
OPTIMUM PREVENTATIVE SAMPLING BY THE
DISCRETE MAXIMUM PRINCIPLE

by ?e$r.

SUBIR BANERJI

B. S. (Mathematics) University of Calcutta
Calcutta, India, 19o9

B. S. (Mechanical Engineering) Government College of
Engineering & Technology, Raipur, India, 1964

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1968

Approved by:

*Z,rLf - uCt
Major/Professor



f-D
%(.&% i

R<{
19if
B3*Z~ TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. REVIEW OF A DISCRETE FORM OF THE MAXIMUM PRINCIPLE. . 4

3. ORDINARY SAMPLING 12

Example 1. Optimum Sampling Procedure 12

1(a). Numerical Example for a 3-stage

System !7

4. PREVENTATIVE SAMPLING 19

Nature of Probability of Defective Function. ... 19

5. CASE STUDIES OF OPTIMUM PREVENTATIVE SAMPLING .... 22

Example 2. Optimum Preventative Sampling

—

Total Sampling Volume Being Given. . . 22

2(a). Solution by the Lagranger's

Multiplier 23

2(b). Solution by the Discrete Maximum

Principle 29

2(c). Numerical Example 3S

Example 3. Optimum Preventative Sampling Con-

sidering the Cost of Inspection. ... 41

3(a). Exact Solution 44

3(b). Approximate Solution 45

3(c). Numerical Example 46

Example 4. Optimum Preventative Sampling—The

Cost of Inspection and the Total

Sampling Volume Being Given 54



11

4(a). Computational Procedure 58

4(b). Numerical Example. .
•

53

ACKNOWLEDGEMENTS 61

REFERENCES 62



1. INTRODUCTION

Extensive work has been done over the past decade on

the application of the maximum principle to optimal control

problems with encouraging and rewarding results. Originally

the maximum principle was developed by the Russian mathe-

matician Pontryagin in 1956 for the continuous process and

was applied mainly in the field of optimum system control.

The discrete version of the maximum principle is an analogy

of the continuous process and was developed by Rozoner, Chang,

Katz and Fan and Wang (3). The principle has recently been

applied to a variety of industrial management problems like

production scheduling (5), transportation problem (6),

system reliability (U) , equipment replacement (1), traffic

flow (10), design of gear-train (2) and so on. However, not

much work has been done on quality control which is also a

vital organ in an organization.

The aim of this report is to show the applicability of

the discrete maximum principle in the field of quality con-

trol.

A brief review of the discrete maximum principle end

the recurrence relation for one-dimensional process is pre-

sented in section 2. A more detailed analysis may be found

in the works of Fan and Wang (3).

In section 3 "Ordinary Sampling" has first been explained

and then optimum decision criteria for an N-stage process



have been developed with the help of the discrete maximum

principle. A numerical example for a 3-stage system is then

solved.

Section U deals with preventative sampling (9). The

central idea of sampling is not only to find faults but also

to prevent their future occurence. It is rightly said that

"Quality control is the science of preventing the manufacture

of defective product." Juran (7) says "There must be a

recognition of the fact that the basic objective is pre-

vention of defects and that all else is secondary." All

these ideas are in recognition of the principle that it is

better to prevent defects from happening than to let them

happen and then to make the best of it.

There are a number of preventative measures like

process control capabilities, control chart analysis, pre-

ventative sampling, design of sampling plans etc. For this

report we are considering preventative measures due to

human reactions and other intangible factors. The effect

of human reactions on sampling can be realized from the inef-

fectiveness of the sampling plan in which no provision is

made for notifying the producing operator of the rejection

of a lot. Incorporating a slight modification of notifying

the operator about the rejection of a lot has found to have a

positive effect in reducing future defects.

As for practical examples we can think of the random

sampling for tax return, checking the drivers license of a

teen-ager or a conductor checking a ticket in a bus. One



hundred percent checking in these situations is cost pro-

hibitive whereas no inspection will lead to abuse of the

law. Hence random sampling is the only answer. The know-

ledge that sampling is being done deters people from in-

fringing the law.

Three types of optimum preventative problems are en-

countered in practice. They are

1. Minimizing total expected cost—the total sampling

volume being given,

2. Minimizing total expected cost—the cost of in-

spection being considered,

3. Minimizing total expected cost—the cost of in-

spection and the total sampling volume being given.

Section 5 is devoted to these types of problems. A

general solution for N-stages is worked out and then a

numerical example for each type of problem is solved by

making use of the general solution.



REVIEW OF A DISCRETE FORM OF THE
MAXIMUM PRINCIPLE

A multistage system with N stages in series is shown

in Fig. 1. The process consists of N stages connected in

series. The state of the process stream denoted by an

s-dirr.ensional vector, x (x-,,x , ..., xs ) , is transformed

at each stage according to an r-dimensional decision vector,

6 = (6, ,6 , ..., 6 ), which represents the decision made at

that stage. The transformation equation at the nth stage

may be written, in vector form, as follows

xn . Tn (x
n-1. qIIj

>
n = 1, 2, ..., N, (2-1)

x°=*< .

The optimization problem associated with such a system is

to find a sequence of decision variables 9 , n = 1, 2, ...,

N, subject to constraints

YiOj.e^, .... e£) 4 0, n-1, 2, .... N, (2-2)

i = 1, 2, ..., r,

which makes a function of final state variables

s
N

S = Z C;X. , Cj = constant, (2-3)
i=l

x 1

an extremum when the initial condition x = << is given.

The procedure for solving such an optimization problem

by a discrete version of the maximum principle is to
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introduce an s dimensional adjoint vector z
n and a Hamil-

tonian function H
n which satisfy the following relations

| zY (x"-
1

; e
n
), n-'l, 2, .... H, (2-4)

n-1 _ 5H
n

n = 1, 2, ..., N; (2-5)

1-1, 2, . .. , s,

and

z
N - c., i = 1, 2, ..., s. (2-6)

If the optimal decision vector function, 6 , which makes

the objective function S an optimum, is interior to the set

of admissible decisions, 9 , (the set given by equation

(2-2)), a necessary condition for S to be an (local) extremum

n
with respect to 6 is

=0, n « 1, 2, 3, -.., K. (2-7)
2>e

n

If 6 is at a boundary of the set, it can be determined from

the condition that H is (locally) an extremum.

This is the basic algorithm of the discrete maximum

principle. In the above formulation of the problem we see

that only initial conditions of the state variables are fixed,

but in practice many cases might arise where the final con-

ditions of the state variable might also be fixed. For



example the final conditions x
&

and xb may be preassigned

and the objective function given as

s N
S =

i^l
CiXi ' (2_8)

i^a
irt

Under such conditions the basic algorithm is still applicable,

except that equation (2-6) is changed to

Z
i

= c
i '

i = 1, 2, ..., s, (2-9)

i ^ a, b.

Optimization of One Dimensional Processes (3)

If a multistage decision process can be completely

characterized for the purpose of optimization by a single

state variable, the process is called a one-dimensional

multistage decision process.

For one dimensional process, there is only one state

variable x^, satisfying the performance equation

n mn, n-1 n.
x
l

= T (x
x ; S ), n = 1, 2, ..., N. (2-10)

In general, the objective function to be optimized is the

sum of a certain function of x. and 6 over all stages of the

system such as

Z Otx?"
1

; e
n

) .

n=l
x



The optimization problem associated with such a process is

to find a sequence of decision variables 6 , n = 1, 2, ..., N

so as to maximize

N n-l „n.
I G(x

x ;
8"),

n-l

when x is given. Introducing a new state variable x~

satisfying

X
2
= X

2
+ G(x

l '

9 '' n " 1
'

2
'

•••' K
'

(2-11)

x° = 0.
2

Therefore, we see that the objective function is given by

S = 1 G(x"
_1

; e") = xt . (2-12)
n-l 1 z

Thus the problem is transformed into the standard form

in which a sequence of 9 , n = 1, 2 N is to be chosen

N
so as to optimize x2 for a process described by equations

(2-10) and (2-11). x is called the primary state variable

and Xo is the secondary state variable.

Then the Hamiltonian function H defined by equation

(2-i*) can be written as
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9

According to equation (2-5 )

,

the recurrence relations fo:r

the adjoint vector elements z, and z
2

are found to be

n-1
z
l

"3T (x^ 1
; e

n
)

«1
+
^G , n-1 ,,n>

(x
1 ;

b )

K'
1

n
z
2 >

DxJ"
1

(2--H)

n-1
z
2

n =

n
Z
2 '

1, 2, ... , N.

(2--15)

Since the objective function is

S =
2 NZ c

±
x <

t«l
1 1

N
= X

2
'

C
l

" 0, c
2
= 1 •

Thus we ol

N
Z
l

=

N
Z
2

=

Dtain

1 .

(2-

(2-

•15a)

•15b)

Comb ining equations (2-15b) and (2-•15) and substituting in

equa tion [2-U), gives
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z
2

= 1
> " = 1, 2 N, (2-16)

i

and

n-1 }T (x"" 1
; B

n
) ^G (x°-X j e

n
)

Z 2 + (2-17)
1 T^" 1 1 ^x^"1

n-1, 2 N.

Combining equations (2-16) and (2-13), we obtain

„n n _ , n-1 _n, „ , n-1 n, n-1
H = Z]

_
T ( X;l ; b ) + G (x

x ; b ) + x
2 ,

n-1, 2, ..., N.

According to equation (2-17), i.e., the stationary condition

for optirr.ality, 6 may be found where

^„n_
n

c3T (x- 1
; e

n
) DG (xj-

1
; b

n
,

5e
n Zl

^en 3y" °
•

Solving this eauation for z-, , we obtain

«5G (x^- 1
; Bn )

(2-18)
n ^n

7. = - Ob
1

}T (x^ 1
; 8

n
)

^ n
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Substitution of equation (2-16) into equation (2-17) give:

the recurrence relation

"3c (x"-1 ! en ) la (xji an+1 )

^T (xg" 1
; e

n
) ^T (x£; 9

n+1
)

'

3x£

^>G (x"; 6
n+1

)

Ux£

n - 1, 2, ..., N-l. (2-19)

Combining equations (2-15a) and (2-18) gives

"3c (x^ 1
; e

n
)

PI

= . (2-20)
"3c

Making use of the recurrence relation, equation (2-19), along

with the performance equations, equation (2-10) and equation

(2-20), a number of optimization problems associated with

one-dimensional processes can be solved. For processes with

a fixed end point x. , condition z_ (et

equivalently , equation (2-20) is deleted.

a fixed end point x , condition z. = (equation (2-15a)) or
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3. ORDINARY SAMPLING

By the term ordinary sampling we rr.ean that there is

no interaction between sampling and the probability of being

defective. In other words sampling is done merely to detect

the defective article and it does not have any bearing on

the fraction defective. In order to find the best inspec-

tion procedure we equate the cost of inspection with the

penalty for accepting a defective quantity and the decision

is taken accordingly.

Example 1. Optimum Sampling Procedure

The process flow chart of a component may be as shown

in Fig. 2.

From the process flow chart we visualize that the com-

ponent moves from one stage to another (we may consider each

process as a stage.) The value of the product changes, and

so does the percent defective. The problem is to find the

best inspection procedure so that sum of the total expected

cost is minimum.

Let

S = Percent sampled at the n
th stage, 0<en

<l,

n = 1, 2, ..., N,

a
n

= Quantity at the n stage,

v
n

= Penalty for accepting each defective quantity,

f
n

= Percent defective at the n
th

stage,
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I
n

Inspection cost at tr.
th

.e n stage
>

X 11x
l

*= Sum of sampli

stage,

3S Up to and includi ng the n
th

n-1 n
* x

l
+ a

n
d

'
n-1, 2, ..., N, (3--1)

X
1

= 0,

xn
2
= Sum of expected cost up to and i ncluding the

th _n stage,

n-1 .= x_ + a„ v
2 n n

f
n
(l-,

n
) + Vn6

"'

(3--2)

where anvn
f
n
!l-6

n
) is the p<snalty for accepting the defective

component and I a 6 is the
n n

cost of inspection. It may b<

pointed out here that these are opposing costs in nature and

we want to minimize the sum of these two costs.

The i objective is to minimize

S =
2

i-1

K N
C.x" = x

2 ,

where

c l and Co ** 1 .

Introduc ing the Hamiltonian function H
n and the adjoint

• vt n
variables z

.

we' may write

H
n

- z£< x-1 + an6
n

) +
n T n-1

z
2 L

X2
+ anvnfn (1 -^ + ^A .

n ' 1, 2, ..., K, (3-•3)
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n-l = ^|L = n
n = l, 2, .... N, (3-4)

1 ^_1
!

4- 0l
-.o, (3-4a)

z = r = z„ , n - 1, 2, ..., N, U-P/
2 Sx^"1 2

Z
N - c - 1 .

0-5a)
2 2

From equations (3-4) and (3-4a) we obtain

*l
= 0, n = 1, 2 N. (3-6)

Also from equations (3-5) and (3-5a) we obtain

ij"- 1, n= 1, 2, .... N. (3-7)

Hence the Hamiltonian function can be rewritten as

H
n

- x- 1
+ an

v
n
f
n
(l-e

n
) + an

I
n
9
n

- t^"
1 T anVn> + (•aIa-*nTBfn ) 9"

•
(3 " 8)

n = 1 , 2 , . . . , N

.

n n_l j
The equation of H is linear with respect to x and

G
n

; therefore, the strong form of the maximum principle can
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be applied, i.e., the objective function is absolutely

minimum if and only if H
n is absolutely minimum.

Denoting the variable portion of H as H we may write

Hv " ( anIn " anW e
"

where a , I , v and f are constants. Kence, the variable

portion of the Hamiltonian function Hy is a linear function

of 8 .

The optimal value of 9
n
which makes H

n
minimum should

v

occur at the boundary of the admissible region of 8 , namely,

0^8n $l.

The sign of q
n given by

°-
n

- an^h "W
decides which one of the boundaries 6n lies (5 denotes

optimum value of 6 ) . For a positive value of q
n

, B is

0, which is equivalent to no inspection and for a negative

value of q
n

, ti
n

is 1, which is equivalent to inspecting all

the components. Summarizing, we have

6
n

= when q
n
>0,

§
n

•= 1 when q
n <0,

4B
n
< 1 when q

n = 0.

In other words
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H
n

when f
n
<£n ,

vn

9
n

= 1 when f„N Xn . (3-9)

4Sn
4 1 when fn £n

vn

gives the optimum inspection procedure.

1(a). Numerical example for a 3-stage system.

Let us assume that a component is being produced in 3

stages. The value and cost of inspection at each stage are

given as follows:

Stage no.

1

2

3

The problem is to decide the inspection procedure to

be followed at each stage so that sum of expected cost is

minimum.

For first stage.

From equation (3-9) we find that inspection is necessary

only when the fraction defective is greater than 0.05/5.00

or 1%. Hence, the decision for the 1st stage is

i) Inspect 100% if the fraction defective is greater

than 1%.

Value
in $

Inspection
cost in $

5.00 0.05

10.00 0.20

15.00 1.00
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ii ) Do not inspect if the fraction defective is less

than 1%.

iii) May or may not inspect if the fraction defective

is equal to 1%.

The decisions for the 2nd and 3rd stages are the sarr.e

as in the 1st stage, the only changes being in the fractions

defective which are 2% and 6.6% respectively.
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4. PREVENTATIVE SAMPLING

Preventative sampling differs from ordinary sampling

in that the former aims not so much to find the defective

quantity as to discourage their future occurence where as

the latter concerns primarily in finding defects. It has

been found that the probability of being defective is a

function of sampling and this, in fact, is the central idea

of preventative sampling.

The knowledge that "sampling" is being done encourages

a sense of responsibility in the people concerned and makes

them more careful. In other words, the more rigorous the

sampling the less is the probability of being defective.

But the probability of being defective is not a linear fun-

ction and it contains coefficients like "avoidable" defect,

"unavoidable" defect and "elasticity" of reaction. The

elasticity of reaction takes into account the human reactions

and other intangible reactions that come into play in this

type of situation.

Nature of Probability of Defective Function

The relation between p(9), i.e., the probability of

being defective, and 6 is shown in Fig. 3 (9). It will be

seen that p(6) decreases very rapidly initially with small

increase in 9, but thereafter it tends to be constant with

larger values of 6. This constant value of p(6) which



Fig. 3- Relation bet-ween a and p(d)
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cannot be reduced to zero even for very large 6 is called

the residual ''unavoidable defect."

Many attempts have been done to define the probability

defective function p(6). The equation

p(d) = A + Be"Cb (4-1)

may be used as a fairly good representative of p(6) function

where A, B and C are constants (9).

We can interpret equation (4-1) as follows: A measures

the "unavoidable" defects that cannot be easily avoided even

with large value of S. B measures the "avoidable" defect and

it is this defect that we are interested in reducing. C

measures the "effect" of sampling on "avoidable" defects.

The quantity C can be looked as the "deterrent" effect of

sampling on the probability of being defective. It is also

regarded as ''elasticity" of reaction to sampling. It may

be pointed out here that the idea of preventative sampling

is based on the existence of the quantity C. The larger

the value of C the greater is the scope of improvement by

the use of preventative sampling.
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5. CASE STUDIES OF OPTIMUM PREVENTATIVE SAMPLING

Examole 2. Optimum Preventative Sampling

—

Total Sampling Volume Being Given

Let us assume that a manufacturing company is producing

N types of products, each being different with respect to the

value of the product, probability of being defective,

quantity of each type and so on. We have to find the

optimum preventative sampling procedure subject to some

given constraints. The criterion for the optimum is the one

that gives "the total expected value of the undetected faulty

articles as small as possible."

Let

a ±
«

.
the quantity of the i type of product,

8^ the percentage sampled of the i type,

v
i

= the value of each of the i product,

p. (6.) - the probability of being defective.

In general p(8) is a monotone decreasing function of 8. Then

clearly a- (1-6^) is the percentage of product not sampled,

and a . v.p. (8. } (1-8 .
) is the value of the undetected defective

l i l l l

quantity. The problem is then reduced to the form:

N
Minimize S = ~Z a ivip i (81 ) (l-6i ) (5-1)

i=l

subject to the constraints

N
Z a.G. - D<< (5-2)
1-1 X 1
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and

048^1 , i = 1, 2, ..., N (5-3)

where

K

2 3.- - D = Total quantity
i-1

1
(5-4)

and o( is the total percentage sampled, a given fixed quantity.

In other words Dc( gives the overall sampling size.

2(a). Solution by Lagranger's Multiplier

From equations (5-1) and (5-2) and by the use of the

Lagrangian multiplier we may write

N
Min S = i" a

i
v
i p j

_(ei )(l-e i
) + Mla^-Ly)

.

(5-5)

Let gi (6
i

) = p
1
(8

i
)(l-6

i
). (5-6)

Then equation (5-5) reduces to the form

N N
Min 5 ' t a,v g (9 ) +^( £a b^DsO. (5-7)

For minimization we differentiate S with respect to 6
i

and equate it to zero

>8
i

a ivi T>8±
+Xa

i
~ °>



2k

5BJ " v.
(5-8)

The Lagrangian multiplier, >- , is obtained by solving

equations (5-2) and (5-8).

Substitution of the value of ?v. in (5-8) will give us

the value of 9., the percentage to be sampled at the i

stage, provided g^(8.) is a known differentiable function

of e^

The inherent difficulty of using the Lagrangian multi-

plier method is present in this problem and it can be noticed

that we did not utilize equation (5-3)- Kence, only those

solutions of equation (5-8) that are non-negative and lie

between and 1 are valid. It may be mentioned here that

equation (5-8) may give some negative results if »(. is too

small.

Excluding this extreme case, equation (5-8) together

with equation (5-2) gives the general relation for the

optimum preventative sampling. The relation between g(0)

and 6 is shown in Fig. 4.

From the graph we find g(S) decreases first quickly and

then slowly. If we analyze equation (5-8) with this point in

mind we can conclude that 9-j_ will be larger as the value of

v is larger. That is, the higher valued articles will be

sampled more intensely.



A+ B

o *-

Fig. L. Relation between 6 and g(t
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Also, for the category in which the probability of

defect is high, the derivative of g(8) will generally be

larger for a given 6. Consequently the corresponding 9

satisfying equation (5-8) tends to be larger. This means

the categories with high probability of being defective will

be sampled more intensely which is desirable.

Now if we assume that the probability of being defective

is given by

p(y) = A + Be
_CB

(5-9)

where A, B and C are constants, then from equations (5-6),

(5-8) and (5-9) we may write

Si (e± )
= [A + 3e~

CS
i

Sg.(6.)
l l -C6.-

- - - (A+Be x

2 d-e^ ,
(5-io)

-ce.
(5-iD

-(A+Be"C6 i) - BCe_Ce i [1-Q± ) = - 2± ,

A+Be"
C6

i + BCe"
CBi

- BCS^-09! =
î

A+Be"
C6

i ^1+0(1-6^1 - £ . (5-12)

Now if the 6^ are small quantities which is usually true

and C is large, then we can approximate equation (5-12) by
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BCe 1 = £ . (5-13)
i

To obtain equation (5-13) we first approximate equation

(5-10) by

gi (6
i

) - A+Be"
Cdi

and then follow the succeeding steps.

Equation (5-13) together with equation (5-2) will give

us the desired solution which is worked out as follows:

Taking the logarithm on both sides of equation (5-13)

yields

In 3 In C - C9. = In A- In vi ,

6
i
= i Jln B + In C - ln>-+ In v±

~]
. (5-14)

Substituting equation (5-14) into equation (5-2), we obtain

K
i r -i

"Z a
i g In B + In C - In >.+ In vt I

= D<<
,

or

N N

4^f» *j + 4^ ^ '!--< (5 - i5)
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Substituting the value of obtained from equation

(5-13) into equation (5-15) and utilizing equation (5-4) we

obtain

X - I + In _ BC - i

2. &i
In v

i

+
„ -CS, DC

v .BCe
i

1^-mv. + ce.J.i=i

N

.Vi ln v
i

DC

1 ln v. + 6. + i

N

X a
i

ln v
i

C "' i i
n

DC

K
2, ai ln v

i

IN

<+ ^ In v. - 1 2 ai/D m Vi

i i
N

<<+ i ln Vi - £ Z ln( Vi )

a
i/D

1 v.

«C + ± In _
1 P IT

.TT (vi)
1/D

i=l



29

1
v

i

<<+ ^ In ~ (5-16)

where v„ is the geometric mean article value, that is,

v„=ff (v.)
ni/C (5_17 )

i=l
1

Equation (5-16) gives the optimum preventative sampling

procedures provided the different values of B. obtained

thereby are non-negative and lie between and 1.

It can be seen that the final approximate solution,

i.e., eauation (5-16) contains only the parameter C.

The approximation is equivalent to neglecting the term

(l-6
i

) in the equation g(6) = (1-8) p(o), i.e., we are

neglecting the improvement attained by direct detection of

defects for that attained by preventative means.

2(b). Solution by the Discrete Maximum Principle

We may consider each of the different types of product

as a stage having different values, different probability

of being defective, etc.

Let us define

6n = Percent of articles sampled at the n stage,

0^9n <l, n = 1, 2, ..., K,

a = Quantity at the n stage,

pn (8
n

)
= Probability of being defective at the n stage,
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v = Value of each article at the n stage,

x" Sum of samples up to and including the n

stage,

xn = Sum of expected value of undetected defective
2

Quantity up to and including n stage.

Then the performance equations are

X
l
= X

l

_1 + an
6n

>
n = 1, 2, ..., N, (5-12)

xj - 0, (5-19)

x^4DK, (5-20)

*2
= X

2

_1
+ a

n
vnPn ( °

n)(1
- sR)

'
n " 1

>
2

> '••' N
' (5 " 21)

The objective is to minimize

^ N K
S = 1 Ci x. = x

1
'

, (5-22)
i-1

1 1 "=

where

c - and c
2

= 1 . (5-23)

Introducing the Hamiltonian function H
n

and adjoint

variable z
n we may write

H" = zn(xf1+a
n
en ) + ^[(^'1+anvnpn (e

n )(l-6n
)j , (5-24)

n = I, 2, ..., K,
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n-1 ^>H
n

n
Z- r = Z,
1 Sx^" 1 !

i
n - l , 2 , . . .

,
N, (5 -25)

N ,

Z
l * c

l
'

n-1 ~dv
n

n

2 3vn-l
Z
2X

2

> n = l , 2 , . . .
,

N, (5 -26)

N
z = c = 1 .

2 2
(5--27)

Fror. equations (5-26) a nd (5- 27) we find

-1=1, n-1, 2, ., N . (5--28)

Hence equation (5-24) reduces to

H
n - z?<x£"1+a

n
en ) + xn

" 1 4 a \
n

n
Pn

(e
n )(i-e n ). (5-29)

The variable portion of equat ion (5- 29) denoted by K is

Lin n „nH
v

= z
l

an°
+ a

n
v

,

p
'-• n

/ n
(e )(1- e

n
) (5- 30)

Now, as in the Lagrangian multiplier case, let us s.ssume

gn (e
r
*) - Pn (e

n
)(i-bn ) •

Then equation (5-30) is trans:formed into

un n ,.n
,n = z, a b + a v s.v In a

n n6n
(e

n
) . (5-3D
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The optimum 9
n

is obtained by differentiating H
n
partially

with respect to 6n and equating it to zero.

3Hv n ^n (en
>

;—£ - zi
1 a + a v —S- =

,

3on " v
n

(5-32)

Equation (5-32) is the same as equation (5-8), found

earlier by employing the Lagrangian multiplier method. The

difference is that .A- , the Lagrangian multiplier, has been

replaced by z
11

, the adjoint variable of the discrete maximum
x

principle.

Now, as done earlier, let us assume

pn
(e

n
) - A + Be-

Cen
, n = 1, 2, ..., K. (5-33)

Then equation (5-22) is written as

_ -n-io.. „ ,»^-cen
,x2 - x5- ±+anvn (A+Be-

uo
")(l-en ) >

n = 1, 2, ..., K, (5-34)

*°-o.

Comparing equations (5-19) and (5-34) with performance

equations of the one-dimensional process we find

Tn /„n-l. Qn. _ n-1 ^ „nT (x
1 ; 9 ) - x

x
+ an

b ,
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(

*i~
1; en) = Vn (A+Be

"Cen
Hi-e

n
)

Making approximations, i.e., neglecting the term (1-9.)

from the, above equation, which in turn is equivalent to

neglecting the improvement attained by direct detection of

defect for that attained by preventative means, we may write

W" 1
; 9

n
) n

=b = -anvnBCe
"

- (5-35)

SOU?" 1
; G

n
)

3X?" 1
(5-36)

STU^" 1
; 6

n
)

" = a
n > (5-37)

3en

STfxJ"
1

; 9
n

)

>*1
n-1

= 1
• (5-38)

Substituting these partial derivatives in the recur-

rence relation of the one dimensional process given by

equation (2-19), we obtain

-a nvnBCe _ -an+1 vr,+1 BC e
-Cb

an an+1
Ui - ,
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n = 1, 2, ..., N-l

v
-CGn _ce

n+l
" v

n+l
e

e
n =en+1 -i ln ^ii, n-l, 2, .... N-l . (5-39)

This is the recurrence relation of the optimal decision.

With the help of equations (5-13), (5-19), (5-20) and

(5-39) we may obtain the value of 6n in terms of known

quantities. This is worked out as follows:

Let E be an assumed value of XT. For n = 1 equation

(5-18) becomes

x
1 - x° + a G

1111
Since x = and x = E, we obtain

E = a^ 1
,

e
x = A

(5-40)



35

Substituting equation (5-40) into equation (5-39) for n = 1

yields

e
1
- e

2
- I l„ 12

,

C V
±

'f-^t 1*^ (5-4D

For n = 2, equation (5-18) becomes

x
2 - x} + a, 9112
" E + a

2
{k + ^ I" ^) .

E (1 + & +
J -2 ^ S • (5-42)C °2

Again from equation (5-39) for n=2, we obtain

e3
i m Za
C v

2

o3 - ir + * Un £ + m II,

E_ 1 _
v
3

"^1 " (5-43)
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Also frorr. equation (5-18) for n=3 , we obtain

x3 = x2 + a eJ

= E (1 4 !l) + a2 ln J2 + a3 (_S + I ln II)

a
2 a

^ 1
v
? v q

= E (1 + ^ - a^>
+

c
U

2
ln vj

+ a
3

ln ^ •

Similarly we obtain

xJ-E(l +s2 +12 + ..., +5h) 4i(a
2
in-^4

a, In -2- + a, ln -A +...,+ aN ln _!
3 v-

L
4 v, N

v.

1 N iTn E "1

^-(J^, 4 n̂Ii
(a

n
lnv

n
)-lnv

l(nli
a
n

)

(5-44)

Combining equations (5-20) and (5-44), yields

E t (

ni
an) + ^[^ (an ln Vn) " ln Vi (

iian)
]

= D ^'

or



H N

W-t Z (a n In v ) - In v ( I an
Ln=l -1

- n=l .

a
-j_

n=l

Now from equations (5-40) and (5-45) we write

^-U I (an
m v

n ) - m v (|an
L n=l r.=l

a
l n=l n

r r:

e
l = DK , 1 I n=l

m T r / In v n -

Z (a
n
m vn )

C"
in v

l - K

n=l [_ n=l n

or generalizing

*-<+$ NV i-^VD

o<+ 1 l„ -_In
C N

TT (v
n )

an/D

n=l

V 1 i

Vn

37

(5-45)

C
ln 7" n = 1, 2, ..., N (5_^6)

g
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N an/D
where v = fT" (v ) is the geometric

S n=1 n
mean article value.

2(c). Numerical Example

A 5 percent sample of a group of 1000 articles of five

different types is taken. The price of each type of article

and their quantities are as follows:

Type Value Quantity

n vn an

1 5 400

2 10 250

3 15 100

4 20 150

5 25 100

Also it is known that an increase of 10$ of the

sampling fraction reduces the avoidable defect by y^.

Find the optimum preventative sampling procedure.

From the problem we know

e-0.lc = ie
12

or 0.1 x C log
10

e = log 1 - log
10

12
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log 12
or C =

., i n

lu = 24.840.1 log10 e
**' a*

The geometric mean article value

N n,
v = TT (v- -i)

400 250 100 150 100
(5)1000" (10)1000 (15)1000" (20)luOo (25)TOOO

(J)
0.4

(10)
-25

(15)
.l

(20)
.15

(25)
0.1

- 9.596

Employing equation (5-46) where«< = .05 (given) we can

write

= .05 + —i— in —
24.84 9.596

.05 - .0262 = .0238

3
2
- < + £ in JS

.05 + —i— In
24.84 9.596

= .05 + .0016 = .0516
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1
V
T

.OS + —i— in —i^_
24.84 9-596

.05 +.0179 = .0679

1^e4^+ U ln
v

= .05 + -1 m
24.64 9.596

= .05 +.0295 = .0795

6 =^+ ± in _Z
•> C v

.05 + —±— In1 i„ 25

24.84 9.596

= .05 + .0385 - .0885

Rounding off to 3 decimal places we get the answers as

6
1

= 2.4%

6
2

= 5 .2%

b
3

= 6 .8%

°4
= 8, 0?

6
5
' 8..9%

It may be verifii3d that
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5 n
~Z a

n
o - (400)(.024) + (250)(.052) + (100)(.068)+(150)(.08)

n=l

+(100) (.089)

=50
, i.e., 5% of 1000.

Example 3. Optimum Preventative Sampling
Considering the Cost of Inspection

Let there be a total of D articles of K different types

which have been categorized into N stages so that each

category has the same value of the article, the same pro-

bability of being defective, and the same cost of inspec-

tion. We have to optimize the sampling procedure of each

stage so that the expected total cost is minimum.

Let

6 = Percent sampled at the nth stage,

an
= Quantity at the nth stage,

vn - Value of each article at the nth stage,

Pn (t>
n

) = Probability of being defective at the nth

stage,

I
n

= Cost of inspection of each article at the nth

stage,

x
1

= Sum of samples up to and including the nth

stage

- **" + ane
n

,

(5 _4?)
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x" - Su* of expected cost up to and :Including the

nth sta•ge

- A 1
+ a vn nPn (e

n
)(i-e

n
) + I

nane
n

(5-48)

where anvnpn (6
n

) (1- e
n

) is the cost of undetecteid defects

and Inan6
" is the cost of inspection.

The objective is to minimize

S -
2

N
X
2

(5--49)

where

c
l

= c
2
= 1 •

Introducing the Hamiltonian function Hn and the adjoint

variables z? we may write

H
n = z^x^+a^] + z

2
(x

2
_1+anvnPne

n
(l-e

I3
)+Wn

) J

(5- 50)

n = 1, 2, ... , N t

n-1
Z
l

n
z
l J n = 1, 2, ... , N (5- 51)

N
Z
l
= c. =

, (5-51a)
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3^- A , n-l, 2, .... N, (5-52)
fccg-1

z
,

= =
2

= X ' (5-52a)

From equations (5-51) and (5-51a) we get

z" =
3

n = 1, 2, ..., K . (5-53)

Also iron equations (5-52) and (5-52a) we obtain

z* - 1, n = 1, 2, ..., N . (5-54)

Substituting the values of z. and z
? in equation (5-50) we

obtain

H
n

= x""
1

+ anvnP„(e
n
)(l-e

n
) + T a,e

n
. (5-55)

Therefore, the variable portion of the Hamilton function

denoted by H is

H
v

= Wn (en)(1-8n) + ^^9" (5-56)

= vnangn (e
n

) + inane
n

where gn
(e
n

)
= pn

(9
n

) (l-9
n

)

.

The optimum 6
n
may be obtained by differentiating H

n

partially with respect to 9
n and equating it to zero.
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—- = v a —=r + I a =0 (5-57)
^e n

v
n
a
n ^ n n n

Equation (5-58) gives the general relation for the optimum

preventative sampling considering inspection cost.

3(a) Exact solution

Let the probability of being defective be

Pn (6
R

) = A + Be
-C9n

where A, B, and C are certain constants which have been

defined earlier. Then we have

gn
(e
n

) = pn
(e
n
)(i-9n ) = (A+Be-

cen
)(i-e

n
) ,

^gn^ e ) rsn ran n? n
= " (A+Be"

Ce
) - BCe"

Cb
(l-6

n
) .

Substituting this equation into equation (5-58) we obtain

A + Be"08
"1

+ BCe-
Can

(l-6
n

) - h
,

n

"['fceTi + cd-en )|
-5a



e"
Cb

(1 + C-Con ) = _S_
, n=l, 2,...,N. (5-59)

The solution of this equation gives the preventative

sampling procedure considering the inspection cost.

3(b) Approximate solution

The approximation is the same as earlier which is equivalent

to neglecting the term (l-6n ) in

gn (6
n

)
= pn (e

n
)(i-e

n
)

which is a fairly good approximation as 6n is usually very

small. Then we may write

6n v

J>g (9
n

) n—- = - BCe" 1""

Substituting in equation (5-58) yields

BC8-ce" - -S
. (5-60)

v
n

Nov; taking the logarithm on both sides of equation (5-60),

we obtain

In B + In C - C6n = In In
- In v

R ,
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or

C6n = ln BC

In/vn

or

9 "
C

ln
I n/vn

'
n - 1, 2, ..., N. (5-61)

Equation (5-61) is an approximate solution of optimum

preventative sampling considering inspection cost.

3(c). Numerical Example

Suppose a manufacturing company produces 3 types of

products. The cost of inspection and value of each product

is given in the following table.

£yPf of Value Inspection
Product in $ CO st in $

1 5.00 0.05

2 10.00 0.20

3 15.00 0.75

4 20.00 2.00

5 25.00 3.75

6 30.00 7.50

7 35.00 17.50

We have to find the optimum preventative sampling pro-

cedure. Given that probability of being defective is
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p(B) = A + Be"
Cb

where A, B, C are certain constnants. As discussed earlier,

A measures the "unavoidable defect,'' B measures the "avoid-

able defect" and C measures the "effect" of sampling on

avoidable defect. The higher the value of C, the greater

is the scope of improvement by preventative sampling. The

problem is worked out by exact solution (Equation (5-59))

and by approximate solution (Equation (5-61)) for different

values of C but for some fixed inspection cost. For the

product type 1, the value is $5.00 whereas, the inspection

cost is $0.05. Hence we may consider it as 1% inspection

cost. In other words we are defining the cost of inspec-

tion as a percentage of the value of the article. A

solution is given for 7 different inspection costs namely

1%, 2%, 5%, 10%, 15%, 25%, and 50%.

Figure 5 shows the effect of C on the exact and approx-

imate solution for constant inspection cost. Figure 6 shows

the effect of C on the percentage difference between the

exact and approximate solution.

Analyzing the results we observe the following points:

i) The higher the inspection cost the lower the frac-

tion to be samoled for the same value of C (Fig. 6). This

is reasonable as for a lower inspection cost we can afford

to take a higher fraction to be sampled and balance it with

the cost of accenting defective materia-.
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1.,

0.6 !- i

Approximate solution

-£" Exact solution

i,U

c

Fig. j. o versus C Tor Approximate and Exact Solution at

1% Inspection Cost
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J-'

" 20

12

&. 4

-* 1% Inspection cost,

""*"" 2% Inspection cost,

->- 5% Inspection cost

"25% inspection cos

>o inspection cost

UO 100

ig. 6. Relation between C and percentage difference between
exact and approximate solution



50

ii) The greater the value of C, the deterent effect on

avoidable defect, the lower is the fraction to be sampled for

the same inscection cost and vice versa (Fig. 5).

iii) At higher values of C, the approximate solution

is very close to the exact solution. . r values of C

greater than 25, the percentage difference between the ap-

proximate solution and the exact solution is no more than

5% (Fig. 6). At low values of C, say 5, the approximate

solution deviates considerable from the exact solution.

iv) For low values of C and low inspection cost the

sampling fraction is almost 100% for the exact solution and

it may be more than 100$ in the case of an approximate so-

lution which is an infeasible solution. This fact points

out that we cannot use an approximate solution for low

values of C. Table 1 presents the fraction to be sampled

obtained by approximate and exact solution for different

values of C and different inspection cost. The percentage

difference between approximate and exact solutions is also

shown in the Table.

Summarizing we may say that an approximate solution

may be used for C 25.



51

Table 1. Optimum Preventative Sampling Solutions by-

Exact and Approximate Method for Different
Values of C and Different Inspection Cost

C InsDection
Cost

Approximate
Solution

Exact
Solution

Percentage
Difference

1% 1.2241 0.9370 30.60

2% 1.0854 0.8590 26.40

5% 0.9022 0.7420 21.60

5 10J? 0.7635 0.6440 18.55

15% 0.6324 0.5840 16.85

25% 0.5803 0.5060 14.70

50% 0.4417 0.3970 11.30

1% 0.6813 0.6020 13.18

2% 0.6120 0.5470 11.90

5% 0.5204 0.4710 10.50

10 10% 0.4511 0.4120 9.50

15% 0.4105 0.3770 8.90

25% 0.3595 0.3320 8.30

50% 0.2901 0.2710 7.^5

1% 0.4813 0.4-V30 S.65

2% 0.4351 O.404O 7.70

5% 0.3740 0.3500 6.35

15 10% 0.3278 0.3080 6.42

15% 0.3007 0.2830 6.25

25% 0.2667 0.2520 5.34

50% 0.2205 0.2100 5.00
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Table 1. Continued

C Inspection
Cost

Approximate
Solution

Exact
Solution

Percentage
- Difference

1* 0.3753 0.3520 6.62

2% 0.3407 0.3220 5.80

5% 0.2949 0.2800 5.32

20 10J8 0.2602 0.2480 4.90

155* 0.2399 0.2290 4.75

25% 0.2144 0.2050 4.60

50% 0.1797 0.1730 3.87

1% 0.3092 0.2930 5.52

2% 0.2815 0.2690 4.65

5% 0.2448 0.2350 4.16

25 1056 0.2171 0.2090 3.88

1558 0.2009 0.1930 4.09

25% 0.1804 0.1740 3.68

50$ 0.1527 0.14S0 3.18

158 0.2637 0.2520 4.65

2% 0.2406 0.2310 4.15

5% 0.2101 0.2030 3.50

30 10% 0.1870 0.1810 3.32

15% 0.1735 0.1680 3.27

25% 0.1564 0.1520 2.90

50% 0.1333 0.1290 3-33
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c Inspection
Cost

Approximate
Solution

Exact
Solution

Percentage
Difference

1% 0.1635 0.1630 3.37

2% 0.1546 0.1500 3.07

5% 0.1363 0.1300 2.48

50 10$ 0.1224 0.1200 2.00

15% 0.1143 0.1120 2.05

25$ 0.1041 0.1020 2.05

50% 0.0902 0.0880 2.50

1% 0.0920 0.0900 2.22

2% 0.0850 0.083C 2.40

5% 0.0757 0.0740 2.30

99 10JS 0.0687 0.0680 1.03

15% O.O646 O.O63O 2.54

25% 0.0595 0.0580 2.59

50% 0.0525 0.0520 0.96
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Example 4- Optimum Preventative Sampling—the Cost
of Inspection and the Total Sampling Volume

being given

The system considered is the same as in Example 3 but

the total sampling volume is a given fixed quantity. This

type of situation is generally encountered in practice as

the sampling capacity is limited due to men and machine.

We have to optimize the sampling procedure of each stage so

that the expected total cost is minimum subject to the given

constraint of total sampling volume.

Let us define

9
n = Percent of articles sampled at the ntn stage,

04en
41, n = 1, 2, ..., N,

an
= Quantity at the n**1 stage,

pn (6
n

) » Probability of being defective at the nth stage,

v = Value of each article at the n^ stage,

x = Sum of samples up to and including the n^" stage,

x? = Sum of expected value of undetected defective

quantity up to and including the n stage,

Then the performance equations are

X
l

= X
l

_1
+ an

en> n =
-
1

'
2

'
•*•' N

' (5_62)

*1 = °. (5-63)

4^ D*> (5-64)
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*2 - X2~
X + a

n
V
n^ ^'^ + \ an

^

x""
1 + an v

n (A+ Be
-Ce

) (l-6
n

) + I
n

an w" (5-65)

n - 1, 2, ..., N.

„x
2

-

Since

pn (B
n

) - A+Be-Ce
'

also

N
~2_ an

= D = Total quantity
n=l

and a( is total percentage sampled, a given fixed quantity.

In other words D(< gives the overall sampling size.

Comparing equations (5-62) and (5-65) with performance

equations of the one-dimensional process we find

T^x"" 1
; 6

n
) = x^ 1

+ a
n
6
n

,

n(^"1 ; 8
n

) - a
n
v
n (A+Be"

Cbn
)(l-e

n
) + I

n
a
n
e
n

.

Faking approximations, i.e., neglecting the term (1-d
11

)

from the above equation which in turn is equivalent to
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neglecting the improvement attained by direct detection of

defect for that attained by preventative means we may write

^G (xj
r.-l ,.n.

8 -ce
n

- a v BCe_bo + I a ,
(5-66)

-s n n n n n'
do

7>G (jdH-j dn )

^^ =
° • (5 "67)

^T (xg-
1

; 6
n

)

(5-63)

3T (x?"1 ; 6n )

1 . = 1 . (5-69)

Sxf1

Substituting these partial derivatives in the recurrence

relation of the one-dimensional process given by equation

(2-19) we obtain

C6
n+1

[ na n _ -an+l
v
n+l

BCea.vRCe
-06

+ I.a„ _a n^ v +1 BCe"
06

+ IB+na.,U)

or

*n+l

-cen rri
n+1

BC vne + In
= BCv

n+1e-
Ca + I

fl+1

- 0,

n = 1, 2, ... , K-l
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or

rsn+1 r fl
n

SCVle = ECe + J
n " J

n+1 (5-70)

The decision at each stage is dependent on the decision

taken at the preceeding sta.ge. Noting that all terms of

the right hand side are known if 6
n is known, and we need

„. , ,.n+l _ .

to find w , let

E
n
= BC e"

C&n
+ ^ = Vl •

We obtain

c
-Co _ E

BCv
n+l

n+1

or

n-rl -, BCvn+1
6 - i In (

2+1
C

£
n

n - 1, 2, ..., K-l (5-71)

Equation (5-71) is the recurrence relation of the

optimum decision variable. This recurrence relation can be

used to obtain the sequence of t3 which will minimize the

total expected cost for any given total sampling volume

.
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4(a) Computational Procedure

Step 1. Assume 6 =0.

Step 2. Compute e
2

,
8?

, ..., 8 from equation (5-71).

N N n _/
Step 3. Compute x. = 2 an8 - D<< .

1 n=l

x will be in one of the following situations:

(a) less than zero, (b) equal to zero, (c) greater

than zero. If it is (a) then go to Step 4, if it

is (b) then we have reached the optimal stage, go

to Step 6, if it is (c) then go to Step 5-

Step 4. Increment 8
1 by 0.01 and go to Step 2.

i N
Step 5. Decrease 8 by 0.0002 and go to Step 2 until x-^

is again less than zero; when x is less than zero

then go to Step 6.

Step 6. The solution has reached the optimal stage, and the

values of 6
n for n * 1, 2, ..., N are the optimum

decisions for each stage.

4(b) Numerical Example

A 10$ sample of a group of 1,000 articles of five

different types is taken. The price of each type of article,

cost of inspection and their quantities are as follows:
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'ype Value Inspection Cost Quantity

n vn In a
n

1 5 0.05 400

2 10 0.20 250

3 15 0.45 100

4 20 o.eo 150

5 25 1.25 100

Using the recurrence relation (5-71) and the end con-

dition (5-64) the optimum sampling procedure obtained is as

foilows

:

e
1 - .0732

d
2 « .1013

e3 - .1180

e4 » 0,.1303

e5 = 0,.1403

Rounding off to 3 decimal places we get the answers as

6
1
= 7.3%

e
2 - \0.lfo

e-
3 = 11.358

e4 = 13.058

e 5 = 14.056
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It may be verified that

n=l
an9

n
= (400H.73) + (250)(.101) + (100) (.118) + (150)(.13)

+ (100) (.14)

= 99. 8« 100, i.e., 10$ of 1,000.
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The objective of this report is to investigate optimum

preventative quality control procedures and to show the

applicability of the discrete version of the maximum prin-

ciple in this type of problem.

It is recognized that the idea of sampling is not only

to find defects but also to prevent their future occurence.

This is in recognition of the principle that it is better

to prevent defects from occuring than to let them occur and

then to make the best of it.

Preventative sampling aims not so much to find the

defective quantity as to discourage its future occurence.

The knowledge that "sampling" is being done instills a sense

of responsibility in the people concerned and deters them

from making mistakes. The more rigorous the sampling the

less is the probability of being defective. But the pro-

bability of being defective is not a linear function of

sampling and it contains coefficients like "avoidable"

defect, "unavoidable" defect and "elasticity" of reaction.

The elasticity of reaction takes into account the human

reactions and other intangible reactions that come into

play in this type of situation.

An "ordinary sampling" problem is solved where the

objective is to minimize the total expected cost. The

sampling decision is found to be dependent on the ratio

of inspection cost to the value of the article.



Three different types of preventative sampling problems

are then solved, the objective in each case being to minimize

the total expected cost. The sampling procedure to be fol-

lowed, as given by an approximate solution for each stage

in a situation with a given sampling volume, is dependent

on the logarithm of the ratio of the value of the article in

that stage to the geometric mean article value.

Both exact and approximate solutions are developed for

cases with given inspection cost, and it is found that an

approximate solution can advantageously be employed in

cases where the value of C, the elasticity of reaction, is

greater than 25 and that an approximate solution cannot be

employed for low values of C, say 5, as it deviates consid-

erably from the exact solution.

A general type of solution for N-stages is solved for

each problem and then a numerical example is developed to

demonstrate the applicability of the algorithm.


