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Abstract1

Replicated or multiple preference tests have become important tools for assessing consistency in2

consumer preferences in repeated tests as well as overall consumer preference. Replicated pref-3

erence tests can also provide the means for separating discriminators from non-discriminators.4

Despite the increasing popularity of multiple preference tests, there are few statistical tools for5

their analysis, especially when one is interested in assessing the consistency of consumer prefer-6

ences. This paper presents flexible Bayesian methods for examining overall consumer preference7

and consistency of consumer preference in replicated preference tests. In particular, this paper8

presents Bayesian methods for forced-choice preference testing with two tests and then extends9

this methodology to include forced-choice preference testing with more than two tests and repli-10

cated preference testing with a no-preference or no-choice option. The methods produce intuitive11

and easily interpreted probabilities. These methods are applied to various replicated preferences12

test data from the literature.13

Practical Applications14

The Bayesian methods presented in this paper will help sensory scientists and statisticians15

working with sensory data to explore data from replicated preference tests more thoroughly.16

Currently-used methodology only allows scientists to assess the overall preference for a particular17

product. The methodology in this paper allows for a wider array of questions to be answered.18

In particular, this paper focuses on consumers’ ability to consistently choose the same product.19

Initiallly, the methods apply to forced-choice tests, but they are later extended to include a20

no-preference option. Allowing for a no-preference options is another important contribution of21

this work.22

Keywords: forced-choice preference test; McNemar’s test; multiple preference tests; no-preference23

option; statistical analysis24
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1 Introduction1

Preference testing is commonly used to determine consumer preference in comparisons of two,2

or sometimes more, products. Typically, consumers complete one preference test. However,3

replicated or multiple preference tests serve several purposes. Greenberg and Collins (1966)4

discuss the use of replicated preference tests to distinguish between discriminators and non-5

disciminators. Wilke, Cochrane, and Chambers IV (2006) make several observations regarding6

consumer preferences. For example, consumers may not be consistent in their product pref-7

erences across tests, and the percentage of consumers preferring a particular product do not8

necessarily stay the same across tests.9

Despite the observations of Wilke, Cochrane, and Chambers IV (2006), there are relatively10

few statistical tools for anaylzing replicated preference tests, especially when one is concerned11

with the consistency of consumer preference across tests. Cochrane, Dubnicka, and Loughin12

(2005) compare various non-Bayesian methods for analyzing replicated preference tests, in par-13

ticular, for determining overall product preference. Ennis and Bi (1998) employ a beta-binomial14

model to account for variability among tests and provide maximum likelihood estimates for the15

parameters of this model. However, they still only provide one overall estimate for product16

preference; they do not attempt to assess changes in product preference across tests. Bi (2003)17

specifies a Bayesian model but assumes that the probability of preferring a particular product18

is constant across tests and among consumers. In this paper, we propose a Bayesian model that19

allows the probability of preferring a particular product to vary across tests.20

McNemar’s test is a commonly used frequentist, i.e., non-Bayesian, test for determining the21

difference in proportions for binary matched pairs data. In the context of replicated forced-choice22

preference testing with tests on two occasions, McNemar’s test would be used to determine if the23

proportions of consumers preferring product A differed on those two occasions. Altham (1971)24

developed a Bayesian approach for analyzing binary matched pairs data, essentially providing25

a Bayesian version of McNemar’s test. More generally, Agresti and Hitchcock (2005) discuss26

Bayesian approaches for categorical data with the work of Altham (1971) among them.27

In this paper, we first apply the methodology of Altham (1971) to the case of replicated28
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preference testing with forced-choice preference tests with two tests, i.e., with tests on two1

occasions. In the context of replicated preference testing, this Bayesian version of McNemar’s2

test provides us with the posterior probability that product A is preferred more on the second3

occasion (test) than on the first. This posterior probability can tell us, in some sense, if preference4

for product A increases over time. Furthermore, this posterior probability can also help us5

determine if switching from another product, say product B, on the first occasion to product A6

on the second occasion is more likely than the reverse. Furthermore, we extend this methodology7

to answer other questions relevant to replicated preference testing with two tests. In particular,8

under the same assumptions and notation provided by Altham (1971), we determine whether9

consumers are more likely to chose the same product on both occasions than to switch product10

preference and whether product A is preferred more than product B on both occasions, among11

other questions. In general, we focus on questions regarding overall preference for product A as12

well as consistency in product preference over time.13

After considering questions related to the replicated preference tests on two occasions, we14

extend the Bayesian methodology in two ways. First, we consider the extension to more than15

two occasions. In the statistics literature, this is referred to as binary repeated measures data;16

however, in preference testing, we attempt to answer questions that are somewhat different that17

those typically considered in the statistics literature. Nevertheless, the Bayesian methodology18

for two occasions extends very naturally to accommodate more than two occasions. We again19

focus on questions regarding the changes in product preference over time and the consistency20

of individual consumer preferences. Second, we consider the extension to non-forced-choice21

replicated preference tests, that is, tests in which a “no choice” or “no preference” option is22

allowed. The proposed Bayesian methodology also extends quite easily to handle this option.23

In Section 2, we present the Bayesian approach of Altham (1971) in the context of replicated24

forced-choice preference tests with tests on two occasions, and we extend that approach to answer25

various other questions of interest in preference testing. We also discuss Bayesian methodology26

in general with a particular emphasis on choosing the prior distribution in this context, and27

we apply the methodology to real data. In Section 3, we extend this Bayesian methodology to28

4



replicated forced-choice preference tests with tests on more than two occasions and again apply it1

to real data. Section 4 provides details for our Bayesian approach to replicated preference testing2

with a “no preference” option. An example is also provided. All methods are implemented in3

R, and the R code is included in the Appendix.4

2 Matched Pairs5

To set notation, let the binary variable yijk equal 1 if consumer k prefers product i on occasion 16

and prefers product j on occasion 2, where i, j = 1, 2 with 1 denoting product A and 2 denoting7

product B, and k = 1, . . . , n with n denoting the total number of consumers. For example,8

y127 = 1 if consumer 7 prefers product A on the first occasion and product B on the second.9

Furthermore, let nij =
∑n

k=1 yijk be the number of consumers who prefer product i on occasion10

1 and product j on occasion 2. For example, n12 is the number of conumsers who prefer A on11

the first occasion and B on the second. Also, let θij denote the probability that i is preferred12

on occasion 1 and j is preferred on occasion 2, that is,13

P (yijk = 1) = θij. (1)14

We are making a necessary assumption that the probability in (1) is the same for all consumers.15

Then θi· = θi1 + θi2 is the (marginal) probability that product i is preferred on occasion 1, and16

θ·j = θ1j + θ2j is the (marginal) probability that product j is preferred on occasion 2. Finally,17

θ11 + θ12 + θ21 + θ22 = 1.18

Under the Bayesian paradigm, parameters are random quantities. Therefore, Bayesian meth-19

ods require that we specify a likelihood, that is, a probability distribution for the data, and prior20

distributions, which are probability distributions for the parameters. Based on the assumption21

that consumers’ preferences are independent of one another and that (1) holds, the likelihood22

is given, up to a proportionality constant, by23

p(n|θ) ∝
n∏
k=1

2∏
i=1

2∏
j=1

θ
yijk
ij =

2∏
i=1

2∏
j=1

θ
nij

ij , (2)24
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where n = (n11, n12, n21, n22) is the data vector, and θ = (θ11, θ12, θ21, θ22) is the vector of1

parameters of interest. This likelihood is essentially a multinomial distribution.2

In Bayesian analyses with the binomial distribution as the likelihood, it is common to use3

the beta distribution as the prior distribution. This combination of binomial likelihood and4

beta prior results in a posterior distribution that is also a beta distribution. The multinomial5

distribution is simply a multivariate extension of the binomial distribution, and the common6

prior distribution in this case is the Dirichlet distribution, which is a multivariate extension of7

the beta distribution. Therefore, we choose our prior distribution to be the Dirichlet distribution8

given by9

p(θ) = Γ(µ0)
2∏
i=1

2∏
j=1

1

Γ(µij)
θ
µij−1
ij , (3)10

where 0 < θij < 1 for i, j = 1, 2 such that
∑2

i=1

∑2
j=1 θij = 1 and µ0 =

∑2
i=1

∑2
j=1 µij with11

µij > 0, i, j = 1, 2. Γ(·) is the gamma function, and Γ(x) = (x − 1)! if x is a positive integer.12

The values of parameters µij > 0 of the Dirichlet distribution need to be set prior to analysis.13

The choice of these parameter values is discussed below.14

Inference in Bayesian analyses is based on the posterior distribution, which is the distribution15

of the parameters conditional on the data. Essentially, the posterior distribution can be thought16

of as an update of the prior distribution based on the observed data. Together the likelihood in17

(2) and the prior in (3) lead to a Dirichlet posterior distribution given, up to a proportionality18

constant, by19

p(θ|n) ∝
2∏
i=1

2∏
j=1

θ
nij+µij−1
ij . (4)20

That is, the posterior distribution of θ, given the data n, is a Dirichlet distribution with pa-21

rameters ν = (ν11, ν12, ν21, ν22) where νij = nij + µij.22

2.1 Choosing Prior Parameters23

The choice of prior parameters should reflect one’s belief about the values of the θij prior to24

conducting the current preference tests as well as one’s certainty about those values. In choosing25

the values of the parameters of the Dirichlet prior distribution, µij, it helpful to understand some26
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characteristics of the Dirichlet distribution. These characteristics are similar to those of the beta1

distribution.2

• The (prior) mean of θij is given by µij/µ0, where µ0 =
∑2

i=1

∑2
j=1 µij .3

• If the µij are equal to one another, then the Dirichlet distribution is symmetric.4

• If µij = 1, i, j = 1, 2, then the Dirichlet distribution is flat, essentially a multivariate5

uniform distribution.6

• If µij > 1, i, j = 1, 2, then the Dirichlet distribution is unimodal. Larger values of the µij7

produce a less variable Dirichlet distribution, suggesting that values far from the mode8

are less likely.9

In particular, the prior means can be chosen to reflect the prior belief about the approximate10

values of the θij, and the exact values of the µij can then be selected, keeping in mind that larger11

values of the µij reflect great certainty in the choice of the means. We suggest the following12

guidelines in choosing prior parameters in the replicated preference testing setting.13

• The weight of the prior information is given by µ0 = µ11 +µ12 +µ21 +µ22. The value of µ014

relative to the total sample size n = n11 + n12 + n21 + n22 should be considered carefully15

in selecting the values of the µij. Specifically, values of µ0 close to n suggest that one is16

willing to give just as much weight to prior beliefs as to the study data. However, if one17

wants the analysis to be driven more by the data, then µ0, and hence the µij, should be18

much smaller than n.19

• The prior weight given to switching product preference from occasion 1 to occasion 220

should also be considered. In particular, µ11 + µ22 > µ12 + µ21 suggests a prior belief that21

consumers are more likely to choose the same product twice than to switch products, while22

µ11 + µ22 < µ12 + µ21 suggests a belief that consumers are more likely to switch.23

• Furthermore, the values of µ12 and µ21, relative to one another, imply two related ideas.24

First, µ21 > µ21 suggests a prior belief that switching from product B to product A will25
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happen more often than switching from product A to product B. However, µ21 > µ12 also1

implies a prior belief that product A will be chosen more on occasion 2 than it was on2

occasion 1.3

• Finally, µ11 + µ12 > µ21 + µ22 implies prior belief that product A is preferred more than4

product B at time 1, while µ11 + µ21 > µ12 + µ22 implies a prior belief that A is preferred5

more than B on occasion 2.6

To illustrate more concretely, suppose we believe that, based on previous preference tests7

with these or similar products, the percentage of consumers who will prefer product A on both8

occasions is about 45%, and the percentage who prefer product B on both occasions is about9

25%. Further, suppose prior studies suggest that the percentage who will switch from A to B is10

about the same as the percentage who will switch from B to A. Thus, this leads us to believe,11

a priori, that the means of (θ11, θ12, θ21, θ22) are (0.45, 0.15, 0.15, 0.25), respectively. There are12

an infinite number of choices for the µij depending on µ0 = µ11 + µ12 + µ21 + µ22. The value13

of µ0 should be chosen to reflect our certainty regarding the values of the means that we have14

chosen. This certainty should be measured relative to the number of consumers in the replicated15

preference test that we plan to conduct. For example, if we believe there is more information16

in our planned replicated preference test with 50 consumers than in our prior beliefs, we should17

choose µ0 to be smaller than 50. If we think there is as much or more information in our prior18

beliefs than in our study data, we should choose µ0 greater than or equal to 50; however, this19

choice is not often justifiable. Suppose we want to put relatively little weight on our prior beliefs.20

Then we might choose µ0 = 10 which leads to µ11 = 4.5, µ12 = 1.5, µ21 = 1.5, and µ22 = 2.5.21

Note that this choice of prior parameters also reflects a belief that product A is preferred more22

than B on both occasions. If one has no prior information regarding the products, it is reasonable23

to choose µ11 = µ12 = µ21 = µ22 = 1, resulting in a noninformative prior, and the data will24

drive the analysis rather than prior beliefs. For illustration, several choices of prior parameters25

are compared in the example in Section 2.3.26

8



2.2 Details of Analysis1

In a Bayesian analysis, the posterior distribution, which is the distribution of the parameters2

conditional on the data, is used to answer all questions of interest. Recall that the posterior3

distribution can be thought of as an update of our prior knowledge based on the study data. In4

our case, we will use certain posterior probabilities, that is, probabilities regarding the param-5

eters conditional on the data, to answer the questions outlined in Section 1. For example, we6

may be interested in knowing if product A is more likely to be preferred on occasion 2 than on7

occasion 1, implying that consumers may grow to like product A more over time. In terms of8

the parameters θij, we are interested in the posterior probability that θ·1 = θ11 + θ21 is greater9

than θ1· = θ12 + θ22, that is, the probability that product A is preferred more on occasion 2 than10

occasion 1 given the data:11

P1 = P (θ·1 > θ1·|n) = P (θ11 + θ21 > θ11 + θ12|n) = P

(
θ12

θ12 + θ21
<

1

2

∣∣∣∣n) . (5)12

It can be shown that, conditional on the data n from the replicated preference test, the distri-13

bution of θ12/(θ12 + θ21) is a beta distribution. In particular,14

θ12
θ12 + θ21

∣∣∣∣n ∼ Beta(ν12, ν21), (6)15

where νij = nij + µij. Standard statistical software, such as R, can be used to compute the16

probability in (5).17

If ν12 and ν21 are both positive integers, then the desired probability, P (θ·1 > θ1·|n), may be18

evaluated as a binomial tail:19

P1 = P (θ·1 > θ1·|n) =

ν21−1∑
r=0

(
ν12 + ν21 − 1

r

)(
1

2

)ν12+ν21−1
. (7)20

As Altham (1971) notes, this is comparable to the p-value obtained in McNemar’s test:21

p-value =

n21∑
r=0

(
n12 + n21

r

)(
1

2

)n12+n21

. (8)22

This is the p-value calculated when testing the null hypothesis of no difference in preference23

on the two occasions against the alternative that product A is preferred more on occasion 124
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than on occasion 2. In Bayesian analyses, one does not specify null and alternative hypotheses.1

Rather one can compute posterior probabilities as in equation (5) or Bayes factors. We will2

focus on posterior probabilities in this paper. However, the posterior probability P1 will equal3

the p-value from McNemar’s test if, and only if, µ12 = 1 and µ21 = 0. This particular choice4

of prior parameters corresponds to a prior belief that A is preferred more often on occasion 15

than on occasion 2. Note, however, that the posterior probability P1 and McNemar’s p-value,6

although equal in value, have quite different meanings.7

We may also be interested in consistency of product choice, that is, whether consumers are8

more likely to choose the same product on both occasions than to switch. In terms of the9

parameters, we wish to find the posterior probability that θ11 +θ22 is greater than θ12 +θ21, that10

is,11

P2 = P (θ11 + θ22 > θ12 + θ21|n) = P (θ11 + θ22 > 1/2|n). (9)12

Given the preference test data n, the distribution of θ11 + θ22 follows a beta distribution:13

θ11 + θ22|n ∼ Beta(ν11 + ν22, ν0 − ν11 − ν22), (10)14

where ν0 =
∑2

i=1

∑2
j=1 νij with νij = nij + µij. In fact,15

θij + θi′j′|n ∼ Beta(νij + νi′j′ , ν0 − νij − νi′j′) (11)16

so that a variety of questions may be answered by using a beta distribution.17

Some questions, however, do not result in probabilities which can be computed directly from18

known distributions. For example, we can consider ways of assessing changes in preference, such19

as the posterior probability that product B is preferred more on occasion 1 but product A is20

preferred more on occasion 2. Thus, we are interested computing21

P3 = P (θ11 + θ12 < 1/2 and θ11 + θ21 > 1/2|n) = P (θ11 + θ12 < 1/2 < θ11 + θ21|n). (12)22

Similarly, we may be interested in determining if, in some sense, A is preferred more that B.23

This question may be framed as the posterior probability that A is preferred on both occasions:24

P4 = P (θ1· > 1/2 and θ·1 > 1/2|n) = P (θ11 + θ12 > 1/2 and θ11 + θ21 > 1/2|n) (13)25

10



Neither of these probabilities can be easily computed analytically from the exact posterior1

distribution. In cases such as these, we will use Monte Carlo simulation to estimate the desired2

probabilities. In particular, we will randomly generate parameter values from the Dirichlet3

posterior distribution in equation (4) and use those simulated values to approximate the posterior4

distribution of the quantity of interest. This, in turn, enables us to approximate the posterior5

probability of interest.6

For example, suppose we want to compute the probability in equation (12). First, we ran-7

domly generate a very large number of values, say R values, of θ = (θ11, θ12, θ21, θ22) from the8

Dirichlet posterior distribution given by equation (4). The probability of interest (12) is then9

be estimated by counting the number of generated values of θ for which the event of interest,10

namely, θ11 + θ12 < 1/2 < θ11 + θ21, occurs and dividing that by R. More specifically, we use11

the following algorithm to estimating the probability in (12).12

Algorithm 1 For r = 1, . . . , R, do the following:13

1. Randomly sample θ(r) = (θ
(r)
11 , θ

(r)
12 , θ

(r)
21 , θ

(r)
22 ) from a Dirichlet distribution with parameters14

ν = (ν11, ν12, ν21, ν22), where νij = nij + µij.15

2. For that sample, let sr = 1 if θ
(r)
11 + θ

(r)
12 < 1/2 < θ

(r)
11 + θ

(r)
21 , and let sr = 0 otherwise.16

Then the probability in (12) is estimated by the proportion of times θ11 + θ12 < 1/2 < θ11 + θ2117

out of the R randomly generate samples:18

P̂3 =
1

R

R∑
r=1

sr. (14)19

Larger values of R produce more precise estimates of the desired probability. The algorithm20

for computing the probability in equation (13) is similar. The above algorithm was implemented21

in R. The R code for estimating the probabilities in equations (12) and (13) is given in the22

Appendix.23
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2.3 Cola Data1

Wilke, Cochrane, and Chambers IV (2006) conduct two different forced-choice replicated pref-2

erence tests: one comparing two brands of raisin bran, the other comparing two colas. In both3

cases, preferences tests were conducted on four occasions; that is, four tests were conducted. In4

this section, we will use the data from the cola preference tests on the third and fourth occasions5

to illustrate the methods. The raisin bran data will be used to illustrate an extension of this6

methodology to more than two occasions in Section 3.7

The cola preference tests were conducted on 296 consumers, 18 years of age or older, who8

were self-reported acceptors of cola products. Forced-choice preference tests were conducted on9

four occasions. More details regarding the procedures can be found in Wilke et al. (2006). Table10

1 summarizes the data collected from the third and fourth occasions.11

[Table 1 about here.]12

For the purpose of this example, Test 3 is the first occasion, and Test 4 is the second13

occasion. Using the earlier notation, we have n11 = 120, n12 = 62, n21 = 56, and n22 = 58.14

Prior parameters µij should be chosen prior to viewing the data. However, it is instructive to15

compare different prior choices and their effects on the analyses and conclusions. Recall that16

choosing µ11 = µ12 = µ21 = µ22 = 1 results in a noninformative prior, suggesting that we have17

little prior information regarding the parameters θij. Also, note that the values of the µij are18

quite small compared to the values of the nij. Practically speaking, this means that the data19

will drive the analysis, and our prior information will play a minimal roll. Additionally, choosing20

µ11 = 1, µ12 = 0, µ21 = 1, and µ22 = 1 allows us to compute the Bayesian McNemar’s test of21

Altham (1971). As the values of µij for this prior are also very small relative to the observed22

counts, this is also a noninformative prior. To distinguish the latter prior, we refer to it as the23

McNemar prior.24

If we feel our prior information should play a greater roll in the analysis, the values of the25

µij should be larger. For example, we may be willing to give the prior about one-third of the26

weight of the data, say, µ0 = 100. Furthermore, prior experience with similar products may27
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suggest that consumers are more likely to stay with the same product on both occasions than1

to switch (µ11 +µ22 > µ12 +µ21) and that consumers who switch are more likely to switch from2

product B to product A than the reverse (µ21 > µ12). One set of prior parameters that reflects3

these beliefs, subject to µ0 = 100, is µ11 = 35, µ12 = 5, µ21 = 35, and µ22 = 35. Notice that this4

prior puts the same weight on preferring product A on both occasions as preferring product B5

on both occasions. There are many other priors that would meet these criteria.6

Table 2 describes several different priors that were considered for this study. Other than7

the noninformative prior, all priors are based on µ0 = 100, making them informative priors.8

In many cases, these priors are more informative than one might be willing to impose. These9

priors, described in the table, have a variety of characteristics. Some priors are similar to the10

data in that the prior proportions are similar to the data proportions, while others are quite11

different from the data. Priors were also chosen to favor the different posterior probabilities12

under consideration: P1, P2, P3, and P4. The intent is not to provide an exhaustive list of priors13

but to show how the prior parameter selection impacts the resulting values of the posterior14

probabilities of interest.15

Recall that the posterior probabilities of interest are16

P1 = P (θ·1 > θ1·|n) = P (θ11 + θ21 > θ11 + θ12|n) = P

(
θ12

θ12 + θ21
<

1

2

∣∣∣∣n) ,17

P2 = P (θ11 + θ22 > θ12 + θ21|n) = P (θ11 + θ22 > 1/2|n),18

P3 = P (θ11 + θ12 < 1/2 and θ11 + θ21 > 1/2|n) = P (θ11 + θ12 < 1/2 < θ11 + θ21|n),19

P4 = P (θ1· > 1/2 and θ·1 > 1/2|n) = P (θ11 + θ12 > 1/2 and θ11 + θ21 > 1/2|n).20

Thus, P1 is the posterior probability that product A is preferred more on the second occasion21

(time 4) than it was on the first occasion (time 3). P2 is the posterior probability that a consumer22

is more likely to prefer the same product on both occasions than to switch. Therefore, 1 − P223

is the probability that a consumer is more likely to switch product preference than to stay with24

the same product. P3 is the posterior probability that product B is preferred more on the first25

occasion (time 3) but product A is preferred more on the second occasion (time 4). A high value26

of P3 would indicate an overall change in preference among consumers. P4 is the probability27
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that product A is preferred more on both occasions. A high value of P4 would be one indication1

that product A is preferred more overall.2

The resulting values of these posterior probabilities are given in Table 3. Recall that, when3

noninformative priors are used, the data are driving the analyses. Therefore, to see the influence4

of the choice of prior distribution on the posterior probabilities of interest, one can compare the5

posterior probabilities under the various informative priors to the corresponding probabilities6

under the noninformative prior. For example, prior B essentially results as the same posterior7

probabilities as the noninformative prior because the prior parameter values reflect the propor-8

tions in the data. Prior C has its greatest influence on posterior probability P2, lowering its9

value from that of the noninformative prior, because the prior parameters put a greater weight10

on switching products than the data reflects.11

To conclude this example, we compare the p-value for McNemar’s test with the value of12

the posterior probability P1 under the McNemar prior, i.e., the Dirichlet prior with µ11 = 1,13

µ12 = 0, µ21 = 1, and µ22 = 1. Recall that this p-value and posterior probability will be the14

same numerically but will differ in interpretation. In fact, we find that this common value is15

0.323. That is, the p-value of McNemar’s test is 0.323 which means that we fail to reject the16

null hypothesis that preference for product A differs on the two occasions. As this p-value was17

computed for the one-sided alternative, we cannot conclude that product A is preferred more18

on occasion 1 than on occasion 2. For the Bayesian analysis, using the McNemar prior, the19

posterior probability P1 is given by 0.323. That is, the probability that product A is preferred20

more on occasion 2 than occasion 1 is 0.323. It is more likely that product A is preferred more21

on occasion 1 than occasion 2, with probability equal to 1− 0.323 = 0.677. Notice that there is22

a similarity in the conclusions, but the underlying meaning differs.23

[Table 2 about here.]24

[Table 3 about here.]25
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3 More than Two Occasions1

Suppose that forced-choice preference tests are conducted more than twice, i.e., on more than2

two occasions. The result is binary repeated measures data, and we can easily extend the models3

in Section 2 to accommodate this situation. For concreteness, suppose that four preference tests4

are conducted. Let the binary variable yijklm equal 1 if consumer m, where m = 1, . . . , n, prefers5

products (i, j, k, l) on occasions (1, 2, 3, 4), respectively. Again i, j, k, l = 1, 2 where 1 is product6

A and 2 is product B. For example, y11217 = 1 if consumer 7 prefers product A on occasions7

1, 2, and 4 and product B on occasion 3. As above, let nijkl =
∑n

m=1 yijklm be the number8

of consumers who prefer products (i, j, k, l) on occasions (1, 2, 3, 4), respectively. For example,9

n1121 is the number of consumers who prefer product A on occasions 1, 2, and 4 and product10

B on occasion 3. Finally, let θijkl be the probability that products (i, j, k, l) are preferred on11

occasions (1, 2, 3, 4), respectively.12

As in the case of binary matched pairs, i.e., two preference tests, the likelihood for binary13

repeated measures data, i.e., more than two tests, is given by the multinomial distribution:14

p(n|θ) ∝
2∏
i=1

2∏
j=1

2∏
k=1

2∏
l=1

θ
nijkl

ijkl , (15)15

where 0 < θijkl < 1 such that
∑2

i=1

∑2
j=1

∑2
k=1

∑2
l=1 θijkl = 1. The Dirichlet distribution is16

again an appropriate choice for a prior distribution:17

p(θ) ∝
2∏
i=1

2∏
j=1

2∏
k=1

2∏
l=1

θ
µijkl−1
ijkl , (16)18

where µijkl > 0 are specified prior to analysis using the guidelines described in Section 2.1. This19

leads to a Dirichlet posterior distribution:20

p(θ|n) ∝
2∏
i=1

2∏
j=1

2∏
k=1

2∏
l=1

θ
νijkl−1
ijkl , (17)21

where νijkl = nijkl + µijkl are the parameters of the posterior distribution.22
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3.1 Details of Analysis1

In the case of more than two occasions, the questions of interest tend to be more complex,2

leading to more complex analyses. Often an exact distribution cannot be specified to compute3

posterior probabilities of interest and computational methods must be employed. For example,4

we may want to know if preference for product A is likely to increase over time. Thus, interest5

lies in the posterior probability6

P5 = P (θ···1 > θ··1· > θ·1·· > θ1···|n), (18)7

where8

θ···1 =
2∑
i=1

2∑
j=1

2∑
k=1

θijk1 (19)9

is the marginal probability that product A is preferred, over product B, on occasion 4, θ··1· is10

the probability that A is preferred on occasion 3, θ·1·· is the that A is preferred on occasion 2,11

and θ1··· is the probability that A is preferred on occasion 1. We may also be interested, as12

in the case of only two occasions, in determining if consumers are more likely to repeat their13

preference than to switch:14

P6 = P (θ1111 + θ2222 > 1/2|n). (20)15

This is the posterior probability that consumers are more likely to choose the same product on16

all four occasions than to switch even one time. A looser definition of consistency in product17

choice would allow consumers to switch product preference at most one time. Therefore, we18

may be interested in the posterior probability that consumers are more likely to switch at most19

one time than to switch more than one time:20

P7 = P (θ1111 + θ2222 + θ2111 + θ1222 + θ2221 + θ1112 + θ1122 + θ2211 > 1/2|n). (21)21

There are many other questions than can be posed in the case of more than two occasions22

in a replicated preference test, but the exact analysis, that is, a Bayesian analysis using the23

exact posterior distribution, is complicated at best. For these cases, we suggest a computational24

approach which involves taking random samples from the Dirichlet posterior distribution. The25
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exact steps are comparable to those of Algorithm 1. For specificity, the following algorithm can1

be used to compute the posterior probability in (21).2

Algorithm 2 For r = 1, . . . , R, do the following:3

1. Randomly sample probabilities θ(r) = {θ(r)ijkl : i, j, k, l = 1, 2} from a Dirichlet distribution4

with parameters ν(r) = {ν(r)ijkl : i, j, k, l = 1, 2}, where νijkl = nijkl + µijkl.5

2. For that sample, let sr = 1 if θ
(r)
1111 + θ

(r)
2222 + θ

(r)
2111 + θ

(r)
1222 + θ

(r)
2221 + θ

(r)
1112 + θ

(r)
1122 + θ

(r)
2211 > 1/2,6

and let sr = 0 otherwise.7

Then the probability in (21) is estimated by the proportion of times θ1111 + θ2222 + θ2111 + θ1222 +8

θ2221 + θ1112 + θ1122 + θ2211 > 1/2 out of the R randomly generate samples:9

P̂7 =
1

R

R∑
r=1

sr. (22)10

Note that both θ(b) and ν(b) are vectors of length 16 in this case. That is, there are 1611

probabilities θijkl and 16 posterior parameters νijkl.12

Because the Dirichlet distribution is related to the gamma distribution, drawing random13

samples from the Dirichlet distribution is relatively easy using standard statistical software14

which may have random number generators for the gamma distribution, if not the Dirichlet15

distribution itself. R code for the examples in the next section can be found in the Appendix.16

The event of interest is given by the inequalities specified in equations (18), (20), and (21), or17

any other question of interest. At least R = 1000 random samples is recommended to achieve18

reasonable precision in approximating the posterior probability of interest. As the random19

sampling process is computationally simple, taking more samples will not substantially increase20

the computation time but will increase the precision of the approximations.21

3.2 Raisin Bran Data22

For the raisin bran data, we applied our methodology with a noninformative prior, that is, the23

Dirichlet distribution with all µijkl = 1. The posterior probability that preference for product24
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A increases over time, equation (18), is P5 = 0.512. In addition, we can use the draws from the1

posterior distribution to estimate the values of θ···1, θ··1·, θ·1··, and θ1···. To estimate the value of2

θ···1, for example, we start by computing θ
(b)
···1 for each of the B random draws from the posterior3

distribution. As this was already done in the computation of P5, no additional work is required.4

These B values θ
(1)
···1, . . . , θ

(B)
···1 approximate the posterior distribution of θ···1 given the data n. An5

estimate of θ···1 is then computed by taking the mean or median of this posterior distribution,6

or simply the sample mean or sample median of the B values θ
(1)
···1, . . . , θ

(B)
···1 . We estimated θ···1,7

θ··1·, θ·1··, and θ1··· using sample medians to be θ̂···1 = 0.676, θ̂··1· = 0.690, θ̂·1·· = 0.732, and8

θ̂1··· = 0.760. This reinforces that preference for product A does appear to increase over time.9

In addition, the posterior probability that consumers are more likely to repeat their preference10

than to switch at all, equation (20), is P6 = 0.264. Note that, in implementing Algorithm 2,11

step 1 allows us to obtain an approximation of the posterior distribution of θ1111+θ2222, given n.12

A histogram or density estimate of these values can be constructed to illustrate this posterior13

distribution. Figure 5 shows the density estimte of this posterior distribution. The vertical line14

marks 0.5 so that the area to the right of the vertical line is the posterior probability of interest,15

P6.16

[Figure 1 about here.]17

When carrying out more than two tests, that is, tests on more that two occasions, we may18

be interested in whether a consumer switches product preference infrequently or in whether19

the consumer “settles into” preferring a particular product. These are vague terms that may20

have different meaning to different evaluators. For the sake of illustration, we define switching21

infrequently as switching preference at most once, and we are interested in knowing if consumers22

are more likely to switch product preference infrequently:23

P7 = P (θ1111 + θ2222 + θ2111 + θ1222 + θ1112 + θ2221 + θ1122 + θ2211 > 1/2|n),24

given in Equation (21). Using a noninformative prior, and implementing an algorithm compara-25

ble to Algorithm 2, this probability is essentially P7 = 1. Thus, switching product preference at26

18



most once is more likely than switching product preference more than once. Further, we define1

“settling into” a particular product as choosing the same product on all four occasions or on2

the last three of the four occasions. We are interested then in the probability that consumers3

are more likely to settle into a product than not:4

P8 = P (θ1111 + θ2222 + θ2111 + θ1222 > 1/2|n). (23)5

Again, using a noninformative prior, so that the data drives the computation, this probability is6

also essentially P8 = 1. In both cases, graphs of the posterior distributions show that the entire7

distribution is to the right of 0.5.8

4 No Preference Option9

Suppose that two products are compared on each of two occasions and that a no-preference10

option is available. That is, a consumer may choose product A or product B or may specify11

no preference. Alternatively, suppose that three (or more) products are compared on each12

occasion. Each of these can be analyzed in a similar manner as in the previous section using13

the multinomial-Dirichlet model.14

Consider a replicated preference test in which consumers are asked to specify their preference15

for one of two products or to specify no preference on two different occasions. Let the binary16

variable yijk equal 1 if consumer k chooses i on occasion 1 and chooses j on occasion 2, where17

i, j = 1, 2, 3 with 1 denoting preference for product A, 2 denoting product B, and 3 denoting18

no preference, and n is the total number of consumers. Thus, y328 = 1 if conumer 8 indicated19

no preference on the first occasion and preference for product B on the second. Also, let20

nij =
∑n

k=1 yijk be the number of consumers who choose i on occasion 1 and j on occasion 2.21

For example, n32 is the number of consumers specifying no preference on the first occasion and22

preference for product B on the second. Finally, let θij denote the probability that i is chosen23

on occasion 1 and j is chosen on occasion 2. This notation is a simple extension of that used24

in the forced-choice case in which the indices accommodate the no-preference option. The same25

notation can be used for forced-choice replicated preference tests with three products and two26
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occasions. We could further extend this notation to include more than two preference tests as1

in Section 3.2

As in the previous two sections, the likelihood is given by a multinomial distribution:3

p(n|θ) ∝
3∏
i=1

3∏
j=1

n∏
k=1

θ
yijk
ij =

3∏
i=1

3∏
j=1

θ
nij

ij , . (24)4

The primary difference between this likelihood and the one for forced-choice preference tests5

is the number of parameters, θij. In this case of two occasions and two products with a no-6

preference options, there are nine parameters instead of the four parameters in the forced-choice7

scenario. The Dirichlet prior distribution is similarly given by8

p(θ) ∝
3∏
i=1

3∏
j=1

θ
µij−1
ij , (25)9

where 0 < θij < 1 for i, j = 1, 2, 3 such that
∑3

i=1

∑3
j=1 θij = 1. This again leads to a Dirichlet10

posterior distribution:11

p(θ|n) ∝
3∏
i=1

3∏
j=1

θ
νij−1
ij , (26)12

where νij = nij + µij.13

4.1 Details of Analysis14

As in Section 3.1, the analysis involves defining the questions of interest and using random15

sampling from the posterior distribution (26). For example, we may want to know if consumers16

are more likely to be consistent in their preferences than not or if consumers are more likely to17

prefer product A more than product B on the second occasion, regardless of their choices on the18

first occasion. We may also be interested in assessing the probability that consumers can even19

distinguish between the two products. Answering this question is facilitated by the use of the20

no-preference option.21

Whatever the question of interest is, in terms of the parameters θij, we proceed as in Section22

3.1. That is, we take many random samples from the appropriate Dirichlet posterior distribution23

and estimate the posterior probability of interest by the proportion of samples that satisfy the24

event of interest. R code is again included in the Appendix for the examples that follow.25
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4.2 Beer Data1

In an effort to distinguish between discriminators and non-discriminators, Greenberg and Collins2

(1966) conducted double preference tests, that is, replicated preference tests on two occasions,3

both with and without the no-preference option, as well as a triangle test. Here we are interested4

in applying our Bayesian methodology to the double preference test with the no-preference5

option. In their study, a total of n = 617 male beer drinkers in the New York area were given6

a beer preference taste test on two occasions. On each occasion, the men were asked to specify7

their preference for beer A or beer B or to indicate no preference. The data, given in Table 4,8

are observed counts computed from the percentages given in the Greenberg and Collins (1966)9

paper.10

[Table 4 about here.]11

Greenberg and Collins (1966) define non-discriminators, as observed from the double pref-12

erence test, as those with inconsistent preferences in two tests or no preference in one or both13

tests. Potential discriminators are then defined to be those with consistent preference in both14

tests, that is, choosing product A both times or choosing product B both times. Recall that θ1115

is the probability of choosing product A on both occasions and θ22 is the probability of choosing16

product B on both occasions. To determine if consumers are more likely to be discriminators17

than not, we want to compute the posterior probability of choosing consistently more often than18

not, that is,19

P9 = P (θ11 + θ22 > 1/2|n). (27)20

The algorithm for estimating this probability follows. The R code can be found in the Appendix.21

Algorithm 3 For r = 1, . . . , R, do the following:22

1. Randomly sample probabilities θ(r) = {θ(r)ij : i, j = 1, 2, 3} from a Dirichlet distribution23

with parameters ν(r) = {ν(r)ij : i, j = 1, 2, 3}, where νij = nij + µij.24

2. For that sample, let sr = 1 if θ
(r)
11 + θ

(r)
22 > 1/2, and let sr = 0 otherwise.25
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Then the probability in (27) is estimated by the proportion of times θ11 + θ22 > 1/2 out of the R1

randomly generate samples:2

P̂9 =
1

R

R∑
r=1

sr. (28)3

Choosing a non-informative Dirichlet prior, i.e., νij = 1 for i, j = 1, 2, 3, we estimate (27) to4

be P9 = 0.006. Thus, consumers are not likely to be discriminators, defining discriminators as5

Greenberg and Collins (1966). A plot of the posterior distribution, created from the 1000 values6

of θ
(b)
11 + θ

(b)
22 obtained via random sample as described in Algorithm 3, is show in Figure 2. The7

shaded area represents the posterior probability of interest, P9.8

[Figure 2 about here.]9

5 Conclusion10

This paper proposes a straightforward Bayesian approach to analyzing data from replicated11

preference tests. The methods discussed extend those of Altham (1971) who provided a Bayesian12

version of McNemar’s test for binary matched pairs data. First, by considering different prior13

parameters than Altham (1971), our methods extend the Bayesian methodology to answer14

questions specific to forced-choice replicated preference testing with two tests or occasions.15

Furthermore, we broaden the scope of the methodology by considering more than two tests or16

occasions. Finally, we allow for the no-preference option to be included in replicated preference17

testing.18

Posterior probabilities, which are very easy to interpret, were employed to answer various19

questions of interest regarding the preferences of consumers. In some cases, exact posterior20

distributions could be specified, but simple computational methods could be implemented when21

necessary. It should be noted that Bayes factors, which allow for Bayesian hypothesis testing,22

could also be used in this setting to compare two different models. The same computational23

issues would be encountered as when computing posterior probabilities. In addition, the conclu-24

sions provided by Bayes factors are limited, and their interpretation is less clear. We, therefore,25

prefer the computation of posterior probabilities in this setting.26
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Some questions go unanswered with this work. For example, the Bayesian methods proposed1

here are limited in their ability to examine changes in preference over time. Bayesian methods2

that focus on changes over time are currently being developed. This work may also prove useful3

in developing Bayesian methods for replicated difference tests.4

Appendix5

R Code for Section 2 Example: Cola Data6

This is the R code for entering the cola data from Wilke, Cochrane, and Chambers IV (2006), for7

computing the posterior probability P1, and for implementing Algorithm 1 to compute posterior8

probability P3. The noninformative prior is used.9

# Entering cola data.10

# 1 = cola A; 0 = cola B11

cola<-matrix(c(rep(c(1,1,1,1),65),12

rep(c(1,1,1,0),17),13

rep(c(1,1,0,1),24),14

rep(c(1,0,1,1),19),15

rep(c(0,1,1,1),19),16

rep(c(1,1,0,0),16),17

rep(c(1,0,1,0),11),18

rep(c(0,1,1,0),14),19

rep(c(1,0,0,1),15),20

rep(c(0,1,0,1),9),21

rep(c(0,0,1,1),17),22

rep(c(1,0,0,0),9),23

rep(c(0,1,0,0),12),24

rep(c(0,0,1,0),20),25

rep(c(0,0,0,1),8),26
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rep(c(0,0,0,0),21)),ncol=4,byrow=T)1

# only need the third and fourth tests2

y<-cola[,c(3,4)]3

dimnames(y)<-list(NULL,c("time3","time4"))4

5

# Recode data so that 1 = cola A, 2 = cola B6

y[y==0]<-27

8

# Specifiy parameters for prior distribution. Noninformative prior used here.9

mu11<-1; mu12<-1; mu21<-1; mu22<-110

11

# Summarize data and compute parameters for posterior distribution.12

n<-table(as.data.frame(y))13

n11<-n[1,1]; n12<-n[1,2]; n21<-n[2,1]; n22<-n[2,2]14

v11<-mu11+n11; v12<-mu12+n12; v21<-mu21+n21; v22<-mu22+n2215

v<-matrix(c(v11,v12,v21,v22),2,2,byrow=T)16

17

# Compute posterior probability P1.18

p1<-pbeta(0.5,v12,v21)19

20

# Compute posterior probability P3 via Algorithm 1.21

R<-1000022

z<-t(replicate(R,rgamma(4,v,1)))23

sum.z<-apply(z,1,sum)24

draws<-t(z/sum.z) # matrix with B samples from Dirichlet posterior25

t3<-rep(1:2,2) # product labels for test 326

t4<-sort(t1) # product labels for test 427

theta.At3<-apply(draws[t3==1,],2,sum) # compute theta11+theta12 for each sample28
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theta.At4<-apply(draws[t4==1,],2,sum) # compute theta11+theta21 for each sample1

p3<-mean((theta.At3<0.5)&(theta.At4>0.5))2

R Code for Section 3 Example: Raisin Bran Data3

This is the R code for entering the raisin bran data from Wilke, Cochrane, and Chambers IV4

(2006) and implementing Algorithm 2. The noninformative prior is used.5

# Entering raisin bran data.6

# 1 = raisin bran A; 0 = raisin bran B7

rb<-matrix(c(rep(c(1,1,1,1),139),8

rep(c(1,1,1,0),6),9

rep(c(1,1,0,1),13),10

rep(c(1,0,1,1),16),11

rep(c(0,1,1,1),28),12

rep(c(1,1,0,0),5),13

rep(c(1,0,1,0),10),14

rep(c(0,1,1,0),8),15

rep(c(1,0,0,1),9),16

rep(c(0,1,0,1),6),17

rep(c(0,0,1,1),13),18

rep(c(1,0,0,0),11),19

rep(c(0,1,0,0),8),20

rep(c(0,0,1,0),7),21

rep(c(0,0,0,1),12),22

rep(c(0,0,0,0),14)),ncol=4,byrow=T)23

y<-rb24

colnames(y)<-c("time1","time2","time3","time4")25

26

# Recode data so that 1 = raisin bran A, 2 = raisin bran B27
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y<-ifelse(y==0,2,1)1

2

# Specifiy parameters for prior distribution. Noninformative prior used here.3

mu<-array(1,dim=c(2,2,2,2))4

5

# Summarize data and compute parameters for posterior distribution.6

n<-table(as.data.frame(y))7

v<-mu+n8

9

# Compute posterior probability P7 via Algorithm 2.10

R<-100011

z<-t(replicate(R,rgamma(16,v,1)))12

sum.z<-apply(z,1,sum)13

draws<-t(z/sum.z) # matrix with B samples from Dirichlet posterior14

15

t1<-rep(1:2,8) # product labels for test 116

t2<-rep(c(1,1,2,2),4) # product labels for test 317

t3<-rep(c(1,1,1,1,2,2,2,2),2) # product labels for test 318

t4<-c(rep(1,8),rep(2,8)) # product labels for test 419

20

lowswitch<-draws[(t1==1)&(t2==1)&(t3==1)&(t4==1),]21

+draws[(t1==2)&(t2==2)&(t3==2)&(t4==2),]22

+draws[(t1==2)&(t2==1)&(t3==1)&(t4==1),]23

+draws[(t1==1)&(t2==2)&(t3==2)&(t4==2),]24

+draws[(t1==1)&(t2==1)&(t3==1)&(t4==2),]25

+draws[(t1==2)&(t2==2)&(t3==2)&(t4==1),]26

+draws[(t1==1)&(t2==1)&(t3==2)&(t4==2),]27

+draws[(t1==2)&(t2==2)&(t3==1)&(t4==1),]28
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p7<-mean(lowswitch>0.5)1

R Code for Section 4 Example: Beer Data2

This is the R code for entering the beer data from Greenberg and Collins (1966) and imple-3

menting Algorithm 3. The noninformative prior is used.4

# Entering beer data.5

# 1 = beer A, 2 = beer B, 3 = no preference6

beer<-matrix(c(rep(c(1,1),148),7

rep(c(1,2),123),8

rep(c(1,3),12),9

rep(c(2,1),142),10

rep(c(2,2),130),11

rep(c(2,3),20),12

rep(c(3,1),12),13

rep(c(3,2),12),14

rep(c(3,3),20)),ncol=2,byrow=T)15

y<-beer16

17

# Specifiy parameters for prior distribution. Noninformative prior used here.18

mu11<-1; mu12<-1; mu13<-1; mu21<-1; mu22<-1; mu23<-1; mu31<-1; mu32<-1; mu33<-119

20

# Summarize data and compute parameters for posterior distribution.21

n<-t(table(as.data.frame(y)))22

n11<-n[1,1]; n12<-n[1,2]; n13<-n[1,3]23

n21<-n[2,1]; n22<-n[2,2]; n23<-n[2,3]24

n31<-n[3,1]; n32<-n[3,2]; n33<-n[3,3]25

v11<-mu11+n11; v12<-mu12+n12; v13<-mu13+n1326

v21<-mu21+n21; v22<-mu22+n22; v23<-mu23+n2327
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v31<-mu31+n31; v32<-mu32+n32; v33<-mu33+n331

v<-c(v11,v12,v13,v21,v22,v23,v31,v32,v33)2

3

# Compute posterior probability P9 via Algorithm 3.4

R<-10005

z<-t(replicate(R,rgamma(9,v,1)))6

sum.z<-apply(z,1,sum)7

draws<-t(z/sum.z) # matrix with B samples from Dirichlet posterior8

t1<-sort(rep(1:3,3)) # product labels for test 19

t2<-rep(1:3,3) # product labels for test 210

noswitch<-draws[(t1==1)&(t2==1),]+draws[(t1==2)&(t2==2),]11

p9<-mean(noswitch>0.5)12
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Figure 1: Posterior Distribution of θ1111 + θ2222 for Raisin Bran Example
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Figure 2: Posterior Distribution of θ11 + θ22 for Beer Example

32



List of Tables1

1 Cola Replicated Forced-Choice Preference Test – Tests 3 and 4 . . . . . . . . . . 342

2 Priors for Cola Replicated Forced-Choice Preference Test . . . . . . . . . . . . . 353

3 Posterior Probabilities for Cola Replicated Forced-Choice Preference Test . . . . 364

4 Beer Double Preference Test with No-Preference Option . . . . . . . . . . . . . 375

33



Table 1: Cola Replicated Forced-Choice Preference Test – Tests 3 and 4
Test 4

Test 3 Preferred A Preferred B Total
Preferred A 120 62 182
Preferred B 56 58 114
Total 176 120 296
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Table 2: Priors for Cola Replicated Forced-Choice Preference Test

Prior µ11 µ12 µ21 µ22 Explanation
A 1 1 1 1 noninformative
B 55 15 15 15 prior proportions similar to data
C 15 35 35 15 consumers more likely to switch preference than to repeat;

switching preference from A to B equally likely as B to A;
preferring A on both tests equally likely as preferring B on both;
preferring A equally likely as preferring B on each test

D 55 5 35 15 consumers more likely to repeat product preference than switch;
switching from B to A is more likely that A to B;
preferring A on both tests more likely than preferring B on both;
A is preferred more than B on each test

E 35 5 35 35 consumers more likely to repeat product preference than switch;
switching from B to A is more likely that A to B;
preferring A on both tests equally likely as preferring B on both;
B is preferred more on time 3; A is preferred more on time 4

F 38 10 17 35 consumers more likely to repeat product preference than switch;
switching from B to A is more likely that A to B;
preferring A on both tests more likely than preferring B on both;
B is preferred more on time 3; A is preferred more on time 4

G 30 15 35 20 consumers more likely to repeat product preference than switch;
switching from B to A is more likely that A to B;
preferring A on both tests more likely than preferring B on both;
B is preferred more on time 3; A is preferred more on time 4

H 35 25 45 5 consumers more likely to switch preference than to repeat;
switching from B to A is more likely that A to B;
preferring A on both tests more likely than preferring B on both;
A is preferred more than B on each test
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Table 3: Posterior Probabilities for Cola Replicated Forced-Choice Preference Test
Prior P1 P2 P3 P4

A 0.2912 0.9998 0.0000 0.9995
B 0.3104 0.9999 0.0000 1.0000
C 0.3305 0.8429 0.0003 0.9975
D 0.9725 0.9999 0.0001 0.9999
E 0.9725 0.9999 0.0295 0.9705
F 0.5332 1.0000 0.0003 0.9993
G 0.8607 0.9988 0.0015 0.9985
H 0.8470 0.9320 0.0001 0.9999
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Table 4: Beer Double Preference Test with No-Preference Option
Test 2

Test 1 Preferred A Preferred B No Preference Total
Preferred A 148 123 12 283
Preferred B 142 130 20 292
No Preference 12 12 20 44
Total 302 265 52 617
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