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CHAPTER 1
INTRODUCTION

The z-transform is of significant importance in processing discrete
data. With the development of the Fast Fourier transform (FFT), it became
economically practical to numerically evaluate the z-transform of a finite
number of time samples [4]. The discrete Fourter transform (DFT) is a special
case of the z-transform since it evaluates the z-transform along the jw-axis
of the s-plane. The FFT has been the BackBone of much of the digital signal
processing work to date. It {s useful in its own right for the spectral
information it provides. Perhaps an eyen more important feature of the FFT
is that it can be used as a means to computing numerical convolutions and
correlations. |

However, the FFT allows us to compute the z-transform along only a
very restricted contour. Not only must the contour be the unit circle of
the z-plane, output points must Ge taken uniformly over the entire unit circle.
The chirp z-transform (CZT) is an algorithm for computing the z-transform
which was developed to overcome these restrictions of the FFT [1]. In Chapter I,
the CZT is defined in relation to the general (infinite series) z-transform.

Its properties are described and compared with those of the DFT. Then, the
computational algorithm for evaluating the CZT is developed using the FFT as its
basic component.

In order that the applications might be investigated, a program
imp]ementing the CZT was written. Chapter III demonstrates two applications
of the CZT: enhancement of poles in spectral analysis, and high resolution
narrow-band frequency analysis. Finally, in Chapter IV the report is summarized
and a recommendétion is made for future work in one possible area of application.

An appendix shows a listing of a program in which the CZT appears as a sub-program.



CHAPTER II
THE CHIRP-Z TRANSFORM

2.1 The Z-Transform

The z-transform is a fundamental tool for the analysis of discrete-
data systems. It is closely related to thé Laplace transform, whose value
in studying continuous data systems is well known. In order to see the need
for defining the z-transform, consider the discrete function x*(t) which was
obtained by ideally sampling the continuous waveform x(t) every T seconds
(see Fig. 2.1). The sequence x*(t) can be written as

x*(t) = x(t)&p(t) = I x(nT)s(t -nT), (2-1)
. n=0

where GT(t) is a periodic train of unit strength impulses spaced T seconds

apart, ie.,

& (t) = nz;s(t-nr). (2 - 2)

Denoting the Laplace transform of x*(t) by X*(s), we obtain

X*(s) = [ [T x(nT)s(t-nT)Je~Stdt @ - 3)
a n=Q

Interchanging the order of integration and summation in Eq. (2-3) and

subsequently integrating, there results
X'(s) = T x(nT)ensT. (2 - 4)
n=0
Let us now introduce a new complex symbol
z = ST, (2 - 5)
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Fig. 2-1. The ideal sampling operation.



Therefore from Eq. (2-4) and Eq. (2-6) we have

X(z) = 3 x(nm)z™". (2 - 6)
n=0

The z-transform of a sequence of numbers X is therefore defined as

X(z) = ngoxnz'". (2 -7)

Note that

X(z) ¢ DX*(s)]g.,
but that

X@) = X617y 10

since the s and z-planes are related by the transformation

z=¢S or s = (1/T} In z.

The sampling frequency~ms is

wg = 2n/T. (2-8)
where T is the time between successive samples (see Fig. 2-1). x*(s), the
Laplace transform of the impulse sequence x*(t}, can be shown to be periodic
in the Im(s) direction with period wg (see Fig. 2-2). Figure (2-2b) shows |
that the ideal sampling operation has the effect of reproducing the frequency
spectrum of X(s) in an infinite number of frequency bands in X*(s). Thus any
period (or strip) of |x*(ju)| is identical to |X(ju)| except, of course, for
a constant factor of 1/T.

Likewise the transformation z = eST is periodic with period wg. This

can be demonstrated by noting that

o(stinug)T _ ST dnugT | sT in2r _ ST
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where Eq. (2-8) was used to substitute for w.. Thus each strip of X*(s)

s
maps into the entire z-plane.

It can also easily be shown that the jw-axis of the s-plane maps
onto the unit circle in the z-plane. Straight lines in the s-plane correspond
to logarithmic spirals (in general) in the z~plane. The left half of the
s-plane corresponds to the area inside the unit circle and the right half
plane corresponds to the area outside the unit circle (see Fig. 2-3). Notice
that traversing the jm—éxis from -stzz to +jug/2 is equivalent to one counter
clockwise (ccw) revolution around the unit circle starting at z = edT,
2.2 Eyaluating the Z-Transform of a Finite Sequence

Eq. (2-7) defined the z-transform of a sequence x, that consisted
of an infinite number of points. Since we can only compute X(z) for a

finite number of samples, we restrict our attention to sequences with a

finite number N of non-zero points. Thus Eq. (2-7) is rewritten as
N=1
X(z) = ¥ x,z™". (2 -9)
n=0 '

Even though we have now restricted our attention to the z-transform
of a finite sequence Xp, 1ts z-transform X(z) is still a continuous
function of z. If the xp were to be uniform time samples from a known

analytic function, then we could in principle find the function X(z).

We could then evaluate X(z} for any z = zg in the 2z-plane. However,
since the xp with which we are concerned are experimentally obtained, we
have no knowledge of the exact analytic function they represent. Thus we
cannot obtain the function X(z). .We can only calculate the value of the
function X(z) at a finite number, say M, of points z =2k . Therefore
Eq.(2-9) becomes
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Xe = X(z¢) = :g; XpZp " k=0,1,2,...,M-1 . (2 - 10)

Furthermore, for computational reasons that will become apparent
later (Sec. 2.4), we shall want to choose the 2z, such that all the gz
lie on a particular contour. The general contour that has been chosen is
of the form

| 7 = AWKk =0,1,... M1 (2 - 11)
where M 1is an arbitrary integer, and A and W are both arbitrary
complex numbers of the form
A = Aged2™g
and
W = W,el2™
Eg.(2-11) describes a set of M points spaced at equal angular increments
on a logarithmic spiral. Substituting z =z = Aw-k into the relation
s = (1/T) 1n 2z, there results
s = (1/T)In A - (K/T)In W, k =0,1,...,M-]
or
s = (/T)(In Ag + j2meg) - (k/T)(In Wo + j2még) .

Notice that the. z-plane contour maps into a straight line of arbitrary
length and orientation in the s-plane. Figure (2-4) illustrates a typical
contour of 8 points. Notice that the starting point is completely
arbitrary. The contour starts at =z = Agejzﬁen in the z-plane, or
correspondingly at s = (1/T)In Ag + j2n8y/T in the s-plane.

In order to traverse the contour in the +jw direction (s-plane),
¢q Must be negative. The frequency spacing in the s-plane (with respect
to the Jw-axis) 1s equal to Zu|¢u|/T radians/sec., and is arbitrary

as are all of the parameters of the contour. Notice also that if W; > 1,
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the s-plane contour slopes to the left and vice versa.
Along the general contour that has been chosen, the definition of

the z-transform is

N-1
X, = X(z) = néoan'"ukn k =0,1,...M1. (2 - 12}

Equation (2-12) is the form of the z-transform computed by the
"Chirp Z-Transform" (CZT) algorithm developed by Rabiner, Schafer, and
Rader [1].

2.3 A Special Case of the CZT

If we let Ay =1, 6, =0, W, =1, M= N, and ¢, = -1/N; then Eq. (2-12)
becomes
N-1

onne'J(z"/")"k k=0,1,...81, (2 - 13)
n

-

X(zk)=

Equation (2-13) is known as the discrete- Fourier transform (DFT). The DFT
is sometimes defined as
Kz = 1T x e I@NK gy
Zk = 'N_ n=0xne slgesan

where the only difference is seen to be the addition of a constant multiplier.
Equation (2-13) is used to define the DFT in this paper as it is consistent
with the definition of the more general z-transform.

The contour of evaluation for the DFT is seen to be the unit

circle of the z-plane or the jw-axis in the s-plane. The points of evaluation

along the ju-axis are equally spaced at

w=2rk¢ =2vk 1 k =20,1,...N=-1,
re TN



11

For example, consider the case where N = 8. Then
Aw =2 1 =
T8 &°
The points of eyaluation of the z~transform by the DFT are illustrated
for this example in Fig. (2-8). Notice that the evaluation points are har-
monically related to wg/N, and that they are equally spaced around the entire

unit circle. Due to this characteristic of the DFT, we could not evaluate

the z-transform at » = 3wg/16 without also évaluating it at

w = E(ms/16) k =0,1,2...15.
In other words, to double the frequency resolution im one small interval
of the unit circle, we would have to double it around the entire unit circle.
This handicap is overcome by the flexibility of the CZT. This feature of the
CZT will be demonstrated in Chapter III.
The DFT became very popular after 1965 when Cooley and Tukey first
developed the Tukey-Cooley algorithm for rapidly computing the DFT [4]. This

algorithm is generally referred to as the fast Fourier transform (FFT).

The FFT allows computation of the DFT with computational time and
storage requirements proportional to N]ogzN when N is a power of two.
Direct solution of the (N x N) equations implied by Eq. (2-13) would require
time and storage proportional to N2,

The FFT requires logoN iterations, with each iteration consisting
of N additions (or subtractions) and N multiplications. Figure 2-6 shows
the FFT signal flow graph when N = 8. Appendix A contains a listing of a
FORTRAN program that implements the FFT algorithm.

2.4 Computation of the CZT

In review, the CZT was defined as the z-transform of the N-point
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Iteration # Iteration #2° Iteration #3
B

X1(0) X(0) 13(0)- —=C¢(0)

' X1(1) Kz(l)z'=~';(l)—+a"—*f‘-x(4)
X1(2) 42(2) ' ”2:<5(2)—ii——*c;{(2)
‘A’ x1(3) X2(3) Z;gxs(i)—*—a’ cx(6)
7, x2(%) ;{3(4)_?5.4{,.:{(1)
xg(s)an(s)'_—*—ﬂ——*sx(s)

J

,%2(6) €3(6) —28—v 0 (3)
#_>:§ W)
> %a(7) s X3(7) —=8—scy(7)

hl‘

where W = e~
Notation:

XJ(P)/ X5,1(2) = X3(p) +ax3(a)
Xj(Q)
x;j(p)\

SN

X3(a) —X342(a) = X3(p) -«X;(a)

NOTE: The definition of the FFT used in the Fortran progran
listed in Appendiz A does NOT include the multiplication
factor of 1/N, located after the last iteration in the
standard flow graph.

Fig. 2-6. Standaré FFT signal flow graph, N=8.
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sequence X . Furthermore, we said we would restrict the computation of the

CZT to M points along the contour

2 = AWK k= 0,1,. M0,
Therefore we defined the £ZT in Eq. (2-12) as

N-1 ik
Xg = X(z) = § xp AT k = 0,1,...M-1. (2 - 12)

n=0
Equation (2-12) indicates that a straight forward solution of the
N x M system of equations would require a number of arithmetic operations
proportional to NM. Thus the short cuts that led to computing the DFT via the
FFT do not appear to exist in the CZT. This indeed would have been the only
alternative if the z, had not been systematically chosen. However, let us

now make the substitution, due to Bluestein [5]

nk = n° + k% - (k-n)?
2

for the exponent of W in Eq. (2-12). This equation then becomes

N=1 2,51 (42 2 |
oy AR EE 2R 2 o, 2 - W)

x =
k | n=0
2
The factor H'(k“"l /2in Eq. (2-14) suggests that Eq. (2-14) may be
considered to involve a discrete convolution. Recall that the convolution of

the discrete sequences r(n) and s(n) is

k
r(n) * s(n) = t(k) = ¥ r(n)s(k-n)
n=0
or

k
t(k) = ¥ s(n)r(k-n) k =0,1,2,3,...
n=0
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Therefore, Eq. (2-14) can be looked upon as a three step process
consisting of:
(1) forming a new sequence ¥y by weighting the xnaccording to the

equation

2
Y, = an'“N" /2 n=0,1,...N1, (2 - 15)
(2] conyolving ¥, with the sequence v defined as
2
v =iln/2) (2 - 16)

to give a sequence gk

N=1
9 * Eoy(n)v(k-n) k =0,1,...L-1, (2-17)
n=

”
(3) and multiplying gy by wk /2 to give

K272

X =g W X=0,1,...M-1. (2 - 18)

k k
This process, the CZT algorithm, is illustrated in the block diagram

shown in Fig. (2-7). Steps (1} and (3) require N and M complex multiplications
respectively. The most time consuming part of the CZT is step (2), the con-
volution.

The practicality of the CZT depends upon having available a high
speed method of computing the discrete convolution. The fastest technique
available for computing a discrete convolution involves using the FFT. Recall
that the product of the RFT's of two sequences is the DFT of the circular
(periodic) convolution of the two sequences. Therefore we may compute the
sequence g, (see Fig. 2-8) by:

(1) Using the FFT to compute the DFT of y , call it Y,.
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Discrete Convolutigp Comvuter
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*ig, 2-8. Block diagram of the way the FrT is used in
computing the convolution in the CHAiT,
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(2) using the FFT to compute the DFT of v, call it Vr'
(3) multiplying Yr and ¥ to yleld G
(4) using the FFT to compute the inverse DFT of G , ie., g, -
The resulting sequence 9 is one period of the periodic convolution
of Y and v Unless we artificially lengthen one or both of the sequences
Yq and v, adja;ent periods in the canyolution sequence will overlap. Thus we
will extend each sequence by appending zeros such that the total length of
each will be L samples. L must Be greater than or equal to (M+ N - 1).
Therefore the resulting sequence gk.NTII be the same as an ordinary (aperiodic)
convolution. .
In summary, the CZT algorithm consists of the following steps.
(1) Choose L to be the gmallest integer which is a power of two
and is greater than or equal to (M + N - 1). The power of two
requirement is imposed by the available FFT program.
(2} Form an L point sequence Yy, from xn by weighting the X according

to

2
AN /an n=0,1,2,...N1
y = (2 = 19)

n
0 n =N, N+1,...L-1.

(3) Compute the L point DFT of yn, calling it Yr, r=20,1,...L-1.
(4) Form the L point sequence Vi from the indefinite length sequence

2
w-(n"/2) by the equation

, ,
w-(n/2) 0< n < M-1 - (2 -20)
vp =90 M-1 < n< L-N+1, 1if L > M#N-]

w‘('-‘")zfz L-N+1= n < L-1.
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Note that if L =M+ N - 1, there will be no terms in v, equal
to zero. The sequence v is defined in this peculiar manner
in order to make the periodic convolution conveniently yield
the desired ordinary convolution.
(5) Computg the L point DFT of v, calling it Vr’ r=20,1,...L-1,
(6) Multiply the sequences Y. and V., yielding Gr =YV, r=0,1,...L-1.
(7) Compute the L point IDFT of Gr’ calling it g, K =0,1,...L-1.
(8) Multiply the first M terms of g, by wk2/2 yielding

2 |
X, = Wk /ng, K=0,1,...M1.

k
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CHAPTER III
APPLICATION CONSIDERATIONS

3.1 Enhancement of Poles

Recall that one of the features of the CZT is its ability to evaluate
the z-transform along a logarithmic spiral contour in the z-plane. In contrast,
the DFT evaluates the z-transform only on the unit circle. This feature of the
CZT is of value in precisely locating the poles and zeros of a system transfer
function. The distance of a pole from the real axis in the s-plane can be
approximately determined from the peak the pole produces in the system frequency
response plot.

The sharpness of a resonant peak yaries inversely with the distance
between the jm-axis_and the pole. Therefore the sharpness of a resonance
peak can be enhanced by evaluating the z-transform along a contour that lies
closer to the pole(s) than the contour for the DFT, the ju-axis. To demonstrate
this feature, consider the following example (see fig. 3-1). Figure (3-1)
depicts a simple system with only one complex pole pair. The systems impulse
response was Simulated by evaluating the function

e = e Miteos(2n)anat  n = 0,1,...63. (3-1)

The sampling interval, At, was chosen to be >8 Hz. in order to satisfy the
Nyquist sampling requirement. The CZT of the sequence ey, n = 0,1,5..63,
was evaluated along four contours, each parallel to the jw-axis. The resulting
CIT's are plotted in Fig. (3-2). Notice that there is a marked increase in the
sharpness of the resonant peaks as the eyaluation contour is moved closer
to the pole. Thus the presence of poles can be made to stand out and their

frequencies determined more accurately using the CZT with an appropriate .,
CZT rather than with the DFT. '
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Speech analysis is a field that may be able to utilize this property
of the CZT [6,7,8]. For example, voiced speech can be modeled by a time-
varying linear system, whose impulse response varies with the configuration
of the vocal tract. The vocal tract impulse response is basically the sum
of 3 to 5 damped sinusoids, te., 3 to § complex pole pairs. The location of
the formants (or poles) depends on the particular voiced sound being made.

The CZT is one method that may aid speech researchers in automatically detecting
and tracking these time-varying formants. Using the CZT to implement a formant
tracking_vocoder is being studied [1,8]. Since the CZT can be used to sharpen
the resonant peaks, the formant frequencies could be determined more accurately
with an appropriate CZT contour than they could with the FFT. A simple example
of a system that has pole locations similar to those of the himan vocal tract

is shown in Fig. (3-3). Figure (3-3) shows the po]esrpf a system with a

transfer function

H(S) = 5 5 ! 7 (3 = 2)
(s + 160s + 256400)(s“ + 100s + 3242500)(s  + 80s + 4411600)

where s is in Hertz.

Since the highest frequency component in the system impulse response
is 2100 Hz., the sampling frequency, 1/T, was chosen to be 5000 Hz. The CZT
contour was chosen to pass through the origin and the point s = -40 + j2000 Hz.

The contour parameters for the CZT program were calculated as follows:
set wg =0 = a%ga = 6,=0
set gy =0= (/T hnA, = A =1

set |Mw| = 2500(2r) = 216 -> ¢, = -1/128
64 T
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(¢ must be negative in order to move along the contour in the desired direction)

set aw = -2000 = 279, = Ho = exp[2r/6400]
Ag 40 in W,
Figure (3-4) shows a plot of [H(juw) [z as computed by the 64 point

FFT. The FFT resolution is f, = 78.125 Hz. (fo = 1/NT = 5000/64). Figure (3-5)
shows a plot of |H(s)]2 as evaluated by the CZT along the prescribed contour
off the j,~axis. The 64 point CIT resolution was chosen to be 39.0625 Hz.,
exactly twice that of the FFT. Only every other point of the CZT output

was plotted in Fig. (3-5) so that the resolution would be the same as that
for the FFT plot (Fig. 3-4). Note that the poles produce somewhat narrower
peaks in the CZT plot (Fig. 3-5) than they do in the FFT plot. Figure (3-6)
shows the CZT plot with every point plotted giving a resolution of 39.0625 Hz.
Increasing the resolution of the CZT heyond that given by the FFT begins to
reveal the ripples in the z-=transform which result from using only a finite
number of data samples. The low resolution CZT appears to accentuate the
poles better than does the relatively higher resolution CZT.

Thus the CZT does make some imppovement in sharpening the resonances
due to the poles. Several examples of using the CZT in this manner are shown
in the paper on the CZT by Rabiner, Schafer, and Rader [1].

3.2 High Resolution, Narrow Band Spectra

Recall that a second feature of the CZT was the arbitrary starting
point of the contour. The arbitrary starting point of the contour is not
unique to the CZT. The FFT contour can be started at a point z = |A|e52"90 = A
by simply multiplying the data sequence X , n = 0,1,...(N-1) by A" [1].
However, this capability with the FFT {s not of much value since we can only

shift the starting point by 0 g 8,/T & fa,gfo = (1/NT) Hz.). The term (g,/T)
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Fig. 3-3. FPT and CZT contours for a three pole system.
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is limited to f0 Hertz because the FFT evaluates the z-transform once around
the unit circle and the z-transform is periodic around the unit circle. This
is best explained by considering the four 8-point FFT's shown in Fig. (3-7)
Part (a) shows a conventional FFT starting at z = ejo. In part (b), X
n=0,1,...7 has been multiplied by e"32"8", 8,/T < fo» prior to computing
the FFT. Figure (3-7c) shows the result of setting 6,/T = f,. It is clear
that (c) is really the same as (a}. Likewise setting :8,/T = 2.5fO in (d)

is equivalent to ,/T = (n+0.5)f°, n=1, %1, +2,.... Therefore the
starting point for the FFT can indeed be shifted, but the maximum shift is
limited to f = 1/NT Hz. which 1s the resolution of the FFT.

In contrast, the CZT contour starting point can be moved (from z = ejo)
by an amount 26y, 0 5 6,/T < fs (fs = 1/T Hz.). This shift is meaningful
since, unlike the FFT, we are not constrained to a contour that traverses
the entire unit circle. Thus a second important feature of the CZT is that
we are completely free to choose the frequency spacing of the contour,
independent of N and T. Using thie CZT, the z-transform may be evaluated only
along an arc of the unit circle. This means that the CZT allows us to obtain
spectral information only over a band of frequencies within the range
I fs. Consider the standard 8-point FFT contour shown in Fig. (3-8a).
Only points 1 through 5 on the contour of Fig. (3-7a) are independent. Points
6 through 8 are just the conjugates of 4 through 2, respectively. Therefore
points 6 through 8 are of 1ittle value since we could just as easily have
constructed them ourselves from points 4 through 2. By using the CZT to
evaluate the z-transform on the unit circle, we could cover the same "useful”
frequency range, 0 g f g fs/2, with the resolution improved by a factor of

2 with just nine output points (see Fig. 3-8b). Or, if we were really only
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Fig. 3-7. Freguency shifted FFTs (N=8).
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interested in the range v/4 < 2n6 <n/2, the CZT would allow us to evaluate
the contour in Fig. (3-8c).
The CZT is thus a much more efficient means of obtaining high resolution
band spectra than is the FFT. One application of this capability could be in
the analysis of the frequency responses of digital filters. Consider the

following simulated simple bandpass filter [1].

h(nT)'= sin[n(F2 + F1{(n-m-1/2)T]cos[1r(F2 - F)(n-m-1/2)T]

Q<nc<2m (3 - 3)
where
2m = number of terms in truncated impulse response = 64
YT = sampling frequency = 10,000 Hz.
F, = lower cutoff frequency = 900 Hz.

1

F2 = upper cutoff frequency = 1100 Hz.

h{nT) is the sampled version of a symmetrically truncated impulse response

of a bandpass filter. The function h(nT) is plotted in Fig. (3-9). Evaluating
the z-transform of h(nT) along the unit circle yields the frequency response of
the filter. Figure (3-10) shows the frequency response computed from a 64-point
FFT. The resolution is

4
f, =1 =10 = 156.25 Hz.

NT 64
Notice that this FFT gives us little information about the passband of the

filter. Figure (3-~11a) shows the CZT frequency response of the filter in
the range 500 s f < 146Q Hz, with a resolution of 15 Hz. Given a fixed
sampling rate, we could improve the resolution of the FFT by adding zeros

to the end of the impulse response sequence, thus artificially decreasing fo.
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Adding 448 zeros would haye yielded a 512 point FFT with resolution fq =20 Hz.
(f, = 175121 = 10%/512).

If we compare the amount of calculations required, we see that the
64 output point CZT requires three 128 point FFT's to be computed. In contrast
the 512 point FFT would have required approximately 60% more computer time.
This is assuming: |

time to calculate CZT =p(3)128 1092128
and

time to calculate FFT =@612 1og2512.
The time for the other calculations involved in the CZT algorithm has been
neglected. B8 1is a constant that depends on the FFT program.

It should be apparent that tha_smaller the frequency band of interest
as a fraction of the necessary sampling frequency, the greater is the advantage
of the CZT in proyiding high resolution data within that narrow band. This
advantage results from the CZT's flexihility which allows us to evaluate M
equally spaced points within a frequency band of arbitrary width without
having to evaluate the z-transform qutside the band as the FFT requires.

Figure (3-11b) shows a 5 Hz. resolution CZT of the filter over the
range 840 < f < 1160. In this case, a single 2048 point FFT would have
yielded approximately the same 5 Hz. resolutian as did the 64 point CZT which
used three 128 point FFT's. Asgsuming that the bulk of the CZT computing
time is spent in the FFT subroutine, the 2048 point FFT would have taken
approximately 8.5 times as long to calculate as the 64 point CZT.

The size of the comparable FFT's could have been reduced somewhat
if the sampling frequency could have been reduced. However, this is usually
not possible. Also it weuld not be strictly correct to compare an FFT and

a CZT unless they both use exactly the same data sequence (except for added
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zeroes in the FFT case). The reason for this is that two sample sequences
having a different number of samples and/or different sampling rates would
really represent two different functions. In other words, their respective
finite z-transforms would be two different approximations to the exact z-
transform of an infinite number of samples.

Thus the flexibilities of the CZT's frequency spacing and initial
frequency allow one to evaluate narrow band spectra much more efficiently
than the FFT does.

3.3 Limitations

The principal Timftation of the CZT is that we cannot, in practice,
evaluate the CZT equally well along all contours. For a given contour off
the unit circle, increasing either M or N beyond some value will cause a
program interrupt. VLikewise. for a given M and N, increasing the &c (ie.,
(IIT)iﬁ'E&)of the s-plane contour beyoﬁd some point will also cause a program

interrupt. This results from the fact that the CZT must compute the following

numbers:
-n. ne
ANWN/2 0 p 20,1, N
8,1,...N-1, N> M
H‘(nZ/Z) n = {
: 0,1,...M=1, M =N

72 20,1, M1l W= W32

Unless W, = 1, there will be some M or N for which one of the numbers above
will become Targe or small enough to exceed the floating point capacity of
the computer. Hence the program will terminate- -on an exponent overflow

(or underflow) interrupt. If this problem occurs, a trial and error approach
is probably the only means available of eliminating the problem. Any of the

following measures would need to be taken (individually or in combination):
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(1) change W, to be more nearly equal to 1, ie. make the s-plane
contour more nearly vertical

(2) reduce M

(3) reduce N
If it were undesirable to change W, or N, the contour could be divided into
several pieces. Each piece could then be evaluated by the CZT separately.
Thus we would have reduced M for each individual CZT computation yet still
evaluated the entire contaur;

In practice it was found that {f any of the numbers (A'nﬂnzlz,
wtnz/zl had base 10 exponents whose magnitudes exceeded approximately 35 to 40,
an overflow interrupt resulted. The magnitude of a floating boint number on
the IBM 360/50 is limited to approximately 1075 (single or double precision).
—nwn2/2

Another limitation of the CZT again concerns the numbers A and

Ninz. The CZT program which is Tisted in this report computes the numbers
A'"H"zlz and wi"Z using recursive routines. This method was chosen in order
to save computation time. Double precision numbers were used in the program
to minimize the round-off and truncation errors. These errors should be

unimportant for any L of moderate size.
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CHAPTER 1V
SUMMARY AND RECOMMENDATIONS

4.1 Su d i

In this paper it was shown that the chirp z-transform (CZT) is an
algorithm for evaluating the z-transform of a sequence of N numbers at M
equi-angularly spaced points on a fairly general contour. Furthermore, M
and N are completely arbitrary, The contour can be chosen to be any arbitrary
straight line segment in the s-plane. The output point spacing along the
contour is also arbitrary as long as it is uniform.

The key to economically computing the CIZT lies in expressing the CIT
defining equation as a discrete conyolution. One can then utilize the
capability of the FFT to perform the conyolution and thus be able to efficient]y
evaluate the CZT.

One application of the CZT that was demonstrated was that of
sharpening spectral resonances in order to more accurately detect and determine
the frequency of the poles producing the resonant peaks. This application
assumes that we have some a priori knowledge of where the poles are located.
The impulse response of a simple 3-pole system was simulated on a digital
computer and its FFT and an appropriate CZT were computed. The CZT was seen
to have an advantage over the FFT in this application due to the CZT's
capability of evaluating the z-transform off the unit circle.

The second application of the CZT that was demonstrated was that of
obtaining high resolution spectral data over a frequency band that was
narrow compared to the sampiing frequency. In this case a simple digital
filter impulse response was simulated on a digital computer and its spectrum

evaluated using both the FFT and the CZT. For this application the CZT was
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evaluated on the unit circle (ju-axis of s-plane). For the purpose of eval-
uating the filter transfer function in the passband, the CZT was demonstrated
to be able to produce high resolution data much more economically relative to
the FFT. This advantage results from the CZT's arbitrary output point spacing
feature.

Thus the CZT is seen to be the rival of the FFT for some spectral
analysis problems. The CZT's capability of evaluating the z-transform off
the unit circle (ju-axis in s-plane) and its flexible output spacing make it
a more valuable tool than the FFT for some applications.

4.2 Recommendations for Further Investigation

One spécific problem that arises in anti-submarine warfare might be
effectively handied by the CZT*.' The problem is that of detecting the random
occurrence of a noisy transient sinusoid of known frequency and duration.

The capabilities of the CZT to evaluate the z-transform off the unit circle
and over a small frequency band might prove valuable. However, this problem
is more difficult than the sharpening of spectral resonances since the CZT
must deal with very noisy data. The effects that noise has on the z-transform
computed off the unit circle would need to be determined. Also this problem
requires real time processing of the data. - This would require the CZT to be
computed repeatedly on a continuous stream of data. Its capabilities in

this respect would need to be investigated.

*Suggested by Dr. D.R. Hummels, Dept, of Electrical Engineering,
Kansas State University, Manhattan, Kansas 66502 .
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ABSTRACT

The Chirp Z-Transform (CZT) is developed. The CZT is a computational
algorithm which evaluates the z-transform of N data samples at M points along
a fairly general contour. The contour is a straight line segment in the s-plane
of arbitrary starting point, length, and orientation. M and N are arbitrary
integers. The output spacing is an arbitrary constant.

The algorithm is based upon expressing the z-transform to be evaluated
along the prescribed contour as a discrete convolution. The FFT can then be
used to compute this convolution efficiently.

Applications of the CIT that are demonstrated include: enhancement
of poles in spectral analysis, and high frequency narrow-band freguency

analysis.



