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Abstract 

 Nano-size materials are new materials in an intermediate state between the bulk and 

atomic or molecular states. Nanoparticles in colloidal solution and their assemblies have the 

great attention of researchers to investigate the novel fundamental properties and numerous 

applications. In this dissertation, we investigated the solubility phase transition behavior of gold 

nanoparticles in colloidal solution. 

 

We used the nearly monodisperse gold nanoparticles synthesized by either the inverse 

micelle or the solvated metal atom dispersion methods followed by digestive ripening. The gold 

nanoparticles were ligated with alkyl chains, which were dodecanethiol, decanethiol, or 

octanethiol for individual samples. They dispersed in toluene or t-butyl toluene like large 

molecules at room temperature. In analogy to molecular solutions, the colloidal solution had 

thermally reversible phase transitions between a dissolved phase of dispersed single 

nanoparticles and dispersed-aggregation co-existing phase. A more polar solvent, 2-butanone, 

was added to the colloidal solution for changing the solubility of gold nanoparticles and 

adjusting the phase transition temperatures to accessible temperatures. Superclusters formed by 

the nanoparticles when the colloidal solutions were quenched from a one-phase regime at high 

temperature to a two-phase regime at low temperature. Solubility phase diagrams were obtained 

for gold nanoparticles with different ligands in the mixtures of different ratios of 2-butanone and 

toluene or t-butyl toluene. The explanation from classical ideal solution theory gave the fusion 

enthalpy of superclusters. 

 

Temperature quenches from the one-phase to the two-phase regime yielded superclusters 

of the nanoparticle solid phase with sizes that depended on the quench depth. Classical 

nucleation theory was used to describe these sizes using a relative small value of the surface 

tension for the nanoparticle solid phase. This value is consistent with molecule size scaling of the 

surface tension. In total these results show that the solubility behavior of nanoparticles in 

colloidal solution is similar to the behavior in molecular solutions. 
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Abstract 

Nano-size materials are new materials in an intermediate state between the bulk and 

atomic or molecular states. Nanoparticles in colloidal solution and their assemblies have the 

great attention of researchers to investigate the novel fundamental properties and numerous 

applications. In this dissertation, we investigated the solubility phase transition behavior of gold 

nanoparticles in colloidal solution. 

 

We used the nearly monodisperse gold nanoparticles synthesized by either the inverse 

micelle or the solvated metal atom dispersion methods followed by digestive ripening. The gold 

nanoparticles were ligated with alkyl chains, which were dodecanethiol, decanethiol, or 

octanethiol for individual samples. They dispersed in toluene or t-butyl toluene like large 

molecules at room temperature. In analogy to molecular solutions, the colloidal solution had 

thermally reversible phase transitions between a dissolved phase of dispersed single 

nanoparticles and dispersed-aggregation co-existing phase. A more polar solvent, 2-butanone, 

was added to the colloidal solution for changing the solubility of gold nanoparticles and 

adjusting the phase transition temperatures to accessible temperatures. Superclusters formed by 

the nanoparticles when the colloidal solutions were quenched from a one-phase regime at high 

temperature to a two-phase regime at low temperature. Solubility phase diagrams were obtained 

for gold nanoparticles with different ligands in the mixtures of different ratios of 2-butanone and 

toluene or t-butyl toluene. The explanation from classical ideal solution theory gave the fusion 

enthalpy of superclusters. 

 

Temperature quenches from the one-phase to the two-phase regime yielded superclusters 

of the nanoparticle solid phase with sizes that depended on the quench depth. Classical 

nucleation theory was used to describe these sizes using a relative small value of the surface 

tension for the nanoparticle solid phase. This value is consistent with molecule size scaling of the 

surface tension. In total these results show that the solubility behavior of nanoparticles in 

colloidal solution is similar to the behavior in molecular solutions. 
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CHAPTER 1 - Introduction 

 

Nanomaterials with size ranging from 1nm to 100nm, also known as nanocrystals, nano 

clusters and nanoparticles, can be found both in nature and man-made materials [1]. Materials 

reduced to the nanometer scale can show very different properties compared to what they exhibit 

on a macro scale. Material such as gold, which is one of the most chemical inert elements in 

nature, can serve as a potent chemical catalyst at nanoscales [2].  

 

From the fundamental point of view, nanomaterials provide an intermediate domain to 

study the transition from atomic properties to bulk properties. Quantum mechanical calculations 

have shown that particles with size range 1-10nm have unique electronic band structures [3]. 

Therefore nanomaterials have many unique physical properties that are directly related to the 

discrete electronic band structures, comparing with bulk materials. Another significant difference 

between bulk materials and nanomaterials is that nanomaterials have a much higher surface to 

volume ratio.  Hence, many properties of these materials are determined by the surface atoms 

rather than the interior atoms.  Melting points for both semiconductor and metal nanoparticles 

are significantly lower than the corresponding bulk materials [4,5]. This is caused by the surface 

free energy of the nanocrystals. The large influence of the particle surface also opens up the 

possibility to modify the surface or interface of the nanomaterials to control their properties. 

 

The first truly scientific study of gold nanoparticles was conducted by Michael Faraday 

in 1857 in which he reported the reduction of a solution of 

4AuCl  resulted in a red solution of 



 2 

gold colloid [6]. During the time of Faraday, engineering the particles to have specific properties 

was proved very difficult due to the polydispersity of the particle sizes.  The new discovered 

techniques such as digestive ripening allow us to control the size of gold nanoparticles during 

their synthesis with narrow size distributions. These techniques enabled material scientists to 

systematically study the properties of gold nanoparticle colloidal solutions. 

 

The near monodispersity is the analogue to compound stoichiometry. For example, a 

typical dodecanethiol ligated gold nanoparticle with a 5.0nm diameter can be expressed as a 

large molecule 

Au3850(C12SH)350 

In the chemical formula, the standard deviation on the atoms number is about 10%. This is close 

to the uniformity in mass of most compounds given the variety of sable isotopes. The analogy 

suggests that those gold nanoparticle systems can be treated as a new kind of stoichiometric 

particle compounds. The size of disperse components in a colloidal solution can vary from 

molecular size to micron size. The colloidal solutions display a series phase transitions between 

gas, liquid and solid phases [7]. The phase transition of colloidal solutions with molecular 

species and micron size particles as disperse components have been investigated wildly while the 

important intermediate size region with nanosize stoichiometric particle compounds has not been 

studied. 

 

The new nanoparticle materials bridge the size gap between solutions and traditional 

colloids. The synthetic control of the particles and their ligands also allows for control of the 
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phase behavior of the nanoparticle colloidal solution at a much higher and detailed level than in 

the other systems.  

 

Nanoparticles are usually surface ligated with any of a variety of organic compounds and 

these ligands cause colloidal solutions of the nanoparticles to be stable against irreversible 

aggregation. Often these colloidal solutions act as solutions with the nanoparticles displaying 

reversible temperature and solvent dependent solubility [8]. In many cases when the 

nanoparticles are highly uniform, the precipitating solid is a two- or three-dimensional 

superlattice of the nanoparticles. Thus there is strong analogy to the phase behavior of molecular 

solutions, and it is then reasonable to ask what controls the phase behavior of nanoparticle 

solutions and what is the nature of nucleation and growth of the insoluble phase? Such questions 

are not only of inherent intellectual interest but are also very useful, for with an understanding of 

this science, we will be able to control the self-assembly of nanoparticles into superlattices, 

ramified aggregates, gels, and films on surfaces. There are recent studies of the growth of 

clusters of the solid precipitate phase from solutions destabilized by either ligand exchange [9] or 

synthesis in a poor solvent [10]. Still lacking are phase diagram measurements and nucleation 

studies. 

 

 In this dissertation work, we investigated the solubility phase transition behavior of gold 

nanoparticles in colloidal solution. 

 

 In chapter 2, we give an introduction to the concept of colloidal solution and classical 

solubility theory for ideal solution and regular solution. Classical nucleation theory is also 
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introduced for the explanation of cluster growth. In chapter 3, techniques of synthesizing 

nanoparticles, inverse micelle method and solvated metal atom dispersion method followed with 

digestive ripening, are reviewed. And the super structure formed by the nanoparticles is briefly 

described. The static and dynamic light scattering theory and the experimental setup are given in 

chapter 4. In chapter 5, we described the optical properties of gold nanoparticles and 

superclusters, and the theory and the experimental method of concentration measurement by UV-

Vis spectroscopy. We then present our experimental results of studies on the solubility phase 

diagram of gold nanoparticles in chapter 6, followed by the study on the nucleation of gold 

nanoparticle superclusters in chapter 7. In chapter 8, we give a conclusion of our work. 
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CHAPTER 2 - Solubility Phase Behavior of Solids in Liquids 

2.1 Solution, Suspension and Colloidal Solution 

 

Based on distinct properties, the mixtures of solids and liquids can be classified into 

solution, suspension and colloidal solution. This classification is necessary to understand the 

concept of colloidal solutions and distinguish it from rest of the types. 

 

As we all know, a solution is a homogeneous mixture of two or more substances in which 

the substance (the solute) dispersed to molecules or ions in the solvent has the particle size of 

less than 910 m or 1 nm. A simple solution of sugar in water is an example of a true solution. 

Particles of a solution cannot be filtered out by filter papers and are not visible to naked eye. 

 

A suspension is a heterogeneous mixture in which particle size of one or more 

components is greater than a few microns. When mud is dissolved in water and stirred 

vigorously; particles of mud are distributed evenly in water. After some time, the particles of this 

solution settle under water due to the influence of gravity. Contrary to a solution, particles of a 

suspension are big enough to scatter light or even be seen with naked eye. 

 

The term colloid was coined by Thomas Graham (1861) for glue-like materials which 

appeared to consist of only one phase when viewed under the microscope [11,12]. A colloidal 

solution is a mixture in which the particle size of a substance is intermediate between a solution 

and a suspension i.e. between 1nm-1μm. The smoke from a fire is an example of a colloidal 

system in which tiny particles of solid float in air. Just like solutions, colloidal particles are small 
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enough and cannot be seen through naked eye. They easily pass through filter paper. But 

colloidal particles are big enough to be blocked by animal membrane. The particles in a colloid 

are larger than in a solution. They are small enough to be dispersed evenly and maintain a 

homogeneous appearance, but large enough to scatter light. 

 

The differences between solution, suspension and colloidal solution are summarized in 

Table 2.1. 

 

In physics, a colloidal solution is a very interesting model system for atoms. Colloidal 

particles are large enough to be observed by many optical techniques such as light scattering and 

confocal microscopy. Many of the forces that govern the structure and behavior of matter, such 

as excluded volume interactions or electrostatic forces, govern the structure and behavior of 

colloidal solutions. For example, the same techniques used to model ideal gases can be applied to 

model the behavior of a hard sphere colloidal solution. Phase transitions in colloidal solutions 

can be studied in real time using optical techniques, and are analogous to phase transitions in 

solutions.  
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Table 2.1 Difference between Solution, Suspension and Colloidal Solution 

Property Solution Colloidal Solution Suspension 

Size of the particles 

 

<1nm 

 

1nm-1μm >1μm 

Dispersion 

 

Monodisperse  

 

Monodisperse Polydisperse 

Visibility 

Particles of solution 

are not visible to 

naked eye 

Colloidal particles are 

not seen to naked eye 

but can be studied 

through ultra 

microscope. 

Suspension particles 

may be seen by naked 

eye. 

 

Light Scattering 

 

Solution does not 

scatter light 

Colloidal solution 

scatters light 

Suspension scatters 

light 

Stability 

 

Stable 

 

Stable Unstable 

Appearance 

 

Transparent 

 

Transparent  or 

Translucent 
Opaque 

 

2.2 Solubility Phase Behavior in Solution 

 

At a certain temperature, when a solid (solute) is mixed with a liquid (solvent) to form a 

solution, the molecules or ions on the solid surface will leave the surface and disperse uniformly 

into the liquid. At the same time, the solute molecules or ions are moving in the solvent. And 

when they touch the solid surface, they will be absorbed back on the surface. If the speeds of 

those two processes are equal, the concentration of the solution stays in a constant. That 

concentration is the solubility of the solute in the solvent at that temperature and the solution is 

in solubility equilibrium. Solubility equilibrium is a type of chemical equilibrium relationship 
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between solid and dissolved phases of a compound at saturation. The solution in solubility 

equilibrium is called saturated solution.  

The factors that affect the solubility equilibrium, under normal circumstances, are 

temperature and solution concentration. By changing the conditions of the sample, the 

equilibrium is broken and the particles transit between the solid phase and the dissolved phase to 

form a new equilibrium. The solubility phase transition of solutions is well studied for decades 

while the solubility phase transition of nanoparticle colloidal solutions is a new area to be 

investigated. 

2.2.1 Classical Solubility Theory 

The solubility of solids dispersed in liquids varies enormously. A solid solute may form a 

highly concentrated solution in a solvent in some cases and the solubility may be rarely 

detectable in other cases. The solubility depends on the activity coefficient of the solute, which is 

a function of the intermolecular forces between solute and solvent. In the absence of specific 

chemical effects, intermolecular forces between chemically similar species lead to a smaller 

endothermic enthalpy of solution than those between dissimilar species. The well-known guide 

“like dissolves like” is just an empirical statement indicating that. Since dissolution must be 

accompanied by a decrease in the Gibbs energy, a low endothermic enthalpy is more favorable 

than a large one. However, factors other than intermolecular forces between solvent and solute 

also play a large role in determining the solubility of a solid. The solubility also depends on the 

fugacity of the standard state to which that activity coefficient refers and on the fugacity of the 

pure solid. 
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We can start with the equality of the solute fugacities in each phase. If we assume the 

solid phase fugacity of the solute is that of the pure solid, we have the single equilibrium relation 

 FS ff 11    (2.1) 

where the superscripts S and F refer to the solid and fluid phases respectively and we denote the 

solute by the subscript 1. For liquid mixtures, the fugacity of the solute is 

 LF fxf 1111    (2.2) 

where 1x  is the saturation mole fraction, or the solubility, of the solid solute in the solvent, 1 is 

the activity coefficient of solute and Lf1  is the fugacity of the pure solute as a liquid. Combining 

equation (2.1) and (2.2) gives 

 
L

S

f

f
x

11

1
1


   (2.3) 

So the solubility depends on not only the activity coefficient but also on the ratio of fugacities of 

the pure solute as a solid and as a liquid. Those two fugacities depend only on the properties of 

the solute; they are independent of the nature of the solvent.  

 

The molar Gibbs free energy change of fusion  TG fus  is related to the fugacity ratio by 

[13,14] 

  
S

L

fus
f

f
RTTG

1

1ln   (2.4) 

2.2.2 Ideal Solution 

An ideal solution or ideal mixture is a solution in which the enthalpy of dissolution (or 

"enthalpy of mixing") is zero [13]. The closer to zero the enthalpy of dissolution is, the more 

"ideal" the behavior of the solution becomes. 
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Ideality of solutions is analogous to ideality for gases, with the important difference that 

intermolecular interactions in liquids are strong and can not simply be neglected as they can for 

ideal gases. Instead we assume that the mean strength of the interactions is the same between all 

the molecules of the solution. Just as the law of the ideal gas is to describe the behavior of actual 

gases as, so the law of the ideal solution is the first approximation to describe actual solutions 

within certain limits. 

 

Since the enthalpy of mixing (solution) is zero, the change in Gibbs free energy on 

mixing is determined solely by the entropy of mixing. The total entropy of mixing Ni moles of 

particles of components is given by 

 



i i

j

j

iBtotal
N

N

NkS ln   (2.5) 

This leads to the molar entropy S  of  

 
i

ii xxRS ln   (2.6) 

where xi is the mole fraction of component i. Hence the molar Gibbs free energy of mixing is 

 
i

ii xxRTsTG ln   (2.7) 

Note that this free energy of mixing is always negative (since each ix  is positive and 1ix , each 

ixln  must be negative) i.e. ideal solutions are always completely miscible. The equation above 

can be expressed in terms of chemical potentials of the individual components 

  
i

iixG    (2.8) 

where i  is the change of chemical potential of i on mixing, defined as 

 ii xRT ln   (2.9) 
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Thus the chemical potential of the solute in the saturated solution solute  is 

 11 ln xRTliquidliquidsolute     (2.10) 

where liquid  is the chemical potential of the pure liquid solute, x is the mole fraction of solute in 

saturated solution. In solid-solution equilibrium, the chemical potential of the pure solid solute 

solid  is equal to the chemical potential of the solute in the saturated solution. 

 solutesolid     (2.11) 

From the equations (2.10) and (2.11), we have 

     RTTGRTx fussolidliquid //ln 1     (2.12) 

Compare equations (2.4) and (2.12) and notice equation (2.3), we can determine the activity 

coefficient of solute 11   when the solution is an ideal solution. 

 

 TG fus can be computed by separately calculating the enthalpy of fusion  TH fus  and 

the entropy of fusion  TS fus , and then using the relation  

      TSTTHTG fusfusfus    (2.13) 

Clearly,   0 mfus TG at melting point mT . In most case, we assume the heat capacities of pure 

solid and pure liquid are equal, 0 pC , then we have  

    mfusfus THTH    (2.14) 

and 

    
 

m

mfus

mfusfus
T

TH
TSTS


   (2.15) 

Substitute equations (2.14) and (2.15) into equation (2.13), we have 
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    
 

  












m

mfus

m

mfus

mfusfus
T

T
TH

T

TH
TTHTG 1   (2.16) 

Combining equations (2.12) and (2.16), we obtain 

 
 














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m

mfus

T

T

RT

TH
x 1ln 1   (2.17) 

If 0 pC , an additional term will be added as the following [15], 

 
 
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






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


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







T

T

T

T

R

C

T

T

RT

TH
x mmp

m

mfus
ln11ln 1   (2.18) 

 

We can deduce some qualitative rules from equation (2.18), 

1) The solubility of a given solid is greater the higher the temperature if the enthalpy of 

fusion is greater than the heat of mixing, which is true fore most cases. . The change rate 

depends on the heat of fusion of the solute. 

2) A solid having a higher melting temperature is less soluble at a given temperature than 

one having a lower melting temperature. 

2.2.3 Regular Solution 

By combining equations (2.3), (2.4), and (2.16), we have the solubility equation for any 

solutions 

 
     






















m

mfus

m

mfusmfus

T

T

RT

TH

RT

TH

RT

TH
x 1lnlnln 111    (2.19) 

 

Whenever there is a significant difference in the nature and size of the solute and solvent 

molecules, the solution is no longer ideal and we may expect that the activity coefficient 1  is 
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not equal to one. In nonpolar solutions, where only dispersion forces are important, 1  is 

generally larger than one ( and thus the solubility is less than that corresponding to ideal 

behavior), but in cases where polar or specific chemical forces are important, the activity 

coefficients may well be less than one with correspondingly higher solubilities. Such enhanced 

solubilities, for example, have been observed for unsaturated hydrocarbons in liquid sulfur 

dioxide [14]. 

 

There is no general method for predicting activity coefficients of solids solutes in liquid 

solvents. The regular solution theory, first given by Hildebrand [16,17], has an alternative way to 

estimate the activity coefficient with the Scatchard-Hildebrand equation 

   2

2

2

2111ln   VRT   (2.20) 

where 1V  is the molar volume of the pure liquid solute, 1  and 2 are the solubility parameters of 

solute and solvent, and 

 
2211

22
2

VxVx

Vx


   (2.21) 

is the volume fraction of solvent. When 1x  is small, 12  . So a good approximation of 

solubility equation for regular solution is 

 
   

RT

V

T

T

RT

TH
x

m

mfus
2

2111ln
 












   (2.22) 

The solubility parameters   can be computed by 

 

2/1








 


V

U vap
   (2.23) 

if the vaporization energy vapU  and the molar liquid volume V are given. 
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2.3 Classical Nucleation Theory 

 

When a saturated solution in solubility equilibrium, i.e. the concentration of the solution 

equals the solubility of the solute in the solvent, is quenched to a lower temperature, the system 

is not in an equilibrium state any more, but in a metastable state, e.g., super-saturated system or 

super-cooled system. The Gibbs free energy is the minimum when system is in an equilibrium 

state and all the phases in the system have the same chemical potential. The metastable phase 

tends to change to stable phase because of the energy benefit. The particles tend to aggregate and 

form the crystal lattice or superlattice if the particles are monodisperse. However, the condition 

of super-saturation or super-cooling alone is not sufficient cause for a system to begin to 

aggregate or crystallize. Before the solid phase can develop there must exist in the solution a 

number of minute solid bodies, embryos, nuclei or seeds, which act as centers of aggregation or 

crystallization. Nucleation may occur spontaneously (homogeneous nucleation) or it maybe 

induced artificially (heterogeneous nucleation).  

2.3.1 Homogeneous nucleation 

Exactly how a stable crystal nucleus is formed within a homogeneous fluid is not known 

with any degree of certainty. A stable nucleus could hardly result from the simultaneous collision 

of the required number of molecules since this would constitute an extremely rare event. More 

likely, it could arise from a sequence of bimolecular additions according to the scheme [18]: 

A   + A  A2 

A2  + A  A3 

An-1+ A  An (critical cluster) 
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Ions or molecules in a solution can interact to form short-lived clusters. Short chains may 

be formed initially or flat monolayers, and eventually a crystalline lattice structure is built up. 

The construction process, which occurs very rapidly, can only continue in local regions of very 

high super-saturation and many of the embryos or “sub-nuclei” fail to achieve maturity; they 

simply redissolve because they are extremely unstable. Recently, Gebauer et al. demonstrated the 

presence of large, well-defined clusters before nucleation of one of the phases of calcium 

carbonate [19,20]. If, however, the nucleus grows beyond a certain critical size, it becomes stable 

under the average conditions of super-saturation obtaining in the bulk of the fluid.  

 

Nucleation is often slow because of a free-energy barrier originating from the interface 

between the nucleus and its surroundings. As the nuclei grow, their Gibbs free energy increases, 

until a free energy maximum is reached at the critical size. Beyond the critical size, the nuclei are 

stable and release energy during growth. The free energy changes associated with the process of 

homogeneous nucleation may be considered as the following. 

 

The overall excess Gibbs free energy G  between a small solid cluster of solute and the 

solute in solution comes from two contributions. One is the surface excess free energy SG , i.e. 

the excess free energy between the surface of the cluster and the bulk of the cluster, another is 

the volume excess free energy VG , i.e. the excess free energy between a very large cluster and 

the solute in solution. SG  is a positive quantity, the magnitude of which is proportional to the 

surface area of the cluster. In a super-saturated solution, VG is a negative quantity proportional to 

the volume of the cluster. Simply assuming the cluster is a sphere of radius r, we have 
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VS GGG   

                                                          g
v

r

r 

3
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4

4


   (2.24) 

where and   is the interfacial tension between the developing cluster surface and the 

supersaturated solution in which it is located, v  is the volume occupied by a monomer in the  

cluster (not in the solution), and g is the Gibbs free energy change of the transformation from 

solution to cluster for each particle. The two terms on the right-hand side of equation (2.24) are 

of opposite sign and depend differently on r, so the Gibbs free energy of formation passes 

through a maximum, as shown in Figure 2.1. This maximum value cG  corresponds to the 

critical nucleus cr . For a spherical cluster is obtained by maximizing equation (2.24), setting 

0/  drGd : 

 0/48 2 


vgrr
dr

Gd
cc    (2.25) 

thus 
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And the maximum free energy is 
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The behavior of a newly created crystalline lattice structure in a supersaturated solution 

depends on its size; it can either grow or redissolve, but the process which it undergoes should 

result in the decrease in the free energy of the particle. The critical size cr , therefore, represents 
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the minimum size of a stable nucleus. Particles smaller than cr  will dissolve because only in this 

way can the particle achieve a reduction in its free energy. Similarly, particles larger than cr  will 

continue to grow.  

 

 

Figure 2.1 Gibbs free energy diagram for nucleation explaining the existence of the energy 

barrier and a critical nucleus [18].  
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The chemical potential of solute in solution is 

 xRTg ln   (2.28) 

where g is the chemical potential of pure solute and x is the molar fraction of the solute in 

solution. The second term of the chemical potential comes is the mixing term from equation 

(2.9), as we discussed in section 2.2.2. The chemical potential of solute in clusters should equal 

the chemical potential of solute in a saturated solution, hence 

 1ln xRTg    (2.29) 

where 1x  is molar fraction in the saturated solution, i.e. solubility of the solute in solvent. So the 

chemical potential difference of solute in cluster and solute in solution is 

   sRTxxRT ln/ln 1    (2.30) 

where s is the saturation ratio defined by 1/ xxs  , or expressed by the ratio of concentration C 

in mg/ml and solubility *C  in mg/ml as */CCs  , mostly used in our study.  

 

Similarly, the Gibbs free energy change of the transformation from solution to cluster for 

each particle is 

 sTkg B ln   (2.31) 

Substitute equation (2.31) into equations (2.26) and (2.27), the critical nucleus radius and the 

critical free energy change are 
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The number density of the growable nuclei is given by the simple Boltzmann expression 
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where n0 is initial number density of monomers in supersaturated solution, which can be 

computed from the initial concentration x, the volume v occupied by a monomer in the  cluster 

(not in the solution), and the mass density ρ of clusters 
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And the induction time of nuclei formation can be given by [21] 
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where B is a pre-exponential factor depends on the circumstances. 

 

2.3.2 Cluster Growth 

As soon as stable nuclei, i.e. clusters larger than the critical size have been formed in a 

supersaturated or supercooled system, they keep growing after they overcame the energy barrier. 

 

LaMer and Dinegar gave a growth model by assuming a short nucleation burst followed 

by diffusional growth of the nuclei [22]. In that model, the growth of each nucleus is influenced 

only by the monomers in an impermeable spherical shell, centered on the nucleus, with the 

volume cn/1 , where cn  is the number density of the growable nuclei given by equation (2.34). 

We can define the radius of the spherical shell as 
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The radius of growing cluster R changes with time t as [22] 
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The diffusion constant D is given by the Stokes-Einstein relation 
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where η is viscosity of the solvent and r is the radius of monomers. 

 

Equation (2.38) can be integrated to obtain the analytical expression between R and t if 

*CC  is considered independent of time. The final result is 
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The function  xf  is defined as 
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And two parameters 0t  and maxR  are given by 
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and 
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Equation (2.43) is easy to understand. It gives the maximum size of the clusters. That size 

is determined by the amount of the excess monomers, i.e. the difference  *CC   between the 

original solution concentration and solubility, the number density cn  of clusters and the mass 
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density ρ of clusters. Time parameter 0t  can be regarded as growth critical time. When time 

0tt  , max965.0 RR  , as shown in Figure 2.2. 

  

Combining equations (2.34), (2.35) and (2.43), we have 
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Figure 2.2 The classical nucleation theory result of cluster growth. 
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CHAPTER 3 - Gold Nanoparticles in Colloidal Solution 

3.1 Synthesis of Gold Nanoparticles 

Nearly monodisperse gold nanoparticles (AuNPs) were synthesized with a digestive 

ripening technique. The digestive ripening technique was discovered in our group as a simple but 

efficient route to convert polydisperse nanoparticles into nearly monodisperse ones by refluxing 

the colloidal solution in the presence of an excess stabilizing ligand [23]. The pre-digestive 

ripened nanoparticles were prepared with two methods, the solvated metal atom dispersion 

(SMAD) method and the inverse micelle method. 

3.1.1 Solvated Metal Atom Dispersion Method 

The Solvated Metal Atom Dispersion (SMAD) synthesis technique is a batch process that 

allows for gram quantities of nanoparticles to be produced in a single experiment. The Klabunde 

group has utilized this technique for an assortment of materials including metal, semiconductor, 

and organometallic products [23-26]. 

 

The driving theory behind the SMAD synthesis is the evaporation of the gold to 

individual atoms/clusters, separation of the atoms from one another by solvent molecules, and 

halting their aggregation as soon as possible. 

 

The method involves a reactor composed of a 3000mL elongated glass vessel with 1/2″ 

walls, as shown in Figure 3.1. Through two opposite outlets water cooled copper electrodes are 

introduced into the reaction chamber and sealed with Teflon O-rings. The gold is placed in an 



 23 

aluminum oxide coated tungsten crucible held by the electrodes. The temperature of the crucible 

is controlled by adjusting the current flow through the electrodes. 

 

Figure 3.1 Schematic assembly of SMAD reactor. 



 24 

The center outlet is fitted with a long glass tube sealed on the reactor end and placed 

directly over the crucible. This end has approximately thirty 1mm holes in it designed to disperse 

the solvent (acetone) evenly throughout the reactor. The other end is fitted with a ground glass 

joint that attaches well to a Schlenk tube containing the desired solvent for reaction. A heating 

element for the solvent shower is placed around the tube. The solvent shower is typically placed 

3.5 - 4.0 cm above the crucible for optimal evaporation. Lowering the solvent shower with 

respect to the crucible will cause it to be coated with excess metal atoms, while raising it higher 

than 4 cm leads to poor coverage of the solvent on the bottom of the reactor.  

 

The capping agents (ligand) and the solvent (toluene or t-butyl toluene) are placed in the 

bottom of the reactor with a stir bar. The whole reactor is submerged in liquid nitrogen and 

evacuated to a minimum of 3101   Torr pressure in order for the gold to be evaporated at a 

temperature low enough that the solvent does not decompose.  

 

After the above apparatus has been assembled it is placed under vacuum for a minimum 

of 2 hours. The acetone is slowly (roughly 1 hr) deposited on the walls of the reactor forming a 

bed of frozen solvent. During this time the crucible iss slowly heated to the evaporation 

temperature of gold. This is typically slightly higher than the melting point of the metal itself. 

The flow of solvent is slightly increased and the crucible temperature is maintained throughout 

the reaction. Then the evaporated gold atoms condense onto the walls on top of the layer of 

solvent. Afterwards, more acetone is released resulting in highly reactive nanoparticles 

sandwiched between two layers of organic solvent.  
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After all gold and acetone are co-evaporated and deposited on the wall of the vessel as 

the frozen purple matrix, the liquid nitrogen is removed and the vessel is allowed to warm under 

a static vacuum. The gold-acetone matrix melts and mixes with dodecanethiol and toluene or t-

butyl toluene at the bottom of the reactor. The frozen pool of solvent and ligand is heated back to 

a liquid phase. The highly reactive nanoparticles come into contact with the dissolved capping 

ligand and are surface ligated.  

 

The flask containing the product is then flushed 4 times alternating argon gas and vacuum 

to remove any traces of oxygen that might have entered during transfer. Acetone is then slowly 

evaporated under vacuum from the as prepared product mixture overnight, leaving a dispersion 

containing only toluene (or t-butyl toluene), gold, and capping agent. The particles are relatively 

small but are non-uniform in shape and size. The prepared product at this stage is not of 

sufficient quality to study with any accuracy due to the large difference in properties such a wide 

range of particles would have. 

 

3.1.2 Inverse Micelle Method 

The inverse micelle method involves the reduction of a gold metal salt to slowly grow 

nanocrystals in an inverse micelle environment. 

 

Surfactants are chemical compounds that contain both hydrophobic and hydrophilic 

groups in their structure (schematically shown in Figure 3.2a). In nonpolar solvents, such 

compounds aggregate (above a concentration called the critical micelle concentration, CMC) in a 

way that the hydrophobic groups point towards the solvent and the hydrophilic moieties cluster 
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together to form the central core of the aggregate (Figure 3.2b) [27]. Such aggregates are called 

inverse micelles because the spatial arrangement of the surfactant molecules is the opposite of 

that in water. A major characteristic of inverse micelle systems is their ability to solubilize water 

and other polar or ionic compounds (for example metal salts) which are not soluble or even 

slightly soluble in non-polar solvents. 

 

 

Figure 3.2 Schematic representation of a) surfactant molecule and b) inverse micelle system. 
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The standard experimental procedure of inverse micelle method in our group is described 

as the following [28]. 

 

All reactions were carried out under Ar atmosphere and all solvents were bubbled with 

dry Ar gas for 2 hours prior to use. In a typical experiment, 0.104g didodecyldimethylammonium 

bromide (DDAB) was dissolved in 10 ml toluene to form a 0.02 M inverse micelle solution. At 

this point no water was added to the system. After half an hour, 0.034 g AuCl3 (99.99%+) was 

dissolved in the DDAB-toluene solution by sonication. At the end of the sonication process a 

clear deep orange-red colored AuCl3-DDAB-toluene solution was obtained. After sonication the 

solution was stirred for several minutes to ensure it reached ambient temperature (the 

temperature of the solution usually slightly increased after sonication). Freshly prepared aqueous 

NaBH4 solution (40 μl, 9.4 M) was then added dropwise to the AuCl3-DDAB-toluene solution 

while vigorously stirring with a magnetic stirrer. The color of the solution changed from orange-

red to purple-red within a minute and the stirring was continued for 15 minutes to ensure 

completion of the reaction. 

 

The 'as-prepared' Au colloid was split into 2.5 ml portions. Stabilizing ligand was added 

to each portion in molar ratio n(Au)/n(ligand)=1:30. After about 5 minutes agitation, the ligand-

stabilized Au colloid in each vial was precipitated by the addition of 7.5 ml ethanol (200 proof, 

Fisher) in order to purify the system from excess reducing agent, DDAB and the reduction side 

products. The solution was vigorously agitated and left undisturbed overnight. A purple 

precipitate formed in each case. The material which settled on the bottom of the vial was isolated 

from the supernatant by decanting followed by vacuum drying. After vacuum drying 2.5 ml 
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toluene was injected to the waxy solid in each sample vial obtained. For digestive ripening, 

another dose of the respective ligands with the same molar ratio n(Au)/n(ligand)=1:30 was added 

to the samples with shaking. At this stage, the Au particles were not completely re-dispersed in 

the solvent. We can see the gold particles before digestive ripening are polydisperse from the 

TEM picture in Figure 3.3.  

 

The stoichiometric equations of the reduction process are presented in Figure 3.4. 

 

 

 

Figure 3.3 TEM picture of dodecanethiol ligated gold nanoparticles in toluene prepared with 

inverse micelle method before digestive ripening [29]. 
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Figure 3.4 Stoichiometric equations of the reduction of AuCl3 with NaBH4. 
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3.1.3 Digestive Ripening 

For the nanoparticles to be useful for any systematic study or size-dependent application, 

they must be monodisperse in size distribution. Digestive Ripening is a term used to describe the 

refinement process of nanoparticles in solution through heating, first described by Lin and 

coworkers [23]. In contrast to the well-known Ostwald ripening process, where larger particles 

grow at the expense of smaller ones, 'digestive ripening‟ achieves an „intermediate‟ 

thermodynamically stable particle size with still poorly understood reason, typical for the 

colloidal system. During this technique the atoms and ligands are in flux with the environment 

and the particles are able to exchange atoms until an equilibrium size is obtained. After heating 

the colloids for a few hours to a few days the polydisperse as prepared SMAD colloid becomes a 

uniform solution of spherical particles. 

 

The procedure for digestive ripening is simple. A container that will exclude air during 

heating is integral to the success of the reaction. To accomplish this, an adapter with a rubber 

septum is fitted on the Schlenk tube, a process that again is conducted under positive argon 

pressure and can be fitted in 1-2 seconds. To this an inlet for argon is introduced through a 

needle and the gas outlet is passed through a bubbler to prevent backflow of air. A constant flow 

of argon over the reaction seems beneficial to the quality of the final product. The product from 

the SMAD or the Inverse Micelle preparation is heated in the original Schlenk flask under a flow 

of argon to reflux at 190 °C. The nanoparticle dispersion is refluxed for 90 minutes under an 

inert atmosphere. The colloids are then transferred into sample vials and left undisturbed 

overnight at room temperature. TEM picture of the gold colloid is obtained after the digestive 

ripening, as shown in Figure 3.5, which shows the highly monodispersion of the nanoparticles.  



 31 

 

 

 

 

Figure 3.5 TEM picture of dodecanethiol ligated gold nanoparticles in t-butyl toluene after 

digestive ripening. 
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The entire synthetic process described above is schematically illustrated in Figure 3.6. 

The gold nanoparticles produced by those methods were soluble in toluene. The resulting sample 

was a dark wine red colloidal solution at room temperature. 

 

 

Figure 3.6 Synthetic steps for preparation of monodisperse gold nanoparticles by (a) the SMAD 

method and (b) the inverse micelle method. 
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3.2 Superlattice Formation 

The spontaneous ordering of nano-materials is becoming a huge area of research recently. 

The synthesis of nanoparticles that display self-assembly is absolutely essential for the easy 

fabrication of practical devices incorporating small particles. Constructing these arrays by 

individual particle placement would be impossible considering the size needed for advanced 

materials. This is especially true for spherical nanoparticles as the formation of superlattices is an 

important precursor to the application of nanoparticles as novel optical and electrical materials.   

 

Au colloidal solutions obtained by inverse micelle and SMAD methods with digestive 

ripening have a strong tendency toward superlattice formation due to the uniformity in size and 

shape of the nanoparticles present in both systems. Nanocrystal superlattices could be formed by 

a deposition of Au colloidal solution on a support at ambient conditions. Figure 3.7 is a TEM 

picture of a sample prepared by placing a 3μl drop of the gold colloidal solution onto a carbon-

coated Formvar copper grid [30]. The grids were allowed to dry in a dust-free area for several 

hours before taking the picture. This nanocrystal superlattice is remarkable in the perfect 

arrangement of practically monodisperse Au nanoparticles. The packing structure is FCC imaged 

in [110]SL projection (the subscript “SL” designates planes and directions in the nanocrystal 

superlattice). 

 

It is fascinating that the nanoparticles construct the exact same packing features as their 

composite atoms. Nanoparticle superlattice ordering is merely an order of magnitude larger in 

spatial dimensions. The ordering of both the atoms in the particles and the nanoparticles 

themselves is cubic close packed. This packing style allows for a maximum amount of nearest 
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neighbors in a hard sphere model, with components of a similar size. Superlattice formation is 

somewhat curious in this respect because the particles are by no means perfect spheres. The 

particles typically have many flat faces to them, and are surrounded by ligands that protrude at 

an angle from these surfaces.  

 

Besides the formation of nanocrystal superlattice by drying the colloidal solution on a 

support, we also tried to form the superlattice, coexisting with the nanoparticle monomers, in a 

solution. Toluene and t-butyl toluene are the good solvents for the gold nanoparticles so the 

nanoparticles remain in dissolved state at room temperature. To shift the phase transition 

temperature to an accessible temperature above room temperature, 2-butanone, a poor solvent 

that is miscible with toluene, was mixed the gold nanoparticles in toluene. Remarkable phase 

transition phenomena happened after 2-butanone was added. However, attempts to picture the 

aggregated phase with TEM were foiled because during TEM slide preparation, the bad solvent 

(2-butanone) evaporated faster than the good solvent (toluene) so that the aggregated phase 

redissolved on the TEM grid. A term “supercluster” hence is used for a cluster of nanoparticles 

to replace “superlattice” in subsequent sections and chapters. 

 

The ligands used in this research consisted of hexadecanethiol, dodecanethiol, 

decanethiol and octanethiol. The synthesis processes for each colloid with different ligand are 

very similar.  
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Figure 3.7 TEM micrograph of nanocrystal superlattice of gold nanoparticles prepared by the 

inverse micelle method [30]. 

 

The ligand molecules influence the properties of the gold nanoparticles. The interparticle 

separation of the gold nanoparticles through the alkyl chain length critically controls their 

solubility behavior and also leads to the formation of exclusive 2D or 3D superlattices or a 

combination of them. The propensity to form 3D lattices and their sizes are usually greater in the 

Au-C8SH and Au-C10SH cases compared toAu-C12SH. The majority of Au-C16SH colloid forms 

only 2D monolayers [31]. Theoretical work in our group shows that the depth of the effective 

interaction potential between two gold nanoparticles becomes shallower as the ligand length is 

increased [32]. 
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CHAPTER 4 - Light Scattering Theory and Experimental Method 

 

When an electromagnetic wave falls on an object, one may think of the atoms or 

molecules of that object to absorb and promptly reemit radiations [33,34]. The reemission of 

radiation can be at the same or different wavelength. Scattering with no change in wavelength is 

called elastic scattering and otherwise called inelastic scattering [35]. For the scattering 

technique we describe here, no or negligible change in the wavelengths (elastic or quasi-elastic 

scattering) is assumed. The superposition of the reemitted electromagnetic waves by all the 

atoms or molecules of the object forms a distinct scattered intensity pattern [36]. It is possible to 

extract information on the geometry of the scatterer (size and dimension) from its scattering 

pattern. From the behavior of evolving scattering pattern we can obtain information on the 

kinetics of an aggregating system as well. 

4.1 Scattering Wave Vector 

Let us consider the light scattering at an angle θ upon a small particle at r


as in Figure 

4.1. The incident field with wave vector ik


at position r


is 

 )exp( rkiE ii


   (4.1) 

where we keep track of phase information only. The field scatters toward the detector in the 

direction sk


, where sk


is the scattered wave vector. Thus the field at the detector, at the 

position R


, is 

   )](exp[ rRkiERE si


   (4.2) 
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Figure 4.1 The incident field is scattered from a particle at r


 toward the detector at a scattering 

angle θ. The scattering wave vector is defined as si kkq


 . 

 

Substitution equation (4.1) into equation (4.2), we get 

   ])(exp[)exp( rkkiRkiRE sis


   (4.3) 

Define the scattering wave vector q


 as  

 si kkq


   (4.4) 

Consider only elastic scattering, hence 

 kkk si 


  (4.5) 
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The direction of q


 is in the scattering plane from sk


to ik


 as shown in Figure 4.1. The magnitude 

of q


 can be calculated. 

    2/sin42/sin2 1   kq   (4.6) 

where   is the wavelength of the light. 

 

The second term in equation (4.3) shows that the phase at the detector is a function of the 

position of the scattering element r


and the scattering wave vector q


 

   )exp( rqiRE

   (4.7) 

4.2 Rayleigh Scattering 

The scattering of light, or electromagnetic radiation in general, by particles much smaller 

than the wavelength λ can be explained by Rayleigh scattering theory. The particles are so small 

that the field to which a particle is exposed is approximately uniform over the region occupied by 

the particle. Moreover the field inside the particle is uniform as well [33]. To satisfy those 

conditions, we need 

 








1

1





m
  (4.8) 

Here the size parameter α is defined as  /2 a , a is the characteristic length of the particle, 

and m is the relative index of refraction of the particle, mediumparticle nnm / . 

 

 In Rayleigh scattering, all elements of the scatterer reradiate in phase. This results in the 

scattering amplitude to become proportional to the scatterer‟s volume, and hence the detector 

detects scattered intensity going as the square of the scatterer‟s volume. Light scattering by gas 
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molecules is an example of Rayleigh scattering since gas molecules are far smaller than any 

wavelength in the light spectrum. 

 

The differential scattering cross section dd scat / , which is the power scattered per unit 

solid angle Ω per unit incident intensity 0I , for Rayleigh scattering on the scattering plane is 

given by  

  mFak
d

d scat 64



  (4.9) 

where  mF  is the Lorentz term, defined as 

  
2

2

2

2

1






m

m
mF   (4.10) 

The scattered intensity per unit area of detection is 

 
20

1

Rd

d
II scat

scat





  (4.11) 

Thus 

 
 

2

64

0

R

mFakI
I scat    (4.12) 

The angular independence of Iscat in equation (4.12) indicates isotropic Rayleigh scattering in all 

direction on the scattering plane. The k
4
 factor in equation (4.12) shows a strong dependence in 

the wavelength λ; smaller wavelengths being scattered a lot more. This briefly explains why sky 

has blue color in day time. 

 

Considering a case when there is a uniform distribution of n scatterers per unit volume, 

we have the total scattered intensity Iscat  

   scatscatscat VnVananaI  336   (4.13) 
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where Vscat is the volume of the scatterer. Mass conservation will require nVscat to be constant. 

Hence we find 

 scatscat VI    (4.14) 

Equation (4.14) shows that the scattered intensity for a system of scatterers is proportional to the 

volume of each scatterer. If this system is an aggregating system the scattered intensity will 

increase linearly with the increasing volume of each scatterer. This effect is known as the 

Tyndall effect. 

 

The total scattering cross section scat is obtained by integrating equation (4.9) over 

whole solid angle. One must include the factor 2sin  in equation (4.9) to account for the 

differential scattering cross section at points other than those on the scattering plane. After 

integration we obtain 

  mFakscat

64

3

8
    (4.15) 

 

Besides scattering, particles also absorb a part of the incident radiation if the refractive 

index has an imaginary part. The absorption cross section of a Rayleigh particle is given as 

  mEkaabsp

34    (4.16) 

where E(m) is the imaginary part of [(m2 −1)/(m2 + 2)] , i.e., 

   













2

1
Im

2

2

m

m
mE   (4.17) 

Real m makes E(m) = 0, hence no absorption occurs. 
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4.3 Dynamic Light Scattering 

Dynamic Light Scattering (DLS), also known as Photon Correlation Spectroscopy (PCS) 

or Light Beating Spectroscopy, is a technique that relies upon temporal fluctuations in the light 

scattered from an ensemble of particles to determine their motion. This method is also sometimes 

called quasi-elastic light scattering (QELS) since the scattered wave usually has a very small 

change in frequency compared to the incident frequency [37].  

 

The scattered light by the particles (scatterers) can undergo either constructive or 

destructive interference; thus, within this intensity fluctuation, information is contained about 

particles‟ movements. Usually the motion is random Brownian diffusion which is quantified by a 

size dependent diffusion coefficient. The DLS method measures the decay of the temporal 

fluctuations in the scattered light, which is related to their diffusion which, in turn, is related to 

their size. Thus a size measurement can be made. 

 

If the particle moves a small distance relative to 1q  by the time τ, there is no phase 

change. Whereas if the particle moves a large distance relative to 1q  by the time τ, there is large 

phase change, and hence there are intensity fluctuations. The scattered field )( tE will be at 

random phase comparing to )(tE . To obtain the information on the particle dynamics, we can 

quantify a fluctuating variable by comparing the phase at two different times and average over 

all these comparisons with a so-called correlation function as the following 

   
   

   tEtE

tEtE
g

*

*

1





   (4.18) 
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where <…> means a time or equivalently, for ergodic medium, an ensemble average. Substitute 

equation (4.7) into equation (4.18), it reduces to 

           rqitrtrqig


 expexp1    (4.19) 

where    trtrr


   is the displacement of the particle in time τ. 

 

In the most common situation the particle moves via random Brownian motion, then the 

motion with the diffusion constant D can be described by the Gaussian probability distribution as 

   






 





D

r
rP

4
exp,

2
  (4.20) 

The diffusion constant D is given by equation (2.39) in section 2.3.2. We also write it here for 

convenience, 

 
a

Tk
D B

6
   (4.21) 

where Bk  is the Boltzmann constant, T is the absolute temperature, η is the suspending medium 

shear viscosity, and a is the particle‟s radius, assumed spherical. Performing the average of 

equation (4.19) with the probability distribution of equation (4.20), we have 

      rdrqi
D

r
g










 
 




exp

4
exp

2
1


  

                                             2exp Dq   (4.22) 

Equation (4.22) says that the scattered field correlation function decays with a decay time of 

2

1

Dq
. 
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In experiment we cannot detect the field strength directly with detectors. Instead we 

detect the light intensity I. So we will measure the correlation function of the scattered intensity. 

The intensity correlation function is given by 

   
   

  2

2

tI

tItI
g





   (4.23) 

 

The intensity correlation function given in Equation (4.23) is a stationary process 

meaning that the measurements can be performed at any time and yield the same results. 

Moreover,   2g  should be measured over a sufficiently long time compared with the period of 

fluctuation to yield reliable information about the dynamical properties about the system. The 

correlation function   2g  is a measure of the similarity between two signals  tI  and  tI . 

When 0  these two signals are completely in phase with each other, and    tItI  is large; 

as τ increases,  tI  and  tI get out of phase with one another, and the correlation function 

   tItI  is small [38]. Thus, it would appear that the correlation function either remains 

equal to its initial value for all times τ, in which case the intensity I is a constant of the motion, or 

decays from its initial maximum value [38]. 

       tItItI
2

  (4.24) 

 

For large times compared to the characteristic time for the fluctuation of intensity,  tI  

and  tI  are expected to become totally uncorrelated [38]; thus, 

         2
lim ItItItItI
T




   (4.25) 
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Therefore, the intensity correlation function decays from 2I  to 
2

I  (i.e., the background or 

the noise level). This is shown in Figure 4.2 where t is set to zero. The inset of Figure 4.2 shows 

the time dependence of the scattered intensity which generally resembles a noise pattern.  

 

The Siegart equation [39,40] relates the second order correlation function, equation 

(4.23), with the first order correlation function, equation (4.18). 

       




 

2
12 1  gBg   (4.26) 

where B is the baseline and β is the coherence factor which is an adjustable parameter in the 

data analysis procedure. 

 

For the Siegart equation to be valid, the scattered electric field must be a Gaussian 

process [39]. The Siegart equation is violated for cases such as experiments with a small number 

of particles in the scattering volume, experiments with strongly interacting particles, and 

scattering from non-ergodic systems such as gels and glasses where the time averaged intensity 

correlation function of scattered light is different from the ensemble averaged function [39]. 

 

For monodisperse particles,   2g  is an exponential decay function, 

 
      cIIIg  /exp

2222    (4.27) 

where c is the correlation time of the diffusing particle in the solution. For spherical particles the 

correlation time is related to the size of particles by 
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Figure 4.2 The time correlation function    II 0  versus time is plotted.    II 0  decays 

initially from  20I to 
2

I  for times large compared to the correlation time. The inset graph 

shows the intensity fluctuations (noise pattern) in times. The time axis is divided into discrete 

time intervals Δt. 
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At a given q, long correlation time indicates slow diffusion rate and vice versa. 

Physically, larger scatterers have longer correlation time. By measuring the correlation function 

  2g  and fitting it with equation (4.27) to obtain the correlation time c , we can find the size of 

scattering particle by 

 
 

c
BTkn

a 





2

22

3

2/sin16
  (4.29) 

For the convenience of later calculations, here we illuminate all the parameters again:  n is the 

index of refraction of the solution, kB is the Boltzmann constant, T is the temperature, θ is the 

scattering angle, η is the viscosity of the solution, λ is the light wavelength and c  is the 

correlation time. 

 

Here we only presented the simplest form; however, the correlation function can have 

various forms depending on the shape of the particles, polydispersity, absorption, and other 

parameters [38,39]. 

 

In dynamic light scattering the fluctuation in the intensity can be measured via homodyne 

(self-beating) or heterodyne techniques. In the heterodyne technique, which is much less used in 

practice, it is the field correlation function,   1g , that is measured. This technique involves 

optical mixing of the scattered light with a ca. 30 times more intense local oscillator (e.g., wall 

glare) [39]. The field correlation function can also be obtained from the intensity correlation 

function (Siegart equation). In the homodyne technique, the intensity correlation function is 

measured via the scattering from the sample. 
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4.4 Dynamic Light Scattering from Polydisperse Samples 

Equation (4.27) is good for a single scatterer or a system of monodisperse scatterer. 

However, real system is usually characterized by polydispersity in size (and shape) of the 

scatterers. Hence DLS provides an intensity weighted average decay rate instead of a pure decay 

rate. The homodyne intensity correlation function for a polydisperse scattering system can thus 

be given as 

 
     

i

cii
cBAg  /exp2

  (4.30) 

where   122


 qDici is the correlation time for the thi  particle in the scattering volume, and the 

factors A and B represent signal noise and spatial incoherency in the scattered field at the 

detector. The coefficient ic  is the amplitude of the decay rate for the thi  particle such that 

 1
i

ic   (4.31) 

  

If the scattering system is monodisperse, the plot of     BAg /ln 2   versus correlation 

time τ yields a constant slope of 1

c . However, for polydisperse scattering system, this plot is 

no longer a straight line. The degree of non-linearity of the plot gives a measure of the 

polydispersity of the scattering system. The summation appearing in equation (4.30) is 

approximated with a cumulant fit to simplify the fitting of the experimentally measured 

correlation function [41]. This cumulant fit is given as 
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where n  is the thn  cumulant given by 
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Equation (4.33) gives 

  
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and 
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The second cumulant 2  gives a measure of the polydispersity of the system. Equation (4.34) 

also infers that the first cumulant is the average inverse characteristic correlation time 
1

c  for 

the polydisperse system. If D be the scattered intensity weighted average diffusion coefficient, 

we can write 

 Dqc

21

1 2    (4.36) 

 

In the above discussion we assumed translational diffusion of the scatterers is dominant 

and thus is the only responsible factor for the effective intensity fluctuation. This assumption is 

good for spherically symmetric particles. Also when q
-1

 is greater than the hydrodynamic radius 

of the scattering particles, the rotation dynamics will bring negligible phase shift in the scattered 

field. Hence the assumption is also good for such case. However, for other cases rotational 

diffusion does produce a significant contribution in the decay rate of the correlation function. 

The first cumulant given by equation (4.36) gets modified for these cases as 

  RDDq  2

1 2   (4.37) 

where RD  is the mean rotational diffusion coefficient for the system. 
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4.5 Equipment Setup 

A coherent light source is required for dynamic light scattering. The advent of the laser, 

as such a source, enabled the technique to be developed in the 1960‟s. Most common laboratory 

lasers such as Helium-Neon, argon ion, Nd:YAG, etc have enough coherence to be useful for 

dynamic light scattering.  

 

Equation (4.27) is for the perfect coherence and the realistic formula in experiments is 

     tDqABtg 22 2exp    (4.38) 

Where A is the signal strength and B is the background. As coherence declines, the signal to 

noise, A/B, declines. Coherence is a complex topic and will not be discussed here. Standard texts 

such as Hecht, 1987, or Born and Wolf, 1975 can be consulted. Here it is useful to know that 

both longitudinal coherence, related to the spectral band width of the light, and transverse 

coherence are necessary. The former is fixed by the laser you use. The latter is also a strong 

function of the laser but can be improved by spatial filtering transverse to the direction of the 

beam. Thus good transverse coherence can be gained if the laser is operating in the TEM00 mode 

(transverse electromagnetic). This mode is characterized by a Gaussian beam profile. 

 

Absorption occurs when the energy of the incident light matches an absorption band of 

the colloidal particles. Strong absorption induces local heating in the path of the laser beam, 

which in turn causes a change of optical index of refraction of the medium and a divergence of 

the beam. A simple method to check the divergence is when this diverging beam passing through 

the medium is projected onto a screen, a broad interference ring pattern appears in the first few 

secons. This phenomenon is normally called thermal blooming or thermal lensing effect [42]. A 
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right wavelength of the laser should be chosen to prevent divergence of the laser beam through 

the sample in experiment.  

 

From the UV-Vis spectrum of our gold nanoparticles monomers and superclusters ligated 

with dodecanethiol, Figure 5.3 in section 5.2, the absorbing peaks of our sample are from about 

530nm to 550nm. A linear polarized cylindrical Helium-Neon laser with a wavelength of 

632.8nm was used in the experiment. The beam diameter of the laser is 0.98mm, the power is 

17.0mW and the mode structure is TEM00 (>99%). 

 

Figure 4.3 is a picture of the dynamic light scattering experimental apparatus in our lab. 

The incident beam is narrowed by a convex focusing lens in front of the laser. Laser light 

scattered from a sample in the sample holder is collected by an imaging lens. This lens forms a 

real image of the laser beam as it passes through the scatters from the sample onto either an 

adjustable slit or iris diaphragm (slits are used here because irises rarely close to less than 1 mm). 

In this way the slit can spatially filter the light and thereby select the portion of the scattering 

beam to pass on to the detector. Usually the laser beam is horizontal and the slit is vertical, hence 

the resulting scattering volume is defined in these two directions. An observer can look through 

the short working distance telescope with the reflex mirror adjusted to a 45
o
 angle and see this 

image masked by the slit. In this way the observer knows exactly what part of the scattering 

sample will pass on to the detector when the reflex mirror is lowered out of the path. The 

detector we used is a photomultiplier amplifier connected with a ALV-5000 multiple tau digital 

correlator in a computer. The beam is narrowed by the focusing lens in the incident beam so that 

the slit can be narrower to achieve better coherence on the detector. The entire detection side of 
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this apparatus can be placed on an optical rail to pivot around the scatterer to different angles, 

hence different q value.  

 

The dynamic light scattering setup was checked with test experiments. The size of a 

commercial polystyrene micro sphere-suspension was measured firstly by dynamic light 

scattering. The correlation function obtained for the polystyrene sample is shown in Figure 4.4. 

By fitting the data with equation (4.27), the correlation time is msc 15.0 . Giving the 

temperature is CT 19 , the viscosity of water is smPa  027.1 , the refractive index of water 

is 333.1n , the scattering angle is 90°, and the wavelength of laser is nm8.632 , we can 

calculate the radius of the polystyrene from equation (4.29) is 21.9nm, and the radius given by 

the manufacturer is 21nm. 

 

The temperature of the sample holder is wrapped by a heating tape controlled by a 

Conductus LTC-10 temperature controller. The range of the temperature variation is from room 

temperature to 100°C. The sample container is a round glass test tube with a 10 mm diameter. 

The volume of the sample in the test tube was 1 ml. Sample holder is able to hold several test 

tubes. More samples at the same temperature can be measured at the same time to speed the 

experiment. 

 

The characteristic time of the temperature quench for the sample was also measured by a 

test experiment with polystyrene suspension. One microliter of polystyrene suspension was 

heated to 65°C, and then put in the sample holder at 25°C. Dynamic light scattering 
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measurement started immediately. The correlation time changing with time is plotted in Figure 

4.5. We can see the characteristic time (1/e) of the temperature quench was about 100 seconds. 

 

 

 

Figure 4.3 Dynamic light scattering apparatus with adjustable slit and telescopic reflex 

observation and the temperature controllable sample holder. 
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Figure 4.4 Correlation function obtained from a 42nm in diameter commercial polystyrene 

micro sphere-suspension in water at 19°C 
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Figure 4.5 The characteristic time of the temperature quench from 65°C to 25°C. 
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CHAPTER 5 -  UV-Visible Spectroscopy 

 

Optical absorption spectroscopy is an important tool to determine the properties of the 

gold colloidal solution. Gold nanoparticles and aggregations of gold nanoparticles have an 

intense color which is absent for the bulk gold material or for the individual gold atoms. The 

absorbance, position and shape of the ultraviolet-visible spectrum were found to depend on many 

factors such as particles sizes and their distribution, particle shapes, concentrations of gold, 

refractive index of the solvent, temperature, and etc [43].  The UV-Vis spectroscopy was used in 

our study to monitor the synthesis process of gold nanoparticles, to observe the degree of gold 

supercluster formation, and to measure the concentrations of gold colloidal solution. 

5.1 Optical Properties of Gold Nanoparticles 

The optical response of noble metal nanoparticles is a very unique phenomenon. It is 

confined to a select number of elements that display free electron behavior in particles under 100 

nm in size. Despite these restrictions this property has been utilized for hundreds of years as the 

coloration of decorative glasses. Scientific study of this phenomenon was first accomplished by 

Michael Faraday at the turn of the 19
th 

century as he attributed this optical response to small gold 

clusters in solution [44]. Mie was the first to investigate the origin of these colors mathematically 

as he solved Maxwell‟s equations of light for small spherical particles of metal [45]. These 

calculations are widely used today to predict the absorbance features of various metal particles, 

and mimics experimental observations very closely.  
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The absorption of light in this instance is typically termed a surface plasmon resonance 

(SPR). The phenomenon is described as the response of the electron gas (free electrons in a 

metal particle) to the presence of an electromagnetic wave in the vicinity of the particles [45-48]. 

This wave of light causes an oscillation of the free electrons. The frequency of oscillation is 

determined by the density of electrons, the effective electron mass, and the shape and size of the 

charge distribution. This translates into a very product specific property. The absorption will be 

dependent on the specific characteristics and the local environment of the particle.  

 

As the size of the particle is increased a greater number of electrons are involved, and 

will have lesser displacement from the nuclear framework. If the shape of the particle is altered 

from spherical there will be separate responses of the electrons for different directions of electron 

oscillation. When the composition of a metal particle is altered, once again the free electrons will 

have a different affinity for the particle and will also cause a shift the position of λ-max. 

Likewise for particles with heterogeneous compositions (more than one metal domain), a 

complex spectra will be observed.  

 

The optical response of the particles is also very sensitive to its surroundings. The 

absorbance is highly dependent on the refractive index of the solution, which is amplified for 

molecules very near, or bonded to the surface of the metal particle. Exciting new sensor devices 

have been developed using this property allowing detection of numerous entities including 

protein recognition. Binding of molecules to the nanoparticles will have an added effect based on 

the electron donation/withdrawing properties of the bonded functional group affecting the 

conduction electrons.  
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Experimentally the SPR is found to be dependent on the size, shape, and environment of 

the particles. It can therefore be used as a gauge of the size dispersity of the particles in solution. 

A strong narrow absorption is representative of very similar particles, while a broad, weaker 

band will be the result of the contribution of many particles over a large size distribution. The 

SPR may also be used as an indicator of the size of the particles, as long as the composition of 

the nanoparticle is held constant. A blue shift of the peak maximum generally denotes a smaller 

particle size.  

 

UV-Vis spectra of gold colloidal solution with dodecanethiol ligands before and after 

digestive ripening are given in Figure 5.1. The UV-Vis peak is considerably narrower after 

digestive ripened, which reflects the greatly reduced size distribution that occurs during this 

process. The UV-Vis peak is also getting stronger. The probable reason is that more and more 

gold nanoparticles are dissolved from the precipitate. The digestively ripened solution has a 

plasmon peak maximum at 530nm. This band is due to plasmon absorption of single dispersed 

Au particles with sizes about 5nm in solution as determined by TEM, shown in Figure 3.5. 

 

 

 

 



 58 

 

 

 

 

Figure 5.1 UV-Vis spectrum of AuC12SH before and after digestive ripening [29]. 
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5.2 Supercluster Formation 

We discussed the formation of supercluster in section 3.2. One obvious phenomenon of 

the supercluster formation process is the color changing from red-wine color to purple, see 

Figure 5.2. That implies UV-Vis spectroscopy is also a good method to monitor the monomer-

supercluster phase transition of gold nanoparticles. 

 

 

 

Figure 5.2 Reversible monomer-supercluster phase transition of gold-dodecanethiol in the 

mixture of t-butyl toluene and 2-butanone by changing the sample temperature. 

 

 

Figure 5.3 shows a typical UV-Vis spectrum of a system proceeding a supercluster 

formation. Au-C12SH nanoparticles were dissolved in a mixture of 64%butanone and 36%t-

butyltoluene at 72°C. The narrow plasmon peak and the peak position at 72°C indicate the 

particles were monodisperse and they were all monomers. The system was in one-phase regime 

at that temperature. When the temperature was cooled, the UV-Vis peak was shifted to a larger 
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wavelength and a shoulder was arising, which means the monomers were aggregating and 

forming the superclusters. The peak also became broader because the superclusters formed from 

monomers were no more so monodisperse. 

 

 

 

Figure 5.3 UV-Vis spectrum of gold with dodecanethiol in 64%butanone+36%t-butyltoluene 

cooled from 72°C to 24°C.  
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5.3 Concentration Measurement 

The UV-Vis spectroscopy is often used in a quantitative way to determine concentrations 

of an absorbing species in solution by using the Beer-Lambert law. The Beer-Lambert Law in 

optics gives the relation between the absorption of light and the concentrations of the material 

through which the light is traveling. When a system is in a two-phase state, the UV-Vis spectrum 

will be a mixing effect from both phases. We can use centrifugation to separate them and 

measure the concentration of the sample in one-phase.  

5.3.1 Beer–Lambert law 

The Beer-Lambert Law states that the transmissivity T of light through a liquid material, 

defined by the ratio of the intensity I of the transmission light and the intensity I0 of incident 

light, depends on the distance L the light travels through the liquid material and the absorption 

coefficient α as 

 Le
I

I
T  

0

  (5.1) 

The absorption coefficient α can be written as a product of the molar absorptivity ε of the 

absorber and the molar concentration c of absorbing species in the material, c  . 

 

The transmissivity is expressed in terms of an absorbance which for liquids is defined as 

 TA ln   (5.2) 

So the absorbance is linear with the concentration according to 

 LcA    (5.3) 

The molar absorptivity coefficient ε is a fundamental particle property in a given solvent, at a 

particular temperature and pressure. As long as we keep the molar absorptivity coefficient ε and 
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the path length L constants, we can determine the concentration of a solution with the simple 

linear relationship by measuring the absorbance A.  

5.3.2  Settling Velocity of Gold Superclusters 

To obtain the concentration of gold monomers in a monomers-superclusters co-existing 

sample, i.e., a sample in the two-phase regime, the sample must be centrifuged to separate 

monomers from superclusters. Then the supernatant sample containing the monomers was 

measured with UV-Vis spectrophotometer. The centrifuging time was determined by the settling 

velocity of particles.  

 

If the particles are falling in the viscous fluid by their own weight due to gravity, then a 

terminal velocity, also known as the settling velocity, is reached when this frictional force 

combined with the buoyant force exactly balance the gravitational force. The resulting settling 

velocity (or terminal velocity) can be derived from Stokes‟ Law [49]. 

 

The weight for the particle is 

 grG p
 3

3

4
   (5.4) 

where r is the radius of the particle, p  is the density of the particle and g is the gravity 

acceleration. And the buoyancy on the particle is 

 grF l
 3

3

4
   (5.5) 
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where l  is the density of the fluid. The Stokes‟ Law gives the frictional force exerted on 

spherical objects with very small Reynolds numbers (e.g., very small particles) in a continuous 

viscous fluid as [50] 

 rvf 6   (5.6) 

where η is the viscosity of the fluid and v is terminal velocity. When the particle achieves the 

terminal velocity, the net force on the particle should be zero, i.e. 

 06
3

4

3

4 33  rvgrgr lp 





  (5.7) 

Rearrange equation (5.7) we have 

 
 



 2

9

2 gr
v

lp 
   (5.8) 

The Relative Centrifugal Force (RCF in „g‟s) replaces the gravity acceleration when the sample 

is being centrifuged. The radius of particles can be obtained with the dynamic light scattering 

method as discussed in the light scattering chapter. The mass density of gold superclusters can be 

computed by assuming the gold cores in monomers have the mass density of bulk gold and the 

superclusters have FCC superlattice structure as discussed in section 3.2. 

5.4 Equipment setup 

Temperature controlling is the most delicate part in the monomer-supercluster phase 

transition experiment. To keep the temperature stable during the UV-Vis measurement and to 

change the temperature quickly when it is needed, a temperature controllable work chamber was 

designed and made, see Figure 5.4. The chamber was thermally isolated from surrounding by 

foam plastic. The rotor of a Thermo Scienfific Sorvall Legend 14 Centrifuge was raised up and 

placed in the chamber. A SpectraSuite UV-Vis Spectrometer was used in the experiment. The 



 64 

sample holder for UV-Vis measurement was also placed in the chamber and connected with the 

spectrometer with two optics fiber. Copper tubes coiled round the rotor and the sample holder. 

An Endocal Refrigerated Circulating Bath pumped the antifreeze coolant fluid at a specified 

temperature to run through the copper tubes. The range of temperature variation of the 

circulating bath was from -10°C to 100°C. Two thermocouples, attached on the sample holder 

and the rotor, were used to monitor the temperatures. When the centrifuge was turned on, the 

rotating rotor could stir the air in the chamber to an equilibrium temperature rapidly. 

 

The sample was prepared at high temperature (e.g. 65°C) in another temperature 

controlled sample holder. Then the sample was quenched to a certain temperature, same as pre-

set temperature of the chamber.  The gold nanoparticles started to aggregate and form 

superclusters, checked with light scattering. Then we transferred the sample into the cuvette in 

the centrifuge rotor and centrifuged it. The centrifuging time was calculated by the settling 

velocity of gold superclusters. The next step is loading the supernatant into a Starna Quartz 

Micro Cell of 10mm path length in the sample holder. Absorbance data were taken three times 

consecutively per sample. 
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Figure 5.4 The temperature controllable chamber, used for concentration measurement. 
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CHAPTER 6 - Solubility Phase Diagram of Gold Nanoparticles 

 

6.1 Introduction 

 

Nanoparticles can assembly into very interesting and applicable structures when the 

interactions between nanoparticles are at the level of a few times the average thermal energy in 

the system such that the particles can sample an ensemble of states [51]. Suspensions display 

phase behavior similar to that seen in molecular solution systems after the system reaches an 

equilibrium state [52]. The phases in the system can be manipulated through the interactions 

between the solute particles and the interactions between the solutes and the solvents. The 

dispersed/aggregated phase transitions referred to as fluid/crystal transitions. To describe phase 

transitions, the thermodynamic variables used in single component molecular systems are 

density, temperature, and pressure. However, the variables are density, temperature, 

concentration, and strength of interaction in colloidal systems. Hence the phase diagram of a 

solution or a colloidal solution can be plotted in temperature vs. concentration as shown in 

Figure 6.1. The strength of interaction distinguishes colloidal suspensions most strongly from 

molecular systems. For example, because the strength of interaction can be tuned by solution 

properties, at fixed temperature, one can map out an entire phase diagram [52]. As the range and 

strength of attractions and repulsions can be varied over an enormous range with colloidal 

particles, suspensions of nanoparticles offer a unique test bed for treatments of molecular phase 

behavior. 
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Our weakly interacting nanoparticles have the interactions on the order of thermal energy 

[31]. That means our nanoparticle systems can sample an ensemble of states and are subject to 

undergoing phase transitions. The discussion in section 3.2 and section 5.2 showed that our gold 

nanoparticles could form superclusters when they were quenched from a dispersed phase at a 

high temperature. Those phase transitions were thermally reversible. The superclusters would 

redissolve to nanoparticles monomers when the temperature was increased.  

 

 

Figure 6.1 Phase diagram and the solubility phase transition of a solution or a colloidal solution 

 

 

In this chapter, we will describe our work on the solubility phase diagrams of gold 

nanoparticles ligated with dodecanethiol, decanethiol, and octanethiol in the mixture of toluene 
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(or t-butyl toluene) and 2-butanone were obtained with UV-Vis spectroscopy. The classical ideal 

solution theory and regular solution theory will be used to analysis the phase diagrams. 

 

6.2 Experimental Methods 

The entire solubility measurement process has the following steps, 

1) A highly concentrated (the concentration was known) sample of gold nanoparticles  in 

toluene (or t-butyl toluene) was mixed with a mixture of toluene (or t-butyl toluene) and 

2-butanone which was preheated to a high temperature (e.g. 65°C) at which the 

nanoparticles stay in monomers state checked by dynamic light scattering. 

2) The sample was kept at high temperature for the brief time then was quenched to lower 

temperatures (e.g. 24°C). 

3) The in situ measurement with dynamic light scattering of the quenched sample started 

immediately untill both the intensity of the scattered light and the size of superclusters 

stopped increasing, which means the system came to a monomers-superclusters co-

existing equilibrium state.  

4) The sample was transferred to a centrifuge cuvette at the same temperature (e.g. 24°C) 

and was centrifuged. The centrifuge time was calculated as described below. 

5) The supernatant of the sample was transferred to a quartz UV-Vis cell at the sample 

temperature and the absorbance of the supernatant was measured. 

6) The absorbance was converted to concentration. That concentration is the solubility of 

that gold nanoparticles sample in that solvent at that temperature. 
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6.2.1 Calibration of Concentration 

The relationship between the concentration and the absorbance for our gold monomers 

was measured by our cooperator Ben Scott [53], shown in Figure 6.2. As we discussed before, 

Beer‟s Law is a linear relationship of absorbance with increasing solution concentration. 

However, as the system‟s turbidity increases the linear relationship breaks down. Figure 6.2 

illustrates this phenomenon at concentrations greater than Lmol /105.1 3 . So the linear 

relationship from the calibration data is valid for concentrations up to Lmol /105.1 3 , and for 

absorbances up to about 2.5. The absorbances in our study are clearly in that linear range of 

validity. The fitted linear equation from Ben Scott‟s data is 

 mLmgAbsLmol
Abs

c Ben
Ben /1009.3115.0/
1719

027.0 3


   (6.1) 

Even for a same sample, the absorbance measured with Ben Scott‟s UV-Vis spectrometer was 

different from the absorbance measured with our UV-Vis spectrometer because of the varied 

light path length and the experimental error. A correlation equation between those absorbances 

was obtained by a calibration experiment. 

 21027.217.1  benAbsAbs   (6.2) 

Substitute (6.2) into (6.1), we have the linear relation between concentration and absorbance of 

our gold nanoparticle monomers  

 )/(1032.51079.9 32 mLmgAbsc     (6.3) 

 

After each gold nanoparticle colloidal solution was prepared with digestive ripening 

process, the stock concentration was measured with above equation. 
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Figure 6.2 Calibration curve for absorbance and concentration in mol Au atoms/L [53]. 

 

 

6.2.2 Settling Velocity of Gold Superclusters 

 

The settling velocity of gold superclusters must be estimated before we set the centrifuge 

time. The calculation formula was given in equation (5.8). Here we just give a typical example of 

gold supercluster ligated with dodecanethiol. 
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 The diameter of the gold core in one Au-C12SH nanoparticle is 4.9nm, measured by 

TEM picture. With twice the dodecanethiol ligand length, which is 1.7 nm, added, the total 

diameter of a gold-C12SH nanoparticle is 8.3nm. 

 

The atomic radius of gold is 0.144nm, and the crystal structure of gold is FCC lattice, so 

the volume of each gold atom in the lattice is 

 
  3

33

0169.0
2

144.0*2

2
nm

d
v    (6.4) 

So the number of gold atoms in a gold-C12SH nanoparticle is 

 
 
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6/9.4
3

3
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N Au


  (6.5) 

The ligands ligated on the gold core have a surface density of 21.5Å
2
 per chain [32,54].  So the 

number of ligands on a gold nanoparticle surface is 

 
 

351
215.0

9.4
2

2


nm

nm
N ligand


  (6.6) 

 

The atomic weight of gold is molg /197  and the molecular weight of C12SH is 

molg /202 . The mass of a nanoparticle is 

 g
mol

molg
m 18

123
1031.1

1002.6

/)2023511973645( 







   (6.7) 

 

As discussed in section 3.2, we can assume the supercluster also has the FCC lattice super-

crystal structure, and then the volume occupied by one nanoparticle in the supercluster is (not the 

volume of one free nanoparticle) 
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404
2

)3.8(

2
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V    (6.8) 

So the mass density of the supercluster is 
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

   (6.9) 

For pure butanone solvent, the mass density is 3/805.0 cmgl  , and the viscosity is 

sPa  3104054.0 . Substitute the densities and the viscosity into equation (5.8), we have the 

settling velocity of the AuC12SH superclusters 
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  (6.10) 

 

The settling velocity (in cm/hour) depending on the radius of supercluster (in nm) is 

plotted in Figure 6.3. When the sample is centrifuged with the gRCF 14500 , the settling 

velocity equals 14500 times the settling velocity in Figure 6.3 consequently. Typically, the radius 

of superclusters is about 200nm, measured with dynamic light scattering. Hence the settling 

velocity of superclusters is 

 scmhrcm /76.0200/1072.414500 26     (6.11) 

The radius of nanoparticles monomers is 4.15nm, hence the settling velocity of monomers is 

 hourcmhourcm /18.115.4/1072.414500 26     (6.12) 

 

The typical height of our sample in the centrifugal cuvette is about 1cm. So it takes a few 

seconds to precipitate the superclusters and about one hour to precipitate the monomers. We 
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usually centrifuged our samples five minutes to separate the superclusters from the monomers 

before the UV-Vis measurements. 

 

 

 

 

Figure 6.3 Settling Velocity of Au-C12SH superclusters in 2-butanone 
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6.3 Results and Discussions 

 

Three types of gold nanoparticles were used in our work. They are ligated with 

dodecanethiol, decanethiol and octanethiol individually. For gold nanoparticles ligated with 

dodecanethiol, we synthesized them in two kinds of solvent, t-butyl toluene and toluene. All gold 

nanoparticles ligated with decanethiol and octanethiol were synthesized to disperse in toluene. 

 

6.3.1 Gold Nanoparticles in Mixtures of t-butyl Toluene and 2-butanone 

 

The concentration of stock AuC12SH in t-butyl toluene colloidal solution was measured 

with UV-Vis spectrometer and a TEM picture was taken as shown in Figure 3.5. The 

concentration of stock colloidal solution is 0.893mg/ml.  

 

To adjust the phase transition temperature to an experimental accessible temperature, a 

bad solvent, 2-butanone, was added to the colloidal solution. Experiment showed that t-butyl 

toluene and 2-butanone are totally miscible. Mixtures with different ratios of t-butyl toluene and 

2-butanone were tried. The result we show here is for the solvent of 4% t-butyl toluene and 96% 

2-butanone. 

 

960 micro liters of 2-butanone were preheated at 65°C, where the resulting systems were 

one phase, 40 microliters of stock AuC12SH in t-butyl toluene colloidal solutions were then 

mixed. The samples were kept there for the brief time before they were quenched to lower 

temperatures. 
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After the samples were quenched to lower temperatures and the light scattering 

experiments were done. The solutions were centrifuged at 300 g at the quenched temperature for 

15 minutes. This time is about an order of magnitude greater than the settling time indicated by 

the Stokes drag calculation of settling velocities for the superclusters. Then the concentrations of 

the supernatants were measured with UV-Vis measurements. Moreover, subsequent UV-Vis 

measurements at longer centrifuge times showed no further spectrum change indicating that all 

the precipitate was at the bottom. The concentrations of the supernatants, i.e., the solubilities of 

AuC12SH particles in 4% t-butyl toluene and 96% 2-butanone were plotted in Figure 6.4. The 

linear fitted line in Figure 6.4 is 

      99.7/150/  CTmLgc    (6.13) 

The temperature dependence is rather modest, a 15% change over a temperature range of 35°C. 
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Figure 6.4 Phase diagram of AuC12SH nanoparticles in 4% t-butyl toluene + 96% 2-butanone. 

The data marked by square points were measured after 15-minute centrifuging, linearly fitted 

with the straight line. The triangle points were measured, without centrifuging, 30 minutes after 

the quench and may have less accuracy. 
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6.3.2 Gold Nanoparticles in Mixtures of Toluene and 2-butanone 

 

Similar experiments were done with AuC12SH, AuC10SH and AuC8SH in mixture of 

toluene and 2-butanone. Also we varied the ratio of toluene and 2-butanone as the solvents. The 

typical UV-Vis absorbance spectra of gold nanoparticles ligated with decanethiol dispersed in 

60% 2-butanone + 40% toluene was plotted in Figure 6.5. The peak absorbances were converted 

to concentrations by using the calibration equation (6.3). 

 

Figure 6.6 shows the phase diagrams of AuC12SH in mixtures of toluene and 2-butanone. 

Figure 6.7 shows the phase diagrams of AuC10SH in mixtures of toluene and 2-butanone. And 

Figure 6.8 shows the phase diagrams of AuC8SH in mixtures of toluene and 2-butanone. From 

all the phase diagrams we can deduce that the solubilities of gold nanoparticles are larger with 

more toluene in the solvent, for the sample gold nanoparticles solutes. That is reasonable and 

quite obvious because toluene is a good solvent of the gold nanoparticles and 2-butanone is a 

relative bad solvent. 

 

Figure 6.9 compares the phase diagrams of gold nanoparticles with different ligands in 

the same solvent. The nanoparticles ligated with dodecanethiol have the largest solubilities. The 

nanoparticles ligated with decanethiol have the second large solubilities and the nanoparticles 

ligated with octanethiol have the least solubilities. An easy-understood explanation is the 

effective interaction potential between two gold nanoparticles becomes stronger as the ligands 

length is decreased [32]. The nanoparticles ligated with shorter alkyl chains have the greater 

propensity to aggregate to form supercluster, rather than to disperse in solvent. 
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Figure 6.5 UV-Vis absorbance spectra of gold nanoparticles ligated with decanethiol dispersed 

in 60% 2-butanone + 40% toluene. 
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Figure 6.6 Phase diagrams of AuC12SH in mixtures of toluene and 2-butanone. Legends in the 

figure: b5t5 means 50% 2-butanone + 50% toluene, b6t4 means 60% 2-butanone + 40% toluene, 

and b7t3 means 70%2-butanone + 30% toluene. The similar legends are also used in subsequent 

figures. 
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Figure 6.7 Phase diagrams of AuC10SH in mixture of toluene and 2-butanone. See Figure 6.6 for 

the legends meaning. 
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Figure 6.8 Phase diagrams of AuC8SH in mixture of toluene and 2-butanone. See Figure 6.6 for 

the legends meaning. 
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Figure 6.9 Phase diagrams of gold nanoparticles in 50% 2-butanone + 50% toluene. Legends in 

the figure: C8 means gold nanoparticles ligated with octanethiol, C10 means gold nanoparticles 

ligated with decanethiol, and C12 means gold nanoparticles ligated with dodecanethiol. 
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The classical ideal solution theory gives the zero-order relationship between the 

concentration and the temperature as equation (2.17) 

 
 


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


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



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m
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T

T

RT

TH
x 1ln 1  (2.17) 

where 1x  is the concentration in molar fraction,  mfus TH  is the fusion enthalpy of gold 

superclusters at the melting temperature mT , R is the molar gas constant 1131.8   KmolJR , 

and T is the temperature in Kelvin.  

 

From above equation we know 1ln x  is linear proportional to RT/1 , with  mfus TH  as 

the slope and   mmfus RTTH /  as the intercept. Therefore we can plot the phase diagrams as 

1ln x  vs. RT/1  and fit the data with straight line. From the fitting parameters we will have the 

fusion enthalpy of gold superclusters. 

 

In Figure 6.10, phase diagrams of AuC12SH in mixture of 2-butanone and toluene are 

plotted as 1ln x  vs. RT/1 . The linearly fitted mathematical relationships from experimental 

data are listed in Table 6.1. 

In Figure 6.11, phase diagrams of AuC10SH in mixture of 2-butanone and toluene are 

plotted as 1ln x  vs. RT/1 . The linearly fitted mathematical relationships from experimental 

data are listed in Table 6.2. 

In Figure 6.12, phase diagrams of AuC8SH in mixture of 2-butanone and toluene are 

plotted as 1ln x  vs. RT/1 . The linearly fitted mathematical relationships from experimental 

data are listed in Table 6.3. 
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Figure 6.10 Phase diagrams of AuC12SH in mixture of toluene and 2-butanone. See Figure 6.6 

for the legends meaning. 
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Figure 6.11 Phase diagrams of AuC10SH in mixture of toluene and 2-butanone. See Figure 6.6 

for the legends meaning. 
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Figure 6.12 Phase diagrams of AuC8SH in mixture of toluene and 2-butanone. See Figure 6.6 for 

the legends meaning. 
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Figure 6.13 Phase diagrams of gold nanoparticles in 50% 2-butanone + 50% toluene. Legends in 

the figure: C8 means gold nanoparticles ligated with octanethiol, C10 means gold nanoparticles 

ligated with decanethiol, and C12 means gold nanoparticles ligated with dodecanethiol. 

 

 

 

 

 

 



 88 

 

Table 6.1 Mathematical relationships of concentration and temperature of gold nanoparticles 

ligated with dodecanethiol in mixture of 2-butanone and toluene 

Solvent 1ln x  vs. RT/1  

70%butanone+30%toluene )1.77.1(
1

/)1835(ln 
RT

molkJx  

60%butanone+40%toluene )3.144.0(
1

/)5.328(ln 
RT

molkJx  

50%butanone+50%toluene )4.10.2(
1

/)4.322(ln 
RT

molkJx  

 

 

Table 6.2 Mathematical relationships of concentration and temperature of gold nanoparticles 

ligated with decanethiol in mixture of 2-butanone and toluene 

Solvent 1ln x  vs. RT/1  

80%butanone+20%toluene )3.17.6(
1

/)2.346(ln 
RT

molkJx  

60%butanone+40%toluene )58.05.1(
1

/5.133(ln 
RT

molkJx  

50%butanone+50%toluene )58.097.0(
1

/)4.131(ln 
RT

molkJx  

 

 

Table 6.3 Mathematical relationships of concentration and temperature of gold nanoparticles 

ligated with octanethiol in mixture of 2-butanone and toluene 

Solvent 1ln x  vs. RT/1  

50%butanone+50%toluene )48.0067.0(
1

/)3.131(ln 
RT

molkJx  

40%butanone+60%toluene )34.027.0(
1

/)88.029(ln 
RT

molkJx  

30%butanone+70%toluene )091.066.0(
1

/)23.027(ln 
RT

molkJx  
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Assuming the gold nanoparticles colloidal solutions are ideal solutions, from the slopes 

of the fitted line in the phase diagrams, we obtain the fusion enthalpies of gold nanoparticle 

superclusters as listed in Table 6.4. The fusion enthalpies have systematic but modest changes 

with the solvent and the ligands. The fusion enthalpy became larger when the ligand chains 

became shorter. That is consistent with the fact that the interaction potential of the gold 

nanoparticles with shorter ligand chains is stronger. 

 

The intercepts of the fitted line in the phase diagrams give the term   mmfus RTTH / , 

which should be negative because both the fusion enthalpy and the melting temperature have 

positive values. From the intercepts we can find out the melting temperatures of the 

superclusters. However there are some positive intercepts in Table 6.1, Table 6.2 and Table 6.3. 

That means the intercepts we obtained could have large experimental error. But we still list the 

melting temperatures of superclusters calculated from those negative intercepts, as Table 6.5. 

 

The fusion enthalpy increases when the ratio of 2-butanone is increased and the ratio of 

toluene is decreased. That suggests that our gold nanoparticles colloidal solutions are not so 

“ideal” because the fusion enthalpy of same solute should be independent of the solvent if the 

solutions are ideal solution. In section 2.2.3, we discussed the regular solution model as a good 

approximation of real solution. The regular solution gives the solubility equation in equation 

(2.22). 

 
   

RT

V

T

T

RT

TH
x

m

mfus
2

211
1 1ln

 












  (2.22) 
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From the equation we know the slope of our fitted line has two terms,  mfus TH  

and  2211  V , where 1V  is the molar volume of the pure liquid solute, 1  and 2 are the 

solubility parameters of solute and solvent. The second term can not be ignored for regular 

solutions. The change of the solvents in regular solution affect the solubility parameter 2 , then 

the slopes of the relationship of concentrations and temperatures change. The molar volume of 

the pure liquid solute 1V  and the solubility parameters of solute 1  are needed for further 

analysis. 

 

 

Table 6.4 Fusion enthalpies of gold nanoparticle superclusters with different ligands (in kJ/mol) 

 AuC8SH AuC10SH AuC12SH 

80%butanone+20%toluene  2.347    

70%butanone+30%toluene   1835  

60%butanone+40%toluene  5.133  5.328  

50%butanone+50%toluene 3.131  4.131  4.322  

40%butanone+60%toluene 88.029    

30%butanone+70%toluene 23.027     

 

 

Table 6.5 Melting temperatures of gold nanoparticle superclusters with different ligands (in 

Kelvin). 

 AuC8SH AuC10SH AuC12SH 

80%butanone+20%toluene  830  

70%butanone+30%toluene   2500 

60%butanone+40%toluene  2600  

50%butanone+50%toluene 56000 3800  
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The fusion enthalpy of a solid material is related to the interaction potential between the 

particles in the solid. A good example is the inert gases with the well known Lennard-Jones 

Potential 

  







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



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
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
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




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


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612

4
RR

RU


   (6.14) 

The potential depth parameter is erg1610167   for Ar and erg1610320   for Xe [55]. 

The fusion enthalpy is molkJH fus /18.1  for Ar crystal and molkJH fus /27.2  for Xe 

crystal [56]. From those data we get the relation between the fusion enthalpy and the interaction 

potential for inert gas is 

 Afus NH 18.1   (6.15) 

where AN  is Avogadro constant.  

 

 If we assume the interaction potential between our gold nanoparticles in superclusters is 

also Lennard-Jones Potential, the interaction potential can be estimated by using equation (6.15). 

For instance, the fusion enthalpy measured from AuC8SH in 50%butanone+50%toluene is 

molkJ /31 , thus the depth of potential well is 

 J
mol

molkJ

N

H

A

fus 20

123
103.4

1002.618.1

/31

18.1










   (6.16) 
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CHAPTER 7 - Nucleation of Gold Nanoparticle Superclusters 

7.1 Size Measurement with Dynamic Light Scattering 

 

We discussed the static light scattering and dynamic light scattering theory and the 

experimental setup before. There are a lot of advantages to study the solubility behavior in 

solution with light scattering. The sample preparation is relative easy and no special treatment is 

needed. The measurement process does not interfere with the nature of the sample, so the 

measurement can reflect the real status of the particles in the solution. And the samples can be 

used for the subsequent UV-Vis spectroscopy experiments. The running time of dynamic light 

scattering can be set from few seconds to more than thirty minutes, depending on the properties 

of the samples. So the dynamic light scattering is an in situ and real-time measurement that can 

monitor the dynamic transition of the system. The measurable size of particles for dynamic light 

scattering ranges from a few nanometers to a few microns. 

 

We measured the size of our gold nanoparticles ligated with dodecanethiol in toluene 

with dynamic light scattering method. The results are comparable with the results measured with 

TEM pictures. The size of gold nanoparticles monomers is so small that the scattered light signal 

is very weak. Some special techniques were used for those measurements. Firstly, mmmm 22   

square tubes, instead of the regular 10mm diameter round test tube, were used in the experiment 

in order to shorten the light path length and reduce the light absorption. The samples, sealed in 

the square tubes with Parafilm, were then centrifuged for 30 minutes at 800g RCF to remove the 

impurity in the solutions. A long running time of the dynamic light scattering, 30 minutes, was 

set to minimize the electronic noises.  
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Figure 7.1 Correlation function obtained from gold nanoparticles ligated with dodecanethiol in 

toluene at 22°C. 

 

Figure 7.1 shows the correlation function of AuC12SH monomers in toluene. Fitting the 

correlation function with the exponential decay equation (4.27) gave the correlation time 

msc 0127.0 . The radius calculated with that correlation time is nma 2.4 . This is in very 

good agreement with the TEM value when twice the ligand length is added to gold core size 

nm5.09.4  , viz. nm5.03.8  . 
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The experimental procedures for the solubility phase behaviors of gold nanoparticles in 

mixtures of toluene (or t-butyl toluene) and 2-butanone were described in section 6.2. Once the 

sample was quenched in the preset lower temperature sample holder, the light scattering 

measurement was started immediately. Each run of the measurement was set to finish in 10 

seconds, which is much shorter than the aggregation time as described blow, in order to make the 

measurements relatively real-time. The scattered light intensity, the correlation function and the 

measuring time were recorded in a data file after each run. 

 

7.2 Results and Discussions 

 

Quenches from the one-phase regime into the two-phase regime caused the formation of 

superclusters of nanoparticles on the order of a few hundred nanometers in size. The scattered 

light intensity increased dramatically when the gold nanoparticles started to aggregate because of 

the Tyndall effect. By measuring the size of superclusters and the light intensity, we can study 

the aggregation kinetics of the nanoparticles and the properties of the superclusters. 

7.2.1 Aggregation Kinetics 

Nuclei must be formed from the gold nanoparticles in a homogeneous colloidal solution 

before they can grow to superclusters. In our experiments, the aggregations were often found 

happened rapidly, which meant the induction time was small enough. To measure the induction 

time more accurately, we should decrease the temperature of our samples fast enough. For one 

microliter solution in a 10mm diameter test tube, the characteristic time of the temperature 
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quench was about 100 seconds. By using a mmmm 22   square tube as the sample container, we 

can reduce the characteristic time to a few seconds. 

 

Figure 7.2 shows the intensities changed with the quench time at different quench 

temperatures for AuC10SH nanoparticles in a mixture of 60%Butanone+40%Toluene. When a 

sample was quenched to a much lower temperature, which is a deep quench, the light intensity 

increased faster then a sample was quenched to a much higher temperature, shallow quench. If 

we roughly choose the time when the light intensity starts to increase as the nucleation induction 

time, we can have the data relating the induction time and the quench temperature, as the points 

plotted in Figure 7.6. 

 

After the nuclei were formed, they stared to grow to form superclusters. The 

superclusters became larger and larger as the aggregation is proceeding. A straightforward 

thought might be that the superclusters will keep growing up until they are large enough to settle 

down to the bottom of the sample container. However, the results of dynamic light scattering 

measurements showed that the size of the nanoparticle superclusters came to a constant size after 

a certain growth time and kept that constant size for about one hour, as seen in Figure 7.3. The 

scattered light intensity also stopped evolving on the same time scale to imply that the 

nanoparticle superclusters were not gravitationally settling. This is supported by the settling 

velocity calculations using the Stokes drag equation (5.8). Thus the systems were in an 

equilibrium state of the 5nm size nanoparticle monomer disperse phase and the constant size 

supercluster phase co-existing. 
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 After several hours, the superclusters in the colloidal solution became larger and more 

polydisperse. The light intensity also started to decrease which implied the superclusters were 

gravitationally settling. The dynamic light scattering measurement was becoming difficult 

because of the polydispersity and the weak signal. Eventually, all the superclusters precipitated 

at the bottom the sample container. 

7.2.2 Supercluster Equilibrium Size 

Another interesting phenomenon we can find in Figure 7.3 is that the equilibrium 

constant size of the superclusters depends on the quench temperature. The superclusters were 

smaller when the system was quenched to a lower temperature, deep quench, and the 

superclusters were larger when the system was quenched to a higher temperature, shallow 

quench. This is a classic result known for both ionic and molecular solutions: deep quenches 

cause fine precipitates.  

 

In order to study the phenomenon quantitatively, more quench experiments were done 

and a series of systematic data of the superclusters sizes versus the quench temperatures, as 

plotted in Figure 7.4.  
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Figure 7.2 Intensity vs. quench time, which shows aggregation induction time of different 

quench temperatures of AuC10SH in 60%Butanone+40%Toluene. 
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Figure 7.3 Gold nanoparticles ligated with dodecanethiol in 4% t-butyl toluene + 96% 2-

butanone were quenched from 65°C (single phase) to 25°C (black square points), 35°C (red 

circular points) and 45°C (blue triangular points), respectively.  
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Figure 7.4 The sizes of superclusters formed with 4% t-butyl toluene + 96% 2-butanone at 

different quench temperatures, quenched from 65°C. The line is the best fit to the nucleation 

theory described in the text with a single fit variable, the interfacial tension of the solid phase 

with a value of 0.042 2/cmerg .  



 100 

7.2.3 Classical Nucleation Theory Explanation 

The classical nucleation theory can be used to explain the aggregation kinetics and the 

supercluster equilibrium size. 

 

The number density of nuclei cn  depends on the critical Gibbs free energy cG  as 

equation (2.34). With the LaMer-Dinegar model discussed in section 2.3.2, we can have the 

supercluster equilibrium size computed from the number density of nuclei. Figure 7.5 is a 

schematic of superclusters growth process explained with the LaMer-Dinegar model. Figure 

7.5(A) shows the initial state of the system. The nuclei were formed in the gold nanoparticles 

monomers. The number density of nuclei determined the volume occupied by each nucleus, 

which was simply cn/1 , plotted as spheres with dash lines in the figure. When one nucleus was 

growing, only the monomers in that sphere around it would diffuse then attach on the nucleus. 

Figure 7.5(B) show the monomer and grown supercluster co-existing state. When the 

superclusters stopped to grow, the concentrations of the left monomers in the colloidal solutions 

were just the solubilities of the gold nanoparticle monomers in the solvent at this certain 

temperature. All the excess monomers, the difference between the original solution concentration 

C and solubility C
*
, i.e.,  *CC  , are exhausted. The superclusters with number density cn have 

grown to their maximum size V, 

 
cn

CC
RV

*
3

3

4 



  (7.1) 

Eventually we can have the radius of the supercluster equilibrium size as in equation (2.44). 
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Figure 7.5 A schematic of superclusters growth by using classical nucleation theory and LaMer-

Dinegar model. (A) Initial state with nuclei formed. (B) Monomer and grown supercluster co-

existing state. 
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Let us check all the parameters in equation (2.44). For a certain quench temperature T, 

the radius of the supercluster size maxR  is measured with dynamic light scattering as plotted in 

Figure 7.4. The volume of gold nanoparticle monomers v can be calculated from the radius of the 

monomers measured with dynamic light scattering and TEM pictures. The saturation ratio 

*/ CCs   can be calculated from the initial concentrations C and the solubilities C
*
, measured 

with UV-Vis spectroscopy. So the only unknown parameter in equation (2.44) is the interfacial 

tension γ between the supercluster and the saturated solution. The fitted line of the data in Figure 

7.4 with equation (2.44) was plotted as a red curve. The fitting parameter gives the interfacial 

tension of 2/042.0 cmerg . 

 

The fit of nucleation theory to the nanoparticle supercluster size data is successful in two 

aspects. First, the functionality of decreasing supercluster size with increasing quench depth is 

obtained. Second, the fit parameter γ represents a new quantity: the interfacial tension of a solid 

phase of aggregated nanoparticles, most likely a superlattice. From atomic and molecular 

perspectives, the value we obtain from our fit is quite small, nearly 3 orders of magnitude smaller 

than those found for atomic and molecular liquids and solids which are typically in the range 10 

to 30 erg/cm
2
. However, nanoparticle solids are new materials composed of large nanoparticle 

„„molecules‟‟. The surface tension of a hard sphere condensed phase is entirely entropic, and one 

would expect entropy to be the dominant contribution to the surface tension for the weakly 

interacting nanoparticle molecules where the interactions are on the order of the thermal energy, 

kT [31]. The entropic surface tension for a close packed FCC lattice is given by [57] 

 
2

61.0




TkB   (7.2) 
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where σ is the diameter of the „„molecule‟‟. Above we described the monomer diameter as 

nm0.14.8  . Then we find, at room temperature, 2/08.0033.0 cmerg , which has surprising 

consistency with the fit value. 

7.2.4 Induction Time 

From the intensity changes in Figure 7.2, we can roughly plot the induction time vs. 

quench temperature as the points in Figure 7.6. The classical nucleation theory gives the relation 

between the induction time and the critical Gibbs free energy in equation (2.36). 
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If we also consider the relation between the size of supercluster and the critical Gibbs free 

energy, 
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We will have the B-factor as 
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Since all the parameters in equation (7.3) are experimentally measurable, we can calculate the B-

factor for our gold nanoparticle colloidal solution. 

 

For gold nanoparticles ligated with decanethiol in 60%Butanone+40%Toluene, we 

measured the solubility *C (red round data points in Figure 6.7), the nucleation induction time 

indt (data points in Figure 7.6) and the size of superclusters in equilibrium R (data points in Figure 

7.7). The initial gold concentration C we used in the quench experiment is mlg /48 . If we 
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assume the diameter of that gold core is the same as the diameter of the gold core ligated with 

dodecanethiol, the diameter of a gold nanoparticle is the diameter of the gold core added with 

twice the decanethiol ligand length nmnmnmd 68.739.129.4  . With all the data we got, 

we calculated and plotted B as a function of temperature in Figure 7.8. Its values changed from 

about 5ms to almost zero with the quench temperatures increasing. 

 

 With the same procedure we used in the AuC12SH with 4% t-butyl toluene + 96% 2-

butanone system, we can also fit the data of the supercluster size in equilibrium in the AuC10SH 

with 60%Butanone+40%Toluene system through equation (2.44). Once we obtain the fit 

parameter, interfacial tension of AuC10SH superclusters in 60%Butanone+40%Toluene, we can 

use it in equation (2.36) to fit the induction time data. The fit parameter we obtained is 

2/06.0 cmerg , which is still small. However, both the size fit curve and the induction time fit 

curve were not matching the experiment data well, shown as the red solid curves in Figure 7.6 

and Figure 7.7. The reason of that is still unknown. Further experiments and theory work can be 

done to study the nucleation kinetics in our colloidal solution.  

 

7.3 Recommendations for Future Work 

 

The grown superclusters in the colloidal solution are not stable. They will keep 

aggregating in several hours and precipitate at the bottom of the container eventually. There are 

studies of the nucleation growth showed a two-stage growth process in formation of 

monodisperse colloids [58]. The study of kinetics of the second step of superclusters aggregation 

could be interesting. 
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Figure 7.6 Induction time vs. quench temperature of AuC10SH in 60%Butanone+40%Toluene. 

The blue dash line is the best fitted exponential growth curve of the experimental data. The red 

solid curve is the best fit to the classical nucleation theory.  
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Figure 7.7 Radius of the superclusters vs. quench temperature of AuC10SH in 60%Butanone+ 

40%Toluene. The blue dash line is the best fitted exponential growth curve of the experimental 

data. The red solid curve is the best fit to the classical nucleation theory. The fit paramseter gives 

the interfacial tension of the solid phase with a value of 0.06 2/ cmerg . 
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Figure 7.8 B-factor in the nucleation induction time of AuC10SH in 60%Butanone+40%Toluene. 
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CHAPTER 8 -  Conclusion 

Here we give a conclusion of our study on the solubility phase transition behavior of gold 

nanoparticles in colloidal solution. 

 

Gold nanoparticles in colloidal solution had been synthesized with inverse micelle 

method and solvated metal atom dispersion method.  The gold particles were polydisperse before 

they were digestive ripened. Digestive ripening is a term of the refinement process of 

nanoparticles in colloidal solution through heating. After the digestive ripening, nearly 

monodisperse gold nanoparticles were obtained. The gold nanoparticles are usually surface 

ligated with alkyl chains, which could be dodecanethiol, decanethiol, or octanethiol. These 

ligands cause colloidal solutions of the nanoparticles to be stable against irreversible aggregation. 

Gold nanoparticles dispersed in toluene or t-butyl toluene like large molecules at room 

temperature. The gold nanoparticles have a strong tendency toward superlattice formation due to 

the uniformity in size and shape. 

 

The gold nanoparticle colloidal solution displays a reversible temperature dependent 

solubility phase transition behavior. The nanoparticles dispersed in mixtures of toluene (or t-

butyl toluene) and 2-butanone at high temperature would aggregate to form superclusters when 

they were quenched to a lower temperature blow the phase boundary. The monomers-

superclusters co-existing phase would change back to the dispersed phase when the system 

temperature increased across the phase boundary. 
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The solubility curves, i.e., the phase diagrams were obtained with UV-Vis spectroscopy 

concentration measurements. The solubility of gold nanoparticles varied with the ligands lengths 

on the particles and the polarities of the solvents. With the polarities increasing, the solubilities 

were getting smaller. That is consistent with the well-known “like dissolves like” guide. The 

shorter the ligands lengths were, the smaller the solubilities were. That can be explained with 

that the nanoparticles with shorter ligand chains have the stronger interaction potential. The 

particles tends to aggregate rather than to disperse in the colloidal solution. Classical ideal 

solution theory gave the fusion enthalpies of the superclusters from the solubility curves. 

However, more works are needed to be done because our colloidal solutions are not so “ideal”. 

Regular solution theory could be a good approximation to be used. 

 

Temperature quenches from the one-phase to the two-phase regime described by the 

solubility curve yields superclusters of the nanoparticle solid phase. The nucleation induction 

times were measured with different quench temperatures. Once the nuclei were formed, they 

started to grow from the nanoparticles monomers until their size reached an equilibrium constant 

size. Classical nucleation theory can describe the size of the nanoparticle superclusters as a 

function of quench depth. The fitting parameter with the nucleation theory gave a very small but 

reasonable interfacial tension for the nanoparticle supercluster phase.  

 

In total these results show that the solubility behavior of the quasi-monodisperse 

nanoparticles in colloidal solutions is similar to the behavior in molecular solutions. 
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