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Abstract

This dissertation begins the development of the deformation theorem of monoidal cat-
egories which accounts for the function that all arrow-valued operations, composition, the

arrow part of the monoidal product, and structural natural transformation are deformed.

The first chapter is review of algebra deformation theory. It includes the Hochschild complex
of an algebra, Gerstenhaber’s deformation theory of rings and algebras, Yetter’s deformation
theory of a monoidal category, Gerstenhaber and Schack’s bialgebra deformation theory and

Markl and Shnider’s deformation theory for Drinfel’d algebras.

The second chapter examines deformations of a small k-linear monoidal category. It ex-
amines deformations beginning with a naive computational approach to discover that as
in Markl and Shnider’s theory for Drinfel’d algebras, deformations of monoidal categories
are governed by the cohomology of a multicomplex. The standard results concerning first
order deformations are established. Obstructions are shown to be cocycles in the special
case of strict monoidal categories when one of composition or tensor or the associator is left

undeformed.

At the end there is a brief conclusion with conjectures.
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Chapter 1

Introduction

A mathematical object may admit many additional structures of a given type. For instance,
an even dimensional manifold may admit many complex structures; a vector space may

admit many algebraic structures; a category may admit many monoidal structures.

Classifying these structures up to some relevant notion of equivalence, analytic equivalence,

isomorphism, or monoidal equivalence in the examples given is often a difficult problem.

Deformation theory or properly, infinitesimal deformation theory contributes to the solution
by classifying structures arbitrarily close to a given structure in the sense of lying in formal

infinitesimal neighborhoods of various orders.

The original deformation theory of Froelicher-Nijenhuis-Kodaira-Spencer dealt with ana-
Iytic structures on manifolds. An analogous theory due to Gerstenhaber!,? dealt with
deformation of associative rings and algebras. In both theories, the first order deformations
are classified by a certain cohomology group, while obstructions to extending a deformation
to higher order are cohomology classes of one higher cohomological dimension. Later, Ger-
stenhaber’s deformation theory for associative algebra was extended to Lie algebra by Nijen-
huis and Richardson. Gerstenhaber observed that the first Hochschild® cohomology group

H' (A, A) of an algebra, A, classifies all the infinitesimal deformations of automorphisms of



A. Similarly the second Hochschild cohomology group H?(A, A) of the algebra A classifies
deformations (of the multiplication) of the algebra A, in particular, if H*(A, A) =0, A ad-
mits no deformations and is termed ‘rigid’. Fox* provided some examples of deformation of
associative algebra with graphs and obstruction computations. Gerstenhaber’s deformation
theory of algebra was extended to associative, coassociative bialgebras by Gerstenhaber and
Schack®[1992]. They showed that Hochschild complex of an associative algebra and the dual
to Hochschild complex for a coassociative coalgebra, the Cartier complex®[1956], are com-
patible in a way which allows construction of a double complex (the Hochschild complex in
one direction and the Cartier on the other direction). Gerstenhaber and Schack’s deforma-
tion theory for bialgebras was extended to Drinfel’d algebras by Markl and Shnider”[1996].
The extension, of compatibility condition between the Hoschschild and Cartier differentials
failed and the deformations were governed not by a double complex but by a multicom-
plex. This work is an extension of Gerstenhaber and Schack’s compatibility condition of
two complexes to the Hochschild complex® for k—linear category and Yetter’s complex? for

a monoidal category.

We review the main parts of algebraic deformation theory historically with some proofs

to explain the expected form of our own results.

1.1 The Hochschild Homology and Cohomology of an
Associative Unital Algebra

Let k£ be a field and A be a k-algebra, M be an A-A bimodule. We obtain a simplicial
k-module M @ A®* with [n] — M ® A®" (M @ A®® = M) by defining

ma; @ ... an if 1=0
OimM®Ra; ®...Q0a,) =¢ M ... Qa0+ R ...Q0a, if 0<i<n
aamPa; ® ... Q Gp_1 vf i=n

o(mMR®a; ®...Qa4,) =M ®...0a; Q1R a1 @ ... a,
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for all a; € A,m € M where both 9; and o¢; are multilinear. So the relations are well-defined

and the required identities are readily verified for the simplicial complex. That is,

0o

0 MP 250 proAd2 ppoA®2 & o A3 8.

is a simplicial complex. Similarly [n] — Homy(A®", M) with

' app(ay, ..., a,) if i=0
(0"®)(ag, a1y ..., an) = R A(A0s -y QA4 1, .oy ay) 1f 0<i<n
o(ag, ay, ..., ap_1) if 1=n

(aiqﬁ)(al, ey Q) = O(a1, oy @iy 1 @iy ey Gy).

Where d, = >."(=1)'0; and d" = > (—1)'0".

=1 i=1

The n'* homology of the former complex is
H,(A, M) =m,(M® A®*) = H,C(M @ A®*)

and is called the Hochschild homology of algebra A with coefficients in M and the n* co-

homology of later cocomplex is denoted by

H"(A, M) = 7" Homy(A®*, M) = H"C(Homy(A%*, M)),

and is called the Hochschild cohomology of algebra A with coefficients in M. In the defor-
mation theory of algebras, one considers the Hochschild cohomology with coefficients in A

itself.

1.2 Deformation of Rings and Algebras

Definition 1.2.1. Let A be an associative algebra over a field k and V' be the underlying
vector space of A. Let kle]/(e") = R and Vg =V @ R. Then any bilinear function f :
V xV — V can be extended to f : Ve x Vg — Vi Let f = Y, fOe, fO = f

3



In particular, if f is a multiplication, we can write f(a,b) = a *xb ety ab, f = % and
ak¥b = ab + puM(a,b)e + p(a,b)e® + ---. If * is associative, we want % also to be an

associative. Thus we need to have
(akb)kc = ak(bkc)

which implies

> 1 (a,0).0) = O (a, i (b,¢))] = 0 for n > 0 (1.1)

i+j=n
0<3,j

For n = 0, it is just the associativity of old multiplication of algebra. If n = 1, it is

an® (b, ) — u (b, ¢) + 1M (a, be) — u®(a, be = 0,

which is precisely the condition that ;") be the Hochschild 2-cocycle of the complex on A
with coefficient in A. That is, an infinitesimal of deformation of multiplication of an algebra
A is a Hochschild 2-cocycle. If A was commutative and we require commutativity of the
deformed multiplication, then we have another relation

a*b = bka implies u(a,b) = p?(b,a) Vi.

A finite deformation of multiplication is of 1-parameter family and the infinitesimal of it is
in Z%(A, A). But for any f € Z?(A, A), it is not necessary that f is to be an infinitesimal of
1-parameter family. If it is such, then Gerstenhaber termed this as integrable. This implies
that the existence of infinite sequence of relations which may be interpreted as the vanishing

of “obstructions” to the integration of f.

Definition 1.2.2. (The Trivial Deformation): A deformation F, : Vg X Vg — Vg of an
associative algebra, V is trivial if Fy(a,b) = ab+ Y, u(a,b)e’ and p® =0 Vi > 0.



Note: This definition implies that the trivial deformation is simply extension by scalars.

Definition (Equivalent Deformations): Two deformations Vi, Vi of an associative algebra
V' are called equivalent if there is an R-algebra homomorphism f : Vr — Vg such that f
reduces modulo € to an identity map on V.

As we are concerned with deformations up to equivalence, we call any deformation trivial if

it is equivalent to the trivial deformation.

Note that if u™®, u® ..., u™ Y = 0 then §(u™) = 0 ie. u™ € Z?(A, A). Furthermore, if
p™ € B%(A, A) then there exists an ¢, € C'(A, A) such that u™ = §(¢,). Then setting
O, = a+ ¢p(a)e then we have

SN D (a).® (b)) = ab + p "V (a,b)et + D (a, b)eH? 4 - -

€

then p(™+Y) € Z2(A, A).

For the first order deformation a*b = ab + u¥(a,b)e to extend to a second order defor-

mation axb = ab + pY(a,b)e + p?(a,b)e? we must have,

pD (D (a,b),¢) — M (a, uV (b, ) = du(n?)(a, b, ).

That is, if 4(? exists, it most cobound the left quantity above. Whether such a p(? exists

or not, Gerstenhaber proved



Proposition 1.2.3 (Gerstenhaber). The quantity p™(u™(a,b),c) — pM(a, uM(b,c)) =

wW(a,b,c) is a 3-cocycle.

Proof. §(wM)(a,b,c,d)
= awM(b,c,d) — wV(ab,c,d) +wV(a,be,d) — wV(a,b,cd) +w(a,b,c)d

= a,u(l) (u(l)(ba C)? d) - a:u(l) (b7 M(1)<Ca d)) - :u(l)(:u(l)<ab7 C)a d) + :u(l) (ab7 :u(l)(cv d))
+u (D (a,be), d) — pD(a, p(be, d)) — (M (a,b), ed) + pM(a, p (b, cd))
T i (D a,b), c)d — D a, D (b, c))d

= ap™ (I (b, ¢), d)
—ap™M (b, (e, d)) + p(ab, p (e, d)) — pM (D (ab, ), d) + pM (uM(a, be), d)
— 1M (a, pD(be, d)) + M (a, g (b, ed)) — p (D, b), ed) + p (M (a,b), c)d
— W (a, pM (b, ¢))d

L 4 (0 (b, ), d)

— 1M (a,b) ™M (e, d) + M (a, bu™M (e, d)) — D (ap™ (b, ¢), d) + (M (a, b)c, d)
— D (a, b (e, d)) + p(a, u (b, c)d) + P (a, b)pM (e, d) — (M (a, b)e, d)
— pD(a, pM (b, c))d

]

1

The quantity w® obstructs extension of a first order deformation to the second order

deformation. If this is zero as a cohomology class, then we can extend the deformation to

second order as

akb=axb+ M (a,b)e + 1@ (a,b)e

6



otherwise we can not. The general obstruction is

> (9 (a,b),¢) = p (@, 9 (b, 0))] = w™(a, b, c),

itj=n+1
0<i,g

Theorem 1.2.4. The obstruction w™ is 3-cocycle for all n.

Proof. We have

—d(pM)(a,0,¢) =" V(abe) = Y W (P (b)) = 1O (a, p(b,))] k <

i+ji=k
0<i,j<k—1

Then
d(w™)(a,b,c,d) = aw™ (b, c,d) — w™(ab, c,d) + w™(a,be,d) — w™(a,b, cd) + w™(a, b, c)d

-—wamMMKMWb)d%ﬂw@®um@dﬁ—(WMdeﬂ®+u@W&MWa®)

0<i,7<n

1D (a0 (a, be), d) — D (a, 1 (be, d)) — u (4 (a,b), ed) + uD (a, D (b, cd))
+ /J’(i) (N(j) (CL, b>7 C>d - :U’(Z (CL, :u(])(bv C)>d]

= Lin=nnap (Db, ¢), d) = ap® (b, g (e, d)) = p(p¥(ab, ¢) = ¥ (a, be), d)

<i,j<n

4 (b i e ) — (a1 (b, d) — (b ed)) — (9 a0 1), )
+ :u(i) (N(j) (CL, b>7 C>d - :u(i) (CL, :u(j)(bv C))d]

= Xinmnn lap (9 (b, ¢),d) — ap® (b, 9 (e, d))

zg<n

— 1 ap9 (b, ¢) = p(a,b)e + 32 W:ij[u(p)( #9(a,b), ) = pP (a, (b, c))], d)
= 1(a, b9 (e, d) — pl (b, €)d + Zogquj[u(”( P90, c),d) — pP (b, 19 (c, d))))
)

+ u(ab, p9(c,d)) — p (u9(a,b), ed) + p (19 (a,b), c)d — p(a, pv (b, c))d]

= Zi+j=n+1 [aﬂ(z) (/L(J)(b7 C)7 d) - ,u(l) (CLIM(J)(b7 C)> d) + :u(l) ((I, /4L(J) (ba C)d) - :u(l) ((l, /l(]) (bv C))d

0<i,j<n



— apt (b, 9 (¢, d)) + p (ab, 9 (¢, d)) — p(a, b9 (¢, d)) + u (a, b))t (c, d)

—u@wwwmc@+u“< )(a,b)e, d) — 1 (9 (a,), ed) + u () (a, ), )d
(Z piom ,[ '(19(a,b), ¢) — p®)(a, (b, )], d)

— 1 (a Z prazy [0 (Db, ¢), d) = P (b, 12 (e, ))])]

=z§ﬁgez&ﬁ%m@w@mwwm>>@ p (a, (5 (b.). d))]
X oy (190, 0). 59 (e,d)) = ) a, 1D (b, e, )]

5, s (P19 0, ) €) ) — 6 0), 19 e 0)
—M%Z&%%WWMW%W@—M@WM@@@%@

- //J ( Z p+q ] [ﬂ(p) ('u(q)(b’ C)v d) - N(p) (b7 M(q) (Cv d))])]

= i, T g 04009, 06,0}
+ {u? (19 (a,b), i (¢, d)) — @ (a, p @ (b, p9 (e, d)))}

+ (P (D (19 (a,b), ), d) — P (9 (a, b), 9 (e, d))}

— 1D (! (19 (a,b), ) — pP(a, p'9 (b, c)), d)

— 1D (a, p® (1D (b, c),d) — u® (b, n'9(c,d)))]

= Ziggﬁg[ pD (19 (a, ( ¢)),d) + p(a, p9 (uP (b, c), d))
+ 19 (1 (a,b), d)) 9 (a, g9 (b, 1 *) (e, d))) + p@ (u9 (¥ (a,b), c), d)
— 1 (9 (a,b), ™ (c,d)) — u(l (19 (1*) (a,b), ¢) = p9 (a, pM (b, ¢)), d)

d) = p9 (b, u® (c,d)))]

— 1 a, p (™ (b, ¢),

(
(

=Y isinmnet [{ O (0D (a, n® (b, ¢)), d) — pD (1 (a, b), u® (c, d))}

0<i,j,k<n

— {1 (a9 (a, i (b, 0)), d) — D (9 (a, b), p® (e, d))}]



Theorem 1.2.5. (Gerstenhaber) Let p; be a 1-parameter family of deformations of an

algebra A. Then py is equivalent to a family of u®’s
ge(aa b) =ab+ M(nJrl)(a, b)EnJrl + H(n+2) (aa b)€n+2 +-
where the first non-vanishing cochain if u™ € Z*(A, A) and not cohomologous to zero.

Corollary 1.2.1. If H*(A, A) = 0 then A is rigid.



1.3 Gerstenhaber and Schack’s Double Complex

Building on results of Gerstenhaber, Gerstenhaber and Schack[1992] showed that the Hochschild
complex of an associative algebra and the Cartier complex of coassociative coalgebra are

compatible in the sense that

dp,
Homy, (A3 k) —— Homy (A2, A) —— Homy,(A23, A%2) —— Homy,(A23, A®3) —— -
dp,
Homy (AL, k) —— Homy (A2, A) —— Homy,(AZ2, A%2) —— Homy,(AZ2, A®3) —— - -
dp,
de

Homy (A, k) LN Homy (A, A) SN Homy (A, A%?) e Homy (A, A3 —s - -

dp,

Homy(k, k) —— Homy(k, A) ——— Homy,(k, A%?) ——— Homy,(k, A®3) —— - -

is a double complex where the underline of a ® indicates the imposition of the obvious
induced module structure and the overline indicates the imposition of the obvious induced

comodule structure.

1.4 The Hochschild Cohomology of k-linear Categories

There is a long-known a folk-theorem! that generalizes Gerstenhaber’s results from k-

algebras to small k-linear categories.

10



Following Yetter, we make,

Definition 1.4.1. IfC and D are k—linear categories, the Hochschild complex™ of parallel
functor F,G : C — D has cochain groups given by

X"(F,G):=1] Homy(C(wo,71) ® ... ® C(wy—1, 1), D(F(0), G(7,)))

T0,X1 55T

with the coboundary,

dy () (fo® .. ® fn) = F(fo) @V(/1®..® fu) + 21 0(i® .. ® fiifi®...® fr)
+ (_1)n+1w<f0 ®X...8 fn71> ® G(fn)

Then d% = 0.

The Folk theorem then can be stated precisely as:

Theorem 1.4.2 (Folk Theorem). For any small k-linear category H?*(Idc, Idc) classifies
deformation of (the composition) of C up to equivalence. Moreover obstructions to extensions

of deformations to higher order, given by formulas formally identical to those in Gersten-

haber are 3-cocycles in C*(C) = X*(Ide, Idc).

1.5 Drinfel’d Algebra Deformations

Definition 1.5.1. (Drinfel’d Algebra) An algebra A = (V,.,A,¢) where (V,.,A) is an
associative not necessarily coassociative, unital and counital k-algebra, ¢ is an invertible

element of V3, and the usual coassociativity property is replaced by quasi-coassociativity:

10 A)AG=d(AD1)A (1.2)

[

where the .7 is used to indicate the multiplication of A and the induced multiplication on

V&3, Moreover, ¢ must satisfy

11



(12® 0)(9)(A@1%)(¢) =(19¢).(10A®1)(9).(¢®1) (1.3)

1 € V' the unit element and 1, the identity map on V', and if € : V. — k, k the base field, is
the counit of coalgebra (V,A) then (e @ 1)A = (1®¢€)A = 1.

Note that the bialgebra is a Drinfel’d algebra with ¢ = 1.
Markl and Shnider[1996] extended the Gerstenhaber and Schack[1992] bialgebra deformation
bicomplex to a Drinfel’d algebra deformation multicomplex. Because of the non-associativity
nature of Drinfel’d algebra, the vertical and horizontal differential do not cancel each other.
This adds significant complication of computation to the interactions among parts of the
deformations and is not easy to handle by hand. The interactions of can not be encoded
in a bicomplex. Markl and Shnider had to introduce additional differentials and used the
term ‘homotopy differentials’. They are not exactly a differential, but are differential up to

homotopy.

Definition 1.5.2. A multicomplex C**) is a bigraded complex with the differentials given by

d; : cwa) — ¢letia—ith). >3i>0
such that if

do 0 0 o
dy do 0 )
d d d v o N Ny
d= ‘2 '1 '0 . : @?:lc(n_z,z) - @?:110(n—z,z)’
dn_l dn_2 dTL—.?) .. dO
dn dnfl dn72 d1

such that d* = 0.

Markl and Shnider used a geometrical approach and found that Stasheff polytopes pro-

vide descriptions of the complicated differentials using grouping objects by parenthesis [like

12



(oo)e 2, o(ee)] and ordering. As in Gerstenhaber and Schack, the vertical columns are the
Hochschild complex but in the horizontal direction, the analog of the Cartier complex turns
out to have differential which are not square zero. In case of Gerstenhaber and Schack, the
first row was just trivial complex but this case it is not. The infinitesimal deformation of au-
tomorphisms lies at (1,0) and (1,1). Similarly, the infinitesimal deformation of multiplication
and comultiplication lies at (1,2) and at (2,1) respectively. The infinitesimal deformation
of ¢ lies at (3,0). The obstructions of associativity, compatibility, quasi-associativity, and

pentagon lie at (1,3), (2,2), (3,1) and (4,0). The diagram looks like,

o ° . . .
Qy—o ° ° )
pud) Q. o . °
2
e Dm Q, o .
\ |

o ) w(l)

Such dy and d3 are the homotopy differentials.

13



1.6 Yetter’s Cohomology of a Monoidal Category

Following Mac Lane'? we make,

Definition 1.6.1. A graph (also called a “diagram scheme”) is a set O of objects, a set A

dom

of arrows, and two functions 4 =% ) In this graph, the set of composable pairs of arrows

cod
18 the set

AxoA={{g.)lg. f € A and domg = codf},

called the “product over O7.

A small category is a graph with two additional functions
id o
O—A AxpgA—A

cr—ide, (g,f)—gof

called the identity and composition, such that

dom(id a) = a = cod(id a), dom(go f)= domf, cod(go f)= codg

for all objects a € O and all composable pairs of arrows (g, f) € A xo A and such that the

associativity and unit axioms hold.

The expression f : X — Y is shorthand for the assertion that f is an arrow in a category,
made clear in context, whose source is the object X and whose target is the object Y.

We let

CX,Y)={f: X=Y|feArr(C)} = Home(X,Y)
and call these sets “hom-sets”.

14



Definition 1.6.2. For any unital commutative ring R, an R-linear category is a category
whose hom-sets are each equipped with an R-modules structure and in which composition is

R-bilinear.

Definition 1.6.3. R —mod is an R-linear category, where R is a unital commutative rings,
1s a R-linear category with objects are R-modules and arrows are R-module homomorphisms.
k—V.S. for k is a field, the category with objects, k-vector spaces, and arrows are k-linear

transformations between vector spaces,is k-linear category.

Definition 1.6.4. (Functor) Let C and D be two categories. A functor F': C — D is an
assignment to every object X of C of an object F(X) of D such that for X,Y,Z € Ob(C),

and to every arrow f of C an arrow F(f) of D, X Ly implies F(X) P F(Y) and

XLy % 7 implies F(X) ™ P(v) ™ F(Z) and that F(fg) = F(f)F(g).

Definition 1.6.5. (Natural Transformation) Let F, G : C — D be two functors from category
C to category D. Then a natural transformation ¢ from F' to G is denoted by ¢ : F' = G and
is an assignment to each X € Ob(C) of an arrow ¢x : F(X) — G(X) in Arr(D) satisfying
oxG(f)=F(f)py forall f: X =Y inC. That is,

FX)— D py)
¢X‘ ‘(ﬁy
G(X) ——— G(Y)

commautes.

If F;G,H : C — D are functors and ¢ : F' = G, ¢ : G = H are natural transforma-

tions, then
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P(X) F(Y)
éx ¢y
G(X) ————G(Y)
Yx Py

H(X) ————— H(})

forany f: X — Y in C. So ¢y : F' = G is a natural transformation.
A natural transformation ¢ such that each ¢, is an isomorphism is called a “natural iso-

morphism”.

Definition 1.6.6. (Equivalence of two categories) Let C and D be two categories and if
there exist functors F': C — D and G : D — C and natural isomorphisms ¢ : FG = Idc
and 1 : GF = Idp then we say such a quadruple (F,G,¢,1) is called an equivalence of

categories between categories C and D.

Definition 1.6.7. Let C and D be two small categories. Then the product C x D is the
category with objects Ob(C x D) = Ob(C) x Ob(D) and arrows Arr(CxD) = Arr(C)x Arr(D)
and all operations (source, target, identity arrow, and composition) given coordinatewise by

those of C and D.

Definition 1.6.8. (Monoidal Category) A category C is a monoidal category equipped with a
functor @ : CxC — C, an object I, and natural isomorphisms a: @(@x 1¢) = R(1eX®), p:
®I = 1¢, A I® = 1¢ such that all instances of diagrams of the form
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(AB)(CD)

QAB,C,D \
((AB)C)D B(C
aa,B,c®D %3 c,D

(CD))

(A(BC)D — 1505
and
(Al)®B « A® (I® B)
pPRB
A\
A®B )

commute. The commutativity of these diagrams are called the coherence conditions for a
monoidal category C. In the case of R-linear categories we require that the maps induced on

hom-sets by ® be R-bilinear.

Example 1.6.9. (Sets, X, *, a, p, \) where X =cartesian product
{*}=singleton set

a: ((a,b),c) — (a,(b,c))

p:(a,x)—aand X: (x,a) — a
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and the naturality for p is

Example 1.6.10. (sets,| |, ¢, a, A, p)?, where ¢ is the empty set, is monoidal category.
Definition 1.6.11. Y A tangle is an embedding T : X — I* where I = [0,1] of a 1-manifold

with boundary into the rectangular solid I® satisfying

T(0X) =T(X)( oI’ = T(X)()(I* x {0,1}).

Example 1.6.12. (Tang, ®, I, a, A, p), where I is the empty tangle, and @ is defined as: for
two tangles Ty, Ts, Ty ®T5 has as underlying 1- manifold the disjoint union of the underlying
1-manifold of T\ and Ty. Ty ® T5 s then the mapping of this 1-manifold the composition of
Ty [Ty with the map v : P[] I? — I?® given by

(x,y,2) — (x/2,y, z) for elements of the first summand, and

(x,y,2) — ((x +1)/2,y, 2) for elements of the second summand.

Example 1.6.13. Let k be a field. Then (H — mod,® = Q,k,a,\, p) where H is a

bialgebra. This is a monoidal category.

Example 1.6.14. Let k be a field. Then (R —mod, ® = g, R, a, \, p) where R is a unital

commutative algebra. This is a R-linear monoidal category.

Example 1.6.15. Let k be a field. Then (k —v.s.,® = Q, k,a, X\, p). This category is a

k-linear monoidal category.

Definition 1.6.16. (Fusion Category)'® By a fusion category C over a field k is a k-linear

semisimple rigid tensor category with finitely many simple objects and finite dimensional
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hom-sets, and the hom-set C(I,I), which is necessarily a k-algebra under composition, is

isomorphic to k.
Example 1.6.17. Any fusion category is a k-linear monoidal category.

Definition 1.6.18 (Strong Monoidal Functor). : Let F' : C — D be a functor from monoidal
category C to monoidal category D equipped with a natural isomorphism

F:F()®F()— F(.®.) and an isomorphism Fy : I — F(I)

satisfying
F(A® B)® ) —— F(A® (B®))
FA®B,C FA,B®C
F(A® B)® F(C) F(A)® F(B®C)
FABQFE(0) F(A)®Fp.c
(F(A) ® F(B)) ® F(C) —"— F(A) ® (F(B) ® F(C))
FA) «— P pagr) F(A) " prg a)
PF(A) Far AF(A) Fra
F(A)®I® W@EF(A) ® F(I) I® F(A) <FITF(A)F(I) ® F(A)

1s called strong monoidal functor.

A monoidal functor F : C — D is called strict if F is the identity transformation and F;

is an identity arrow.
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Definition 1.6.19. (Monoidal natural transformation): A monoidal natural transformation

15 a natural transformation ¢ : F' = G between two monoidal functors which satisfies

Fap(dacs) = 64 ® ¢5(Gap)
and F[ = G[<¢])

Example 1.6.20. For any k-bialgebra A, the functor from A-mod to k-vector space is a

strict monoidal functor.

Example 1.6.21. The free group functor
F : (Sets, |_|7 A p, ) — (Grps, *, A, p, «)

equipped with structure maps induced by inclusions of generators and universal property of

free groups is a strong monoidal functor.

Example 1.6.22. For a Drinfel’d algebra R, the forgetful functor F : R—bimod — k —wv.s.
s a strong monoidal functor but not strict monoidal functor, unless R is a bialgebra, in

which case it is strict.

Definition 1.6.23. (Monoidal Equivalence) A monoidal equivalence between two monoidal
categories C and D is an equivalence of categories in which the functors F : C — D and G :
D — C are equipped with the structure of monoidal functors, and the natural isomorphisms
¢: FG = Ide and ¢ : GF = Idp are both monoidal natural transformations. If there exists

a monoidal equivalence between C and D, we say that C and D are monoidally equivalent.

Definition 1.6.24. A formal diagram in the theory of monoidal categories is a diagram in

the free monoidal category on S for some set S.
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Theorem 1.6.25. (Mac Lane’s Coherence Theorem 15 version)'*: Every formal diagram
in the theory of monoidal categories commutes. Consequently, any diagram which is the
image of formal diagram under a (strict Monoidal) functor commutes.

(2™ wersion): Every monoidal category is monoidally equivalent to a strict monoidal cate-

gory.

The following notion due to Yetter embodies Mac Lane’s coherence theorem in a natural,

useful way,

Definition 1.6.26. A prolongation of an arrow f in a monoidal category is a map obtained

by iterated monoidal product of f with identity maps of various objects.

Definition 1.6.27. (Padded composition): Given a monoidal category C and a sequence of
maps fi1, fo, ..., fn € C such that source of f;11 is isomorphic to the target of f; by a compo-
sitions of prolongations of structure maps, we denote by [ f1, fa, ... ful,

the composition ag fiay faas...an_1 fna, where a; are composition of prolongations of structure

maps and

1. source of ag is reduced and completely left parenthesized
2. The target of a, is reduced and completely right parenthesized
3. Composite is well-defined.

Padded composition has the following properties:

L. (flw'wfn—l = [fb"'?fi—‘ (fiJrl;-“?fn—‘

2 [fises g @I, s fl = [f1s s G ful = [ 1y I @ G, ooy f]
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3. lrfl,...,fn—| == |7f1;-~-7fi717 (fi7fi+17---7fl—|7---7fn—|
4. ’Vflw"ag® ha?fn—‘ = ’Vflw"a ’Vg—‘ ®h7 >fn—‘ = ’Vflw"ag® ’Vh—‘vafn—‘
1.6.1 Deformation of Monoidal Structure Maps

Let C be a k-linear category and A be a k-algebra. We can form a category C ®;, A = ¢ by

extension of scalars

A

Ob(C) = 0b(C) Homs(X,Y) = Home(X,Y) ®; A
that is, if f € Homs(X,Y) and g € Homs(X, Z) then

Z fi ®a;o Z g; ®b; = Z fiocg;aib;.
i J 2%

If A is a local ring with m as its maximal ideal, then we can extend the composition on
C ® A, to a composition on C®A, the category whose hom-sets are the m-adic completions
of those of C ® A, by continuity. For A = kle]/ < ¢"™' >, we denote C ®;, A = C™ and if
A = K[|e|]], C®A is denoted by C(>).

Definition 1.6.28. Given a k-linear monoidal category C, an n'* order deformation of
the structure maps of the category is a monoidal category structure on C™ whose struc-
tural functors are the extensions of those of C by bilinearity and whose structural natural

transformations reduce modulo € to those of C.

Definition 1.6.29. Given a k-linear monoidal category C, a formal deformation of struc-
ture maps of the category is a monoidal structure on C™), whose structural functors are the
extensions of those of C by bilinearity and continuity, and whose structural natural trans-

formations modulo € is those of C.

Definition 1.6.30. (The Trivial Deformation) The deformation of a monoidal category C

whose structural natural transformations are the images of those in C under extension of
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scalars. It is denoted by Ctmv(resp Ctmv)

Definition 1.6.31. Two deformations of a monoidal category are equivalent if there is
a monoidal equivalence between them whose structural natural isomorphism reduce to the
identity modulo €. As we are concerned with deformations up to equivalence, we say a

deformation is trivial if it is equivalent to the trivial deformation.

1.6.2 Deformation complexes of monoidal structure maps

Definition 1.6.32. The deformation complex of the structure maps of a monoidal category
(C,®, ) is the cochain complexr (X*(C), ) where

X™(C) = Nat("®,®") and

dy (9) Ayt = [A0 @ Gay,an | +2(=1) [0a,.. a0 1054, | + (1) Pag,. 4,104, |-

Theorem 1.6.1 (Yetter). The first order deformations of a monoidal category C are clas-

sified up to equivalence by H?(C).

Now consider the n'" order deformation of associator o which is given by
a=>" a0 a0 =aq,

Then the obstruction to extending to the n + 1% order deformation is

(@)
WABCD = E aA@BCDaABC®D E [aype ® D]aAB®CD [A® aBCD]
i+j=n-+1 i+j=n+1
O<inj 0<i,j

Z ala(i)33a(j)_ Z (9004(2')8204(3')8404(’“)

i+j=nt1 i+j=nt1
0<4,5 0<4,j

where dya = A ® appe; 1o = Qagpep; 02 = aapgcp; 0300 = Aapcgp; 010 = aape @ D
that is the operator d; means the objects are pre-tensored at i" place. Using this shorthand

notation we can easily see that 3¢ (—1)/9,a™) = 0, i.e. the first order deformation of
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associator is a 3-cocycle.

Theorem 1.6.2 (Yetter). For all n, the n'® order obstruction is a 4-cocycle. Thus an
(n— 1) order deformation of a monoidal structure extends to n'™ order deformation if and

only if the cohomology class [w™] € H*(C) vanishes.
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Chapter 2

Deformation of Monoidal Categories

Definition 2.0.33. (Deformations of a monoidal category) Let (C,®,1I,, p,\) be a k-linear
monoidal category and R be a unital commutative local k-algebra with maximal ideal m.
The deformation of a monoidal category C is an R-linear category C whose objects are those
of C and whose hom-sets are gwen by C(X,Y) = C(X,Y)®R, where & denotes the m-
adic completion of the ® over k whose composition, arrow-part of ® and structural natural
isomorphisms reduce modulo m to those of C. We denote by ‘¢’ the deformed structure

corresponding to x.

Note: Through out we use the convention that‘.” denotes the monoidal operation when
it occurs in the argument of any arrow-value operation, e.g. a.f ® k denote (a® f) ® k when
we are considering the monoidal product of a and f as the first argument of ®.

We consider one parameter deformations, that is the case of R = k[e]/(e""!);n € N or
R = k[|¢|]]. As in the review of deformation theory in Chapter 1, we call a deformation of

the first sort an n'"-order deformation, and of the latter sort a formal deformation.

Definition 2.0.34. Two deformations C and C of C are equivalent if there is an R-linear
monoidal equivalence between them, the arrow part of whose functors and natural isomor-

phisms reduce modulo m to identities.

Proposition 2.0.35. [fé and C are n'™ order or formal deformations of C and (F, F,Fl)

1s a monoidal functor from C to C such that F,F and F, reduce to € to identity functor,
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tdentity natural transformation and identity arrow respectively, then C and C are equivalent.

Sketch of proof. F,F, Fy each have inverses by the same calculations that shows that formal

power series with leading coefficients 1 have inverses. O

Proposition 2.0.36. An n'" order deformation (resp. formal deformation) of a monoidal

category consists of
1. Composition o: fog =Y, u(f, g)e', where uO(f,g) = f o g = fg(simply).
2. Tensor @: f@k =Y, 7D(f k)e', where 7O (f,k) = f ® g.
3. Associator a: & =Y, ae, where oV = a.

when the sums are bounded by n (resp. run from 0 to infinity).

Here f and g are composable arrows but f and k are not necessarily composable ones

and ¢ = 1,2, .... The supper script ‘(0)’ means the base structure.

Proof. 1t suffices to observe that by linearity (resp. linearity and completeness), it is enough

to specify composition and tensor on the arrows of C. n

By a result of Yetter!!, any deformation is equivalent to one which preserves identity

arrows;

Lemma 2.0.3. If the identity arrow of C are identity arrows in C, then
pO, ) = (f,1) =0

for all v > 0.

Proof. Since f =10 f, f = f+ M (1, fle+ p®(1, f)e + .... This implies that

p9D(1,f)=0, i>0. O
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Lemma 2.0.4. 79(1,1) =0 for all i > 0.

Proof. The first order compatibility condition for deformations is given by

™W(a, b ® g —7(1)(ab, fg) +a® frP(b,g)

= puM(a,b) @ fg —pM(a® f.b®g) +ab® u(f,g).

This gives 7()(1,1) = 0 if we take a = 1 = f. Taking second order condition and with the

same choices of a and f, we get 7?)(1,1) = 0. Similarly, we can see for the other orders. [

Consider the case i = 1, i.e. €? = 0. That is, first order deformations. Calculation
of the four conditions that must be satisfied for the deformation to be a monoidal category,
and the three condition which must be satisfied for two deformations to be equivalent reveal

a natural cohomological structure.

1. Associativity of composition. That is,

(adb)oc = ad(boc) where a, b, ¢ are composable arrows. So, the first order condition is,

1O (a,b)e + u®(ab, ¢) = u(a, be) + au (b, c).

= dy(pV)(a,b,c) =0

which means, 4! is a Hochschild 2-cocycle on the complex C* where

C" = H Homy,(C(xg,x1) X oo. X C(Tp_1,%n),C(x0,2y)).
Z0,.-.,Zn €OB(C)

2. Middle four interchange. That is,
a®f b®g

ARB=—UQV -3 X®Y.

ab®fg
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which is,

(a® flo(b®g)=(aob)®(fog): A®B— X®Y. (2.1)

Then, we need

(adb)@(fog) = (a@f)o(beg)

which we call “compatibility” of tensor and composition. The first order terms give us,

1D (a,b)@fg+rY (ab, fg)+abuV(f, g) = 7 (a, 9)b2g+pP (a f, b@g)+a® frV (b, g)

which can be written as

a® frV (b, g)—7W(ab, fg)+7V(a, 9)b2g = abuV(f, g)—puV (a@ f, b2g)+uV(a, b)@ fg

;»dH(Tm)(Z ~§>:dy(u<1>) <Z g)

With this relation, we see an interaction between 7(! and pu", suggesting a double
complex or perhaps a multi-complex, and that the arguments are those of the second
Hochschild cochain group for CKC where K is Deligne product. Recall that the Deligne
product of two (small) k-linear categories A and B is the k-linear category with objects
Ob(A) x Ob(B) and hom-sets given by Hom((A, B), (A", B")) = A(A, A") @ B(B, B'),

with the obvious notions of composition and identity arrow.
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Here the dy looks like Yetter’s differential, but with arrows, rather than objects as

arguments.

. Naturality of a.
We have,

If (A B)®C ags)ok (X ®Y)® Z, then we have the naturality square

(A®B)@C 2%, A® (B O)

(a®f)®k‘/ la@(f@k)

(X0Y)®Z o X0 (Y ©2)

that is,

aapcla® (f @ k)] =[(a® f) @ klaxyz.

If the composition is not deformed, this gives

aféc[a R (f @ k)] + aapetV(a, f @ k) + aspcla @ TV (f @ k)]

=7W(a® f,k)axyz + [TV (a, f) @ klaxyz + [(a® f) ® k’]ag%/z

which gives,

{alihola® (FR k)] = [(a@ f) ® Kok,
+aapcla@ W (f @ k)] — [tW(a, f) ® Klaxyz
+ OéAgc[a & T(I)(f X k’)] — [T(l)(a, f) & k]aXYZ = 0.
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This can be written as

[dr (o) + dy (rD)](a, £, k) := [do(aV) + di(rD)](a, f, k) = 0

This follows the pattern of previous result and we can guess with the Hochschild’s
complexes on one direction and on the other with the Yetter’s complexes. Assume the
Hochschild’s complex of composable arrows in the vertical direction and the Yetter’s
complex on the horizontal direction, at this point also Hochschild’s coboundary and
Yetter’s coboundary cancel each other which is required condition for double complex.

However, deforming the composition also, we get

{aihola® (F@ k)]~ [(a@ f) ® Kok, } + aascla @ TO(f @ k)
—[rW(a, f) @ Klaxyz + aapcla®@ 7V(f @ k)] = [TV (a, f) © Klaxyz
+ 1D (aapc, a® (f @ k) = uD((a® ) ® k, axyz) =0,

= [do(aV) + dy (T))(a, f, k) + do(uD)(a, f, k) =0,

where dy (M) inserts an instance of a as one of the arguments in both possible ways.
This shows, if we deform the all of the associator, tensor, and composition, the defor-
mation are not governed by a double complex. It is more than a double complex. We
can expect it will be a multi-complex. According to the input arguments of ™, (1)
and oV, and if we use the number of composable arrows involved as y-coordinate with
0 as the composable arrows when objects are the arguments, and number of tensorands
(objects or arrows) as x-coordinate, we can think their position are at (1,2),(2,1) and

(3,0) respectively. The relations we observed above can be pictorially represented as,
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4. The pentagon identity.

The condition

[aapc @ D]aap.cplA® agep| = @apopase.p, (2.3)

Y

is called the pentagon identity. Again the dot ‘.” is used denote that objects or arrows

are tensored before being used as arguments. Deforming only associator, we get

1 1 1 1 1
[aYhe ® D] = [aVpen] + T b en] — Tl hep] + [A® alep
T (1) B = 0.

Which is Yetter’s cocycle condition of the Yetter’s complex [at (4,0)]. Similarly, if

we deform the tensor and associator, we get

4
> (10,0 + 7N (aupe, D) + 7 (A, apep) = 0.
=0

Deforming composition also, we have
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dy (M) + 7D (auspe, D)aap.cp[A® apep] + laape @ D]aap.cpm™ (A, agep)
+ 1Y (aape ® D, aap.op)[A® apep) + 1V ([aape @ D)aap.op, A® apep)
— 1Y (aapop, @apep) = 0.

Under Yetter’s notation of padded composition but suppressing || marks, it is read as

dl(a(l)) + T(l)(CYABC, D)+ T(l)(A, apep) + M(l)(aABC ® D,aap.cp)

+ 1V ([aape ® D]aap.cp, A® apep) — VY (aapep, @apep) =0

which, then

[dy (@) + dy (7D + ds(u™M)](A, B,C, D) = 0.

where

da(r)(A, B,C, D) = [rD(aape, D)] + [FD(A, ascp)]

and

d3(ﬂ(1))(14> B,C,D) = [,U(l)(OCABC ® D, aapcp)]

+ [V ([aape ® D]aap.cp, A® apep)] — [ (@asep, aapen)].

This fills the another component for the multi-complex
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Theorem 2.0.37. ™M, 7 o) give a first order deformation if and only if they col-
lectively are a cocycle in the total complex of a multicomplex with low order differentials

are given by dy is the Hochschild differential, dy is the Yetter differential and

(a) do(pM)(a, f, k) = pV(aapc,a® f.k) — pD(a.f @k, axyz)

(b) dz(uW)(A, B,C, D) = [u"Y(aapc ® D,aap.cp)]

+ [ (Joape ® Dlaap.cp, A® apep)] — ' (@asop, vase.n).

(c) dy(tM) (A, B,C, D) = [tV (aape, D)] + [TW(A, agep)].

Let us now consider the conditions needed for the first order deformations to be equiv-

alent:

. Composition preservation
F(fog)=F(f)oF(g) implies
FO(fg)+uM(f,9) = FOU)f+vW(f,9) + FFD(g)
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= dy(FO)(f;9) = VY — uW](f: 9).

. Natural Transformation

F:F(—®—)— F(-)® F(-) (2.4)

where F' : C — D is a functor from monoidal category C to a monoidal category D.

Then the naturality square

F(A® B) — 2%, F(A) @ F(B)
F(f®k)| LF(H@Fk)
F(X®Y)——FX)®F(Y)

gives that Fi pF(f) ® F(k) = F(f ® k)EFx.y which implies that, if
P Ide + ¢We, and F = Ide + FWe

00 pf @+ FO(N)@k+ f@ FO()+pW(f,k) = FO(f@ k) + f @ ks + 7 (f, k)

which is equivalent to say

[di(FD) + do(¢")](f @ k) = 7D (f, k) — oV (f, k).

Then the above picture is extended to,
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¢(1) a® y 0.

1

7. Hexagon condition

F((A® B @ C)— % L pAs (B O))

FA@B,C ﬁA,B@C
F(A® B)® F(C) F(A) @ F(B® C)

FA’B®F(C) F(A)@FB,C

[F(A) @ F(B)| ® F(G) ormid(A) @ [F(B) @ F(O)]

(A),F(B),F(C)

That is, FA®B7C[FA7B®F(C)]aF(A)7F(B)7F(C) = F(Q)FABQ@C [F(A) ®FB’C which implies
that, if the deformation of F' is F' = Ide + FWe and let the deformation of F' is given
by F = Ide + ¢Me with €2 = 0, then,

[\ 5.c] + To4)s ® O + [alhel = TFM(@)] + [a o] + [64sec] + [A® 0501
That is,

[di (1) + do(FD](A, B, C) = [a{}e] — Talhe]-
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This says that if we don’t deform the monoidal functor F', then the difference of two
first order deformations of associator is cobounded by the Yetter coboundary of the
first order deformation of monoidal natural transformation. But if the functor F'is also
deformed, the quantity dy(F™M) is involved. The quantity dy(FM) is not necessarily
zero. So, in this case, the Yetter complex is no more a chain complex because there is

interaction of deformation of lax functor.

The pictorial representation of the multicomplex up to this point looks like

FO —— 70) jf 0
dngg
oM - o - 0.

Also, we have collected those instances of differentials which are different than those of

Hochschild and Yetter which arise consider first order deformations up to equivalence.

1. dy(FOYA, B,C) = FD(aspe)
2. dg(T(l))(A, B, C, D) = T(l)(A, OCB,C,D) — 7_(1)<04A,B,C> D)
3. do(uM)(a, f, k) = pV(a.f @ k,axyz) — p (@ape,a® fk), and

4. dz(pW)(A,B,C, D) = [pM(aapc ® D, aspen)]

+ [ (aapc ® Daspeop, A®apca)] — [V (aapcop @ C,anpcep)]
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Thus, we have,

Theorem 2.0.38. The first order deformations of monoidal category are equivalent if

and only if the triples (u™,7® aM) and (W, pM, a

M) differ by coboundary of a pair

(FO,¢M), that is, if and only if they are cohomologous in the total complex of the multi-

complex.

That is, the first cohomology of the total complex classifies the deformation of k-linear

monoidal category up to equivalence.

We have also determined the inputs for each cochain group in the lower left corner of

the multi-complex. Omitting higher differentials, the multi-complex looks like

do

A—2 (A Bl

do

.

d a® f@ k| 4
b g l| — "
c® h® p

}0

&{a@@k}dl_,..

b® g® 1

do

d1 dl

— g —

do

dy dy

with other differentials running right and down and having total degree one. This is the
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expected multi-complex.

Hence, at (p,q) of the multi-complex, if we let @ : C* — C (®P : C® — C) be the

functor, giving left (resp. right) parenthesize a tensor product,

cwa) .= 11 Homy,(C® (0, 21) 2C (21, 29) @ - - @C® (1,1, 24), C(PR10, @P,))
x;€0b(CYP);i=0,....q

where X is the Deligne product. The p** column of the multicomplex is the normalized
Hochschild complex of parallel functors P® and ®? in the sense of Definition 1.4.1.
This is a foundation of multi-complex. The results above give us instances for the formulas

of the differentials in case of first order deformation of monoidal structures. In general,

Conjecture 2.0.39. There exists a multicomplex (C**)) with the underlying graded module

of the previous paragraph and differentials,
dit CPt — CPITI g > 0,p > 1,4 > >0,

such that dy = dy,dy = dy and dj;j > 2 as in the pictures above, is the sum (with ap-
propriate signs) of all possible insertion of j — 1 associators or j — 1 prolongations of the

associator in the argument of argument of d;.

2.0.3 Obstructions to deformation of a k-linear monoidal category

We now consider the conditions on higher order terms in deformations. As expected, these
give rise to a sequence of obstructions which must be cobounded (i.e. vanish in cohomology)
for a higher order deformations to exist. We are concerned with three structures, composi-
tion ‘o’, tensor ‘®’, and associator ‘a’. Properly speaking, an obstruction is a cochain in the
total complex of the multicomplex, with direct summands at (0,4), (1,3), (2,2) and (4,0).

Each of these direct summands has an interpretation as obstructing one of the properties
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of a monoidal category, associativity of composition, middle-four-interchange, naturality of
the associator, and the pentagon conditions, respectively. By abuse of language, we refer to
each of the summands as “an obstruction”. Similarly the condition that the obstruction be
a cocycle can be decomposed into five conditions, which we refer to as “being a cocycle at

(a,b), for various bi-indices”

2.0.4 Obstruction to deformation of the associativity of composi-
tion

Consider the deformation of composition. Whether or not other structures are deformed,

the new composition must be associative. That is,

(adb)éc = ad(boc).

So then, collecting the degree n terms on both sides and equating coefficients, we have, for

each n,

Z “(i) (:u(j)(av b),c) = Z M(i)(a7 “(j)(ba c))- (2.5)

i+j=n i+j=n
0<1,j<n 0<i,5<n

For n = 0, the relation is just associativity of the original composition. For n =1,

apV (b, ¢) — pV(ab, c) + u(a, be) — pM(a,b)c = dy (™) (a, b, c) = 0

which is the Hochschild 2-cocycle condition of infinitesimal, ;" the infinitesimal deforma-

tion of the composition. Now for n = 2,

a’:u(Z) (ba C) - ,U,(2) (a’b7 C) + :U’(2) (CL, bC) o M(Q) <a7 b)C = M(l) (CL, N(l) <b7 C)) o /JJ(I) (:U’(l) (CL, b)? C>7

that is,
du (1) (a,b,¢) = u™M(a, u™M (b, ¢)) — p(pM (a,b), c).
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If the right hand side is zero, u(® is also a Hochschild 2-cocycle. In this case we can ex-
tend our deformation of composition to the second order. It’s making it sound like the
obstruction has to be zero as a cochain for there to be a higher order deformation, not
zero in cohomology. This expression is called that primary obstruction of deformation of
composition whether it is zero or not. We denote it by wgl)(a, b,c). In general, the n'* order

obstruction of composition is denoted by

wi(a.bye) = Y [ () (a,b),0) = O (a, (b, ¢))]. (2.6)

itj=n+1
0<i4,j<n

This obstruction lies at (1,3). If the obstructions are coboundary for k < n, we want to

extend our deformation to (n + 1) order. Gerstenhaber proved that the obstructions of

deformation of composition are cocycle. So, in our multi-complex case, on the Hochschild

direction, the obstructions of composition are cocycles by Gerstenhaber.

2.0.5 Obstruction to deformation of compatibility between com-
position and tensor

The compatibility of composition and tensor, often called middle-four interchange, is:
(aob)®@(fog)=(a® f)o(b®yg).

A similar argument to that given above shows that, the n'* obstruction to compatibility is

given by, for all n > 1,

w&?’(Z ﬁ)z > O 00,1 O(1,9) = nOE D e 1), 7P b )] (27)
AT
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This obstruction lies at (2,2). For obstructions to be cocycles in our multi-complex, we
need to show that the Hochschild coboundary of obstruction of compatibility and Yetter’s

coboundary of obstruction of composition should cancel each other.

2.0.6 Obstruction to deformation of naturality of associator

We have, the naturality condition of associator, « is

g BCQ ® (f ® k) = (CL ® f) & kaX,KZ’

which we write,

aspca® f.k=a.f®kaxyz,

[

where as always the ‘.” is for tensor when the result is an argument in another operation

and the composition operation ‘o’ is dropped.

The n'* order obstruction of this identity is given by, for all n > 1,

W (a, £, k)

= Y 190, (a0, 7O (£ 8) — nO D (70 a, ), k), ol )], (2.8)

itjthtl=nt1
0<i,jk,I<n

This obstruction lies at (3,1). To see that the obstructions are cocycles, we need to see that

the dy coboundary of w%l) cancels the sum of the d; coboundary of wgg) and dy coboudary

of w™.

2.0.7 Obstruction to deformation of pentagon condition

We have the pentagon condition as above. The n'® order obstruction of the structures of a

k-linear category due to this identity is given by, for all n > 1,
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w(A, B,C, D)

7 j l r s
= > DB (a0, D)ol op), T (A allp))

it+j+k+l4r4+s+t=n+1

0<i,5,k,l,r,s,t<n
i j k
- Z N()W(X.)BCD?O‘(AJ)BC.D)- (2.9)

itjtk=n+t1
0<i,5,k<n

This obstruction lies at (4,0). To see the obstructions are cocycle, we need to show that
dy coboundary of wgl)cancels with the sum of d; coboundary of w%l), dy coboundary of wgf)
and dz coboundary of wén) and d; coboundary of wgl) cancel with the sum of dy coboundary

of wj(\?), ds coboundary of wgg) and d; coboundary of w{™ with appropriate signs, analogous

to the Drinfel’d algebra case considered by Markl and Shnider.

2.1 Obstructions are Cocycles

The calculations of the coboundary of obstructions, with current techniques, is much too
complicated in the general case. We prove the standard result that obstructions are cocycles
only in special cases.

Since every monoidal category is monoidally equivalent to strict monoidal category, through-
out the following, we will consider only deformation of strict monoidal category. That is,

the undeformed structure maps of monoidal category considered all identities.

2.1.1 Deforming one Structure at a Time

1. Deforming composition only

Theorem 2.1.1. All obstructions are cocycles when only composition is deformed.
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Sketch of proof. WE give an explicit computational proof only on the case of the

primary obstruction.

We have,

(a) wt(a,b,¢) = p® (M (a,b),¢) — p®(a, uM (b, )
o (5 1) =uan et
(c) wi(a, f,k) =0

(d) wg)(A, B,C, D) = pM (M (aape ® D, aap.cop), A® apep)
In this case, at (4,0), do(wﬁl))(a, b,c,d) = 0 by Gerstenhaber?. For calculation

at (2,3), the Yetter coboundary of obstruction of composition is

a f
(WM b g
c h

a® f a
—abc@wM | g | WP | bog | 0P| b | @ fgh
h c®h c

and the Hochschild coboundary

/
_ w(b g\ wfa fg w(a f
z =@ fuep <c h) Wep ( c h >+w6p (bc gh

a
b
c

_wéll,) ( a f ) c® h,
g

which means

a f
(W) [ b g | =abe@ WD (f,9),h) — O (f, M (g, h))]
c h

— 1O (a® f,0®@g),c®h) +pM(a® f,uV(b®g,c® h))
+ [V (M (a,b), ¢) + pD(a, pM (b, )] @ fgh

and
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a f
do( wcp b g

c h
=a® fu(b,c) @ pM(f,g) — pM(ab,c) @ p(fg, )
+ M (a, be) @ p (f,gh) - (a b) @ ) (f. g)e®

Since, the first order condition is that, u) is a Hochschild cocycle, the com-

patibility condition gives
p(a® f,b®g) = puM(a,b) @ fg+ ab@ p(f, g),

do(w$))=abe © (1D (uD(£,g), h) — u® (£, 1D (g, h)
—uW (M (a,b) @ fg+ab uM(f,g),c® h)
+uWD(a® f, 1M (b, c) @ gh+bc® M (g, h))
+ (1O (D (a,b), ¢) + uD(a, uD(b,¢)] & fgh

=abe @ M (Y (f, g), h) — abe @ pM(f, u (g, b))
—u(”( W(a,b),c) © fgh — pD(a,b)e @ M (fg, h)
M (ab, C) sV (f, g)h — abe @ p® (u ( 9),h)
W(a, pV(b,¢)) @ fgh+ apD (b, ¢) © D (f, gh)
(abC)®fu( h) + abe @ pV(f, (g, b))
(u(l (a,b),¢) @ fgh+ pD(a, u“)(b, ¢)) @ fgh.

So,
do(wS)) + di (we)

= —puW(ab,c) @ p(f, g)h — pV((a,b)c @ pM(fg, h)
+ uW(a,be) @ fuV (g, h) + ap® (b, c) @ pM(f, gh)
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+ap(b, ) @ fuD (g, h) — uM(ab, c) @ pM(fg, )
+uD(a,be) @ pM(f, gh) — p™M(a,b)e @ (£, g)h

= —u(ab,c) @ u(f, 9)h — pM((a,b)c @ uM(fg, h)
— uV(ab,c) @ pV(fg, h) — u(a,b)e @ pI(f, g)h

+ M (a,be) @ [fuD (g, h) + pV(f, gh)]

+apD(b,c) @ [pM(f, gh) + fuM (g, h)]

= —uD(ab,c) @ M (f, 9)h — uM((a,b)c @ u™M(fg, h)
— uD(ab, c) @ pM(fg, k) — u(a,b)c @ pM(f, g)h
+uW(a,be) @ (1M (fg, h) + D (f, g)h]

+apM(b,¢) @ [V (f, g)h + pM(fg, b))

=mm®@—(ww@+MWmM—Mmed
® [ (f, 9)h+ D (fg, h)] =

At (3,2), the coboundaries of the obstructions are

o a®f k W[ a fRFk
) ch(b®g l>+pr(b g@l

8 (5 ® ki
=ab @ pM(f,g) @ pt (k,l)—u(”(a®f b g)puM(k,1)
+1u0(a,b) © pO(f © kg © 1) — u(a, ) ® g(f,g) © K

+ 1P (a,b) @ fg @ pM (k1) =0

Since wg\})(a,f, k) = 0; wg)(A,B,C’, D) = 0, in the strict case by the iden-

tity preserving lemmas, we have,
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aapc b o la agep
d(wep) (@ f K m ) = (a@f.k m ) T (a f®km)

(1)( a ®k‘m) ( a f®km>
~Wep =0
Qy zw axyz Iw

d (wcp )(A,B,C,D) = (11)) ( aapc @D B > _w&l)) ( aspep B )
+

QAB.CD 1) A®CVBCD E
4 oM ( A apcp®@E
cp

w(l) A OBC.DE -0
A apepre ? \ A B®acpr

and similarly d4(w£1)) =0 = d3(bd£1)). Hence, in this case, the obstructions

are cocycles.

2. Deforming tensor only

Theorem 2.1.2. All obstructions are cocycles when only tensor is deformed.

Sketch of proof. Again we give a computational proof only in the case of the primary

obstruction. We have,

a®f =a® f+7Y(a, fe.

Then

(a) do(7™) (a fb g)
=a® frO(f, k) — 7 (ab, fg)
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+7W(a, flb®g =0

(b) di(tV)(a f k) =a@tO(f, k) = rV(a® [ k)
+70(a, f@ k) —7W(a, f) ® k = 0(Under padding)

and

(f) (UI()I) ( A B C D ) = (T(l)(OéABc,D)T(l)(A,OéBCD—I = O
At (1,4), result follows trivially in this case. At (2,3),

f 1 f 1 a®f
g | =abcou | g | =0V | boyg
h h c®h
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f
) -een (21) -0 (% )
f

W a _owfaf
—l—wcp(bc gh)®fgh wcp(b g)c@h
=a® fr(b,g)rW(c,h) — W (ab, fg)7(c, h)

+ 70 (a, £)rO(be, gh) — 7D (a, £)TV (b, g)c @ h

= la® frO(b,9) — 7O(ab, fg)]rV(c, h)

+ 7O (a, /Y[ (be, gh) — 7V (b, g)c @ A

= —7W(a, Hb@ gtV (c, h) + 7D (a, )b @ grM(c,h) =0

a.f @k a.f @k
d2(wr(:1))<z g ?)wgl)( bg®l ) Wél)( auvw )
b® g.l

axyz

wn(z14)
:[abc]ng\})(a f k)—wﬁ)(ab fa kl)—i—w](\})(a f k)[fghlg

=[abc][rW(EM(b,g),1) — M (b,7W(g,1))]
+ 70 (ab, 7V (fg, kD) + 7O (7D (a, ), k)[f g hlg — 7V (a, 7D (f, k))[f g h]r

=labclerM(rM(b,9),1) = [abc 7MW (b,70(g,1))
— 7N (W (a, b ® g, kl) — 7H(a @ frI(b, g), ki)
+ 7 (ab, 7O (f, k)g @ 1) + 7 (ab, f @ k7M(g,1))
+ 70 W(a, £), B)[f g g — 7 (0, 7O (f, k))[f g g

=labclrW(EW(b,g),1) —[abc|or(b,7W(g,1))
— 70O (a, £),k)b.g @1 —1D(a, f) @ krV(b® g,1)

48



— W@ f,k)rV(b,9) @1 —a.f @k (r0(b,g),1)
+a@TV(f,k)rV (b, g 1) + 7 (a, 7V (f, k)b g.1
+7W(a, f@ k)b 7W(g,0) +a® fhrV(b,7W(g,1))
+ 70 W(a, £), B)[f g g — 7V (a, 7O (f, k))[f g g

=—7W(a® f,k)TW(b,9) @+ a@ 7O (f, k)T (b, g @ 1)
+7W(a, f@ k)b T (g,1) =7V (a, f) @ krV (b ® g,1)

dmﬁh<zg ?>_@® (g?)

o fa®f k w(a fRFk
ukp(b@g l)+w6p (b g1

=ab@ TV (f,E)rM(g,) =7V (a® f,k)TV(b® g,1)
+7W(a, f @ k)T (b, g @ 1) — 7W(a, f)rM(b, ) @ ki

W(f, k)T (g, 1) = [a@ 7V(f, k) +7W(a, f @ k)
W(a.f)@kberV(g,) +7V(b,g®1) =7 (b,9) ® 1]
+T ( f®k) (b7g®l)_T(l)(avf)T(l)(b7g>®kl

I
=
>

= —a@7V(f, k) TV (b, g@1) +a@7W(f,k)rM(bg) @1
W(a, @ k)b 1D (g, 1) + 7V (a, f @ k)7 (b, 9) ® 1
+ T(l)(a, kbW (g, 1) +7V(a, f) @kt (b, g 1)
W(a, f)@krW(b,g) @1 — 7V (a, ) @ krM(b,g) @1

Thus combining, we get,
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oty + e (5 14

= —a@TV(f,k)TV 0,921+ a7V (f, k)TW(b,9) @1
—T(l)( kbt (g,l)+7 Na, f@Kk)TM (b, g) @1

flekbe W (g, 1) +7W(a, f) @ kr™
a,f)@k:T(l(bg)®l—T(l)( f)@krW(b,g) @1
a® f,k)rO (0, )®l+a®¢“<f,> '(b,g®1)
(9,1) =7(a, f) @ krM(b @ g,1)

M(a, (b,g®1)
M I
M
M(

a, f@k)berW

=a@ TV (f,k)TH(b,9) @1+ 7W(a, f @ k)W (b, g) ®
+70(a, )@ kb 7MW (g,1) + 7V (a, ) @ krM (b, g @ 1)
—7W(a, f) @ kM (b g)®l—r(1 (a, )TV (b, g) @ kI
—7tW(a® f,k)TV(b,g) @1 —7H(a, f) @ krD(b® g,1)

—a®7(1)(f,k) (b, g) @1+ 7W(a, f@ k)T (b,g9) @1
Wa, flo kbW (g,1) + 7W(a, f) @ krW (b, g @ 1)

—a®r<1>(f E)rW(b,g) @1 —7W(a, f @ k)T (b, 9) @1
W (a, f) @ kW (b,g@1) — W (a, f) @ kb2 7 (g,1) =0

At (4,1),
do(wp)a [k m)=0

(W) a f k& m)
:a®w](\})(f k m)—w](\}( ®f k m)
+oPa fok m)—wi(@ [ kom)

+w](\,)(a f kem
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_a®7-(1)(7- 1)(
D(r( ( ®
f

(
+ 7MW (M (q
— 7MW (a, f),k@m
(7 (a.

1) (1)

—a@7O(f,7V(k,m)
+HW @ f, 7 (k,m)
W(a, 7(f @ k,m)
(aﬂWfk®m>
HE)y@m —7W(a, 7V (f, k) @ m

[, k),
fik),

m) )
m) )
® k), m) — )
) + )

W (@@ 7O (f k), m) =7V (a, 7V (f, k) @ m)
T (a, 7O(f, k) @ m — 7D (a @ f, 7V (k,m)
W (a, f © O (k,m)) — 70, f) © 7 (k, m)
W D(a® f,k),m)+7D(a@ f,70(k,m))
O(rW(a, f @ k),m) = 70 (a, 7O (f @ k, m))
O(rW(a, )k @ m) + 7D (a, 7O (f, k @ m))
W(a, f) @ 7O (k,m) — 70 (1 W (a, f) @ k,m)
(7-(1)(a, £ k@m) —1W(a, 7W(f, k) @m
Wa@rW(f,k),m) - V(W (@ f,k),m)
W(rW(a, f @ k),m) — 7O (rO(a, ) @ k,m)
D(a, f @7V (k;m) +7D(a, 7V (f @ k,m))
mﬁmuk®m»—HWaﬂWfM®m)
D@ f,7Ok,m)+ 7Y@ f,7O(k,m)
W (W (a, f), k@m) + 7O (1D (a, f),k @ m)
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_ LW [ @asc Ip _ LW 14 agep
PT\Nax fk m P\ a fRkm

— 0’
((a.f).k).m
(1) _ (| aapc®lp
dz(we )a f k m)=we Oé);yz ® 1y We (a.(fk)).m
XY.ZW
axy.zw
" aspc ® 1p " (a.(f-k)).m " QAB.CD
+ Wep QAB.CD + We aXY.ZW — We a.((f.k).m)
a.(f.(k.m)) Ix ® ayzw 1x ® ayzw
. XAB.CD . ((af)k)m . XA BCD
+ wg ) 1o ® agep — w§ ) OXYZW + Wé ) (a.f).(k.m)
a.(f.(k.m)) axXyzZW axyzw
& A.BCD
(1)
— We QABC.D =0,
a.(f.(k.m))

and similarly, at (5,0), the coboundary of obstruction vanishes because inputs are

associators and objects only. So the result.

. Deforming the associator only.

Theorem 2.1.3. The obstructions are cocycles when only associator is deformed.

Sketch of proof. In this case all the obstructions are zero except the obstruction, wg),

the obstruction due to pentagon identity. Also, the Yetter coboundary of this non-
zero obstruction is zero by a result of Yetter? as we are using the identity preserving

](\}) vanishes. Since the coboundaries of a(!) are zero in both the

deformation, do(w
directions, it is a natural transformation and satisfies the pentagon identity. This

implies that do(w$)) = 0. 0
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2.1.2 Deforming two Structures at a Time

Theorem 2.1.4. All primary obstructions are cocycles when one of composition, tensor and

associator is undeformed.

Proof. 1. Tensor and the associator only are deformed (i.e. 7™, o % 0 and p = 0)

Then the first order conditions are:

(a) p =0=w =0.

o) e (5 1) =70 g - a1
+a® frV(b,g) = 0.

(€ di(t)(a f k) =aipca®@tV(f,k)—7D(a® f,k)axyz
+ aapemW(a, f @ k) — 7V (a, ) @ kaxyz
=la@rW(f, k)] = [rD(a® f, k)] + [TV (a, f @ k)
— [tW(a, f) @ k]
= —do(eM)(a [ k)=-a\pea® fk+af@kal,

(d) do(v®W) (A B C D)=0

(e) di(aM)(A B C D) =laY}e® D]~ [aVs0p]

1 1 1
+ el hop] = ahep] + TA® allp]
Yeter s~ (—1)idaM =0

and the obstructions are:

@l (1) =000
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b) WV (a f k) =al et (a, f@k) +alpea©rO(f,k)
+ aABCT (CL, T (fa k)) - T(l) (T(l) (CL, f)7 k)aXYZ
— M@ f.k)aky, — D (a, f) ® kol

() wp! (a f k) =T[la"he®Dlali)ep]
+ H@Eu)sc ® D][A® BCDH + (O‘.(Alj)B.CDA ® 591)013

1 1 1
+ [T(l)(a(ABC D)] + [ (A7a(B)CD)—| - 0‘54)301)04541)901)

Then we can easily see that, at (2,3)

a f a f
do(wg)) b g | =0=4d; (w((;l)) b g
¢ h c h

At (3,2), we have,

e (5 ;
o (0 1oE) (0 T9F)
= aspcab @ TV (f,E)rM (g, 1) —7W(a® f,E)r V(b g, Daxyz
+mwwmmj®k%“&g®w—f(me(@w®kmmw
= [ab@ 7V (f,k)7M(9,0)] = [TM(a® f,k)rM(b® g,1)]
+ [TW(a, f @ k)rD(b, g 1)] — [t (a, /)T (b, 9) ® kl]

\-/PT‘
\_/

k
ald) (5 7)) —aserd) (09 1) -l (@0 g w1)
—i—w](\})(a [ k)b®gl

= a.f ® k[agiy TV (b, g @ 1) + alf) b ® 70(g, 1)

+ agyw M (b, 7V (g,1) — 7O (b, g), Daxyz
D(b®g,0aky, —70(b.9) @ ok

- [0454)307' )(ab, fg @ Kkl) + afj])gcab @ 7MW (fg, kl)
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+ aapemM(ab, 7 (fg, kl) — 707D (ab, fg), kl)axyz
W(ab fg,kl)ay, — 7 (ab, fg) @ klay ]

+ [0 bW (a, f @ k) + alihoa @ 7O (f, k)

+ aABCT(l)(a’ T(l)(f k) — 7'(1)(7'(1)(@7 f), k)avvw

—7W(a® fk )ag}‘),w ™ (a, f) ® ka(Ul‘)/W]b ® g.l.

Then,
aolel)) = el (1)
—a.f @kl WtV (b, g2 1) + all b rW(g,1)
+ agyw TV (b, 7V (g, 1) — 7O (71 (b, g), Daxyz
Db ® g.Daky, =m0 (b.g) @ laky )
- [aibécf (ab, fg ® k) + alipeab @ 7(f, k)
+ OéABCT(I)(aba T(l)(fga kl) — a (T (ab, f9), kl)axyz
r(ab® fg,kl)aly, — 70 (ab, fg) @ klaky ]
- [04541)307' Na, f @ k) + aABCa @ TW(f, k)
+ aapetV(a, TV (f, k) — 7O (W (a, £), k) ayyw
W(a® fk)aghy — 70, f) © kgl © gl
—[[ab@ 7 (f, k)7 (g, )] = [TV (a @ f, k)T (b ® g,1)]
+[70(a, f @ k)rW(b,g @ 1)] — [ (a, )7V (b, 9) @ kI]]

= [a.f @ lagiy — alipea ® LT (b,g © 1) +b© 70 (g,0)
+a.f @ lagywr (b, 7M(g,1)) — a.f @ IrM (b, 7V (g,1))axyz
—a.f@lrMb,g)@la, —af@lrMbe g )y,

— WL D(a, f@ k)b @ gl —a\hea®@ T (f, k)b gl

— etV (a, TV (f, k)b ® gl — aspca @ TO(f, k)7 (b, g @ 1)
—aapea® fhTO(b,7M (g, 1) — aapetV(a, f @ k)b @ 7MW (g,1)
+ 70O (a, £), k)b.g ® laxyz + 70 (a® f,k)7M(b, g) © laxyz
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+a.f @ ktW(rW(b, 9), Daxyz +7V(a, ) @ ktW(b® g, Daxy
+ 1 O(a, ok + 1D ® f,k)]bg @iy, — aiwb© g.l]
ta.fokrW(b,g) @1\, +a.f @ krO(b e g,D)al),

+ aSgCT(l)(a fRb®gl+ afjﬁca R TW(f, k)b ® g.l

+ aapem M (a, TV (f kN0 @ gl — 7D (W (a, ), k)apywb @ g.0

— [aapcab @ TV (f, E)rM (g, 1) — W (a® f,E)TM(b® g, Daxyz
+ aapeV(a, f @ k)T (b, g @1) — 7 (a, £V (b, 9) ® klaxyz].

Now using the first order conditions, the above expression,

= [aapca @ TV (f, k) — W (a @ f,k)apvw + aapcet(a, f @ k)

—7W(a, f) @ kagyw][rM (b, g @ 1) + b @ 7M(g,1)]

+a.f @ lagywtM (b, 7W(g,1)) — a.f @ 1O (b, 7MW (g, 1)) axyz

—a.f @b g)@la, —a.f@lrV(b g, ok,

—al L mO(a, f kb @ gl —allhea®rO(f, k)b gl

— etV (a, TV (f, k)b ® gl — aspca @ T (f, k)7V (b, g ® 1)

—aapea ® fhTO(b, 7 (g, 1) — aapetV(a, f @ k)b @ 7MW (g,1)

+ 70O (a, £),k)b.g @ laxyz + TV (a® f, k)7 (b, g) @ laxyz

+a.f @ krD (W (b, g), Daxyz +17V(a, f) @ krW

+ e, fl@k + 700 fB)]lavvwb @ 70(g,
Wb ® g Daxyz +apywtD(b,g@1) — 7 (b, 9) @ loxy 7]

b®g,axyz

(
l)

+a.f@kr(b,g) @y, +a.f @krOb @ g,)aly),

+al bW, f Ok ® gl +allea®rO(f, k)b ® gl
+aapotM(a, 7O (f, k)b @ gl — 7MW (7W(a, f), k)avywb @ g.l
— laapcab @ TV (f, k)W (g, 1) — 7W(a® f,k)TM(b® g,)axyz
+aapeW(a, f @ k)T (b, g @1)

D(a, )TV (b, 9) ® klaxyz] = 0.
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At (4,1), proof is in Appendix A.

At (5,0), all the coboundaries of obstructions are zero except for d; (wg)). Now
d(wW)(A, B,C, D, E) = Asw\(B,C, D, E)—w\W(A.B,C, D, E)+w\ (A, B.C, D, E)
wW(A, B,C.D,E) +w\ (A, B,C,D.E) — (A, B,C,D)® E

=A® [ e op ® lpa gg}.DE + O‘gng ®1plp® CV((,}%)E + ag)C.DElB ® ag)DE
1 1 1
- O‘SB)CDEO‘(B)CD.E + 7 )(QSB)CDa 1) + 70 (1p, a(C‘)DE>]
1 1 1 1 1 1
- [041(4)3017 ® 1Eaf4.)BC.DE + 0454.)1301) ®1plap® a(Cz)E + Oé(A.)BC.DElA-B ® a(C)DE

1 1 1 1
O‘%A) B). CDEafél)BCD BT 7(1)<0‘E4.)BCD> lg) + 7MW (145, @(CJ):)E)]

1) 1) 1) a 1) 1)
+ [0up.cp ® leayp.cypr t @apop @ lela® CVB.)CDE + O‘,(q(B.C).DElA ® apopr

1 1 1 1
041(4()3 o). DEOC(LU)BCD.E + 7(1)<0‘E41)9.CD> 1p) + 70 (14, @SB.)CDE)]

1 1 1 1 1 1
—[aShen® 1EaE4)B(C.D).E +alhop ®1ela®all pp+ O‘(Af)g(C.D).ElA ® s pp

1 1 1 1
O‘iu)a(c D). Eoéu)a(c p).E T s (04,(41)90.07 1g) + 70 (14, O‘SB)C.DE)]

1) 1) 1) 1) 1) (1)
+[aupe @ Lp.ECy e p.p) T Yape © 1p.ela ® apop g+ O‘(ABC.(D.E)lA ® apopp

1 1 1 1
O‘iu)sc (D. E)Oéu)sc (n.5)t e (04,(41)30> 1pg) + 70 (14, C“SB)CD.E)]

1 1 1 1 1 1
- [aEA)BC ® 1DO‘E41)BC.D + 0‘,(41)90 ®1pla® aSB)CD + O‘(Al)ac.DlA ® 0‘1(92113

1 1 1 1
— aYpopaihen + O e, 10) + O (14, 0kl )] ® E.

In this case, since the first order condition on the pentagon is exactly the first or-
der condition of Yetter’s case as we are assuming the identity preserving case, all the
terms except those containing 7(") vanish by Yetter?. Using the pentagon identity
inside the arguments of 7(!) and then the first order condition from preservation of

identity (lemma 2.0.4), we can see that the other terms also vanish.

. Composition and tensor are deformed (i.e. u™ 7 #£ 0 and o™ = 0).

The first order conditions are

o7



Cc

a
(8) do(u) ( b ) = ap(b,¢) — p(ab, ) + u(a, be) — u(a,B)e = 0
o) ) (5 1) —atn(f0) - 10w 00 9) + 100 0) @ 1o
() o) (@ f k) =pWD(aapc,a® f.k)—pD(a.f @k axyz)=0.

@ ) (5 1) =0 1100,9) = 0@ f0) + 700, o0

do(T) = dy (u)

(e) di(tW) (a f k) =aapca®@ TV (f,k) — 7V (a.f, k)axyz + aapctV(a, f.k)

—7WM(a, f) ® kaxyz = 0 since aV) = 0.

(f) ds(uV) (A B C D) =pY(aspc® D, aapcp)
—uaapep, aapep) + M (@ape ® Daapcop, A® apep) =0

since o) = 0.
And obstructions,

(a) w ( b ) = 1M (W (a,b), ¢) — p®(a, (b, c))

) o (5 1) = H ), b0 - 0O g) a0 700, 9)
—m (W (a,0), fg) + 7V (a, /7O (b, g) — 7V (ab, 'V (f, )
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(c) w](\}) (a f k)=aipctV(EW(a, f),k) —7D(a, 7V (a, ,k))axyz

(d) wp' (A B ¢ D)=0

a
At (1,4), do(w (1)) l; = 0 by Gerstenhaber.
d
(et A
At (2,3), dl(wé )) b g | =abcow® | g
c h h
a® f a
+o | bog | WP | b | @fen
c®h c

= abc ®@ :u(l)(:u(l)(fa g)a h‘) —abc ® :u(l)(fa ,u(l)(g7 h)) o /L(l)(u(l)(a'fa b)a Ch)
+ D (a.f, yD(b.g, c.h)) + pM (D (a,b),¢) @ fgh — pM(a, uD (b, c)) © fgh

a f
do<wg;>>(b g)m(g ) ()
c h

=a @ fu(r0(b, g),c.h) +a® fuD(b.g, 7MW (e, h)) +a® fr (b, g)70 (C h)
—a @ frO(uM(b,c),gh) —a @ frW(be, uD (g, h)) —a® fuD (b,v) @ u (g, h)
- M(l (r(ab, fg),c.h) — pM(ab.fg, 7D (c, h)) — 7MW (ab, fg)7V(c, )
W (M (ab, c), fgh) + 7 (abc pV(fg, 1)+ pD(ab,c) @ pM(fg, h)
W (W (a, fbe.gh) + pD(a.f, 7 (be, gh)) + 7V (a, £ (be, gh)
(u“)(a, be), fgh) — 70 (abe, M (f, gh)) — u“)(a’b ) @ uV(f, gh)
-~ u“ (rM(a, f),b.g)c.h — pP(a.f, (b, g))e.h — 7 (a, F)TH(b, g)e.h
W (M (a,b), fg)e.h + 7V (ab, kM (f, 9))e, b+ pM(a,b) @ pM(f, g)e-h

=a® fuD(rV(b,g),c.h) +a® fu(b.g, 7V (e, h)) +a @ frV(b, g)7V(c, h)
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—a® frO(uM(b,c), gh) —a® fr(be, uV (g, h)) —a® fuV(b,v) @ (g, h)

- #(1 (rW(a, f)b.g,c.h) — u(uD(a.f,b.g), c.h) — pD(a.f, 7D (b, g), c.h)
p V(M (a,b).fg,c.h) + ph (ab.uM(f, g), c.h) — u“ (ab.fg,7M(c, h))
W(a, /)b.grW(c,h) — pW(a.f,0.9)7 (¢, h) — a.f, 7V (b, g)7V (¢, h)
”(m b).fgT (e, h) + ab.uD(f, g)7M (¢, k) + 7M (uM (ab, ), fgh)
W (abe, uD(fg,h)) + pM(ab, c) @ M (fg, h) + “)(T(”(a, f),be.gh)
W(a.f,7M(b, g)e.h) + u(l (a fruD(b.g, e.h)) + pD(a.f,b.g7V (e, b))
- M(l (a.f, 1V (b, g) @ gh) — pD(a. f,be @ pM (g, h)) +7W(a, [T (b, g)e.h
+70(a, f)u(”(b g,c.h) + T“ (a, F)b.grM (e, k) + 70 (a, )M (b, 9) ® gh
M (a, f)bc®u (g, k) = 7O (uM(a,be), fgh) — 7 (abe, n™M (£, gh))
- ﬂ“)(a, be) @ pM(f, gh) — D (7W(a, f), b.g)e.h — pD(a. f,70(b, g))e.h
W(a, f)r (b g)eh + ¢ ( W(a,b), fg)c.h
W (ab, fM(f, g))e, b+ M (a,b) @ M (f, g)e.h

1st

et 0 @ fr(b, g)rV (e, h) — a® frO (D (b, ¢), gh) —a® frO(be, pV (g, h))
—a® fu(b,v) @ pM(g, h) — (M (a. f,b.g), c.h) + pD (M (a,b). fg, c.h)

W (ab.uV(f, g), c.h) + pD(a,b). fgrD (¢, h) + ab.p D (f, g)7P(c, h)

M (ut (ab c), fgh) + 70 (abe, uM(fg, h)) + pM(ab, c) @ pM(fg,h)

W(a.f, uM(b.g, c.h)) = M (a.f, D (b, 9) @ gh) — pM(a. f,be @ p(g, b))

M (a, f)u(”(b 9) ®gh+7( (a, F)be @ (g, h) =70 (uM (a, be), fgh)
W (abe, y M (f, gh)) — M (a, be) @ D (f, gh) + 70 (M (a,b), fg)c.h
W (ab, uD(f, 9))e, b+ pM(a,b) @ WM (f, g)e.h

Combining, we get

a f
[dy (W) — do(w$)] ( b i) = abe @ pW(p(f, g), h) — abe @ p(f, uM (g, h))

+ 1D (D (a,b),¢) ® fgh — pD(a, M (b,c) @ fgh
+a.fr (b, c), gh) + a.fr (be, pV (g, h) + a.dpV (b, c) @ pM (g, h)
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— (D (a,b). fg, e.h) — pM(ab.pM(f, g), c.h) = pM(a,b). fgr (e, h)
—ab.u(f,9)7M (e, h) — 7V (u(ab, ¢), fgh) — 7 (abe, pM(fg, h))
- u(”(ab ).uV(fg,h) + pM(a.f, n (e, b.gh) + pM(a. f,be.uM (g, b))
W(a, HuD (b, ¢).gh + 7V (a. fbe.pM (g, g) + 70 (1M (a, be), fgh)
+ 1M (abe, pD(f, gh)) + M (a, be). D (f, gh)
(M (a,b), fg)eh — 7 (ab, uM(f, g)e.h — M (a, b).uD(f, g)e @ h
Using the first condition on ( u(a,0) fhg ) and such hexagons, we find that the

c
difference is

= a.fuM (b, ¢).u (g, ) — pM(a,b) kM (f, g)e @ h

T (D (ab,c), fgh) — 7 (abe, uV (fg, h) — “)(a@ c).uV(fg, h)

W (M (a, be), fgh) + 7 (abe, f (£, gh)) + M (a, be).uD(f, gh)

- u(”( D)euD(fg,h) — 70 (1M (a,b)e, fgh) — u“ (ab, ).V (f, g)h
M (abe, p* (f 9)h) + 1M (a, be). fuD (g, k) + 7 (abe, fu) (g, b))

+apM (b, ¢).uV(f, gh) + 7D (apD (b, ¢), fgh) + 70 (au (b, ¢), fgh)

= apM (b, c).fuP (g, h) — pP(a, b)e.uD(f, g)h — pD(ab, ¢).u ™M (fg, h)
+ 1 W(a, be).p M (f, gh) — M (a,b)e.uM(fg, h) — pM(ab, ¢).uD(f, g)h
+uM (a,be). fu (g, h) + apD (b, ¢).u M (f, gh)

W, C)fu (g, h) + 1P (a,be). M (f, gh)
+au(”(b7 c).uM(f, gh) + u(a, be). fuM (g, h)
— 1D (a, 0)e. [V (f, g)h 4+ p D (fg, h)] — pD(ab, ¢).[uV (fg, h) + pD(f, g)h]

(bC)fu (g, h) + 1P (a,be).uV(f, gh)
+ apM (b, ¢).lV(f, gh) + D (a, be). fuD (g, h)

— 1 D(a,b)e.[u D (f, gh) + fuM (g, h)] — pP(ab, ¢).[fuP (g, h) + D (f, gh)]
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= di(uV)(a,b, )[fu'V (g, h) + uV(f, gh)] = 0

At (3,2), this is a special case of the proof in Appendix A.

At (4,1), we have

w}) =0 and so do(wg)) = 0.

Also, dg(wg))) =0= dg(wgl)). To prove the result, we need to see d; (w](\})) = 0. For
this,

dwW)(a [k m)

= aw((f k,m) — w{(a.f, k,m)
+wi (. fh,m) — wi (0, £ km) +wi (a, f.k).m

= arW (WO (f k), m) — arD(f, 7Ok, m) — 7D (10 (a.f, k), m)
W(a.f,7D(k,m)) + T(l)(T(l)(a fk),m) — 70 (a, 7O (f.k,m))

—7O(rW(a, ), km) + 78 (a, 7O(f, kam)) + 70 (7D (a, f), k).m

+ 70 (a, 7O (f, k)).m

W (arV(f, k),m) -
D(a.f, 7V (k,m)) +
O (1 (a.f, k),m) +
D(a, 7O (f.k,m)) -
(a, £). 7Ok, m) -

D(a, 7V (f, k)).m =0

At (5,0), all the coboundaries of all obstructions are 0s. Hence, the obstructions

are cocycles in this case too.
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3. Composition and the associator only are deformed (i.e. u,a® # 0 and 7™ = 0).

The first order conditions are

(a) do(uM) | o | = au(b,¢) = p(ab, c) + pM(a,be) — pM(a, b)e = 0.
C

) a5 1) —atn(f9) - 10w 09 9) + 1000 @ S 0.

() o) (@ f k) =pW(aapc,a® f.k)—pD(a.f @k axyz) =0.

(e) (M) (a f k) =0.

(f) ds(u) (A B C D) =pY(aspc @ D,aapcp) — PV (aapep, dapcp)

+pM(aape ® Daapep, A® apep) = 0, since o) = 0.

And obstructions,

a
(@) [ b | = OO (a,b),¢) — 1O (a, 1O (b, )
C

(b) we ( i g ) = 1 (a,b) @ pV(f, g)
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() wy' (@ f k) =pnD(ahpea® k) = uD(af @k ok )

1 1 1 1 1
) W) (A B C D) =ahe®@Dalihep+alihe© DAY,

1 1 1 1
+a.(A)B.C’DA ® a(B)CD - O‘ELL)BCDC)‘ELU)BC.D

under Yetter’s padded composition.

As before, at (1,4) is Gerstenhaber’s proof, at (2,3) and (3,2) are the particular cases
of previous composition and tensor case and the appendix respectively. At (4,1)
dy(wM) = 0 = dy(wy))

For the other differentials of obstruction, as a(?) is natural in this case, vanishes inde-

pendently.

At (5,0), all the coboundaries of obstructions are zero except the Yetter cobound-
ary of wg). Since, we are assuming the category is strict one, this is also cocycle by a
result of Yetter?.

Thus the result follows. O

2.2 A Geometrical Approach to Simplify Messy Cal-
culations

We have seen that the direct calculation of the coboundaries of obstructions, even in spe-
cial cases are not simple. So, to handle the general case, we will use geometrical encoding
of the obstructions and cobounding conditions. For this we are going to construct poly-
tope or cell decomposition of sphere such that edges of each face represent the deformable
arrow-valued operations and with them the corresponding deformation terms of each or-
der and each face represents both relations the deformation terms satisfy up to some order
and instances of an obstruction entry of each order greater than one depending on how the

operations around a face are assembled, or a difference of terms which must trivially be zero.
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As an example, consider the first order obstruction of deformation of composition is given by

wW(a,b,¢) = uV (M (a,b), ¢) = M (a, p (b, 0)),

and the first order condition is given by

au(l) <b7 C) - :u(l) (aba C) + ,u(l)(aa bc) - /L(l)(a, b)C = 0.

Those two conditions can be represented by the following square:

a(bc)

be O (ab)c.

ab

We can call it, square [a,b,c|. For the first order condition, we are taking one degree de-
formation from each edge and the orientation gives the sign of the terms on the expression.
But, we need to remember that each term should have all the arrows used. So, the first side
on the clockwise direction gives us the first term of the first order condition and the second
gives us the third term. Similarly, the other sides give us the second and last term of the

same.

For the first obstruction terms, we use the same sign rule, but spread a total degree of
two over the edges of each oriented “half” of the boundary so that each edge gets at most
one. Similarly, second order condition, we spread degree 2 in all possible ways keeping the

sign rule in mind, which gives
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ap® (b, c) + @ (a,be) + M (a, uM (b, ¢)) = p(a,b) + p®(ab, c) + u (M (a,b),c). Note
that this is equivalent to the condition that the Hochschild coboundary of u(!) equals the
first obstruction w®. The second obstruction can be obtained as spreading the degree 3 in
all possible ways such that each edge gets at most degree 2. That is,

w(a,b,¢) = u® (M (a, ), €) + p (1 (a,0), ) = p®(a, x® (b, 0)) = u(a, p (b, c)).

In general, spreading total degree n over all edges on each of the two halves of the boundary,
so then each edge has degree less than n and taking the difference gives the obstruction to
extend to degree n, which letting the edges have degrees up to and including n gives the n'*

order condition that x(™ cobounds w™.

Now, the Gerstenhaber cocycle condition of obstruction to deformation of associative com-
position can be calculated from a polytope, whose edges represent deformable structures,

here the composition only,

— ®
(abe)d
I
! ab(cd)
abe
|
| cd
I
I
: a(be) a(bed)
I
|
I
I
I
ab : ab
I
| (be)d
77777777777777777 *> .
7
%
/ —
/ bed
7 be
/
/
/ cd
O
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To keep track of the calculations of the cocycle condition for the obstructions to deformation
of composition from chapter 1, the lowest face is the square [b, ¢, d], the top face is the
square [ab,c,d], the back face is the square [a,bc,d], the right face it the square [a,b,cd], the

left one is the square [a, b, c¢] and the front face is a trivial square.

In the calculations in the proofs of Proposition 1.2.3 and Theorem 1.2.4, we used instances
of the lower order conditions (that p") is a coboundary and that each p®) cobounds the
k" obstruction) on each face to replace instances of the label on the common edge abc on
the other face with expressions not involving the common label, thereby showing that the
sum of the obstruction-type expressions on the square [ab, ¢, d] and the square [a, b, c] equals
the obstruction-like expression corresponding to the hexagon obtained by gluing the squares
on their common edge by spreading the total degree among the edges of each oriented side
as described above for the squares. Similarly, we glued the squares [b, ¢, d] and [a,b, cd]
through the common edge bed. In the proof of Theorem 1.2.4 these steps occur where the
nested summations first appear. The remaining sides (the trivial front, and [a, bc, d]) glue
on even more trivially: the terms corresponding to one half of the boundary cancel some of
those in the hexagons obtained by the previous gluing, and the result is an obstruction like
expression corresponding to the hexagon with edges ab, cd, ab(cd), be, (be)d, and a(bed),

occurring twice with opposite signs.
This suggests taking a geometrical approach to proving the obstructions are cocycles if
we can get suitable cell decomposition of a sphere, with edges labeled by instances of arrow-

valued operations for each of the bidegrees (1,2), (2,3), (3,2), (4,1) and (5,0).

Consider a polygon whose edges are labeled with instances of deformable arrow-valued

operations which are either arrow (or object) variables or values of arrow-valued operations
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occurring earlier on a path from a global source to a global target. Each polygon encodes
a equational condition at each order: the vanishing of the difference of the expressions re-
sulting from spreading the order among the edges of the two directed paths in all possible
way with the sign chosen by which path is reveal to give the boundary orientation. Each
polygon encodes an obstruction-type expression at each order greater or equal to one: such
that the difference of the expressions in which the total order could all be on a single edge

(with other order 0).

Definition 2.2.1. (Admissible and Non-admissible Polygon Combinations) Two polygons
with edges representing arrow-valued operations with one source and one target are called
admissible if when they are glued together on the edges which represent same instance of an

arrow-valued operation, the boundary of resulting polygon has unique source and target.

Example:

NVAWANVAW/

These combination of polygons are non-admissible because they have not unique source and
targets for the boundary polygon. So, we see that if the sharing side(s) is(are) dissolved,

the polygon will not have unique either source or target in this case. But the polygons,
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—_— ——>e o— e
\ X AKX X
\ \ / \ \
\ \ / \ \
\ \ / \ \
\ \ / \ \
v \ /
OH/\*)/ 0O+ ——-o0

are admissible because they have unique source and target if the shared side(s) is(are) dis-

o————>e

solved.

Lemma 2.2.1. If two polygons have sides representing arrow-valued deformable structures,
the first order conditions described by both polygons hold and they are admuissible, then the
sum of the second order obstruction-type expressions given by the two polygons is equal to

the obstruction-type expression given by the larger polygon obtained by deleting the shared
edges.

Proof. Consider two polygons each with one source and one target and are admissible. The

sides of this polygon are represented as:
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_— ——Z e
\ X
A \
\ \
\ fa ko \ Ge
\ \
\ \

\ \
N

o \
1\
[
|

f2 b | k1

|
|
|
o

" - \ /

o— _—
g1 ho

One side of the first polygon is denoted by arrows f!s, i = 1,2, ...,a and on the other side is

denoted by arrows ¢g.s, i = 1,2,...,b. Similarly, for the other polygon,hs, i = 1,2, ...,c and

kis,i=1,2,...,d respectively.
If we are considering only first order deformation of arrows, i.e.
fi =fi+ fi(l)e and g; = g; +gj(-1)e where i =1,2,...,a and i = 1,2, ..., b. Then the first order

condition is given by,

ORAED SR

1<i<a 1<<b

The first obstruction of deformation on the boundary is given by,

S - Y

1<i<j<a 1<p<q<b

Now, gluing a polygonal face which satisfy the admissible condition in our sense. Assume
that the side common to both polygons is g, and the arrows on the g-side are given by
hy's, p = 1,2,...,c, and that on the f-side are given by k,, ¢ = 1,2,...,d, i.e. g, = k; and
in = hy, + hél)e and l%p =k, + kl()l)e where p = 1,2,...,c and ¢ = 1,2, ..., d. Then the first

order condition on the second polygon is
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Z hg’l) - Z kgl) = Oa

1<r<c 1<s<d

and the first obstruction is

RO M _ £ (1)
Z T s Z t u

1<r<s<c 1<t<u<d

Then, for the resulting polygon, we want to get the result from the condition from the
individual polygon as;
Note that k; = g,. So, then solving the value of k; from the first order condition of second

polygon and substituting it to the first order condition from the first polygon, that is,

PUNE Y SR )

1<r<ec 1<s<d

and so,

LD SFLED LI YL
7 J ? J

1<i<a 1<5<b 1<i<a 1<5<b

DN LS S LD S SRl

1<i<a 1<5<b 1<r<c 1<s<d

Zf + T ED =1 A+ > kM)

1<i<a 1<s<d 1<r<e 1<s<d

which is the first order condition on the boundary of glued polygon. Also,

Yoo = 0 ge = > BT = Y g = D ghgy

1<i<j<a 1<p<q<b 1<i<j<a 1<p<g<b 1<p<b
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ST = 3T g — 3T gy T A = 3w,

1<i<j<a 1<p<qg<d 1<p<b 1<r<c 1<s<d

and similarly,

Z hg)hgl)_ Z kt(l)kﬁf): Z hf})hg”— Z kil)kff)— Z k§1>kf}>

1<r<s<c 1<t<u<d 1<r<s<c 1<u<d 1<t<u<d
S hoR - M o @)
h,”hy f; gp u k" k,

1<r<s<c 1<u<ld 1<z<a 1<p<b 1<t<u<d

Combining both, the first obstructions, we get

ST = 3T g — 3T gy T AL = ST k]

1<i<j<a 1<p<q<b 1<p<b 1<r<ec 1<s<d

= D WD DD A= D gk > kTR

1<r<s<ec 1<u<d 1<i<a a<p<b 1<t<u<d

=0 Y D DT AR D KR

1<z<]<a 1<u<d 1<i<a 1<t<u<d

> gMg+ T > g+ N AR

1<p<q<b 1<p<b 1<r<c 1<r<s<ec

which is the required first obstruction on the deformation due to glued polygon. The con-

tribution due to the shared edge after gluing cancel and we see the contribution of the
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boundary of the resultant polygon only.

The proof in the second admissible case is similar. O

Further,

Lemma 2.2.2. If two polygons have sides representing arrow-valued deformable structures,
and the equational conditions represented by both polygons hold for all orders less than or
equal to n, and the polygons are admissible, then the sum of the n'* order obstruction-type
expressions given by the two polygons is equal to the n'™ obstruction-type expression given

by the larger polygon obtained by deleting the shared edges.

Note: The notion f o g is used to denote g(f) to follow the diagrammatic order if an

expression is too long to fit on the same line.

Proof. We have shown the case n = 1. For the general case, we have,

f: Zf(i)ei where n > 1.
=0

Then the lower order conditions on the faces for [ < n are given by,

S ATET Y g g =0

O1+p2+...+da=l Y1+t =l
and
D R O e I e N
p1+p2t...+pc=l vi+tve+...+rg=l
that is,
l l _
g =K"= 3 AR = Y gt
p1+p2+...+da=l Y1+ipot.. Ay 1=l

73



and

gél) _ kil) _ Z hg_pl)hgp2).--h((lpc) i Z ké”Q)kéyg)...kflwd).

p1+p2+...+pc=l votvz+...+vg=l

The n'" order obstruction-type expressions are given by,

Z 1(¢1)f2(¢2)‘”f(§¢a) . Z g§¢1)g§¢2)mgl()¢b)
é1+o+..+da=nt1 1+t AFop=nt1
0<¢i<n 0<¢)i<n
and
ST IR — N RIS
p1t+p2+...Fpc=n+1 vitvo+...+rg=n+l
0<pi<n 0<v;<n

So, using above lower order conditions, in the n'* order obstruction-type expressions, we have

DR N R S
¢1+¢o+...+Pa=n+1 P1tdot. APy 1 =ntl—iy
0<¢i<n 0<vi<n
of > AIRYY alr - S PR RS
p1t+p2+...+pc=yp votvzt..Avg_1=1p
and
ST IR — ST IR Lk
p1+p2+...+pc=n+1 vot...trvg=n+l-vq
0<pi<n 0<v;<n
SR SRR Y T R S S )
P1t+do+t...+da=r1 Y1+t iy =r1
0<¢; 0<%,

Hence, combining two obstructions, we get,

Z f1(¢1)f2(¢2)---f(5¢a) _ Z g§w1)g§w2)mgﬁbf1)
b1+¢o+. . +pa=n+1 Y1ttty =ntl—yy
0<¢;<n 0<9;<n
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of > ARy

P1+p2+-Fpc=1y
0<p;

2.

p1tpo+...+pc=n+1
0<pi<n

2.

P1t+do+t...+da=rq
0<¢;

hgpl)hgpz) '

o

¢1+d2+...+Pa=n+1
0<¢;<n

2.

+

2.

A1 p o) —

f1(¢1)f2(¢2)~-

‘hfzpC) _ Z ké@)ké%)mkc(lwd)]
V2+V3+...+1/d:'¢;b
0<y;
S SR ¥ i S W
vo+t...fvg=n+l—vg
0<y;<n
S g gt

P14+t _1=v1
0<%

a 12 1% P,
SO + A S e

2.

u2+u3+,..+ud:n+1
0<v;

k(l/z)k('/:a)mkc(l'/d)

kS FOV 30 ploe

V2+.4.+l/d:n+17V1 ¢1+do+...+Pa=v1

0<v;<n

2.

p1tp2+...+pc=n+l
0<pi<n

2.

-

+

2

0<¢;i;v1>0

hPVRY? P +

(1)

9 (¥2) (p—1)

9o Op_1

2

Y1+t by =n+1

0<¢;
ggwl)ggw)...gl(ff"fl)hgpl)h;’oz)...hfj’c)]

P1to+. 1 =n+l—vy p1+pat..Fpc=1y

0<ti<n

since, for v, # 0 and v; # 0, the first mixed-terms of k and g cancel with the same from

the second. This is the n'* order obstruction due to the boundary of the glued polygon in

which, effect due to glued side vanishes.

0<pi;1p>0

As an example of applying the lemmas, we have

Proposition 2.2.3. The obstructions satisfy the cocycle condition at (4,1) when tensor and

associator are deformed.
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Sketch of proof. For this we have the cell decomposition of the sphere,

/ \
aspc , \
/ \ A®
A v
a.f . km
R /T~
ax.ycp-X ®D / apcp A ahpzw
—~ \ / ~ .
_ \ af / >
-~ (Nat. & - ) >
(Nat.) | f km* aap.cop, k.m
\ /
\ /
. VYA .
a.f®k (Triv.) | f.k | Ik (Triv.) | fRk.m
|
|
[e%
N a®f.k - — = —A%g.—?’@kma (Nat.or) | f®k.m .
S exyy [ a8 7
N | s
AN Ve
N + 2
(a.f@k)&m (a®fk) o ~ _ (f-k@&mM) 5 cp | a®(f.k®m)
\\\@D// \\\QX,YE.W Nl a®
1 axyzw o2 N
- \ X Y -~ _ o
= (Triv.) | (a®f.k)Sm 7 (Triv.) | a®(f.kSTh®
\
cp\ @m
axyz \ X®
(a®f.k)@m a®(fRk.m
ay zw
axy.zw

For simplicity, to understand the application of lemma here, let us consider first the front

and back faces only. It is,
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QABC . ®D ) . aBCD ) A®

()
XAB.CD
a.f (nat.av) | f.k (triv.) | f.k fk k.m k.m
QAY.ZD
a.fQk a.fQk a®f.k f®k.m (nat.a)| fQk.m (triv.) | fQk.m
axyz ! ®D ! ! ay zw ! A®
Xm @m
(a.fRk)@m (a@f.k)xm  cp| (a®f.k)@m a®(f.k®m) a(f.k®w) cp | a®(f.k@m)
(triv.) cp (nat.«r) (triv.) cp
. . . . o.
axyz QW aAXY.ZW ay zZzw A®
QXA .BCD QXABC.D
@) .
a.f k.m
(triv) (trw
ax.ycp TZU aABY w
a.fRk \ / fok.m
(a.f@k)@m a.f®k.m a®(f®k.m)

X YzZw XY ZW 4

Now, the right-top most hexagon, is a trivial face, that is, all of the equational conditions
and obstruction-type expressions named by it vanish trivially. The upper triangle on the
bottom of it is middle four interchange and is assumed that it commutes up to order n.
So, we can apply lemma to glue with and extend the boundary of face of hexagon to the
figure adjoining this triangle because they are admissible polygons. The lower triangle is
also the compatibility condition of tensor and composition (here the composition is not
deformed), so it commutes up to order n and is admissible with the previously obtained
figure. Applying the lemma again, we can extend the obstruction to the boundary to the
octagon after gluing the last triangle we just considered. Now, consider the hexagon to

the left of the resultant octagon, which is a naturality hexagon for the associator «, so
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commutes up to n'" order. Applying the lemma, we extend the boundary of the polygon
adjoining it. Then we can glue with the lower trivial square using lemma again and obtain
the obstruction on the boundary of the resulting decagon. Next, we glue the top middle
trivial square and then lower naturality hexagon with the help of lemma. Proceeding in the
same way, for the polygons on the other two left columns, we can extend the obstruction of
the deformation to the boundary of the front face. Following the same trick, on the back of
the whole shell, the top three squares are trivial ones and the lower hexagons are naturality
hexagons which commute up to order n and are admissible one after the other. Right top
polygon is admissible with right bottom polygon. The result of those is admissible with
the middle trivial diamond and the obtained polygon is admissible with the left top trivial
quadrilateral. Then the obtained polygon is admissible with the lower left hexagon, So,
we can apply lemma to get the obstruction around the boundary of resultant back face.
Now, the top and bottom of the original cell decomposition of the sphere are the pentagon
identity, which, by assumption, commutes up to order n. Both the faces are admissible with
front as well as back polygon. Using lemma, we can glue one pentagon with front face and
the other with the back. Hence we get the obstruction of the deformations at (4,1) can
be obtained around the boundary of front and back faces with opposite signs, so adding

together, cancel each other. Hence the cocycle condition at (4,1) holds.
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Theorem 2.2.2. In the case of a strict monoidal category and identity preserving defor-

mations, the obstructions to the deformation of k-linear monoidal category are cocycles at

(14), (2,3) and (3,2).
Conjecture 2.2.3. Under the same hypothese all obstructions are cocylcles.

Proof of the Theorem. At (1,4), this is just the folk-generalization of Gerstenhaber’s result.

At (2,3), the cell decomposition of sphere, with the edges of deformable structures, looks like,

a.ffb.ig)c.. ' a.fb.g ) [2] f(b gc.h
b.fg be.gh
(ab)e.(fg)h ab.fg b.g / be.gh a(be).f(gh)
2] v 4] w1 3]
(ab)c c.h ab a.f c.h /\ a(bc)
gh fgh)

c.h

=]
S8
—~
~
Q
-
>
)
S
I
>
~
Q
8
~

a.f / be
gh f(gh)

(fg)h _ fg

Hence, by use of lemma, they are cocycles.
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At (3,2), the cell decomposition of sphere, with the edges of deformable structures, looks like,

o . .
x / fa

kl
) fg.kl
g.ll

9. iy y) '
ab \LO‘
ABC QXABC

ab :
m./ M)
a.(f.k
i b.(g.0) ‘
a.(fk)a
(f-k) ABCl\. a.(f.k)b.(g.0)
a a.(f-k
ak m ml et

A
W b.(g.1) (a.f)-kayvw
PNb(g]) ' ©
ayvwb.(g.l agvwb.(g.l)
' W‘ 1) -klevvwd.(g)D)]

‘ N ab. kla
gl W me‘g).laxyz (ab.fg).klaxy z
. a.f).k(b.g).l
(b-g)laxsz% \ |
/g).l (ab.fg).kl

aapcab.(fg.kl)

Bca-(f-k)]b.(g11)

=

axXyz axyZz

b.g m !
a.fT
: ab.fg
ab
o \ N
o . .

k.l
a.f
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O

To prove the conjecture,at(4,1), the cell decomposition of sphere will be the blown up

version of,

|
|
|
|
QXA .BCD | XABC.D
|
|
|
|
o |
|
|
|
a ®D |
ABC (a,fkm)r
| A®apcp
|
|
|
|
QXAB.CD
|
|
|
(a’7f7k7m)L | (a7f7k7m)R
|
|
|
+
P RN
7 ~N
~N
7 ~N
7 ~N
7
axyvzw, = N
N a,fkm)L a,f.k;m)r
_ W axyzws
7 ~N
7 ~
7 N
7 ~N
7 N
- >
[
axyz®W X®ay zw

AXY.ZW
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and at (5,0), it will be the blown up version of ‘The Stasheff polytope’ with edges the

deformable structures on its edges

4
|
|
QA,BC,DE | A®ap,c,DE
|
|
|
: A®ape,p,E O,
|
|
aa,B,c®DE I QA B,C(DE)
|
|
|
QAB|C,DE
QA(BC),D,E - A®(B®ac,p,E)
/ N\
/ \
aA,<Bc>D,E// \\A®(aB,c,D®E)
/ \
/ \
/ \
a,BC,DRFE / v
~ T T T T/aisBco®ET T T T T - \ AT T T MB)®ac,p,e\ ~ ~ ~ ~ — -
\ /
\ /
\\ // QA B,(CD)E
(A®ap,c,p)®F ®A,B(CD),E

aaB,c,DRE
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2.3 Conclusion

1. The deformations of identity functor and natural transformation are classified up to
equivalence by H*(C), that of composition, arrow part of tensor,and that of associator

are classified up to equivalence by H3(C).

2. The obstructions to the deformation of a k-linear monoidal category are 4-cocycles in

special cases.

Conjecture 2.3.1. There are higher homotopy differentials which have the structure of a

multicomplex.

Conjecture 2.3.2. All obstructions are cocycles without additional hypothesis.
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Appendix A

Appendix: Some hand calculations

For brevity we omit the padded composition marks throughout. Every term in the calcula-

tions which follow should be understood as a padded composition.

The cocycle condition of obstruction at (4,1) if tensor and associator only are deformed:

Proof. do(wy")(a, f, k,m)
= [a, f, k,m]pwp (XY, Z, W) — w’ (A, B,C, D)[a, f,k,mr

= la, f, K, m]L[OZ%/Z ® 1Wo‘§%/.ZW + O&%/Z ®lwlx ® agfl)zw

1 1 1 1
+ O‘g(%/.zle ® ag/)zw - Oég(.)yzwag(%/zw

+ 7 )(0‘%/27 lw) + T(l)(lXa ag)zw)]

~ [0ip0 ® 1palip op + 0lipe @ 1p1a ® alep

(1) (1) a® (1)
+aupopla ® apep — Ay Bep®ase.p

+ 70 (o o) + 70 (La, afip)lfa. £k ml g

= 0‘5411)90 ® 1pla, f .k, m]Lag(%fZW +7W(a, fk)® mo‘%fzw
+arO(f, k) @mald) , — 7O (a.f, k) @ mald)

—7W(a, f)k® maggf.zw + ozj(jj)gc ® lpla, f-k,m]lx ® ag)zw
+7M(a,

_ (CL

) X le & Oég/l)ZW + a.T(l)(f, k’) & le (%9 Olgfl)ZW

.k
O G)! 1)
k) @mlx @ ayyy — W (a, f)E@mlx @ ayyy,

o
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+ ol epla, fhmlplx © 0y + 700, fR@m)lx ® ay )y
+a@7tW(fkm)lx® oz;)zw —7W(a® fkm)lx ® ag,l)ZW
—7W(a, fk)@mlx ® agfl)zw O‘S)BCD[“-JC, k, m]LO&%/Z.W

=7 (af k@ maky gy — a.f © 7Ok m)aky 7

+70(af k) @ malyy ,w + 7V (a.f ® k,m)alyy

—alipe @ 1pmW(a, fh) @m —alipe @ 1prV(a@ f.k,m)

— alipe ® 1pla, fk,mlra$y s + e © 1o7W(a, fhk @ m)

+ ag}gc ®1pa @ 7V (f.k,m) — 0454230 ® 1pa @ 7V (f.k,m)

— afj])gc ® 1DT(1)(a, fk®@m)— ag}gc ®1pa® [T(l)(f, k) @ m]

- Oéx(éll)BC ® 1D[a7 Ik, m]RlX @ OC§/1)ZW + Q’Sl)gc & 1DT(1)(CL, fkE® m)

+ oz(Alzth ®1pa® T(l)(f.k?7 m) + ozillj)gc ®1lpa® [T(l)(f, k).m]

— Y} epa @ O (fh,m) — aly oW (a, £k ©m)

— Y} epa® [rO(f, k) @ m] — {) cpla, fhk,mlrlx © al)y,

+ Oén)B.CDT (a, fk@m)+ 04541; cpd ® T (f.k,m)

+ O‘SJ)B.CDG ® [TW(f, k).m] + aA)BCDT(l)( f)®@km

+ aS)BCDT(l)(a ® f,@km) + 051(4)BCD [a, f, k-m]ag}%/z.w

— W,V (a, f ® kam) — afq)BCDa@’T '(f, km)

+ 7 (a.f®ka§%,z,m) D(a.f @k m)af), @ lw
W(a, £ @moyy) — 70 (a, fh @ m)lx @ all)y,
(a%oa@fk m) + a'ho ® 1ptW(a® fh,m)
D(a,apf @ kam) + 14 ® aept(a, f @ k)

1 1
= 0‘54290 ® 1pla, f.k, m]LO‘(X%’.ZW +7W(a, k) ® mag(%/.zw

+atO(f, k) ® mo&%{zw —7W(a.f k) ® ma%/'zw
— T(l)(a, Nk® mo&;zw + ag}gc ® 1pla, f-k,m]lx ® ozgfl)ZW
+ 7 (a,

_ (a

\

k)@mly ® Ozg/l)ZW +atW(f,k) @mlx ® Oégfl)zw
k

k) @mly ®alyy — 7V (a, f)k@mlx ®alyy,

\H
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+ ol epla, fhmlplx © 0y + 700, fR@m)lx ® ay )y
+a@7tW(fkm)lx® oz;)zw —7W(a® fkm)lx ® ag,l)ZW
—7W(a, fk)@mlx ® agfl)zw O‘S)BCD[“-JC, k. m]LO&%/Z.W
—r(af k@m)ay sy —a.f @ Ok m)aky 7y
+70(a.f, k) © may zy + 70 (. f @ k,m)aky 2

— alibe @ 1p7M(a, fK) @ m — alype @ 17 (0 ® f.k,m)

— alipe ® Lpla, [k, mlraly. sy + alipe © 1o7(a, fk @ m)
+ ag}gc ®1pa @ 7V (f.k,m) — 0454230 ® 1pa @ 7V (f.k,m)

— alipe ® om0, fh @m) — alpe ® 1pa @ [ (f, k) @ m]
- O&}BC ® 1pla, f-k,m]glx ® oé/l)ZW + afjl)gc @ 1p7V(a, f.k @ m)
+ oz(Alzth ®1pa®@ T (f.k,m)+ ozillj)gc ® 1pa @ [tO(f, k).m)]
—alihepa® O (fkm) —aliy cpr®(a, fE @ m)
—alibepa® [FO(f. k) @m] — alip opla, Sk mllx @ alyy
+ oé“)B_CDT (a, f-k @m)+all) opa @ TO(f.k,m)

+ O‘SJ)B.CDG @ [TV (f, k).m] + aA)BCDT(l)( ) ®k.m

+ &S)BCDT(l)(a ® f,@k.m) + aE4)JBCD [a, £, k.m])aB

—aS)BCDT (a,f@k.m) OéE4)BCDCL®T (f,k.m)

+7W(a.f ® kagg,z, m) — 7 )(afﬂéca ® f.k,m)
+7W(a, fk® mozg,l)ZW) —7W(a, agngf ® k.m)
D(a.f@k m)a%/z @1y —7W(a, fhk@m)lx ® ag)zw

+ O‘,(M)Bc ®1pTW(a® f.k,m) +14® Oéfg)CDT(l)(a, f®km)
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1 1
= 0‘,(4])30 ® 1pla, f.k, m]Lag(%/.ZW + 7(1)(a’ fk)® mag}%ﬂzw

+arO (k) @ maley gy — 70 (a.f. k) @ maky

—7W(a, f)k® magg,_zw + 045411)50 ® 1pla, f.k,m]plxy ® ozg,l)ZW

+7W(a, f.k) @mlx ® a§})ZW +atW(f k) @mly ® ag/l)ZW
D(a.f, k) @mlx ® ozgfl)zw —7W(a, flk@mlx ® Oé’l)ZW

+ O‘SJ)B.CD[Q» fk,mlrlx ® agfl)zw +7W(a, fk@m)lx ® Oégfl)zw

+a@7tW(fkm)lx® ozg,l)ZW —W(a® fkm)lx ® ag/l)ZW
W(a, fh)@mlx @ O4§/1)ZW ‘XS)BCD[wf, k7m]LO‘§%/Z.W

—7W(a.f k® m)agg/z_w —a.f @71 (k, m)agg/z_w

70 a.f, k) @ maly gy + 70 (a.f @ km)aky gy

—afj])30®1DT(1( fk)®m—aiu)gc®1[ﬂ' (a® f.k,m)

= alipe @ Lpla, L mlraly s + alipe @ 1p7(a, fh @ m)

+ ozgllztgc ®1pa®@ W (f.k,m) — afaxll)ac ® 1pa @ 7W(f.k,m)

— o&])gc ® 1ptW(a, f.hk@m) — ag)BC ®1pa® [tW(f, k) @ m]

— alipe ® Lpla, [k, mlplx ® a3y + alipe © 1o7M (a, f.k @ m)

+ oé“)gc ® 1pa @ 7V (f.k,m) + 041(41])90 ® 1pa @ [TO(f, k).m]

— alip.opa @ TO(f.k,m) — aly cpmW(a, fh @ m)
—al{pepa® [FO(f. k) @m] — alip opla, b mlrlx @ ayyy
+alip opmM(a, £k ©m) + alip pa © 7O (fFm)
+alipcpa @ (10 (f,F).m) + alf popr®(a, f) @ k.m
+ O‘,(zll.)BCDT(l)(a ® f, ®k.m) + 0‘,(4.)BCD [a, f, k~m]o&%/z.w
- aS)BCDT(l)(a f@km)—alpa®rO(f, km)
+70(arV(f, k), m) + 7O (r W (a, f.k),m)

W (a, f).k,m) — 7'(1)<T(1)(a.f, k), m)

a, 7V (f,k@m)) + 7V (a, f @ 7V (k,m))

a, 7V (f, k).m) — 7D (a, 7D (f.k,m))

a.fQk m)aXYZ ® 1y —7W(a, fk@m)lx ® ag)zw

W
O
O
M
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+all @ 1prW(a® fhom)+ 14 @l rV(a, f @ km)
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dl(w](\}))(a,f, k,m)=a ®w](\})(f,k,m) — w](\})(a ® f,k,m)
oy (@, f © km) =i (a0, [k ©m) +wi(a, f.k) @ m

—a® [ag)cDT(l)(f, k.m) + ag)ch @ TW(k,m) + 7 (f, 7MW (k,m))

— 7O (fk,m)af py — TO(f,k).mag yy, — 7O (O (£, k), m)]

- [a%CDT<l><a.f k®m) +aVpopa.f ® 7O (km) + 70 (a.f, 70 (k,m))
D(a.f @ km)aym — 70 (a.f, k) @ maly gy — 7O W (a f, k), m)]

+ [a% co™V(a, fh@m) + i) cpa @ rO(f.k,m) +70(a, 7O(f.h,m))

— W (@® fh,m)aly m — 7 (a, fh) @mal 5y — 7O (O <  Jk),m)]

— [a$hepmV(a, f ® km) + ahe pa @ 7O (f, km) + 70 (a, 7O(f, km))

— W@ fkm)ayy sy — (a0, f) ® kmaly 4y — O (a, f), k.m))

+ [a%a (a, f-k) + alihoa ® TO(f, k) + aaper® (a, 7O (f, k)

O(a.f, k)aly, — 7D (a, f) @ kay; — V(1O (a, f), k)] @ m
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Now

do+ dy = [a.7M(f, k) © maly py — 70 (a.f k) @ maky gy
W(a, )k mo&%&zw +7W(a, fk)@mlx ® ag})zw

+atW(f k) @mlx ® ozg,l)ZW —7W(a.f k) @ mlx ® ag/l)zw
W(a, flk@mly @ ag,)ZW +70(a, fE@m)lx ® ag/l)ZW

— T(l)(a ® fhk,m)ly® ag/)zw — 7 (a fk)@mly® ag/l)ZW

—a.f@TO(E, m)axyzw +7W(a.f k) © mo&%/zw
+ 70 (a.f © k,m)aky g — alpo ® LpmM(a® fkm)
+all, ®@1pmW(a, fk@m) + o)y ® 1pa @ 7O (f.k, m)
—alipopa ® [T (f, k) @ m] + alip opa © 7O (£.k,m)
+ab) pa® [fOf k).m) + oY 7D (a, f) © km
0‘,(41)301)7' a, f ® k.m) — Cqul)B(JDa(X’T '(f, k.m)
+ 70 (a.rO(f k), m) — 7O (7 (a, f).k,m)
+7W(a, f @ 7V (k,m)) — 70 (a, 7V (f, k).m)
W(a.f @ km)al, @1y —7D(a, fkom)lx @l
+ aggc ® 1otV (a ® f.h,m) + 14 ® alhpmV(a, f @ km)]
+a®wN (. k m)—w "a® f,k,m)
+wi (a, f @ k,m) — wi (0, £,k @m) + wi(a, f,k) @ m
+ [a @ [aGopmV(f, km) + allpf © 7O (k,m) + 1O (f, 7D (k,m))
W(f, k). maYZW —7W(TW(f, k), m)]

- [aix.)BCDa.f ® 70 (k,m) + 7(1)(a.f 7D (k,m))

Da.f @ k,m)ay s — 7 (a.f, k) @ malty ]
+ oYk opm@(a, fh@m) — 7D (@® fh,m)aly ]
~ [0dipepm (e, f ® k) =70 (a, f) @ kmaly gy — 7O (O a, f), km)]
+[alihea @ TO(f, k) + aaper® (a, 7O (f, k)
=70 (a.f. k)aky, = 70 (a, f) @ haly; = 7O (W a, £), k)] @ m]
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Using the lower order coboundary conditions, as in the identity
aapep|tM(a, f).k]@em = 78 (a, f)@k.max.y zw, we can rearrange groups of terms in which
each group will have a factor like [a%c ®1p — 0‘541.)301) + aSJ)B_CD - a%}BC.D +14® a%d

or the same expression on the target pentagon. Hence the obstructions are cocycle at (4,1)

in this case.
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By-hand calculation for cocycle condition of obstructions at (3,2) if all structures are
deformed (Note: The superscripts in square brackets preceding terms indicate groups of
terms which are cancelled, either simply with like terms of opposite sign or by applying a

lower order relation.):

Proof. o) - ) = ] (5 7)) = af @ ka0 = ol b po )
+ (@, £, k)b ® gl — [ab @ WS (f, g: k1) — w§)(a @ f,k;b@ g,1)

+ wﬁ,l,)(a, fRkbgal)— wé},)(a, f;b,9) @kl — [wgl)(aABC; a® fhk;b®gl)

—w(a.f @ k;opvw; b® g.d) + wi (a.f @ k;b.g @ L axyz)]

=[a.f ® kp(l)(ag‘)/w, b® g.l) +a.f @ ku®(agyw, (b, g.0)
+a.f@kpM(apyw,b®g.l) +a.f® ka(Ul‘)/WT(l)<b, g.l)

+af® k‘ag‘)/wb @ 1Wg, 1) + a.f @ kagywr® (b, 7W(g,1))
—a.f @krW(b, 7 (g, ))axyz — a.f @ kpW (7 (b.g,1), axY Z)
—a.f @kpW (O (b, 9) @1, axyz) —a.f @ kW (b.g ©1,ay,)
—a.f@ktOb,9)®@1aY, —a.f @ kO (b.g, D'y ]

— [al{pomV(ab, fg © ki) + pO(al{}e, ab® fg.kl)

+ al{heab ® 7D (fg, k1) + pV (aapc, ab® 7O (fg, k)

+ uD(aape, 7V (ab, fg.kl)) + aapctM (ab, 7V (fg, kL))

— 7 (rO(ab, fg), kl)oaxyz — p (7D (ab, fg) @ kl, axyz)

— pO(rV(ab.fg, kl), axyz) — pV(ab.fg @ kl, oy} ;)

—7W(ab, f9) ® oy, — 7N (ab. fg, K)ok /]

+ [0 hera ® fhb@ g.0) + pD(aape, 7 (a, f5))b @ gl

+ 1Y (apc,a @ TO(f, k)b @ gl + ooV (a, fE)b @ gl
+aWla®@ TV, k)b ® gl + axpet®(a, 7O(f, k)b © g.l

— 70 (W (a, £), K)apywb @ g.l — g (7D (a.f, k), apyw )b @ g.
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— 1O (a, )@k, apyw )b ® gl — pV(af @k, aly )b ® g.l
W(a, f @ k)a b ® gl — 7O (a.f, K)ol wb @ g.]
— aapcab @ [TO(f, /f)T(l)(g D+ pM W (f, k), g@1) + pD(fk, 7D (g,1))
— 1 (f,9) @ W (k1) = 7D (D (f, 9), k) — 7D (fg, pV (K, 1))]
D (af, k)T (b, g, 1) + uD (D (a.f, k), b.g @ 1) + uD(a.f @ k, 7V (b.g,1)
<1>(a.f b.g) @ puM (k1) — 7D (D (a.f,b.g), kl)
W(ab.fg, p M (k,1))]axyz
—aapcltW(a, f.k)r (b, g.1) +u(”(7(”(a, fk),b®g.l)
+ D (a® fh, 7MW, g.0) — P (a,b) @ pM(f .k, g.)
— WM (a,b), fg.kl) — 7V (ab, ul (fk g9.0))]
+ [T(”(a HTO(b, g) + pD (70 (a, ), b.g)
W(a.f, (b, 9)) — pD(a,b) @ M (f, g)
(u“)(mb) fg) =W (ab, nV(f, 9))] © axyz
”(u Naape,a® fk),b® g.l) + p(ape, pM(a ® f.k,b® g.l))
W (a.f @k apvw,b® g.l) — pM(a.f @k, ™ (apvw, b @ g.1))
(u(

p a.f @k,bg®1l),axyz) — pP(a.f @k pM(bg® 1 axyz))

1

=1 a.f @ kpM (afiw, b ® g.0) + a.f @ p®(apyw, 7O(b, g.1))
+a.f @ kp®(apyw, b @7V (g,1) + a.f @ kallyy, 7D (b, g.1)

+a.f @ kaflyb @ 10 (g,1) + a.f @ kagy, ™ (6,70 (g,1))

—a.f @ kOB, 7V (b, ))axyz —a.f @ kpM (W (b, g.1), axyz)
—a.f @kpM (W (b, 9) @1, axyz) —"Ma.f @ kuV(b.g® 1, axyz)
—bla.f@kuM (b, g9) @1, axyz) Y a.f @ krW(b.g,Daxyz)

~M o (a, fR)T (b,9.0) -1 alipen®(a® 1D @ g.0)

— alihea ® fETO(D, gl)+aABCM '(a,b) ® fg.kl

+1 alipeab @ u(fk,g.1) =1 M (afpeo.a @ fRD® g.l)

— D aape, 7 (a, R @ g.1) =B D (aape, fV(a® fk b g.l))
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— 1Maapc,a® fETO (D, ¢.0) + pM(aape, i (a,0) ® fg.kl)
W (aupe, ab@ pM(f.k,g.0)) — M (@ape, a @ T (f, k)b @ g.l)
—B (oL ab@ D (fk,g.0)) — 1D (aape,a ® f.kb @ rWb1)
+u(aape, ab@ pV(f, g)kl) + p(aape, ab @ fg.uD (k,1))
— aABCab 7MW (f, k)gl - aABCab ® (fkrM(g,1))
—aliheab @ pO(f.k,g.0) = alipeab@ uO(f,g).k
+aliheab @ fg.pM (k1) — aaper®(ab, 7O (f, k)g.D)
- aABCT(l)(aba M(l)(f-k? g9.l) — aABCT(l)(ab f-k'T(l)( 1)
+ aapetM(ab, pV(f, 9).kl) + aapet™(ab, fg.uD (k,1))
+ 70T (a, flb.g, kl)axyz + 7V (a. frV (b, g), kl)axyz
+ 70 (M (a.f,b.g9), kl)axyz — 7D (M (a,b).fg, k) axyz
M (ab. u“)(f 9), kl)axyz + pD (W (a, f)b.g @ kl, axyz)
W(a.frN(b, ) @ kl, axyz) +19 u® (D (a.f,b.9) @ ki, axyz)
D (W (a,0).fg ® kl, axyz) — 1V (ab.pV(f, g) ® ki, axyz)
DO (a.f, k)b.g @1, axyz) + pP(a.f @kt (b.g, 1), axyz)
+[3] M( (W (a.f @ k,bg@1), axyz) =1 1D (W (a.f,b.9) @ ki, axyz)
W (ab, fg) @ pM(k, l>aXYZ+,U a.f@kbg®l, Oéxyz)
+ 7 ( bg @ kil +19 pW(a.fb.g) ® klaky,
0 a (b, g) @ klay, — nV(a,b).fg @ ko,
—abuV f, g) ® klay , + ¢ (a £ k)b.g @ Lok,
+Wa.f @ kO (b.g, D'l , +0 p(1)(a.f @ k,b.g @ )all),
— 4y a.f,b.g) @ klay, — ab.fg @ pO(k,D)aky,
+12 00 e fRb® gl) + o) rO(a, fE)b @ gl
+8 o) ca® fhTO b, g.0) + 1D (aape, 7V (a, f-k)b © g.1
+ 1D (aape, a @ TV (f, k)b ® 9.l + aapetM (a, 7V (f, k)b ® g.1
— 7O (D(a, ), k)apvwd @ g.l — pO(7W(a, f) @ k, apyw )b ® g.1
13 O (af @ kol )b @ gl — 7O (a.f, k)l )b @ gl
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k)W (g,1) — aapcab @ pW (W (f, k), g.0)
fk,7W(g,1)) — aapcab @ pO(f, g).uW (k,1)

— aapcab @ TW(f,
Y

— aapcab®@ TV (uY(f, 9), kl) — aapcab @ TV (fg, 1V (k, 1)
B
1)

— aspcab @ pt

D(a.f. k)7 (b.g, Doxyz + pD (10 (a.f k), b.g ® Daxyz
+puV(a.f @k, 7 (b.g,1)axyz — p(a.f,b.9) @ pV(k, Daxyz
— (D (a.f,b.g), k)oxyz — 7 (ab. fg, p (k1)) axyz
— aapetW(a, f.B)TV (b, g.1) — aapep™ (7MW (a, f.k),b® g.1)
— aapepV(a® f.k), 7D (b, g.0) + aapop (a,b) @ pM(f.k, g.1)
+ aapetM (M (a, b)), fg.kl) + aipet™ (ab, M (f.k, g.1)
,)TW(b, 9) @ klaxy 7z + pM (0 ((a, f),b.9) @ kloxy,
b ® klaxyz — Y (a,b).uM(f, 9) @ klaxy
M(l)(a» b), f9) ® klaxyz — 78 (ab, pM(f, 9) @ kloxyz
W(aapo,a® fk),b@ g.l) +P pM(aape, fM(a @ fh,b® g.l))
'(p 1)(a fekavyw),b®gl) — pW(a.f @k, pM(avyw,b® g.0))
WD(a.f @k b.g®l),axyz)+p(a.f @k puM(bg@l, axyz))
+“” 1O (a.f @ k,b.g @laly )] =12 [0 (al{he, ab® fg.kl)]

9)
)

13 [V (af @ kal Ly b @ g.l) — D (af @k, alll b @ g.0)]

= [a.f ® kp® (apvw, TV (b, g.0)) + a.f @ ku™D (apyw, b @ 7V (g,1))
+a.f® kaUVWb @7V (g,1) +a.f® k:ozg‘)/WT(l)(b, g.l)

+a.f @ kagywt® (b, 7 (g, 1)) — a.f @ krM(b,7M(g,1))axy
—a.f @ kpM(rW(b.g,1), OéXYZ) —a.f @ kp (1 (b, 9) ® I, axyz)
— agj)gca ® fhTD(b, g.0) — pD(aape, 7V (a, fE)b® g.1)

— 1 W(aape,a® fhrM(b,g. l)) — pWaape,a @ TV(f, k)b ® g.l)
— 1Daupe,a® fhb 27D (g,1) — alhoa @ fhb@ 7D (g, 1))

— aapemM (@, 7V (f, k)b © g1 — aapepM(a @ 7V (f, k)b g.)
—aapca @ TV (f, k)70 (b, g.1) + aapep(a,b) @ TV (f, k)g.1
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+ aapcab @ pM(rW(f, k), g.1) — aapet® (ab, pM(f.k, g.1))
— aapetW(a, fR)b @ 7MW (g,1) — aspepM(a® fkbe 70 (g,1))
—aapca® fkrW(b,70(g, 1)) + aapep™(a,b) @ fhrM(g,1)
+aapcab @ pM(fk,7M(g,1) + 70 (70 (a, ), k)b.g @ laxyz
+ ,u( W7 (a, f) @ k,b.g @ Daxyz + 7V (a, f) @ krW(b.g, Daxyz
W(7W(a, f),b.9) @ klaxyz — 79 (a, )b.g @ p (k,Daxyz
- 7'(1 (a.f, k)TV (b, 9) ® laxyz + a.f @ krW(rM(b, 9), Daxyz
D(a.f @k, 700, 9) @ Daxyz — 7V (a.f, 7, 7M(b, ¢)) @ klaxy
— a.fT(l)(b, 9) @ pV(k, Daxyz — 7OV (a.f,b.9), k) axyz
+u“)(7( a, ) @ kb.g @1 axyz) + uV(a.f @ k7 (b, 9) ® 1, axyz)
WO (a.f, k)b.g @1, axyz) + pP(a.f @ kW (b.g, 1), axyz)
W(a, ) @ kb.g @ la$y, + 7V (a.f, k)b.g @ laky,)
D(aape, 7O (a, fk)b® gl + Y (aapo,a @ TV (f, k)b ® g.l
+ aABCT(l)(a7 T (f k)b @ gl — 1V (r W (a, f), k)arywd @ g.l
— 1O (a, ) @ k, apyw)b @ g1 — 7D (a, ) ® kall b ® g.l
— D (O (a.f k), agyw)b @ gl — 7V (a.f, k)ozg‘)/wb ® g.l
—aapca @ TW(f, k)b @ 7W(g,1) — aapcab @ p™M (1M (f, k), g.1)
— aapcab @ puV (f.k, 7D (g, 1)) + 7V (a.f, k)T (b.g,Daxy,
+uP (D (a.f,k),b.g @ Daxyz + pP(a.f @ k, 7O (b.g,1))axyz
— pla.f,b.9)p M (k, Daxyz — 7D (M (a.f,b.9), k) axyz
— aapetW(a, f.B)TV (b, g.1) — aapep™ (7MW (a, f.k),b® g.1)
— aapepV(a® f k, (b, g.0)) + aapep™ (a,b) @ pM(fk, g.)
+ aapet M (ab, uM(f.k, g.0) + pM(a.f,7D(b, 9)) @ klaxyz
— aapop(a,b) @ pO(f, g).kl + 7V (a, f) @ krV (b, g) ® laxyz
+ uM (7D (a, £),b.9) ® klaxyz + aapcab @ pV(f, g).n O (k, 1)
— 1D (D (aape,a® fk),b@ gl) +pD (D (a.f @k, apvw), b g.1)
D(a.f @k, uM(agyw,b® g.0)) + pD(a.f @k, uM(b® g1, axyz)
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+ 1D a.f @ kb ® g.1), 0l ) — pV(al{he,a @ f,kb @ g.1)
+pM(a.f ® k;aUVW, bg.l)—pYa.fek ag‘),wb ® g.l)
— aapep™(a,b) @ T(fg, k1) + M (ab, fg) @ pD(k, laxyz

= a.f @ k™ (apyw, 7V (b, g.1) + a.f @ kp™ (apyw, b @ 70 (g, 1))
+M a.f ® kagyw (b, 7V (g, 1)) =¥ a.f @ krW (70 (b, ), )aXY Z
—a.f @kpM(rO(b.g,1),axyz) — a.f @ kpD (7 (b, g) @ |, axyz)
— 1D (aape, W (a, fE)b @ g.l) — u(l)(aABC, a® fhkrW(b,g.l))
— N aapo,a @ TV (f, k)b @ g.l) — pM(aape,a @ fkb@ 1M (g,1))
— a g pemM(a, 7O (f, k)b @ g.l — aABc,u( Na®1W(f,k),b® g.l)
1 aypoa @ TW(f, k)TO(b, g.0) + aapop(a,b) @ T(f, k)g.l
+2% aypoab @ pV(f, k), g.1) =27 7O (ab, u(f.k, g.1))
T asperM(a, fR)b@TMg, 1) — aapopM(a® fkbo M (g,1))
~Maspea @ fETOb,7(g,1) + anpeu®(a,b) @ frW(g,1)
+HW aypeab @ pM(f.k, 70 (g, 1)) + [5]7 W7V (a, f), k)b.g @ laxyz
+ 1D (WD (a, /) @ k,b.g @ Daxyz +2 70 (a, ) @ k7 (b.g, Daxyz
—B (e (a, £),b.9) ® klaxyz — 70(a, f)b.g ® p (k, Daxyz
+ 2L W (a. f k) TV (b, 9) @ laxyz +® a.f @ krW (7MW (b, g), k)axy 2
+uW(a.f @k, Wb, 9) @ Daxyz =P p(a.f, 7V (b, 9)) @ klaxyz
—a.frM(b, g) @ pV(k, Daxyz =29 70 (uD(a.f,b.9), kl)axyz
+ 1O (1D (a, f) @ kb.g ® L, axyz) + M (a.f @ kT (b, g)
+ uP (D (a.fk)b.g @ axyz) + pP(a.f @ krW(b.g,1), axyz)
+ 1D (aape, T (a, f)b @ gl + D (aape,a @ 7V (f, k)b ® g.1
+0 aype®(a, tau® (£, k)b @ g.l =B O (70 (a, £), k)b ® g.1
— 1V (TN (a, f) @ k, apyw)b @ g.l — p (7O (a.f, k), avvw )b @ g.l
P apea@ 7V (f, k)b 7MW (g, 1) = apeab @ pM (M (f, k), g.0)
—MWaapcab@ uM(f.k,7M(g,1) +24 7O (a. f, k)70 (b.g, Daxyz

®1, aXYZ)
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+uM(rD(a.f,k),b.g @ Daxyz + pV(a.f @k, 7D (b.g,1))axyz
W(a.f,b.9)nD (k, Doxyz =29 7O (O (a. £, b.g), kl)oxy 7
—M oy gt (a, fE(TD(b, g.0) — aspep™ (T (a, f.k),b® g.1)
—aapopV(a® fk, 7V (b, g.0)) + aapop™(a, b).u D (f.k, g.1)
+ET M (ab, D (f .k, g.1)) +20 1D (a. f, 70 (b, 9)) @ Klaxyz
+ [19]7W(a, f) @ krD(b, g) @ laxyz + 21pP (7D (a, ), b.9) @ klaxyz
— 1V (a,b).uV(f,9) ® klaxyz + a + ABXab© pO(f, g).uD (k. 1)
B 1D (N ape, 0 © fE)D© g1+ uD (W (a.f © k, apyw), b @ g.)
W yD(a.f @k, uM(apyw,b® g.0)) +2 pD(a.f @k, pM (b @ gl axyz))
— aapopM (a, )V (fg, k1) + 7V (ab, fg) @ p(k, Doaxy
+U [ (a.f @ k,bg @ D)l , — D (a.f @k, alyyb @ g.0)]
B [ (a.f @ kal) b @ g.) — pW (S hea @ fk,b® g.l)]
a.f ® kaUVWT (b, g.1) — aABCa ® fhTM(b, g.1)]

af®k:aUVWb®T (g,l) —aSBCa@)fk‘b@T (g D]

[
[
4 13] [
414 [
+B [ (a, ) @ bg @ lal), —7O(a, f) © alhwb ® g.l]
+01 [0 (a.f, k)b.g @ Lok, — 70 (a.f, k)i b @ g.1]

Above last 5 boxes labeled 1,2,..,5, can be written as

+E[rO(a, )@ bg @ 1ol , — 7V(a, f) @ all b © g.]

W (a, f) @ kp™ (agyw, b ® g.0) + 7 (a, f) @ krW(b, g.1)
+7W0(a, f) @ kagywb @ 7V (g,1) — 7V (a, f @ T (b, 9) @ laxy
- T(l)(aa fle ka(l)(b‘g; Doxyz — T(l)(a, e ku(l)(b.g R, axyz

and similar expressions for others. So, the last 5 boxes can be replaced by

+WyD(a.f @ k, uM (apyw, b @ g.1)) + pP(a.f @ k, agyw D (b, g.1)
+pV(a.f @k apywb @7 (g,1) — pV(a.f @k, pM(b.g @1, axyz))
W(a.f @k, 7D(b.g,Daxyz) =& pD(a.f @k, uM(b.g @1, axyz))
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By (D aape,a @ f.k),b® g.l) + uV(aapetV(a, f.k),b® g.0)
+ M aapea @ TO(f,9),b® g.1) — pD(7W(a, f) © kayyw,b @ g.)
— (W (a.f, k)agyw, b @ g.1) = O (W(a.f @ k, apvw), b ® g.1)
+ 1D (aape, a® fR)TO (b, g.1) +M aper®(a, fh)70, .1)
+0% oy pea @ T (f, B)rM(b, g.1) =¥ 70 (a, f) @ kagyw M (b, g.1)
LW (a. f, B)agyw M (b, g.0) — pM(a.f @ k, apyw)T (b, .0)
+ puWaape,a® fE)DR TV (g, 1)+ aupeD(a, fE)b & 7 (g,1)
+laypoa @ 7W(f, k)b @ 7MW (g,1) ' 7W(a, f) @ kagvwb @ 70 (g, 1)
W (af, k)avywb @ 7(1)(g,1) — pP(a.f @ k, apvw)b @ 70 (g, 1)
+70(a, f) @ ku (apyw, b ® g.0) +18 70 (a, ) @ kagyw M (b, g.1)
+16 7MW (a, ) @ kagywb @ 7MW (g, 1) =1 7 (a, f) @ kW (b, 9) @ laxy
—23 W (a, )@ krW(b.g,Daxyz — TW(a, ) @ kuM (b.g @ I, axyz)
+7W(a.f, k) uM (apvw, b @ g.l) + [15]7V(a. £, k)agvw TP (b, g.1)
+H W a. £, k)agywb @ 7MW (g,1) — 7MW (a. f, k)7 (b, g) @ laxy z

—PA W (a. f )TV (b.g, Daxyz =2 7 (a. f, k)™M (b.g @ 1, axyz)

Hence, using the lower order conditions and cancelation of the like terms with opposite

signs, we get,

= a.f @ kp™ (agyw, 7V (b, g.1)) + a.f @ ku® (ayyw, b @ 7 (g,1))
—a f @ kM (rW(b.g,1), axyz) +8 a.f @ kp® (b @ 70 (g,1), axyz)
—B W (aspe, 7V (a, fE)b @ g.l) =P 1D (aspe, a @ fETW(b, g.1))

—M 3D (aupe,a® O, k)b @ g.0) = 1D (aipe,a ® f,kb® 7MW (g, 1))
~Maapep® (@@ O (f, k), b® g.l) =" aupenV(a @ f.kb@ 70 (g,1))
+[10]p(1)(7(1)(a )@k bg®l)axyz

+1 WD f @ k, 7V (b, 9) ® Daxyz

+100 O (W (a, f) @ k. b.g @ laxyz)
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+51 W (a.f @ kW (b, g) @ I, axyz)
+2 W (W (a. f k)b.g @ 1 axyz) +0 uM(a.f @ krM(b.g,1), axyz)
+ 1D aape, 7 a, fh)b @ g+ M (aape, 7O (f, k)b @ g.0)
—0 M (70 (a, f) @ kayyw)b @ g0 =13 pW (7D (a. f, k), apvw )b @ g.1
+2 W (W (a.f, k), b ® g.)axyz +P gD (a.f @ k, 7V (b.g,1))axy 7
T aspon™(rW(a, f.£),b® g.0) =P pM(a @ fk, 7D (b,g.0))

B (a,0).uM(f, 9) @ klaxyz +2 OéABcab® pO(f, 9).uM (k1)
+ W (a. f @k, apywt (b, ¢.1)) + pW(a.f @ k, agywb @ 7(g,1))
+159W(a.f @ k, 7D (b, g) @ laxyz) +P uM(a.f @ k, 7V (b.g, Daxyz)
+8 W (auperW(a, fh),b@ g.) +7 1D (aapca @ 7O (f, k), b @ g.0)
—M W (7D (a, f) @ kagyw, b @ g.1) =W (O (a. f, k)apyw)b @ g.l
+O W aupe,a @ fR)TW (b, g.0) 1 W (a. f, ks agvw) T (b, g.)
+M D (appe,a @ fED @7 (g, 1) =0 uW(a.f @k, axyz)b @ 7M(g,1)
+M 7MW (a, £) @ kuW (agyw, b ® g.l) — Mg, )@ kpM(b.g @1, axyz)
+Blr W (a. f, k) ™ (apyw, b @ g.0) — W(a.f, k) pM(b.g @1, axyz)
+ aupep® (a,b) @ O (f, g).kl +Y aapep®(a,b) @ fg.4D (k1)

~M W (a,b).fg @ uM(k,Daxyz = ab.uO(f, 9) @ p®(k, Daxyz
{Z}M (a f® kapyw, T ”(b,g.l)) H(l)% ptt )(T(l (a.f) ® k,b.g®laxyz)
— 1DV (af k), b.g @ laxyz) =ty 1V (eapca ® fh, 7 (b, g.1))

=0
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