
PROLOG IMPLEMENTATION OF A GRAPHIC TOOL FOR

GENERATION OF ADA LANGUAGE SPECIFICATIONS

by

SPENCER SHU-TSU CHENG

B.S., NATIONAL CHENG-KUNG UNIVERSITY, 1980
M.S., KANSAS STATE UNIVERSITY, 1986

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer and Information Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

Approved by :

''->'JjJldL

A115D7 301474
cnsc

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major

professor, Dr. William J. Hankley, for his guidance and

direction in completion of this report.

Thanks are to my parents for their love,

encouragement through my education.

TABLE OF CONTENTS

Page

1

.

Introduction 1

1 . 1 Prolog 1

1 . 2 Purpose 1

1 . 3 Brief overview of the system 2

1 . 4 Results 4

1 . 5 Organization 15

2

.

Prolog as a system design tool 17

2 .

1

History 17

2 .

2

Features 18

2 .

3

Survey of applications 19

3

.

Software development with ADA 21

3 . 1 History 21

3 .

2

Ada ' s support for modular design 21

3 .

3

Graphic tools for Ada system design 23

4

.

Implementation 24

4 .

1

Overview of the prototype 24

4 .

2

Logic and data structure 28

4 .

3

Sample design and output 37

5

.

Conclusions 40

References 41

Appendices

Appendix 1 : Prolog code for cursor control
and key commands 42

Appendix 2: Prolog code for specification
entry and construction 52

Chapter 1

Introduction

1.1 Prolog

Prolog is recognized as an important language for A.I.

[Bobrow, 1985]. Recently, Prolog has also received

attention as a suitable language for rapid development of

general software tools [Buhr, 1985] [Tavendale, 1985]. It

provides declarative syntax for easy representation of

knowledge and a powerful database search facility. The

declarative nature of Prolog makes it a useful

specification language which is also executable. Its

dynamic and modular features facilitate incremental

development of programs.

1 .

2

Purpose

The purpose of this project is to evaluate the

suitability of Prolog in the implementation of a graphic

tool for design and specification of Ada programs. The

implementation utilizes the graphics and window facilities

of Turbo Prolog for building diagrams and displaying text

information. The global database is used for storing

graphic information and building specifications.

Evaluation of Prolog vs. Pascal code is made with respect

to the implementation of this graphic tool.

1 . 3 Brief overview of the system

The function of this automated tool for specification

is to provide software designers a mechanism to represent

a system graphically while the specification of each

component can be created and viewed interactively. The

design of this tool is based upon a previously developed

graphic model called GTGALS (a Graphic Tool for Generating

Ada Language Specifications) [Bodle, 1985]. It allows

graphic representation of a software system with boxes for

components and directed arrows for their relationships.

Naming and specifying procedures, inputs and outputs can

be done interactively by using a prompt-response seguence.

The graph of a software system together with its Ada

specification are shown in Figure 1.1 and 1.2. The Ada

language specifications are generated automatically from

the graphic specifications. Both graphic and text

specifications can be saved in the files on disk which can

be retrieved for further refinement.

In Figure 1.1, Modi is an Ada program module; it is

represented by a box in the graph. After the user places

the cursor in a small window beside the box and presses

"v" , the Ada specification for Modi is displayed on top of

the graph (Figure 1.2).

Access Graph main

Subprgm

Modi

Package

Mod2

Figure 1.1 - Access graph for an Ada program

Access Graph mam

Subprgm

Modi

-- This procedure return a root node
-- for a new tree

with Mod2;
procedure Modi (Info : in integer;

T : inout tree)

;

Figure 1.2 - Viewing Ada specification

The prototype is written in Turbo Prolog. Knowledge

about the format and syntax of Ada specifications is

stored in Prolog rules and facts. Text information about

data names and types and comments is stored in a list data

structure kept in the database section of Turbo Prolog.

1.4 Results

The results for this implementation project are the

following:

(1) Code size comparison between Prolog and Pascal

Comparisons will be made between the Prolog version of

the prototype implementation for this project and the

Pascal version built by Bodle [Bodle, 1985]. The two

versions provide very similar functionality. The object

modules have roughly the same size, about 64K bytes. In

Pascal, the object module is about the same size as the

binary image of the program. In Prolog, 37K bytes of

system code which provides build-in algorithms are linked

to the object modules to make up a total of 101K bytes of

binary image.

The analysis of the source codes for the two versions

is shown in Table 1.1. The source code in Prolog has about

900 lines (32K bytes) compared to 2100 lines (7 OK bytes)

in Pascal. In the Pascal version, an additional 1500 lines

(45K bytes) of source code of Turbo Graphix Toolbox is

included in the total space. In Prolog, the graphic and

windowing capabilities are provided by the standard built-

in precedures embedded in the Turbo Prolog system.

Smaller source code size for Prolog is mainly because

of its embedded control flow and easy manipulation of data

structures. The program body of Prolog is basically a

Prolog Pascal

Body 636 1769

Comments 167 113

Declarations 72

892

210

2092

Turbo Graphix
Toolbox System

892

1500

Total 3592

Table 1.1 - Analysis of Prolog vs. Pascal

source codes (by number of lines)

series of procedure calls. Implicit control of sequence of

statements is embedded in the object modules of Turbo

Prolog system. In Pascal, variables for loop and branching

structures must be used in specifying flow of control. The

constructs for control, such as begin-end, if-then-else,

while loop, and repeat-until, account for larger line

counts in Pascal. In one program pieces in Pascal for

drawing a graphic object, these key words for control

account for 30% of the total lines.

Manipulation of data structures is made easy by

Prolog's database features. Several variables can be

compared at the same time through matching. For example,

to search a graphic object in Prolog, we only need to

declare a single predicate as the subgoal to retrieve a

fact needed from the database; while in Pascal, the

parameters of objects have to be compared, one at a time,

from the beginning of an object array. We will further

illustrate the different style between the two languages

with some example code from the implementations in

section 3.

(2) Run time information

When the program is executed under Turbo Prolog on a

computer with 640K bytes of memory, the average size of

the run space is 200K bytes for Turbo Prolog interpreter,

10 IK bytes for code, 64K bytes for stack, and 2 7 OK bytes

for heap. The heap space is the remaining memory after the

memory for stack, code, and trail areas in Turbo Prolog

have been allocated. It is used as the database area for

storing information about the objects created. Memory

space needed for an object depends upon the complexity of

the object, e.g. number of variables in a subprogram, and

number of program units in a package. The memory heap

space used for a few example objects created are shown in

Table 1.2. With 270K bytes of heap space available and an

average of 2.7K bytes allocated for a simple object, 100

is the maximum number of objects that can be created.

Type of object

Packages

no unit

no unit

one unit

one unit

two units

Subprograms

procedure (no variable)

procedure (no variable)

function (no variable)

function (no variable)

Data space used

1.4 K

1.7 K

5.0 K

7.0 K

10.0 K

1.7 K

2.0 K

2.4 K

2.7 K

Table 1.2 - Heap space used for example objects

(3) Programming style

In this section, we'll briefly compare a few pairs of

corresponding pieces of source code taken from the Pascal

and the Prolog versions. Each pair performs the same

operations.

(i) Displaying help information

The system displays the functions of all the key

commands in a window after the user presses the 'h' key.

PASCAL

procedure Help;

begin
Move_cursor_out

;

StoreWindow(1)

;

SelectWorld(4)

;

SelectWindow(4)

;

SetBackground ()

;

DefineHeader (4
,

' HELP INFORMATION ')

;

SetHeaderOn;
DrawBorder

;

gotoxy(10,7) ; writeln('DRAW COMMANDS');
gotoxy(10,8)

;

writeln(' a - defines origin and midpoints of,
' access arrows')

;

gotoxy(10,9)

;

writeln(' e - defines end-point of access arrows');
gotoxy(10,10)

;

Writeln(' p - draws package; s - draws subprogram');
gotoxy(10,ll)

;

writeln(' gp - draws generic package;',
' gs - generic subprogram');

gotoxy(10,12)

;

writeln(' zi- zooms in on object selected by'

,

' cursor position')

;

gotoxy(10,13)

;

writeln(' zo- zooms out to parent diagram of,
' object selected');

gotoxy(10,14)

;

writeln('EDIT COMMANDS')

;

gotoxy(10,15)

;

writeln(' e - enters component specification'

,

' editing mode');
gotoxy(10,16)

;

writeln(' da - deletes access arrow originating at'

,

1 the cursor ')

;

gotoxy(10,17)

;

writeln(' do - deletes object selected by'

,

' cursor position');
gotoxy(10,18)

;

writeln('DISPLAY COMMANDS ',

gotoxy(10,19)

;

writeln(' h - "HELP" describes',
' commands *

') ;

gotoxy(10,20)

;

writeln(' v - displays selected object',
' specification * \ ends pgm')

;

gotoxy(10,24)

;

writeln('Press any key to return to access graph');
repeat until keypressed;
gotoxy(l,24) ; writeln(' ':80);

8

ClearScreen;
RestoreWindow(1,0,0);
Move_cursor_in

;

end; { Help }

PROLOG

action(104,X,Y,X,Y) :-

removewindow

,

makewindow(l,7,7,"HELP INFORMATION" ,0,0,25,80)

,

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

'DRAW COMMANDS ") , nl

,

' p - create package") ,nl,
' s - create subprogram"

) ,nl,
' gp - create generic package") ,nl,
' gs - create generic subprogram"

) ,nl,
a - make access connection from object"),nl,

' d - delete the object"),nl,
' zi - zoom in on object"),nl,
1 zo - zoom out to parent diagram") ,nl,
'INPUT OUTPUT COMMANDS") ,nl,
' r - input graph from file"),nl,
1 (only at the beginning) ") ,nl,
1 t - save text specification and"),nl,
' graph on file and exit"),nl,
'DISPLAY COMMAND") ,nl,
' h- 'HELP' describes commands") ,nl,
1 v- view the specification of the object"),

readchar(_)

,

removewindow

,

active (A)

,

window (A, Wn,_)

,

put_diagram (Wn , X ,Y)

.

The code for display help information is similar in

the two languages. With the windowing features of Turbo

Prolog, the position for each line of text information

doesn't have to be specified in the program. Two versions

would have about the same size if the effects of graphic

primitives are excluded.

(ii) Drawing a graphic object

A box is drawn on the access graph to represent a

module in an Ada software system.

PASCAL

procedure Draw_object(which : char; x, y : real);

procedure Draw_std_object(x,y : real);
begin
Move_cursor_out

;

DrawSquare(x- 50, y-60 ,x+50 , y+4 0, false)

;

DrawSquare(x-50,y+40,x+50,y+80, false)

;

Move_cursor_in

;

end; { Draw Std Object }

procedure Draw_generic(x, y : real);
begin
Move_cursor_out

;

DrawLine (x- 40, y-60, x+60, y-60)
DrawLine (x+6 ,

y- 6 , x+4 , y+4)

DrawLine (x+40,y+40,x-60,y+40)
DrawLine (x-60 ,y+40 ,x-40 ,y-60

)

DrawLine(x-60,y+40,x-65,y+80)
DrawLine (x-65 ,y+80 ,x+35 ,y+80

)

DrawLine (x+3 5, y+80, x+4 0, y+4 0)
Move_cursor_in

;

end; { draw generic }

begin { draw object }

case which of
'g' : begin { generic package }

Draw_generic(x,y)

;

Move_cursor_out

;

DrawTextW(x-38,y+53,l, 'PACKAGE')

;

Move_cursor_in

;

end;
'h' : begin { generic subprogram }

Draw_generic(x,y)

;

Move_cursor_out

;

DrawTextW(x-58,y+53,l, 'SUBPROGRAM')

;

Move_cursor_in

;

end;
'p' : begin { package }

Draw_std_object(x,y)

;

Move_cursor_out

;

DrawTextW(x-28,y+53,l, 'PACKAGE')

;

Move_cursor_in

;

end;
'

s
' : begin { subprogram }

Draw_std_object(x,y)

;

Move_cursor_out

;

DrawTextW(x-45,y+53,l, 'SUBPROGRAM')

;

Move_cursor_in

;

end;

10

end; { case }

end; { draw object }

PROLOG

/* draws a box for an object labelled
with its object type */

empty(G,X,Y,T) :- /* G: generic or not */
square (G,X,Y) , /* T: name of the type of the module */
Xl=X+l,Yl=Y+2,
makewindow(2 , 7 , , "" ,X1 ,Y1 , 1 , 8)

,

write (T)

,

removewindow

.

square(G,X,Y) :-

X1=1280*(X-1)+500,Y1=400*Y,
A1=X1,B1=400*(Y-1) ,A2=1280*X+430,B2=B1,
A3=A2,B3=Y1,
X2=1280*(X+3)+500,Y2=Yl,
X3=Xl,Y3=400*(Y+9)

,

X4=X2,Y4=Y3,
ys— i ?ko* (y+i) 4-^nn v 1^—vi /* ti to */

/X6=X5,Y6=Y3, / / / I

line(Al,Bl,A2,B2,7) , /*A1 1 3 */
line(A2,B2,A3,B3,7), /*

j j
window |

*/
linpfyi Y1 Y9 V9 7^ /* ' ^ (- */

*/line(Al,Bl,X3,Y3,7), /*A2— -A3 j 13
line(X2,Y2,X4,Y4,7), /* j Name / */
line(X3,Y3,X4,Y4,7), /* 2 4 */
line(X5,Y5,X6,Y6,7) , /* */
G<>"generic"

,

11=1280* (X-l) +300, J1=Y1,
12=11, J2=400*(Y+10),
13=1280* (X+2) +500, J3=J2,
line(Al,Bl,Il,Jl,7)

,

line(Il,Jl,I2,J2,7)

,

line(X3,Y3,I2,J2,7)

,

line(l2,J2,I3,J3,7)

,

line(X4,Y4,I3,J3,7)

.

square (_,_,_)

.

The styles for drawing graphic objects are different

between the two versions. From the structures of the

programs, the keywords for the control structures in

Pascal, such as "begin", "end" , and "case", account for

30% of the line counts in Pascal code.

11

(iii) Creating comments

In the specification entry session, the system

prompts the user to provide comments about the object

created and stores them in a data structure.

PASCAL

procedure get_comments (var in_ptr : comment_ptr)

;

var current_com : comment_ptr;
comment : comment_ptr

;

command : char

;

in_comment : string[60];

begin
if line_no > 17 then
begin

for i := 11 to 20 do { blank out information }

begin
gotoxy(10,i) ; writeln(' ':60);

end;
line_no := 11;

end;
gotoxy(10,line_no) ; writeln(' ':60);
gotoxy (10, line_no)

;

in_comment := '

'

;

writeln('Enter up to 58 characters of comment after',
' -- (or return) ')

;

line_no := line_no + 1;
gotoxy (10,line_no) ; write(' —

') ; readln(in_comment)

;

line_no : = line_no + 1

;

if in_comment <> '

' then
begin
New (comment)

;

comment" .line := ' —
' + in_comment;

comment" .next := nil;
current_com := comment;
in_ptr := comment;
repeat

if line_no > 17 then
begin

for i := 11 to 20 do { blank out information }

begin
gotoxy (10, i) ; writeln(' ':60);

end;
line_no := 11;

12

end;
gotoxy(10,line_no)

;

write ('--');
in_comment := ' '

;

readln (in_comment)

;

line_no := line_no + 1;
if in_comment <> '

' then
begin

New (comment)

;

current^com* .next := comment;
comment^. line := ' —

' + in_comment;
comment ". next := nil;
current_com := comment;

end;
until (in_comment = '

')

;

end; { if first comment <> '
' }

end; { get_comments }

PROLOG

takecomm(L) :-

write ("Enter comments after — "),nl,
comment ([] , L)

.

comment (In, Out) :-

write (" -- "),
readln (Line)

,

Line <> "",

fronttoken(A," -- ",Line),
appendtokendn, [comm(A)] ,M) ,

! , comment (M , Out)

.

comment (In, In)

.

In Pascal, each line of comments is stored in a linked

list using pointers. Several assignments have to be made

when a new line of comment is added. Additional variables

are needed to control looping and positions for writing

text. In Prolog, the process is considerably simpler. Each

recursive call appends one line of comments into a list.

The control for the execution is supplied by the compiler.

The second clause for the predicate "comment" is used for

the boudary condition to terminate the recursion.

13

(iv) Deleting an object

An object on the graph is deleted after the user

places the cursor in an appropriate position and presses

a key command.

PASCAL

procedure Delete;
begin

select (x , y , found , in_ob j ect , index)

;

if found then
begin { if found }

gotoxy(l,24) ; writeln(' ':80);
SetColorBlack;
Draw_ob j ect (in_ob j ect , ob j ect [index]

. point . x

,

obj ect [index] . point . y)

;

Draw_name (ob j ect [index] . point . x

,

ob j ect [index] . point . y

,

ob j ect [index] . name)

;

Erase_arrow (in_ob j ect , index)

;

SetColorWhite;
Init_obj ect (index)

;

SetColorWhite;
end; { if found }

end; { end delete object }

PROLOG

/* "d" key to delete an object */

action(100,X,Y,X,Y) :-

active (A)

,

retract (obdb(A, ' ' ,_,_,X,Y, _,_,_))

,

retract (window (A , Wn , C))

,

retract(total (Tw, To))

,

Cl=C-l,Tol=To-l,
asserta(window(A,Wn,Cl))

,

assert (total (Tw,Tol))

,

put_diagram(Wn,X,Y)

.

In Prolog, it is easy to access the data structure

from the database. After the fact which stores all the

information about the object is retrieved from the

dynamic database of Turbo Prolog, the deletion is made by

14

"retracting" the fact from the database.

(4) Turbo Prolog features

The combination of graphic and window features in Turbo

Prolog facilitates the design of this graphic tool.

However, there are a few things not fully supported by

Turbo Prolog. The graphic mode of Turbo Prolog doesn't

provide a blinking cursor. Cursor movement has to be

simulated by drawing and erasing a short line. Since the

content of a window can not be saved, the graphic objects

have to be redrawn whenever the window is overlapped by

another window. Windows have to be created in order to

write characters for labelling graphic objects.

Recursive procedure calls are frequently used in this

implementation. It would be very easy to run out of stack

space during run-time if predicates have parameters with

large data structures. The problem was alleviated by

putting the parameters in the facts of the dynamic

database and modifying them successively during recursive

calls. This approach is utilized for constructing token

list and text specification for each component.

1.5 Organization

Background information on feasibility of Prolog for

software system design is provided in Chapter 2. It

presents programming features about Prolog and a summary

of previous Prolog implementations of graphic projects and

15

design tools for Ada systems.

The focus of Chapter 3 is Ada language constructs to

support effective software design. Programming units

related to the implemented project are discussed.

Chapter 4 describes the graphic tool called GTGALS (a

Graphic Tool for Generation of Ada Language

Specifications). Implementation details using Prolog

rule predicates and database facilities are described in

this chapter.

16

Chapter 2

Prolog as a system design tool

2.1 History

Prolog was invented in 1972 by Alain Colmerauer and his

associates at University of Marseilles. It was intended as

a language for specifying programming tasks in logic. It

didn't attract widespread interest until David Warren's

efficient implementation of Edinburgh Prolog in 1979 on a

DEC- 10 computer. Since then, Prolog has been applied as a

tool for natural- language processing, expert systems, and

logical problem solving. Other areas of application

include planning, design automation, solving symbolic

equations, biochemical structure analysis, drug design,

and architectural design.

The announcement of the Japanese fifth generation

computer system project has drawn world-wide attention.

Their commitment to Prolog as the basis for building

intelligent knowledge-based computer programs has

stimulated study of logic programming and Prolog. Prolog

is expected to have more application in various fields of

computer science

.

17

2.2 Features

Prolog is fundamentally different from the more

conventional languages, such as FORTRAN and Pascal, in

which operations are expressed in an imperative way. In

Prolog, details of a program is described in a declarative

style and the language uses a built-in procedure for

resolving goals and instantiating parameters. In Prolog,

the program is defined as a set of facts and rules; a

problem is represented in a logical structure described by

these facts and rules. Execution of the program is carried

out by attempting to satisfy goals using the facts and

rules. The flow of control is maintained by the Prolog

system through its unification and backtracking

algorithms.

An inherent feature of Prolog is its deductive

database. It stores all the facts and rules (clauses)

composing the program body. When a goal is given, Prolog

reponds by searching through all the clauses seguentially.

When a match is found, any preconditions (subgoals) of the

matched clause are treated as new goals, that Prolog has

to solve to provide the solution for the matched

condition. Once a solution is found, Prolog backtracks and

keeps going through the entries until it has exhausted all

possibilities of matches.

18

In a general Prolog interpreter system, facts and rules

can be added and deleted from the database dynamically

during run time. The Prolog built-in predicates that add

and delete facts and rules are "assert" and "retract",

respectively. In Turbo Prolog, however, only the facts for

the predicates declared in a separate database section of

Turbo Prolog can be updated dynamically during execution.

No rule can be added or deleted during execution. The

clauses for the normal predicates that are not declared

in the database section are static after the compilation.

In the implementation of this report, the predicates in

the dynamic database section are mainly for storing

graphic information and the specification for each

software component. In the context of this report, the

word "database" will refer specifically to the dynamic

database section of Turbo Prolog.

2.3 Survey of applications

Prolog has received increasing attention as a powerful

language for artificial intelligence research because it

is well suited for knowledge representation [Subrahmanyam,

1985] and natural- language processing [Cuadrado, 1985].

Recently, it has also been used for geometry projects

[Franklin 1986], CAD applications as well as for system

design tools. Comparison between Prolog and Pascal in a

graphic project [Gonzalez, 1984] has shown that Prolog is

not only more concise, more readable, and clearer than

19

Pascal, but also more efficient. Furthermore, Prolog

programs were developed more guickly and with less errors.

In experiments with a Prolog tool for Ada system design

environment [Buhr, 1985], its expressive power provided a

means of developing a powerful, rule-based tool to enhance

the flexibility and extensibility of the design

environment. In Buhr's work, Ada code skeletons were

generated from the Prolog facts in the design database.

The code was generated by attempting to satisfy the

language syntax rules. When the execution of the program

encountered rules containing goals or subgoals that must

be matched against the Prolog facts in the design

database, the facts were then used to generate code. These

facts are also the representations of lists of components,

their properties and their relationships.

20

Chapter 3

Software development with Ada

3.1 History

Ada is a programming language developed by the U.S.

Department of Defense in response to part of the

escalating software cost problems faced in many of the

large military software systems. Many systems developed by

conventional languages were found to be unreliable, hard

to maintain and lacking portability. It was believed that

the problems were caused by the fact that these languages

did not support good software practices [Wiener, 1984].

Ada was designed to reduce software life cycle cost and

enforce software engineering principles and methodologies.

3.2 Ada's support for modular design

Software design is also considered a process of

abstraction. Solving programming problems involves mapping

the entities in problem domain to the structures available

in a language. In conventional languages, we are often

preoccupied with details of translating problems into

predefined data and control structures. Ada allows

programmer-defined abstract data types and functional

abstractions for the operations on data types so that real

world problems can be mapped naturally into programmer-

created abstractions.

21

Ada systems are collection of program units including

subprograms, packages and tasks. A subprogram defines a

simple operation or action. A package collects a group of

logically related entities including data types, data

objects, subprograms, tasks and other packages. It

encourages the development of reusable software modules

for storage in the libraries. A task defines parallel

actions.

Separate compilation of specification and information

hiding in the body facilitate modular software

construction in Ada. The compiler would enforces the

interfaces during the development of the system. Each unit

has a specification part that is separate from its

implementation body. The specification is the visible part

that defines how the unit interfaces with the other units.

For example, the specification of a package has a

description of accessible parts of the package and an

indication of how they can be used. The body is the hidden

part that contains the implementation details of the

resources indicated in the specification. The

specification part must be compiled before the

implementation part. One can create specifications early

in the design process and have them compiled and placed in

a library. The bodies of units can be developed later.

Other members of a team would then have access to the

interface as they develop their units.

22

Generic program units are a powerful Ada construct.

Generic units permit software developers to create

subprgrams or packages to operate on data objects of

different types. Therefore, an algorithm can be defined as

a template of program units and then tailored to

particular needs at translation time.

3 . 3 Graphic tools for Ada system design

The work in this report was based on GTGALS [Bodle,

1985] which was designed for specifying separately

compilable Ada language units. Bodle 's model is based on

the design of Buhr [Buhr, 1984] for graphic development of

Ada systems.

In Buhr's design, different shapes of boxes are drawn

for different types of components, such as packages and

tasks, and an arrow is drawn from the user box to the

accessed box. There are sockets in a box to represent the

interface parts of a component with other components. In

packages, sockets may serve for procedural or non-

procedural calls. In tasks, they may serve for entry calls

during rendezvous mechanism. In this report and Bodle 's

version, only packages and subprograms are included as

the components in the prototype version. Treatment of

concurrency is not included.

23

Chapter 4

IMPLEMENTATION

This chapter describes the Prolog implementation of the

prototype of a graphic tool for generating Ada language

specifications. The program was done on a IBM-XT

compatible micro-computer. It was written in Turbo Prolog

with about 900 lines of source code and compiled to 64K

bytes of object code. It runs under the graphic mode of

Turbo Prolog with overlayed windows for diagrams and text

displays. The output of the program are files with

extension .ada and .gph (The filename is supplied by the

user at the end). The .ada file is the Ada language

specification of the developed graphs and the .gph file

contains the facts asserted in the database section.

4.1 Overview of the prototype

An access graph is used for pictorially describing

software systems. The components of a system and the

interfaces among the components can be easily represented

on the graph to provide the designer a nice overview of

the software system. Boxes are drawn as the symbols for

the components and an arrow from a point in a box to

another box indicates an access connection from one

component to another component.

24

The user first enters a main diagram with a cursor in

the middle of the screen. Help information can be

retrieved from the diagram by pressing the "h" key. This

will bring up a help window containing the commands and a

brief description of what each key command does (Figure

4.1). An object is created by moving the cursor to the

desired screen location and pressing a key command for the

desired object. A box is drawn for the object, then the

user is prompted for the object name (Figure 4.2).

HELP INFORMATION
DRAW COMMANDS

P create package
s create subprogram

gp - create generic package
gs - create generic subprogram
a - make access connection from object
d delete the object

zi - zoom in on object
zo - zoom out to parent diagram

INPUT OUTPUT COMMANDS
r - input graph from file
t - save text specification and

graph on file and exit
DISPLAY COMMANDS

h- 'HELP' describes commands
v- view the specification of the object

Figure 4.1 - The help window

Access Graph main

Package

/

PIea se enter the name: Line_io

Figure 4.2 - Creating a package

25

A specification entry window is then placed on top of

the diagram. The interactive prompt-response sequence in the

entry window then prompts the user to provide information

for each object. For example, for procedures, the user is

prompted for procedure names, and input and output

variable names. The user can provide comments for an

entire component as well as for each procedure or function

within the component (Figure 4.3).

Specification entry for component Line_io

Enter comments after — (return to skip)
— This package takes care of a system's
-- interaction with the physical terminal

(a) Editing comments

Specification entry for component Line_io
Procedure or Function (p or f)? p

name: Get_line

Enter comment after --

— get a line from user ' s input

in:

out: A
type: string

(b) Specifying a procedure

Figure 4.3 - Specification entry for an object

After completion of the prompt-response sequence,

top window for the entry is removed. The screen goes I

to the diagram with a new box representing the object

26

the

sack

A

small window called an activation window is attached to

the box. The cursor has to be placed into this window

before the user presses any key command about the object.

Direct access to a component's specification is done by

moving cursor to the activation window of the component

and pressing "v" . The system then creates a window and

displays the Ada language specification for the component

(Figure 4.4)

.

Access Graph main

Package

Line_io

-- This package takes care of a system's
— interaction with the physical terminal

package Line_io is

— get a line from user's input

procedure Get_line (A : out string) ;

— response to user for display

procedure Put_line (A : in string) ;

end Line io ;

Figure 4.4 - Viewing text specification

Making access connection between two objects is started

by pressing "a" key in the activation window of the first

object. The next step is to specify the starting point of

the arrow by moving cursor to any point on the first

27

object and pressing "b" . Then, if necessary, the user can

establish intermediate points on the arrow by pressing "t"

at each intermediate point. The arrow is completed by

pressing "e" at the end point (Figure 4.5). Another "a"

has to be pressed in the activation window of the second

object in order to finish the access action. The name of

the second object will be included in the with clause of

the first object. The user can witness such an access

action by viewing the modified text specification of the

first object.

Access Graph Line 10

Package

Line_io

x

Package

Text io

Figure 4.5 - Access connection between components

4 . 2 Logic and data structure

The implementation of this model utilizes the graphic

and windowing features offered by Turbo Prolog. Under the

graphic mode, lines can be drawn for making up different

boxes and arrows. Windows can be created for writing text,

getting help information, editing specification and

28

shifting among different diagrams. A visual cursor is

provided for moving around the graph to the desired

location. Cursor movement is simulated by repeatedly

drawing a short line in each new position and erasing the

line in the old position. Erasure is done by drawing the

line in the color of background. The side effect of such a

cursor design is that part of the graph or characters may

be erased when cursor goes through them. The design has

been taken to avoid cursor passing through parallel lines.

The user can press the "n" key to redraw the current

diagram. The cursor moves as a text cursor, e.g. row

number from 1 to 25 and column number from 1 to 80 for

specifying the cursor position.

Different shapes of boxes are drawn to distinguish

generic from non-generic components. Non-generic packages

and subprograms are represented by projections of three

dimensional boxes. Generic packages and subprograms are

represented by rectangles. A small activation window is

attached to the upper left edge of each box and rectangle.

When a command is to be selected, the cursor has to be

placed into the small window of the corresponding object.

Top-down and stepwise refinement is the recommended

method of development using this graphic tool. A typical

design starts with a main diagram for the user to lay out

the major components of a software system. After an object

is drawn, a specification entry window is created on top

29

of the current window and the user is prompted for

information needed for composing the specification for the

object. The prompt-response sequence in the specification

entry window follows the syntax of the specification for

the object.

The syntax diagrams for Ada package and subprogram

specifications are shown below. In the syntax diagrams,

items in rounded boxes or circles are terminal symbols;

items in rectangles are non-terminals that need to be

further defined.

(1) Subprogram specification

(i) for procedure

>(procedure J identifier

parameter specification

(ii) for function

>)
—

>

•>(^ function j identifier

>G> parameter specification >()j

•> t return J type identifer

30

where the parameter specification is

identifier h> — : mode

type identifier

mode is one of in, out or inout.

(2) Package specification

•>(^ package]) > identifier >©•

basic declarative item

Gs*) identifier

where basic declarative item is subprogram

specification that may be repeated zero or more times.

When the information is provided by the user, it is

stored as a list of tokens with the following Prolog

structures. (note: each name is a functor and each single

letter is a token list)

(1) for procedure

[comments (C) , access (A) , generic (G) , title ("procedure")

,

name (N) , parameter (P)

]

31

(2) for function

[comments (C) , access (A) , generic (G) , title (
" function")

,

name(N) ,parameter(P) , return (R)

]

(3

)

for package

[comments(C) ,access(A) ,generic(G) , title ("package")

,

name(N) ,unit(U)]

C : a list of coram) string)

A : a list of access object names

G : either "generic" or "" (empty string)

N : object name

P : a list of var(M,V,T) where M is one of "in", "out" or

"inout", V is parameter name, and T is parameter type

U : a list of token lists for subprograms

For example, the text specifications and the

corresponding token list for an Ada's procedure are shown

below :

Text Specifications

-- This is the main program for control
with Process ,

Counter ,

Line_io ;

procedure Mainl (in_text : in code ;

out_text : out code) ;

Token List

[comms ([comm (" -- This is the main program for control")]),

access ([with("Process") , with ("Counter") ,with("Line_io)])

,

g
("

") , title ("procedure "
) , name ("Main")

,

para([var ("in" , "in_text" , "code")

,

var("out","out text" , "code")])

]

32

After the prompt-response sequence for an object is

completed, the corresponding token list is then used for

building text specifications. The specification entry

window is removed and the screen goes back to the diagram

with the new object. Both token list and text

specification of the object are stored in the database for

final output or further refinement.

The main control relies on a predicate called

"readkey". The single clause for this predicate is :

/* X and Y are input row and column numbers for cursor
position, respectively. They are initialized by
the system at X=10 and Y=20. XI and Yl are for the
new cursor position after action */

readkey (X,Y) :- readchar(C), char_int (C , I)

,

action(I,X,Y,Xl,Yl),

!, readkey (XI, Yl)

.

X and Y are the current vertical and horizontal

coordinates for the visual cursor, respectively. The

cursor is placed at the center of the screen initially.

When the user presses a key command, the key pressed is

then converted to its corresponding ASCII integer value by

the predicate "char_int". The predicate "action" does

action corresponding to the key pressed. They will be

explained in the following section. The new coordinates XI

and Yl are returned after the action clause is satisfied.

Finally, a recursive call is made by having "readkey" as

the last subgoal with the new coordinates as the new input

parameters.

33

Here is a brief look of how each key command is

implemented :

(1) Creating objects ("p" , "s", "gp", or "gs" keys)

After a box is drawn for the object created, the

information about the object provided by the user is

stored in a database predicate with the following

structure :

obdb(A,M,G,S,X,Y,N,Tok,Spec)

The arguments for the predicate are :

A: window number (diagram number)

M: a flag to indicate whether the object is in a

zoomed-in diagram

G: generic or not - a control for the shape of the box

S: type of object (subprogram, package, generic

subprogram or generic package)

X,Y: coordinates of the box in the diagram

N: name of the object

Tok: token list (a list of items needed for building

the specification)

Spec: text specification of the object

(2) Viewing specifications ("v" key)

The cursor must be in the activation window beside the

box before the "v" key is pressed for viewing the

specification. Otherwise, no action can be done on the the

object. The location of the cursor (X and Y) and currently

active window number are used as the indexes for searching

34

facts in the database. The clause for viewing looks like :

/* Ascii value for "v" = 118 */

action(118,X,Y) :-

active(A), /* currently active window number */

obdb(A,_,_,_,X,Y,_,_,Spec) ,

By using the unification algorithm, the fact in the

database is selected with matching values for the known

parameters A, X and Y. The parameter "Spec" is

instantiated from the matched fact; it is used to display

text specification for the object.

(3) Deleting objects ("d" key)

The algorithm for deleting objects is very similar to

that for viewing specification. The database fact for the

object to be deleted is removed by using the standard

predicate "retract".

(4) Zooming in on objects and out to a parent diagram

("zi" or "zo" keys)

Any component in a diagram can be decomposed by zooming

in on the component. This will cause the object to be

represented in two different windows, one in the original

window and one in the expanded window. In this case, two

facts for the same object will be present in the database

with different window numbers. After the fact for the

object is found in the database, the second fact for the

object is created if the object has never been zoomed in.

A mark ' *
' is placed on the second fact to indicate that

35

the fact is for a lower level diagram. The user can then

specify a new diagram for the component. If an object to

be expanded has previously been expanded, then the window

number is retrieved from the existing second fact for the

object. A new diagram is then shown by drawing every

object with the new window number. Zooming-out is done by

simply selecting the fact for the object in the parent

diagram and redrawing the parent diagram. One fact for

the predicate "active" is present in the database to keep

track of the currently active window number.

(5) Making access connection ("a" key)

The clause for making access connection looks like :

/* Ascii value for "a" = 97 */

action(97,X,Y,X,Y) :-

active (A) ,

retract(obdb(A,M,G,S,X,Y,N, [C,access(W) jR] ,_))

,

start_connect(X,Y)

,

retract (access_name(An))

,

assert(obdb(A,M,G,S,X,Y,N, [C,access(W,with(An) jR] ,_))

,

After an "a" key is pressed with the cursor inside the

activation window of an object, the token list in the

database fact for the object is retrieved for

modification. The predicate "start_connect" does the

arrow drawing between the accessing object and the

accessed object, and stores the name of the accessed

object in a database predicate called "access_name" . The

36

name in the predicate "access_name" is then appended to

the element "access" in the token list of the accessing

object. The text specification is then reconstructed

according to the new token list.

4 . 3 Sample design and output

This section shows an example of software design using

this graphic tool and its output Ada language

specifications. The access graph (Figure 4.6) for a text

analyzer system is shown below as the example design.

Process, Counter and Line_io are the components under

control of a main program.

Access Graph mam

Subprgm

Mainl

Package

Process

Package

Counter

Package

Line io

Figure 4.6 - Access graph for a software system

37

After zooming in on the component Line_io, a new graph

for the decomposition of Line_io is drawn (Figure 4.7).

The output Ada language specifications (Figure 4.8) are

created based on the data entered during the design

session for each component.

Access Graph Line 10

Package

/L
Package

Disk io

Package

Text io

Figure 4.7 Decomposition of Line_io from Mainl

38

-- This is the main program for control
with Process ,

Counter ,

Line_io ;

procedure Mainl (in_text : in code ;

out_text : out code) ;

— This package is for analyzing text information
package Process is— This procedure breaks the text into
-- different components

procedure Break_text (in_text : in code ;

out_char : out character ;

out_int : out integer ;

out_symbol : out symbol ;

out_string : out string) ;

-- This function returns the ascii value
-- of a input character

function Ascii (in_char : in character) return integer
end Process;

— This package is to update counters
package Counter is
— Used to increment a counter by one

procedure Increment (C : inout counter)

end Counter ;

— This package takes care of a system's
-- interaction with the physical terminal

with Disk_io ,

Text_io ;

package Line_io is
— get a line from user's input

procedure Get_line (A : out string) ;

-- respond to user for display
procedure Put_line (A : in string) ;

end Line io ;

-- This package handles disk i/o
package Disk_io is
end Disk_io ;

— This is a predefined library program
-- for textual information i/o

package Text_io is
end Text io

Figure 4.8 - Ada language specification for Mainl

39

Chapter 5

Conclusions

The main feature of the graphic tools for specification

are their user interfaces. The software designers can

graphically lay out the components of a system with

diagrams, and at the same time, manipulate the text

specifications of each component. The prototype

implementation in this project is a simple demonstration

of the desired features and usefulness of such graphic

tools. Expansion of the project can be done by additions

of Prolog rules.

The source code of the Prolog version for this

prototype implementation is relatively shorter than that

of the Pascal version. This is due to embedded control

flow in Prolog and also different types of graphic and

window primitives between the two languages. The

unification and pattern matching in Prolog make it easy to

access and operate on the data structures.

The extensions of this project would be the additions

of Ada contructs, such as tasks, type and private type

declarations, and nesting of packages, to the created

objects. The specification editor can also be refined to

provide greated flexibility for the modification of each

component's data structure. It is also desirable to

transport such a system to a workstation with more memory

space and graphic capabilities.

40

REFERENCES

Bobrow, D.G. (1985). "If Prolog is the Answer, What is the
Question? or What it Takes to Support AI Programming
Paradigms", IEEE Transactions on Software Engineering,
Vol. SE-11, No. 11, November, 1985, pp. 1401-1408.

Bodle, D. (1985). "A Graphic Tool for Generating Ada
Language Specifications," A Master's Thesis, Kansas State
University, 1985.

Buhr, R.J. A., Karam, G.M. , Woodside, CM. (1985). "An
Overview and Example of Application of CAEDE: A New,
Experimental Design Environment for Ada," ADA Letters,
September, 1985, pp. 173-184.

Buhr, R.J. A. et al. (1985). "Experiments with Prolog
Design Descriptions and Tools in CAEDE: An Iconic
Design Environment for Multitasking Embedded Systems,"
in Proceedings 8th International Conference on Software
Engineering, Computer Society Press, Washington D.C.,
1985, pp. 62-67.

Buhr, R.J. A. (1984). System Design with Ada, Englewood
Cliffs, N.J.: Prentice-Hall Inc., 1984.

Cuadrado, C.Y., Cuadrado, J.L. (1985). "Prolog goes to
work", Byte, Vol. 10, No. 9, August, 1985, pp. 151-158.

Franklin, W.R. , et al. (1986). "Prolog and Geometry
Projects", IEEE CG&A, Vol. 6, No. 11, November, 1986, pp.
46-55.

Gonzalez, J.C., Williams, M.H. , Aitchison, I.E. (1984).
"Evaluation of the Effectiveness of Prolog for a CAD
Application", IEEE CG&A, Vol. 4, No. 3, March, 1984, pp.
67-75.

Subrahmanyam, P. A. (1985) "The Software Engineering of
Expert Systems: Is Prolog Appropriate?", IEEE Transactions
on Software Engineering, Vol. SE-11, No. 11, November,
1985, pp. 1391-1400.

Tavendale, R.D. (1985). "A Technigue for Prototyping
Directly from a Specification" , in Proceeding 8th
International Conference on Software Engineering, Computer
Society Press, Washington D.C., pp. 224-229.

Wiener, R. , Sincovec, R. (1984). Software Engineering with
Modula-2 and Ada, John Wiley & Sons, Inc., New York, 1984.

41

Appendix 1

Prolog code for cursor control and key commands

Code =3072
include "main2.pro"

predicates
/* following predicates are for cursor and key action */

/* coordinates (X — > row number 1 -> 20,
Y --> column number 1 -> 69) */

readkey (integer , integer

)

/* corresponding action after key command is given,
(ascii value for key, input X, Y coordinates, and
return X,Y coordinates after action) */

action (integer , integer , integer , integer , integer

)

/* action after 'g' or 'z' key is depressed,
char follows 'g'or ' z'; X, Y are row and column # */

g_key (char , integer , integer

)

z_key (char , integer , integer

)

/* restore cursor at row and column # */

recursor (integer , integer

)

/* redraw a diagram */

put_diagram(string , integer , integer

)

/* draw all the objects in an active window */

redraw

/* draw one box at a time until the value of the
argument reaches */

draw_ob j ect (integer

)

/* draw all the lines for an active window */

draw all lines

42

/* draw a list of line until empty, each element
in the list has the coordinates for endpoints
of a line */

drawline (tokenlist

)

/* write spec of all objects to file, argument is
the number of objects that has been taken care of,
stops when it reaches zero */

write_all_spec (integer

)

/* write spec (a list of string) to output */

writelist (spec

)

/* following predicates are for access connection */
/* read key for making connection, arguments are row and

column number of the cursor */

start_connect (integer , integer

)

/* moving cursor for making access connection and
drawing lines, arguments are key read in
and X,Y coordinates*/

move (integer , integer , integer

)

/* for reconstructing spec after making
access connection argument is the token list
of the object */

re_spec (tokenlist

)

/* makeline with coordinates of two points */

makeline (integer , integer , integer , integer

)

/* draw arrowhead at row and column number X and Y */

arrowhead (integer , integer

)

goal
graphics (2,1,7),
makewindow(1,7, 7, "Access Graph main",

0,0,25,80) ,

line (12800, 7 600, 12800, 8000, 7) ,

assert (active (1))

,

asserta(window (1, "main", 0))

,

asserta (total (1,0)),
asserta (linedb (1 , [])) ,

readkey(10,20)

.

43

clauses

/* write a list of string (specification)
to output file or screen */

writelist([])

.

writelist([Head! Tail]) :
_

write(Head) ,nl,writelist(Tail)

.

/* draw all the objects in the active window */

redraw :

-

active (A)

,

window(A,_,C)

,

draw_ob j ect (C)

,

draw_all_lines

.

/* draw one object and bump down counter */

draw_object(C) :-

active (A)

,

00,
retract(obdb(A,M,G,S,X,Y,N,T,L))

,

draw(G,S,X,Y,N)

,

assertz(obdb(A,M,G,S,X,Y,N,T,L))

,

C1=C-1,
! , draw_ob j ect (CI)

.

draw_ob j ect ()

.

/* get lines for the active window and draw them */

draw_all_lines :

-

active (A)

,

linedb(A,L)

,

drawline(L)

.

/* draw a list of lines */

drawline([])

.

drawline([li(Xl,Yl,X2,Y2) |T]) :-

makeline(Xl,Yl,X2,Y2)

,

drawline(T)

.

/* write text spec of all the components into file */

write_all_spec(C) :-

C > 0,
retract(obdb(A, ' ' ,G,S,X,Y,N,Tok,Spec))

,

writelist (Spec)

,

assert z (obdb (A,' ' ,G,S,X,Y,N, Tok , Spec))

,

C1=C-1,
! ,write_all_spec(Cl)

.

write_all_spec ()

.

/* read character for corresponding action */
readkey(X,Y) :-

readchar(C)

,

char_int (C , Val)

,

action(Val,X,Y,Xl,Yl)

,

! ,readkey(Xl,Yl)

.

/* restore cursor */

recursor(X,Y) :-

X1=1280*X,
Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,7)

.

put_diagram(Wn,X,Y) :-

fronttoken(Header, "Access Graph ",Wn),
makewindow (1,7,7, Header ,0,0,25,80),
redraw,
recursor(X,Y)

.

/***** CURSOR MOVEMENT AND KEY ACTIONS *******/

/* '#' key to exit from program */

action(35,X,Y,X,Y) :- exit.

/* "p" key for a package */

action(112,X,Y,X,Y) :-

S="package"

,

package! "",S,X,Y)

,

active(A)

,

retract(window(A,Wn,C))

,

retract (total (Tw , To))

,

Cl=C+l,Tol=To+l,
asserta(window (A,Wn,Cl))

,

assert (total (Tw, Tol))

,

put_diagram (Wn , X , Y)

.

/* "s" key for a subprogram */

action(115,X,Y,X,Y) :-

S="subprgm"

,

subprgm("",S,X,Y)

,

active (A)

,

retract (window (A, Wn,C))

,

retract (total (Tw , To))

,

Cl=C+l,Tol=To+l,
asserta(window (A,Wn,Cl))

,

assert (total (Tw , Tol))

,

put_diagram(Wn,X,Y)

.

/* "d" key to delete object */
action(100,X,Y,X,Y) :-

active (A)

,

retract (obdb(A,
' ' ,_,_,X,Y, _,_,_))

,

retract (window (A , Wn , C))

,

retract (total (Tw , To))

,

Cl=C-l,Tol=To-l,
asserta(window (A,Wn,Cl))

,

assert (totaKTw, Tol)) ,

removewindow

,

put diagram(Wn,X,Y)

.

45

'v" key to view specification of the object */

action(118,X,Y,X,Y) :-

active (A)

,

window (A, Wn,_)

,

obdb(A,_,_,_,X,Y,N,_,S)

,

removewindow,
makewindow(2,7,7,N,3,10,18,60)

,

writelist(S),
readchar(_)

,

removewindow

,

put_diagram(Wn,X,Y)

.

'h" key for help information */

action(104,X,Y,X,Y) :-

removewindow

,

makewindow(1,7,7, "HELP INFORMATION" ,0,0,25,80),
write
write
write
write
write
write

•DRAW COMMANDS") ,nl,
p - create package") ,nl,
s - create subprogram"), nl

,

gp - create generic package") ,nl,
gs - create generic subprogram"), nl

,

a - make access connection from
object") ,nl,

write (" d - delete the object"),nl,
write (" zi - zoom in on object"),nl,
write (" zo - zoom out to parent diagram") ,nl,
write ("INPUT OUTPUT COMMANDS") ,nl,
write(" r - input graph from file"),nl,
write (" (only at the beginning)") ,nl,
write (" t - save text specification and"),nl,
write (" graph on file and exit"),nl,
write ("DISPLAY COMMAND") , nl

,

write (" h- 'HELP' describes commands") ,nl,
write(" v- view the specification of the object"),
readchar(_)

,

removewindow

,

active (A)

,

window (A, Wn,_)

,

put_diagram(Wn,X,Y)

.

I! r- II key, to read from a file */
action(114,X,Y,X,Y) :-

makewindow (2, 7, 7, "",21,0, 3, 80),
write ("Please enter the name of the file
readln(Fl)

,

fronttoken (F , Fl ,
" . gph")

,

removewindow

,

retract (window (1
, "main" ,))

,

retract (total (1,0))

,

retract (linedb (1 , []))

,

consult (F)

,

redraw,
recursor(X,Y)

.

"),

46

/* "t" to exit and save text specification on files */

action(116,X,Y,X,Y) :-

makewindow(1 , 7 , 7
, "

" , 21 , , 3 , 80) ,

write("Please enter the name of the file : "),
readln(F)

,

removewindow

,

fronttoken (Fl , F
, " . ada")

,

openwrite (outfile , Fl)

,

writedevice(outf ile)

,

total(_,T),
write_all_spec(T)

,

closefile(outf ile)

,

fronttoken (F2 , F
,
" . gph")

,

retract (active (_))

,

save(F2),
exit.

/* Arrow key */

action(0,X,Y,Xl,Yl) :-

readchar(T)

,

char_int(T,Val)

,

action(Val,X,Y,Xl,Yl)

.

/* Down */
action(80,20,Y,20,Y) :- !.

action(80,X,Y,A,Y) :-

! ,X1=1280*X,
Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

X2=1280*(X+1),
line(X2,Yl,X2,Y2,7)

,

A=X+1.

/* Up */

action(72,l,Y,l,Y) :- !.

action(72,X,Y,A,Y) :-

! ,X1=1280*X,
Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

X2=1280*(X-1)

,

line(X2,Yl,X2,Y2,7)

,

A=X-1.

/* Right */
action(77,X,69,X,69) :- !.

action(77,X,Y,X,A) :-

!,X1=1280*X,
Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

Y3=400*Y,Y4=400*(Y+1)

,

line(Xl,Y3,Xl,Y4,7)

,

A=Y+1

.

47

/* Left */

action(75,X,l,X,l) :- !.

action(75,X,Y,X,A) :-

! ,X1=1280*X,
Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

Y3=400*(Y-2) ,Y4=400*(Y-1)

,

line(Xl,Y3,Xl,Y4,7)

,

A=Y-1.

/* 'g' for generic object */

action(103,X,Y,X,Y) :-

readchar (C) , g_key (C , X , Y)

.

/* 'z' for zooming in and out */

action(122,X,Y,X,Y) :-

readchar (C) ,z_key(C,X,Y)

.

/* 'a' for accessing another object */

action(97,X,Y,X,Y) :-

active (A)

,

retract(obdb(A,M,G,S,X,Y,N, [C,access(W)]R] ,_))

,

makewindow(2 , 7 , 7
, "" , 19 , , 5 , 80)

,

write ("Press 'b'- starting point 't'- midpoint") ,nl,
write (" 'e'-end point then "),nl,
write (" 'a'- in the window of accessed object"),
shiftwindow(1)

,

start_connect(X,Y)

,

retract (access_name(An))

,

appendtoken(W, [with (An)] ,New)

,

assert (tokendb([C, access (New) J R]))

,

assert (specdb([]))

,

re_spec(R)

,

retract (tokendb (Tok))

,

retract (specdb (Spec))

,

assertz(obdb(A,M,G,S,X,Y,N, Tok, Spec))

,

retract(obdb(B,Sec,G,S,X,Y,N,_,_))

,

assertz (obdb (B , Sec , G , S , X , Y , N , Tok , Spec))

,

shiftwindow(2) ,clearwindow,
removewindow

,

redraw,
recursor(X,Y)

.

/* 'n' to redraw the screen */

action(110,X,Y,X,Y) :-

redraw.

/* other keys */
action(_,X,Y,X,Y) :- !.

/* cases for reconstructing specification */
re_spec([_,_,_, _,ret(_)]) :-

func_spec

.

re_spec([_,_,_, para(_)]) :-

proc_spec

.

48

re_spec([_,_,_, unit(_)]) :-

pack_spec

.

/* cases after "g" has been pressed */
/* 'p' for creating a generic package */

g_key('p\X,Y) :-

S="g.pack"

,

package ("generic" ,S,X,Y)

,

active (A)

,

retract (window (A,Wn,C))

,

retract(total (Tw, To))

,

01=0+1,101=10+1,
asserta(window(A,Wn,Cl))

,

assert (total (Tw,Tol))

,

put_diagram(Wn,X,Y)

.

/* 's' for creating a subprogram */

g_key('s' ,X,Y) :-

S="g.subpm"

,

subprgm("generic" ,S,X,Y)

,

active (A)

,

retract (window (A, Wn,C))

,

retract (total (Tw, To))

,

Cl=C+l,Tol=To+l,
asserta(window (A,Wn,Cl))

,

assert (total (Tw,Tol))

,

put_diagram(Wn,X,Y)

.

/* keep waiting for next char */

g_key('g',X,Y) :-

readchar(C)

,

g_key(C,X,Y).

/* neglect first 'g' */

g_key(_,_,_).

/* on object that can be zoomed in */

z_key('i' ,X,Y) :-

obdb(A,' ' ,G,S,X,Y,N,Tok,Spec)

,

obdb(B, '*' ,G,S,X,Y,N,Tok,Spec)

,

retract (active (A))

,

assert (active(B)) ,window(B,Wn,_)

,

fronttoken(Header, "Access Graph ",Wn),
removewindow

,

makewindow (1,7,7, Header ,0,0,25,80),
redraw,
recursor(X,Y)

.

49

/* creating new zoom-in diagram */

t key('i',X,Y) :-

obdb(A,' ' ,G,S,X,Y,N,Tok,Spec)

,

retract (active (A))

,

retract(total(W,0))

,

W1=W+1,
assert(total(Wl,0))

,

assert (active (Wl))

,

assertz(obdb(Wl, '*' ,G,S,X,Y,N,Tok,Spec))

,

assertz (window(Wl ,N, 1))

,

fronttoken(Header , "Access Graph ",N),
removewindow

,

makewindow (1,7,7, Header ,0,0,25,80),
asserta (linedb (Wl , []))

,

redraw,
recursor(X,Y)

.

/* object not found */

z_key('i' ,_,_)

.

/* zoom out to parent diagram */

z_key('o' ,X,Y) :-

obdb(A, '•' ,G,S,X,Y,N,Tok,Spec)

,

/* fact for object at higher level diagram is marked ' ' */

obdb(B,' ' ,G,S,X,Y,N,Tok,Spec)

,

retract (active (A))

,

assert (active (B))

,

window (B,Wn,_)

,

removewindow

,

put_diagram(Wn,X,Y)

.

/* can't be zoomed out */

z_key('o' ,_,_)

.

/* move cursor or give command for drawing lines */

start_connect(X,Y) :-

readchar(C)

,

char_int (C , Val)

,

move(Val,X,Y)

.

/* draw one line */
makeline(Xl,Yl,X2,Y2) :-

A1=1280*X1,
Bl=400*Yl-200,
A2=1280*X2,
B2=400*Y2-200,
line(Al,Bl,A2,B2,7)

.

/* 'b' to mark starting point of the connection line */

move(98,X,Y) :-

assert(bline(X,Y))

,

start connect(X,Y)

.

50

't' for making intermediate point for connection line */
move (116, X2,Y2) :-

retract(bline(Xl,Yl))

,

makeline(Xl,Yl,X2,Y2)

,

active (A)

,

retract (linedb (A , In))

,

appendtoken(In,[li(Xl,Yl,X2,Y2)] ,Out)

,

asserta(linedb(A, Out))

,

assert (bline(X2,Y2))

,

start_connect (X2 , Y2)

.

e' to mark end point of the connection line */

move(101,X2,Y2) :-

retract (bline (XI , Yl))

,

makeline (XI , Yl , X2 , Y2)

,

arrowhead (X2,Y2)

,

active (A)

,

retract (linedb (A , In))

,

appendtoken(In,[li(Xl,Yl,X2,Y2)],Out),
asserta(linedb (A, Out))

,

start_connect (X2 , Y2)

.

a' to get the name of the accessed object */

move(97,X,Y) :-

active (A)

,

obdb(A,_,_,_,X,Y,N,_,_)

,

assert(access name(N)).

/* Arrow key for cursor movement */

move(0,X,Y) :-

readchar(T) ,char_int(T,Val)

,

move(Val,X,Y)

.

Down */

move(80,20,Y) :- start_connect(20 ,Y)

move(80,X,Y) :-

X1=1280*X,Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

X2=1280*(X+1) ,line(X2,Yl,X2,Y2,7)

,

A=X+1 , start_connect (A , Y)

.

Up */

move(72,l,Y) :- start_connect (1,Y)

.

move(72,X,Y) :-

X1=1280*X,Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

X2=1280*(X-1) ,line(X2,Yl,X2,Y2,7)

,

A=X-1, start connect(A,Y)

.

51

/* Right */
move(77,X,69) :- start_connect(X,69)

.

raove(77,X,Y) :-

X1=1280*X,Y1=400*(Y-1) ,Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

Y3=400*Y,Y4=400*(Y+1) ,line(Xl,Y3,Xl,Y4,7)

,

A=Y+1 , start_connect (X , A)

.

/* Left */

move(75,X,l) :- start_connect(X,l)

.

move(75,X,Y) :-

X1=1280*X,Y1=400*(Y-1),Y2=400*Y,
line(Xl,Yl,Xl,Y2,0)

,

Y3=400*(Y-2) ,Y4=400*(Y-1) , line(Xl,Y3 ,X1,Y4 ,7)

,

A=Y-l,start_connect(X,A)

.

/* rest of the keys */

move(_,X,Y) :- start_connect(X,Y)

.

/* make a arrowhead at the end of line */

arrowhead(X,Y) :-

X1=1280*X,X2=X1,Y1=400*(Y-1),Y2=400*Y,
line(Xl,Yl,X2,Y2,7)

,

X3=1280*(X+1) ,Y3=400*Y-200,
line(Xl,Yl,X3,Y3,7)

,

line(X2,Y2,X3,Y3,7)

,

active (A)

,

retract (linedb(A, In))

,

A1=X,B1=Y+1,A2=X+1,B2=Y,
appendtoken(In, [li(A1,B1,X,Y)

,

li(A2,B2,Al,Bl) ,li(A2,B2,X,Y)] ,Out)

,

asserta(linedb(A, Out))

.

52

Appendix 2

Prolog code for specification entry and construction

domains

file = outfile
spec = string*
token = g(string) ; title (string) ; part(tokenlist) ;

name (string) ; var(string, string, string) ;

comm(string) ; ret (string) ; unit (tokenlist) ;

comms(tokenlist) ; para (tokenlist) ;

access (tokenlist) ; with(string) ;

li (integer , integer , integer , integer

)

tokenlist = token*

database

/* information about the component is stored in this structure
1. window number
2

.

a mark to indicate whether the fact in for higher
or lower diagram

3. generic ("generic" or "" (non-generic),
for control of box drawing and text spec

4. type (packagem, subprogram or
generic package and subprograms)

5. X, row number
6. Y, column number
7. object name
8. token list of the object
9. text spec of the object */

obdb (integer , char , string , string , integer

,

integer , string , tokenlist , spec

)

/* current active window number */

active (integer

)

/* window number, name and total number of objects */

window (integer , string , integer

)

/* total number of windows and objects */

total (integer , integer

)

/* for building text spec (list of string,
each element stands for one line of code) */

specdb(spec)

53

/* for store list of token for an component */

tokendb (tokenlist

)

/* a program unit in a package, to be appended to
the token list of the package*/

unitdb (tokenlist

)

/* to store row and column # for the
starting point of a line */

bline (integer , integer

)

/* store a list of lines for the window number */

linedb (integer , tokenlist

)

/* store the name of the accessed object */

access_name (string

)

predicates

/* append a new token to tokenlist */

appendtoken (tokenlist , tokenlist , tokenlist

)

/* append a new line of code to spec */

append (spec , spec , spec

)

/* combine six strings into one line of code
— > single element of list */

construct (string , string , string

,

string , string , string , string , spec

)

/* following predicates are for drawing object
1. generic or not ("generic" or "")

2. title on the box drawn
3,4. row and column number
5. name of the object */

draw(string, string, integer , integer , string)

/* draw box and ask for name
(generic or not, object type, X, Y, object name) */

draw_name (string , string , integer , integer , string

)

/* (generic or not (g or c), X, Y, object name) */

empty (string , integer , integer , string

)

54

/* (generic or not -> control the shape of boxes ,

X, Y) */

square (string , integer , integer

)

/*
•*/

following predicates are for specification editing */

/* (generic or not, object type, row #, column #) */

package (string , string , integer , integer

)

subprgm (string , string , integer , integer

)

/* for determining procedure or function
(generic or not, 'p' or 'f, object name) */

p_or_f (string , char , string

)

/* for getting input infor from user about procedure
(generic or not, object name) */

procedure (string , string

)

/* for getting input infor from user about function
(generic or not, title, object name) */

function (string , string , string

)

/* for getting input infor from user about package
(generic or not, title, object name) */"

build_pack (string , string

)

/* construct procedure, function or package text
specification from the token list in the database

proc_spec
func_spec
pack_spec

*/

/* get program unit infor for package */

get_unit

/* get procedure or function information
depending upon the parameter */

unit (char

)

/* decompose a list of units for package
to build text spec for each unit part */

decomp (tokenlist

)

55

/* return a list of string after user input comments */

takecomm (tokenlist

)

/* input list for appending and return
final string list */

comment (tokenlist , tokenlist

)

/* control in out mode for procedure or function,
and return final var list */

takepara (symbol , tokenlist

)

/* control in out mode, input list for appending,
in out identifier and final list to be returned */

getpara (symbol , tokenlist , string , tokenlist

)

/* convert a list of comment to spec and
append it to specdb predicate in database */

writecomm (tokenlist

)

/* convert a list of accessed object names to spec and
append it to specdb predicate in database */

writewith (tokenlist

)

/* for with clause when more than one accessed objects */

morewith (tokenlist

)

/* generic or empty string, variable list, title and
end string for building text spec and append it to
specdb in the database */

wr itepara (string , tokenlist , string , string

)

/* when more than one variable,
variable list and end string for text spec */

morethanone (tokenlist , string

)

clauses

append([] ,L,L)

.

append([XjLl] ,L2,[X|L3]) :-

append (LI , L2 , L3)

.

appendtoken([] ,L,L)

.

appendtoken([XjLl] ,L2, [X|L3]) :-

appendtoken (LI , L2 , L3)

.

56

/* for combining seven strings into one line of code */

construct (SI, S2, S3, S4,S5,S6,S7,L) :-

fronttoken(Sbl,Sl,S2) ,fronttoken(Sb2,Sbl,S3)

,

fronttoken(Sb3,Sb2,S4) ,fronttoken(Sb4,Sb3 ,S5)

,

fronttoken(Sb5,Sb4,S6) , fronttoken(Sb6,Sb5,S7)

,

append ([] , [Sb6] ,L)

.

/************** SPECIFICATION EDITING ******************/

/* edit specification for the subprogram and assert it */

subprgm(G,S,X,Y) :-

draw_name (G , S , X , Y , N)

,

fronttoken(Title, "Specification entry for
component " ,N)

,

makewindow(1,7, 7, "",0,0, 25, 80),
removewindow

,

makewindow (2,7,7, Title ,3,10,18,60),nl,
assert (specdb ([])),
write ("Procedure or Function ? (p or f): "),
readchar(P) ,write(P) ,nl,
P_or_f(G,P,N),
removewindow

,

retract (specdb (Spec))

,

retract (tokendb (Tok))

,

active (A)

,

assertz(obdb(A, ' ' ,G,S,X,Y,N, Tok, Spec))

.

P_or_f (G,'p' ,N) :-

procedure (G,N)

,

proc_spec

.

p_or_f (G, ' f
'
,N) :-

function(G, "procedure ",N),
func_spec

.

p_or_f (G,_,N) :-

clearwindow,nl,
write ("Procedure or Function ? (p or f): "),
readchar(T) ,write(T) ,nl,
p_or_f (G,T,N)

.

57

/* edit specification for the package and assert it */

package(G,S,X,Y) :-

draw_name (G,S,X,Y,N),
fronttoken(Title, "Specification entry for

component " ,N)

,

makewindow(1,7, 7, "",0,0, 25, 80),
reniovewindow

,

makewindow(2,7,7,Title,3,10,18,60) ,nl,
assert (specdb([]))

,

build_pack(G,N)

,

reraovewindow

,

retract (specdb (Spec))

,

retract (tokendb (Tok))

,

active (A)

,

assertz(obdb(A, ' ' ,G,S,X,Y,N, Tok, Spec))

.

build_pack(G,N) :-

takecomm(C)

,

assert (unitdb([]))

,

get_unit,
retract (unitdb(U))

,

assert (tokendb ([comms(C) , access ([]) ,g(G)

,

title ("package "
) , name (N) , unit (U)]))

,

pack_spec

.

get_unit :

-

clearwindow,
write ("Procedure or Function ? (p or f): "),
readchar(T) ,write(T) ,T<>'\13' ,nl,
unit(T)

,

! , get_unit

.

get unit.

unit('p') :-

write (" name : "
) ,readln(N) ,nl,

procedure ("
" , N)

,

retract (tokendb (Tok))

,

retract (unitdb(In)
)

,

appendtokendn, [part (Tok)] ,Out)

,

assert (unitdb(Out))

.

unitCf) :-

write (" name : "
) ,readln(N)

,

function("", "function ",N),
retract (tokendb (Tok))

,

retract (unitdb(In)
)

,

appendtokendn, [part (Tok)] ,Out)

,

assert (unitdb(Out))

.

unit(_)

.

58

pack_spec :

-

retract (tokendb ([comms (C)
, access (A) , g (G)

,

title(T) ,name(N) ,unit(U)]))

,

writecomm(C)

,

writewith(A)

,

retract(specdb(In))

,

append (In, [G] ,M1)

,

fronttoken (HI , T , N)

,

fronttoken(H2,Hl," is"),
append(Ml, [H2],M2)

,

assert(specdb(M2))

,

decomp (U)

,

retract (specdb(En)
)

,

fronttoken (El, "end ",N),
fronttoken (E2, El," ;"),
append (En , [E2] , Out)

,

assert (specdb (Out))

,

assert (tokendb ([comms (C) , access (A) ,g(G)

,

title(T) ,name(N) ,unit(U)]))

.

decomp ([])

.

decomp([part([C, A, Z, title("function ") jR]
)

|

L]) :-

assert (tokendb ([C , A , Z , title (
" function "

)

]

R])),
func_spec

,

retract (tokendb (_))

,

! , decomp (L)

.

decomp([part([C, A, Z,title("procedure ") |R]

)

1L]) :-

assert (tokendb ([C,A,Z, title ("procedure ") !R])),
proc_spec,
retract (tokendb (_))

,

! , decomp (L)

.

/* draw a box for the object and ask for name * /
draw_name(G,S,X,Y,N) :-

empty(G,X,Y,S),
removewindow

,

makewindow (1,7, 7, "",21, 0,3, 80),
write ("Please enter the name: "),
readln(N)

,

removewindow

.

function(G,T,N) :-

write (" return ? "
) ,readln(R) ,nl,

takecomm(C)

,

takepara (function , P)

,

assert (tokendb ([comms (C) , access ([]) ,g(G)

,

title(T) ,name(N) ,para(P) ,ret(R)])

)

•

59

func_spec :

-

tokendb([comms(C) , access (A) , g(G) , title (T)

,

name(N) ,para(P) ,ret(R)])

,

writecomm(C)

,

writewith(A)

,

fronttoken(H,T,N)

,

fronttoken(E," return ",R),
writepara(G,P,H,E)

.

procedure (G,N) :-

takecomm(C)

,

takepara (procedure , P)

,

assert (tokendb([comms(C) , access ([]) ,g(G)

,

title ("procedure ") , name(N) ,para(P)])

)

proc_spec :

-

tokendb([comms(C) ,access(A) ,g(G)

,

title (T) ,name(N) ,para(P)])

,

writecomm(C)

,

writewith(A)

,

fronttoken(H,T,N)

,

writepara(G,P,H,"")

.

takeconun(L) :-

write ("Enter comments after — "),nl,
comment([] ,L)

.

comment (In, Out) :-

write (" -- "),
readln(Line)

,

Line <> "",

fronttoken(A," — ",Line),
appendtoken (In , [comm (A)] , M)

,

! , comment (M , Out)

.

comment (In, In)

.

writecomm([])

.

writecomm ([comm (Head
)

j Tail]

)

retract(specdb(In)
)

,

append (In , [Head] , Out)

,

assert (specdb(Out)
)

,

! ,writecomm(Tail)

.

60

writewith([])

.

writewith([with(N) J []]) :-

retract (specdb (In))

,

fronttoken(HI, "with ",N)
fronttoken(H2,Hl," ;"),
append(In, [H2] ,Out)

,

assert (specdb (Out))

.

writewith([with(N) |R]) :-

retract (specdb (In))

,

fronttoken (HI /'with ",N)
fronttoken (H2, HI," , "),
append (In , [H2] , Out)

,

assert (specdb (Out))

,

morewith(R)

.

morewith([with(N)
| []]) :-

retract (specdb (In))

,

fronttoken(Hl," ",N)
fronttoken (H2, HI," ;"),
append (In , [H2] , Out)

,

assert (specdb (Out))

.

morewith([with(N) |R])
:-

retract (specdb (In))

,

fronttoken (HI," ",N)
fronttoken (H2, HI," ,"),
append (In , [H2] , Out)

,

assert (specdb (Out))

,

morewith(R)

.

writepara(G, [] , Head, End)
retract (specdb (In))

,

append (In, [G] ,M)

,

fronttoken(E2,End," ;")

fronttoken (H2 , Head , E2)

,

append(M, [H2] ,Out)

,

assert (specdb (Out))

.

writepara (G , [var (Io , Name , Type
) | []] , Head , End) :

-

retract (specdb (In))

,

append (In, [G] ,M)

,

fronttoken (H2, Head," ("),
fronttoken (E2,") ",End),
fronttoken (E3,E2," ;"),
construct(H2, Name," : ",Io," ",Type,E3,L),
append (M , L , Out)

,

assert (specdb (Out))

.

61

writepara (G , [var (Io , Name , Type
)

] Rest] , Head , End

)

retract (specdb(In))

,

append (In, [G] ,M)

,

fronttoken(H2,Head," ("),
construct (H2, Name," : ",Io," ",Type," ; ",U,
append (M , L , Out)

,

assert (specdb (Out))

,

morethanone (Rest , End)

.

morethanone([var (Io, Name, Type)
j []] ,End) :-

retract (specdb (In))

,

fronttoken(E2,") ",End),
fronttoken(E3,E2," ;"),
construct(" ",Name,

"
: ",Io," ",Type,E3,L),

append (In , L , Out)

,

assert (specdb (Out))

.

morethanone ([var (Io , Name , Type
)

J Rest] , End) :

-

retract (specdb (In))

,

construct (" ",Name,
" : ",Io," ",Type," ; ",L),

append (In , L , Out)

,

assert (specdb (Out))

,

! , morethanone (Rest, End)

.

takepara(Pf ,P) :-

nl,
write ("Please enter the name and type of the

variables:"
)

,

nl , nl , getpara (Pf , []
,
" in" , P)

.

getpara(Pf ,Blist,"in",P) :-

write(" in : ") ,readln(N) ,N<>""

,

write (" type : "
) ,readln(T)

,

appendtoken(Blist, [var("in" ,N,T)] ,Newlist)

,

! , getpara (Pf , Newlist ,
" in" , P)

.

getpara
(
procedure , Blist ,

" in" , P) :

-

nl, getpara
(procedure, Blist , "out" ,P)

getpara(function, Blist, "in", Blist)

.

62

getpara
(
procedure , Blist , "out" , P) :

-

write (" out : "
) ,readln(N) ,N<>""

,

write (" type : "
) ,readln(T)

,

appendtoken(Blist, [var("out" ,N,T)] ,Newlist)

,

! ,
getpara

(
procedure, Newlist, "out", P)

.

getpara (procedure, Blist, "out" ,P) :

-

nl, getpara (procedure, Blist, "inout" ,P)

.

getpara
(procedure , Blist ,

" inout" , P) :

-

write (" inout : "
) ,readln(N) ,N<>""

,

write (" type : "
) ,readln(T)

,

appendtoken(Blist, [var("inout" ,N,T)] , Newlist)

,

! , getpara (
procedure , Newlist ,

" inout" , P)

.

getpara (procedure, Blist, "inout" , Blist)

.

/************** DRAWING BOXES *******************************/

/* draw a object with its name */

draw(G,S,X,Y,N) :-

empty(G,X,Y,S),
X2=X+3,Y2=Y+2,
raakewindow (2 , 7 , ,

"
" , X2 ,Y2 , 1 , 8)

,

write (N) , removewindow

.

/* draw an empty package */

empty(G,X,Y,S) :-

square (G,X,Y)

,

Xl=X+l,Y2=Y+2,
makewindow (2 , 7 , ,

"
" , XI , Y2 , 1 , 8)

,

write(S)

,

removewindow

.

63

/* draw a square as an object */
square (G,X,Y) :-

X1=1280*(X-1)+500,Y1=400*Y,
A1=X1,B1=400*(Y-1),A2=1280*X+430,B2=B1,
A3=A2,B3=Y1,
X2=1280*(X+3)+500,Y2=Yl,
X3=Xl,Y3=400*(Y+9)

,

X4=X2,Y4=Y3,
X5=1280*(X+1)+500,Y5=Y1,/*
X6=X5,Y6=Y3,
line(Al,Bl,A2,B2,7)

,

line(A2,B2,A3,B3,7)

,

line(Xl,Yl,X2,Y2,7)

,

line(Al,Bl,X3,Y3,7)
line(X2,Y2,X4,Y4,7)

,

line(X3,Y3,X4,Y4,7)

,

line(X5,Y5,X6,Y6,7)

,

GO"generic",
11=1280* (X-l) +300, J1=Y1,
12=11, J2=400*(Y+10),
13=1280* (X+2) +500, J3=J2,
line(Al,Bl,Il,Jl,7)

,

line(Il,Jl,l2,J2,7)

,

line(X3,Y3,l2,J2,7)

,

line(I2,J2,I3,J3,7)

,

line(X4,Y4,I3,J3,7)

.

square (, ,)

.

/*
/*

11-

/ /

-12
I

|

*/
*/

/* A1----1- — 3 */
/* i

i

i

i
window i

i

*/
/* i

i

5- — 6 */
/* A2---A3 i

i
13 */

/* i

i
Name i

i
/ */

/* 2- — 4 */
/* */

64

PROLOG IMPLEMENTATION OF A GRAPHIC TOOL FOR

GENERATION OF ADA LANGUAGE SPECIFICATIONS

by

SPENCER SHU-TSU CHENG

B.S., NATIONAL CHENG-KUNG UNIVERSITY, 1980
M.S., KANSAS STATE UNIVERSITY, 1986

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer and Information Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

ABSTRACT

This report presents the design and implementation of a

graphic tool for the design and specification of the

modular structure of Ada programs. The function of the

software tool is based upon a similar tool that was

presented in a previous report and implemented in Pascal.

The current version is implemented in Turbo Prolog, a

variant of Prolog that executes on a microcomputer and

supports graphics and windows for the user interface.

The purpose of this project was to explore the

suitability of Prolog for graphics and system design

tools, particularly to evaluate the size and readability

of the Prolog vs. Pascal code. We find that the source

code in Prolog is relatively shorter than equivalent code

in Pascal. We feel that Prolog code is more concise and

readable than Pascal. The graphic mode of Turbo Prolog

does not support mixing of text with graphic objects;

however, the use of overlayed windows provides a mechanism

to create diagrams with integrated text information.

