrhenius plot for the rate constants calculated for the leachate K concentration for wheat 

straw. The activation energy was calculated as the slope of the fit line on the Arrhenius plot 

multiplied by the universal gas constant R (8.314 J/mol/K).  The activation energy for leaching K 

with 0.1 N HCl was found to be 32.2 KJ/mol, versus 13.3 KJ/mol with DW pretreatments. This 

shows that the higher the acid concentration the more effectively heat can be used to remove K 

from the AR with high acid concentrations. 

 

Figure ‎2.3: Arrhenius Plot for wheat straw 
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hour as calculated from the ash total silica content shown in Table ‎2.2 and the ash amorphous 

silica content shown in Figure ‎2.4. The ash pretreated with 0.1N HCl at 80°C showed little if any 

crystalline silica while the WSA pretreated with DW at 80°C had 8% crystalline silica. The 

increase in amorphous silica content of the pretreated ARA correlated with the removal of Ca, 

Mg, and K out of the biomass by pretreatments. Figure ‎2.5 shows the amorphous silica content 

of ARA versus the CaO, MgO, and K2O content. The amorphous silica content of the ARA 

corresponded with a decrease in the CaO, MgO, and K2O content, with the MgO showing a 

slightly better correlation. Figure ‎2.6 shows the LOI measured for WSA and RSA. The ARA 

LOI decreases as the burning temperature increases regardless of the pretreatment type. At a 

given burning temperature, pretreated ARA had a lower LOI than that of the unpretreated control 

ash. Figure ‎2.7 shows the metal impurity (Ca, Mg, and K) content of the ash for the WSA and 

RSA was also correlated to the ARA LOI.  The RSA had a lower LOI than the corresponding 

WSA, possibly because of the lower alkali content of the RSA before pretreatment than the 

WSA. Even though distilled water pretreatments were not as effective as the more acidic 

pretreatments, when burned at 650°C for 1hr the WSA pretreated with DW23/24 still had 52% 

lower LOI and 15% higher amorphous silica than that of unpretreated WSA. RSA pretreated 

with DW23/24 had 55% lower LOI and 17% higher amorphous silica than that of unpretreated 

RSA.  

Another important impact of the pretreatments is the decrease in temperature sensitivity 

of the biomass. Sensitivity reduction is vital for low cost ARA production in using simple kilns 

or large scale applications where it may be more difficult to control the temperature. The 

pretreatments were very effective in reducing the sensitivity to burning temperatures.  The 
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HCl80/24 WSA burned at 800
 o

C had a higher amorphous SiO2 content than that of the control 

burned at 500°C as shown in Figure ‎2.4.  

 

Figure ‎2.4: Amorphous silica content of pretreated and unpretreated ARA 

 

Figure ‎2.5: ARA amorphous silica vs. ARA (WSA and RSA) oxide content  
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Table ‎2.2: Oxide composition of selected ARA 

Ash Type SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O 

WSA-Cont-650/1 66.3 0.26 1.12 14.3 3.05 14.7 0.15 

WSA-DW80-650/1 78.8 0.12 1.05 13.2 2.61 4.4 0.12 

WSA-HCl80-650/1 86.5 0.28 1.13 9.73 0.78 1.54 0.1 

WSA-HCl80-500/2 87.9 0.05 1.07 9.63 0.63 0.7 0.08 

RSA-Cont-650/1 79.1 0.34 0.82 11.6 2.54 5.18 0.5 

RSA-DW80-650/1 85.4 0.45 0.92 10.69 1.36 0.96 0.26 

RSA-HCl80-650/1 88.2 0.47 0.74 9.48 0.56 0.31 0.17 

RSA-HCl80-500/2 85.7 1.4 1.02 10.73 0.6 0.34 0.23 

 

 

 

Figure ‎2.6: LOI of pretreated and unpretreated ARA 
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Figure ‎2.7: ARA LOI V vs. ash K2O, CaO and MgO content 
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Table ‎2.3: Effect of holding time on LOI and amorphous silica content 

WSA type 
Amorphous 

Silica (%) 
LOI (%) 

HCl80/24-500/1 72.70 17.58 

HCl80/24-500/2 88.65 2.76 

HCl80/24-500/3 88.7 2.62 

HCl80/24-650/1 89.14 1.18 

HCl80/24-650/2 88.99 1.1 
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Pretreatments changed the color of the ash, mainly because of the decrease in carbon 

content. Figure ‎2.8A shows WSA pretreated with 0.1N HCl at 80°C for 24 hrs, while 

Figure ‎2.8B shows control WSA samples ashed at four different temperatures. The WSA-

HCL80/24 ash was much lighter in color than that of control WSA ashes regardless of the 

burning condition. Even though it had a low LOI, the WSA pretreated with HCl at 80°C for 24 

hrs and burned at 800°C for one hr had a slightly darker color than the pretreated ashes made at 

lower temperatures (Figure ‎2.8A).  

 

Figure ‎2.8: Color of wheat straw ash, a) HCl80/24 pretreated and b) unpretreated 

Although the color of the ash is largely related to carbon content of the ash, impurities 

such as alkali metals can change the ash color. At higher temperatures  these metals react with 

silicon (Si) to produce crystalline phases that may combined with carbon or contain iron giving 

the ash a darker color [2.25] [2.26]. It was also observed that washing the biomass after 

pretreatments is very important in removing alkalis from surface of biomass and reducing LOI of 

the resulted ash. This could be because when the straw was not washed after the pretreatment, 

potassium and other impurities in solution would precipitate on to the surface of the straw during 

drying. These precipitates could trap carbon during ashing, leading to higher ash LOI. Even 

though pretreatments remove metal impurities out of the biomass cell wall, it is beneficial to 

wash the biomass after pretreatment to limit the impurities that would precipitate on the biomass 

surface. For a given burning condition, pretreated but unwashed biomass resulted in ARA with 

B A 
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darker color and higher LOI compared to the ash obtained from pretreated and washed biomass. 

This could be attributed alkalis on the surface melting at lower temperature and trapping carbon. 

Table ‎2.4 presents the ARA surface area determined by BET nitrogen adsorption while 

Figure ‎2.9 shows the particle-size distribution for some selected ARAs. For a given pretreatment, 

ashes burned at 500°C for 2 hrs had higher surface area than those burned at higher temperatures. 

This is probably because at higher temperatures melting of some material eliminating pores 

inside of the ash. The particle-size distribution was not significantly affected by pretreatments. 

Although the surface area of unpretreated RSA and WSA were similar, pretreated RSA had a 

larger surface area than that of pretreated WSA. 

Table ‎2.4: BET data for WSA and RSA under different burning conditions 

Ash type 
BET surface area 

(m
2
/g) 

WSA-Cont-500/2 27.6 

WSA-Cont-650/1 8.3 

WSA-HCl80/24-500/2 168 

WSA-HCl80/24-650/1 65 

WSA-HCl80/24-700/1 39.7 

RSA-Cont-500/2 16.9 

RSA-Cont-650/1 9.6 

RSA-HCl80/24-500/2 200 

RSA-HCl80/24-650/1 134.5 

RSA-DW80/24-650/1 58.94 
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Figure ‎2.9: Particle size distribution of OPC and ARAs 

2.4.3 Conductivity measurements 

Figure ‎2.10 shows the normalized conductivity (the measured conductivity divided by the 

initial conductivity of the solution) data for WSA pretreated with 0.1N HCl at 23°C, 50°C, and 

80°C and burned at 500°C for 2 hours and 650°C for 1 hour. The normalized conductivity for 

unpretreated WSA and WSA pretreated with DW and 0.1 N HCl is given in Figure ‎2.11. The 

pretreatment temperature did not significantly affect the measured conductivity change. WSA 

burned at 500
o
C for 2 hrs shows a more rapid drop in conductivity than WSA burned at 650

o
C 

for 1 hour indicating a higher reactivity consistent with the higher surface ash measured in the 

samples burned at 500°C. Very little difference was seen between different pretreatments in the 

conductivity experiments. Similar behavior was seen for RSA conductivity experiments. The 

initial increase in the electrical conductivity from the control sample is likely the result of 

dissolution of metal impurities such as Na, K, Ca, and Mg in the solution [2.19]. 

0

20

40

60

80

100

0.1 1 10 100

%
 P

a
ss

 

Diameter (µm) 

OPC WSA-Cont-650/1

WSA-HCl80/24-650/1 WSA-HCl80/24-500/2

RSA-HCl80/24-650/1 RSA-HCl80/24-500/2



27 

 

 

Figure ‎2.10: Electrical conductivity change of HCl pretreated wheat straw ash 

  

Figure ‎2.11: Electrical conductivity change wheat straw ash with different pretreatments 

2.4.4 Isothermal Heat of Hydration 

  Figure ‎2.12 compares the heat of hydration for WSA burned at 650
o
C for 1 hour with 

and without thermochemical pretreatments. Large differences in hydration behavior were seen 

between the pretreated and control WSA. Figure ‎2.13 shows the total heat of hydration of cement 

paste samples containing WSA. The pretreated ashes show similar total heat of hydration during 
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the first 120 hours, indicating a similar degree of cement hydration at 120 hours. Figure ‎2.14 

shows the heat flow rate for paste samples containing RSA. The hydration rate of pretreated 

ARA was accelerated compared to the control samples, whereas the samples with ARA that were 

not pretreated were retarded as seen in Figure ‎2.12 and Figure ‎2.14.  The hydration acceleration 

is most likely caused by increased nucleation because of the very high ARA surface area [2.27] 

[2.28]. Also, the samples containing pretreated ARA (WSA and RSA) showed much more 

similar behavior to each other during the first 120 hours after mixing than the non-pretreated 

ARA. 

 

Figure ‎2.12: Heat flow rate of paste samples containing different wheat straw ash 
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Figure ‎2.13: Total heat of hydration of paste samples containing different wheat straw ash 

 

 

Figure ‎2.14: Heat evolution rate of paste samples with and without rice straw ash 
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The decrease in CH content of cement paste samples containing ARA is a measure of the 

ARA pozzolanic reaction. The CH content for cement paste samples with and without ARA was 
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and RSA, respectively. For a given pretreatment type and age, samples containing ARA (WSA 

or RSA) burned at 500
o
C for 2 hr had a lower CH content than those burned at higher 

temperatures. This can be attributed to the higher surface area of ARA burned at 500
o
C for 2 hr. 

At a given burning condition, samples containing ARA pretreated with 0.1N HCl at 80
o
C for 24 

hrs had a lower CH content than any other pretreatment type. At a given age, samples containing 

WSA at burned at 500°C showed lower CH content than those containing RSA burned at 500°C. 

  

Figure ‎2.15: CH content of cement paste containing wheat straw ash 

 

Figure ‎2.16: CH content of cement paste containing rice straw ash 
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Figure ‎2.17 shows the compressive strength development for mortar with and without 

20% cement replaced by ARA.  The WSA and RSA pretreated with HCl at 80°C for 24 hours 

showed the highest compressive strength development, with a 25% increase in strength over the 

ordinary portland cement (OPC) mixture at 28 days of age. The increased strength seen with 

pretreated ashes confirms the increased pozzolanic reaction seen with the reduction of CH 

content with time in samples containing the pretreated ARA. 

 

Figure ‎2.17: Mortar cube compressive strength data 

A comparison of the ARA material characteristic improvement from the pretreatments 

(amorphous silica and surface area) and CH content at 90 days is shown in Figure ‎2.18. The 
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CH content of paste samples containing ARA and increases compressive strength of mortar 

samples containing ARA. The isothermal calorimetry results did not show a reduced hydration 

development with the use of ARA indicating that the decrease in CH content seen with the ARA 

is likely from the pozzolanic reaction and not a lower cement degree of hydration.  Additionally 
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Figure ‎2.18: Relation between material characteristics and performance a) amorphous silica 

content vs. 28 days mortar cub strength, b) amorphous silica content vs. CH content of paste after 

90 days c) Surface area of ash vs. CH content of paste after 90 days  
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2.5 Conclusions: 

The material physical and pozzolanic properties of wheat straw ash (WSA) and rice straw 

ash (RSA) were studied. From this study, the following conclusions can be made: 

1- Pretreatments are effective in partial removal of Ca, K, and Mg out of the biomass. The 

activation energy for K leaching was higher for dilute acid pretreatment than distilled 

water pretreatment. This shows that heating samples during pretreatment even more 

effective for the more acidic pretreatments.  

2- Pretreatments increased the amorphous silica content and surface area and decreased the 

LOI of ARA at a given burning temperature. It was shown that amorphous silica content 

inversely correlated with the Ca, K, and Mg content of the ash while LOI of ARA is 

directly correlated with the Ca, K, and Mg content of the ash. Alkalis seemed to encase or 

combine with carbon during burning. Pretreatments reduced the sensitivity of the ash to 

the burning temperature, showing less of a decrease in amorphous silica content than the 

non-pretreated ash at 700°C and 800°C. 

3- Pretreatments improved the system hydration kinetics.  Non-pretreated ARA retarded the 

cement hydration, whereas pretreated WSA and RSA accelerated the cement hydration. 

The acceleration may be from increased nucleation from the increased material surface 

area. 

4- Cement paste sample containing ARA burned at 500°C for 2 hrs contained lower CH 

than those samples containing ARA burned at 650°C for 1 hr. This was attributed to the 

higher surface area of the ash burned at 500°C for 2 hrs. It was shown that CH content of 

the paste after 90 days of hydration was inversely correlated with amorphous silica 

content and surface area of the ash used in the paste. Samples containing WSA showed 
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lower CH content at 90 days than the RSA with similar surface area and amorphous silica 

content. 

5- When used as 20% replacement of cement in mortar samples, pretreated ARA increased 

compressive strength of mortar samples at 28 days by 25% compared to the OPC sample. 

Mortar samples containing pretreated ARA showed a 32% increase in 28 day 

compressive strength compared to samples containing unpretreated ARA. It was also 

shown that mortar compressive strength correlated well with the ash amorphous silica 

content.  
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Chapter 3 - Use of Bioethanol Byproduct for 

Supplementary Cementitious Material Production 

 

 

Abstract: 

Corn stover has the potential for use as a supplementary cementitious material (SCM) for 

concrete. The impact of distilled water and dilute acid pretreatments and post-treatments on the 

pozzolanic reactivity of corn stover ash (CSA) was studied. Additionally, the potential use of a 

bioethanol byproduct called high lignin residue (HLR) for SCM production was examined. 

Pretreated CSA and high lignin residue ash (HLRA) increased the early reactivity of cement 

paste when used as 20% replacement of cement in the system whereas unpretreated CSA was 

found to severely suppress the hydration reaction. The highest compressive strength was 

obtained from samples containing HLRA.  
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3.1 Introduction: 

Greenhouse gas emissions from fossil fuel burning have created increasing interest in the 

use of biomass for renewable energy production. Thermochemical and biochemical conversion 

techniques have been used to convert biomass, including agricultural residues, to biofuel [3.1] 

[3.2]. Combustion, gasification, and pyrolysis are widespread thermochemical conversion 

techniques for converting biomass into electricity and bio-oil. Biochemical conversion of 

biomass involves hydrolysis of biomass into its constituent sugar followed by sugar fermentation 

to bioethanol [3.2] [3.3]. Besides biofuel production, biomass has been used to produce 

supplementary cementitious materials (SCMs) to reduce the carbon footprint of concrete [3.4] 

[3.5] [3.6] [3.7]. 

Utilization of biomass for either biofuel or SCM production has posed certain challenges. 

The presence of alkali and alkaline earth metals (AAEMs) in the biomass can adversely affect 

the quality of the bio-oil and cause slagging and fouling during combustion [3.8] [3.9]. It has 

been shown that removal of AAEMs out of the biomass prior to pyrolysis by the use of 

pretreatments improves the yield and the quality of the bio-oil during pyrolysis, and reduces ash 

slagging and fouling during combustion [3.9] [3.10] [3.11]. Biomass pretreatments are 

commonly performed by soaking the biomass in acidic or basic solutions [3.12]. It has also been 

shown that pretreatments, particularly dilute acid, improve the reactivity of agricultural residue 

ash (ARA) such as rice husk ash in cementitious systems by increasing the amorphous silica 

content and surface area of the ash [3.5] [3.6] [3.13].  

In the biochemical conversion, the biomass undergoes three basic processes: 

pretreatment, enzymatic hydrolysis, and fermentation [3.2] [3.3]. Pretreatments improve the 

biomass ethanol yield by increasing the accessibility of cellulose for enzymatic hydrolysis [3.14]. 
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Enzymatic hydrolysis (saccharification) is performed on the pretreated biomass to convert the 

cellulose and hemicellulose to C5 and C6 sugars. After the enzymatic hydrolysis, the sugar rich 

liquid phase is seperated from the solid residue, refered to as high lignin residue (HLR) in this 

paper. The liquid phase is then fermented to ethanol. Simultaneous saccharification and 

fermentaion‎(SSF)‎processes‎are‎also‎common‎where‎the‎solid‎residue‎isn’t‎removed‎until‎after‎

the  enzymatic hydrolysis and fermentaion [3.15] [3.16]. HLR is currently burned in boilers or 

landfilled. Figure ‎3.1 depicts the production process of bioethanol. Increasing worldwide interest 

in the production of ethanol from biomass, particularly corn stover, could boost the quantity of 

HLR available for SCM production. 

 

Figure ‎3.1: Bioethanol production process 

 

The major constituents of HLR are lignin, cellulose, and other inorgranic constituents 

such as silica. Because HLR contains a high quantity of silica in a weakly polymerized organic 

structure, it could be a potential resouce for highly reactive SCMs production. If this can be 

shown, the cost of lignocellulosic ethanol production and the cost of SCMs produced from 

biomass can be substantially reduced. Additionally, if it can be shown that HLR burned at higher 
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temperatures could result in a highly reactive ash, the HLR can be burned in biolers to produce 

energy and at the same time the resulting ash can be used as reactive SCM in concrete at no cost. 

This is the first study on the reactivity of high lignin residue ash (HLRA) in cementitious 

systems. Also, the impact of distilled water and dilute acide pretreatments on the reactivity of 

corn stover ash (CSA) using different burning conditions was investigated. Pretreated and 

unpretreated corn stover and HLR were burned at controlled temperatures of 500⁰C and 650⁰C 

for several different oven residence times. Ash characterizations, heat of hydration, and 

compressive strength data were used to compare the pozzolanic behavior of pretreated and 

unpretreated CSA with that of HLRA.  

3.2 Materials and methods: 

3.2.1 Materials: 

An ASTM C 150 [3.17] Type I/II portland cement was used for this study with the 

cement properties shown in Table ‎3.1. Standard graded sand [3.18] was used for the mortar 

experiments. Corn stover was purchased from a local farm in Manhattan, KS. The high lignin 

residue (HLR) material used was the solid residue taken after an SSF process using corn stover 

as the feedstock material and was supplied by the National Renewable Energy Laboratory at 

Golden, CO. The HLR material contained 30% cellulose and 70% lignin on dry mass. Reagent 

grade hydrochloric (HCl) and sulfuric acid were obtained and diluted to 0.1 N for use in the 

study. Phosphorus pentoxide (P2O5) and potassium hydroxide (KOH) used were ACS grade. 
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Table ‎3.1: Chemical compositions of cement and corn stover ash  

Sample ID 
SiO2 Al2O3 Fe2O3 CaO MgO P2O5 Na2O K2O LOI 

BET 

(m2/gr) 

CSA-HCL80-4-500/2 76.54 1.59 0.79 4.05 1 3.31 0.58 3.93 6.09 64 

CSA-HCL80-4-650/1 77.94 1.5 2.17 3.86 1.12 3.34 0.7 4.41 3.82 14.3 

CSA-DW80-4-650/1 47.37 1.67 2.65 14.5 3.29 6.06 0.57 10.56 10.64 10.6 

CSA-Cont-650/1 28.42 0.89 0.56 7.83 3.3 6.78 0.42 25.41 22.78 8.5 

HLRA-650/1 81.34 3.46 1.42 3.21 0.48 0.54 1.87 1.84 1.8 67 

Portland Cement 21.8 4.35 3.4 64.2 1.79 -- 0.17 0.52 0.89 -- 

 

3.2.2 Experimental Methods: 

3.2.2.1 Treatments: 

Hydrothermal pretreatment methods were performed on chopped corn stover (CS) using 

distilled water (DW), 0.1N HCl, and 0.1N Sulfuric acid. To pretreat the biomass, 250 g of 

biomass was immersed in 3100±100 mL of the solution in a 4000 mL glass jar. The sample was 

stored undisturbed at a constant temperature of either 23
o
C or 80

o
C for a given immersion 

period. After immersion, samples of leachate were collected for further analysis. After 

pretreatments, the biomass was rinsed either twice or four times, each time with 2500 mL of 

distilled water and dried at 80
o
C in an oven.  

Post-treatment for corn stover ash (CSA) was performed by soaking the 20 gr of ash in 

100 gr of distilled water and stirring the slurry for one hour at 23
o
C. After stirring, the slurry was 

filtered and the solid residue (post-treated ash) was dried at 80
o
C in an oven. Leachate samples 

were collected for further analysis. Leachate Concentrations of magnesium (Mg), calcium (Ca), 

potassium (K), sodium (Na), and phosphorus (P) were determined using inductively coupled 

plasma mass spectrometry (ICP-MS). 
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3.2.2.2 Ash production: 

A programmable electric muffle furnace was used to heat the biomass samples to a 

predetermined temperature and hold time. To prepare corn stover ash (CSA), 200 g of dried corn 

stover was burned in each batch made.  A stainless steel cage with two wire mesh shelves was 

used to hold the biomass during burning.  A stainless steel pan was placed below the cage to 

catch any ash that fell through the mesh. High lignin residue ash (HLRA) was prepared by 

placing 100 gr of HLR on the stainless steel pan and heating in the furnace. Samples were heated 

to 500
o
C for two hours (500/2) or 650

o
C for one hour (650/1). Finally, the ash was ground for 

one hour at 85 revolutions per minute (rpm) in a laboratory ball mill. The naming convention for 

ash samples is as follows: type of ash-pretreatment-washing times-burning temperature/holding 

time. For example, the name of corn stover ash pretreated with 0.1 N HCl at 80°C that was 

washed 4 times after pretreatments and burned at 500
o
C for 2 hrs would be CSA-HCl80-4-500/2. 

CSA-650/1-Post and CSA-500/2-Post are post-treated CSA-Cont-650/1 and CSA-Cont-500/2 

samples, respectively. (OPC+650/1-leachate) and (OPC+500/2-leachate) are paste samples in 

which the leachate from the post-treatment of CSA-Cont-650/1 and CSA-Cont-500/2 samples 

was used as mixing water, respectively. 

3.2.2.3 Biomass ash characterizations: 

Particle-size distribution and surface area of the ground biomass ash (CSA and HLRA) 

were determined using a laser diffractometer and BET nitrogen adsorption. ARA loss on ignition 

(LOI) was determined by measuring the mass loss after heating one gram of dry biomass ash 

(CSA and HLRA) to 900
o
C for 3 hrs. LOI was calculated as the percentage mass loss during 

firing. To determine crystalline phases of the ash samples, x-ray diffraction (XRD) analysis was 

performed (Cu‎Kα radiation with λ=1.5046Å). A step size of 0.02°/2s and a scan range of 5°–70° 
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2θ was used. The chemical composition of ash samples were determined using x-ray 

fluorescence (XRF). 

3.2.2.4 Biomass ash pozzolanic reactivity determination: 

For cement paste experiments, 20% of the cement was replaced by CSA when used.  A 

water-cementitious materials ratio (w/cm) of 0.5 was used for all paste samples. Distilled water 

was added to the cementitious material and mixed using a vertical laboratory mixer at 500 rpm 

for 90 seconds, followed by a 120 second rest period, and finally mixed at 2000 rpm for 120 

seconds [3.19]. 

For determining heat of hydration of cement pates, an eight-channel isothermal 

calorimeter was used in this study. Approximately 30 g of cement paste was used and the 

calorimeter was run at 23°C for one week. The calcium hydroxide (CH) content of cement paste 

samples was obtained using thermogravimetric analysis to study the pozzolanic consumption of 

CH by biomass ash. Paste samples were cast in polystyrene vials. Samples were wet cured 

starting at 24 hrs after casting at 23
o
C. Cement paste hydration was stopped at 7, 28, and 91 days 

of hydration by means of solvent exchange with isopropanol. Approximately 2 mm thick slices 

were cut and placed in isopropanol for 7 days.  After 7 days in isopropanol, the samples were 

dried in a vacuum for at least 3 days. Free water content was obtained as the difference between 

the weight of samples before soaking in isopropanol and after drying. 25 to 30 mg of dried paste 

was heated at 20°C/min to 900
o
C in a nitrogen environment using a thermogravimetric analyzer 

(TGA). The CH content of paste samples was obtained using thermogravimetric analysis.  

Mortar cube compressive strength was measured according to ASTM C109 [3.20] with a 

sand to cementitious material ratio of 2.75. A w/cm of 0.55 was used for all mortar samples 

because of the decreased workability of systems with pretreated CSA samples. CSA was used at 
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a 20% replacement level by mass of cement when used. Mortar cube compressive strength was 

tested at 7, 28, and 91 days with the results reported as the average of the compressive strength 

of three mortar cubes. 

3.3 Results and discussion: 

3.3.1 Biomass ash characteristics: 

  The major influence of pretreatments seen is the removal of metal impurities out of the 

biomass. Table ‎3.2 shows the amount of metal impurities removed by the pretreatments out of 

the corn stover. The data shows that all of the pretreatments removed similar amounts of 

potassium (K). However, distilled water pretreatments did not remove as much Ca, Mg, and P as 

the dilute acid pretreatments. 

Table ‎3.2: Metal impurities concentrations measured in corn stover leachate 

Pretreatment 

Leachate Concentration (mg/g biomass) 

Na K Ca Mg P 

HCl23°C 0.05 22.06 3.57 1.56 1.95 

HCl80°C 0.67 25.99 5.48 1.91 2.34 

DW23°C 0.04 19.12 1.19 0.99 1.34 

DW80°C 0.24 24.13 1.40 1.31 1.44 

Sul.80°C 0.41 26.62 5.03 1.95 2.33 

 

The effect of removing the impurities was reflected in the physical and chemical 

properties of the CSA. Pretreatments decreased the crystallinity of the ash. Figure ‎3.2 shows the 

XRD results of pretreated and unpretreated corn stover ash burned at 650°C for one hour. 

Unpretreated corn stover ash (CSA-Cont-650/1) had higher crystalline content compared to the 

pretreated samples (CSA-HCl80-2-650/1 and CSA-HCl80-4-650/1).  
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Figure ‎3.2: XRD result for corn stover ash burned at 650°C for 1 hr. 
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similar XRD patterns to that of 650°C for 1 hr, as shown in Figure ‎3.3. Corn stover ash 
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DW80 pretreated sample, suggesting that the former had a higher amorphous content. 

Furthermore, CSA pretreated with sulfuric acid (Sul80) did not show sylvite phase, as illustrated 

in Figure ‎3.5. Besides quartz, potassium sulfate was the second major crystalline phase in the 

dilute sulfuric acid pretreated CSA (CSA-Sul80-4-500/2). Although HLRA contained some 

CSA-HCl80-4- 
650/1 

Q 

Q 

CSA-HCl80-2-

650/1 

C Q 

C C C Q 

CSA-Cont-

650/1 
Q 

P 

K K 

P 

K P 

Q 

P P 

0

8000

10 20 30 40 50 60 70

In
te

n
si

ty
 

2-Theta (deg) 

K=Potassium Calcium 

Phosphate (KCaPO4) 

Q=Quartz(SiO2) 

P=Potassium chloride (KCl) 



44 

 

quartz, neither potassium chloride nor calcite phases were found in the samples, as can be seen in 

Figure ‎3.5.  

 

Figure ‎3.3: XRD result for corn stover ash burned at 500°C for 2 hr 
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Figure ‎3.5: XRD pattern for HLRA and dilute acid pretreated CSA 
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shown in Table ‎3.1. HLRA had higher silica content compared to the other CSA samples. 

Pretreatments increased the ash specific surface area. Pretreatments, particularly dilute acid, 

dramatically reduced the LOI of the biomass ash as illustrated in Table ‎3.3. Additionally, the 

LOI was reduced by increasing the number of rinsing times during pretreatments. This could be 

because of removal of metal impurities, particularly potassium, from the biomass surface during 

rinsing. The lowest LOI was obtained for HLRA followed by the ash pretreated with dilute 

sulfuric acid (Sul80). The higher surface area and lower LOI of HLRA compared to dilute acid 

pretreated CSA could be attributed to the removal of cellulose out of the biomass and to the 

structural change of lignin by enzymatic hydrolysis and also to the lower metal impurities, 

particularly potassium, content of HLR compared to that of dilute acid pretreated corn stover. 

Removal of cellulose and structural change of lignin could cause the lignin and the remaining 

organic compounds in the HLR to better burn off leading to lower LOI and higher surface area 

for HLRA.   

Table ‎3.3: Loss on ignition (LOI) of biomass ash 

Treatment type 

Burning condition 

500/2 650/1 

CSA-Cont 24.6 22.7 

CSA-DW80-2 13.6 12.3 

CSA-DW80-4 13.1 8.6 

CSA-HCl80-2 10 8.6 

CSA-HCl80-4 6 3.8 

CSA-Sul80-4 4.7 2.6 

HLRA 2.3 1.8 

Note: Data are given in percent of initial weight 

 



47 

 

Although the particle size distribution was slightly changed by DW80 and HCl80 

pretreatments, HLRA showed an overall smaller particle size distribution than other CSA as 

shown in Figure ‎3.6.  

 

Figure ‎3.6: Particle sized distribution of cement and biomass ash 
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Figure ‎3.7: Heat of hydration of pretreated and unpretreated (Cont.) CSA 
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Figure ‎3.8: Heat of hydration of dilute acid pretreated CSA 
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total heat of hydration at five days as those containing pretreated CSA as it can be seen from 

Figure ‎3.9b.  

 

 

Figure ‎3.9: Heat of hydration of HLRA  
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phosphorous out of the biomass, reduced the LOI and crystallinity of the biomass ash and 

increased the silica content and surface area of the ash. Amongst these factors, the phosphorus 

(P) removal and the increase in specific surface area could play a major role in enhancing the 

early reaction of pretreated CSA.  An increase in the ash surface area increases the number of 

nucleation sites for precipitation of calcium-silicate-hydrate (CSH) which could increase the 

early heat of hydration [3.22].  

 

Figure ‎3.10: Heat of hydration of post-treated CSA 
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phosphorus found in the CSA-Cont-500/2 leaches more at high pH values seen in pore solutions, 

but not in the post treatment leachate. Since some of the phosphorous was removed by post-

treatment, the amount of phosphorus released into the paste from CSA-500/2-Post might not be 

enough to cause retardation. While it is possible that the high level of phosphorous in the 

leachate from CSA-Cont-650/1 could be the reason behind the hydration suppression in 

OPC+650/1-leachate sample, clearly the cause is more complex. 

 

 

Figure ‎3.11: Cement hydration under phosphorus and KOH 
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3.3.2.2 Calcium hydroxide consumption and mortar compressive strength: 

The calcium hydroxide (CH) content of cement paste samples containing CSA was less 

than that of OPC samples, as shown in Figure ‎3.12.  The CH content of OPC paste samples 

increased with time. The CH content of samples containing unpretreated CSA (CSA-cont-500/2 

and CSA-Cont-650/1) remained constant or increased between 7 and 91 days of hydration. 

Samples containing DW80 pretreated ash (CSA-DW80-4-650/1 and CSA-DW80-4-500/2) did 

not show a reduction in the CH content over time. This could be because these ashes had a lower 

reactivity and the CH consumption was balanced by the continued cement reaction and CH 

production. For more reactive ashes, such as dilute acid pretreated ones and HLRA, the CH 

consumption rate was higher than the CH production rate, lowering the CH content after 7 days. 

It was seen that samples containing CSA burned at 500°C for 2 hours (500/2) had lower CH 

content that those containing CSA burned at 650°C for 1 hour (650/1). This could be attributed 

to the higher surface area of samples burned at 500/2. Samples containing HLRA-500/2 showed 

the lowest CH content at 28 and 91 days of age.  

Table ‎3.4: Post-treatment leachate concentrations 

Sample ID 

Post-preatment leachate concentrations (mg/g of ash) 

P   Na  Ca  K  Mg  

CSA-Cont-500/2 0.46 0.23 0.09 57.24 0.03 

CSA-Cont-650/1 4.50 0.33 0.09 58.73 0.04 

 

The small increase in compressive strength from 7 to 91 days in the samples made with 

the unpretreated CSA ash (CSA-Cont-650/1), as shown in Figure ‎3.13, suggests that the addition 

of unpretreated ash limited the cement reaction. Post-treatment improved the compressive 

strength by 46% at 7 days and by 67% at 28 days compared to the unpretreated (control) ash, 
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however the post-treated ash compressive strength was still only 91% and 87% of the OPC 

sample at 7 days and 28 days, respectively.  

 

Figure ‎3.12: CH content of cement paste samples 

 

 

Figure ‎3.13: Mortar cubes compressive strength 
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rinsing the sample after soaking had a negligible effect on the compressive strength since both 

CSA-HCl80-2-650/1 and CSA-HCl80-4-650/1 had similar compressive strength. Among mortar 

samples containing biomass ash burned at 650°C, the highest mortar compressive strength was 

obtained from samples containing HLRA-650/1. Use of 20% HLRA-650/1 increased the 28 days 

compressive strength by 32% compared to OPC samples. However, mortar samples containing 

CSA-HCl80-4-500/2 showed 22% higher compressive strength than those containing CSA-

HCl80-4-650/1 at 28 days. This could be associated with the high surface area of the ash burned 

at 500/2. 

3.4 Conclusions 

The pozzolanic properties of high lignin residue ash (HLRA) and the impact of 

pretreatments on the pozzolanicity of corn stover ash (CSA) were studied. The findings of this 

study can be summarized as follows: 

1. It was found that pretreatments improve the pozzolanic properties of CSA by removing 

AAEMs out of the biomass. It was shown that the existence of potassium and calcium in 

the biomass cause the formation of crystalline phases in the ash. 

2. Pretreatments, particularly dilute acid, reduced the crystallinity of the corn stover ash, 

increased surface area, and reduced LOI of the ash. At a given burning condition, it was 

shown that HLRA had the highest surface area and the lowest LOI.  

3. Unpretreated CSA suppressed the hydration reaction when mixed in cement paste. Also, 

the mortar samples containing 20% unpretreated CSA, namely CSA-Cont-650/1 and 

CSA-Cont-500/2, as cement replacement showed lower compressive strength than 

control (OPC) mortar samples. It is possible that phosphorus can be leached from the 

unpretreated CSA into the pore solution retarding hydration.  
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4. Post-treatments with distilled water at room temperature improved the hydration reaction 

by removing AAEMs and phosphorus out of the CSA. More phosphorus was removed in 

the post-treatment from the CSA-Cont-650/1 compared to CSA-Cont-500/2. 

5. When used as 20% cement replacement level, dilute acid pretreated CSA increased the 

mortar compressive strength significantly. It was found that burning at lower 

temperatures increased the ash reactivity, even at temperatures lower than that typically 

needed to melt the silica. 

6. HLRA was shown to have excellent pozzolanic reactivity, even higher than those 

pretreated by dilute acid. This is because of higher amorphous silica content, higher 

surface area, and lower LOI of the HLRA compared to other CSA samples. The 

improved pozzolanic performance of HLRA could be attributed to the impacts of 

enzymatic hydrolysis on the biomass chemical and physical properties. This could be 

mainly because of the organic material depolymerization.   
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Chapter 4 - The impact of pretreatments and 

inorganic metals on thermal decomposition of 

agricultural residues 

Abstract: 

Impacts of pretreatments and alkali and alkaline earth metals (AAEMs) on thermal 

degradation of biomass and biomass ash properties for potential use as a supplementary 

cementitious material in concrete were investigated. Results showed that the influence of 

pretreatments on the biomass thermal degradation was largely manifested in the removal of 

potassium out of the biomass. The presence of potassium in the biomass increased the char 

percentage at temperatures higher than 380°C. Pretreatments were effective at removing 

potassium from biomass and dramatically reducing the char percentage at temperatures 

higher than 380°C.  The best burning temperature for biomass ash production was 500°C 

because, at this temperature, thermal degradation of biomass was completed under pure 

combustion. Removing AAEMs, particularly potassium, not only increased the bio-oil 

yield but improved the quality of char as a potential candidate for supplementary 

cementitious materials for concrete application. 
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4.1 Introduction: 

Awareness of construction carbon footprints has created an increasing worldwide 

interest in the use of supplementary cementitious materials (SCMs) as partial replacement 

for portland cement in concrete. Agricultural residues, such as wheat straw, rice straw, and 

corn stover, are potential resources for SCMs. These agro-residues are burned at controlled 

temperature conditions and the ashes can be used for partial replacement of cement in 

concrete [4.1] [4.2] [4.3]. Depending on agro-residue types and composition, agricultural 

residue ash (ARA) such as wheat straw ash (WSA), rice straw ash (RSA), and corn stover 

ash (CSA) could have negative impacts on cement hydration [4.3]. Distilled water or dilute 

acid pretreatments of agro-residues can improve reactivity of ARA in cementitious systems 

[4.1] [4.3]. It has been postulated that the removal of alkali and alkaline earth metals 

(AAEMs), such as potassium, calcium, and magnesium, out of the biomass by 

pretreatments is the reason for improved reactivity of ARA in cementitious systems [4.3]. 

Ash from pretreated agro-residues has lower crystallinity and carbon content compared to 

ash from unpretreated  agro-residues [4.1] [4.3]. In addition, ARA prepared at lower 

temperatues has higher surface area and lower crystallinity, an important factor for ARA 

reactivity in concrete [4.3]. ARA obtained at lower temperatures has higher carbon 

content, however, which can be detrimental for concrete containing air entraining chemical 

admixtures. Furthermore, crystallization of the ash reduces its reactivity in cementitiou 

systems. Ashing at the lowest possible burning temperature at which agr-residues 

decompose completely should produce high quality ash for use in concrete. 
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Besides the adverse impact on ash quality for concrete use, the presence of AAEMs 

in agro-residues can adversely affect the quality of bio-oil [4.4]. The use of pretreatments 

to remove AAEMs from the biomass prior to pyrolysis improves the yield and quality of 

the bio-oil [4.4] [4.5]. Pyrolysis, the most common thermochemical conversion method, is 

the process in which the biomass is combusted in an oxygen-free environment. During 

pyrolysis, the biomass is converted to three main phases of char (solids), tar or bio-oil 

(liquid), and gas (syngas). Several researchers have studied the impact of AAEMs on the 

thermal decomposition of agro-residues and their major constituents, hemicellulose, 

cellulose, and lignin [4.6] [4.7] [4.8].  Research shows that the presence of potassium in 

biomass catalyzes thermal decomposition of biomass and increases char content during 

pyrolysis [4.4] [4.6]. Nowakowski and Jones (2008) studied the impact of potassium on 

pyrolytic behavior of the major constituents in biomass, namely cellulose, hemicellulose, 

and lignin. They showed that potassium has a catalytic effect on cellulose and lignin and 

increases the char yield. However, potassium did not have a significant impact on thermal 

degradation of hemicellulose.  

Biomass char is not currently used in concrete as SCM because its composition and 

crystallinity have negative impacts on cementitious systems. For many kilns used to 

produce supplementary cementitious materials (SCMs), oxygen deficiencies would give 

conditions in-between that seen for pyrolysis and combustion. This is especially true for 

rudimentary kilns that could be used for producing ash for low-cost housing. Studying 

pyrolysis and combustion of biomass will lead to a better understanding of thermal 

degradation of biomass in oxygen-limited environments. The impact of pretreatments and 
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AAEMs on both pyrolysis and combustion of biomass at different temperatures is very 

important for developing technologies for biofuel production and for utilization of biomass 

char in concrete materials. 

Thus, this study investigated the impact of pretreatments and AAEMs on the 

thermal degradation of wheat straw, rice straw, and corn stover during pyrolysis and 

combustion. Distilled water, dilute hydrochloric acid, and hot water pretreatments were 

used. A better fundamental understanding of the thermal decomposition process is 

provided for development of better ashing processes for making SCMs and using biomass 

char for concrete. 

4.2 Materials and methods: 

4.2.1 Materials: 

Wheat straw (WS) and corn stover (CS) were purchased from a local farm in 

Manhattan, Kan., and rice straw (RS) was obtained from Missouri Rice Research Farm, 

Glennonville, Missouri. Hydrochloric acid (HCl), potassium chloride (KCl), potassium 

acetate (CH3COOK), and magnesium chloride (MgCl26H2O) used were ACS grade. 

Analytical grade magnesium acetate [(CH3COO)2 Mg 4H2O] and high purity grade calcium 

acetate (C4H6O4Ca0.5H2O) were also used. 

4.2.2 Methods: 

4.2.2.1 Pretreatments: 

In this study, hydrothermal pretreatments with distilled water were performed at 

four temperatures, 23°C, 80°C, 120°C, and 200°C and are referred to as DW23, DW80, 
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DW120, and DW200, respectively. For DW23 and DW80 pretreatments, 250 g of chopped 

biomass was immersed in 3100±100 mL of distilled water (DW) in a 4000 mL glass jar for 

24 hours at 23°C and 80°C, respectively. For DW120, 250 g of chopped biomass and 

3100±100 mL of distilled water (DW) were placed in an autoclave at 120°C for 30 min. 

The DW200 pretreatment was performed in a high pressure reactor (Parr 4843). Forty g of 

biomass and 480 mL of distilled water were placed inside the reactor and heated at 200°C 

for 10 minutes. After 10 minutes of treatment, pressure was gradually released. In the 

dilute acid pretreatment, the biomass was pretreated in the same manner as the DW23 and 

DW80 pretreatments, except that 0.1N HCl was used instead of distilled water at 23°C 

(HCl23) and 80°C (HCl80). Leachate samples were collected after each pretreatment and 

analyzed using atomic absorption spectroscopy (AAS). The wheat straw and rice straw 

were rinsed twice and the corn stover was rinsed four times with distilled water to remove 

surface elements and dried at 80°C.   

Pretreated samples were impregnated by metal acetates and metal chlorides to 

better understand the role that various metal impurities play on the biomass thermal 

decomposition. This will also help understand the role that feedstock variability plays in 

ash quality. To study the influence of potassium, calcium, and magnesium on biomass 

thermal degradation, 0.5 g of  pretreated and unpretreated biomass was soaked in 20 ml of 

1 wt% potassium chloride (KCl), potassium acetate (CH3COOK), calcium acetate 

(C4H6O4Ca0.5H2O), magnesium chloride (MgCl26H2O), and magnesium acetate 

[(CH3COO)2Mg 4H2O] solutions at room temperature for 24 hrs. The biomass was then 

filtered through a 25µm filter paper and dried at 80°C for further analysis. 
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4.2.2.2 Thermal degradation characterization: 

The biomass was ground into pieces approximately 2 mm in length before TGA 

testing. The thermal degradation behavior of biomass was studied by heating 15 to 20 mg 

of biomass in a TGA (TGA Q50 series) at a rate of 20°C /min up to 800°C in both nitrogen 

enriched and air-enriched atmospheres. The balance gas flow rate used was 40 mL/min and 

the furnace gas flow rate was 60 mL/min.  

4.2.2.3 Biomass ash production and characterization: 

A programmable electric muffle furnace was used to heat biomass samples at 

500
o
C for 2 hr of hold time. To prepare the ash, 200 g of dried biomass was burned in each 

batch made.  A stainless steel cage with two wire mesh shelves was used to hold the 

biomass during burning.  A stainless steel pan was placed below the cage to catch any ash 

that fell through the mesh. Finally, the ash was ground for one hour at 85 revolutions per 

minute (rpm) in a laboratory ball mill. Loss on ignition (LOI) of the ash was determined by 

measuring mass loss after heating one gram of dry biomass ash (CSA, WSA or RSA) to 

900°C for three hours. LOI was calculated as the percentage mass loss during firing.  

Surface area of the biomass ash samples was determined using BET nitrogen adsorption. 

The naming convention for ash samples is as follows: type of ash-pretreatment-burning 

temperature/holding time. For example, the name of corn stover ash pretreated with 0.1 N 

HCl at 80°C and burned at 500°C for 2 hrs would be CSA-HCl80-500/2. 
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4.3 Results and Discussion: 

4.3.1 Influence of pretreatments on AAEM removal: 

AAEMs concentrations for wheat straw, rice straw, and corn stover leachate for 

different pretreatments are shown in Table ‎4.1. At a given temperature, the dilute acid 

pretreatment was more effective in removing calcium (Ca) and magnesium (Mg) out of the 

biomass than distilled water pretreatment. Moreover, for a given pretreatment, the increase 

in temperature increased AAEMs removal. It is worth noting that corn stover contained 

higher amounts of AAEMs than wheat straw and rice straw. Removal of AAEMs, 

particularly potassium, from the biomass is important for improving biomass ash quality 

for concrete application as well as reducing corrosion of biofuel reactors and kilns [4.3] 

[4.4]. 

Table ‎4.1: Biomass leachate inorganic concentrations 

 

Temp. 
Potassium(K) 

mg/L 
Calcium (Ca) 

mg/L 
Magnesium(Mg) 

mg/L 

 
DW HCl DW HCl DW HCl 

W
h

ea
t 

St
ra

w
 23°C 665 673 40 170 35 98 

80°C 690 772 76 226 51 136 

200°C 868   70   51.2   

R
ic

e 
St

ra
w

 

23°C 936.8 1084 5.44 124 68 93 

80°C 962 1144 16 214 54 90 

200°C 1227   20   138   

C
o

rn
 S

to
ve

r 

23°C 1500 1730 115 235 72 108 

80°C 1875 2176 118 333 81 122 

200°C 2280   120   72   
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4.3.2 The impact of pretreatments on carbon content and surface area of 

biomass ash: 

 Table ‎4.2 shows carbon content, in terms of LOI and BET surface area, of 

pretreated and unpretreated CSA, WSA, and RSA. Pretreatments dramatically reduced the 

LOI and increased the surface area of the ash. HCl80 pretreated ash had 75% less unburned 

carbon than unpretreated ash. The high LOI of unpretreated corn stover ash  (CSA-Cont-

500/2) could be attributed to the high potassium content of corn stover. Figure ‎4.1 shows 

the correlation between MgO, K2O, and CaO content of biomass ash and LOI. A linear 

relationship between K2O of the ash and its LOI, suggests a relationship between 

potassium and thermal decomposition. The relationship between MgO of the ash and its 

LOI also appeared to be linear, whereas the CaO content of the ash did not correlate well 

with LOI of the ash. Surface area of the RSA pretreated with HCl80 sample (RSA-HCl80-

500/2) was more than 20 times higher than the unpretreated RSA sample (RSA-Cont-

500/2). Likewise, surface area of WSA-HCl80-500/2 was six times higher than WSA-

Cont-500/2. Relationships between AAEMs content and ash carbon content led to 

additional experiments to further understand how these elements affect biomass thermal 

decomposition. 
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Table ‎4.2: Surface area and LOI of biomass ash 

Ash Type 
Unburned Carbon 

BET surface 

area (m
2
/g) LOI 

(%) 
S.D 

WSA-Cont-500/2 11.5 0.65 27.6 

WSA-DW23-500/2 7.6 0.45 --- 

WSA-DW80-500/2 6.9 0.35 --- 

WSA-HCl23-500/2 6 0.25 --- 

WSA-HCl80-500/2 2.9 0.46 168 

RSA-Cont-500/2 7.5 0.55 9.6 

RSA-DW23-500/2 4.6 0.50 --- 

RSA-DW80-500/2 3.5 0.35 --- 

RSA-HCl23-500/2 3.5 0.40 --- 

RSA-HCl80-500/2 2.2 0.31 200 

CSA-Cont-500/2 25.1 0.60 11.3 

CSA-DW80-500/2 13.2 0.45 --- 

CSA-HCl80-500/2 6.1 0.40 64 

 

 

Figure ‎4.1: Correlation between LOI and k2O, CaO, and MgO content of ash 
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4.3.3 The impact of pretreatments on biomass pyrolysis: 

Figure ‎4.2a shows differential thermogravimetric (DTG) results for thermal 

decomposition of unpretreated (RS-Cont), DW80 pretreated (RS-DW80), dilute acid 

pretreated (RS-HCl80), and DW200 pretreated (RS-DW200) rice straw samples during 

pyrolysis. A shallow mass loss peak seen for unpretreated rice straw at approximately 

210°C could be associated with decomposition of minor compounds present in the straw. 

The mass loss peak for unpretreated rice straw that occurs at 330°C could be attributed to 

decomposition of hemicellulose and cellulose. RS-DW80 showed distinct mass loss peaks 

(DTG peaks) at 310°C and 360°C. These peaks can be attributed to decomposition of 

hemicellulose and cellulose, respectively [4.6] [4.9]. Both RS-HCl80 and RS-DW200 

samples revealed a large DTG peak which primarily represents the decomposition of 

cellulose. However, the mass loss peak for RS-DW200 occurred at a slightly higher 

temperature (380°C) and magnitude compared to the DTG peak for RS-HCl80, possibly 

because of the existence of hemicellulose in RS-HCl80, higher content of cellulose in the 

DW200 sample, and structural change of cellulose in DW200 sample. The coexistence of 

hemicellulose with cellulose can reduce the mass loss rate of cellulose [4.10]. Although all 

samples had lignin, DTG plots did not show a separate mass loss peak for lignin.  Previous 

research shows that the presence of hemicellulose decreases the mass loss rate of lignin 

[4.10]. It is worth noting that the hemicellulose mass loss peak is almost absent in the 

DW200 pretreated samples, suggesting that DW200 removed most of the hemicellulose 

[4.11]. HCl80 pretreatment also seems to remove some of the hemicellulose out of the 

biomass. The absence of a third distinguishable mass loss rate peak normally associated 
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with lignin (RS-Cont and RS-DW80) could result from a decrease in the rate of mass loss 

by hemicellulose and overlap of the lignin DTG peak with that of the cellulose. Thermal 

degradation behavior of samples pretreated with distilled water at 23°C (DW23) and dilute 

acid at 23°C (HCl23) was similar to that of samples pretreated with distilled water at 80
o
C 

(DW80), possibly because these three pretreatments did not remove hemicellulose but 

leached most of the potassium out of the biomass. As shown in Figure ‎4.2b, wheat straw 

showed similar thermal degradation behavior as rice straw.  Corn stover also showed a 

similar trend, as illustrated in Figure ‎4.2c. 

4.3.4 The impact of AAEMs on biomass pyrolysis: 

Changes in the thermal decomposition behavior of biomass constituent materials by 

pretreatments could be attributed to the removal of AAEMs from the biomass. To 

investigate the impact of different AAEMs on thermal degradation, pretreated biomass and 

unpretreated biomass were impregnated by metal chlorides and metal acetates. Figure ‎4.3 

shows the influence of KCl and Potassium acetate (K-acetate) impregnation on the thermal 

degradation of unpretreated and DW80 pretreated wheat straw samples. For both DW80 

pretreated and unpretreated samples, KCl impregnated samples (WS-DW80-KCl and WS-

Cont-KCl) revealed distinct mass loss peaks for hemicellulose and cellulose. Furthermore, 

KCl impregnation catalyzed the thermal degradation of both cellulose and hemicellulose. 

However, potassium acetate impregnation did not significantly change the thermal 

behavior of the unpretreated sample, likely because the unpretreated sample already 

contained a large amount of potassium.  
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Figure ‎4.2: DTG plots of pretreated and unpretreated (a) Rice straw and (b) wheat straw and 

(c) corn stover 
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Figure ‎4.3: DTG graphs for Potassium acetate and KCl impregnated (a) unpretreated, and 

(b) pretreated wheat straw 

When the DW80 pretreated sample was impregnated with potassium acetate (WS-
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occurred at lower temperatures, as shown in Figure ‎4.3b. Differences between the 

potassium acetate and KCl impregnation show that potassium catalyzes the thermal 
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that the cellulose maximum mass loss rate temperature shifted to a lower temperature, 

making the hemicellulose and cellulose mass loss rate peaks overlap.  

 

 

Figure ‎4.4: DTG graphs for (a) Mg impregnated wheat straw, and (b) Mg impregnated rice 

straw  
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the sample. Comparison of KCl impregnation with MgCl2 impregnation reveals that the 

influence of chlorine on biomass thermal degradation depends on the cation that 

accompanies it. DTG plots of MgCl2 impregnated samples showed a mass loss peak 

occurring from 200°C  to 300
 
°C, whereas DTG curves for KCl impregnated samples 

showed mass loss peak for  hemicellulose from 250°C to 300°C, see Figure ‎4.4b and 

Figure ‎4.5. Ca-acetate impregnation of pretreated wheat straw did not significantly change 

the thermal degradation behavior, as seen in Figure ‎4.6. Clearly, the type of cation is 

important. Similar behavior was seen for corn stover and rice straw samples. 

 

Figure ‎4.5: DTG graphs for Potassium acetate and KCl impregnated-pretreated rice straw 
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Figure ‎4.6: DTG graphs for Ca impregnated wheat straw 

 Biomass impregnation with metal acetates better simulated the actual pyrolytic 

behavior of biomass compared to metal chlorides because Potassium acetate impregnation 

of DW80 pretreated biomass samples showed similar pyrolytic degradation to that of 

unpretreated biomass, as seen in Figure ‎4.3. Thus, in order to study the impact of AAEMs 

on the pyrolytic behavior of biomass and its product distribution, metal acetate, rather than 
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The impact of K, Mg, and Ca on weight loss during biomass pyrolysis is shown in 
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0

4

8

12

16

20

150 200 250 300 350 400 450

 D
er

iv
. 
W

ei
g

h
t 

(%
/m

in
) 

Temperature (oC) 

WS-DW80-Ca-acetate

WS-Cont-Ca-acetate

WS-DW80

WS- Cont.



73 

 

also observed for rice straw and corn stover samples. The positive impact of potassium is 

that, at temperatures lower than 380°C, it acts as a catalyst or flux agent and promotes 

thermal decomposition. The negative impact of potassium is that, at temperatures higher 

than 380°C, it suppresses decomposition, increasing the amount of carbon remaining in the 

char. The increase in char content could be attributed to the deposition of potassium as 

potassium chloride (KCl) on the surface of organic compounds, possibly leading to carbon 

entrapment during decomposition [4.8] [4.12] [4.13]. Removing elements, such as 

potassium, that can be harmful for pyrolysis equipment and char reactivity in concrete not 

only increases the bio oil yield but improves the quality of char as a potential candidate for 

SCMs. Thus, pretreatments have twofold benefits: increasing bio-oil yield and improving 

char quality for concrete applications. 

 

Figure ‎4.7: The impact of K, Mg, and Ca on char percentage of biomass 
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4.3.5 The impact of pretreatments on biomass combustion: 

Thermogravimetric (TG) and differential thermogravimetric (DTG) curves for 

wheat straw and rice straw combustion are shown in Figure ‎4.9 and Figure ‎4.9, 

respectively. Similar to pyrolysis, pretreatments increased the maximum mass loss rate as 

well as the temperature at which the maximum mass loss occurs. Although unpretreated 

samples showed higher weight loss at temperatures lower than 330°C as compared to 

pretreated samples, the weight loss for all pretreated and unpretreated samples was similar 

at temperatures higher than 500°C. A similar trend was also seen for corn stover. The 

combustion (abundant oxygen availability) of rice straw, wheat straw, and corn stover 

completes at around 500°C.  At this or higher temperatures, resulting ash should have little 

to no unburned carbon, regardless of pretreatments. This means that if the biomass had 

undergone pure combustion in the muffle furnace when ashes were made, the LOI of all 

ashes would have been close to zero because the biomass was burned at 500°C. On the 

other hand, if the condition in the muffle furnace was similar to pure pyrolysis, the LOI 

would have been similar to the char percentage minus the ash content. However, the LOI 

of biomass ashes were lower than the char percentages. For instance, the LOI of WSA-

DW80-500/2 was 6.9%, whereas the char % of WS-DW80 sample at this temperature was 

22 (including 5% ash). Therefore, it can be said that the condition in the muffle furnace 

had been in between pure pyrolysis and pure combustion. Because of this, pretreatments 

significantly reduced the LOI of biomass ash, as seen in Table ‎4.2. The increase in surface 

area of pretreated biomass ash could also indicate that the biomass had undergone partial 

pyrolysis. Because at temperature higher than 380°C during pyrolysis, potassium present in 



75 

 

unpretreated biomass does not allow the organic compound burn off completely and thus 

decreasing the surface area, as shown in Figure ‎4.7. 

 

 

Figure ‎4.8: (a) DTG and (b) TG plots for wheat straw combustion 
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Figure ‎4.9: (a) DTG and (b) TG plots for rice straw combustion 
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pyrolysis. Pyrolysis was performed up to 500°C (500-pyr) or 700°C (700-pyr) when 

nitrogen gas was switched to air. After switching gases, temperature was kept constant at 

either 500°C or 700°C.  

 

 

Figure ‎4.10: Wheat straw and corn stover pyrolysis followed by combustion, a) pyrolysis up 

to 500°C; b) pyrolysis up to 700° 
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greater amount of char for unpretreated samples (WS-Cont, and CS-Cont) compared to 

pretreated samples (WS-DW80 and CS-DW80), final weight loss is similar for pretreated 

and unpretreated samples. It is worth noting that the char completely decomposed in a very 

short time, approximately two minutes, after oxygen was introduced into the furnace. This 

is an important observation for developing technologies for simultaneous pyrolysis and 

reactive ash production for concrete use. Regardless of pretreatments, the char can be 

combusted to produce ash with low carbon content. However, pretreatments help remove 

other constituents, such as potassium, from the biomass char that cause crystallization of 

the char and reduce its reactivity in concrete. 

4.4 Conclusions: 

During pyrolysis of wheat straw, rice straw, and corn stover, the presence of 

potassium in the biomass slightly decreased the char percentage at temperatures lower than 

380°C, whereas the char percentage increased at temperatures higher than 380°C. 

Pretreatments dramatically reduced the char percentage at temperatures higher than 380°C. 

Although pretreatments removed some Mg and Ca out of the biomass, the impact of 

pretreatments on thermal degradation of biomass during pyrolysis was largely pronounced 

by the removal of potassium from the biomass. The carbon content of biomass ash, which 

was prepared in an electrical muffle furnace with limited oxygen, was well correlated with 

the ash potassium content. The high char yield of unpretreated biomass and the high 

carbon content of unpretreated biomass ash were shown to be because of the presence of 

potassium in the biomass that can entrap carbon during pyrolysis. Removal of potassium 

out of the biomass via pretreatments reduces the LOI and increases the surface area of the 
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biomass ash when the biomass is ashed even in oxygen-limited environments. Thus, 

removing AAEMs, particularly potassium that can be harmful for pyrolysis equipment and 

char reactivity in concrete not only increases bio-oil yield but improves the quality of char 

as a potential candidate for SCMs.  
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Chapter 5 - Impact of Pretreatments and 

Enzymatic Hydrolysis on Agricultural Residue 

Ash Suitability for Concrete 

Abstract: 

Agricultural residues such as corn stover, wheat straw, and rice straw are emerging 

as potential renewable resources for biofuel production. Byproducts from biofuel 

production have potential for use as supplementary cementitious materials (SCMs) in 

concrete after ashing. This study investigated effects of the lignocellulosic ethanol 

production process on the potential use of the byproduct as an SCM. Sodium hydroxide 

(2%) and dilute sulfuric acid (1%) pretreatments at 121°C and enzymatic hydrolysis were 

conducted on corn stover, wheat straw, and rice straw. Results showed that biomass 

pretreatment with sodium hydroxide is not an effective method for increasing reactivity of 

biomass ash in concrete. Sodium hydroxide pretreatment removed large amounts of silicon 

from the biomass, but was not effective in removing phosphorous and other metal 

impurities out of the biomass. Additionally, NaOH pretreatment did not remove all 

crystalline phases out of the biomass. Sulfuric acid pretreatment was found to be an 

effective pretreatment method for producing reactive biomass ash because sulfuric acid 

removed most of the crystalline phases out of the biomass. When NaOH pretreatments 

were used, enzymatic hydrolysis could positively affect reactivity of ash because 

enzymatic hydrolysis leached some of the inorganic elements that were not leached during 

NaOH pretreatment. Therefore, when evaluating bioethanol byproduct for concrete 
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applications, sulfuric acid is a better pretreatment than NaOH because, if sulfuric acid 

pretreatment is used, the bioethanol byproduct would be a potential candidate for 

producing reactive SCMs. 
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5.1 Introduction: 

Awareness of global warming and anticipated depletion of fossil fuel deposits have 

increased interest in biofuel production, especially lignocellolusic bioethanol [5.1] [5.2] 

[5.3]. As lignocellulosic materials, agricultural residues such as corn stover, rice straw, and 

wheat straw are potential renewable resources for biofuel production [5.4] [5.5] [5.6] [5.7]. 

Lignocellulosic materials are converted to fuels using either thermochemical or 

biochemical pathways [5.2] [5.3]. In the thermochemical route, lignocellulosic materials 

undergo pyrolysis or gasification to produce syngas, which is then upgraded to various 

types of fuels, such as ethanol and methanol [5.2] [5.8]. For the biochemical approach, 

microorganisms convert lignocellulosic materials to fuels, such as ethanol and methanol 

[5.2] [5.9]. During biochemical conversion, lignocellulosic materials undergo three main 

processes: pretreatment, enzymatic hydrolysis, and fermentation [5.2] [5.3].  

Pretreatment methods have been used to reduce the degree of polymerization of 

cellulose and remove and breakdown hemicellulose and lignin structures in lignocellulosic 

materials [5.10]. The primary purpose of pretreatments is to increase available surface area 

of the cellulose to hydrolytic enzymes, thus increasing bioethanol yield [5.2] [5.3] [5.10]. 

Among the characteristics of efficient pretreatments include: (1) increased digestibility of 

cellulose in enzymatic hydrolysis, (2) limited formation of harmful compounds by 

reducing sugar and lignin degradation, and (3) low energy demand and cost requirements 

[5.2]. Pretreatments are grouped in three main categories of physical, chemical, and 

biological [5.10]. In the physical pretreatment methods, such as size reduction, steam 

explosion, and liquid hot water, no chemicals or organisms are used in the process. 
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Chemical pretreatments use acids or alkalis to remove hemicellulose and/or lignin from 

biomass and increase cellulose accessibility to enzymes. In biochemical pretreatments, 

microorganisms such as soft-rot fungi and bacteria alter lignocellulosic biomass structure 

and composition to enhance enzymatic digestibility of the biomass [5.10]. Enzymatic 

hydrolysis is used to breakdown cellulose and hemicellulose to glucose and other sugars, 

such as xylose. Sugars are fermented to ethanol after enzymatic hydrolysis. 

Biochemical conversion leaves behind high lignin residue (HLR) materials that can 

be used to produce supplementary cementitious materials (SCMs) for concrete use. Silica 

from agricultural residues could be potentially reactive in concrete after ashing. 

Pretreatments such as dilute acid enhance properties of agricultural residue (ARA) for 

ashing and use in concrete [5.11] [5.12]. Effects of the enzymatic hydrolysis on potential 

use of byproducts for SCMs production have not been studied yet. 

High lignin residue is commonly used in boilers for energy generation [5.1]. 

Burning HLR in boilers produces high lignin residue ash (HLRA) that can be rich in silica 

and calcium. It was shown in chapter three that HLRA can be used as a SCM in concrete to 

reduce cement content as well as improve concrete quality. However, use of HLRA in 

concrete depends on its physical and chemical properties. Physical and chemical properties 

of HLRA depend on the burning conditions and composition of HLR. Since various 

pretreatments have different impacts on lignocellulosic materials [5.2] [5.3] [5.10], HLR 

properties and, consequently properties of HLRA, can be influenced by pretreatments.  

This study aims to investigate the impact of pretreatments and enzymatic 

hydrolysis on the physical properties of agricultural residue ash (ARA). Dilute sulfuric 
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acid and sodium hydroxide, the two most commonly used chemical pretreatments, and 

three types of agricultural residues, namely corn stover, rice straw, and wheat straw, were 

used in this study. Effectiveness of pretreatments and enzymatic hydrolysis on ARA 

properties for concrete use was determined based on the removal of crystalline phases and 

inorganic compounds from the biomass by pretreatments and enzymatic hydrolysis. 

5.2 Materials and methods: 

5.2.1 Materials: 

Corn stover (CS) and wheat straw (WS) were purchased from a local farm. Rice 

straw (RS) was obtained from Missouri Rice Research Farm, Glennonville, Missouri. The 

biomass (CS, WS, and RS) was ground to 5-10 mm using a hammer mill and then dried in 

an oven at 80°C. An aqueous solution of cellulase from Trichoderma reesei (ATCC 26921) 

was used for enzymatic hydrolysis. ACS grade sodium hydroxide, sodium acetate, acetic 

acid, and sulfuric acid were used. 2% NaOH and 1% sulfuric acid were used for 

pretreatments. Sodium acetate and acetic acid were used to prepare a 50 mM of buffer 

solution for enzymatic hydrolysis. 

5.2.2 Methods: 

5.2.2.1 Chemical Pretreatment: 

Several studies have performed sodium hydroxide pretreatments at 1% to 4% 

concentrations and sulfuric acid pretreatments at concentrations of 0.5% to 1.5% for 

bioethanol production [5.7] [5.13] [5.14] [5.15]. In this study, 2% sodium hydroxide and 

1% sulfuric acid pretreatments were utilized. To pretreat the biomass, 40 g of biomass (CS, 
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WS, or RS) was placed in a 1000 ml straight-sided wide-mouth glass container. 400 ml of 

either 2% sodium hydroxide or 1% sulfuric acid solution was then added to the container, 

placed in an autoclave, and heated at 121°C for 30 minutes. The containers were cooled to 

room temperature, after which the biomass was filtered through a #100 sieve (150 µm). 

The filtrate was collected for elemental analysis, and the filtered biomass was washed three 

times. Two liters (2L) of tap water were used for each washing, followed by rinsing with 

2L of distilled water. Finally, the biomass was dried at 80°C. The pretreatment process is 

shown in Figure ‎5.1. 

5.2.2.2 Enzymatic hydrolysis of pretreated biomass: 

Ten grams of pretreated biomass was placed in a 250 ml Erlenmeyer flask, and 150 

ml of 50 mM sodium acetate buffer solution (pH=5) was then added to the flask [5.4] 

[5.13].  300 µl of the cellulase enzymes solution was then added to the solution, which is 

equivalent to 25 filter paper unite (FPU) per gram of pretreated biomass [5.13]. FPU is 

defined as the amount of enzyme that releases 1 µmol of glucose during hydrolysis [5.16] 

[5.17]. An incubator shaker was used to shake the flasks at 150 rpm for 48 hrs at 50°C. The 

biomass was then filtered with a #70 sieve, and the leachate was collected for elemental 

analysis. Finally, the biomass was washed three times each with 2L of tap water and once 

with 2L of distilled water and dried at 80°C. 
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Figure ‎5.1: Pretreatment process.: a) Biomass in pretreatment solution in glass jars, b) 

Autoclave used to heat glass jars to 121°C, c) Biomass filtered through #100 sieve after 

pretreatment, d) Pretreated biomass is washed, e) Pretreated biomass is sieved after washing, 

f) Filtrate collected after pretreatment (dark color) and after last washing, g) Dried 

pretreated biomass 

 

b) a) 

c) 

d) e) 

f ) g) 
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5.2.2.3 Elemental analysis: 

Filtrates after pretreatments and enzymatic hydrolysis were collected for elemental 

analysis. Silicon (Si), calcium (Ca), magnesium (mg), potassium (K), and phosphorous (P) 

concentrations of the filtrate were measured using inductively coupled plasma mass 

spectrometry (ICP-MS). 

5.2.2.4 Ashing and XRD measurements: 

To prepare biomass ash, 50 gr of biomass was placed on a stainless steel pan and 

burned in an electrical muffle furnace at 600°C for one hour. The biomass was burned at 

three different stages: before pretreatments (control ash samples), after pretreatments but 

before enzymatic hydrolysis (pretreated ash samples), and after enzymatic hydrolysis 

(hydrolyzed ash samples). Five types of ash were prepared for each type of biomass. For 

corn stover, the five types of ash included unpretreated ash (CSA-Cont), NaOH pretreated 

ash (CSA-NaOH), sulfuric acid pretreated ash (CSA-Sulf), ash prepared after NaOH 

pretreatment and enzymatic hydrolysis (CSA-NaOH-Hyd), and ash prepared after sulfuric 

acid pretreatment and enzymatic hydrolysis (CSA-Sulf-Hyd). A similar naming convention 

was used for WSA and RSA. 

To determine crystalline phases of ash samples, x-ray diffraction (XRD) analysis 

was‎performed‎(Cu‎Kα‎radiation‎with‎λ=1.5046Å).‎A‎step‎size‎of‎0.02°‎2θ‎and‎a‎step‎time‎

of four sec were used. A scan range of 5°–70°‎2θ‎was‎considered.  

Thermal degradation of biomass at each stage of treatments was obtained by 

heating 8-10 mg of biomass in a thermogravimetric analyzer (TGA) in a compressed air 
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environment. The biomass was heated to 700°C at a heating rate of 10°C/min. The ash 

percentage of biomass was calculated as weight percentage at 700°C. 

5.3 Result and discussion: 

5.3.1 Effect of pretreatments on the inorganic elements leaching: 

Table ‎5.1 shows the concentration of inorganic elements in the filtrate after 

pretreatments measured with ICP-MS. Removal of these inorganic elements varied by 

pretreatment type. The 2% sodium hydroxide pretreatment (NaOH) removed higher 

amounts of silicon compared to 1% sulfuric acid pretreatment (Sulf). However, the sulfuric 

acid pretreatment removed higher amounts of calcium, magnesium, and phosphorous. Both 

pretreatment types removed similar amounts of potassium from the biomass. 

Inorganics were also leached from the pretreated biomass during enzymatic 

hydrolysis, as shown in Table ‎5.2. Enzymatic hydrolysis removed higher amounts of 

phosphorous, calcium, and magnesium from NaOH pretreated samples (CS-NaOH, WS-

NaOH, and RS-NaOH) than those pretreated with sulfuric acid (CS-Sulf, WS- Sulf, and 

RS- Sulf). Enzymatic hydrolysis removed higher CA, Mg, and P out of NaOH pretreated 

samples as compared to sulfuric acid pretreated samples because the sulfuric acid 

pretreatment removed most of Ca, Mg, and P out of the biomass, whereas NaOH 

pretreatment removed only small amounts of these elements.  
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Table ‎5.1: Filtrate from pretreatments 

Sample ID 

Silicon (Si) 

(ppm) 

Phosphorous (P) 

(ppm) 

Calcium (Ca) 

(ppm) 

Potassium (K) 

(ppm) 

Magnesium (Mg) 

(ppm) 

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. 

CS-NaOH 214.6 43.6 17.3 4.4 7.9 5.7 756.3 141.7 3.3 2.7 

CS-Sulf 16.5 1.6 190.6 2.7 354.8 3.5 1216.2 13.3 125.8 2.3 

WS-NaOH 155.0 97.8 4.0 3.9 2.3 2.0 121.7 112.4 0.8 0.9 

WS-Sulf 47.9 4.6 168.2 3.1 151.4 3.8 852.6 4.4 58.0 0.9 

RS-NaOH 1579.2 48.3 69.3 1.1 3.7 0.5 722.4 20.8 1.7 0.1 

RS-Sulf 80.1 7.6 144.9 1.4 193.2 0.6 858.1 3.8 161.4 2.9 

Avg.= Average; St.D.= Standard deviation  

 

Table ‎5.2: Filtrate from enzymatic hydrolysis 

Sample ID 

Silicon (Si) 

(ppm) 

Phosphorous (P) 

(ppm) 

Calcium (Ca) 

(ppm) 

Potassium (K) 

(ppm) 

Magnesium (Mg) 

(ppm) 

Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. Avg. St.D. 

CS-NaOH 109.2 4.6 39.6 1.2 205.4 2.0 17.6 0.9 141.4 2.0 

CS-Sulf 56.0 1.2 4.6 0.3 26.4 2.1 6.2 0.8 7.4 0.5 

WS-NaOH 115.5 1.5 38.8 1.0 210.0 3.7 14.1 0.7 107.6 1.8 

WS-Sulf 100.1 0.7 6.6 0.1 15.7 2.2 3.7 0.3 3.9 0.8 

RS-NaOH 145.4 4.0 19.3 0.2 277.3 4.7 15.0 0.9 234.9 7.4 

RS-Sulf 115.3 5.7 8.9 0.3 21.7 2.5 4.6 0.9 2.9 0.6 

 

Plants need silicon, calcium, phosphorous, and magnesium sources for optimum 

growth. These elements are precipitated in the form of silica, calcium carbonate, calcium 

oxalate, calcium phosphate, and magnesium oxalate in plant cell walls [5.18] [5.19] [5.20]. 
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Solubility of these crystalline phases is pH dependent. Solubility of silica is constant up to 

a pH of 9 and then dramatically increases at higher pH values [5.21] [5.22] [5.23]. 

However, solubility of calcium carbonate, calcium phosphate, calcium oxalate, and 

magnesium oxalate increases with an increase in solution pH [5.24] [5.25] [5.26] [5.27]. 

The pH of 2% sodium hydroxide solution used for pretreatment was 12.5, and the pH of 

1% sulfuric acid pretreatment was 2.75. Therefore, the removal of low amounts of Ca, P, 

and Mg but high amounts of Si from the biomass by NaOH pretreatment could be 

attributed to high pH of the NaOH pretreatment. Additionally, solubility of higher amounts 

of silicon from rice straw as compared to wheat straw and corn stover could be attributed 

to the amorphous nature of silica in rice straw [5.23]. 

Incorporating biomass ash containing phosphorous suppresses cement hydration in 

concrete and reduces the compressive strength of concrete, as was discussed in Chapter 

Three. Additionally, potassium in the biomass reduces the surface area of the biomass ash, 

as discussed in Chapters Two and Three.  Reduction in biomass ash surface area decreases 

ash pozzolanic reactivity in cementitious systems [5.12]. Therefore, phosphorous and 

potassium removal from the biomass is beneficial to the reactivity of biomass ash in 

concrete. Therefore, biomass ash pretreated with NaOH could cause retardation in 

cementitious systems, as NaOH pretreatment did not remove phosphorous out of the 

biomass.  

5.3.2 Biomass thermal degradation: 

Thermal degradation of corn stover, wheat straw, and rice straw at different stages 

of treatment is shown in Figure ‎5.2 through Figure ‎5.4. The weight loss of unpretreated 
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biomass at temperatures between 100°C and 330°C is higher than that of pretreated 

biomass, possibly because of potassium removal from biomass by pretreatments. 

Potassium catalyzes the thermal degradation of biomass and increases the thermal 

degradation rate [5.28], as discussed in Chapter Four. In addition, because pretreatments 

partially remove hemicellulose out of the biomass [5.10], higher weight loss of 

unpretreated biomass could be attributed to thermal decomposition of hemicellulose [5.29]. 

Pretreated biomass and enzymatic hydrolyzed biomass showed similar thermal 

degradation, but the difference between thermal degradation of samples pretreated with 

sulfuric acid and those pretreated with NaOH was that former samples had higher ash 

content (weight percent at 700°C). Table ‎5.3 shows ash content of biomass at different 

stages. Enzymatic hydrolysis further reduced ash content of the biomass pretreated by 

NaOH.  Reduction in ash content by NaOH pretreatment could be attributed to the removal 

of silicon from the biomass by NaOH pretreatment, as shown in Table ‎5.1. Additionally, it 

has been shown that NaOH pretreatments are effective in removing lignin out of the 

biomass, whereas sulfuric acid pretreatments are effective in removing hemicellulose out 

of the biomass [5.2] [5.10]. Decreased ash content of biomass by NaOH pretreatment 

could also be explained by lignin removal that could be associated with more leaching of 

inorganic compounds or elements. Therefore, using sulfuric acid for bioethanol production 

produces a byproduct with a high ash percentage, whereas using NaOH pretreatments 

leaches out high amount of the silica and decreases ash content of the bioethanol 

byproduct. 
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Figure ‎5.2: Thermal degradation of corn stover 

 

Figure ‎5.3: Thermal degradation of wheat straw 
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Figure ‎5.4: Thermal degradation of rice straw 
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Table ‎5.3: Ash content of the biomass 

Sample ID: Ash (%) 

CS-Cont 7.5 

CS-NaOH 4.0 

CS-NaOH-Hyd 1.6 

CS-Sulf 3.6 

CS-Sulf-Hyd 2.5 

WS-Cont 7.9 

WS-NaOH 2.7 

WS-NaOH-Hyd 0.9 

WS-Sulf 6.9 

WS-Sulf-Hyd 7.6 

RS-Cont 16.9 

RS-NaOH 4.6 

RS-NaOH-Hyd 3.3 

RS-Sulf 19.8 

RS-Sulf-Hyd 19.6 

 

5.3.3 Biomass ash XRD characterization: 

Unpretreated biomass ash samples, CSA-Cont, WSA-Cont, and RSA-Cont, 

contained crystalline phases that are non-reactive in concrete. NaOH pretreatment removed 

potassium chloride (KCl) from corn stover ash (CSA), as seen in Figure ‎5.5. However, 

CSA pretreated with NaOH contained crystalline phases of calcium phosphate. Sulfuric 

acid pretreatment removed all crystalline phases from the biomass, resulting in amorphous 
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corn stover ash. Enzymatic hydrolysis did not significantly change corn stover ash 

crystallinity, as pretreated ash samples and ash samples after enzymatic hydrolysis had 

similar XRD pattern for a given pretreatment type. Similar results were shown for wheat 

straw samples, as illustrated in Figure ‎5.6. NaOH pretreatment was seen also to increase 

crystallinity of wheat straw ash; however, sulfuric acid pretreatment removed almost all 

crystalline phases from wheat straw prior to burning. Similarly, NaOH pretreatment 

increased crystallinity of RSA, whereas sulfuric acid pretreated RSA had no crystalline 

phases, as illustrated in Figure ‎5.7. 
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Figure ‎5.5: XRD pattern of corn stover ash at different stages 
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Figure ‎5.6: XRD pattern of wheat straw ash at different stages 
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Figure ‎5.7: XRD pattern of rice straw ash at different stages 
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NaOH pretreatment did not remove these phases out of the biomass, as seen in Table ‎5.1. 

Although enzymatic hydrolysis removed some Ca, P, and Mg out of the NaOH pretreated 

biomass, it could not lead to amorphous ash. The increase of crystalline phases in NaOH 

pretreated ash samples as compared to unpretreated samples could be associated with the 

removal of silicon (Si) out the biomass by the NaOH pretreatment. As Si content of the 

biomass decreases, so does silica content of the biomass ash, thus leading to higher 

percentages of other mineral phases. In addition, the calcite phase may be encased by silica 

in the biomass; therefore, dissolving silica exposes calcite XRD peaks.  

Amorphous silica content of agricultural residue ash is an important factor in the 

reactivity of ARA in concrete materials. Reduction in amorphous silica content of the ash 

decreases its reactivity in cementitious systems. When sulfuric acid pretreatment is used 

for bioethanol production, the HLR could be used to produce reactive SCMs. However, as 

the NaOH pretreated biomass ash contains crystalline phases, its reactivity in concrete 

could be lower than that of sulfuric acid pretreated biomass ash. Additionally, when NaOH 

pretreatments are used for bioethanol production, the ash from HLR, or bioethanol 

byproduct, could be less reactive in concrete. Thus, while selecting pretreatment methods 

for bioethanol production, it is worth considering their impact on bioethanol byproduct and 

use for concrete applications. If sulfuric acid and NaOH pretreatments have similar 

impacts on bioethanol production, sulfuric acid should be utilized because bioethanol 

byproduct can be a potential resource for reactive SCM production for concrete use. 
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5.4 Conclusions: 

The impact of NaOH and dilute sulfuric acid pretreatments, as well as enzymatic 

hydrolysis, on properties of three types of agricultural residue ash, namely corn stover ash, 

wheat straw ash, and rice straw ash, was studied. The primary disadvantage of NaOH 

pretreatment was that it did not remove the crystalline phases out of the biomass, making 

the subsequent ash less reactive in concrete. Contrary to NaOH pretreatments, sulfuric acid 

pretreatments improved ash properties for concrete application by removing crystalline 

phases from the biomass. Additionally, sulfuric acid pretreatment was effective in 

removing phosphorous, which can poison cement hydration, out of the biomass. Because 

of high alkalinity, NaOH pretreatment was not effective in removing calcium, 

phosphorous, and magnesium out of the biomass, leading to a crystallized ash. However, 

enzymatic hydrolysis removed some of these elements. Therefore, if NaOH and sulfuric 

acid pretreatments have similar impacts on bioethanol production, the consideration of 

sulfuric acid pretreatment provides greater opportunity for the utilization of bioethanol 

byproducts for reactive SCM production for concrete use. 
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Chapter 6 - Impact of Rice Straw Ash on Air 

Entraining Agent Adsorption 

 

Abstract: 

Microscopic air bubbles are purposely entrained in concrete to impart freeze-thaw 

durability. Some supplementary cementitious materials (SCMs) contain carbon that adsorbs air 

entraining agents (AEA), thus increasing the AEA dosage required for a specified air content of 

concrete needed to protect concrete structures from freeze-thaw damage. The impact of rice 

straw ash (RSA) as a new SCM on AEA adsorption was studied by means of a foam index (FI) 

test. Six RSA samples with different surface areas and carbon contents were prepared. No 

correlation was found between carbon content and AEA adsorption. Although RSA samples with 

high surface area showed higher FI compared to RSA samples with lower surface area, no direct 

correlation was found between surface area and FI. At a cement replacement level of 20% or 

lower, pretreated RSA samples had higher FI compared to those containing same percentages of 

silica fume, but similar to a Class F fly ash. The type of unburned carbon in SCMs and 

availability of SCM surface area for AEA adsorption were found to affect AEA adsorption in 

concrete.  
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6.1 Introduction: 

Air content of concrete has a major impact on freeze-thaw durability of concrete 

structures. Microscopic air bubbles in concrete can provide locations for ice to form without 

causing large stresses on concrete pore walls during a freezing event. Concrete made without air-

entraining chemical admixtures can contain 1-3% air voids, called entrapped air, resulting from 

imperfect consolidation or large air bubbles introduced during mixing. Air entraining agents 

(AEA), or chemical surfactants, are used in concrete to stabilize and entrain very small air 

bubbles and to increase concrete air content to a desired level.  The AEA dosage required to 

obtain a desired percentage of air content depends on the combination of materials used.  

The foam index test has been used to determine AEA adsorption by fly ash and other 

supplementary cementitious materials (SCMs) in cementitious systems [6.1] [6.2]. The test 

measures AEA adsorption in cementitious slurry and determines the amount of AEA needed to 

stabilize the foam layer at the top surface of the slurry. Results of foam index have been shown 

to have good correlation with AEA adsorption in concrete [6.1]. Concrete containing fly ash 

typically requires a higher dosage of AEA compared to concrete without fly ash [6.1] [6.3]. The 

increase in AEA dosage due to fly ash addition has been attributed to unburned carbon content, 

alkali content, and the ash surface area [6.1] [6.4]. Particle size distribution of unburned carbon 

in the fly ash has been shown to influence AEA dosage, as well [6.2]. Air entraining agents are 

not as effective at stabilizing air bubbles in low pH solutions [6.4]. Besides chemical and 

physical properties of the fly ash, the impact of the ash on cement pore solution chemistry may 

also increase the AEA dosage requirement in cementitious systems. 

Although many researchers have studied the impact of fly ash on air content and AEA 

dosage in concrete, the influence of agricultural residue ash on the AEA dosage has not been 
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investigated. Physicochemical properties of RSA are different than those of the fly ash. 

Depending on the production method of RSA, it can have very high internal porosity, surface 

area and amorphous silica content and low unburned carbon content [6.5].  Because of the high 

surface area, RSA could adsorb relatively higher amounts of AEA compared to fly ash, leading 

to an increase in the AEA dosage requirement in concrete containing RSA. 

This study investigated the impact of RSA on AEA adsorption using the foam index test. 

To compare the impact of surface area and carbon content of the ash on AEA adsorption, RSA 

samples with different surface areas and carbon contents were used. Unpretreated and dilute 

hydrochloric acid pretreated rice straw ash samples were prepared using various burning 

conditions to create RSA with different carbon contents. The impact of RSA on AEA adsorption 

was compared with that of fly ash and silica fume samples. The silica fume was chosen because 

it had similar chemical composition but different surface area compared to RSA. A Class F fly 

ash was chosen for comparison purposes. 

6.2 Materials and methods: 

6.2.1 Materials: 

An ASTM C 150 [6.6] Type I/II portland cement was used for this study. Rice straw (RS) 

was obtained from Missouri Rice Research Farm, Glennonville, Missouri. Reagent grade HCl 

was obtained and diluted to 0.1 N for RS pretreatments. A high-grade saponified rosin air 

entraining admixture was used. A Class F fly ash and undensified silica fume were used [6.7] 

[6.8]. Chemical composition of portland cement, rice straw ash samples, silica fume, and fly ash 

used in this study are shown in Table ‎6.1. 
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6.2.2 Methods: 

6.2.2.1 Rice straw ash (RSA) preparation: 

Rice straw was pretreated with 0.1N HCl. To pretreat the rice straw, 250g of straw were 

immersed in 3100±100 mL of solution in a 4000 mL glass jar. The sample was stored 

undisturbed at 80
o
C for 24 hours. The rice straw was then rinsed twice with 2500 mL of distilled 

water and dried at 80
o
C. A programmable electric muffle furnace was used to heat biomass 

samples to a predetermined temperature and hold time. To prepare RSA, 200g of rice straw were 

burned in each batch.  A stainless steel cage with two wire mesh shelves was used to hold the 

biomass during burning.  A stainless steel pan was placed below the cage to catch any ash that 

fell through the mesh. The rice straw was burned at 500
o
C for one, two, or four hours or at 650

o
C 

for one hour. Finally, the ash was ground for one hour at 85 revolutions per minute (rpm) in a 

laboratory ball mill.  

Table ‎6.1: Material chemical compositions 

Sample ID 

Chemical composition 

SiO2(%) Al2O3(%) Fe2O3(%) CaO (%) MgO(%) K2O(%) Na2O(%) 

Portland cement 19.66 4.71 3.26 62.74 1.03 0.56 0.12 

RSA-Cont-650/1 79.1 0.34 0.82 11.6 2.54 5.18 0.5 

RSA-HCl80-650/1 88.2 0.47 0.74 9.48 0.56 0.31 0.17 

RSA-HCl80-500/2 85.7 1.4 1.02 10.73 0.6 0.34 0.23 

Fly Ash 55.6 24 4.2 8.1 2.1 1.1 0.7 

Silica Fume (SF) 96.96 0.13 0.05 0.43 0.96 0.38 0.08 

 

A total of six RSA samples were used. Two of the samples were unpretreated ash; one 

burned at 500
o
C for two hours (RSA-Cont-500/2), and the other burned at 650

o
C for one hour 

(RSA-Cont-650/1). Three RSA samples were pretreated and burned at 500
o
C for one hr (RSA-
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HCl80-500/1), two hrs (RSA-HCl80-500/2), and four hrs (RSA-HCl80-500/4). One RSA 

sample, RSA-HCl80-650/1, was pretreated and burned at 650
o
C for one hour. Chemical 

composition of rice straw ash samples is shown in Table ‎6.1. Because RSA-HCl80-500/1, RSA-

HCl80-500/2, and RSA-HCl80-500/4 were all obtained from the same source and pretreatment 

and differed only in time of burning, they had similar chemical compositions.  

6.2.2.2 Foam index test: 

An ASTM sand equivalent shaker, shown in Figure ‎6.1, was used to ensure consistent 

shaking from sample to sample [6.9]. 10 g of cementitious materials were mixed in 20 mL of 

deionized water in a 50 mL plastic centrifuge tube. Height of the tube was 115 mm with a 

diameter of 27 mm. The tube was shaken for 30 sec, followed by a 30-second rest period. 

Twenty µl of 5% air-entraining agent solution was added to the mixture, and the mixture was 

shaken for 10 sec. The tube was left undisturbed for 15 seconds. A shaking speed of 172 cycles 

per min was used. At this time, if a stable foam layer at the water-air interface was observed, the 

volume of AEA was recorded as the foam index. If, however, a stable foam layer was absent, 

another 20 µl of 5% AEA solution was added and the procedure continued until a stable foam 

layer was reached and recorded. To determine the impact of ash samples on the foam index, 

10%, 20%, 30%, 40%, or 50% of the cement was replaced by the ash with a constant water 

volume.  
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Figure ‎6.1: Test setup 

6.2.2.3 Determination of the solution pH: 

To determine the impact of rice straw ash, fly ash, or silica fume on the pH of the 

solution, 10%, 20%, 30%, 40%, or 50% of the cement was replaced by each SCM. The samples 

were shaken for 60 seconds, followed by a 60-second rest period, and then an additional 60 

seconds of shaking. After the sample was left undisturbed for 120 seconds, the sample was 

filtered through a 25µm Whatman filter paper. The pH of the filtrate was then measured using an 

Accumet AB150 pH meter.  

6.3 Results and discussion: 

The loss on ignition (LOI) and surface area of rice straw ash (RSA), silica fume, and fly 

ash samples are shown in Table ‎6.2. Foam index values for samples containing various amounts 

of RSA are shown in Figure ‎6.2. Repeatability of foam index values was found to be within ±20 

µL.  Increasing amounts of SCM percentage in the sample increased foam index values for all 

samples. For RSA percentages greater than 50%, the foam index test was inconclusive. For 60% 

cement replacement by RSA-HCl80-500/2, RSA-HCl80-500/4, or RSA-HCl80-650/1, a stable 

foam layer could not be detected up to the addition of 800 µL of 5% AEA solution.   
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Table ‎6.2: LOI and surface area of RSA and SF 

Sample ID LOI (wt%) BET (m
2
/g) 

RSA-HCl80-500/1 3.67  185 

RSA-HCl80-500/2 2.25  181 

RSA-HCl80-500/4 1.21  196 

RSA-Cont-500/2 7.24  17 

RSA-HCl80-650/1 0.80  134.5 

RSA-Cont-650/1 3.08  10 

Silica Fume (SF) 1.6 9 

Fly ash (type F) 0.5 1 

Note: Each data reported is the average of two tests 

  

Figure ‎6.2: Foam index form samples containing rice straw ash samples 

Higher unburned carbon content (LOI) did not necessarily result in higher FI values, and 

no correlation was revealed between LOI and the foam index, as shown in Figure ‎6.3. RSA-

Cont-650/1 sample had higher LOI as compared to RSA-HCl80-650/1; however, at a given ash 

percentage, the latter sample had much higher FI values compared to the former sample. 

0

100

200

300

400

500

0% 10% 20% 30% 40% 50%

F
o

a
m

 i
n

d
ex

 (
µ

L
) 

 

% Cement mass replaced by SCM 

RSA-HCl80-500/1

RSA-HCl80-500/2

RSA-HCl80-500/4

RSA-Cont-500/2

RSA-Cont-650/1

RSA-HCl80-650/1



108 

 

Additionally, RSA-Cont-500/2 had higher LOI compared to RSA-HCl80-500/2 yet FI values of 

RSA-Cont-500/2 were much lower than that of the RSA-HCl80-500/2 sample. Similarly, 

although the fly ash sample had lower LOI compared to the RSA-HCl80-500/4 sample, for 

cement replacement levels of 10% to 40%, the fly ash sample had higher FI values than the latter 

sample, as shown in Figure ‎6.4. Although RSA-HCl80-500/4 had lower LOI than RSA-HCl80-

500/1, the latter sample had higher FI. The type of unburned carbon appeared to be more 

important than the LOI in AEA adsorption. 

 

Figure ‎6.3: Correlation between LOI and foam index at 20% SCM replacement 
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Figure ‎6.4: Foam index for silica fume and fly ash 

 

Figure ‎6.4 compares foam index values of pretreated and unpretreated RSA samples with 

those of silica fume (SF). Up to 20% cement replacement, foam index values of silica fume were 

lower as compared to the RSA samples. However, at higher percentages, the FI values of silica 

fume were much higher than those of the RSA samples. Therefore, although silica fume had 

much lower surface are than pretreated RSA, the silica fume showed higher FI compared to RSA 

samples at cement replacement levels higher than 20%. The correlation between FI and surface 

area for 20% SCM dosage is shown in Figure ‎6.5. Increase in surface area increased the FI. 

However, for similar surface areas, different FI were observed. RSA-HCl80-650/1 had a lower 

surface area and LOI than RSA-HCl80-500/4, but had higher FI. Although RSA-HCl80-500/2 

had a slightly smaller surface area compared to RSA-HCl80-500/4, RSA-HCl80-500/2 showed 
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LOI, but also on the type of surface area and unburned carbon as well as availability of the 

surface area for AEA adsorption.  

 

Figure ‎6.5: Correlation between ash surface area and foam index at 20% SCM replacement 

Table ‎6.3 shows the impact of RSA-HCl80-500/4 and silica fume samples on the pH of 

the solution and its influence on the foam index. As the cement amount in the solution was 

reduced, the pH of the solution also decreased, as shown in Figure ‎6.6. The pH value of a sample 

containing 1g of cement and no SCM was 12.26, while the pH value of a sample containing 10g 

of cement with no SCM was 13.29. For samples containing cement only, pH values between 

12.65 and 13.29 had similar foam index values. However, the foam index of the sample 

containing one gram of cement (no ash added) was 140µL, whereas the foam index of the sample 

containing 10g of cement was only 40µL. The increase of foam index for the sample containing 

1g of cement compared to the sample containing 10g of cement could be attributed to the low pH 

and/or to the low amount of solid surfaces in the former sample [6.4].  
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Table ‎6.3: Ash impact on the pH of the solution  

OPC (g) 
RSA-HCl80-

500/4 (g) 
SF (g) pH FI (µL) 

0 0 0 6.77 --- 

1 0 0 12.26 140 

2 0 0 12.65 40 

4 0 0 12.93 40 

6 0 0 13.04 40 

8 0 0 13.2 50 

10 0 0 13.29 40 

8 2 0 12.68 90 

6 4 0 12.48 180 

4 6 0 12.15 >800 

8 0 2 13.12 60 

6 0 4 12.96 400 

4 0 6 12.66 >800 

 

The impact of silica fume on the solution alkalinity (pH) is shown in Figure ‎6.7. Silica 

fume reduced the pH of the solution. The addition of silica fume and RSA also reduced the pH of 

the solution. However, for a given cement replacement level, RSA showed higher pH reduction 

than silica fume. The solution pH of the sample containing 60% of RSA-HCl80-500/4 was 

12.15, whereas the pH was 12.66 for silica fume at this replacement level. Although samples 

containing silica fume had a higher pH than those containing RSA, foam index values of samples 

containing silica fume were higher than those containing RSA, as shown in Table ‎6.3. As long as 

the solution pH remains greater than 12, it seems that the pH does not significantly affect the air 

entraining admixture demand. A minimum water-cement ratio does seem to be important as there 
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likely is an interaction between the charged cement surface, bubbles created during shaking, and 

stabilization of those bubbles.  

 

Figure ‎6.6: Relationship between cement content and solution pH 

 

Figure ‎6.7: Impact of silica fume on the pH of the solution 

6.4 Conclusions: 

The impact of rice straw ash (RSA) on air entraining agents (AEA) was studied using the 
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compared to that of silica fume. For a given SCM, no correlation was found between foam index 

and LOI. Although an increase in surface area was associated with an increase in foam index and 

air-entrainment demand as well, the foam index did not correlate with the material surface area. 

Different SCMs having similar LOI and surface areas do not have a similar impact on AEA 

adsorption, possibly due to differences in carbon type and, most significantly, ability of the 

surface area to adsorb AEA.  
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Chapter 7 - Agricultural Residue Ash as a Substitute 

for Silica Fume 

 

Abstract: 

Silica fume (SF) is a commonly used supplementary cementitious material (SCM) in 

concrete. It is used to produce high strength, high performance, and durable concrete. However, 

availability of another highly reactive SCM for making high performance concrete would be 

beneficial to the concrete industry as silica fume is costly and is not widely available. This study 

investigated agricultural residue ash, specifically pretreated wheat straw ash (WSA) and rice 

straw ash (RSA), as potential SCM sources for making high strength concrete. WSA and RSA 

had much higher surface areas but slightly lower silica contents as compared to the silica fume. 

Hydration kinetics and mortar strength experiments showed RSA and WSA to have similar 

reactivity to silica fume. Although surface area is believed to increase early hydration as it 

provides nucleation sites for calcium silicate hydrate precipitation, the high surface area of WSA 

and RSA did not increase early hydration as compared to silica fume. This could be because it is 

not just the surface area that determines the reaction rate but also surface area location and 

availability during hydration process. Other phases on the WSA and RSA surface could also 

slow down silica dissolution and reduce the effectiveness of surface area in hydration reaction. 
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7.1 Introduction: 

Silica fume (SF) is being used in concrete to produce high strength, high performance, 

and durable concrete [7.1] [7.2] [7.3]. It is well established that, when used as partial 

replacement of cement in concrete, silica fume increases compressive strength, reduces 

permeability, improves sulfate resistance, and helps mitigate alkali-silica expansion of concrete 

[7.4]. The improved strength, performance, and durability of concrete containing silica fume has 

been attributed to reduction in the interfacial transition zone (ITZ), porosity reduction of the 

paste matrix, and the pozzolanic reaction and space filling of silica fume [7.5] [7.6].  High 

amorphous silica content makes silica fume an especially well-suited material for making high 

strength concrete. Silica fume is an industrial byproduct of the silicone metal industry and is not 

available in large quantities worldwide; this increase the cost of silica fume, especially in 

locations where it is not produced. Alternative SCMs that could be used to produce high strength 

concrete would benefit the concrete industry.  

Agricultural residue ash (ARA), such as rice husk ash (RHA), rice straw ash (RSA), and 

wheat straw ash (WSA), are other SCMs that have high amorphous content and surface area. 

Because ARAs can be produced at low cost, they are of great interest to the concrete industry, 

especially in developing regions. ARA can be made with a high surface area and high amorphous 

silica content, making them highly reactive pozzolanic materials [7.7] [7.8] [7.9] [7.10]. 

Although WSA and RSA can have similar chemical compositions to those of the silica fume, 

they can have higher surface area and calcium content than silica fume [7.8]. The high surface 

area of ARA has been attributed to their internal porosity [7.10]. Surface area provides 

nucleation sites for calcium silicate hydrate (C-S-H) precipitation which plays an essential role in 

the hydration process of cementitious systems [7.11].  
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This study aimed to test the hypothesis that the increased surface area of SCMs 

containing high percentages of amorphous silica will lead to a corresponding higher increase in 

early reactivity and strength gain. WSA and RSA with high surface are and amorphous content 

was produced. The reactivity and strength gain rates of WSA and RSA were compared with 

those of silica fume to test this hypothesis. Pozzolanic behavior of WSA, RSA, and silica fume 

was determined by measuring the impact of each material on heat of hydration, calcium 

hydroxide (CH) consumption, and chemical shrinkage of paste samples, and compressive 

strength of mortar cubes. The Chappelle test [7.12] was also used as an index test for material 

pozzolanic reactivity with calcium hydroxide solution. 

7.2 Materials and methods: 

7.2.1 Materials: 

An ASTM C 150 [7.13] Type I portland cement and undensified silica fume were utilized 

for this study. Cement and silica fume chemical and physical properties are shown in Table 7.1 

and Table 7.2, respectively. Standard graded sand [7.14] was used for the mortar experiments. 

Wheat straw (WS) was purchased from a local farm in Manhattan, Kansas, and rice straw (RS) 

was obtained from Missouri Rice Research Farm, Glennonville, Missouri. One N reagent grade 

HCl was obtained and diluted to 0.1 N for use in the study. Reagent grade calcium oxide (CaO) 

and ACS grade zinc oxide and phenolphthalein were used for performing the Chappell test. 

7.2.2 Methods: 

7.2.2.1 Biomass ash preparation: 

In order to produce WSA and RSA with high amorphous content, high surface area, and 

low loss on ignition (LOI), the biomass (wheat straw and rice straw) was pretreated with 0.1N 
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HCl at 80
o
C. 250 g of biomass was immersed in 3100±100 mL of 0.1N HCl solution in a 4000 

mL glass jar. The sample was stored undisturbed at a constant temperature of 80
o
C for 24 hrs. 

The biomass was then rinsed twice, each time with 2500 mL of distilled water, and dried at 80
o
C 

in an oven. To prepare the ash (WSA or RSA), a programmable electric muffle furnace was used 

to heat the biomass.  200 g of dried biomass was ashed in each batch. A stainless steel cage with 

two wire mesh shelves was used to hold the biomass during burning, and a stainless steel pan 

was placed below the cage to catch any ash that fell through the mesh. Finally, the ash was 

ground for one hour at 85 revolutions per minute (rpm) in a laboratory ball mill. WSA was 

prepared by burning the pretreated wheat straw at 650°C for one hour and was called (WSA-

650). Two types of RSA were prepared: (RSA-650) was obtained by burning pretreated rice 

straw at 650°C for one hour, and (RSA-500) was prepared by burning pretreated rice straw at 

500°C for two hours. Properties of WSA and RSA samples are shown in Table 7.2. 

7.2.2.2 Silica fume and biomass ash characterization: 

Particle-size distribution and internal surface area of silica fume, WSA, and RSA samples 

were determined using a laser diffractometer and BET nitrogen adsorption respectively. LOI was 

determined by measuring mass loss after heating one gram of dry materials (SF, WSA or RSA) 

to 900°C for three hrs. Chemical composition of ash samples and silica fume was determined 

using x-ray fluorescence (XRF). To determine crystalline phases of the materials, x-ray 

diffraction‎ (XRD)‎ analysis‎was‎ performed‎ (Cu‎Kα‎ radiation‎with‎ λ=1.5046Å).‎A‎ step‎ size‎ of‎

0.02°‎2θ‎/4s‎and‎a‎scan‎range‎of‎5°–70°‎2θ‎was‎used.‎ The Rietveld analysis [7.15] [7.16] [7.17] 

was performed to obtain the amorphous content of the WSA, RSA, and silica fume.  Sample 

preparation for Rietveld refinement analysis included mixing 1.8g of SCM with 0.2 g of zinc 

oxide as an internal standard in ethanol to create a slurry. This was followed by hand grinding in 
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a ceramic mortar for approximately two min., followed by drying in a fume hood for 20 min. The 

Rietveld algorithm optimizes the model function by minimizing the weighted sum of squared 

difference between observed and computed intensity values [7.18]. The refinement process of 

each SCM sample was evaluated with R-factor refinement criteria, including R-pattern (Rp), R-

weighted pattern (Rwp) and R-expected (Rexp) [7.19]. A commercial software was used to 

perform the Rietveld refinement until the best fit was obtained.  

Table ‎7.1: Cement properties 

Chemical compositions (%) Bogue compounds (%) 

SiO2 19.36 C3S 62.76 

Al2O3 5.13 C2S 8.16 

Fe2O3 2.53 C3A 9.31 

CaO 63.17 C4AF 7.70 

MgO 1.03 
Blain Surface area: 386 

m
2
/kg 

K2O 0.88 

Na2O 0.086 LOI (%): 2.7 

SO3 3.22     

 

Table ‎7.2: SCM properties 

Sample ID 

Chemical compositions (%) 

BET surface 

area (m
2
/g) 

LOI 

(%) 
SiO2 Al2O3 Fe2O3 CaO MgO K2O 

Na2

O 

WSA-650 86.5 0.28 1.13 9.73 0.78 1.54 0.1 65 1.2 

RSA-650 88.2 0.47 0.74 9.48 0.56 0.31 0.17 134 0.8 

RSA-500 85.7 1.4 1.02 10.73 0.6 0.34 0.23 200 2.2 

Silica Fume (SF) 96.96 0.13 0.05 0.43 0.96 0.38 0.08 8.9 1.6 
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7.2.2.3 Pozzolanic reactivity measurements: 

Pozzolanic reactivity of WSA, RSA, and silica fume was measured by several 

experimental procedures.  The Chapelle test [7.12] was used to measure pozzolanic reactivity of 

the materials. In this test, 2 g of calcium oxide was mixed with 1 g of sample in 250 mL of 

deionized water in a 500 mL Erlenmeyer glass flask. The flask was placed on a stirring–heating 

plate for 16 hrs at 90°C. At the end of 16 hrs, the slurry was cooled to 23°C by placing the flask 

in cold water. 60 g of sucrose was mixed with 250 ml of deionized water, added to the slurry, 

and stirred for 15 min. The resulting solution was filtered through a 1.1 µm diameter filter paper. 

Five drops of 0.1% phenolphthalein and 25 mL of filtrate were then titrated with 0.1N HCl. The 

total volume of 0.1N HCl solution needed for titration was recorded as Vb for the blank sample 

(no WSA, RSA, or silica fume added) and Vm for samples containing SCMs (WSA, RSA, and 

silica fume). Titration results were then used to determine the amount of calcium hydroxide (mg) 

fixed by the pozzolanic materials using Eq. 7.1: 

1000
56

74)(
2)( 2

b

mb

V

VV
fixedOHCa


         Eq. 7.1 

Pozzolanic reactivity was also determined by measuring the heat of hydration of cement 

paste samples containing WSA, RSA, or silica fume. 10% cement by weight was replaced with 

WSA, RSA, or silica fume when used. A 0.45 water-cementitious material ratio (w/cm) was 

used. Paste samples were mixed with a vertical laboratory mixer [7.20]. Distilled water was 

added to the cementitious material and mixed at 500 rpm for 90 seconds, followed by a 120 

second rest period, and then mixed at 2000 rpm for 120 seconds.  Paste samples of 

approximately 30 g each were used in an eight-channel isothermal calorimeter at 23°C.   

Calcium hydroxide (CH) content of paste samples was measured at various ages to 

determine CH consumption by the pozzolanic reaction. To obtain CH content of paste samples, 
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samples were cast in 1l ml polystyrene vials. Hydration was stopped at 7, 28, and 90 days of 

hydration by means of solvent exchange with isopropanol. Samples approximately 2mm thick 

were cut and placed in isopropanol for seven days.  After this period, the samples were dried in a 

vacuum for at least three days.  CH content was measured using a thermogravimetric analyzer 

(TGA) to heat the dried samples at 20°C/min up to 800°C in a nitrogen environment [7.21].  

Chemical shrinkage of paste samples were measured in accordance with procedure A of 

ASTM C1608. Approximately 6 g of paste sample was cast in a 26 ml polystyrene vial. The vial 

was then filled with water. A capillary tube was inserted through the center of a rubber stopper, 

and the stopper was then inserted into the vial. The capillary tube was partially filled by distilled 

water, and a few drops of red oil were added in the tube. The decrease in water level in the tube 

was monitored by taking pictures with an automatic webcam. The images taken were then 

analyzed suing Shrinkage Suite developed by Bishnoi [7.22] . The average of three replicate 

samples was used for chemical shrinkage results. 

Mortar cube compressive strength was measured according to ASTM C 109 [7.23] with a 

sand to cementitious material ratio of 2.75. To keep the w/cm of paste and mortar samples 

identical, w/cm for all mortar samples was also 0.45. WSA, RSA, or silica fume was used at 10% 

replacement level by mass of cement. Mortar cube compressive strength was tested at 7, 28, and 

91 days with results reported as the average of three mortar cubes. 

7.3 Results: 

7.3.1 Materials characteristics: 

Particle size distribution of cement (OPC), WSA, RSA, and silica fume samples is shown in 

Figure ‎7.1. Agglomeration was the most likely cause of large particle size seen in silica fume. 

Chemical and physical properties of WSA-650, RSA-650, RSA-500, and silica fume are shown 
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in Table 7.2. All ash samples (WSA-650, RSA-650, and RSA-500) had similar chemical 

composition. Silica (SiO2) content of silica fume was approximately 10% higher compared to ash 

samples; however, CaO content of ash samples was approximately 9% higher than that of silica 

fume. The ash samples had much higher surface area than silica fume. Among the ash samples, 

WSA-650 had the lowest (65 m
2
/g) surface area, and RSA-500 had the highest (200 m

2
/g) 

surface area which was more than 20 times larger than that of the silica fume. High surface area 

of the ash samples has been attributed to internal porosity [7.10].  

 

Figure ‎7.1: Particle size distribution 

The XRD data for WSA-650, RSA-650, RSA-500, and silica fume samples are shown in 

Figure ‎7.2. WSA-650 showed very low crystalline phases, similar to silica fume. RSA-650- and 

RSA-500 showed some crystalline quartz. Table ‎7.3 shows Rietveld refinement results. The RSA 

samples had the lowest amorphous content, whereas the WSA and silica fume samples were 

made up of over 99% amorphous content. 
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Figure ‎7.2: XRD plots for WSA, RSA, and SF 

 

Table ‎7.3: Rietveld refinement data 

Minerals RSA-650 RSA-500 WSA-650 SF 

Quartz (mass %)  4.2 11.8 0.7 0.1 

Amorphous (mass %) 95.8 88.2 99.3 99.9 
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ash samples, as shown in Figure ‎7.3. Silica fume fixed 18.8% more CH than that which was 
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determining the pozzolanic reactivity of materials is also limited because of the extreme 

conditions in the test and because the pozzolanic reaction in cementitious systems is more 

complex than that provided by the test solution. This is evidenced by the crystalline quartz 

results which fixed 202 mg of CH in the Chappelle test. 

 

Figure ‎7.3: Chappelle test results 

7.3.3 Reaction Kinetics 
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higher chemical shrinkage, per gram of dry cement, as compared to control (OPC) samples. 

However, paste samples containing SCMs showed similar chemical shrinkage to each other. 

Calcium hydroxide (CH) of cement paste samples at different ages is shown in 

Figure ‎7.6. At three and seven days, the CH content of paste samples containing ash samples 

(OPC+WSA-650, OPC+RSA-650, and OPC+RSA500) was slightly lower than those containing 

silica fume, whereas for the rest of the hydration period (28, 91, and 180 days) the CH content of 

silica fume containing paste samples was lower than those containing ash samples. 

  

  

Figure ‎7.4: Heat of hydration of paste samples: a) heat flow rate, b) cumulative heat of hydration 
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Figure ‎7.5: Chemical shrinkage of paste samples 

 

Figure ‎7.6: Calcium hydroxide (CH) content of cement paste samples 
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(OPC) samples. At a given age, compressive strength of samples containing RSA was similar to 

those containing silica fume. High surface area of RSA samples did not significantly increase 

early compressive strength of mortar samples containing RSA. 

 

Figure ‎7.7: Mortar cube compressive strength 

7.4 Discussion: 

WSA and RSA showed similar pozzolanic behavior to that of the silica fume. Although 

SCMs with high surface area are believed to increase early reaction of cementitious systems, the 

higher surface area of WSA and RSA did not increase the early hydration because paste samples 

containing WSA and RSA revealed similar induction period and total heat of hydration when 

compared to silica fume. This result could be because surface area of WSA and RSA was not 

available for C-S-H precipitation. Availability of surface area of ash in cement hydration could 

be limited by various factors. Ash samples are not spherical and have complex shape and 

structure [7.10]. Consequently, dissolution of small amounts of silica from ash may dramatically 

reduce the surface area. It is also possible that availability of surface area is less in WSA and 
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RSA because internal pores can be diffusion controlled. Pozzolanic reactivity of WSA and RSA 

will also be affected by reactivity of their silica phase which, subsequently, could be reduced by 

calcium oxide in the ash, thus potentially decreasing pozzolanic reactivity of ash samples. In 

addition, if carbon and potassium or other impurities precipitate on the surface of ash, it could 

prevent the surface area from participating in the nucleation process of calcium silicate hydrate. 

Besides limited surface area availability of ash samples, silica fume could provide enough 

surface area for nucleation process. These factors effectively result in similar hydration kinetics 

for ash samples to silica fume. 

Larger silicate and aluminate hydration peaks and higher early (3 and 7 days of age) CH 

content of paste samples containing silica fume, as compared to those containing WSA or RSA 

could be attributed to water sorption by ash samples. WSA and RSA could have higher sorption 

capacity than silica fume because of higher internal porosity and surface area. Sorption of water 

by WSA and RSA reduces available water for cement reaction, thus reducing CH content of 

paste samples. Water encased in pores within ash samples is available for hydration once a 

demand is presented. Availability of water at later ages could be the cause of high CH content of 

samples containing WSA and RSA after 28 days of hydration, as shown in Figure ‎7.6. Release of 

water from pores increases cement hydration and CH content of paste samples.  

7.5 Conclusions: 

Pozzolanic reactivity of dilute acid pretreated wheat straw ash (WSA) and rice straw ash 

(RSA) prepared at either 650°C or 500°C was compared to that of silica fume to investigate the 

hypothesis that higher surface area independent of silica source and structure leads to higher 

early pozzolanic reaction was tested. Results showed that although WSA and RSA samples had 

much higher surface area than silica fume, pozzolanic reactivity of all samples was similar. 
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Cement paste samples containing 10% silica fume showed similar heat of hydration, chemical 

shrinkage, and calcium hydroxide (CH) content to those containing 10% WSA or RSA. 

Additionally, at a given age of hydration, mortar samples containing 10% silica fume and those 

containing 10% RSA had similar compressive strength, proving that the high surface area of 

WSA and RSA samples had negligible influence on early pozzolanic reactivity. This shows that 

it is not just the surface area of amorphous silica but also availability of surface area that can be 

affected by shape and composition of SCMs that controls early cement reaction. 
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Chapter 8 - Conclusions and Recommendations 

8.1 Conclusions: 

Impacts of bioethanol pretreatment methods on pozzolanic properties of agricultural 

residue ashes (ARA), namely corn stover ash (CSA), wheat straw ash (WSA), and rice straw ash 

(RSA) were investigated. Additionally, suitability of bioethanol byproduct for reactive 

supplementary cementitious materials (SCMs) production was explored. Findings of this 

research are as follows: 

6- Distilled water and dilute acid pretreatments increased amorphous silica content and 

surface area and reduced the carbon content of ash samples. This was attributed to the 

removal of calcium (Ca), potassium (K), phosphorous (P), and magnesium (Mg) out of 

the biomass by pretreatments. Dilute acid pretreatment was more effective than distilled 

water pretreatment in removing these elements. In an oxygen-limited environment, 

potassium traps carbon during combustion leading to high carbon content of resulting 

ash. Decrease of surface area of the ash was attributed to carbon entrapment during 

burning, while increase in amorphous content of the ash was attributed to removal of 

crystalline phases by pretreatments. 

7- Distilled water and dilute acid pretreated ash samples showed improved pozzolanic 

reactivity compared to unpretreated ash samples. This result was attributed to the increase 

in amorphous content and surface area of ash samples. Increased ash surface area acts as 

nucleation sites for calcium silicate hydrate precipitation, leading to increased cement 

hydration. Additionally, removing phosphorous from biomass ash greatly contributed to 

improved pozzolanic behavior of biomass ash. 20% replacement of portland cement by 
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pretreated ash samples in mortar samples increased compressive strength, even at seven 

days, compared to those without ash.  

8- The study showed that sodium hydroxide pretreatment was not as effective as dilute acid 

pretreatment in improving pozzolanic properties of ARA. Sodium hydroxide pretreatment 

did not remove all crystalline phases out of the biomass. More importantly, sodium 

hydroxide pretreatment did not leach out phosphorous from the biomass. 

9- Byproducts of bioethanol production were shown to be potential resources for producing 

reactive supplementary cementitious materials (SCMs). Enzymatic hydrolysis was found 

to enhance reactivity biomass byproducts further than pretreatments when burned for use 

in concrete. When dilute acid pretreatments are used for bioethanol production, 

byproducts should be better candidates for reactive SCM production as compared to 

sodium hydroxide pretreatments. 

10- Wheat straw ash and rice straw ash pretreated with dilute acid revealed similar 

pozzolanic behavior to that of silica fume; however, these ash samples had slightly higher 

capacity than silica fume for adsorbing air entraining agents in concrete. Care should be 

taken when using pretreated agricultural residue ash for making high performance 

concrete in freeze-thaw environments. 

8.2 Recommendations for future research: 

Although several aspects of agricultural residue ash (ARA) were studied in this research, 

further research is needed to successfully implement partial replacement of portland cement by 

ARA in concrete. The following factors should be integrated into future research programs: 

 The influence of ARA on concrete durability is needed for use in freezing and 

thawing environments. Although this research showed that ARA adsorbs slightly 
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more air entraining agent than silica fume, further research is needed to 

demonstrate how ARA influences air void size and distribution and freeze-thaw 

performance in hardened concrete.  

 Because of a porous shape and high surface area, ARA reduces concrete 

workability, an important property of fresh concrete. Further research is needed to 

investigate methods to improve rheological properties of concrete containing 

ARA.  

 Because of high internal porosity, the use of pretreated ARA could provide 

internal curing for concrete, which was not studied in this research. 

 Although the chemical similarity of ARA and silica fume suggests they should 

have similar properties in regards to alkali-silica reaction in concrete, this 

assumption should be verified through experimental means.  

 In alkali-activated cement and concrete, silicon ions play an important role in 

polymerization. Because pretreated ARA has a high surface area and amorphous 

silica content, incorporation of ARA in alkali-activated concrete could improve 

properties of alkali-activate cement by providing silicon source and C-S-H 

seeding. Further research is needed.    

 During this research, agricultural residue ash was prepared at controlled burning 

conditions using a programmable electrical muffle furnace. Because agricultural 

residues are commonly used in boilers for energy generation, it is important to 

study the impact of pretreatments on pozzolanic behavior of agricultural residue 

ash under boiler burning conditions.  



132 

 

 This study investigated the potential use of bioethanol byproduct in concrete 

materials. However, only corn stover bioethanol byproducts were studied. Other 

biomass, such as sorghum, could respond differently to pretreatment and 

enzymatic hydrolysis as they have different physical and chemical properties. 

Further research is required to study potentiality of bioethanol byproducts from 

various sources of lignocellulosic materials for SCMs production.  

This research answered many questions concerning utilization of agricultural residue and 

bioethanol byproducts for production of reactive supplementary cementitious materials for 

concrete use. Implementation of these materials in practice, however, needs further investigation. 
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