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Abstract 

 

A first step in model building in regression analysis often consists of selecting a 

parsimonious set of independent variables from a pool of candidate independent 

variables. This report uses simulation to study and compare the performance of two 

widely used sequential, variable selection algorithms, stepwise and backward elimination. 

A score is developed to assess the ability of any variable selection method to terminate 

with the correct model. It is found that backward elimination performs slightly better than 

stepwise, increasing sample size leads to a relatively small improvement in both methods 

and that the magnitude of the variance of the error term is the major factor determining 

the performance of both.  
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Chapter 1 - Introduction 

 1.1 Model building 

 

Constructing a tractable statistical model that is a good approximation to the one 

that generated a sample is often the first step toward making valid inferences. This report 

concerns model building in a regression setting, where the goal is to construct a 

parsimonious model consisting of a few „good‟ explanatory variables that fit the data 

well. Parsimony can make data analysis more easily understood and interpretable and 

avoid multicollinearity among the explanatory variables. 

Starting with a hypothesized full model consisting of explanatory variables X1, 

X2, …,Xp, model building in regression uses the available data to find a hopefully small 

subset of these that work just as well as all of them. Model building algorithms that 

require examining all 2 1p   possible models have been, until the modern era, impractical 

because of the large amount of computer time and storage space required. The advent of 

powerful desktop computing has already overcome some of these time and space 

limitations and computer intensive methods will play an even bigger role as this 

technology advances. The model building procedures investigated in this report are based 

on sequential algorithms that typically terminate much more quickly than procedures 

based on examining all possible regressions. Backward elimination and stepwise variable 

selection, the methods studied here, are two such sequential procedures. They are based 

on partial F-tests whose values can be expressed in terms of coefficients of 

determination
2R ,  which sequentially seeks to accomplish this goal without having to 

examine all 2 1p  sub-models, a potentially big saving in time and effort.  
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 1.2   Model Building in Regression 

 

Regression analysis relates the mean value of a response Y to k-explanatory 

variables, whose values w = { }iw in this report are fixed or conditionally considered fixed. 

The available data consists of the vectors 1 2{( , ( , ,..., );  1,2,..., }i i i i iky w w w i n w obtained 

from a random sample of experimental units. The observed responses { }iy  are taken to 

be realizations of independent random variables { }.iY  We assume that there is a function 

( ) w  such that ( )i i iY   w  with ( ) 0iE    and ( )iVar Y  a constant, 1,2,...,i n .  

These are very strong assumptions which implicitly exclude the possibility that there are 

other important explanatory variables which cannot be expressed as functions of w . The 

goal of model building in this context can be expressed as constructing from the data a 

parsimonious approximation of ( ) w .  

Backward elimination implements this process of approximation by assuming the 

existence of a provisional full rank model of the form: 

0 1

p

i j ij ij
Y x  


         (1) 

where for functions  

{ ( )}j w ,  ( )j jx  w , 1,2,..., ;j p k   ( )ij j ix  w , i = 1,2,…,n, n  > p+1, 

( ) 0iE   , ( )iVar   is a constant      (2) 

and  { }i  are normally distributed. All of our models will contain a constant term and we 

assume that the rank of the design matrix in (1) is p + 1.  

In Backward Elimination, described in detail below, if  j  = 0, explanatory variable ' 'jx  

can be dropped from (1).  Sequentially deleting all of those { }jx  for which j  = 0 

hopefully results in a parsimonious, just as good, model of the form                                                                                                                                                 



3 

 

0 1

m

j jj
Y z  


        (3) 

with m p , having more degrees of freedom with which to estimate experimental error, 

where { }jz is a subset of{ }jx . Forward Selection, on which the stepwise algorithm is 

based, on the other hand, starts with 0Y     and sequentially adds variables. 

Backward elimination operates by sequentially testing hypotheses of the form  

                          0 : 0jH    vs 1 : 0jH                 (4) 

as follows. Starting with (1), suppose that the process of variable deletion has so far 

resulted in (3) with 1< m  p. Carry out the tests in (4) by rejecting 0H at one at a time 

type I error rate   if   

[ ( ; 1,2,..., , ) ( ; 1,2,..., )] / ( ; 1,2,..., )j i i iF SSE z i m i j SSE z i m MSE z i m     
 

(1, 1)F n m    .   

Then, delete lz  if  min{ ; 1,2,..., }l jF F j m  < (1, 1).F n m  
 

Forward variable selection starts with the most parsimonious model,  

0Y   
       

(1)
 

and sequentially adds variables, hopefully results in a model of the form 

0 1

m

j jj
Y z  


  

    
(2)

 

where { }jz is a subset of{ }jx , and then by testing the hypotheses of the form
 

0 : 0jH    vs 1 : 0jH                  (3) 

Carry out the test in (3) by rejecting 0H  at type I error rate  if  
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[ ( ; 1,2,..., , ) ( ; 1,2,..., )] / ( ; 1,2,..., )j i i iF SSE z i m i j SSE z i m MSE z i m     
 

(1, 1)F n m    .   

Then, exclude lz  if  min{ ; 1,2,..., }l jF F j m  < (1, 1).F n m  
 

Continue on this process until all potential variables are tested. In the forward variable 

selection procedure, variable only allow to enter, once the variable included will not be 

discard from any following steps 

Stepwise selection is an enhanced version of Forward Selection. It allows 

variables that entered in previous stages to be deleted at later ones. Stepwise selection 

uses a variable filtering procedure that at each stage allows the deletion of the variable 

whose p-value for testing that its coefficient is zero is smallest and falls below a pre-

specified level.  The algorithm then proceeds to the next step, which ensures that all 

variables in the model are significant at the given level significance. Finally, the stepwise 

selection algorithm terminates when none of the variables outside the model qualify for 

admission and none of the variables in the model qualify for deletion. Under some special 

situations, stepwise selection becomes trapped in an Infinite loop. By default, SAS will 

terminate the procedure at the end of the second cycle. 

Other widely used methods of model building in regression analysis are:  

Mallow‟s Cp Criterion, the Largest Coefficient of Determination 
2R  and Adjusted 

2R , 

PRESS (PREdiction Sums of Squares) Criterion.   

Mallow‟s Cr Statistic for assessing the fit of a sub-model (reduced) relative to the full 

model in (1) is given by  

                                       rC  = (SSER/MSEF) – (n – 2(r+1)), 

where, 

                 SSER    =  the sum of squared errors for the reduced model, 
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                 MSER  =  the mean of squared errors for the full model, 

                 n  =  the number of observations, 

                 p+1 =  the rank of the design matrix of (1), 

                 r+1 =  the rank of the design matrix of the reduced model, 

Selection Criterion: Models with small r that are close to 1 are considered to be good. 

The coefficient of Determination 2R  is the proportion of variability in a data that 

is accounted for by the model. In some cases, the coefficient of determination is a useful 

statistic that can be used as a tool to assess the goodness of fit of a model. There are 

several widely used formulas for the coefficient of determination, such as  

                                                  
2R = 1 - SSerr /SStot, 

where,  SSerr = 2ˆ( )i iy y , the sum of squares of residuals and  

SStot = 2ˆ( )iy y , the total sum of squares 

Adjusted 
2R is a modification on the Coefficient of Determination 

2R that creates 

a penalty for including independent variables that have little explanatory value and it can 

be used to compare two models. The definition of adjusted 
2R is given by : 

                             Adjusted 
2R = 1 – (SSerr /SStot)(dft /dfe), 

where, 

dft  = the degrees of freedom of the estimate of the population variance  

for the dependent variable, equal to n – 1. 

dfe  = the degrees of freedom of the estimate of the underlying population 

 error variance, equal to n – p – 1. 

http://en.wikipedia.org/wiki/Total_sum_of_squares
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
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In comparing two models based on Adjusted 
2R or

2R  the model with the larger value is 

considered to be the better one. 

PRESS (PREdiction Sums of Squares) is another statistic that assesses the fit of a model 

using a form of cross validation.  Observations are sequentially deleted and the model 

refit using the remaining n-1 observations.  Let ,
ˆ

i iy   be the predicted value of iy  obtained 

by fitting the model with the thi data line deleted. The PRESS statistic is then given by  

                                             PRESS = 2

,1
ˆ( )

n

i i ii
y y 
 . 

In comparing two models, the model with the smaller Press is considered to be the better 

one. 
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 1.3  Research Plan 

 

Although widely used, I have not found any comprehensive studies of how well 

any of these variable selection procedures perform or even a rough definition of what 

performing well means. The only tangentially relevant article I found is Austin and TU 

(2004). However, they simply summarized the performance of three variable selection 

methods, rather than evaluating the performance of any one of them.  My report will 

attempt to fill this gap by using simulation to evaluate and compare the performances of 

Backward and Stepwise variable selection. I will define and use a score function to assess 

how well a model building algorithm performs in terms of its ability to produce the 

model that actually generated the data. 
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 1.4  Algorithm Used in Simulation Study 

 

For a range of representative settings:  

1 2{ ( , ,..., );  1,2,..., }i i i ikw w w i n w , k, ( )Var  2 and n, 

(I)  Generate  #{ }j  
as independent random variables uniformly distributed on (0, 1). 

(II) Generate  { }iw  as independent random variables uniformly distributed on (0, 1) and
 

independent of the error terms{ }i , which are generated as independent normal random 

variables, each with mean zero and variance 2 . Form the responses  

# #

0 1

k

i j ij ij
Y w  


  

,
 i = 1, 2, …, n.                                                                    (4)                  

 (II)  Carry out backward elimination and stepwise selection using the model in (1) where 

{ }jx  consist of two types of extra predictors constructed to augment .w . 

Related: { }jx are obtained by forming a full second order model from .w  For k = 3 this 

becomes: 

2 2 2

1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2 9 3, , , , , , , , .x w x w x w x w w x w w x w w x x x x x x          

Unrelated: { }jx are obtained by forming a full model from w  by adding variables that 

are not functions of w . Specifically, for k = 3, take:  

1 1 2 2 3 3, ,x w x w x w  
 and 4 5 6 7 8 9{ , , , , , }x x x x x x

 independent of 
w  

 (III) Assess how well backward elimination and stepwise selection perform in terms of 

resulting in the „correct‟ model having the form given by (4).  To accomplish this, I  

assign a „score‟ to each data set, defined as follows.  Start with Score = 0 and let  

     = number of  { ; 1,2,..., }jx j k  not included. 
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          = number of „extra‟ predictors included, 

Score = ( 2  )/k. 

Note that „Score = 0‟ is the best outcome and the bigger score gets, the poorer variable 

selection performs.  The term 2  is a penalty for not selecting 2  of the true predictors. 

Other functions of   could, of course, be used. My definition of score is to be interpreted 

as a tentative first step in devising ways to numerically quantify the performance of 

variable selection procedures. 

(IV) Independently repeat (I)-(III) N (=1000) times and let Score(i) be the score recorded 

for the ith data set, resulting in {Score(i),  = 1,2,…, N}. 

Note, to distinguish between the variable selection procedures, I use Score_b to denote 

the score for backward elimination, and use Score_s to denote the score for stepwise 

selection. 

 (V) Summarize {Score (i), = 1, 2, …, N} using quantiles, mean and standard deviation. 

(VI) Repeat (I)-(V) for a variety of settings and summarize the results.  

(VII) Compare the results for backward elimination and Stepwise selection, and then 

make conclusions. 

I begin with an example to illustrate Backward Elimination based on simulated data. I 

carried out steps I-VI with N =1 data set, n = 30 observations, k =3, 0.05,   =0.1 and 

type = “related”.  Backward elimination was implemented using SAS. The steps the 

algorithm went through and final results are presented below. 
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Table 1.1: Data Example of 3 True Predictors (x1, x2, x3) and Response Variable (y) 

Obs x1 x2 x3 y 

1 0.19352 0.66566 0.75740 1.33039 

2 0.57989 0.26231 0.63654 1.25511 

3 0.97856 0.22937 0.73506 1.57215 

4 0.24490 0.79618 0.77608 1.43113 

5 0.16184 0.50126 0.94163 1.24434 

…   …   …   … 

29 0.01581 0.28416 0.42685 0.52080 

30 0.69745 0.99144 0.96946 2.03695 

 

Throughout the variable selection process, vi (where i=1,2,3) represent the true 

predictor that was used to generate the data. While vij (where i=1,2,3; j=1,2,3) represent 

the quadratic and pairwise cross products of the true predictors, and they are treated as 

disturbing factors. 

Step 1: All Variables Entered 

The partial F-statistics for each of the explanatory variables are displayed in Table 1.2 

below. The explanatory variable “v11” has the smallest partial F-statistic (0.06) Hence, 

v11” and the backward elimination algorithm then investigates whether v11 should be 

removed from the full model or not. Since the p-value for the variable “v1” is 0.8151, we 

do not reject the null hypothesis H0: Beta (v11) = 0 at significance level 0.05 and decide 

to remove the variable “v11” from the full model. 
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Table 1.2: The Partial F-statistics to Illustrate Backward Elimination 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 0.00779 0.16298 0.00002516 0.00 0.9623 

v1 0.70702 0.29875 0.06163 5.60 0.0282 

v2 0.16498 0.38819 0.00199 0.18 0.6754 

v3 0.23336 0.50837 0.00232 0.21 0.6512 

v12 -0.09596 0.25128 0.00160 0.15 0.7066 

v13 -0.40346 0.30744 0.01895 1.72 0.2043 

v23 0.26517 0.33644 0.00684 0.62 0.4398 

v11 -0.06444 0.27192 0.00061791 0.06 0.8151 

v22 0.21089 0.34794 0.00404 0.37 0.5513 

v33 0.32363 0.42396 0.00641 0.58 0.4542 

 

Step 2:  

Calculate the partial F-statistic for each of the remaining explanatory variables is 

displayed in the following table. The explanatory variable “v3” has the smallest partial F-

statistic (0.19). Hence, the backward elimination algorithm selects the variable “v3” and 

investigates whether it should be removed from the full model or not. Since the p-value 

for the variable “v1” is 0.6667, we do not reject the null hypothesis H0: Beta (v3) = 0 and 

decide to remove the variable “v3” from the full model at the pre-specified significance 

level 0.05 
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Table 1.3: The Partial F-statistics to Illustrate Backward Elimination 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 0.01434 0.15697 0.00008773 0.01 0.9281 

v1 0.65384 0.19271 0.12097 11.51 0.0027 

v2 0.17269 0.37804 0.00219 0.21 0.6525 

v3 0.21424 0.49052 0.00200 0.19 0.6667 

v12 -0.10798 0.24051 0.00212 0.20 0.6581 

v13 -0.40759 0.29997 0.01940 1.85 0.1886 

v23 0.25520 0.32622 0.00643 0.61 0.4428 

v22 0.21687 0.33913 0.00430 0.41 0.5294 

v33 0.34980 0.40002 0.00804 0.76 0.3918 

 

Continuing on this process until all variables left in the model are significant at the 

specified significance level 0.05, we conclude that all of the explanatory variables are 

significant at the significance level 5%, as displayed in the following table: 

 Table 1.4: The Partial F-statistics to Illustrate Backward Elimination 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 0.14714 0.04646 0.10179 10.03 0.0039 
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Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

v1 0.38645 0.06398 0.37038 36.49 <.0001 

v22 0.44844 0.06344 0.50728 49.97 <.0001 

v33 0.48947 0.07413 0.44254 43.59 <.0001 

 

Last Step:  

Summary: Backward Elimination with Significance Level 5%. 

Table 1.5: The Partial F-statistics to Illustrate Backward Elimination 

Step Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 v11 8 0.0003 0.8754 8.0562 0.06 0.8151 

2 v3 7 0.0011 0.8743 6.2383 0.19 0.6667 

3 v2 6 0.0005 0.8738 4.3157 0.08 0.7745 

4 v12 5 0.0025 0.8713 2.7157 0.45 0.5077 

5 v23 4 0.0119 0.8594 2.6302 2.22 0.1494 

6 v13 3 0.0084 0.8510 1.9872 1.50 0.2322 

 

The final model contains only one of the three covariates used to generate the data and 

two extra predictors. The final numerical assessments are score_back= 2, and Cp = 

0.2716. The SAS output of Stepwise Selection is presented in Appendix B Where we end 
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up with variables v23 and v12, with score_step = 2.67 and Cp = 6.1499. In terms of 

„score‟ backward elimination performed better than stepwise in this example. 
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Chapter 2 - Simulation Study 

In this chapter, I describe my simulation experiments and summarize the results 

by using tables and figures. SAS was used to carry out the simulations and to evaluate 

and compare the performance of backward elimination and stepwise selection. I only 

considered the case where k = 3 in (4)  

 

 2.1  Simulation Study Frame 

 

My simulation experiment was carried out using the algorithm in (1.4) as a fully 

crossed, three factor balanced design and analyzed as though the treatments and 

replications were completely randomized. Randomization is a core principle in statistics, 

and it is involved in most of good experimental designs. To achieve the randomization in 

my study, I tried to create everything randomly, from seed selecting to data generating. 

Also, I randomly picked computers to run the simulation. I used 32 computers 

simultaneously and took 24 hours to conduct the simulation. The factors and levels used 

are as follows.  

Four levels of sample sizes, five levels of error variance and two types of extra 

predictors related and unrelated. 
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Table 2.1:  Parameter Settings 

Sample Sizes 

 Small Medium Large Very large 

n = 15 30 70 150 

Error Variance 

 Very small Small Medium Large Very large 

Sigma 0.01 0.1 0.3 0.5 1 

Extra Predictors 

Related Unrelated 

Quadratic and pairwise cross 

products of x1, x2, x3 

Independent of x1, x2, x3 

 

Since score is highly discrete and not normally distributed, I based my analysis on 

1000 means of 30 replications of each of my 40 treatment combinations. Thus, each data 

point used in my analysis is a mean of 30 independent scores, yielding responses that, 

according to the Central Limit Theorem, are expected to be closer to being normally 

distributed than a response consisting of only one of these values. Due to a severe time 

constraint, I did not investigate the use of pC  in model building and assessment. Sample 

output of such means is given, in part, in Table 2.2. 
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Table 2.2: Partial Results of Means of 30 Responses Replicated 1000 Times  

n=150, Sigma=0.01 and Extra Predictor = “Related” 

Iteration number Score_back Score_step R2 Cp cp/p True_left Extraurb_left 

1 0.433333 0.377778 0.9994 5.1207 3.03803 2.766667 0.833333 

2 0.077778 0.077778 0.9985 3.2328 2.682291 3 0.233333 

3 0.244444 0.1 0.9976 3.9648 2.787703 3 0.733333 

4 0.233333 0.133333 0.9993 3.867 2.749465 3 0.7 

5 0.2 0.2 0.9993 3.5434 2.660173 3 0.6 

6 0.166667 0.122222 0.9994 4.8952 4.045753 3 0.5 

7 0.255556 0.155556 0.9989 5.3452 3.975655 3 0.766667 

8 0.144444 0.133333 0.9991 4.0484 3.36383 3 0.433333 

9 0.188889 0.266667 0.9996 4.306 2.998899 3 0.566667 

10 0.233333 0.255556 0.9996 4.2044 2.800476 3 0.7 

 

…   …   …   …   …   …   …   …   …   …   …   …   …   …   …   …   …   …   …   … 

 

997 0.133333 0.144444 0.9992 2.871 1.999616 3 0.4 

998 0.155556 0.133333 0.9976 2.9554 2.245762 3 0.466667 

999 0.155556 0.211111 0.9994 2.8806 2.110408 3 0.466667 

1000 0.4 0.155556 0.9995 5.0876 3.220735 2.966667 1.133333 

 

Notation and terms using in the above table:  

Score_back: „scores„calculated out by using Score = ( 2  )/k, for backward 

elimination. 

Score_step:  „score„calculated out by using Score = ( 2  )/k, for stepwise selection. 
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2R :  Coefficient of determination of the final model produced using backward 

elimination. 

Cp: Mallow‟s Cp given by final model which selected by using backward elimination. 

True _left: predictors left in final model which using to generate the response variable y. 

Extra: Predictors in addition to the ones actually used to generate the data that appear in 

the final model. 
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 2.2 Analysis of the Simulation 

 

As noted above, in all cases the true model was generated from k = 3 predictors 

„Score‟ was used as the response and the independent variables taken to be sample size, 

error variance and type of „extra‟ predictors.  A guiding principle in all of my analyses is 

the distinction between statistical and practical significance, especially in experiments 

like mine where large sample sizes can result in tests with large power that detect small 

effect sizes. The first step in building a model to analyze my experiment was to decide 

whether or not to include interaction terms in addition to the main effects. I started by 

putting all of the interaction terms in the model and found that all of them attained 

statistical significance. However, since statistical significance is not synonymous to 

practical significance and my goal here is to focus on the big picture, I investigated 

whether the interaction terms could be dropped without greatly diminishing the 

explanatory power of my model.  To accomplish this, I fit three types of submodels of the 

full, three way factorial structure and compared their coefficients of determination and 

mean square errors. Besides of mean square errors and R-square, I also used coefficients 

of variation (CV) to make a meaningful basis of comparison.  

In general use, the coefficient of variation is the ratio of the standard deviation of 

a variable to its mean. It describes the relative dispersion of the variable and does not 

depend on the unit of measurement. A higher CV indicates a bigger dispersion. In the 

regression setting used here, CV is the ratio of the root means squared error (RMSE) to 

the mean of the dependent variable, and it describes the model fit in terms of the relative 

sizes of the squared residuals and outcome values. Since it represents values of residuals 

relative to the predicted value of the response, a smaller CV indicates a better model fit 

than a large CV. Note that a CV is often presented as the given ratio multiplied by 100.  

The unit free property of CV allows us to use it to compare the fit of two 

competing regression models it is also interesting to note the differences between a 

model's CV and its coefficient of variation, R-squared.  Both are scale free measures that 

are indicative of model fit, but they define model fit in different ways: CV evaluates the 
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relative closeness of the predictions to the actual values; meanwhile R-squared evaluates 

how much of the variability in the actual values is explained by the model.  

The following table shows an example of the RMSE, R-Square and CV for 

comparing different models based on score for backward elimination. When fitted with 

only main effects, RMSE = 0.308642, R-Square = 0.81497 and CV = 29.02942. When 

the model contained all interaction terms, RMSE = 0.25218, R-Square = 0.876571 and 

CV = 23.7189, with p-values for all interactions terms being less than 0.0001 and 

therefore highly statistically significant. However, as mentioned earlier statistical 

significance doesn‟t necessarily mean that the additional terms are meaningful in a 

practical sense. My decision to leave them out is supported by the relatively small 

difference s in RMSE, R-Square and CV.  

Table 2.3: Summary of R-Square, RMSE and CV for Different Models 

Model RMSE R-Square 
Coefficient  

of variation 

1 Main effects only 0.308642 0.814970 29.02942 

2 
With 2-Way 

Interactions 
0.269280 0.859222 25.32724 

3 All  Interactions 0.252180 0.876571 23.71890 

 

The pattern seen in the above table is typical of what happens when analysis of 

variance models based on a given data set are constructed. Specifically, raw measures of 

„fit‟ increase as more terms are added. However, in my judgment, the increases in RMSE, 

R-Square and CV from the main effects model to the model containing all interactions 

are not large enough to justify using the two bigger models.  Therefore, in view of the 

discussion of statistical vs practical significance given above and my search for „the big 

picture‟, I will base the analysis of my simulation study on the simpler main effects 

model.  
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The analysis of Variance Table obtained from the analysis of the main effects 

model is given below in Table 2.4 

Table 2.4: Analysis of Variance Main Effects Mode Based on Backward Score 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 8 16779.17446 2097.39681 22017.6 <.0001 

Ssize 3 2090.16958 696.72319 7313.92 <.0001 

Evari 4 12824.32850 3206.08213 33656.2 <.0001 

Rela 1 1864.67637 1864.67637 19574.6 <.0001 

Error 39991 3809.53654 0.09526     

Corrected Total 39999 20588.71100       

 

Assessment of Normality and Model Fit: 

Before proceeding with the analysis, I carried out several checks of the 

assumption of normality based on the residuals obtained from fitting the main effects 

model based on score of backward elimination. All of the tests in Table 2.4.1.3 raise 

questions about the assumption of normality. However, these tests are very powerful here 

since sample sizes are very large and may indicate departures from normality that do not 

have serious consequences for the validity of the analyses of variance used here. 

Table 2.5: Tests for Normality 

Test Statistic p Value 

Kolmogorov-Smirnov D 0.03104 Pr > D <0.0100 

Cramer-von Mises W-Sq 7.186324 Pr > W-Sq <0.0050 
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Test Statistic p Value 

Anderson-Darling A-Sq 41.43853 Pr > A-Sq <0.0050 

 

Furthermore, the Stemplot and Normal Probability plots given below may be 

interpreted as indicating that lack of normality results mainly in the tails of the 

distributions and may be due to the presence of outliers, a conjecture supported by a plot 

of the Studentized Residuals presented in Figure 2. 1 and Figure 2.2 

Figure 2.1:  Histogram of Studentized Residuals 
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Figure 2.2: Normal Probability Plot 
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Figure 2.3: Residual Plot 
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The residual plot in Figure 2.3 is very informative.  It is based on 40,000 points 

which are scores of backward elimination, clustered in 40 vertical lines; each line 

corresponding to a predicted value of the response backward „score‟.  Note that the 

residuals decrease as the predicted score increases and that there are quite a few extreme 

residuals at the low end. In sum, although there are some reservations about using the 

main effects model as a basis for analysis, given the robustness of the analysis of variance 

in a balanced design with respect to departures from normality and the assumption of 

equal variances, I feel that the main effects model is adequate for my purposes.  

*Appendix A provides the SAS code for the plots and tables Chapter 2.3. 
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 2.2.1 Box Plots  

All of the main effects in my analysis of variance attain statistical significance.  I 

begin my analysis by using box plots of the data categorized by each of these main 

effects. The box plot is a quick way of graphically examining and comparing sets of data. 

Box plots display features of data sets that reflect the distributions for which they were 

sampled without making any parametric assumptions. The spacings between the different 

parts of the box help indicate the degree of dispersion (spread) and skewness in the data.  

Figure 2.4 below presents Box plot for Back_score by error variance and Box plot for 

Step_score by error variance. 

Figure 2.4:  Box Plot of Back_Score by Error Variance 
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http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Skewness
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In Figure 2.4, the gray shaded boxes are for backward score, and the blue shaded 

boxes are for stepwise score. The main feature of Figure 2.4 is the steady increase in 

score, as expected, and therefore decreases in performance as the error variance increases. 

In all but one case, the lower quartile of score lays above the median on the preceding 

box.  Also, as expected, when the error variance is small, almost all the data sets come 

close to producing the correct model.  Thus, both selection methods perform well when 

the error variance is small.  A practical implication of this conclusion is the 

recommendation that researchers try to minimize the error terms of their models by 

carefully designing and carrying out their experiments.  

A comparison of the boxes for the two methods in Figure 2.1 shows them to be 

very similar. Specifically, Figure 2.4 provides evidence that backward elimination and 

stepwise selection are two very comparable variable selection methods In terms of the 

effects of changes in the error variance in the regression models being studied.  
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Next, I present and discuss the effect of sample size on the performance of 

backward elimination and stepwise variable selection. Figure 2.5 below presents Box 

plot for Back_score by sample size and Box plot for Step_score by sample size. 

Figure 2.5: Box Plot of Back_Score and Step_Score by Sample Size 
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Again, gray shaded boxes are for Backward score, and blue shaded boxes are for 

Stepwise score. Although in most applications, the larger the sample size the better, in 

real world settings, cost and time are major limiting factors and in many cases only small 

sample sizes are possible. My simulation study included what I believe to be 

representative sample sizes, small medium and large.  From Figure 2.5 we se that 

performance slowly improves for both methods as sample size increases and that on the 

average, for each sample size, backward elimination is better than stepwise selection But, 
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over the range of settings of my study, the rates of improvement of the scores as sample 

size increases are surprisingly low, especially compared to the impact of decreasing error 

variance shown in Figure Again, when we look at and compare the two sets of boxplots 

for Backward elimination and Stepwise selection, the patterns very similar. In general, 

for all sample size, the mean of score is a little bit higher(worse) for Stepwise score than 

Backward score and the spread of score for Stepwise is bigger than spread of score for 

Backward. 

Now, let us look at the box plots comparing the scores attained by the two types 

of extra predictors I used, related and unrelated. Figure 2.6 below presents Box plot for 

Back_score by type of extra predictor and Box plot for Step_score by type of extra 

predictor. 

Figure 2.6: Box plot of Back_score by Extra predictor 
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In Figure 2.6, gray shaded boxes are for Backward score, and blue shaded boxes 

are for Stepwise score. We notice that the reduction of score going from related to 

unrelated is almost 50%, for both for both Back_socre and Step_score, which is very big 

in my opinion and tells us that when the extra predictors are functions of the true 

predictors, both methods are less effective than when the extra predictors are unrelated to 

the true ones. This result seems reasonable to me and I am glad I included this factor in 

my study. Once again, when look at the box plots side by side for comparing Back_score 

and Step_score for the same type of extra predictor; one has a difficult time 

distinguishing them by simply looking at them.  

*Appendix A, provides the SAS code for constructing the plots in Figures 2.4 to 2.6 
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 2.2.2 Lsmeans and/or Means analysis 

To augment the mostly visual information conveyed in the box plots discussed 

above, I present and analyze LSMEANS obtained from using SAS applied to my main 

effects model given in Table 2.6. 

Table 2.6: LSMEANS of Backward Scores and Pairwise Comparisons of SSizes 

ssize score LSMEAN Standard Error Pr > |t| LSMEAN Number 

15 1.37728549 0.00308642 <.0001 1 

30 1.16107824 0.00308642 <.0001 2 

70 0.94649107 0.00308642 <.0001 3 

150 0.76796088 0.00308642 <.0001 4 

 

Least Squares Means for effect ssize 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: score 

i/j 1 2 3 4 

1  <.0001 <.0001 <.0001 

2 <.0001  <.0001 <.0001 

3 <.0001 <.0001  <.0001 

4 <.0001 <.0001 <.0001  

 

The results here are consistent with what I found in the box plots.  Specifically, 

the performance of backward elimination improves as sample size increases. As evidence, 
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I present Table 2.6 which gives pair wise p-values, which shows that all sample size 

marginal means are statistically significantly different. Similar results, presented in 

Appendix B, were obtained from the LSMEANS analysis for the factors error_variance 

and type of extra predictors.  

In Appendix B, I also provide estimated LSMEANS for all of the forty 

combinations of the factors sorted by descending scores based on backward scores.  

These means are plotted against sample size in Figure 2.7 and against error_variance in 

Figure 2.8, although both plots indicate some level of interaction, mostly at the ends, the 

fairly regular decreasing pattern of score as sample sizes increases and error_varaince 

decreases dominate both graphs. These relationships are further explored in the next 

section.   

Figure 2.7: Plot of SSize by Evari Interaction of Lsmean Against Error Variance 
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Figure 2.8: Plot of Sample Size by Evari Interaction of Lsmean Against Sample Size 

score LSMEAN
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Overall, the impact of these factors on mean backward score is given in Table 2.7 

where it is seen that error_variance is the most important factor.  

 

Table 2.7: Summary of Impact of Sample Size, Error Variance and Extra Predictor 

Based on Backward Score 

Influence Extent 

Small impact Sample sizes < 
Relationship of 

Extra Predcitors  
< Error variance Big impact 

* SAS code in Appendix A. 
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 2.2.3 Regression Analysis of Backward Elimination Score 

Two of the three factors in my study, sample size and error_variance are 

quantitative, a structure not incorporated in the analysis carried out above. Here, I use a 

regression approach which yields estimates of the effect of unit increases in these 

predictors on mean response.  This analysis can also be carried out by omitting the 

quantitative factors from the class statement in SAS. First I present a 3 dimensional 

scatter plot to visualize the relationship between the response variable score and the 

factors sample size and error variance, after averaging over type of extra predictor.  

Figure 2.9: Three Dimensional Scatter Plot of SSize by EVariance Interaction of 

Backward Scores 
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It is apparent that the low values of score (good performance) are  clustered in the 

region  of small error variance, while the sample size differences seem not to have a big 

impact on the variation in scores.   

The results of a regression analysis of the simulation results obtained by using 

backward elimination carried out by SAS with mean score as the response and sample 

size, error variance and type of extra variables as the independent variables are given 

below. Note, since the „type of extra predictors‟ is a categorical predictor having only two 

levels, without loss of generality, we coded it „1‟ if the type of extra predictors is related 

and 0 otherwise.  

Table 2.8: Parameter Estimates of Regression Analysis of Backward Score 

 

Parameter Estimates 

Variable Label DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept Intercept 1 1.45537 0.00521 279.43 <.0001 

Ssize Ssize 1 -0.00409 0.00003743 -109.14 <.0001 

Evari Evari 1 1.47144 0.00556 264.46 <.0001 

Related   1 0.43182 0.00392 110.16 <.0001 

 

Note that in the regression analysis I used ssize=ssize-70, and evari=evari-0.3 to 

facilitate interpretation of the results. For example, using this coding, the constant term 

represents how much higher mean score is for related than for unrelated predictors.  Thus, 

we estimate that mean score for related is 0.43182 higher for related than for unrelated 

extra predictors.  
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The fitted surface can also be used to estimate mean score at values of the 

independent variables within the scope of the model. For example,  for sample size equal 

to 70, error variance = 0.3 and for un-related extra predictors, this model estimates mean 

score to be the estimated intercept, which equals 1.46, and  estimates mean score to be 

1.89 for related extra predictors, again confirming that in cases like this backward 

elimination performs better for un-related than related extra predictors.  Also, for a fixed 

error variance and type of extra predictors, this fitted model estimates for a 10 unit 

increase in sample size, mean score decreases by -0.0419. Similarly, for a fixed error 

variance and type of extra predictors, for each 1 unit increase in error variance, the model 

estimates that backward score increase by 1.47144, an impact more than 30 times larger 

than is associated with changes in sample size.  Finally, conditional on fixed sample size 

and error variance, mean score using backward elimination is estimated to be 0.43 higher 

for related extra predictors than for un-related extra predictors.  

I also looked at the results, presented in Table 2.9 obtained by adding a 

sample_size by error_variance interaction term.  Although, the p-value associated with 

the test for dropping this term is small, its inclusion has little practical effect on the 

results described above.   

Table 2.9: Parameter Estimates of Regression Analysis on Backward Score  

with 2 Way Interaction 

Parameter Estimates 

Variable Label DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept Intercept 1 0.71149 0.00281 253.02 <.0001 

Ssize ssize 1 -0.00404 0.00003842 -105.16 <.0001 

Evari evari 1 1.46937 0.00558 263.50 <.0001 
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Parameter Estimates 

Variable Label DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Inter   1 -0.00055243 0.00010622 -5.20 <.0001 

Related   1 0.43182 0.00392 110.19 <.0001 

 

* SAS code can be found in Appendix A. 
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2.3 A Comparison of Backward and Stepwise Variable Selection 

 

Originally, my research only aimed on assessing the performance of backward 

elimination. However since stepwise selection is such a widely used competitor, I 

decided to compare the relative performance of the two methods.  One of the few 

quantitative statement s about comparing variable selection methods appears in “The 

Little Handbook of Statistical Practice” by Gerard E. Dallal, Ph.D., He states that “among 

these three automatic search methods, Backwards Elimination has an advantage over 

forward selection and stepwise regression because it is possible for a set of variables to 

have considerable predictive capability even though any subset of them does not. 

Forward selection and stepwise regression will fail to identify them. Because the 

variables don't predict well individually, they will never get to enter the model to have 

their joint behavior noticed. Backwards elimination starts with everything in the model, 

so their joint predictive capability will be seen. 

Since variables are chosen because they look like good predictors, estimates of 

anything associated with prediction can be misleading. Regression coefficients are biased 

away from 0, that is, their magnitudes often appear to be larger than they really are. (This 

is like estimating the probability of a head from the fair coin with the most heads as the 

value that gained it the title of "most heads.") The t statistics tend to be larger in 

magnitude and the standard errors smaller than what would be observed if the study were 

replicated. Confidence intervals tend to be too narrow. Individual P values are too small. 

R², and even adjusted R², is too large. The overall F ratio is too large and its P value is 

too small. The standard error of the estimate is too small. “ 

[Cited from “The Little Handbook of Statistical Practice” by Gerard E. Dallal, Ph.D] 

Here, in the second part of my study, I apply quantitative analyses of my 

simulation results to compare these two methods. As mentioned above, I expect higher 

(worse) scores from Stepwise than from Backward elimination.  I used both methods on 

each of my 40000 data sets. Viewing the data sets as blocks, I carried out a paired 

analysis based on the difference between the scores defined by a new response variable 

http://www.jerrydallal.com/LHSP/whole_and_parts.htm
http://www.jerrydallal.com/LHSP/whole_and_parts.htm
http://www.jerrydallal.com/LHSP/whole_and_parts.htm
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“Diff” equal to “Stepwise_score – Backward_score”. Positive values of „Diff‟ indicate a 

better performance of backward elimination.  

 2.3.1 Boxplot of Diff 

Figure 2.10 below present the box plot for different sample size of Score Difference.  

Figure 2.10: Box Plot of Score Difference by Sample Size 

 

The above plot shows a very small spread of the Diff scores, with values having a 

slight tendency to be more positive than negative, favoring backward over stepwise. Note 

that boxes change relatively little as sample size increases, indicating that sample size has 

little ability to distinguish between the two methods.  

Figure 2.11 below present the boxplot for different Error_Variance of Score Difference.  
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Figure 2.11: Box Plot of Score Difference by Error Variance 

 

 

The evidence provided in Figure 2.11 above indicates that the error_ variance is 

an important factor in distinguishing between the two methods. Note in particular that 

both methods behave most similarly when error_variance is at its smallest and largest 

settings and that most of the differences are positive, again indication the superiority of 

backward over stepwise.  

Figure 2.12 below presents side by side box plots of Diff the two types of 

Extra_Predictors used in my study 
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Figure 2.12: Box Plot of Score Difference by Extra Predictor 

 

In Figure 2.12, we see that for un-related extra predictors, the performance of the 

two methods is almost identical. For related extra predictors, the mean difference of the 

two methods is statistically significantly different from zero and large enough to be of 

practical interest. Once again, backward elimination seems doing a better job. 
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 2.3.2 Lsmeans and/or Means Analysis of Diff 

To follow the same pattern that we analyzed the data for Backward score, and to 

augment the mostly visual information conveyed in the box plots discussed above, I 

present and analyze LSMEANS obtained from using SAS applied to my main effects 

model, which is the same as we used for analyzing Backward score. The LSMEANS 

based on score diff are given in Table 2.10. 

Table 2.10: Lsmean Marginal Means Diff of Sample Size 

ssize diff LSMEAN Standard Error Pr > |t| LSMEAN Number 

15 0.15497006 0.00221575 <.0001 1 

30 0.13278065 0.00221575 <.0001 2 

70 0.13568226 0.00221575 <.0001 3 

150 0.14149843 0.00221575 <.0001 4 

 

The above table list marginal means Diff for the levels of sample size used in my 

study. sample_size effects. Since all lower limits are above zero, we infer that backward 

elimination performs better on the average than stepwise for all the sample sizes involved 

in my study. 

Table 2.11: Summary of Pairwise Comparison Lsmean Means Diff of SSize 

Bonferroni Comparison Lines for Least Squares Means of ssize 

LS-means with the same letter are not significantly different. 

  diff LSMEAN Ssize LSMEAN Number 

  A 0.15497006 15 1 

  B 0.14149843 150 4 
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Bonferroni Comparison Lines for Least Squares Means of ssize 

LS-means with the same letter are not significantly different. 

  diff LSMEAN Ssize LSMEAN Number 

C B 0.13568226 70 3 

C   0.13278065 30 2 

 

The information provided by this table indicates groupings of sample size for 

which Diff means are statistically, significantly different. Note that despite statistical 

significance between several groupings in Table 2.11, the mean differences, from a 

practical standpoint, are similar across sample sizes. But, keep in mind that neither 

performs well for small samples.  

Table 2.12: Lsmean Marginal Means Diff of Error Variance 

evari diff LSMEAN Standard Error Pr > |t| LSMEAN Number 

0.01 0.09898716 0.00247728 <.0001 1 

0.1 0.17213197 0.00247728 <.0001 2 

0.3 0.20614148 0.00247728 <.0001 3 

0.5 0.15542544 0.00247728 <.0001 4 

1 0.07347820 0.00247728 <.0001 5 

 

For the error variance factor, lower confidence limits for Diff means are all 

positive, again favoring  backward elimination, especially for error_variance = .1, .3 or .5. 
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Table 2.13: Summary of Pairwise Comparison LSMEANS of Diff of SSize 

Bonferroni Comparison Lines for Least Squares Means of evari 

LS-means with the same letter are not significantly different. 

  Diff LSMEAN Evari LSMEAN Number 

A 0.206141482 0.3 3 

B 0.172131968 0.1 2 

C 0.155425443 0.5 4 

D 0.098987158 0.01 1 

E 0.073478202 1 5 

 

There is not much new information in Table 2.13 above. We do, however note, 

Error_variance is an important factor in distinguishing the two methods of variable 

selection. 

Table 2.14: LSMEAN Marginal Means Diff of Type of Extra Predictor 

rela diff LSMEAN 95% Confidence Limits 

Relat 0.282296 0.279225 0.285367 

unrel 0.000169 -0.002901 0.003240 

 

Table 2.14 confirms the box plots in Figure 2.13. Specifically, the mean scores 

are only statistically significantly different for the related extra predictors and their 

difference appears to be of practical importance. Another important finding here is that 
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mean difference score for related extra predictors is the largest among all the marginal 

mean differences. That is if the provisional full regression model given in (1) involves 

higher order terms such as quadratic form or interaction terms, backward elimination will 

work better than stepwise selection.  

 2.3.3 Regression Analysis of Diff 

The purpose of this section is to quantitatively assess the effects that changes in 

the levels of the factors I used have on mean Diff, The studentized residuals are plotted in 

Figure 2.13 

Figure 2.13:  Studentized Residuals Plot of Score Difference 

 

Again, each bar represents the 1000 data sets generated for each of my 40 factor 

combinations. Clearly, the plot indicates non-constant variance. Looking further, the 40 
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estimated LSMEANS of Diff cluster into two regions, above and below Zero, a pattern 

discussed below.  The large spike in Figure 2.13 at predicted value 0.25, where 

Error_Variance = 0.01, Sample_Size = 15, and the extra predictors are „related, indicates 

high variation about the fitted plane at these settings. My interpretation of this behavior 

that when Error_Variance is very small, both backward and stepwise methods exhibit 

their best performances and that Diff is small for some settings of sample size and type of 

extra predictors and large for other settings.  

Then I present the scatter plot in Figure 2.14 (this plot averaged over the type of 

extra predictors), trying to get a big picture before looking at details.  Clearly, mean Diff 

decreases as n increases and the error variance decreases.  Next we look at a regression 

analysis of Diff. 

Figure 2.14: Three Dimensional Scatter Plot of SSize by EVariance for Diff 
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I start with the model including main effects only: 

Table 2.15: Parameter Estimates of Regression Analysis for Main Effects 

Parameter Estimates 

Variable Label DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept Intercept 1 0.00512 0.00162 3.16 0.0016 

Ssize ssize 1 -0.00003612 0.00002157 -1.67 0.0940 

Evari evari 1 -0.06208 0.00321 -19.36 <.0001 

X1   1 0.28213 0.00226 124.89 <.0001 

 

Note: To make the coefficient estimation meaningful in the regression analysis, I 

set ssize=ssize-70, and evari=evari-0.3. Interpretation: if sample size equal to 70, error 

variance = 0.3 and for related disturbing factors, the estimated mean of Diff is 0.28725. 

Conditional on a fixed error variance and within same category of extra predictors, we 

estimate that a unit increase in sample size changes mean Diff by-0.00003612, a very 

small but statistically significant effect, indicating that Diff changes little with sample 

size. For a fixed error variance and within same category of extra predictors, a unit 

increase in error variance corresponds to an estimated decrease in Diff of 0.06208, 

indicating that the advantage of backward elimination over stepwise decreases as the 

amount of noise increases, in which case both can perform poorly.  
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Chapter 3 - Conclusion and Further Study 

 3.1 Conclusion 

 

(1). In this report, I conducted a simulation study to evaluate and compare the 

performance of backward elimination and stepwise variable selection in a regression 

setting. I employed ANOVA analysis and regression analysis to describe, quantify my 

findings. In addition I used plots and tables to summarize and present the results.  

LSMEANS in the analysis.  

(2). To evaluate the performance of a variable selection method, I developed a 

score based on how many of the true and extraneous independent variables are included 

in the final model. The smaller score is, the better. Score = 0 calibrates the best possible 

performance.   

According to the analysis I performed, the magnitude of error variance plays the most 

important role; the smaller the variance is the smaller the score for both methods.  

Another interesting finding is that the spread of the difference scores of the two methods 

is much smaller for large and small error variances than it is for moderate size error terms. 

Tends in the middle range of error variance.   

Increasing sample size slowly improves the performance of both methods. More 

dramatically, both methods performed much better when the extra predictors were 

independent of the true ones than when they were functions of them.  

I employed regression analysis to quantify the effects of sample size, type of extra 

predictors and error variance on the performance of backward elimination and stepwise 

variable selection.  Again, type of extra predictors and magnitude of error variance play 

big roles in the performance of both methods.  , the value of estimated parameters tell us 

that the error variance have a strong positive relationship with the score, while the type of 

extra predictors is also an important factor  when using the backward elimination method.  
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(3). As expected, the performance of stepwise and backward elimination variable 

selection are very similar. Using a paired analysis based on the difference between the 

scores on the experimental unit, these two methods are very similar. It is very hard to tell 

the difference from the plots, especially for the unrelated extra predictor setting. But 

when we employed ANOVA and regression analysis of the differences, a pattern appears 

slightly favoring backward elimination over stepwise selection appears. Much can be 

learned when you carefully examine the scatter plot and sort the means from smallest to 

largest, as listed in Table 2.16 below. 

Table 3.1: Summary of Means for 40 combinations of treatment effects 

Obs Ssize evari rela mean 

1 15 0.01 unrel -0.04117 

2 30 0.01 unrel -0.01911 

3 30 0.10 unrel -0.01376 

4 70 0.01 Relat -0.00679 

5 70 0.01 unrel -0.00534 

6 70 0.10 unrel -0.00497 

7 150 0.01 Relat -0.00270 

8 150 0.01 unrel -0.00259 

9 150 0.10 unrel -0.00162 

10 70 0.30 unrel -0.00083 

11 150 0.30 unrel -0.00071 
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Obs Ssize evari rela mean 

12 15 0.10 unrel -0.00021 

13 150 0.50 unrel -0.00008 

14 150 1.00 unrel 0.00398 

15 15 1.00 unrel 0.00418 

16 15 0.50 unrel 0.00442 

17 70 0.50 unrel 0.00630 

18 30 1.00 unrel 0.00826 

19 70 1.00 unrel 0.00948 

20 30 0.30 unrel 0.01306 

21 15 0.30 unrel 0.02000 

22 30 0.50 unrel 0.02410 

23 15 1.00 Relat 0.05278 

24 30 1.00 Relat 0.07314 

25 15 0.50 Relat 0.10313 

26 150 0.10 Relat 0.10534 

27 30 0.01 Relat 0.10939 

28 70 1.00 Relat 0.16347 
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Obs Ssize evari rela mean 

29 30 0.50 Relat 0.19571 

30 15 0.30 Relat 0.19882 

31 150 1.00 Relat 0.27254 

32 70 0.10 Relat 0.27868 

33 30 0.30 Relat 0.37097 

34 70 0.50 Relat 0.38701 

35 15 0.10 Relat 0.44754 

36 150 0.30 Relat 0.51801 

37 150 0.50 Relat 0.52280 

38 70 0.30 Relat 0.52982 

39 30 0.10 Relat 0.56606 

40 15 0.01 Relat 0.76020 

 

One may observe that when things become complicated, that is when the extra 

predictors are quadratic or pairwise cross products of true predictors, and sample size is 

small backward elimination performs better than the stepwise selection. In other words, 

Backward elimination seems can handle more complicated situation. 
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 3.2 Limitations and Further Study 

There are some limitations in transferring the findings in this from this report and 

applying them in real world settings. First, normality and constant error variance were 

assumed. Performance with other distributions and non-constant error variance should be 

studied.  Second, our predictors are generated from a uniform distribution on the interval 

(0 to 1); other models for generating the independent variables should be investigated. . 

Third, the score function, we developed should be viewed as an initial attempt to evaluate 

the performance of a variable selection method. Other scores need to be developed. 

Finally, I put a lot of time into constructing the SAS code for this simulation study and it 

take a long time to execute it. Specifically, it would have taken one computer working all 

day for 27 days to complete the simulation. Future effort should be invested in creating 

more efficient code, possibly using another language.  

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

Bibliography 

[1]  Austin, Peter C. and Tu, Jack V. Automated variable selection methods for logistic 

regression produced unstable models for predicting acute myocardial infarction mortality. 

Journal of Clinical Epidemiology 57 (2004); 1138–1146. 

[2]  Chen, Qixuan, University of Michigan, Ann Arbor, MI；Gillespie, Brenda, 

University of Michigan, Ann Arbor, MI. A SAS® MACRO FOR PERFORMING 

BACKWARD SELECTION IN PROC SURVEYREG. Paper SD10.  

[3]  Derksen, S. and Keselman, H. J. 1992. Backward, forward and stepwise automated 

subset selection algorithms: Frequency of obtaining authentic and noise variables. British 

Journal of Mathematical and Statistical Psychology 45: 265-282. 

[4]  Draper, N.R. and Smith, H. (1998). Applied Regression Analysis, Third Edition. 

Wiley, NYC. 

[5]  Kramer, Andrew A. , Ph.D. Cerner Corporation, Vienna, VA. Using ODS to Perform 

Simulations on Statistics from SAS® Procedures. Paper SA05_05 

[6]  Orelien, Jean G. Analytical Sciences Inc., Durham, NC. A Macro for Computing a 

Goodness of Fit Statistic for Linear Mixed Models. Paper # ST-12 

[7]  SAS and all other SAS Institute Inc. product or service names are registered 

trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® 

indicates USA registration. 

 

 

 

 

 

 



53 

 

Appendix A 

Simulation code: 

SAS Code: For Unrelated Disturbing Factor 

%macro test(num,count,nn,zz); /* Simulate data and perform backward elimination and stepwise selection 

*/ 

/* num= total runs to test one set of coefficients of predictors  
count= number of predictors in the true model 

nn= sample size */ 

 

proc printto log="E:\msxin.log"; ODS LISTING CLOSE; /* turn off SAS-log, SAS-output */ 

 

data xinx; /* generate random seed to start this whole simulation from system time */ 

x=int(datetime());  

start=int(1000000*ranuni(x));   

seed9=int(1000000*ranuni(x));  

call symput('start',start); 

call symput('seed9',seed9); run; 

 
%put ** Inside the macro: **; /* unmask the seeds for using in macro */ 

%put _user_; 

%put ** In open code: **; 

%put _user_; 

 

data gam; /*Generate Beta from uniform distribution(0,1)*/ 

%Do i =1 %to 3; 

%let gamma&i = ranuni(&seed9); %end; 

gamma1=&gamma1; 

gamma2=&gamma2; 

gamma3=&gamma3; 
 

%let open=&start; 

%do k=1 %to &num;  *loop for n times runs of step(2)-step(5); 

%let open = int(ranuni(&open)*1000000); 

%Do I =1 %to 5;  *loop for generate seeds for later use; 

%let seed&I = int(ranuni(&open)*1000000); %end;  

 

data test0; set gam; seed1=&seed1; seed2=&seed2; seed3=&seed3; seed4=&seed4; seed5=&seed5; 

 

data predictor; /* generate a set of predictors for nn=m observations, the predictors from uniform 

distribution(0,1) */ 
set test0; 

seed=seed4; 

%do _n_=1 %to &count;  

SEED = mod( SEED * 397204094, 2**23-1 );  

%do i = 1 %to &nn; 

w=ranuni(seed); output;  

%end; %end; 

data ww1; set predictor; w1=w; if _N_<=&nn then output; drop w; run; 

data ww2; set predictor; w2=w; if &nn<_N_ and _N_<=&nn*2 then output; drop w; run; 

data ww3; set predictor; w3=w; if &nn*2<_N_ then output; drop w; run;  
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data test00; merge ww1 ww2 ww3;  

 

data test001; /*generate a set of observations, with error term distributed as normal(0,sigmasquare=)*/ 

set test00; 

y=w1*gamma1+ gamma2*w2 + gamma3*w3 + &zz*rannor(seed1); 

 
data noise; /* generate a set of predictors for nn=m observations, the predictors from uniform 

distribution(0,1) */ 

set test0; 

seed=seed5; 

%do _n_=1 %to 6;  

SEED = mod( SEED * 397204094, 2**23-1 );  

%do i = 1 %to &nn; 

wm=ranuni(seed); output;  

%end; %end; 

data ww1; set noise; w12=wm; if _N_<=&nn then output; drop wm; run; 

data ww2; set noise; w13=wm; if &nn<_N_ and _N_<=&nn*2 then output; drop wm; run; 

data ww3; set noise; w23=wm; if &nn*2< _N_ <=&nn*3 then output; drop wm; run;  
data ww4; set noise; w11=wm; if &nn*3< _N_ <=&nn*4 then output; drop wm; run;  

data ww5; set noise; w22=wm; if &nn*4< _N_ <=&nn*5 then output; drop wm; run;  

data ww6; set noise; w33=wm; if &nn*5< _N_ then output; drop wm; run;  

 

data test000&k; merge test001 ww1 ww2 ww3 ww4 ww5 ww6;  

 

proc reg data=test000&k; /* perform backward elimination with significant level alpha= */ 

model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/selection=backward SLS=0.05; 

ods output SelectionSummary=aa&k; 

 

proc reg data=test000&k; /* perform stepwise selection with significant level alpha= */ 
model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/selection=stepwise sle=.05 sls=.05; 

ods output SelectionSummary=aaa&k; 

 

*model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/vif; 

/* 

ods html; 

ods graphics on; 

PROC CORR DATA=sss PLOTS = MATRIX PLOTS=scatter; 

   VAR y w1 w2 w3 w12 w13 w23 w11 w22 w33; 

TITLE 'Correlation calculations using PROC CORR'; RUN;  

*/ 

proc printto; /*ODS LISTING;run; /* turn on SAS-log, SAS-output */ 
 

%end; run; 

%mend test; 

 

/*  

ods trace on;  

proc reg data=test0002; 

model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/selection=backward SLS=0.05; 

ods output SelectionSummary=aa; run; 

ods trace off; 

*/ 
/*Identify the variable Id for custom selection*/ 

 

%macro test1(num,nums,nn);  
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/* summarize the performence of backward elimination  

num= total runs to test one set of coefficients of predictors */ 

proc printto log="E:\msxin.log"; ODS LISTING CLOSE; /* turn off SAS-log, SAS-output */ 

 

%do k=1 %to &num;   

data bb&k; set aa&k; /* pick value from final results, approach one */ 
if varremoved in ('w1','w2','w3') then xin=1; 

if varremoved in ('w12','w13','w23','w11','w22','w33') then xin=2;  

proc freq data=bb&k;TABLE xin / OUT=cc&k;run; 

data dd&k; set cc&k; 

keep xin score1 count_true; 

if xin=1 then score1=count;else delete; 

count_true=3-score1;  

data ee&k; set cc&k; 

keep xin score1 count_true; 

if (xin^=1 and PERCENT=100) then xin=1; else delete; count=0; score1=0; count_true=3-score1; 

data gg&k; set cc&k; 

keep xin score2 count_noise; 
if xin=2 then score2=6-count;else delete; count_noise=score2;  

data ff&k; merge dd&k ee&k gg&k; 

score=(2*(3-count_true)+count_noise)/3; 

 

data hh&k; /* pick value from final results, approach two */ 

keep cp modelrsquare; 

set aa&k; 

by dependent; 

if last.dependent then output;else delete;run; 

 

data ii&k; /* combine approach one and two */ 
merge hh&k ff&k; 

cpp=(cp /(score1+score2+1)); count=score1+score2; %end; 

 

/* For stepwise part */ 

%do r=1 %to &nums;   

data bbb&r; set aaa&r; /* pick value from final results, approach one */ 

if varentered in ('w1','w2','w3') then xin=1; 

if varentered in ('w12','w13','w23','w11','w22','w33') then xin=2;  

if varremoved in ('w1','w2','w3') then xin=3; 

if varremoved in ('w12','w13','w23','w11','w22','w33') then xin=4;  

proc freq data=bbb&r;TABLE xin / OUT=ccc&r;run; 

data ccc&r; merge ccc&r qq; by xin; run; 
 

data ddd&r; set ccc&r; 

if xin=1 then score111=count;else delete; 

if score111="." then score111=0; 

data dddd&r; set ccc&r; 

if xin=3 then score1111=count; else delete; 

if score1111="." then score1111=0;  

data fff&r; merge ddd&r dddd&r; 

keep xin score111 score1111 count_true_s; 

count_true_s=score111-score1111;  

 
proc print data=hhh1;run; 

 

data eee&r; set ccc&r; 
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if xin=2 then score222=count; else delete; 

if score222="." then score222=0;  

data eeee&r; set ccc&r; 

if xin=4 then score2222=count; else delete; 

if score2222="." then score2222=0; 

data ggg&r; merge eee&r eeee&r; 
keep score222 score2222 count_noise_s; 

count_noise_s=score222-score2222;  

run; 

 

data hhh&r; merge fff&r ggg&r; 

score_step=(2*(3-count_true_s)+count_noise_s)/3; 

%end; 

 

data jj; /* arrange the summary */ 

set ii1 ii2 ii3 ii4 ii5 ii6 ii7 ii8 ii9 ii10 ii11 ii12 ii13 ii14 ii15 

ii16 ii17 ii18 ii19 ii20 ii21 ii22 ii23 ii24 ii25 ii26 ii27 ii28 ii29 ii30;  

 
Time = datetime(); format time datetime16.; 

data ll;  

set hhh1 hhh2 hhh3 hhh4 hhh5 hhh6 hhh7 hhh8 hhh9 hhh10 hhh11 hhh12 hhh13 hhh14 hhh15 

hhh16 hhh17 hhh18 hhh19 hhh20 hhh21 hhh22 hhh23 hhh24 hhh25 hhh26 hhh27 hhh28 hhh29 hhh30;  

 

data mm;  

nn=&nn; 

keep count_true count_noise cpp score score_step modelrsquare cp nn;* time; 

retain count_true count_noise cpp score score_step modelrsquare cp nn;* time; 

merge jj ll; 

proc sort data=mm; by score cpp score_step; 
proc printto;/*ODS LISTING;run; /* turn on SAS-log, SAS-output */ 

/*proc print data=jj;run;*/ 

 

%mend test1; 

 

proc datasets lib=work kill nolist memtype=data; quit;  

/*Identify the variable Id for custom selection*/ 

data qq; input xin @@; 

cards;  

1 2 3 4 

;run; 

%test(30,3,150,1) 
%test1(30,30,150) 

 

ods html body='T:\msxin\xin.html'; 

proc means data=mm mean std p25 p50 p75 min max nolabels; 

  VAR cpp score score_step modelrsquare cp count_true count_noise; 

  output out=xin; run; 

 

DATA xin; set xin; keep _STAT_ cpp score score_step modelrsquare cp count_true count_noise; 

run; 

ods html close; 

 
proc print data=xin; run; 

 

/* Combine summary from step(1) - step(6) */ 
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libname MS 'T:\xin\library'; 

proc append base=ms.summary_normal data=xin; 

proc print data=ms.summary_normal;run; 

 

%macro cls(); 

  DM 'ODSRESULTS' CLEAR EDITOR;  ODS HTML CLOSE; 
  DM 'CLEAR LOG; CLEAR OUTPUT; PGM OFF' LISTING; *EXPLORER;  

%mend  cls; 

%cls; 

 

SAS Code: For related Disturbing Factor 

%macro test(num,count,nn,zz); /* Simulate data and perform backward elimination and stepwise selection 

*/ 

/* num= total runs to test one set of coefficients of predictors  

count= number of predictors in the true model 

nn= sample size */ 

 

proc printto log="T:\msxin.log"; ODS LISTING CLOSE; /* turn off SAS-log, SAS-output */ 
 

data xinx; /* generate random seed to start this whole simulation from system time */ 

x=int(datetime());  

start=int(1000000*ranuni(x));   

seed9=int(1000000*ranuni(x));  

call symput('start',start); 

call symput('seed9',seed9); run; 

 

%put ** Inside the macro: **; /* unmask the seeds for using in macro */ 

%put _user_; 

%put ** In open code: **; 
%put _user_; 

 

data gam; /*Generate Beta from uniform distribution(0,1)*/ 

%Do i =1 %to 3; 

%let gamma&i = ranuni(&seed9); %end; 

gamma1=&gamma1; 

gamma2=&gamma2; 

gamma3=&gamma3; 

 

%let open=&start; 

%do k=1 %to &num;  *loop for n times runs of step(2)-step(5); 
%let open = int(ranuni(&open)*1000000); 

%Do I =1 %to 4;  *loop for generate seeds for later use; 

%let seed&I = int(ranuni(&open)*1000000); %end;  

 

data test0; set gam; seed1=&seed1; seed2=&seed2; seed3=&seed3; seed4=&seed4; 

 

data predictor; /* generate a set of predictors for nn=m observations, the predictors from uniform 

distribution(0,1) */ 

set test0; 

seed=seed4; 

%do _n_=1 %to &count;  
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SEED = mod( SEED * 397204094, 2**23-1 );  

%do i = 1 %to &nn; 

w=ranuni(seed); output;  

%end; %end; 

data ww1; set predictor; w1=w; if _N_<=&nn then output; drop w; run; 

data ww2; set predictor; w2=w; if &nn<_N_ and _N_<=&nn*2 then output; drop w; run; 
data ww3; set predictor; w3=w; if &nn*2<_N_ then output; drop w; run;  

data test00; merge ww1 ww2 ww3;  

 

data test001; /*generate a set of observations, with error term distributed as normal(0,sigmasquare=)*/ 

set test00; 

y=w1*gamma1+ gamma2*w2 + gamma3*w3 + &zz*rannor(seed1); 

 

data test002; set test001; /* Create noise terms */ 

w12=w1*w2; w13=w1*w3; w23=w2*w3; wa=w1*w1; wb=w2*w2; wc=w3*w3; 

data test003; set test002; 

w12=w12; w13=w13; w23=w23; w11=wa; w22=wb; w33=wc; drop wa wb wc; 

data test000&k; set test003;  
 

proc reg data=test000&k; /* perform backward elimination with significant level alpha= */ 

model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/selection=backward SLS=0.05; 

ods output SelectionSummary=aa&k; 

 

proc reg data=test000&k; /* perform stepwise selection with significant level alpha= */ 

model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/selection=stepwise sle=.05 sls=.05; 

ods output SelectionSummary=aaa&k; 

 

*model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/vif; 

/* 
ods html; 

ods graphics on; 

PROC CORR DATA=sss PLOTS = MATRIX PLOTS=scatter; 

   VAR y w1 w2 w3 w12 w13 w23 w11 w22 w33; 

TITLE 'Correlation calculations using PROC CORR'; RUN;  

*/ 

proc printto; /*ODS LISTING;run; /* turn on SAS-log, SAS-output */ 

 

%end; run; 

%mend test; 

 

/*  
ods trace on;  

proc reg data=test0002; 

model y = w1 w2 w3 w12 w13 w23 w11 w22 w33/selection=backward SLS=0.05; 

ods output SelectionSummary=aa; run; 

ods trace off; 

*/ 

 

%macro test1(num,nums,nn);  

 

/* summarize the performence of backward elimination  

num= total runs to test one set of coefficients of predictors */ 
proc printto log="T:\msxin.log"; ODS LISTING CLOSE; /* turn off SAS-log, SAS-output */ 

 

%do k=1 %to &num;   
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data bb&k; set aa&k; /* pick value from final results, approach one */ 

if varremoved in ('w1','w2','w3') then xin=1; 

if varremoved in ('w12','w13','w23','w11','w22','w33') then xin=2;  

proc freq data=bb&k;TABLE xin / OUT=cc&k;run; 

data dd&k; set cc&k; 

keep xin score1 count_true; 
if xin=1 then score1=count;else delete; 

count_true=3-score1;  

data ee&k; set cc&k; 

keep xin score1 count_true; 

if (xin^=1 and PERCENT=100) then xin=1; else delete; count=0; score1=0; count_true=3-score1; 

data gg&k; set cc&k; 

keep xin score2 count_noise; 

if xin=2 then score2=6-count;else delete; count_noise=score2;  

data ff&k; merge dd&k ee&k gg&k; 

score=(2*(3-count_true)+count_noise)/3; 

 

data hh&k; /* pick value from final results, approach two */ 
keep cp modelrsquare; 

set aa&k; 

by dependent; 

if last.dependent then output;else delete;run; 

 

data ii&k; /* combine approach one and two */ 

merge hh&k ff&k; 

cpp=(cp /(score1+score2+1)); count=score1+score2; %end; 

 

/* For stepwise part */ 

%do r=1 %to &nums;   
data bbb&r; set aaa&r; /* pick value from final results, approach one */ 

if varentered in ('w1','w2','w3') then xin=1; 

if varentered in ('w12','w13','w23','w11','w22','w33') then xin=2;  

if varremoved in ('w1','w2','w3') then xin=3; 

if varremoved in ('w12','w13','w23','w11','w22','w33') then xin=4;  

proc freq data=bbb&r;TABLE xin / OUT=ccc&r;run; 

data ccc&r; merge ccc&r qq; by xin; run; 

 

data ddd&r; set ccc&r; 

if xin=1 then score111=count;else delete; 

if score111="." then score111=0; 

data dddd&r; set ccc&r; 
if xin=3 then score1111=count; else delete; 

if score1111="." then score1111=0;  

data fff&r; merge ddd&r dddd&r; 

keep xin score111 score1111 count_true_s; 

count_true_s=score111-score1111;  

 

proc print data=hhh1;run; 

 

data eee&r; set ccc&r; 

if xin=2 then score222=count; else delete; 

if score222="." then score222=0;  
data eeee&r; set ccc&r; 

if xin=4 then score2222=count; else delete; 

if score2222="." then score2222=0; 
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data ggg&r; merge eee&r eeee&r; 

keep score222 score2222 count_noise_s; 

count_noise_s=score222-score2222;  

run; 

 

data hhh&r; merge fff&r ggg&r; 
score_step=(2*(3-count_true_s)+count_noise_s)/3; 

%end; 

 

data jj; /* arrange the summary */ 

set ii1 ii2 ii3 ii4 ii5 ii6 ii7 ii8 ii9 ii10 ii11 ii12 ii13 ii14 ii15 

ii16 ii17 ii18 ii19 ii20 ii21 ii22 ii23 ii24 ii25 ii26 ii27 ii28 ii29 ii30 

 

Time = datetime(); format time datetime16.; 

data ll;  

set hhh1 hhh2 hhh3 hhh4 hhh5 hhh6 hhh7 hhh8 hhh9 hhh10 hhh11 hhh12 hhh13 hhh14 hhh15 

hhh16 hhh17 hhh18 hhh19 hhh20 hhh21 hhh22 hhh23 hhh24 hhh25 hhh26 hhh27 hhh28 hhh29 hhh30; 

 
data mm;  

nn=&nn; 

keep count_true count_noise cpp score score_step modelrsquare cp nn;* time; 

retain count_true count_noise cpp score score_step modelrsquare cp nn;* time; 

merge jj ll; 

proc sort data=mm; by score cpp score_step; 

proc printto;/*ODS LISTING;run; /* turn on SAS-log, SAS-output */ 

/*proc print data=jj;run;*/ 

 

%mend test1; 

 
proc datasets lib=work kill nolist memtype=data; quit;  

/*Identify the variable Id for custom selection*/ 

data qq; input xin @@; 

cards;  

1 2 3 4 

;run; 

%test(30,3,150,0.1) 

%test1(30,30,150) 

 

ods html body='T:\msxin\xin.html'; 

proc means data=mm mean std p25 p50 p75 min max nolabels; 

  VAR cpp score score_step modelrsquare cp count_true count_noise; 
  output out=xin; run; 

 

DATA xin; set xin; keep _STAT_ cpp score score_step modelrsquare cp count_true count_noise; 

run; 

ods html close; 

 

proc print data=xin; run; 

 

/* Combine summary from step(1) - step(6) */ 

libname MS 'T:\xin\library'; 

proc append base=ms.summary_normal data=xin; 
proc print data=ms.summary_normal;run; 

 

%macro cls(); 
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  DM 'ODSRESULTS' CLEAR EDITOR;  ODS HTML CLOSE; 

  DM 'CLEAR LOG; CLEAR OUTPUT; PGM OFF' LISTING; *EXPLORER;  

%mend  cls; 

%cls; 

 

SAS Code: For Figure 2.14 

proc G3D data=ms.diff; 

SCATTER evari*ssize=diff; 

run; 

 

Sas Code: For Table 2.3 

proc glm data=ms.union; 

class ssize evari rela; 
model  score = ssize evari rela; 

run; 

proc glm data=ms.union; 

class ssize evari rela; 

model  score = ssize|evari rela|ssize evari|rela; 

run; 

proc glm data=ms.union; 

class ssize evari rela; 

model  score = ssize|evari|rela; 

run; 

Sas Code: For Table 2.5, Figure 2.1, 2.2, 2.3 

proc glm data=ms.union; 

class ssize evari rela; 

model  score = ssize evari rela; 

output out=Residuals student=rr r=Residual p=Predicted stdp=stdp stdi=stdi stdr=stdr; run;  

proc gplot data=Residuals; 

 plot rr*score /vref=0;run; 

proc gplot data=Residuals; 

 plot rr*Predicted /vref=0;run; 
proc univariate data=Residuals plot normal; 

 var rr; run; 

Sas Code: For Figure 2. 

libname MS 'H:\Desktop\Master sas\'; 

data aa; set ms.union; 

if ssize>0 then color="a"; 

if rela="Relat" then oo=1; 

if rela="unrel" then oo=3; 

keep score ssize evari rela color oo; 
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data bb; set ms.union; 

 

if ssize=15 then sssize=23; 

if ssize=30 then sssize=40; 

if ssize=70 then sssize=80; 
if ssize=150 then sssize=160; 

if evari=.01 then eevari=.06; 

if evari=.1 then eevari=.15; 

if evari=.3 then eevari=.35; 

if evari=.5 then eevari=.55; 

if evari=1 then eevari=1.05; 

drop ssize evari; 

data cc; set bb; 

ssize=sssize; 

evari=eevari; 

score=score_s; 

if ssize>0 then color="b"; 
drop sssize eevari; 

if rela="Relat" then oo=2; 

if rela="unrel" then oo=4; 

keep score ssize evari rela color oo; 

data dd; set aa cc; 

 

proc sort data=dd; by ssize; 

 

axis1 order = (0 15 30 45 60 75 90 105 120 135) label = ( height= 1.25 'sample size')  

value=(t=1 h=1 j=c "n=15" h=1 j=c "(Back)" 

t=2 h=1 j=c "n=15" h=1 j=c "(Step)" 
t=3 h=1 j=c "n=30" h=1 j=c "(Back)" 

t=4 h=1 j=c "n=30" h=1 j=c "(Step)" 

t=5 h=1 j=c "n=70" h=1 j=c "(Back)" 

t=6 h=1 j=c "n=70" h=1 j=c "(Step)" 

t=7 h=1 j=c "n=150" h=1 j=c "(Back)" 

t=8 h=1 j=c "n=150" h=1 j=c "(Step)" 

); 

axis2 label = (height = 1.25 'Step score'); 

symbol value = dot height = .5 color=yellow; 

proc boxplot data = dd; 

plot score * ssize/ boxstyle=skeletal haxis=axis1 vaxis=axis2 cboxfill = (color) cboxes = BL ; 

insetgroup mean(6.4) min(6.4) max(6.4) STDDEV(6.4) range/  
header = 'Back_score and Step_score by ssize' height=2.5 pos = top cfill = BIGY; 

run; 

 

proc sort data=dd; by evari; 

 

axis1 order = (0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46)  

label = ( height= 1.25 'error variance')  

value=( 

t=1 h=1 j=c "0.01" h=1 j=c "(Back)" 

t=2 h=1 j=c "0.01" h=1 j=c "(Step)" 

t=3 h=1 j=c "0.1" h=1 j=c "(Back)" 
t=4 h=1 j=c "0.1" h=1 j=c "(Step)" 

t=5 h=1 j=c "0.3" h=1 j=c "(Back)" 

t=6 h=1 j=c "0.3" h=1 j=c "(Step)" 
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t=7 h=1 j=c "0.5" h=1 j=c "(Back)" 

t=8 h=1 j=c "0.5" h=1 j=c "(Step)" 

t=9 h=1 j=c "1.0" h=1 j=c "(Back)" 

t=10 h=1 j=c "1.0" h=1 j=c "(Step)" 

); 

axis2 label = (height = 1.25 'Step score'); 
symbol value = dot height = .5 color=yellow; 

proc boxplot data = dd; 

plot score * evari/ boxstyle=skeletal haxis=axis1 vaxis=axis2 cboxfill = (color) cboxes = BL ; 

insetgroup mean(6.4) min(6.4) max(6.4) STDDEV(6.4) range/  

header = 'Back_score and Step_score by ssize' height=2.5 pos = top cfill = BIGY; 

run; 

 

proc sort data=dd; by oo; 

 

axis1 order = (1 to 4 by 1)  

label = ( height= 1.25 'extra predictor')  

value=( 
t=1 h=1 j=c "related" h=1 j=c "(Back)" 

t=2 h=1 j=c "related" h=1 j=c "(Step)" 

t=3 h=1 j=c "unrelated" h=1 j=c "(Back)" 

t=4 h=1 j=c "unrelated" h=1 j=c "(Step)" 

); 

axis2 label = (height = 1.25 'Step score'); 

symbol value = dot height = .5 color=yellow; 

proc boxplot data = dd; 

plot score * oo/ boxstyle=skeletal haxis=axis1 vaxis=axis2 cboxfill = (color) cboxes = BL ; 

insetgroup mean(6.4) min(6.4) max(6.4) STDDEV(6.4) range/  

header = 'score by type of extra predictor' height=2.5 pos = top cfill = BIGY; 
run; 

 

SAS Code: For Table 2.8, 2.9 

libname MS 'H:\Desktop\Master sas\'; 

data test01; 

set ms.union; 

if rela="Relat" then do x1=1; x2=0; end; 

if rela="unrel" then do x2=1; x1=0; end; 

inter=ssize*evari; 

*proc print data=test01;run; 

 
data test01; set test01; 

ssize=ssize-70; 

evari=evari-0.3; 

proc reg data=test01; 

model  score = ssize evari x1; 

run; 

proc reg data=test01; 

model  score = ssize evari inter x1; 
run; 
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Sas code: For Figure 2.10 
libname MS 'H:\Desktop\Master sas\'; 

proc glm data=ms.diff; 

class ssize evari rela; 

model diff = ssize evari rela; 

output out=Residuals student=rr r=Residual p=Predicted stdp=stdp stdi=stdi stdr=stdr; run;  

proc gplot data=Residuals; 

 plot rr*diff /vref=0;run; 

proc gplot data=Residuals; 

 plot rr*Predicted /vref=0;run; 

proc univariate data=Residuals plot normal; 

 var rr; run; 

 

Sas code: For Figure 2.11, 2.12, 2.13 
 

/*score diff*/ 

 

axis1 order = (1 to 150 by 15) label = ( height= 1.25 'sample size'); 

axis2 label = (height = 1.25 'Score Diff'); 

symbol value = dot height = 0.5 ; 
proc sort data=ms.diff; by ssize; 

proc boxplot data = ms.diff; 

plot diff * ssize/ haxis=axis1 vaxis=axis2 cboxfill = TAN cboxes = BL ; 

insetgroup mean min max STDDEV/ header = 'Score by_difference by ssize' pos = top cfill = YELLOW ; 

run; 

 

axis3 order = (0.01 to 1 by 0.1) label = (height = 1.25 'error variance') minor = (number = 1) ; 

axis2 label = (height = 1.25 'Score Diff') ; 

symbol value = dot height = 0.5 ; 

proc sort data=ms.diff; by evari; 

proc boxplot data = ms.diff; 
plot diff * evari/ vaxis=axis2 haxis=axis3 cboxfill = TAN cboxes = BL ; 

insetgroup mean min max STDDEV/ header = 'Score by_difference by evari' pos = top cfill = YELLOW ; 

run; 

 

axis4 label = (height = 1.25 'relationship') minor = (number = 1) ; 

axis2 label = (height = 1.25 'Score Diff') ; 

symbol value = dot height = 0.5 ; 

proc sort data=ms.diff; by rela; 

proc boxplot data = ms.diff; 

plot diff * rela/ vaxis=axis2 haxis=axis4 cboxfill = TAN cboxes = BL ; 

insetgroup mean min max STDDEV/ header = 'Score by_difference by rela' pos = top cfill = YELLOW ; 
run; 

 

Sas code: For Table 2.15 
 

libname MS 'H:\Desktop\Master sas\'; 

data test01; 

set ms.diff; 

if rela="Relat" then do x1=1; x2=0; end; 

if rela="unrel" then do x2=1; x1=0; end; 

*proc print data=test01;run; 
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data test01; set test01; 

ssize=ssize-70; 

evari=evari-0.3; 

inter=ssize*evari; 

 

proc reg data=test01; 
model  diff = ssize evari x1; 

run; 

proc reg data=test01; 

model  diff = ssize evari inter x1; 

run; 
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Appendix B 

Information for Table 3.2: General information 

Class Level Information 

Class Levels Values 

ssize 4 15 30 70 150 

evari 5 0.01 0.1 0.3 0.5 1 

rela 2 Relat unrel 

 

Number of Observations Read 40000 

Number of Observations Used 40000 

 

Information for model: Main effects only 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 8 16779.17446 2097.39681 22017.6 <.0001 

Error 39991 3809.53654 0.09526     

Corrected Total 39999 20588.71100       

 

R-Square Coeff Var Root MSE score Mean 

0.814970 29.02942 0.308642 1.063204 

 

Source DF Type I SS Mean Square F Value Pr > F 

ssize 3 2090.16958 696.72319 7313.92 <.0001 

evari 4 12824.32850 3206.08213 33656.2 <.0001 

rela 1 1864.67637 1864.67637 19574.6 <.0001 
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Information for model: With 2-way interactions 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 27 17690.26878 655.19514 9035.70 <.0001 

Error 39972 2898.44222 0.07251     

Corrected Total 39999 20588.71100       

 

R-Square Coeff Var Root MSE score Mean 

0.859222 25.32724 0.269280 1.063204 

 

Source DF Type I SS Mean Square F Value Pr > F 

ssize 3 2090.16958 696.72319 9608.41 <.0001 

evari 4 12824.32850 3206.08213 44214.6 <.0001 

ssize*evari 12 429.14966 35.76247 493.20 <.0001 

rela 1 1864.67637 1864.67637 25715.5 <.0001 

ssize*rela 3 23.67957 7.89319 108.85 <.0001 

evari*rela 4 458.26509 114.56627 1579.97 <.0001 

 

 

Information for model: With 3-way interactions 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 39 18047.45814 462.75534 7276.61 <.0001 

Error 39960 2541.25286 0.06359     

Corrected Total 39999 20588.71100       
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R-Square Coeff Var Root MSE score Mean 

0.876571 23.71890 0.252180 1.063204 

 

Source DF Type III SS Mean Square F Value Pr > F 

ssize 3 2090.16958 696.72319 10955.6 <.0001 

evari 4 12824.32850 3206.08213 50414.1 <.0001 

ssize*evari 12 429.14966 35.76247 562.35 <.0001 

rela 1 1864.67637 1864.67637 29321.2 <.0001 

ssize*rela 3 23.67957 7.89319 124.12 <.0001 

evari*rela 4 458.26509 114.56627 1801.50 <.0001 

ssize*evari*rela 12 357.18936 29.76578 468.05 <.0001 

 

Pairwise comparison on error-variance main effect based on backward score. 

evari score LSMEAN LSMEAN Number 

0.01 0.20012587 1 

0.1 0.66434164 2 

0.3 1.19870574 3 

0.5 1.47434817 4 

1 1.77849819 5 

 

Least Squares Means for effect evari 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: score 

i/j 1 2 3 4 5 

1  <.0001 <.0001 <.0001 <.0001 
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Least Squares Means for effect evari 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: score 

i/j 1 2 3 4 5 

2 <.0001  <.0001 <.0001 <.0001 

3 <.0001 <.0001  <.0001 <.0001 

4 <.0001 <.0001 <.0001  <.0001 

5 <.0001 <.0001 <.0001 <.0001  

 

Pairwise comparison on related-unrelated main effect based on backward score. 

rela score LSMEAN H0:LSMean1=LSMean2 

Pr > |t| 

Relat 1.27911341 <.0001 

unrel 0.84729443  

 

Ordered Lsmeans for 40 combinations of the three factors based on backward score. 

Obs Effect Dependent ssize evari rela LSMean LSMeanNumber 

1 ssize_evari_rela score 150 0.01 unrel 0.11056667 32 

2 ssize_evari_rela score 70 0.01 unrel 0.12408889 22 

3 ssize_evari_rela score 30 0.01 unrel 0.15109617 12 

4 ssize_evari_rela score 150 0.01 Relat 0.15315556 31 

5 ssize_evari_rela score 70 0.01 Relat 0.16808889 21 

6 ssize_evari_rela score 150 0.1 unrel 0.21876667 34 

7 ssize_evari_rela score 30 0.01 Relat 0.22466667 11 
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Obs Effect Dependent ssize evari rela LSMean LSMeanNumber 

8 ssize_evari_rela score 15 0.01 unrel 0.22974576 2 

9 ssize_evari_rela score 70 0.1 unrel 0.28370000 24 

10 ssize_evari_rela score 30 0.1 unrel 0.39704215 14 

11 ssize_evari_rela score 150 0.3 unrel 0.43650000 36 

12 ssize_evari_rela score 15 0.01 Relat 0.43959836 1 

13 ssize_evari_rela score 150 0.1 Relat 0.46095556 33 

14 ssize_evari_rela score 70 0.3 unrel 0.60526667 26 

15 ssize_evari_rela score 150 0.5 unrel 0.66715326 38 

16 ssize_evari_rela score 15 0.1 unrel 0.66829833 4 

17 ssize_evari_rela score 70 0.1 Relat 0.67441111 23 

18 ssize_evari_rela score 70 0.5 unrel 0.95625556 28 

19 ssize_evari_rela score 30 0.3 unrel 0.96206667 16 

20 ssize_evari_rela score 30 0.1 Relat 1.07096667 13 

21 ssize_evari_rela score 150 0.3 Relat 1.11898889 35 

22 ssize_evari_rela score 150 1 unrel 1.21451111 40 

23 ssize_evari_rela score 30 0.5 unrel 1.40730728 18 

24 ssize_evari_rela score 15 0.3 unrel 1.43092874 6 

25 ssize_evari_rela score 70 0.3 Relat 1.44183333 25 

26 ssize_evari_rela score 150 0.5 Relat 1.47675556 37 

27 ssize_evari_rela score 15 0.1 Relat 1.54059267 3 

28 ssize_evari_rela score 70 1 unrel 1.58543333 30 

29 ssize_evari_rela score 70 0.5 Relat 1.71046667 27 
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Obs Effect Dependent ssize evari rela LSMean LSMeanNumber 

30 ssize_evari_rela score 30 0.3 Relat 1.71634444 15 

31 ssize_evari_rela score 15 0.5 unrel 1.74421954 8 

32 ssize_evari_rela score 150 1 Relat 1.82225556 39 

33 ssize_evari_rela score 30 1 unrel 1.82834100 20 

34 ssize_evari_rela score 15 0.3 Relat 1.87771719 5 

35 ssize_evari_rela score 30 0.5 Relat 1.88575747 17 

36 ssize_evari_rela score 70 1 Relat 1.91536628 29 

37 ssize_evari_rela score 15 1 unrel 1.92460079 10 

38 ssize_evari_rela score 15 0.5 Relat 1.94687002 7 

39 ssize_evari_rela score 30 1 Relat 1.96719387 19 

40 ssize_evari_rela score 15 1 Relat 1.97028355 9 

 

Stepwise selection example: 

 

The REG Procedure 

Model: MODEL1 

Dependent Variable: y  

Number of Observations Read 30 

Number of Observations Used 30 

 

Stepwise Selection: Step 1 

 

Variable w23 Entered: R-Square = 0.7146 and C(p) = 14.1745 

  

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 
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Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 1 0.77783 0.77783 70.12 <.0001 

Error 28 0.31058 0.01109     

Corrected Total 29 1.08840       

 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 0.38717 0.03061 1.77419 159.95 <.0001 

w23 0.74023 0.08840 0.77783 70.12 <.0001 

 

Stepwise Selection: Step 2 

 

Variable w12 Entered: R-Square = 0.7859 and C(p) = 6.1499 

  

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 2 0.85532 0.42766 49.54 <.0001 

Error 27 0.23308 0.00863     

Corrected Total 29 1.08840       

 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 0.35057 0.02964 1.20744 139.87 <.0001 

w12 0.25621 0.08551 0.07750 8.98 0.0058 

w23 0.62906 0.08636 0.45806 53.06 <.0001 
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All variables left in the model are significant at the 0.0500 level. 

 

No other variable met the 0.0500 significance level for entry into the model. 

 

Summary of Stepwise Selection 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 w23   1 0.7146 0.7146 14.1745 70.12 <.0001 

2 w12   2 0.0712 0.7859 6.1499 8.98 0.0058 

 

 


