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Abstract

This thesis presents an approach to the inverse rigging problem that combines ways

to extract skeleton poses using deep learning pose estimation networks. This process uses

graphical modelling software like Blender and Autodesk Maya with Python library modules

that implement mesh contraction algorithms. Mesh contraction processes can produce and

extract curve skeletons. Curve skeletons contain properties consistent with general animated

rig principles and provide valuable information about medial surfaces, including topological

knowledge. They are locally centered, fully connected, and invariant to pose and scale. I

extracted curve skeletons from a dataset of model resources and included the curve skeletons

as a geometric input feature to a Stacked Hourglass Network. Stacked Hourglass Networks

are state-of-the-art architectures that can identify joint and bone locations while learning

local detailing within the global context. I adapted a variant Stacked Hourglass network with

3D volumetric input representation and experimented with five combinations of geometric

features: topology with signed distance function, topology with signed distance function

and (2) principle surface curvatures, topology with signed distance function and local vertex

density, topology with signed distance function and local shape diameter, and topology with

all geometric features (signed distance function, (2) principle surface curvatures, local vertex

density, and local shape diameter). My results show topological information obtained from

curve skeletons could be more useful than any combination of these features. I demonstrated

and compared my results between ground-truth rigs and network predicted rigs using the

average chamfer distance metric.
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Chapter 1

Introduction

Animation involves constructing a framework to govern pose, movement, and kinematics

of a computer model, or mesh. The first process in building a framework is to develop a

rig, a hierarchical virtual frame, embedded in the mesh, to serve as the skeletal structure

of the object. A rig comprises a series joints and bones. Joints are vertices placed in an

object, key locations that can translate or rotate parts of the body; bones are edges directly

connecting joints and helping form substructures that move in conjunction with their parent

joint (e.g., the hand and forearm move when a transformation is applied to the elbow).

Skeletal animation in computer graphics has, however, long been painstaking and arduous

in both academic research and industry.

1.1 Problem Statement and Scope

Reducing the complexity of the rigging task and helping to automate the rig construction

process can be achieved by better understanding the medial surface of the object mesh, lead-

ing to better predictive accuracy for both joint and bone targets if applied as a feature in

deep learning pose estimation models. In this thesis, I expanded on the approach proposed

by Xu et al. (2019)1 using volumetric CNNs with Stacked Hourglass networks and introduc-

ing topological knowledge as an additional geometric input. Mesh topology can be learned
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through skeleton extraction methods that produce curve skeletons, stick-like 1D representa-

tions of 3D objects that capture the essential topology of the underlying object (Cornea et

al., 2007)4. Skeleton extraction methods include approaches like mesh contraction (Au et al.,

2008)5, radial basis functions (Ma et al., 2008)6, and incomplete point clouds (Tagliasacchi,

2009)7. The experiment designed in this thesis is used to extend the current state-of-the-art

in automatic rigging by addressing the following research problems:

1. Obtain awareness of mesh topology and optimize mesh contraction run-time parameters

to maximize fidelity of extracted curve skeletons in relation to their original mesh.

2. Develop deep pose estimation models with a high level of generality capable of pro-

ducing versatile and robust rigs for various mesh types.

3. Investigate threshold limits of general rig criteria safeguards.

1.2 Motivation

In general, a rig has three basic criteria, which I have adapted from Bhatti et al. (2015)8:

1. The rig should be consistent and not cause behavioral transformation in unorthodox

ways;

2. The rig should be predictable, meaning each joint and bone operates as intended;

3. The rig abides by single responsibility, i.e., one manipulator or controller per joint and

one edge per bone.

Furthermore, the rig must include such properties as deformation of the mesh, applying

rotational constraints, weight painting, skinning, and kinematics (Zeman, 2015)9. The cur-

rent practice of constructing rigs for skeletonization is to tailor-make each rig to meet the

model’s specifications (Baran & Popovic, 2007)10. Often, this requires using a character rig-

ger, someone who specializes in understanding geometry, physics, and anatomy to construct
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the rig’s framework and model its behavior believably and realistically. Not only is this com-

plex and tedious, but, most importantly, it is time-consuming. This is compounded because

each mesh requires its own rig for animation. Efforts to automate the rigging task thus

far include skeleton embedding systems like the one used for Pinocchio (Baran & Popovic,

2007)10; widget creation structures (Bhatti & Shah, 2012)11; template-based inverse kine-

matics (Pantuwong & Sugimoto, 2012)12; machine learning systems like Mixamo (Adobe,

2020)13; and more recently, deep learning pose estimation models (Xu et al., 2019)1.

After surveying the literature, automatic rigging most closely correlates to pose esti-

mation. Pose estimation localizes joints in computer imaging (Toshev & Szegedy, 2014)14.

Deep learning pose estimation networks approximate landmark locations in 2D pixels and 3D

voxels for articulating limbs and identifying postures (Newell et al., 2016)15, who also pro-

posed Stacked Hourglass networks, a state-of-the-art approach for pose estimation in RGB

imaging (Yang et al., 2017)16. The hourglass design uses autoencoders to contextualize the

image within the global scope, capturing features at every scale of the resolution, while si-

multaneously using residual blocks to maintain knowledge of local details. These hourglass

modules are then stacked, creating a series of modules where the output approximations of

joint locations can be further evaluated and fine-tuned.

The approach proposed by Xu et al. (2019)1 is a variant of the Stacked Hourglass network

using 3D volumetric input representation and a second output branch for approximating

bone landmarks. For every voxel, Xu et al. (2019)1 included five geometric input features:

signed distance function, two principal surface curvatures, local vertex density, and local

shape diameter. Xu et al. (2019)1 claimed each of these geometric input features increased

the predictive accuracy of joint and bone locations, but none of these geometric features

analyzed or obtained direct information about the medial surface, the surface portion of the

body that comprises the middle of the shape (Dey & Sun, 2006)17. This omission is crucial

because the ideal location for the animation rig is generally along the medial surface of the

mesh.
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1.3 Overview of Contributions

My research contributes to the field by showing how skeleton construction can be facilitated

by utilizing mesh contraction algorithms and deep pose estimation models and by expanding

on the work of Newell et al. (2016)15 and Xu et al. (2019)1. The following list provides

specific underlying contributions.

1. In this system, I extract the curve skeletons of each model in the dataset, provided by

Xu et al. (2019)1 using two mesh contraction implementations: Mesh Skeletonization

(Ramachandran, 2018)2 and Skeletor (Schlegel, 2020)3. Mesh Skeletonization is a

Python package developed as a plugin for Blender 2.79. Skeletor is a modifed variant

of MeshSkeletonization but developed as a more general use library for extracting

skeletons. They are both implementations of the mesh contraction algorithm proposed

by Au et al. (2008)5.

2. I perform a parameter grid search for Mesh Skeletonization to optimize the extracted

curve skeletons favoring a strong mesh contraction and increased smoothness for more

accurate representation.

3. I adapt the hourglass module implemented by Xu et al. (2019)1 to include the extracted

curve skeletons as an additional geometric input feature for every voxel of a given

model.

4. I perform an ablation study to determine the optimal threshold value for the Soft Non-

Maximum Suppression method used by Xu et al. (2019)1 to suppress duplicate joint

vertices.

5. I perform five experiments using a combination of the topology data with each geomet-

ric input feature, including topology with principal surface curvature, topology with

local vertex density, topology with local shape diameter, topology with all features,

and topology only. Signed distance is also included in all experiments due to its innate

requirement for converting a 3D mesh into volumetric representation.
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6. I evaluate the results of my experiments by calculating the average chamfer distance

between the ground-truth rig of the model with the predicted rig outputted by the

altered Stacked Hourglass network.
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Chapter 2

Background and Related Work

Skeletons provide intuitive, compact representations of an object; however, a rigorous defi-

nition of the word skeleton itself is still under debate (Golland et al., 2000)18. Dey and Sun

(2006)17 attempted to define curve skeletons as a subset of the medial surface defined by

a medial geodesic function. This definition was disputed by Cornea et al. (2007)4 because

some existing, limited cases of line segments belonged to the curve skeleton but not the

medial surface. The literature has since shied away from attempting to define such terms

completely and has instead explored more underlying structures and properties that may

apply to geometrically discrete or continuous cases.

2.1 Curve Skeleton Extraction Methods

Skeleton extraction algorithms have existed for several decades. Many of the more recent al-

gorithms for 3D space often produce curve skeletons (Cornea et al., 2007)4. These simplified

models are useful in many computer vision tasks, including object detection and recog-

nition, shape matching, navigation, reduced-model formulation, and computer animation

(Wang & Lee, 2008)19. Curve skeletons, however, have certain desirable properties that are

particularly useful in animation. These properties include homotopic (topology preserving),

invariant under isometric transformation, locally centered in the shape, fully connected, and
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robust to posing and scaling (Cornea et al., 2007)20. These characteristics are pivotal to

creating a rig for animation that encompasses general rig criteria.

Geometric extraction algorithms that use Voronoi diagrams have been popular (Au et

al., 2008)5. The skeleton is extracted by approximating the medial surface and then using a

Voronoi diagram to extract internal faces and edges connecting vertex sample points (Amenta

et al., 2001)21. Although discrepancies occur between a curve skeleton and the medial

surface of a 3D surface, approximations of the medial surface correlate well to a compact

representation of the mesh. However, approximations straight from a Voronoi diagram are no

guarantee of convergence to the medial surface as only a subset of Voronoi vertices converge

to the medial surface (Dey & Zhao, 2004)22.

In the literature, we also find proposals for 3D thinning algorithms. Thinning is a process

by which pixels are removed from a figure when those pixels are unnecessary to topology

preservation or are protrusions from the figure; these pixels are assigned to the figure’s

complement (Arcelli & Baja, 1985)23. In 3D thinning, the process is similar but uses voxels

instead of pixels. The algorithm seeks to erode an object’s layers, template-by-template,

until theoretically only the skeleton remains (Ma & Sonka, 1996)24. One caveat to this

approach is the produced skeleton may not have connectivity (Jin & Kim, 2017)25. To

compensate for this deficiency, these algorithms generally act in parallel with a skeleton

correcting algorithm. Jin and Kim (2017)25 proposed analyzing the unit distance of voxels

with 26-way connectivity and reconnecting removed voxels if the distance between voxels are

within a threshhold value of
√

3.

Other approaches include Reeb graph construction and constriction on 3D polygonal

meshes (Tierny et al., 2006)26; signed-distance functions examining the neighborhood of

vertices on a mesh’s surface (Shapira et al., 2008)27; object decomposition and partial recog-

nition by 3D point clouds (Jayadevan et al., 2019)28; and radial basis functions (Ma et al.,

2003)6. The method most pertinent to my approach is geometry mesh contraction.

Geometry mesh contraction is a skeleton extraction algorithm that applies a Laplacian

smoothing operator, moving each vertex along its inner normal curvature, creating a zero-

volume skeletal shape (Au et al., 2008)5. The Laplacian smoothing operator uses a cotangent
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Figure 2.1: This figure was produced by Au et al. (2008)5. It details the iterative process
of the mesh contraction algorithm via the Laplacian smoothing operator. Each vertex in the
mesh is moved along an inner normal direction towards the media surface of the mesh. The
edge collapse process removes all unnecessary edges and faces, eventually forming the 1D
curve skeleton.

weighting measure such that

Lij =


ωij = cotαij + cotβij if (i,j) ∈ E∑k

(i,k)∈E −ωik if i = j

0 otherwise

(2.1)

where αij and βij are the opposite angles corresponding to edge (i, j) (Au et al., 2008;

Desbrun et al., 1999)5 29. A series of edge-collapses maintain the connectivity of the skeleton,

merging vertices and deleting respective faces, with a cost function containing two weight

variables: sample-cost and shape-cost (Au et al., 2008)5.

2.2 Skeleton Embedding Methods

The first well-known approach to automated creation of animation rigs was the Pinocchio

system. Pinocchio is a skeleton embedding and skin attachment procedure that takes a

static mesh and template skeleton as inputs, then learns a series of good and bad embed-

dings (Baran & Popovic, 2007)10. Its methodology of selecting potential joint locations

included sampling points approximate to the medial surface, sphere packing, and drawing

edges between intersecting spheres; it also used a discrete penalty function (e.g., short bones,
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Figure 2.2: This figure was produced in Baran and Popovic (2007)10. Based on the general
rig criteria, 13 out of 16 models from their original test set produced qualitatively decent rigs.
Models 7, 10, and 13 lack symmetry and consistency.

zero-length bone chains, and improper orientation) (Baran & Popovic, 2007)10. Pinocchio

tends to perform well on meshes resembling bipedal characters at rest with clearly defined

symmetry. However, the system struggled with a mesh that had ambiguities like a balle-

rina dress obscuring the legs, hair-tresses resembling limbs, and asymmetrical poses. These

deficiencies were attributed to automated weight generation, sensitivity to noise and outlier

vertices, and the penalty function’s inadequate filtering of similarly-shaped parts (Wang,

2012)30.

To rectify Pinocchio’s shortcomings, Wang (2012)30 proposed using density-based cluster-

ing (DBSCAN) within the API at the Discrete Embedding stage, where the reduced skeleton

input is matched to a good embedding. DBSCAN can find vertex clusters of arbitrary shape

within a given epsilon threshold (Tran et al., 2013)31. This method of detecting clusters

makes it not only robust but insensitive to noise because of DBSCAN’s inherent ability

to classify noisy vertices. By gathering these vertices as clusters and removing the cluster

should a vertex be eliminated, incorrect vertex selection was solved (Wang, 2012)30. Using
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Figure 2.3: This figure was produced by Wang (2012)30. After applying DBSCAN clustering
and a corrective alignments process, models 7, 10, and 13 were fixed. The models are more
consistent and symmetrical, and they do follow general rig criteria.

DBSCAN and an adjustment strategy algorithm to tune symmetric joints allowed Wang

(2012)30 to correct the deficient rigs produced by the original Pinocchio (see Figure 2.3).

However, this new system had a new set of limitations, most notably, arbitrary contortions

and stretches caused models to suffer poor skeleton embeddings primarily because models

exceeded the predetermined threshold limit.

2.3 Limitations of Existing Work

In spite of their usefulness, previous methods have limitations. Those limitations inspired the

rationale for research into a new approach as described in this thesis. The Pinocchio system,

for instance, is limited by the epsilon threshold used with DBSCAN to format a discrete

skeleton embedding. When Wang (2012)30 tested the limits of Pinocchio using DBSCAN,

finding that models tended to fail because unwanted clusters were not be eliminated when the

epsilon threshold was too low. Conversely, limbs were outright eliminated when the epsilon

threshold was too high. Figure 2.4 shows these limitations by varying the epsilon threshold

for Model 13 (Raggedy Ann) of the Pinocchio dataset. Wang (2012)30 also used Pinocchio’s

bounded heuristic search to finish embeddings although the embadding would consequently

not be labelled good or bad. This caused erratic behavior in a system where incorrect

embeddings finished in a few seconds while a correct embedding took several minutes (Wang,
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Figure 2.4: Wang (2012)30 produced this figure showing skeleton embeddings produced with
varying epsilon thresholds, starting at 0.1 (a) to 0.6 (e).

2012)30.

In surveying the literature, I found Wang’s (2012)30 approach was the most recent de-

velopment in methods for embedding and refining skeletons. This method has since been

supplanted with the advent of deep learning pose estimation models. Newell et al.’s (2016)15

seminal work introduced the concept of Stacked Hourglass networks capable of identifying

and refining landmark locations for joint vertices directly from an image. Xu et al. (2019)1

later adapted this approach using volumetric convolutional networks to read-in 3D voxel data

instead of 2D pixel imaging. They also expanded Newell et al.’s work to simultaneously learn

landmark bone location as well as joint vertices (Xu et al., 2019)1. Their approach is the

first documented method applying deep learning pose estimation models to the automatic

rigging problem.

For skeleton extraction, I applied Au et al.’s (2008)5 mesh contraction approach. This

technique is not only a seminal application for extracting curve skeletons, but also fast and

invariant to pose and scale. It is the best mesh-based skeletonization algorithm (Sobiecki et

al., 2013)32. Furthermore, this approach has two working implementations in Python: Mesh

Skeletonization and Skeletor. Both libraries can interface with Blender’s API. Figure 2.5

displays two sample curve skeletons extracted inside Blender, one using Mesh Skeletonization

and the other using Skeletor.
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Figure 2.5: The mesh on top is an extracted skeleton using Blender 2.79 with the Python
library Mesh Skeletonization. The mesh on the bottom is an extracted skeleton using Blender
2.90 with Skeletor. Both mesh contraction parameters used 10 iterations, with an initial face
weight of 1.0 and initial weighting factor of 1.0.
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Chapter 3

Methodology - Stacked Hourglass

Network

Automating the rigging process is analogous to pose estimation. In both scenarios, our goal

is to determine precise locations (joint vertices for rigs, pixels for imaging) of key points,

limb articulation, and the posture (or pose) of the body (Newell et al., 2016)15. Ideally,

automating the rigging process would simply involve inputting a mesh and have a procedure

that can map a rig along the mesh’s medial surface while observing the guidelines of general

rig criteria. The Stacked Hourglass Network proposed in Newell et al. (2016)15 is state-of-

the-art in estimating landmark locations in RGB images (Yang et al., 2017)16. The hourglass

design of the network was inspired by the need to capture detail at every resolution of the

image while also retaining knowledge at the global scale (Newell et al., 2016)15. For this , the

hourglass design is effective in predicting tasks involving joint and bone heatmaps (Huang

et al., 2018)33.

3.1 Network Architecture

The key motivation behind the design of the hourglass module is to capture information and

context at every scale of the image; its function is to identify and associate features, including

13



Figure 3.1: An hourglass module presented in Newell et al. (2016)15. Moving left to right,
the first-half of the residual blocks represent the encoder aspect; the second half the decoder.
The ”+” blocks denote the identity maps, connecting each residual block in the encoder region
to their respective decoder residual blocks.

object orientation, position of limbs, and spatial relationships of joints and bones (Newell

et al., 2016). Figure 3.1 presents an abstracted hourglass module design. The initial layers

of the hourglass modules are convolutional and max pooling layers, used to process features

down to low resolutions (Newell et al., 2016). At this stage, the module attempts to identify

and extract features within the global context. For every layer, the module processes and

extracts features at each decreasing resolution until it reaches the lowest possible resolution.

This portion of the module is also known as the encoder aspect.

After reaching the lowest possible resolution (represented by the inner-most block in

Figure 3.1), the module enters the decoder aspect. Here, the module performs a top-down

sequence of upsampling and combining features from the lower resolutions, using a sliding

window model to overlap and incorporate adjacent resolutions (Newell et al., 2016; Tompson

et al., 2014)15 34. To access details from earlier resolutions, every residual module of the

decoder has an identity map back to its corresponding convolutional layer in the encoder

(represented by the ”+” sign). Identity mapping is an additional convolutional layer that

simply outputs its inputs to the next connected layer, enabling residual learning (He et

al., 2016)35. This method of using identity mapping allows the network to remember local
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Figure 3.2: A stacked hourglass network comprises a series of hourglass modules, with
output of one module serving as input for the next. The final output is a refined heatmap.
This figure is provided by Newell et al. (2016)15.

details lost in the resolution-scaling process. The final output of the network is a round of

convolutions producing a set of heatmaps, a probability map detailing the per-pixel (or per-

voxel) likelihood for key joint locations on the human skeleton (Newell et al., 2016; Tompson

et al., 2014)15 34.

Figure 3.2 displays an abstracted design of a stacked hourglass network where n number

of hourglass modules can be cascaded together. Every output of one hourglass module is

inputted into another where subsequent modules allow high level features to be processed,

again and again, to further evaluate and revise higher order spatial relations (Newell et al.,

2016)15. This process is called intermediate supervision where the prediction of intermediate

heatmaps, generated from each hourglass module, are reevaluated within the global context

of the shape, as opposed to its local features (Newell et al., 2016)15. With loss functions

applied at the end of every module, intermediate supervision has an added effect of improving

training speed and performance of the network (Park et al., 2018)36. However, choosing the

number of stacked hourglass modules requires some care. An ablation study is recommended

to determine the appropriate number of hourglass modules and identify where predictive

performance saturates, as in Xu et al. (2019)1.

15



3.2 Input Representation with Volumetric CNNs

The original model by Newell et al. (2016)15 was designed for 2D pixel imaging. To adapt

their network to 3D space, the input representation must be volumetric. This can be done

by adapting the use of volumetric convolutional layers. Volumetric CNNs are convolutional

neural networks with volumetric representations as their input features (e.g., depth maps,

RGB-D images, and 3D voxel grids). The key attribute of these representations is depth

information; 2D space cannot solve depth ambiguity (Wu, Finnegan et al., 2018)37. Among

the first volumetric CNNs was 3DShapeNets, a convolutional deep belief network for object

category recognition (Wu, Song et al., 2015)38; other examples are Voxnet, a real-time object

recognition 3D convolutional neural network (Maturana & Scherer, 2015)39; OctNet, an

octree network for sparse 3D data representation (Riegler et al., 2017)40; and V2V-PoseNet,

a real-time 3D CNN for hand pose estimation (Moon et al., 2018)41.

The input layer for the stacked hourglass network, adapted in Xu et al. (2019)1, is

an 88x88x88x5 volumetric convolutional layer. Each model from the dataset is a voxelized

representation of the original mesh with dimensions 82x82x82 with 6-dim padding. Every

voxel contains 5 potential geometric features: the signed distance function, local vertex

density, (2) principal surface curvatures, and local shape diameter. The signed distance

function represents surface intersections as zeros, free space beyond the surface of the mesh

as positives, and occupied space as negatives (Newcombe et al., 2011)42. For each model

in the dataset, the signed distance function is applied to the mesh to convert the voxel

representation to a volumetric representation. Local vertex density is a Gaussian heatmap

that identifies key landmarks on the mesh with a high density of vertices. Xu et al. (2019)1

assumed that graphical modelers will often place more vertices than normal around key

locations (e.g., neck, elbow, knee) for finer smoothing between different body parts. Principal

surface curvatures indicate the rate of change in the direction of the normals at any point

on the mesh’s surface (Dharmasiri et al., 2017)43. Local shape diameter provides a link from

the surface of the mesh to its volume through the medial axis transform and helps identify

mesh partitions through segmentation (Shapira et al., 2008)27.
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3.3 Adapted Hourglass Module

The adapted hourglass module shown in Table 3.1, designed by Xu et al. (2019)1, has an

encoder that processes feature maps, capturing increasingly larger complex context of the

input shape; a user controlled granularity parameter for pruning small or inconsequential

bones; a decoder for accessing earlier feature maps containing lost local detail; two separate

branches of residual blocks, each branch reducing dimensionality from 8 to 4 to 1; a sigmoid

function output layer producing the intermediate predicted heatmaps for joints and bones.

As in Newell et al. (2016)15, the encoder has residual blocks that identity map their input

to their respective layer in the decoder. The ReLU (rectified linear unit) layer further scales

down the resolution by a stride of two.

The hourglass modules presented in Xu et al. (2019)1 and Newell et al. (2016)15 differ in

two primary ways. The first is the user-controlled granularity parameter when the encoder

has finished contextualizing. Xu et al. (2019)1 included this parameter as a way for the user

to control the granularity of the skeleton and to condition the network on variance in the

model dataset, e.g., rigging fingers, and ears. The second way is Xu et al. (2019)1 include

a separate output prediction block responsible for producing bone heatmaps. Predicting

joint and bone heatmaps are interdependent tasks because the placement of one affects the

placement of the other. Therefore, the network must learn and contextualize features that

will influence the placement of bones as well as joints.

The default value for the user-controlled parameter is 0.02, tuned through hold-out vali-

dation (Xu et al., 2019)1. In their ablation study, Xu et al. (2019)1 determined that including

this parameter yielded the best results in precision and recall. Intermediate supervision can

be deployed to learn the inter-dependency between joints and bones. Even in 3D space,

intermediate supervision is robust when using 3D voxels to resolve depth ambiguity (Wu,

Finnegan et al., 2018)37. Xu et al. (2019)1 found that four hourglass modules provided the

best predictive accuracy performance. I retained these parameters because they represented

the best configuration of the models tested by Xu et al. (2019)1.
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Table 3.1: An individual hourglass module adapted for predicting pose joints and bones in
3D space. ResBlock: The residual block is made of two volumetric convolutional layers with
filters 3×3×3. Dropout layer with 0.2 probability. This table is provided by Xu et al. (2019)1.

3.4 Cross Entropy Loss Function

Newell et al. (2016)15 used Mean Squared Error (MSE) as the loss function because the

Gaussian heatmaps produced by that architecture are 2D and MSE is usually adopted for

that domain (Sun et al., 2018)44. Xu et al. (2019)1 chose the cross entropy loss function.

Cross entropy loss combines the negative-log likelihood and log softmax loss functions into a

single class and is often applied in multi-class classification problems (PyTorch, 2019)45. For

pose estimation problems, this function is used to identify and select voxel locations with

the highest probable weight. However, pose estimation differs from object classification in

that no single voxel is assigned a true positive value because a huge penalty may be incurred
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on neighboring voxels (Ryou et al., 2019)46. Therefore, Xu et al. used ground-truth and

predicted value comparison with heatmaps instead of one-hot encodings.

The overall goal of the network is to predict joint heatmaps, P̂j and bone heatmaps,

P̂b for every model in the dataset, specifically, a 3D isotropic Gaussian heatmap (Xu et al.,

2019)1. These predicted heatmaps were compared with the ground-truth heatmaps produced

from their respective animation rig using a cross entropy loss function for both joints and

bones. Xu et al. (2019)1 more formally defined the cross entropy loss function as

L =
∑
s

1

Ns

∑
v

Ms [v ](Lj[v ] + Lb[v ]) (3.1)

where Lj[v ] is the cross-entropy loss for joints and Lb[v ] is the cross-entropy loss for bones.

Lj[v ] is defined as

Lj [v ] = P̂j(v) log(Pj(v)− (1− P̂j(v)) log(1−Pj(v))), (3.2)

and Lb[v ] is similarly defined as

Lb [v ] = P̂b(v) log(Pb(v)− (1− P̂b(v)) log(1−Pb(v))). (3.3)

M s is the masked loss term introduced so all voxels outside the surface of the mesh have

a loss of zero because these voxels dominate the loss function; N s being the summation of

all masked loss, formally defined as

Ns =
∑
v

Ms[v ]. (3.4)

This cross entropy loss function was applied at at every intermediate supervisory step.
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3.5 Soft Non-Maximum Suppression (Soft NMS)

Once the final predicted heatmaps for joint and bones are constructed, a soft non-maximum

suppression step is applied to remove any duplicate joint vertex landmarks. Soft non-

maximum suppression is an iterative greedy algorithm that selects relatively high scoring

landmarks and decays the scoring probability of neighboring landmarks likely to cover the

same object space (Hosang et al., 2017; Bodla et al., 2017)47 48. Its behavior is analogous

to lateral inhibition in neuroscience, when excited neurons stimulate their surrounding en-

vironment, thereby inhibiting the activity of neighboring neurons (Cohen, 2011)49. We can

regard joint vertices with the highest respective probability as the stimulated neuron. All

other nearby joint vertices then have their probabilities inhibited. This step is vital for con-

structing a viable rig, consistent with the general rig criteria, because it keeps the rig from

becoming too complicated and ensures only one joint for each landmark on the mesh.

The three hyperparameters for soft non-maximum suppression are threshold, kernel

sigma, and kernel size. Threshold determines the range of overlap between the selected

joint vertex and its neighbors; kernel sigma is the variance of the Gaussian kernel used to

select joint vertices; kernel size is the diameter used for the Gaussian heatmap. Xu et al.

(2019)1 set the hyperparameter values of sigma to 15 and size to 11. These values could have

been arbitrary or the result of Gaussian weighting functions; this was not specified in Xu et

al. The threshold parameter was set at 0.02, and the decay for any joint vertices within the

threshold neighborhood was set to half the original probability.

3.6 Rig Connectivity

The final step in the rig creation process is to merge all final joint vertices in the simplest

manner while remaining consistent with the original mesh. Xu et al. (2019)1 opted to use

Prim’s algorithm for minimum weight spanning trees (Kershenbaum & Van Slyke, 1972)50,

minimizing the cost function driven by the predicted bone heatmap where bones passing

through low probability zones have a high cost; conversely, bones passing through high
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probability zones have a low cost. Xu et al. (2019)1 more formally defines this cost function

as

ωi, j = −
∑
v∈li,j

logPb(v) (3.5)

where i and j are joints with an edge between, li, j is a line segment representing the edge,

and Pb(v) is the predicted bone probability of each voxel v ∈ li, j that intersects the line

segment.

Figure 3.3: Final landmark joint vertices produced by Stacked Hourglass Network (left).
Rig connectivity using Euclidean distance (middle). Rig connectivity using Prim’s algorithm
(right). This figure comes from Xu et al. (2019)1.

Prim’s algorithm was chosen over other edge cost functions, such as Euclidean distance,

because Euclidean distance often produced qualitatively bad results like bone protrusions

from the surface of the mesh (see Figure 3.3). Furthermore, as a minimum weight spanning

tree algorithm, the final rig is structured as a strongly connected hierarchical graph. This

format is often required for import into graphical modelling software such as Maya or Blender

(Xu et al., 2019)1. Figure 3.4 shows the final rigs for various types of models: bipedal

humanoids, quadrupeds, and flying mammals.
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Figure 3.4: Sample rigs after applying Prim’s algorithm to connect all landmark joints
together.
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Chapter 4

Experiment Design

4.1 Model Resource Dataset

I used the resource dataset compiled by Xu et al. (2019)1 containing 3,277 meshes from

Models Resource (2020)51; 3,193 meshes remained after removing duplicates. These meshes

include bipedal humanoids, quadrupeds, animals, fish, and an assortment of fictional char-

acters (e.g., robots, sentient dinosaurs, aliens). The diversity of meshes allowed the deep

pose estimation models to be trained using many different shapes in different poses. These

features increase the generality of the deep pose estimation model, allowing for better infer-

ence on unfamiliar object types. Each mesh is voxelized using Binvox, a program capable

of reading 3D mesh files and rasterizing them into a binary 823 voxel grid (Min, 2020)52.

This voxelization process converts the mesh into a volumetric representation capable of being

read-in by the initial volumetric convolutional layer. The five input features: signed distance

function, the two principal surface curvatures, local vertex density, and local shape diameter,

are extracted during the process of creating the dataset.
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4.2 Topology Extraction

Xu et al. (2019)1 showed that each geometric input feature increased the predictive accuracy

of the heatmaps for joints and bones. Skeleton extraction research shows high correlation

between the skeleton of a mesh and its medial surface. Despite this, none of the five features

analyze the medial surface of the voxel grid. Therefore, in the topology extraction step, I

introduced a sixth geometric input feature: the curve skeleton. I believe curve skeletons

will provide the Stacked Hourglass Network with features of the medial surface and increase

predictive accuracy in joint and bone heatmaps. This is the intuitive placement for the rig

because rigs also take the form of skeletons (Borosán et al., 2012)53.

4.2.1 Mesh Skeletonization and Skeletor

To obtain awareness of mesh topology for every mesh in the model dataset, it is necessary to

employ a skeleton extraction algorithm. I discovered two Python mesh contraction libraries

that can interface with Blender: Mesh Skeletonization and Skeletor. Mesh Skeletonization

is a Blender plugin designed for versions up to 2.79; its skeletonization process is based

on the mesh contraction algorithm proposed by Au et al. (2008)5. Skeletor is a modified

variant of Mesh Skeletonization designed as a general purpose library for skeleton extraction;

however, this library was originally designed for neuron research (Schlegel, 2020)3 with a core

dependency of NAVis (NAVis - Neuron Analysis and Visualization), a library for analyzing

and visualizing neuron morphology using a tree-like skeleton (Schlegel, 2018)54. Certain

parameters and post-processing steps were influenced by this approach.

Figure 4.1 shows an example of using Mesh Skeletonization to extract the curve skeleton

from a model and Binvox to then voxelize it. The results indicate that Mesh Skeletonization

performs well to contract hands, feet, and limbs of the mesh. However, the torso, shoulders,

head, and neck regions did not sufficiently contract to the medial surface. This particular

example also shows the resulting curve skeleton may become fragmented, i.e., disconnected

from multiple roots. This fragmentation propagates further during voxelization, as can be

seen by the image on the right in Figure 4.1. The connectivity between the feet and hips has
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Figure 4.1: Skeleton extracted in Blender 2.79 using Mesh Skeletonization (left). Voxelized
skeleton after using Binvox to map the curve skeleton to dimensions 823 (right).

disappeared completely. For very thin models like curve skeletons, Binvox must thicken the

models by drawing all edges of the mesh. Figure 4.2 shows the final result after thickening.

Figure 4.3 displays another sample skeleton extraction using the Skeletor library in the

image on the left. The mesh has fully contracted all parts of the body. However, as with Mesh

Skeletonization, Skeletor produced fragmented curve skeletons. This required combining all

fragments to form one cohesive whole. These fragmented sections can be combined using a

minimum weight spanning tree (MST) algorithm. The NAVis library, which serves as the

foundation of Skeletor, possesses an MST that can combine multiple roots based on Euclidean

distance. However, the MST edge cost function cannot detect any edge connection that

combines different parts and thus can produce an edge that protrudes outside the original

mesh. The result is qualitatively bad connections like hands forming edges with faces. The

right hand image of Figure 4.3 shows this.

For this reason, I chose to use the Mesh Skeletonization library over Skeletor for most

extracted skeletons. I also discovered that the parameters for the mesh contraction process

in Skeletor were highly sensitive and volatile. Parameters producing qualitatively good

skeletons for one mesh would often produce drastically different results for another. Mesh

Skeletonization tended to produce much better looking fits without much fine-tuning, despite

its limitations.
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Figure 4.2: Final voxelized skeleton after using Binvox to draw all edges of the mesh pre-
venting further fragmentation.

4.2.2 Curve Skeleton Extraction Across Model Dataset

I first imported each model from the dataset into Blender and applied a Triangulate modifer.

Before running the mesh contraction process, triangulating the faces of the mesh is necessary

because of the curvature flow of the Laplacian smoothing operator. This library has three

input parameters: iterations (IT), initial face weight factor (SL), and initial weighting factor

(WC). Iterations govern the total number of contraction steps. SL is the factor by which

the contraction matrix is multiplied for each iteration; lower values cause slower contraction

but ensure higher optimality. WC is the factor monitoring the contraction and weight

constraints, determining the resulting smoothness of the contracted mesh (Schlegel, 2020;

Ramachandran, 2018)3 2.

I searched the parameter grid to ascertain the optimal extracted skeletons for the models

in the dataset. This step is critical for optimizing the mesh contraction run-time parameters

and to maximize fidelity of extracted curve skeletons in relation to their original mesh. For

iterations, I used the values 1, 5, 10, and 20. For SL and WC, I used the values 1.0, 5.0, and
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Figure 4.3: Skeleton extracted in Blender 2.90 using Skeletor (left). Curve skeleton overlaid
with the original mesh (right).

10.0. My goal was to find the optimal parameters that create a strong contracted mesh as

well as limiting distortion of the skeleton from the original mesh. Figure 4.4 showcases the

results of my parameter sweep, indicating how far I could take the contraction step. During

the edge-collapse step of mesh contraction, the algorithm may breakdown because of errors in

the mesh (e.g., infinite values, duplicate vertices, degenerate faces (Schlegel, 2020)3). These

failures are generally caused by a zero division error.

When I used 20 iterations on the dataset, 1,137 meshes failed during the contraction

process, more than one-third of all meshes in the dataset. Therefore, I chose the extracted

dataset with parameters: 10 (IT), 1.0 (SL), and 1.0 (WC). Not only does this dataset

maximize the strength of the contraction, but the weight values ensured more accuracy

in maintaining detail; with this dataset, only 34 meshes failed in the contraction step. I

later used Skeletor to extract any skeletons Mesh Skeletonization could not, using the same

parameters, weights, and Laplacian operators. I did not otherwise use Skeletor because of its

great sensitivity to weight changes, volatile contractions, and need for a user to qualitatively

match the extracted skeleton with the original mesh. The curve skeletons produced by

Skeletor were also voxelized to dimensions 823 (See Figure 4.5).
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Figure 4.4: Results after applying the mesh contraction step on the dataset with Mesh Skele-
tonization inside Blender; it: iterations, sl: initial face weight factor, wc: initial weighting
factor.

4.3 Adjusted Volumetric CNN

Voxelizing each curve skeleton to dimensions 82x82x82 meant the extracted curve skeleton

dataset could be added as an input feature to the volumetric convolutional layer. Incorporat-

ing the extracted skeletons into the geometric input dataset with 6-dim padding brings the

overall dimensionality to 88x88x88. The shape of the extracted skeleton is now congruent

with the five input features, thus forming the final volumetric representation of 88x88x88x6.

As mentioned in Section 3.3, I retained the five geometric input features, residual blocks,

dropout layers with probability 0.2, user-controlled granularity value of 0.02, and four hour-

glass modules for intermediate supervision. This architecture layout and runtime parameters

provided the best configuration of all the models tested and evaluated by Xu et al. (2019);

they are control variables in my experiment. The extracted curve skeletons are my indepen-

dent variable and their effect on producing versatile and robust rigs for various mesh types

are my dependent variable.
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Figure 4.5: Final voxelized sample skeleton produced by Skeletor. Voxelization was done
with Binvox.

4.4 Training

I followed the training/validation/testing procedures of Xu et al. (2019)1: 80% training,

10% validation, and 10% testing; 2,554 training meshes, 319 validation meshes, and 319 test

meshes. The training dataset is used to fit the parameters of the deep pose estimation model;

the validation set is used to evaluate the model’s performance; the test set is a portion of the

dataset locked away to prevent peeking, a consequence where a model evaluates itself on data

it should not be able to view (Murphy, 2012; Russel & Norvig, 2013)55 56. This method of

partitioning the dataset ensured evaluation of the model’s performance was unbiased (Kuhn

& Johnson, 2013)57. The primary boon of reduced bias is it leads to greater generality of the

deep pose estimation model and produces viable rigs for unseen mesh types. Implementing

and training the deep pose estimation models used PyTorch 1.2 with Cudnn 3.6. The total

cross entropy loss function, equation 3.1 in Section 3.4, was the same. The Adam optimizer

was used to minimize the loss function. The cross entropy loss function and Adam optimizer

are kept as control variables in my experiment.
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4.5 Soft NMS Threshold Ablation Study

To determine if the resulting number of vertices was sufficient to form a rig, Xu et al. (2019)1

set a minimum requirement of 3 and a maximum requirement of 100 joints. These require-

ments helped safeguard the general criteria principles and ensured rigs remained simple,

consistent, and predictive. However, these measures introduce limitations similar to Pinoc-

chio with DBSCAN, as discussed in Section 2.3; varying the threshold parameter for soft

non-maximum suppression resulted in disproportionate numbers of acceptable rigs. There-

fore, I used an ablation study to observe how varying the threshold hyperparameter affected

soft non-maximum suppression and thereby investigated the limitations of placing safeguards

for general rig criteria.

4.6 Experiments Ran

I ran five experiments in all using a combination of topology, obtained via extracted curve

skeletons, with the five geometric features: topology-only, topology and (2) principal sur-

face curvatures, topology and local shape diameter, topology and local vertex density, and

topology with all features. In every experiment, I also used the signed distance function

because it is required to obtain volumetric representation of 3D meshes. I trained each of

the five deep learning models over 50 epochs with a learning rate of 1e-4 on an Nvidia 2080

RTX. Depending on the available batch-size, training time took between 30 minutes and 50

minutes per epoch.

Experimenting with different combinations of geometric features is important in devel-

oping deep pose estimation models capable of producing rigs that are versatile and robust.

Xu et al. (2019)1 claimed that all geometric input features increased the predictive accuracy

of their approach. I recreated their best model as my sixth experiment for comparison and

evaluation of their approach against mine. I could thereby determine which combination of

geometric features produced the best viable rigs.
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Chapter 5

Results and Discussion

Figure 5.1 provides the results of my threshold ablation study for soft non-maximum sup-

pression. I experimented with five different threshold values: 0.0002, 0.002, 0.02, 0.2, and

2; each value varied by a factor of 10. When the threshold was decreased, more vertices

retained their original heatmap probabilities, resulting in more candidate joint locations.

On the other hand, when the threshold was increased, the final rig has fewer candidate joint

vertices. Inference was performed on the entire dataset of 3,193 meshes for each deep pose

estimation model variant. Using the minimum-maximum requirement of 3-100 joints, thresh-

old value 0.02 yielded the most rigs for five out of six experiments (including the original

model by Xu et al. (2019)1. The only exception was the model variant featuring topology

and shape diameter although the threshold value 0.02 came in second with 3,158 rigs pro-

duced versus 3,163 rigs for threshold value 0.002. Thus, I chose the set of rigs produced

by the threshold value 0.02 for evaluation and comparison. Consequently, the 0.02 was also

chosen as the best threshold value by Xu et al. (2019)1.

Figure 5.2 displays the calculated loss values across the training, validation, and test

sets. The loss functions for joint loss were the same as Equation 3.2, and for bone loss, were

the same as Equation 3.3 in Section 3.4. These two equations, combined with the masked

loss term in Equation 3.4, formulate the total loss in Equation 3.1 in Section 3.4. Based on

the trends, local optimal convergence of the training loss comes between 10-15 epochs for
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Figure 5.1: Ablation study testing differing thresholds for soft non-maximum suppression.
Threshold value 0.02 produced the most viable rigs in five out of six experiments using a
dataset of 3,193 meshes: 3,154 author-trained model (Xu et al., 2019)1), 3,172 (all features),
3,170 (sdf+topology+curvature), 3,176 (sdf+topology+density), 3,170 (sdf+topology), 3,158
(sdf+topology+diameter). Threshold value 2 returned zero rigs across all experiments.

both joint and bone loss. This remains true for both the validation and test sets. However,

on the test set, topology with local shape diameter and topology with all features show

spikes in the total loss. For both experiments, brief spikes occur in the joint loss between

epochs 13-15 and epochs 25-28. Topology with local shape diameter also shows a notable

spike between epochs 30-32 on the test bone loss. These spikes tended to smooth out with

prolonged training, but the overall testing error beyond 35 epochs shows a slight upward

trend, demonstrating characteristics of overfitting. Therefore, I recommend a cap limit of

20 epochs when using a learning rate of 1e-4.

For comparison and evaluation, I observed the chamfer distance loss function found in

Pytorch3D. PyTorch3D calculates the chamfer distance between 2 meshes by first converting

the mesh into a pointcloud, by uniformly sampling points on the surface of the mesh with

probability proportional to the area of the face, then averaging the Euclidean distance across
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Figure 5.2: Training, validation, and testing losses: total training loss (top-left), training
joint loss (top-center), training bone loss (top-right), total validation loss (center-left), valida-
tion joint loss (center-center), validation bone loss (center-right), total test loss (bottom-left),
total test joint loss (bottom-center), and total test bone loss (bottom-right).
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Deep pose estimation model variant Average chamfer dist
sdf+topology 1.7484e-06

sdf+topology+curvature 1.7961e-06
sdf+topology+density 1.8629e-06

sdf+topology+diameter 2.2932e-06
all features 1.8571e-06

model by Xu et al. (2019)1 1.8370e-06

Table 5.1: Evaluation of models, trained on different geometric inputs using topology, on
the test set.

all respective points (Facebook, 2020)58. I used Autodesk Maya 2020 to bind the resulting

rigs to their original mesh. From there, I converted each of the final predicted rigs into

meshes using Blender 2.79 and imported each mesh-rig dataset into PyTorch3D. The average

chamfer distance was taken across all sample points in the cloud. I computed the average

chamfer distance across all meshes in the dataset to produce my final metric.

Table 5.1 details the results for each variation of the deep pose estimation model on the

test set. The best model is the topology-only model, which showed the lowest chamfer loss

value. The model combining all geometric input features performed slightly worse than the

model used by Xu et al. (2019)1. This is surprising given topology by itself performed better

than any combination of geometric features. These results show a direct contradiction to the

claim made by Xu et al. (2019) of predictive accuracy increasing with all geometric features.

The models containing topology, shape diameter, and local vertex density showed depreciat-

ing results as expected; these models have fewer geometric inputs to provide knowledgeable

features for the deep pose estimation model. However, their results are markedly worse than

all other models.

Table 5.2 shows the results after inference is performed over the entire mesh dataset

for each deep pose estimation model variant. These results seem to validate the behavior

displayed in the test set other than a few notable exceptions. The model variant using topol-

ogy and shape diameter performed much better. In fact, all model variants incorporating

topology performed better overall than the trained model provided by Xu et al. (2019)1.

Curiously, the only model variant that did not improve was the model including all geometric

features; further proof of counter behavior to the behavior displayed in the model provided
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Deep pose estimation model variant Average chamfer dist
sdf+topology 1.6327e-06

sdf+topology+curvature 1.7989e-06
sdf+topology+density 1.6754e-06

sdf+topology+diameter 2.1050e-06
all features 1.8914e-06

model by Xu et al. (2019)1 1.9205e-06

Table 5.2: Evaluation of models, trained on different geometric inputs using topology, using
inference over the whole model dataset.

by Xu et al. (2019)1.

I speculate that bias does factor into the increased performance on inference over the

whole dataset. Each model variant is trained using 80% of the dataset where models are fitted

and fine-tuned. The inclusion of these meshes that impact the parameter tuning of the deep

pose estimation models are bound to cause some undue influence. This is why we see different

behavior in the independent evaluation of the test set. When analyzing the model variants:

topology with principal surface curvature and topology with local shape diameter, we see the

performance change minutely. This appears to be a symptom of underfitting where the model

fails to capture the underlying variability of the dataset (Jabbar & Khan, 2015)59. Since the

topology-only variant performs the best, I speculate the additional geometric features are

causing the model variants to be biased towards those features. Conversely, the model variant

featuring topology with local vertex density appear to display characteristics of overfitting

given it performs poorer on the test set. To investigate this phenomenon further, I would

begin by instituting k-fold cross validation to provide more reliable estimates and expose the

model variants to new unseen types of data.
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Chapter 6

Conclusion and Future Work

To conclude this thesis, the main contributions of this work is summarized, followed by

remarks for current and future research of these contributions.

6.1 Summary

The chief objective of this thesis was to determine whether extracted curve skeletons pro-

vide better predictive accuracy than other geometric features, and from the results of the

experiments, extracted curve skeletons can provide better geometric information for map-

ping animated rig joints and bones than any one of the five geometric features used by Xu

et al. (2019)1, including principle surface curvature, local vertex density, and local shape

diameter. This provides further support for Zimmermann and Brox (2017)60, Baek et al.

(2019)61, Chen et al. (2019)62 who used 3D skeleton data with properties related to curve

skeletons to train 3D pose estimation networks. These properties ensure the representation

is simple, homotopic, locally centered, and fully connected. Topological data provided by

curve skeletons, in conjunction with the signed distance function, produced the best predic-

tive accuracy, when based on the average chamfer distance metric. This also reinforces the

claim that the medial surface of an object is an optimal placement for automatically created

rigs.
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The work presented here and in Xu et al. (2019)1 show the potential for practical uses

of automatic rigging systems in 3D modeling software. By producing a viable rig, consis-

tent with the general rig guidelines and criteria, character riggers need no longer start from

scratch. Model datasets comprising various character templates will provide additional ver-

satility and robustness for the architecture, providing character riggers with more templates

to mold and adapt as needed. Even if a produced rig does not exactly meet the specifications

of the rigger, this process saves time and reduces the complexity of rig construction.

6.2 Current and Future Work

The biggest limitation of using Python libraries for curve skeleton extraction is the fragmen-

tation of skeletons. Whereas Mesh Skeletonization has no connectivity process, Skeletor can

combine fragmented parts using a minimum weight spanning tree. Its edge cost function is

based on the Euclidean distance between neighboring nodes. However, the extracted curve

skeleton possesses no awareness of the original mesh’s model space surrounding it. An edge-

cost function penalizing bones protruding from the surface of the original mesh may give

better qualitative results. Additional testing with other extraction methods would also be

instructive. More accurate representation of the mesh topology should provide models with

a better understanding of the medial surface, which in turn will make deep learning models

such as the Stacked Hourglass Network more accurate.

During my initial round of testing, the model variant using topology and principle surface

curvature, only outputted 5 candidate rigs after applying the soft non-maximum suppression

step. Attempts to increase the parameter threshold, and thus remove the possible number of

joint vertices, resulted in no observable change. However, after the threshold ablation study,

this behavior disappeared. Additional testing and calibration on the soft non-maximum sup-

pression parameters (kernel sigma and kernel size) may explain this behavior. Incorporating

a post-processing convolutional network that learns non-maximum suppression may mitigate

this (Hosang et al., 2017)47.

The most interesting behavior in the experiment was that predictive accuracy depreci-
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ated with additional geometric inputs features. This behavior was not seen in the original

experiment by Xu et al. (2019)1 where additional geometric input features increased the

overall predictive accuracy. Future testing using k-fold cross validation may provide further

insight into this phenomenon.
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