
APPLICATION SEMANTICS BASED OPTIMIZATION OF

DISTRIBUTED ALGORITHM

by

SANGHAMITRA DAS

B.E., University College of Engineering, India, 1999

M.S., Kansas State University, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012



Abstract

To increase their applicability, distributed algorithms are typically written to work with

any application on any network. This flexibility comes at the cost of performance since

these ‘general purpose’ algorithms are written with the worst case scenario in mind. A

distributed algorithm written for a specific application or a class of application is fine tuned

to the properties of the application and can give a better performance when compared to

the general purpose one. In this work, we propose two mechanisms in which we can optimize

a general purpose algorithm - Alg based on the application - App using it.

In the first approach, we analyze the specification of App to identify patterns of com-

munication in its communication topology. These properties are then used to customize

the behavior of the underlying distributed algorithm Alg. To demonstrate this approach,

we study applications specified as component based systems where application components

communicate via events and distributed algorithms to enforce ordering requirements on

these events. We show how our approach can be used to optimize event ordering algorithms

based on communication patterns in the applications.

In the second approach, rather than analyzing the application specification, we assume

that the developer provides application properties - IApp which are invariants for the op-

timization process. We assume that the algorithm is written and annotated in a format

that is amenable to analysis. Our analysis algorithm then takes as input the application

invariants and the annotated algorithm and looks for potential functions in the algorithm

which are redundant in the context of the given application. In particular, we first look for

function invocations in the algorithm whose post-conditions are already satisfied as a result

of the application invariants. Each such invocation is considered as a potential redundant

module. We further analyze the distributed algorithm to identify the impact of the removal



of a specific invocation on the rest of the algorithm. We describe an implementation of

this approach and demonstrate the applicability using a distributed termination detection

algorithm.
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Chapter 1

Introduction

A structure of a typical distributed system can be decomposed into three layers: application

layer, middleware layer and the communication layer. The communication layer provides

the basic services such as those for point-to-point or multicast communication. The mid-

dleware layer implements distributed algorithms to provide more enhanced services to the

application layer. These may include services for addressing problems such as synchroniza-

tion, mutual exclusion and replication. A typical application consists of multiple processes

that may communicate with each other by sending and receiving messages and utilize the

services provided by the middleware layer to achieve a specific task. With the increased de-

ployment of communication infrastructure, a number of areas such as sensor networks and

peer-to-peer computing are emerging in which distributed programming is the natural way

to program systems. However putting together such systems is a non trivial task. Typically,

each layer in such systems is programed by a different group of people, namely application

developers, middleware developers and the network designers. Many development frame-

works have been proposed4 with the goal of isolating the application developers from the

details of the lower layers. Middleware developers accomplish this by providing services

with well-defined interfaces for the application layer. In order to increase the applicability,

middleware developers often develop algorithms to be generic in nature so that they can be

used by a large class of applications and will work on a wide variety of platforms. We can

call such algorithms as ‘general purpose’ algorithms. However, when used in the context
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Figure 1.1: Layers of interest in a distributed system.

of a specific application, a general purpose algorithm may not perform efficiently and may

even fail to meet stringent QoS requirements of real time distributed systems. For example,

an application may not require a part of the service but the algorithm may perform all

communication irrespective of the context in which it is being used. The extra communi-

cation overhead may deteriorate the performance and contribute to failure in meeting QoS

requirements. The above problem often forces middleware algorithm developers to design

and develop algorithms specifically for a particular application or a particular class of ap-

plications. They may tailor the algorithm to obtain an optimized version of the service by

customizing it to work in the context of the application. Such algorithms may exhibit better

performance and be able to meet QOS requirements. However, this customization can be a

tedious and error-prone exercise.

The contributions of my work can be summarized as follows. Designer often have to

manually customize distributed algorithm to suit the requirements of specific applications.

We propose to develop methodologies and supporting tools to automate the process of cus-

tomizing distributed algorithms. Furthermore, we show that the automatically customized

algorithms exhibit better performance, and often similar to the ones which have been de-

2



signed manually.

In the next section we will demonstrate with examples that certain parts of a ‘general

purpose’ algorithm becomes redundant when used in a particular context. We can get a

version of the ‘general purpose’ algorithm which works more efficiently in a system if we

are able to identify and remove these redundancies. In chapters 2 and 3 we will show that

we are able to identify the redundancies by first obtaining properties of the application and

underlying network and then using these properties to remove redundant input data and

actions taken by the ‘general purpose’ algorithm.

Figure 1.2: A distributed computing framework

1.1 Background and motivation

Figure 1.1 shows the structure of a distributed system. A distributed algorithm typically

perform a set of tasks or subtasks on the request of the application, and accomplishing

3



these tasks requires exchanging messages between the nodes in a system. The number of

exchanged messages contribute substantially to the performance of an algorithm. We can

get performance improvements if we are able to identify tasks or subtasks in a general

purpose algorithm that do not apply to a particular system or are able to identify message

exchanges within a task that are not required for the application.

Example 1 : Consider a system consisting of 5 nodes as shown in Fig 1.3 whose

underlying network is fully connected. Assume that entities of an application running

on this system access a shared resource R. To accomplish this, the system may

use a mutual exclusion algorithm which can prevent multiple nodes from accessing

the shared resource at the same time. In the classic request-response based mutual

exclusion algorithm23, the requests are ordered based on the time at which the requests

are made. For this purpose, a request (and messages corresponding to the request)

is marked with a time stamp indicating the time at which the request is made. The

algorithm allows nodes to access R based on the timestamps - the node with an earlier

request is allowed to access before others.

In this algorithm, a node can have four states :

‘requesting‘ : The node is in the ‘requesting‘ state when it wants to use the resource

and is waiting for permission from the other nodes in the system.

‘critical‘ : A node is in the ‘critical‘ state if it is using the resource.

‘releasing‘ : A node is in the ‘releasing‘ state when it has finished using the resource

and is sending out release messages to the other nodes.

‘other‘ : A node is in the ‘other‘ state when it is in none of the previous states.

The mutual exclusion algorithm works as follows. A node in the ‘other’ state wanting

to use R sends out requests to all other nodes in the system and enters the ‘requesting’

state. Every node maintains a request queue that holds all the request messages it

has received and the requests it has made. The queue is sorted according to the time-

stamps. When a node receives a request, it stores the request in its request queue and

4



Figure 1.3: Fully connected nodes

sends a reply message if it is not using the resource, i.e. the node is not in the ‘critical’

state. When a node has finished using the resource, it sends out a release message to

all nodes in the system. A node can use R i.e. enter the ‘critical’ state when (a) it has

received either a reply or a release message from all other nodes in the system whose

timestamp is greater than the timestamp of its request and (b) its request has the

lowest timestamp in the queue. The mutual exclusion algorithm ensures that a node

enters the ‘critical’ state when no other nodes is in the ‘critical’ or in the ‘releasing’

state. The messages being sent out by the algorithm at each node are essentially

reporting the node’s state (‘requesting’,‘critical’,‘releasing’ or ‘other’) to the other

nodes in the system. This algorithm can be used with any application in which the

participating nodes are making requests in any order. In certain applications, however,

it may be the case that the requests for the resource R are made in a predefined or

a predictable order. For example, it may be the case that node n2 makes a request

only after n1 finishes using the resource and vice-versa. In such a scenario, when n1

5



Figure 1.4: A scenario of message exchanges in the mutual exclusion algorithm

6



wants to request permission to use R, we know that n2 will be in the state ‘other’. In

other words, when n1 enters the ‘requesting’ state, the application is ensuring that n2

is in the ‘other’ state. We can therefore say that when n1 enters the requesting state,

it already has the knowledge of the state of n2 from the application. This knowledge

makes the communication between n1 and n2 (where n1 is seeking permission to use

R from n2) redundant and the subtask of determining the state of n2 can be removed.

If the nodes of an application make requests for R in a pre-determined order, then

we can treat this behavior as a property of the application. Since the application is

ensuring this property, we can treat it as an invariant, IApp, when analyzing algorithms

in the middleware layer. The optimization process can use IApp to analyze the tasks

and sub tasks of the algorithm Alg to eliminate redundancies.

7



Figure 1.5: Nodes connected in a unidirectional ring

Example 2 : There may be properties other than those of the application that can be

exploited to identify potential optimization opportunities. For example, the network

topology of a system determines the actual number of messages sent by an algorithm.

If the network is a fully connected such as in our example system, then every message

has to travel only one hop. For other topologies where a node may not have a direct

link to another node in the system, messages may have to travel multiple hops before

reaching their destinations.

Consider the modification of the the network topology of our example system of 5

nodes such that the underlying network now connects all the nodes in a uni-directional

ring(Figure 1.5). Assume that in a distributed algorithm, a node has to send out the

same message m to all other nodes. Figure 1.6(a) shows the scenario if node n1 is

sending out a message to all other nodes in the system. Because of the way the nodes

are connected to each other, when n1 sends m to n3, the message is first send to n2

and then forwarded to n3. The algorithm however has also sent a copy of the same

8



message to n2. So instead sending a message to n3 which has to make two hops to

reach its destination, we can forward n2’s message to n3. Thus, we can modify the

algorithm so that every node forwards the message to its neighbor[Fig 1.6(b)] instead

of sending out multiple copies of the same messages.

9



(a) m taking multiple hops to its destination

(b) m being forwarded by the nodes

Figure 1.6: Broadcast of a message m

From the above two examples, we see that we can reduce the messages exchanged in

a general purpose algorithms if we can identify and remove redundancies. This allows the

possibility of the modified algorithm executing more efficiently with better performance.

10



The modifications in the above examples are determined by either the application behavior

or the network topology. We will refer to the properties of the application and the network

as ‘system properties’ in the rest of this text. Some more examples of system properties

that can help identify redundancies in our example system are:

(1) The application in node ni never requests to use R. In such a case, any communication

between ni and the other nodes of the system is redundant because the application property

implies that the state of ni is always ‘others’.

(2) The requests to resource R by all nodes in the system is made in the following order

: n1, n2, n3, n4, n5. This sequence is repeated by the nodes. In this case node ni can

use a resource when it receives a release message from ni−1 without any additional message

exchange.

(3) The underlying network has the property that the time taken by a message to reach its

destination has an upper limit. In such cases, the absence of a message can indicate the

state of the sending node.

The system properties can exist in two levels:

- Single system level where the property holds for a specific system only.

- System class level where the property holds for a group of systems. For example, in sensor

networks, a node can snoop on messages on the network that are destined for its neighboring

nodes.

1.2 Related work

To design distributed algorithms with better performance, traditionally different versions of

algorithms for the same problem have been proposed. For example, in5 Bapat and Arora

proposed an optimized version of the termination detection algorithm for sensor networks.

Termination is an important property for this class of applications which run in phases.

Having synchronized phases is required when phases may not be backward compatible or

when the next phase may depend on the completion of the previous one. In termination
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detection algorithms, nodes are assumed to exhibit reactive behavior. The state of a node

turns from idle to active when it receives an application message. Although, in general

networks, a node may receive application messages at any time,5 exploits the following

properties of sensor networks:

• A node remains active only if it periodically receives an application message every T time

units. If it does not receive any message within the time period of T, then it goes back to

the idle state. If an idle node does not receive a message within time T, it goes into the

terminated or the passive state.

• In a sensor network, a node is able to snoop for messages intended for its neighboring

nodes which are within its reception range.

The algorithm first identifies ‘reporter’ nodes. A node becomes a reporter if has not heard

from any other reporter nodes. The reporters nodes then snoop for messages over broadcast

channel and detect local termination. Global termination is declared when all reporters

have reported local terminations. The algorithm uses network localization data to determine

whether all reporters have reported their terminated status.

This algorithm is a tailored version which gives better performance on sensor networks as

compared to a general purpose termination detection algorithm. The optimized algorithm,

however, works only for a specific class of systems and has been re-written with the above

properties in mind. Re-writing distributed algorithms is a time consuming and error prone

effort and the resulting algorithm only works for a specific system or at the most for a

class of systems who share the properties based on which the optimized algorithm was

written. An automated solution to this problem will provide a considerable ease in terms of

effort and exposure to errors. Any such automated process should be able to take as input

system properties and make changes to a general purpose algorithm. To be able to make a

change, the algorithm itself must be written in a way which will allow it to be customized.

Therefore, the automated process should include a grammar for writing general purpose

algorithms amenable to modifications. A solution along similar lines was proposed in22 by V.
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Kolesnikov where they tackle the optimization problem by introducing a framework to first

define algorithms which can be modified. These algorithms can then be optimized statically

or dynamically. They use programming abstracts when writing distributed algorithms which

are customizable and expose the communication related design knowledge of the algorithm.

The programming abstracts are based on the concept of interaction sets. When writing a

general purpose distributed algorithm, an algorithm developer defines interaction sets at

various points in the algorithm where communication happens with other nodes. However,

in specific applications, all processes may not need to be a part of an interaction. Using

InDiGo14, a designer can restrict the membership of the interaction sets based on application

properties.22 also defines membership criteria for each interaction set and rules to make

dynamic updates to them. Rules for dynamic updates are written to make use of information

gathered as a result of message passing between processes. Given a application App and an

algorithm Alg, the analyzer statically determines the initial membership of all interaction

sets in Alg with respect to App. It can further constraint the membership of each set

at run time using the dynamic update rules. The framework also uses knowledge of the

network topology to remove redundant messages when the same message is sent to multiple

processes.

Our approach to solve the problem specified in section 1.1 has similarities with tech-

niques for partial evaluation. A partial evaluator performs a mixture of execution and code

generation actions. It produces a specialized program when a part of its input is known12,13.

It takes the set of known inputs in1 and tries to optimize a program p1 with respect to

in1 to produce pin1. The evaluator performs p1’s calculation which depend on the input

in1, which may result in elimination of some code segments (e.g., if the condition of the

if-statement will always evaluate to true given in1, then the else part of the if-statement can

be eliminated). The resulting code only depends on unavailable input in2. The optimized

program pin1 should produce the same result as p1 would when given the rest of p1’s input

in2.
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Partial evaluation can be done with online and offline specialization. Offline specializa-

tion begins with binding-time analysis which provides annotations to the specializer which

instructs it to evaluate expressions, unfold functions, generate residual code and generate

residual function calls. Online specialization in turn computes program parts as early as

possible and takes decisions ‘on the fly’ using available information3,7.

Our approach can be seen similar to offline specialization. A generic middleware algo-

rithm Alg can work with any application App on any network topology N . Intuitively, we

can think of App and N as inputs to Alg since Alg is written to work with any application

and on any network. We show how to perform optimizations if parts of App and the network

topology N is known. We provide a grammar to specify N and the properties IApp which

describe the application App.

We see a generic Alg as performing a set of tasks and subtasks. The optimizations we

target is to reduce the number of tasks and subtasks within the context of App and N . We

see a function call as a unit of work and its post condition as the result the function is trying

to achieve. We make optimizations by removing function calls whose post conditions are

deemed redundant with respect to IApp.

1.3 Our approach

To optimize a distributed algorithm based on application properties we need to obtain: (1)

the properties of the application and (2) make the algorithms amenable to changes. Appli-

cation properties can either be obtained from its specification or the application developers

can write invariants to describe the application behavior. To be able to optimize a dis-

tributed algorithms based on these properties, an algorithm can either be written in a way

that it can be changed or it should be able to take the application properties as input.

We have approached the problem of optimizing a distributed algorithm based on appli-

cation properties in two ways(Figure 1.7). In the first approach (Chapter 2), we analyze

the application specification and look for patterns of communication in its communication
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topology. These properties are then used to customize the behavior of the underlying dis-

tributed algorithm. To demonstrate this approach, we study applications in anonymous

component based systems in which application components communicate via events and

underlying distributed algorithms to enforce ordering requirements on these events. An

application may rely on the middleware algorithms to order the delivery of events. For

example, if an event e2 published by component A is caused by an event e1 published by

B, then the application may require that e1 be delivered before e2 at all components which

subscribe to both e1 and e2. Several algorithms have been in proposed in the literature to

implement such ordering constraints. While these algorithms are efficient in general, they

may be conservative in nature and may not exploit application-specific properties. Our

approach to customization involves the following steps. As shown under Method 1 in Fig-

ure 1.7, we first transform an existing algorithm for ordering events to obtain a modified

algorithm which takes a set of tables as input and is able to customize its behavior based

on this input. We assume that an application is specified in the integrated development

environment Cadena11. Our next step shown in Figure 1.7 is to perform the analysis step.

In this step, from the specification of the application, we show how to build an intermediate

data structure called a Port Topology Graph (PTG) which captures the communication

topology of the application. We then analyze the port topology graph to identify patterns

called ‘causal cycles’. By identifying these patterns, we are able to capture ordering already

enforced by the application. From the PTG, we then generate tables which are taken as

input by the ordering algorithm. Using these tables, we show that the ordering algorithms

can then reduce the amount of dependency information which needs to be propagated along

with the events to ensure proper ordering at the receiving components. This reduces the size

of the messages considerably and hence results in more efficient execution. We also show

that properties of the delivery mechanism used by the event service can introduce an order

in which events are delivered. We show ways to use this information to reduce messages

exchanged by ordering algorithms.
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In the second approach (Chapter 3), rather than analyzing the application specification,

we assume that the developer provides application properties which are invariants for the

optimization process. Furthermore, rather than manually transforming the algorithm as

in Method 1, we assume that the algorithm is written and annotated in a format that is

amenable to analysis. The main part of Method 2 is the Analysis step shown in Figure 1.7.

In this step, our analysis algorithm then takes as input the application invariants and the

annotated algorithm and looks for redundancies between the application and the algorithm.

In particular, we first look for function invocations in the algorithm whose post-conditions

are already satisfied as a result of the application invariants. Each such invocation is con-

sidered as a potential redundant module. We further analyze the distributed algorithm to

identify the impact of the removal of a specific invocation on the rest of the algorithm.

Based on this analysis, we determine whether or not the invocation can be removed. If

the invocation can be removed, we also identify the code transformation that is needed to

perform this removal. We study a general purpose termination detection algorithm designed

for a bidirectional ring topology to demonstrate this approach. We consider the use of this

algorithm for an application which only involves unidirectional communication. We show

that the algorithm can be automatically optimized to eliminate redundant messages by

taking advantage of the application invariant which specifies unidirectional communication.

The optimized algorithm performs its functions by exchanging less number of messages as

compared to the original algorithm.

In chapter 4 we show techniques to optimize an algorithm based on the network topology.

We identify some basic patterns of message exchanges. When an algorithm sends and

receives messages in these patterns over a specific network topology, we are able to reduce

the number of messages sent out by the algorithm.
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Figure 1.7: Two different approaches to optimize distributed algorithms based on applica-
tion properties
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Chapter 2

Customizing Event Ordering
Middleware

Event service middleware, shown in Figure 2.1, has been used extensively for communication

in component based systems. In these systems, the components communicate anonymously

with each other via events – that is, the sender is not aware of who the receiver it and

vice-versa. A component may register with the event service as a producer of an event

or as a consumer of an event. A producer component publishes or pushes events to the

middleware service and a consumer component consumes or pulls events from the middleware

service. When a producer publishes an event, the middleware service notifies all consumers

subscribed to that event (Figure 2.1).

A number of tools that have been developed to aid in the development and deployment

of component based systems9,11 use event service as an underlying middleware service. Ca-

dena11 is one such tool with an integrated development environment. This tool allows de-

signers to specify components with ports. A port may be a source port on which events are

published, or a sink port where events are consumed. Applications are defined by instantiat-

ing component instances and specifying connections between these ports of the component

instances. Cadena also provides capabilities to analyze, generate code and deploy these

systems.

Applications defined in such component based systems often have different ordering
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Figure 2.1: Event Service Middleware

requirements such as FIFO, causal ordering and total ordering. For example, consider the

case where a component C1 produces event e1 which is consumed by both C2 and C3.

Further, assume that after the consumption of e1, C2 produces an event e2 which is also

consumed by C3. In a generic event service, it may be the case that e2 may be delivered

at C3 before e1 even though e1 caused the occurrence of e2 (for instance, if e2 is a “reply”

to a “question” raised in e1, then C3 will be delivered the reply before the question). The

causal ordering requirement eliminates this possibility by requiring events to be delivered

in an order consistent with causal ordering - that is, if e causes e′ then e must be delivered

before e′. Similarly, total ordering requires that events belonging to a specific category be

delivered in the same order to all consumers consuming the same set of events.

Many different algorithms for ordering have been proposed in the literature16,18. These

algorithms are general purpose can be used by any system and make no assumptions re-

garding the application or the target platform. A straightforward use of a causal ordering

algorithm, for instance, may result in large amount of dependency information being prop-

agated which never gets used. Similarly, traditional algorithms for total ordering operate
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with the “pessimistic” assumption that the application may issue events in any order and

the algorithm must perform the necessary work to impose a total order. While this as-

sumption may be true in general, a specific application may issue events in a predefined

order. If such application behavior is known, then the performance can be optimized. For

example, it may be known that e2 is always produced in response to event e1, we can reduce

or eliminate some work or information exchanged by the ordering algorithms.

Similarly, the ordering algorithms in general make very weak assumptions about the

underlying event delivery mechanisms. For example, typically the time for an event to be

delivered is assumed to be variable. Also the algorithms take into consideration all possible

inter leavings between concurrently produced events. However we may have additional

information about the way the events are actually delivered from one component to another

in a particular system. For example if the components are co-located in a processor, it is

possible that the event delivery is a sequence of synchronized method calls. In such cases

we can make stronger assumptions on the number of possible inter leavings and identify a

smaller set of possible inter leavings.

2.1 The optimization approach

The following section describes the three main layers of the system which are involved in

the optimization process as identified in Figure 1.1.

The application

Our approach starts with the designer specifying the application, App, in Cadena. As

mentioned before, a component based distributed system can be defined in Cadena

using a set of components with ports. Events are published and consumed on the

ports. In Cadena, a designer can specify the communication between components by

connecting the ports on which events are published to the ports on which they are

consumed. These ‘inter-component’ connections specify the communication topology

of the system from which we can derive event dependency information.

20



From the specification of the components in Cadena, we can also extract ‘intra component’

dependencies. For example, a component always publishes event e2 on its outgoing

port after receiving event e1 on its incoming port. We provide analysis algorithms

which make all these information available in form of a ‘Port Topology Graph(PTG)’.

The algorithm

Let Alg represent a general algorithm providing event ordering services to the appli-

cation. The following are the typical properties of Alg

• An ordering algorithm typically works by propagating dependency information

along with events. To maximize re-usability, such algorithms do not made any

assumptions about the application and therefore, they propagates all dependency

information irrespective of whether it may get used or not.

• To target a large number of deployment platforms, ordering algorithm do not

make any specific assumptions about the mechanism of message delivery.

Although an algorithm having the above characteristics can be used with multiple

systems, it may not provide the best performance when compared to an ordering algo-

rithm written specifically for a system. For example, Alg may propagate dependency

information which never gets used or the underlying platform may be implemented in

a way that results in a smaller set of possible sequences in which the events can be

interleaved and delivered.

We aim to modify the algorithm so that we can use application properties to reduce the

dependency information flowing in the system. Similarly, we want to take advantage

of the properties of the platform which reduce the interleaving of events due to its

delivery mechanism.

To illustrate our approach, we use two existing algorithms, Causal IDR and Total Sequencer,

for causal ordering and total ordering respectively. We provide techniques to generate
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optimized versions of Causal IDR and Total Sequence with respect to an applica-

tion. For each case, we present an analysis algorithm to determine the information

used by the algorithms which is redundant with respect to the given application and

provide techniques to optimize the algorithm by eliminating the redundancy.

The platform

To illustrate optimizations with respect to a target platform, we use the event service

employed in the Cadena’s deployment framework, which is a Java version of the event

service used in Boeing Bold Stroke system21. There are two mechanisms for event

delivery in this system : direct dispatching and full channel dispatching. We show

that the properties of these delivery mechanisms can be also be used to optimize the

ordering algorithms.

Figure 2.2: Model driven approach

Figure 2.2 shows our approach to optimizing the middle layer which is the algorithm layer

using the properties of the upper layer or application layer and the lower or the network

layer. The process starts with the specification of the system in Cadena using components

and ports. We provide analysis tools to extract event communication patterns and the over

all communication topology from the system specification. This information is then stored

in a Port Topology Graph which is used as an input for further analysis. We look for specific
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patterns in the PTG and use them to optimize Alg. After this, at point (A) in Figure 1.7,

Alg will be optimized with respect to App. We can now use take the properties of the

underlying event delivery system and further optimize Alg. Therefore at point (B), Alg is

optimized with respect with App and the event service.

2.2 Overview of Cadena

In this section, we refer the aspects of Cadena which are relevant to event communication

and our model-driven approach. Cadena is an integrated modeling environment for mod-

eling and building CCM systems. It provides facilities for defining component types using

CCM IDL, assembling systems from CCM components and producing CORBA stubs and

skeletons implemented in Java. This system is realized as a set of components and the port

connections. We will use as an example of a simple avionics system shown in Figure 2.3 to

illustrate the development process in Cadena.

• Component Design: The first step in the specification of components in the CCM

model. In Figure 2.4, we give the CCM IDL specified by the designer to define the com-

ponent type BMLazyActive for the AirFrame component instance in Figure 2.3. CCM

components provide interfaces to clients on ports referred to as facets, and use interfaces

provided by other clients on ports referred to as receptacles. Components publish events on

ports referred to as event sources, and consume events on ports referred to as event sinks.

In the BMLazyActive component type of Figure 2.4, inDataAvailable1 is the name of an

event sink of type DataAvailable, and outDataAvailable is the name of a event source of

type DataAvailable.

• Scenario Specifications: The next step is to assemble a system by identifying the in-

stances of the component types and their interconnections. This is given by the Cadena

Assembly Description (CAD), whose excerpts for the example system are shown in Fig-

ure 2.4 (b). In CAD, a developer declares the component instances that form a system,

along with the interconnections between the ports. For receptacle and event sink ports, a
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Figure 2.3: A simple avionics system

connect clause declares a connection between a port of the current instance and a port of the

component that provides the interface/event. For example, the connect clause in Figure 2.4

connects the outDataAvailable port of GPS to the inDataAvailable2 port of AirFrame.

• Code and Configuration Metadata Generation: The next phase is the generation of

\#pragma prefix "cadena"

module modalsp {

interface ReadData {

readonly attribute any data;

};

eventtype TimeOut {};

eventtype DataAvailable {};

enum LazyActiveMode {stale, fresh};

component BMLazyActive {

publishes DataAvailable outDataAvailable;

consumes DataAvailable inDataAvailable1;

consumes DataAvailable inDataAvailable2;

attribute LazyActiveMode dataStatus;

};

(a)

system ModalSPScenario {

import cadena.common, cadena.modalsp;

Rates 1, 5, 20; // Hz rate groups

Locations l1, l2, l3; // abstract deployment locs

...

Instance AirFrame implements BMLazyActive on #LAloc {

connect this.inDataAvailable2

to GPS.outDataAvailable runRate #LArate;

connect this.inDataAvailable1 to Navigator.dataOut;

}

Instance Display implements BMModal on l2 {

connect this.inDataAvailable

to AirFrame.outDataAvailable runRate 5;

connect this.dataIn to AirFrame.outDataAvailable;

}

...

}

(b)

Figure 2.4: (a) CCM/Cadena artifacts, (b) Cadena Assembly Description for ModalSP
(excerpts)

code and the configuration metadata. Cadena uses the OpenCCM’s IDL to Java compiler
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to generate the component and container code templates from the component IDL defini-

tions. This produces an implementation file for each component into which the designer is

supposed to fill the business logic. From the CAD file, Cadena tools also generates configu-

ration code as well as XML metadata to deploy the system. The generation of this metadata

involves executing a number of analysis algorithms and assignments of ids to components

and ports.

• Deployment: The final step is the deployment phase in which the application is deployed

on a target platform. Prior to deployment, a number of parameters may have to be speci-

fied. One such parameter is the location attribute, which maps the component to a physical

processor. In early modeling stages, this attribute is a logical value but it has to be mapped

to a concrete value before deployment. The second important attribute is rate; each port

has a rate associated with it which specifies the rate at which events are consumed or pub-

lished at that port. The rate attribute is subsequently used to assign threads at appropriate

priorities to execute the event handlers (discussed below). The deployment phase involves

the following steps:

(a) A component server is first installed at each location (or processor).

(b) Within each component server, the components (along with their containers) assigned

to each server are instantiated.

(c) The containers use the underlying middleware services to set up the event and data con-

nections. The event service middleware used to implement the event connections is discussed

in the following.

2.2.1 Event Service Middleware

An event service is a middleware service which brokers communication between producers

and consumers6,10,15. A component can register with the event service as a producer of an

event or as a subscriber of an event. Whenever a producer produces an event, all current

subscribers for that event are notified of the event occurrence. The architecture of Adaptive
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Event Service (AES), a Corba-based Java event service is shown in Figure 2.5. It is possible

to use AES as a stand alone CORBA service. In this case, a single event channel is created

and all containers (from all component servers) interact with the channel via the ORB. This,

however, is inefficient as every notification will be a remote call via the ORB. Therefore, we

adopted an architecture wherein an event channel is created in each component server as

shown in Figure 2.5(a). The components on the same component server communicate via

the local event channel (which is more efficient) whereas components on different component

servers communicate via gateways. Let publish(C) and consume(C) denote sets of events

published and consumed by component C respectively. During the code generation phase,

Cadena tools generate the connection metadata file (CMF) in XML format which contains

the information regarding the publish and consume sets for each component. At deployment

time, the containers use the CMF to configure the connections; that is, the container for

component c connects to the local event channel as publisher of events in publish(c) and as

a consumer for events in the set consume(c).

In the following, we give a brief description of the two mechanisms available for event

notifications in our target platform:

• Full Channel Dispatching (FCD): To explain this mechanism, we first give a brief
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Figure 2.6: Full Channel and Direct Dispatching

description of the threading architecture of the event channel, which is based on the Bold

Stroke architecture21. In this architecture, all threads reside in the event channel and the

components are reactive in nature. Each port is associated with a rate group which denotes

the rate at which the event handler for that port is invoked. Activities are triggered by

timeout events generated by the timer threads in the event channel. The rates at which the

timeout events are generated are 1Hz, 5Hz, 10Hz, 20Hz and 50Hz. One queue is maintained

for each rate group in the dispatching module, and one dispatch thread, Thr, for each rate r.

To explain the thread behavior, we use the simple example shown in Figure 2.6(a) wherein

GPS receives a 5Hz event on an input port (inData1) and in response, publishes an event

on its output port outData. This event from GPS is then consumed by AirFrame on its

port inData2. In addition, we assume that all ports are associated with the same rate group

(5hz). Thus, when a 5Hz event is generated by the event channel, a notification for GPS is

placed in the 5hz queue. Each dispatch thread iteratively picks an event from its respective

queue and invokes the handler of the specified consumer component. Thus, Th5 will invoke

the inData1 handler of GPS. The execution of the handler causes the publication of an

event on the OutData port. When this event arrives in the event channel, the subscriber

list of this event is consulted and a notification for each subscriber is placed in the dispatch

queue. In this case, a notification for AirFrame is placed in the 5hz queue (as shown in
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Figure 2.6(a), all of these tasks are done by Th5). Subsequently, the call to publish the

event completes and Th5 resumes the execution of the GPS’s InData event handler. On

the completion of this handler, Th5 processes the next event in Queue5.

• Direct Dispatching (DD): The direct-dispatch (DD) mechanism bypasses the event

channel by direct communication between the producers and the consumers. In the Bold

Stroke design process, to determine whether events from port p of a component A to port

q of component B can be tagged as DD, the condition, DD(p, q), used is the following:

(a) A and B are co located on the same server,

(b) Both ports have the same rate group, and

(c) The event published on p is not involved in event correlation.

In this case, since we know that the thread publishing event on p will also execute the event

consumer handlers (even when the notification is via the event channel), one can optimize

the notification with a direct method call which bypasses the expensive layers in the event

channel (see Figure 2.6(b) where the event from GPS to AirFrame is direct-dispatched).

2.3 Event order specification

There are a number of events and ports associated with the publishing and consuming of an

event in a system described above . Below is a list of the some of those which are of interest

to us and the notations used in this text to refer to them.

For an event e:

1. e.src : This is used to denote the port that published e.

2. e.pub : This is used to denote the event of e being published.

3. e.deliver(p): This is used to denote the event of e being delivered on port p.

4. < p, q > : This is used to denote the connection from an output port p to an input

port q.
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5. Let → denote the happens before relation defined in17.

A tele-teaching application: Let us consider a simple tele-teaching application in

which enables a single instructor and a group of students to hold a question-answer session.

The instructor as well as each student is subscribed to the events published by all others

in the group. The instructor initiates the question-answer session by first publishing the

question. The students can then respond to the question by publishing their own answers.

Figure 2.7: Teaching application

Using the above notations and the tele-teaching application we specify and explain the

ordering requirements below.

• The FIFO(p,q) requirement is as follows: Let < p, q > be an event connection. For

all events ei and ej published on port p, if ei.pub → ej.pub then ei.deliver(q) →

ej.deliver(q). Informally, this requirement asserts that all events published which

travel over a connection < p, q > are delivered at q in the order in which they were

published at p. In our teaching application this requirement ensures that if a student

Sa publishes two responses to a question, then the responses will be delivered in the

order in which they were sent out.

• The causal ordering requirement Causal(p1, ....., px) is as follows: Let (p1, ....., px)

be a set of input ports. For any events e1 and e2 received on ports pi and pj respec-

tively, where 1 < i, j < x, if e1.pub → e2.pub then e1.deliver(pi) → e2.deliver(pj).
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Informally, this property requires that events which are causally related to each other

are delivered in the order in which they occur. Let us consider the following situation

in our teaching application. The instructor publishes a question qi and student Sa im-

mediately responds to it by publishing the answer ai. The causal ordering requirement

ensures that all members of the group will first receive the question qi and then the

answer ai since these two events are causally related to each other. No member of the

group will see the answer (the effect) before the question (the cause). Causal delivery

allows concurrent messages to be delivered in any order and the order may be different

in different components. For example if two students in the group send out answers ai

and aj in response to the question qi, other members in the group may receive ai and

aj in any order. As another example, in Figure 2.3, Navigator sends data in an event

e1 to AirFrame, which in turn updates its own data and sends an event e2 to display.

If e2 is received by Display before e1 (which violates causality) then this may result

in Display using the older value from Navigator with new data from AirFrame (or

displaying the “effect” before the “cause”). Enforcing causal ordering on events will

eliminate such inconsistencies.

• The total ordering requirement, Total(p1, , , , pn), is as follows: For any two

events e1 and e2 received on all ports p1, , , , pn, if e1.deliver(pi) → e2.deliver(pi) then

e1.deliver(pj) → e2.deliver(pj) ∀1 < i, j < x. Informally, total ordering requires that

the common set of events received on ports p1, , , , px be delivered in the same order on

all ports. Total ordering may be required in cases where consistency is required across

components. In our teaching example total ordering will ensure that all members of

the group will see events in the exact same order. For example if two students in the

group publish answers ai and aj in response to the question qi, every member of the

group will receive ai and aj in the same order.
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2.4 Ordering Algorithms

In the following, we describe existing ordering algorithms that we have used in our work.

Figure 2.8: Ordering Algorithms

Causal-Order Algorithm Causal ordering is implemented by propagating depen-

dency information in the events16,18. In particular,18 proposed an algorithm, which

we will refer to as Causal IDR in this text, is based on computing the immediate de-

pendency relation or IDR. Every event e carries with it a set IDR(e) which contains

all the events it depends on. When e is received by a component, it is buffered and

its delivery is delayed till all events in IDR(e) have been delivered. We will illustrate

this using the scenario in Figure 2.8(a). Assume that event e1 is published in response

to the event e0, and e2 is published on the reception of e1. In this case, IDR(e1) will

contain e0. Similarly, IDR(e2) will contain e1. Note that IDR(e2) does not contain

e0 since the event e0 is not an immediate predecessor. Since IDR(e1) will contain e0,

the event e0 will have been delivered before e1 and therefore before e2. However, for

a system with N components the size of the IDR set in the worst case will be O(N2)

which will include the information about the destination set of each event and the set

of known concurrent events from other sites.

Total Ordering Algorithm Total ordering can be implemented using a central site

to put a timestamp on each event in the system. This algorithm, which we will
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refer to as Total Sequencer works as follows: each event to be ordered is sent to all

components, including the central site which is called the sequencer. The sequencer

site assigns timestamps in a linear order to all events it receives, and the sends the

timestamp of each event to all components. At each component the events are then

delivered in the order of the time-stamps. For example, in Figure 2.8(b), both A and

B send events e1 and e2 to C and D respectively. Since e1 reaches the sequencer

site first, it is assigned timestamp 1 whereas e2 is assigned timestamp 2. Thus, even

though e2 reaches C before e1, it is delayed until e1 is delivered.

As seen in the above description, both Causal IDR and Total Sequencer do not make

any assumptions about the order in which events are produced by the application. The al-

gorithm Causal IDR captures dependency information on the fly. Information such as the

destination sets for events are essentially application properties which are being propagated

by the algorithm. It may be the case that an application produces events in a pre-determined

order. In such cases in the causal ordering algorithm some of the dependency information

being propagated can be obtained statically by analyzing the application structure at com-

pile time rather than gathering them during run time. Similarly for the total order algorithm

the sequencer might be doing redundant work if some events are always send in a specific

order.

2.5 Deriving application properties

To perform optimizations, we need to provide information regarding the application against

which the optimizations can be performed. We derive these properties from the application

specification in Cadena (shaded in figure 2.9). We then use these properties to create inputs

for the modified version of the causal order algorithm as described in section 2.6.1.

In the following, we describe a series of topological structures representing an application,

each of which refines the previous one with more fine grained dependency information.

Component Topology Graph (CTG) : The graphical interface of Cadena shows the
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Figure 2.9: Optimization based on application properties

component topology graph CTG = (V,E), where each vertex in V denotes a component.

An edge from v1 to v2 in exists in E if there is an event connection from an event source

port of component v1 to an event sink port of component v2.

Figure 2.10: Port Topology Graph

A port topology graph (PTG) of an application contains more information and is defined

as a graph (V,E), where each vertex in V is an event source or a sink port of a component.

There are two types of edges in a PTG. An edge (v1, v2) exists in a PTG if :

33



(a) v1 is a source port of a component and v2 is a sink port of another component and v1

is connected to v2. This type of an edge is called an inter-component edge

(b) v1 and v2 are sink and source ports of the same component respectively, and the receipt

of an event on v1 can cause an event to be published on v2. This type of an edge is called

an intra-component edge.

The intra-component edges are further classified into two types, deterministic and non-

deterministic. An edge (v1, v2) in component C is deterministic if in all executions, whenever

an event is received on v1, C publishes an event on v2 without awaiting the occurrence of

any other event. Otherwise, the edge is labeled non-deterministic. An example of a PTG

is given in Figure 2.10. The solid edges denote the inter-component communication edges

whereas the dashed edges denote the intra-component port dependencies, and the dashed

boxes represents the components.

2.5.1 Obtaining a PTG from a CTG

Figure 2.11: Sample CPS file

The Cadena infrastructure stores application information is intermediate representa-

tions which can be analyzed for dependency information. One such representation is the

abstract syntax tree (AST) which holds information regarding the components and their

interconnections. Our analysis algorithm traverses the AST and gathers information for

all inter − component edges. Intra − component edges are obtained from the component

property specification (CPS) file. Each component has a CPS file which specifies depen-
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dencies between ports and the behavior of event handlers. A fragment of a CPS file is

shown in Figure 2.11. The case statement in the CPS file specifies how an incoming event

is processed. For example, the case statement in Figure 2.11 specifies that when an event

on port inDataAvailable is received, if the variable modeVar’s value is enabled then a syn-

chronous method call on dataport dataIn is made and an event on port outDataAvailable

is generated (otherwise, the event is discarded). This, for instance, will result in the edge

from inDataAvailable to outDataAvailable to be labeled as non-deterministic.

Our process derives this dependency information from the CPS files. The main sub-

routine used by the program is analyseCaseStatement(p), where p is a portname, which

analyzes the CPS file to return the set of output ports on which an event may be generated

on receiving an event on p. This information is then used to determine the intra-component

edges as well as their types, deterministic or non-deterministic.

2.6 Optimizing the algorithms using the PTG

In this section we present techniques to optimize the causal ordering and the total ordering

algorithms. To be able to optimize these algorithms we must first modify the algorithms so

that they can be customized at initialization time.

2.6.1 Causal Ordering Algorithm

As discussed earlier, the causal ordering algorithm in18 works by generating and propagating

dependency information of events(that is, information about its causal predecessors) so that

an event can be delayed at a consumer until all of its predecessor events have been received.

We modify Causal IDR to Causal IDR Optimized (CIO) which takes two tables as inputs,

(a) generation rule table , (b) propagation rule table. These tables are defined for each

component and are used to compute and propagate dependency information.

Generation rule table: This table determines when new information must be added to

the IDR sets. Let q and r be an input and an output port of component B (Figure
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Figure 2.12: Causal Cycle

2.12(a)). Let p be an output port in component A. An entry < p, q, r > in the

generation rule table means that events published on the connection < p, q > must be

included in the IDR set of events published at port r

Propagation rule table : An element < p, q, r > in the propagation rule table of

component B (see Figure 2.12(b)) implies that the events published from port p that

is contained in the IDR set of events arriving on port q must be included in the IDR

sets events published on port r.

The above tables are provided to each component at initialization time. When an event

is published by a component, these tables are consulted to determine the dependency infor-

mation which needs to be propagated.

The entries to these tables are made from the analysis of the PTG. The main pattern

we identify in a PTG is the causal cycle. We say that a PTG G has a causal cycle if there

exists a component A with output port p and a component B with input ports q1 and q2

such that p is connected to q1 and there is a directed path from p to q2 (Figure 2.12(c)).

We also refer to this as the causal cycle from p to (q1, q2).

Let Causal(q1, , , qx) be an ordering requirement for a component B. For each pair (qi, qj),

we use a variation of the depth first traversal to obtain the set of all causal cycles in the PTG

from all ports to (qi, qj). Let us assume that there is a causal cycle from port p of component

A to (qi, qj). Let ep be an event published at port p, and p, in1, out1, , , , , inx, outx, q2 be

the path from p to q2 as shown in Figure and eq be the last event in the path which is
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consumed at port q2. In this case, we know that it is possible for ep to causally precede eq.

Therefore, we need to propagate dependency information along this path. Therefore, we

add < p, in1out1 > to the generation rule table of in1’s component, and (p, inj, outj), where

1 < j < x, to the propagation rule table of inj ’s component.

The rules described above add the tuples to the tables which are necessary to preserve

causality. This eliminates the propagation of redundant dependency information. Since the

original algorithm Causal IDR does not make any assumptions regarding the application,

it always propagates the dependency information. This corresponds to having all tuples

(p, q, r), for each input q and output port r of the component, present in the tables. At

run time, however, Causal IDR attempts to reduce the dependency information using

additional data sent along each event. For the example in Fig 2.12(a), along with e1, the

destination set (B,C) is also sent. From this information, B knows that C also received

e1; hence, when e2 is sent to C, B includes e1 in the IDR(e2). Essentially, this can be

viewed as attempting to acquire knowledge of the potential causal cycles at runtime. Our

analysis algorithm, on the other hand, use the PTG to perform such optimizations statically.

Furthermore, at run-time, one cannot determine whether some dependency information will

be needed in the future and hence, one has to operate conservatively. However, in our

framework, we eliminate some of this information statically (e.g., for events that are not

part of any causal cycle) by analyzing the PTG.

2.6.2 Total Order Algorithm

As discussed in section 2.3, the total ordering requirement is specified as a set of predi-

cates of the form Total(p1, , , , px). For each such predicate tp, let source(tp) denote the

set of source ports from which events are to be delivered in a total order to all ports

p1, , , , px. The algorithm Total Sequencer takes the set source(tp) as its input and im-

poses a total order on the events issued by ports in source(tp). In the modified algorithm,

Total Sequencer Opt(TSO), the input to the algorithm is < source(tp),⇒> instead, where
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⇒ is the triggers relation satisfying the following properties:

(Ta): For each port pj, there exists at most one port pi such that pi ⇒ pj,

(Tb): The relation ⇒ is acyclic.

Informally, px triggers py if the occurrence of an event on port px always causes an

event on py to occur. We will now use a small example to illustrate the concepts in TSO.

Let source(tp) =< p1, p2, p3 >, and assume that p1 triggers p2. Thus, after each event

publication on p1, an event is subsequently published on p2, however, events on p3 can

be issued concurrently with those from p1 and p2. In TSO, we take advantage of this

information as follows. We first partition the set source(tp) into a set of domains, where all

ports within a domain are related by ⇒. From properties (Ta) and (Tb), each domain has

a single root port which is not triggered by any other port. To enforce a total order on the

delivery of the events, TSO only orders the events issued by the root ports. That is, only

events from the root port are sent to the sequencer site and are assigned the timestamp.

Events from other ports are sent directly to all components and are ordered with respect to

the root events using a ‘deterministic merge’ mechanism which merges events from different

domains in a deterministic manner. One simple merge mechanism is atomic merge wherein

all events of a domain are ordered immediately after the root event. In our example, there

are two domains, p1, p2 and p3. After an event e1 from p1 is received by a component A,

we know that an event, e2, from p2 will be published. In this case, after delivering e1, each

component waits for e2 to arrive before delivering any other event (thus, e2 is scheduled

for delivery immediately after its root event). Hence, e2 does need to the timestamped

by the sequencer site. To ensure total ordering, the main requirement is that the merge

be deterministic and the same at all components. Since only root events are sent to the

sequencer site, the optimized algorithm can lead to significant savings in the number of

messages and latency.

We now discuss the derivation of⇒ from the PTG. For two ports px and py in source(tp), px⇒
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py if py is reachable from px via a path such that the following is true for each edge (pi, pj)

in the path:

(Tr1): if (pi, pj) is an intra-component edge, then it is deterministic and either pj = py or

pj does not belong to tp,

(Tr2): if (pi, pj) is an inter-component edge then there is no other incoming edge for pj.

Condition (Tr1) states that py must be reachable from px via a path that does not involve

any other port in tp whereas Condition (Tr2) ensures that no port other than px can also

cause py to generate an event. We perform this computation via a depth-first traversal of

the PTG using only the edges that satisfy the criteria Tr1 and Tr2. This information is

then provided as metadata for configuration of the TSO.

For less structured applications (such as our tele-teaching application), the components

may issue events at arbitrary times, and very few ports may be related by the triggers rela-

tion. However, in systems with pre-defined communication topologies, the triggers relation

will contain more entries, and hence, greater will be savings in the number of messages and

latency.

2.7 Customizing algorithms using middleware infor-

mation

In this section, we discuss the optimization of Causal IDR and Total Sequencer by exploit-

ing the properties of the communication mechanisms in the underlying middleware (figure

2.13).

In the BoldStroke design process, condition DD(p, q) is used to tag connections as either

Direct Dispatch(DD) or Full Channel Dispatch(FCD). BoldStroke designers have found that

tagging connections as DD can result in a significant saving in latency. Only events that

require additional services (such as correlation or thread switching) have to be sent via the

full channel. However, in our case, since the event ordering algorithms TSO and CIO are
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Figure 2.13: Optimizing based on communication mechanism

embedded in the event channel, any event involved in the implementation of the ordering

requirements must now also be tagged as FCD. For example, all events in a causal cycle

must be tagged as FCD as we need to piggyback IDR information on the events. Thus,

the condition (c) in DD(p, q) must be strengthened to also specify that the events on p are

not involved in implementing ordering requirements. This not only imposes the additional

overhead of sending events via FCD, it also involves the event ordering overhead such as

computing IDR information or sending events to the sequencer site.

We now look at techniques to alleviate this overhead. The main idea is as follows. If

the asynchronous model for event communication is assumed (wherein events are delivered

within finite, but arbitrary amount of time), then the delivery of the events can be interleaved

in a large number of ways and the ordering algorithms must account for each possible

interleaved execution. However, when DD or FCD are used, certain inter leavings do not

occur. For example, consider the case where p, q1 and q2 in Figure 2.12 belong to the same

rate group. If e1 and e2 are both dispatched via DD, then only the following inter leavings

are possible:
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e1.deliver(C); e1.deliver(B); e2.deliver(C)

e1.deliver(B); e2.deliver(C); e1.deliver(C)

On the other hand, if e2 is FCD and e1 is DD then the possible inter leavings are:

e1.deliver(C); e1.deliver(B); e2.deliver(C)

e1.deliver(B); e1.deliver(C); e2.deliver(C)

In the second case, e2 is guaranteed to be delivered after e1 at B (ensuring causality). Thus,

we can take advantage of this information by dispatching e1 via DD and e2 via FCD (instead

of dispatching both via FCD). This also eliminates the computation of the IDR information

as causality is guaranteed. In the following, we identify one instance of such optimization

with respect to each ordering algorithm:

• Optimization of CIO : We say that group(p1, . . . , px) is true if all components associated

with the ports p1, . . . , px are co located on the same server and all ports have the same rate

associated with them. Our optimizations rely on the following property of DD:

Property 1: Let e1 and e2 be two events published on ports p1 and p2 respectively, S1 and

S2 be a set of input ports on which they are delivered respectively, and group(p1, p2, S1, S2)

holds. In an execution, let the first delivery event among those delivery of e1 and e2 on S1

and S2 respectively correspond to e1. If (a) e1 and e2 are DD and e1 does not cause e2

(that is, ¬(e2 → e1) or (b) e1 causes e2, e1 is DD and e2 is FCD, then all delivery events

for S1 will appear before all delivery events for S2 in that execution.

This property follows from the fact that once a thread starts dispatching for an event, it

will not be interrupted by dispatching of another independent event belonging to the same

rate group. If delivery of e1, say on port q causes event e2 to be published, the thread for

this rate group will proceed with delivery of e2 if e2 is also DD. This possibility, however,

is eliminated by the condition required in Property 1.

Based on the properties of the dispatching mechanisms, we have the following lemma:

Lemma 1: causal(q1, q2) holds if for each causal cycle from any port p to (q1, q2), one of

the following is true: (a) the notification from p to q1 is done before p to in1.
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(b) 〈ep, q1〉 is DD, at least one connection 〈outy−1, iny〉 in the path from p to q2 is

FCD, and

group(p, q1, in1, out1, . . . , iny) holds.

Proof : We need to prove that in all executions, ep will be delivered before eq. We know

that event ep causes the event ey on the connection 〈outy−1, iny〉. Since 〈outy−1, iny〉

is FCD, from Property 1, we know that all events on the connections 〈p, q1〉, 〈p, in1〉,

〈out1, in2〉, . . . , 〈outy−2, iny−1〉 will be delivered prior to ey. Since ey is dispatched before eq,

we know that ep will be delivered before eq.

If the conditions specified in Lemma 1 hold, then no additional effort is needed by CIO to

order events. Condition (a) can be ensured if q1 appears before in1 in the subscriber

list for p. Although this can be achieved at configuration time, it requires more fine-

grained control over the configuration process. Hence, we only concentrate on Condition

(b). Let there be a causal cycle from p to (q1, q2) in the PTG. By default, all events in this

causal cycle will be tagged FCD. However, if DD(p, q) holds and there exists iny such that

group(p, q1, in1, out1, . . . , iny) is true then we tag all connections 〈p, in1〉, 〈out1, in2〉, . . . , 〈outy−2, iny−1〉

as DD whereas 〈outy−1, iny〉 is retained as FCD. This ensures that Condition (b) is satisfied.

Furthermore, we optimize CIO by removing (p, in1, out1) from the generation rule table of

in′1s component and (ep, inj, outj), where 1 ≤ j ≤ x, from the propagation rule table of

inj’s component.

• Optimization of TSO : Let tp = Total(p1, . . . , px) be an total ordering requirement and

source(tp) be a set of source ports from which the published events to ports p1, . . . , px.

Lemma 2: Total(p1, . . . , px) holds if all the following are true:

(a) All events from ports in source(tp) are direct-dispatched,

(b) All ports in source(tp) are the same rate group, and

(c) For all ports tpi in source(tp), there does not exist a path from any port pj to tpi in

the PTG labeled with only direct-dispatched edges.

Proof : Let tp1 and tp2 be two ports in source(tp), ep1 and ep2 be two events published on
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these ports respectively, We must show that ep1 and ep2 are delivered in the same order on

all ports p1, . . . , px. In an execution, assume that the first delivery event of ep1 is delivered

before ep2 on one of these ports. From condition (c), we know that if ep1 causes ep2 then

there must exist a path from a port pj to tp2 such that at least one connection on this path

is FCD. Then, from Property 1, we know that the delivery of all events for ep1 will appear

from the event on this FCD connection is delivered. Since this FCD event will occur from

ep2, delivery of all events in ep1 will appear before ep2.

The conditions in Lemma 2 ensure that each event published on a port in source(tp) is

delivered to all its consumers without interleaving with delivery of any other event from

the same set of ports, which guarantees total ordering on the events. Thus, if conditions

(b) and (c) hold, and all ports p1, . . . , px are in the same rate group as ports in source(tp),

then we tag the connections from ports in source(tp) to ports p1, . . . , px as DD (rather than

FCD which would be the default). This eliminates the need for sending these events to the

sequencer site.

In the discussion above, we have identified one instance of optimization for each of the

algorithms. Other optimizations of similar nature can be identified and the corresponding

analysis algorithms plugged into our infrastructure.

2.8 Evaluation
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The performance benifit obtained are as follows. The first is the reduction in the amount

of dependency information propagated and the latency reduction due to tagging of events as

DD instead of FCD. We have identified several instances of such reductions in dependency

information and latency by using variations of the applications from the Bold Stroke system.

We expect this to result in performance improvements as DD is more efficient than FCD

(see Figure 2.8). Second, we expect a reduced latency due to the decrease in the number

of messages being sent to the sequencer site in TSO. To evaluate this, we have performed

experimentation by implementing TSO on an simulation platform. The application used

consists of five components, A,...,E, where A and B send events ea and eb respectively to

all components. When ea is received, each of C, D and E, in turn, publish a response

event respa,c, respa,d, and respa,e respectively. Thus, event ea triggers respa,c, respa,d and

respa,e. Similarly, when eb occurs, the events respb,c, respb,d, and respb,e are published. The

following table gives the results of the experiment wherein both A and B send 5 events

each. The time reported in the table is the average time taken (in milliseconds) until all

of the events are delivered. Rows 1 and 2 are average time for requesting components (A

and B) whereas Rows 3 and 4 are for the responding components (C, D and E). We varied

the number of responding components (1 Responder assumes only C is present, whereas

2 Responders assumes C and D, and so on). As the number of responding components is

increased, we observe an increase in the number of total time taken; however, the increase

is more for Total Sequencer as compared to TSO.

Time(ms) 1 Responder 2 Responder 3 Responder
Total Sequencer(requesters) 37772 57893 77706

TSO(requesters) 16289 17357 20187
Total Sequencer(responders) 38075 58030 78036

TSO(responders) 20340 20372 20505

Table 2.1: Total Sequencer vs TSO

The approach of optimization specified in this chapter obtains the application proper-

ties from the application specification. We then use these properties to either reduce the
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message size as we demonstrated with CIO or eliminate messages as we demonstrated with

TSO. In this method the identification of the properties is specific to the algorithm being

optimized. This technique is best suited for middleware algorithms which tag information

on to application messages. In the next chapter we show a more general methodology for

optimization.
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Chapter 3

Automated optimization of
Distributed Algorithms based on
Application Properties

In the previous chapter, we presented a process to optimize ordering algorithms that are used

in an event service middleware. To be able to get better performance from Causal IDR

and Total Sequencer, we had to first create their ‘optimized’ versions, Causal IDR Opt

and Total Sequencer Opt respectively. These versions of the algorithms were able to take

as input the information gathered from the analysis of the port topology graph. For

Causal IDR Opt, the inputs were in form of the generation and propagation tables, and

for Total Sequencer Opt the input was partitioned sets of events. Using the approach de-

scribed in the previous chapter, we see that a general purpose algorithm has to be modified

so that it can take the application properties as an input. In this chapter, we propose an

alternative way in which an algorithm writer can write the general purpose algorithms in a

way that they can be optimized automatically. In this approach, instead of analyzing the

application specification, the application developers provide invariants which describe the

application behavior and properties.

In our framework, an algorithm Alg is specified as a composition of a set of algorithm

flows F 1, . . . , Fm, where each flow accomplishes a specific subtask. A flow F can be viewed

as set of communicating processes, F1, . . . , Fn, executing at different nodes. A process Fi is
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written as a set of functions and message handlers. We require the algorithm developer to

specify a proof outline for F . A proof outline involves specifying a pre- and a post-condition

for each function and message handler in Fi. In giving the proof, the designer may make use

of interface variables. Interface variables are used across the application-algorithm layers

and are used to express application layer properties. The designer must ensure that the

proof outline is correct and that the proof outlines of the different flows are non-interfering

(which is discussed in more detail later).

The optimization engine optimizes the algorithm with respect to a specific application.

In particular, we leverage at invariant properties of an application running on the top layer.

For example, in an application, a node may never make a request for a shared resource

[section 1.1] under certain conditions. We can treat such properties as invariants. Let

I App denote an application invariant involving the interface variables. The optimization

engine uses the proof outline of each flow to eliminate functions calls whose post-conditions

are ensured due to I App. This involves a partial analysis of each flow to ensure that the

removal of a function is safe (that is, the removal does not invalidate any other assertion or

causes a deadlock in a flow).

We divide the framework into three parts. The first part describes how algorithm writers

can write distributed algorithms which can be optimized automatically. The second part

involves application developers and network designers to come up with properties of their

respective layers and the third is an optimizer that takes input from the first two parts and

produces an optimized version of the distributed algorithm.

3.1 Example

To illustrate the different steps and aspects of the framework we introduce an example

system. The system has five nodes and is connected in a ring topology. Each node in the

system has two neighbors and has a bi-directional connection to both (Fig 3.3).

The system uses an algorithm for the termination detection problem. In this problem,
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Figure 3.2: Layers

a node in the application can be in the ‘active’ or in the ‘passive’ state. When a node is

performing a computational task, it is in the active state. A ‘passive’ state, on the other

hand, is not performing any computation, but it can become ‘active’ on receiving a message

from an active node. Furthermore, it can then send out messages as part of its computation

which may activate other nodes. In many systems, it is required to detect termination

of a computation - when all nodes have finished their computational tasks and no further

computational activity will take place. A computation has terminated when all nodes are

passive and all channels are empty(ensuing that no node will become active again). It is

typically required in systems using diffusion computations or phase based systems where a

computational phase can only begin when the previous one has ended.

The algorithm for termination detection must detect whether the system has reached a

state in which all nodes are passive and all messages channels are empty. We describe a

termination detection algorithm below that detects termination in a bidirectional ring. Let

the node initiating this algorithm be referred to as the Initiator node(I1). In this algorithm,

the initiator node associate each initiation of the termination algorithm with a sequence

number. All messages carry this sequence number and a node drops any message with an

older sequence number. We assume that the sequence numbers are bounded. The algorithm
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Figure 3.3: Example System

proceeds in two phases.

Phase I :

When the Initiator node (I1) becomes passive, it begins the first phase by sending a marker

message to its neighbor P2 (its neighbor in the clockwise direction). The marker message

contain the sequence number associated with this initiation. When a node in the ring

receives a marker message in the first phase, it takes the following actions:

If the node is passive, it:

- Saves the timestamp when it received the first marker message.

- Saves the sequence number of the message.

- Forward the marker message to its other neighbor (its neighbor in the clockwise direction).

If the node is active:

- The node waits until it becomes passive and then forwards the marker.

Thus, the marker message proceeds in the clockwise direction around the ring. When the

initiator node receives the marker message back from P5, it checks whether it is currently

passive and has remained passive since initiating phase I,; if so, it proceeds to the second

phase.

Phase II:

In this phase, the initiator sends out a marker message with the same sequence number
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as the marker message it sent out in the first phase but in the anticlockwise direction to

P5. When a node in the ring receives the second marker message, it checks if the message

contains the same sequence number as the last marker message it saw. If the message has

an older sequence number, then the message is dropped. If the sequence numbers match, it

checks if it is passive and has remained passive since the last time it saw a marker message.

If this condition is true then it forwards the marker message in the anti-clockwise direction.

Otherwise, it does not take any action.

In the second phase, if the marker message traverses the entire ring and the initiator

node receives the message back from P2, it checks the following: If the initiator is currently

passive and has remained passive since it initiated phase one then it declares termination.

Otherwise, the system may not have terminated. If the marker message is not received, the

initiator node will time out. In either case, it can initiate the first phase of the algorithm

again with a fresh sequence number.

3.2 Optimization Framework

In the following sections of this chapter, we will describe how to write the termination

detection algorithm described above and its proof (represented by the shaded rectangle in

Figure 3.5). We will also describe how to write application invariants which specify the

properties of the application executing on a network (represented by the shaded rectangle

in Figure 3.8). We will then describe the optimization process in detail (represented by the

shaded oval in figure 3.9).

The optimization process first makes an intermediate data structure called a ‘call graph’

for the distributed algorithm being analyzed. This data structure exposes the calling struc-

ture of the algorithm. Using the call graph, the optimization process then compares the

application invariant to the post condition of each function call. If the invariant implies

the post condition of a function call, the optimizer then considers this function call to be

redundant and removable. It is then removed if its removal will not cause a deadlock in
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the system. By removing a function call, we save on two fronts :(a) We save on execution

time of the function call and any other function it calls and (b) We potentially reduce the

number of messages being sent out by the algorithm by eliminating the messages sent out

by the removed function and any other function it calls.

Figure 3.4: Optimization Framework

3.2.1 Algorithm Specification

Algorithm Definition

In this section we describe how to specify the middleware algorithm (Figure 3.5).

Figure 3.5: Algorithm Specification
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Let system S consist of N nodes, S = { ni, 0 ≤ i ≤ N-1 }. The algorithm layer at any

node ni in S is triggered by one of the following :

(1) By the application: This is done by the application layer entity invoking an interface

method provided by the algorithm at node ni . This may result in the algorithm performing

a local action and/or sending messages to other nodes in the system. The other nodes may

in turn send out more messages to gather information or evaluate a condition requested by

ni.

(2) By the receipt of a message from another node which was either triggered by the appli-

cation or by the receipt of a message.

Many distributed algorithms such as global state determining algorithms or diffusing

computation algorithms can be naturally decomposed into a set of flows, each of which

is initiated by the application process. As a simple example, consider a set of ten nodes

connected in a linear topology with nodes numbered 1, . . . , 10 (node 1 is on the left end).

Assume that each node i has a local variable xi and the goal is to compute the sum of all

local variables. For node i to accomplish this, we can design an algorithm wherein it sends

a message initiate to its right neighbor which then forwarded all the way to the right end.

When node 10 receives this message, it sends an ack(x10) message to node 9. On receiving

this message, node 9 adds x9 to the value in the ack message and propagates it to the left.

In this manner, the accumulated sum is propagated until it reaches node i. After receiving

this message, it sends a message to its left neighbor to compute the accumulated sum of

all variables belonging to nodes on its left hand side. In this problem, it is possible for

more than one node to initiate the algorithm concurrently. To accommodate for multiple

initiations, one can formulate the following rule: When node i receive an initiate message

from its left neighbor j, and i has already initiated the algorithm and sent a message to its

right neighbor, then node i waits for the ack message to be received from its right neighbor

before responding to j. When it receives the ack message, it sends the accumulated sum

to j. A similar rule is applied when receiving an initiator node receives a message from its
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right neighbor.

Assume that two nodes, say node 3 and 7, initiate the algorithm concurrently. Each

initiation can be considered as a separate flow. Each flow is independent of the other.

The flow corresponding to 3’s initiation can complete on its own and does not depend on

7′ initiation (that is, it would have completed on its own if 7 had not initiated the flow).

The only interaction between the flows is that one flow can benefit from the work done by

another flow. In this case, 3 can benefit from the fact that 7 has already send a message

to compute the accumulated sum of its right hand side. As we will see later, with such a

structure, optimizations in one flow do not result in a deadlock in the other. For instance,

assume that from the application invariant, node 9 knows that the value of x10 is always 0.

In this case, we can optimize the flow initiated by 7 so that in this flow, x9 does not need to

send a message to 10. This optimization, however, does not impact flow 3. That is, when

7 receives the initiate from 6 corresponding to the flow initiated by 3, it will return the

accumulated sum to 6. Therefore, viewing an algorithm as a set of flows drastically reduces

the portion of the state space which needs to be analyzed when optimizing a flow.

We assume that a middleware algorithm Alg is a composition of a set of flows (F 1, . . . , F n),

where F i is initiated by application at site Init(Fi). Each flow F i is a composition of a set of

processes F i
1, . . . , F

i
n, executing at different sites. Multiple process types belonging to differ-

ent flows running at the same site may share a set of global variables, Alg.global. Thus, Alg

= < Comp(F 1, . . . , F n), Alg.global >. We assume that the composition operator is local

in nature. Thus, the algorithm at site i, Algi = < Comp(F 1
i , F

2
i , . . . , F

n
i ),Alg.globali >.

Each flow may be instantiated multiple times. However, each initiation must complete

before the next instance is started.

We assume that each flow in an algorithm is deadlock free and completes when executed

in isolation (separate from other flows). This implies that a flow is never waiting on any

updates made to global variables by other flows in the system. We also assume that the

algorithm Alg obtained by composing the flows is also deadlock-free. This implies that one
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Figure 3.6: A flow

flow does not update global variables in a manner that creates a deadlock in another flow.

3.2.2 Specification of a flow

The code running in the middleware layer at different nodes of a system may be different.

For example, in a system using a termination detection algorithm, some nodes may play the

initiator role by executing the initiator code while other nodes would be responding to these

messages by running the responder code. We call each such code a process type. A set of

such process type instances makes a flow F . A flow F i is defined as the parallel composition

of F 1
1 || F 1

2 ...|| F 1
n , where F i

j indicates a process of F i running on site j. Each flow F i has

a unique initiator process type Init(F i). Init(F i) is triggered by the application while the

process at other nodes are triggered by the receipt of messages.

The specification of a flow F i consists of the specifications of the process type for each

site. Each process type is implemented as a module which may have message handlers,
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internal functions, and a set of global variables to which are shared with modules of the other

process types at the same site. Each module is required to have a primary message handler

with the signature receive(Message m,int processName). All incoming messages are

first processed by the primary message handler. A module can have one or more secondary

message handlers written to process specific message types. Therefore, the process type

specification for F i
j comprises of a primary message handler, global variables, secondary

message handlers and internal functions and is denoted by {mhprimary, global variables,set

of mhsecondary, set of functions fn}

An algorithm containing multiple process types is declared as follows :

algorithm TermDect {

// Variable declarations

GlobalVariable declaration;

// Message declarations

Message declaration;

// Process declaration

thread ProcessType name (Outgoing Channels, Incoming Channels)

{

LocalVariable declaration;

// Primary message handler

receive(Msg m)

// Secondary message handlers
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([trig ])mTypex handler(Message msgmTypex)

...

([trig ])mTypey handler(Message msgmTypey)

// Functions

function1(..)

...

functionn(..)

}

The structure of each function functioni is as follows:

pre condition;

return type (trig )functionName(parameter declaration) {

statement block;

} post condition;

Variable types There are two kinds of variables allowed in the algorithm: node level

global variables and local variables. Local variables are local to a function or a mes-

sage handlers, whereas global variables can be accessed by all functions and message

handlers at a site (note that they are still local to a site and not shared across sites).

Message Handlers

The primary message handler, which processes all incoming messages, is allowed to

read but not write to any global variable of the algorithm. It may contain book-keeping

code related to the processing of a message only. For example, it can have code to

compare sequence numbers or to determine whether a message is old and needs to be

discarded.
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We will use the signature mtype handler to denote secondary message handler for

message type mtype. It is executed after the primary message handler has processed

the message corresponding to its type.

Functions A function is written as a block of statements. The block of statements

may contain the following: assignment, if-then-else, while, for, wait, function call and

send statements. We do not allow recursive function calls. All statements except the

function call and wait statements are allowed in the primary message handler.

A function can wait for a message to arrive using the wait statement. The wait

statement is written with a wait condition which is a boolean expression on global

variables, wait(boolean cond). When the execution reaches a wait statement, it

waits until the wait condition in the argument becomes true. For each wait condition

cond, if a variable appearing in cond is updated in a message handler msg handler

then we assume that there exists a signal statement to indicate possible change in

the truth value of cond. We assume that the execution of a process type can not be

interrupted by other process types running on the same site. The execution is only

switched when a executing process type encounters a wait statement.

The algorithm developer also needs to identify a subset of functions called trigger

functions in the algorithm. A trigger function is the first function to be executed

when a process type starts executing. Trigger functions are indicated by adding the

trig prefix to a function name or a secondary message handler name. Although

the primary message handler is the first function executed when an process type

is triggered by a message, we mark the secondary message handler as the trigger

function (if the receipt of the message is the trigger for the process type) as it has

been specifically written for its type.

The separation of message handling from the functionality of the algorithm helps us

compose, analyze and optimize the functionality of an algorithm without affecting the
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processing of incoming messages. For example, assume that a process P is waiting for

a message m via a wait condition. The wait condition may become true either on the

arrival of a message or may become true due to optimizations and composition of P

with other processes at the node P is running. If the later happens, then m will still

have to be consumed by the algorithm’s message handlers in spite of the fact that P is

no longer waiting for it. The separation of message handling from the wait statement

enables us to receive messages irrespective of whether or not they will make a wait

condition true.

Execution of a flow

An event in a distributed system is defined as an action which changes the state of the

system. Following are some examples of types of events:

- method call

- method return

- send statement

- assignment/ condition evaluation

Let EventType be a set of event types containing the following :

- method call or a message handler being triggered

- method return or message handler return

- send statement

- wait statement

- assignment statement

An execution Ex = e1, e2, . . . of a flow F i is a sequence of events which can occur

starting from the initial state. A flow consists of a set of histories, where a history is defined

as {Ex,−→}, where −→ is a partial order defined as follow. Let Ex.Event be a set of

events, e which occur in an execution Ex such that e ∈ EventType. We define a relation

Event −→ Event as follows: e1 −→ e2, such that :
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• e1 and e2 are method calls to functions fn1() and fn2() respectively and the function

call to fn2() is made within the body of fn1()

• e1 is a function call to fn1(),e2 is a send statement and e2 is executed within the body

of fn1()

• e1 is a function call to fn1(),e2 is an assignment statement and e2 is executed within

the body of fn1()

• e1 is a function call to fn1() and e2 is the return of the same function

• e1 is a send statement and e2 is the invocation of a message handler at the receiving

process.

• e1 is a signal, e2 is a wait statement and e1 ends the wait for e2.

• e1 and e2 are events within the same function or message handler body and e1 occurs

before e2.

Each linearization of an history h of F i is an execution of F i.

The relation −→ is transitive and the transitive closure of {e,−→} where e ∈ Event will

be the set of all events which are directly or indirectly triggered by e. Therefore if e does

not happen then none of the elements in the transitive closure of {e,−→} happens.

Let fn be the function call in the process p. Let ei be the event of the function call.

Let er be the event of the return statement of fn. We define causal(ei) to be the transitive

closure of ei where any event e in causal(ei) which is not in er, −→. The causal set has the

following property:

Property 1: Given an execution Ex of a flow F : e1,..,ei,..,causal(ei),ex,..,en of Alg, if we

move the events in causal(ei) after ex then the resulting execution is also a valid execution

of F . This means that the event ex is not implicitly waiting for an event in causal(ei) to

happen and cannot be a ‘wait’ statement waiting for a event in causal(ei).
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Example: Figure 3.7 gives a termination detection algorithm written according to the

rules of our framework. This algorithm corresponds to the description given in section 3.1.

There are two process types in the algorithm, one for the initiator and the other for the

responders. The initiator has six functions and message handlers while a responder process

has two message handlers. Let the initiator process run on node ‘I1’ in figure 3.3. The

responder processes run on the other nodes.

The algorithm is initiated by the application by calling the trigger function, trig detectTermination(int

n) at node ‘1’. This function calls two main methods, initiatePhase1 and initiatePhase2,

which initiate the first and the second phase of the termination detection algorithm respec-

tively. At node ‘P2’, the secondary message handler, trig marker handler(..) processes

the marker messages it receives in both of the phases. On receiving a marker message, it

checks its own state. If it is in a passive state then it forwards the marker message to its

other neighbor.

3.2.3 Algorithm Proof

Let F i = {F i
1, . . . , F

i
n} be a flow. A proof for F i

j is developed as follows:

• For each function fn in F i
j , the designer must associate a precondition pre(fn) and a

postcondition post(fn) with it.

• For each message handler mh in F i
j , the designer must associate a precondition

pre(mh) and a postcondition post(mh) to it.

• The designer may specify a set of invariant Inv(F ) for the flow. The designer can

use interface variables along with node-level global variables for the invariant and

the pre and post conditions. For example processName.state ∈ {active, passive} is

an interface variable in Algorithm 2.1. Here the set {active, passive} are the possible

values of the variable processName.state. This variable is used in the proof annotations

to describe properties (the state of the node processName being active or passive) of

the application layer components.
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P1

P2

P3P4

P5    INITIATOR
     global:    
     startTimeStamp
     stateChangeTimeStamp
     recievedMarker
     phase1Complete
     phase2Complete
     currentState_of_self
     sequence_number
    
    trig\_detectTermination(n):  

terminated := false
    resetStateInfo();
    initiatePhase1();
    if (phase1Complete := true
      initiatePhase2();
    endif     
    return  
   
   initiatePhase1():
  send(marker, 2);
    wait(recievedMarker = true)
    phase1Complete := checkChangeOfState()
    return

   initiatePhase2(): 
   send(marker, 5);
   wait(recievedMarker = true)
   phase2Complete := checkChangeOfState()
   return

   marker_handler(fromProc)
   recievedMarker := true

    boolean checkChangeOfState()
    stateChanged := false
    if stateChangeTimeStamp > startTimeStamp
       stateChanged := true
    endif
    return stateChanged

   receive(msg ,processname):
   return;
   resetStateInfo():
   startTimeStamp := currentTime()
   recievedMarker := false 
  sequence_number := sequence_number + 1
  return

    RESPONDER
    global:
    startTimeStamp
    stateChangeTimeStamp
    self_state;
    sequence_number

   trig_marker_handler(marker,processName):
if startTimeStamp = null     

   startTimeStamp :=  currentTime()
if processName = 4
    neighbor :=  1
else
   neighbor := processName + 2
endif
if self_state = "passive”

                  send(marker,neighbor)
else

if processName = 1 neighbor := 4
else   neighbor := processName - 2

                             endif
endif
if self_state = "passive" ^  !checkChangeOfState()

                      send(marker,neighbor)
endif
endif
return

   
   receive(msg,processName):}
  If msg.sequence\_number < sequence_number
     drop msg
  else
   sequence_number := msg.sequence_number
  endif
  return
   
 boolean checkChangeOfState():
    stateChanged := false
    if stateChangeTimeStamp > startTimeStamp
    stateChanged := true
    endif       
    return stateChanged 
     

Figure 3.7: Termination Detection Algorithm
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• The designer must come up with a proof-outline for each function and message handler

to show that the specified post-conditions are satisfied and each assertion in Inv(F )

is an invariant. A proof outline of a function fn involves associating an assertion with

each control point (which essentially gives us a precondition pre(s) and a postcondition

post(s) for each statement in fn). We must prove that the triple {pre(s)} s {post(s)}

is true.

We are proposing annotating algorithms at the function level rather than a more granular

level, for example after every statement. This is sufficient for our purpose as we are attempt-

ing to perform optimizations at the level of eliminating messages and function calls. For

example, for a message type, the post condition of the corresponding message handler gives

a complete description of the purpose of the message and its effects. While post-conditions

of individual statements provide more details, they are not necessary in our optimization

steps.

Composition of flows

Union Composition: We use this operator to compose processes at each site. This compo-

sition operator simply takes the union of all message handlers and functions at a site. It is

done with respect to a set of shared variables. That is, the composition must identify the

variables to be shared between the activities (so that they are labeled with the same name

in each of the activities). The composition requires the following conditions to be satisfied:

(a) Functions with the same name must have identical signatures and function bodies. In

addition, they must have the same pre- and post-condition.

(b) Message handlers for the same message type must have identical signatures and function

bodies. In addition, they must have the same pre- and post-condition.

(c) For any two process types at the same site F i
k and F j

k , any action or statement in F i
k

should not invalidate any annotated assertion in the proof outline of F j
k . That is, We require

that the proofs be interference free.
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3.2.4 Annotated Termination Detection Algorithm

INTERFACE:

processName.state ∈ ”active”,”passive”

clockwiseChan 1..n.state ∈ ”empty”,”not empty”, counterClockwiseChan 1..n.state ∈ ”empty”,”not empty”,

sysTerminated

Termination Detection Algorithm: Initator

GLOBAL:

startTimeStamp

stateChangeTimeStamp

recievedMarker

phase1Complete

phase2Complete

currentState of self

sequence number

trig detectTermination(n):

terminated← false

resetStateInfo();

initiatePhase1();

if phase1Complete = true then

initiatePhase2();
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end if

return

initiatePhase1():

send(marker, 2);

wait(recievedMarker = true)

phase1Complete← checkChangeOfState()

return

Post: phase1Complete∧counterClockwiseChan 1.state = ”empty”∧counterClockwiseChan 2.state =

”empty”∧counterClockwiseChan 3.state = ”empty”∧counterClockwiseChan 4.state =

”empty” ∧ counterClockwiseChan 5.state = ”empty” −→ systemTerminated = true

Pre: phase1Complete = true

initiatePhase2():

send(marker, 5);

wait(recievedMarker = true)

phase2Complete← checkChangeOfState()

return

Post: counterClockwiseChan 1.state = ”empty”∧counterClockwiseChan 2.state = ”empty”∧

counterClockwiseChan 3.state = ”empty”∧counterClockwiseChan 4.state = ”empty”∧

counterClockwiseChan 5.state = ”empty”

marker handler(fromProc):

recievedMarker ← true
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// This method checks if the state of the initiator has changed since the initiation of the

algorithm.

boolean checkChangeOfState():

stateChanged← false

if stateChangeT imeStamp > startT imeStamp then

stateChanged← true

end if

return stateChanged

receive(msg,processname):

return

resetStateInfo():

startT imeStamp← currentT ime()

recievedMarker ← false

sequence number ← sequence number + 1

return

Termination Detection Algorithm: Responder

GLOBAL:

// array of size n where n is the number of nodes in the system

startTimeStamp

stateChangeTimeStamp

self state;

sequence number
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trig marker handler(marker,processName): // secondary message handler

if startT imeStamp = null then

startT imeStamp← currentT ime()

if processName = 4 then

neighbor ← 1

else

neighbor ← processName+ 2

end if

if self state = ”passive” then

send(marker,neighbor)

end if

else

if processName = 1 then

neighbor ← 4

else

neighbor ← processName− 2

end if

if self state = ”passive” ∧ ¬checkChangeOfState() then

send(marker,neighbor)

end if

end if

return

receive(msg,processName):

if msg.sequence number < sequencenumber then

drop msg
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else

sequence number ← msg.sequence number

end if

return

// This method checks if the state of the initiator has changed since the initiation of the

algorithm.

boolean checkChangeOfState():

stateChanged← false

if stateChangeT imeStamp > startT imeStamp then

stateChanged← true

end if

return stateChanged

3.3 Specifying Application Properties

The second part of the framework requires the application developers to come up with

properties describing the behavior of the application (Figure 3.8). These properties are

treated as invariants by the optimization engine and the distributed algorithm is optimized

with respect to them.

The application properties must be described using interface and global variables with

the usual arithmetic, relational and logical operators(see Appendix C for the grammar).

Interface variables are used to share information between the layers(application-algorithm).

The optimizer also needs the network structure as an input to the analyzer. The network

structure specifies how the nodes are connected and the mapping between nodes and process
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types.

Figure 3.8: Application Properties

3.3.1 Example: application property

Consider an application running on a bi-directional ring network as shown in Example 3.1

which send messages only in the clockwise direction. This implies that all channels in the

anticlockwise directions will remain empty. Therefore we can express this application prop-

erty as :

counterClockwiseChan_1.state = "empty" ^ counterClockwiseChan_2.state = "empty" ^

counterClockwiseChan_3.state = "empty" ^ counterClockwiseChan\_4.state = "empty" ^

counterClockwiseChan_5.state = "empty".

The network structure of the system in Fig 3.3 consists of the following channels and mapping

of nodes to process types. The clockwise channels: (I1,P2),(P2,P3),(P3,P4),(P4,P5),(P5,P1).

The anticlockwise channels:(P5,P4),(P4,P3),(P3,P2),(P2,I1) and process type to node map-

ping: Initiator : I1, Responder : P2,P3,P4,P5
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Using the grammar defined in Appendix B we write the network structure as :

System "ring" {

nodelist: 1,2,3,4,5;

channelList : 1->2, 2->3, 3->4, 4->5,5->1,1->5,5->4,4->3,3->2,2->1;

mapping : 1:"Initiator", 2: "Responder", 3: "Responder",4: "Responder",

5: "Responder";

}

3.4 The optimizer

This section explains the different steps the optimizer takes to analyze and optimize the

distributed algorithm (Figure 3.9).The optimizing process consists of three main steps. In

the first step we construct an intermediate representation of the algorithm which can be

analyzed. In the second step we analyze the intermediate data structures with respect to

the application/network properties to identify redundancies. The third and the final step

involves removing the redundant parts and making the necessary transformation to the

algorithm to obtain an optimized version of it.
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Figure 3.9: Analysis

3.4.1 Intermediate representations

We construct an intermediate representation from the algorithm specification. The following

section give the descriptions for such a representation and we use the annotated termination

detection algorithm 3.2.4 as an example in the explanations.

Call Graph

A call graph G={V,E} is a graphical representation of the call structure of the program

F i
j . It is a directed acyclic graph where each node in V represents a function or a message

handler. Each edge in E is one of two types.

-call edge: It is a directed, labeled edge (a,b) : a,b ∈ V representing a function call where

function a calls function b.

-wait edge. It is a directed, labeled edge (a,b) : a,b ∈ V which connects a node a containing

a wait(condition) statement to a secondary message handler b which writes to one of the

global variables in condition.
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The following are some terminologies and properties associated with a call graph:

• Parent and child nodes : If there is a call edge (a,b) ∈ E, then node a is referred to as

the parent node of b and b is referred to as the child node of a. A node in the graph

can have more than one parent node.

• Trigger node : The nodes representing the trigger function are called the trigger nodes.

We assume a call graph has one trigger node.

• Leaf node : Any node without any outgoing call edges is called a leaf node.

• We assume that the call graph is acyclic.

We construct one call graph for each process which makes a flow.

Constructing the call graph:

The call graph for a process type is constructed from its specification. The following

steps constructs the call graph G={V,E}. As a running example we construct the call graph

for the initiator program from Algorithm 3.2.4.

Step 1: Add the primary message handler as a node to V. For Algorithm 3.2.4 we add a

node to represent the handler receive(..).

Step 2: Add a node to represent each secondary message handler to V. For the initiator

process, we add a node for the secondary message handler marker handler(..).

Step 3: Identify the trigger function for the process type by the prefix trig in the function

name. Add the trigger function as a node to V. In this example, we have only one trigger

function called trig detectTermination(..). We add this to V. Note that in many cases, the

secondary message handler will be a trigger function. In such a case, we do nothing for this

step.

Step 4: Next starting with the trigger node n, for every function call to function nc, we
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add a node nc to V and an edge (n,nc) to E. A newly added node nc will be a child node

of n. For every wait(cond) statement in n, we add a wait edge (n,ns) to E which connects

n to the secondary message handlers ns ∈ V, where ns writes to a global variable in cond.

Step 5: Repeat Step 4 for all leaf nodes in the call graph(replace trigger node n with leaf

node n).

In the call graph for the initiator, the trigger function trig detectTermination calls three

other functions, resetStateInfo(),initiatePhase1()and initiatePhase2(). These are added as

nodes to represent them as children of the trigger node. The functions initiatePhase1() and

initiatePhase2() have wait statements in it which wait for the global variable phaseComplete

to become true. This variable signals the end of a phase and is modified by the secondary

message handler marker handler(). Therefore, we have two wait edges in this call graph.

The call graph for the responder process type in algorithm 3.2.4 contains two nodes to

represent the primary and a secondary message handlers. The call graphs for both process

types in the annotated termination detection algorithm (3.2.4) is given in Figure 3.10.

Figure 3.10: Call Graphs for the initiator process in 3.2.4

Analysis Algorithm

// Globals
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2: flowScenario;

last z; // Keeps track of global variable updates by functions at the initiator site.

4: functionAtInitiatorSite;

atInitiator; // Keeps track whether the function being analyzed is at the initiator site

6: waitqueue; // Keeps track of all unexplored message chains

8:

10: analyzeFlow(function, callGraph, invariant){

currentFn ← function;

12: done ← 0;

while done = 0 do

14: if currentFn.pre ∧ invariant → currentFn.post then

// Start building a flow scenario

16: // Determine the values for the input parameters of currentFn from invariant

and precondition for currentFn

parameterList ← determineArguments(currentFn, invariant);

18: // create a new flow scenario

flowScenario ← new FlowScenario();

20: // call analyzeNode to analyze currentFn and all its dependent functions.

functionAtInitiatorSite ← currentFn;

22: atInitiator ← true

analyzeNode(currentFn,parameterList);

24: while waitQueue != empty do

currentFn = waitQueue.pop();

26: analyzeNode(currentFn,parameterList);
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end while

28: functionRemoved := checkForRemovability(flowScenario) && checkForIncoming-

Waits(callGraph,flowScenario) ;

if functionRemoved then

30: transformCode(currentFn.return, currentFn.modify);

// Continue depth first traversal from parent function

32: currentFn ← callGraph.getParent(currentFn);

end if

34: else

// Continue depth first traversal

36: // the function below returns child functions connected via call edges and message

handlers which can be connected to a message stub in fn.

if (fn := callGraph.getUnvisitedFunction(currentFn)) != null then

38: currentFn ← fn;

40: else

currentFn ← callGraph.getParent(currentFn);

42: end if

end if

44: end while

46: }

48:

// Function Analysis Algorithm

50:

// Input: Function to be analyzed , values of input parameters
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Output: Updated flowscenario with assertions generated for the input function

and all its dependent functions

52: analyzeNode(function, parameterList):

if atInitatorSite = true; ∧ function is of type MessageHandler then

54: // left initator node for the first time

atInitatorSite ← false;

56: end if

// Add the function and a call edge to the flow scenario

58: flowScenario.addFunction(function);

state ← new State(parameterList);

60: while (statement ← function.getNextStatement()) != null do

if statement is a ”functioncall” then

62: // find values of input parameters for the function from invariant and

contents of the state

parameterList ← determineArguments(functionCalled, state, invariant);

64: analyzeNode(functionCalled, parameterList);

// If we are back at the initiator site, then record it.

66: if functionAtInitiatorSite = function then

atInitiatorSite ← true;

68: end if

end if

70: if statement is a ”send(message,destination)”) then

flowScenario.addMessageEdge(message,function,destination);

72: if atInitatorSite = true; ∧ function is of type MessageHandler then

// Leaving initator node

74: // Remember at which function the analysis moved from the initiator

node.
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functionAtInitiatorSite ← function;

76: end if

// Find the correct message handlers which will process message. (from the call

graph and network structure).

78: for each messageHandler ∈ flowScenario.messageHandlers(message,inv) do

parameterList.add(message);

80: analyzeNode(messageHandler,parameterList); // First analyze primary and

then analyze secondary message handler

end for

82: end if

if statement is a ”wait(condition)” then

84: if condition != true then

// add current position of analysis in the flow graph to waitqueue

86: waitQueue.add(function,statement,state)

end if

88: end if

if statement is an assignment ”var = exp” then

90: // update the state variable with the result of the evaluated expression exp

state.update(var,exp)

92: // update last z if function is at initiator node

if atInitiatorSite then

94: last z.modify(var,exp)

end if

96: end if

if statement is ”ifcond-then-else” then

98: if state.evaluateCondition(cond) = true then

analyze if block
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100: end if

if state.evaluateCondition(cond) = false then

102: analyze else block

end if

104: if state.evaluateCondition(cond) = true∨ false then

analyze if block and else block

106: end if

108: end if

end while

110: // Function analyzed, get function.return, function.modify, function.sent

from the state variable and add to flowscenario.

flowScenario.add(function,state);

112: // Check if the contents of function.return, function.modify, function.sent

has all required information to continue analysis

//

114: if function.singleReturnValue ∧ function.singleGlobalUpdate ∧ function.messagesSentPredicted

then

if (function.pre ∧ inv.applicationInvariant → function.post) ∧ function.sent.size = 0

∧ function.singleReturnValue ∧ function.singleGlobalUpdate then

116: function.label ← ’REMOVED’;

end if

118: else

STOP;

120: end if

122:
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3.4.2 Analyzing and Optimizing the call tree

The second step taken by the optimizer is the analysis of the call graphs. The analysis is

driven by the properties of the application and the structure of the network. We want to

reduce redundancies in the system by reducing or eliminating the work to be done at the

algorithm layer based on properties of the application structure. For example, when using

a global state gathering algorithm, if the state of a node ni is known in advance, we can

eliminate the message exchanges needed to determine the state of ni by any other node in

the system.

A function call can be seen as a unit of work which achieves a post condition. If this

post condition is satisfied prior to the invocation of the function, then we can remove this

invocation. A function may also update some variables (global variables and the local

variables of the calling function via the return value) and can affect the state of a process

at another site in the system via messages. Therefore, to be able to remove a function

invocation, we need the following:

(a) Ensure that the post condition is satisfied by the application properties at the time of

the function call

(b) Ensure that variable updates are preserved after the call is eliminated, and

(c) Ensure that the elimination does not impact computation at other sites in the system.

For a function fn

- Let fn.return represent the value of the return variable (this value is void if no return

variable is present).

- Let fn.modify represent a set of key value pairs (gi = vi), where gi is a global variable

modified by fn and vi is the last value assigned to gi.

- Let fn.sent represent a set of messages sent by fn.

Let Inv be an invariant which describes an application property of a system. Let the

middleware algorithm used be alg = (F 1, . . . , F n). We analyze each flow F i ∈ alg 0 ≤

i ≤ n and tag functions in F i which can be removed to obtain an optimized version F i
opt.
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We will prove that the resulting algorithm opt(alg’) = (F 1, . . . , F i
opt, . . . , F

n) preserves all

the properties of alg with respect to the application.

To analyze a flow F i, we use an analysis algorithm called analyzeFlow. We start the

analysis at the trigger node of the call graph for the process running on Init(F i). We traverse

the call graph along the call edges in the sequence in which the functions are called. This

traversal corresponds to the depth first traversal of the call graph. When we come across a

function which sends a message, we use the information available about the network struc-

ture to identify and visit the message handler which processes that message and any of

its dependent functions. For every function fn encountered in the traversal the following

implication is tested:

Implication 1 : pre(fn) ∧ Inv → post(fn)

Lines 1-6 in the analysis algorithm declares some global variables used by analyzeFlow.

The depth first traversal of the call graph starts on line 13. When a node is visited, we first

test Implication 1 as in line 14. If the function satisfies Implication 1, we start creating a

flow scenario(line 19). If the visited function does not satisfy Implication 1, the algorithm

continues with the depth first traversal (lines 35-44) by visiting the next unvisited node.

A flow scenario is a graphical representation of a full or a partial flow F i. Sci = {γi,εi}

for a flow F i = F i
1 || F i

2 ...|| F i
n, where γi is a set of nodes from the call graphs of F i

j ∈

F i,0¡j¡(n+1) and εi is a set of directed edges. The directed edges are either call edges from

F i
j , 0 < j < (n + 1) or message edges. A message edge is a labeled directed edge a,b where

a is a node which sends a message and b is a message handler of the receiving process type.

Both nodes a and b belong to the call graphs of a process (**) in F i. The label of the

message edge indicates the type of the message being sent by node a.

Beginning with the first function to satisfy Implication 1, we use an algorithm called

analyzeNode to (a) create the flow scenario, (b) test implication 1 and (c) generate the sets

fn.return, fn.sent, fn.modify at the end of every function encountered.
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We call the site where the first function (fn) to satisfy Implication 1 is located an

‘initiator site’. The flow scenario diagram starts with fn at the initiator site (3.11). At the

end of the analysis, if this function is marked removed, then we will need the last update

made by the function or any function it calls at the initiator site to make the correct code

transformations.

We define the set lastz is a set of key value pairs k-v, where the k is a global variable in

process P to which fn belongs, and v is the last update made by fn or any child function

of fn running at the initiator site.

The analyzeNode function begins in line 52. The analysis algorithm uses the variables

last z, functionAtInitiatorSite, and atInitiator to keep track of all the global variable updates

being made at the initiator site. Following is the purpose of each variable:

last z : This set holds the the key value pairs for the global variables at the initiator site

and their values.

atInitiator: This is a boolean variable which is set to true when the function being analyzed

by analyzeNode executes at the initiator site. When this variable is true then any changes

made to global variables are recorded in the variable last z. This variable is set to true

before the analyzeNode function is called(Analysis Alg lines 25).

If any function has a send statement which sends a message m, then we will analyze

the message handler which receives this message and its dependent functions. To find the

message handler which processes m, we look at the network property which contains a map

pairing sites to the process types deployed on them. Section 3.3.1 contains the specification

of the network structure for the example system.

The algorithm analyzeNode generates the sets fn.return, fn.modify and fn.sent for

every function fn in the flow scenario (Analysis Alg, line 110). A flow scenario may contain

message chains. A message chain represents the path of execution within a flow when

a sequence of messages m1,m2..mN occurs where mi causes mi+1 to be sent out. It is

represented in the flow scenario by a series of directed edges {e1, ..ei, ..en} where each edge
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is either a call edge or a message edge. Any two consecutive edges in this sequence are of

the form ei = {a, b}, ei+1 = {b, c} where a,b,c are function nodes or message handlers. The

order of message edges in {e1, ..ei, ..en} strictly follows the order of the messages of the chain

it represents, m1,m2..mN . The first edge in any message chain is always a message edge

that is e1 always represents message m1.

A function node is marked removed based on the following conditions(Analysis Alg,

Lines 114):

Condition 1: A function is marked removed if Implication 1 is satisfied and we determine

from fn.return that the return variable has a unique value and all global variable updates

are unique. The function also should not send out any messages.

Condition 2: Implication 1 is satisfied for a function and we determine from fn.return

that the return variable has a unique value and all global variable updates are unique. If the

function sends a message, then we can mark it removed if all handlers processing the mes-

sages in that chain are marked removed. Removing any one message handler in a message

chain when the invariant satisfies only its post condition will prevent the next messages

in the chain from being sent. If the invariant does not imply the post conditions of the

message handlers of the unsent messages the algorithm logic will be affected. Therefore,

we are making sure that for any sequence of messages that can occur in a system, the post

conditions of all the message handlers and functions processing them are fulfilled by the

invariant Inv before removing any function/message handler from that chain.

At the end of the analysis of a function fn, we can transform the code to remove fn if

we do not find incoming wait edges to any node in the flow scenario(line 28).

The nodes in our example system (section 3.1) are connected to in a ring topology. Let

us assume the application executing on these nodes sends messages only in the clockwise
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(a)

(b)

(c)

Figure 3.11: Constructing the flow scenario
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direction. Therefore, the system will be ‘terminated’ when all the nodes are in the ‘passive’

state and all the clockwise channels are empty. The application property Iapp is specified as :

counterClockwiseChan 1.state = ”empty” ∧ counterClockwiseChan 2.state = ”empty” ∧

counterClockwiseChan 3.state = ”empty” ∧ counterClockwiseChan 4.state = ”empty” ∧

counterClockwiseChan 5.state = ”empty”.

The algorithm analyzeFlow finds that the application invariant implies the post condition

of the initiatePhase2() function. The analyzeFlow algorithm now calls the analyzeNode

algorithm with the input function ‘initiatePhase2’. The algorithm analyzeNode now starts

creating the flow scenario and generates the sets return, sent, modify for each of the

functions in the flow scenario. The numbers at the end of each function in the figures (3.11)

shows the order in which the functions are added to the flow scenario.

When a function node fn is removed, we transform the code of the function represented

by the parent node (The application code has to be transformed if the trigger node has to

be removed). This transformation involves removing the function call and replacing it with

either a skip statement or a set of assignment statements. A function call will be replaced

with a skip statement if no value is being returned by it and no updates are being made

to the global variables within the function. If fn is returning a value or updating a global

variable, the function call is replaced with assignment statements. Hence during the analysis

we need to determine the values of the return variables and global variable updates by a

function which is deemed removable. We also need to know the exact type and contents of

any message sent by the function. This information is needed to determine the effect of fn

in other nodes of the system.

3.5 Code Transformation

The third step in the optimization process involves removing the function call fn whose

causal set was analyzed and determined to be removed. In this section we describe the

different types of code transformations to be made when removing a function call.
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Let function fn be marked removed by the analysis algorithm. Therefore fn.return

and fn.modify tells us the values of any return variables and global variable updates made

by fn. The code replacing fn depends on the information in fn.return and fn.modify.

Code transformation patterns:

• Pattern 1: fn is a function call with signature fn() where both fn.return, fn.modify

are empty.

Original code :

fn()

Transformed code:

skip;

• Pattern 2: fn is a function call with signature returnType fn() where fn.return

and fn.modify are not empty.

Original code :

x = fn();

Transformed code:

x = fn.return

g1 = v1; g2 = v2; ...

• Pattern 3: fn is a function call with signature fn(arglist) . Here argList list of

input parameters and Implication 1 from section 3.1 hold for x1 = v1, x2 = v2... where

vi are specific values of the parameters xi. fn.return, fn.modify are empty.

Original code :

fn(x1 = v1, x2 = v2...);

Transformed code:
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if(x1! = v1, x2! = v2...)

fn(arglist)

• Pattern 4 : fn is a function call with signature returntype fn(arglist). Implica-

tion 1 from section 3.1 hold for x1 = v1, x2 = v2... where vi are specific values of the

parameters xi. fn.return, fn.modify are not empty.

Original code :

x = fn(x1 = v1, x2 = v2...);

Transformed code:

if(x1! = v1, x2! = v2...)

x = fn(x1 = v1, x2 = v2...);

else

x = fn.return

g1 = v1; g2 = v2; ...;

3.5.1 Code changes in the parent node

When we analyze the effects of removing a function fn we do so in the context of the function

call [line 17 in function analyzeFlow, section 3.4.1]. Because our grammar allows global

variables, this context may be different for each call to fn. Consider a scenario in Figure

3.12. If our analysis determines that the function call to fn in ‘path 1’ is redundant and can

be removed, we must change the parent function fp with one of the code transformations

discussed above. However from the call graph we see that function fp is also called in Path2.

A modified fp will produce a different execution in path 2 which has not been analyzed.

Therefore instead of changing fp, we make a copy of the function fpcopy and make the code

transformation in fpcopy. Then we replace the call to fp by a call to fpcopy in the parent

function of fp in Path 1. The original function fp remain unchanged and therefore we do
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not affect other parts of the flow.

We define a transformation rule as follows: For any function f which requires a code

transformation, a copy of f must be created if the callgraph for the process type where f

has been defined has multiple vertices for the function.

For any optimization scenario the above rule must be recursively applied till we reach

a function which has only one vertex in the call graph. The number of function copies we

must make is finite since the algorithm specification requires that every processtype have

a single trigger function. Typically in most distributed algorithms we have analyzed, the

depth of the call graph has been small and the number of functions copies have been limited

to a few.

Figure 3.12: Context of Optimization
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3.6 Proofs

Let Alg ={F 1, ..., F n} be a distributed algorithm deployed in a system with application

properties in Inv. Forall i, 0<i<n+1 we analyze and optimize a flow F i ∈ Alg. Our

optimizing technique replaces a function call with assignment statements. This results in the

removal of the corresponding function call event from all executions of the flow. Therefore

we need to understand the effects of the removed event on other events in the flow.

In flow F , let fn be a function that has been marked removed. Let ei be the event which

calls the function fn. From the analysis algorithm, we have the following:

(a) The post conditions of all functions calls in causal(ei) are satisfied by IApp.

(b) There is no event e ∈ causal(ei) which is waiting for an event ex 6∈ causal(ei). That is,

there is no incoming wait edge from an event outside the causal set to an event inside the

causal set.

(c) All last updates made to global variables in causal(ei) at the site where ei is the same

for every execution of F .

Lemma 1: Given an execution Ex of a flow F : e1,..,ei,..,ex,causal(ei),..,en of Alg, if we

move the events in causal(ei) before ex then the resulting execution is also a valid execution

of F .

Proof:

Since ex /∈ causal(ei), we know from the definition of causal(ei) that there does not exist

an event e ∈ {ei} ∪ causal(ei) such that ex → e. Therefore, the event ex is independent

of any event in the set {ei} ∪ causal(ei) and can execute in parallel. Therefore Ex′ =

e1,..,ei,..,causal(ei),ex,..,en is a valid execution of F .

In flow F , let fn be a function that has been marked removed and the parent node of

fn contains the statement S : ‘y = fn()’. In any history h of F , let efn denote the event

corresponding to a function call to fn, and retfn denote the event corresponding to the

return of this call. Given a history h = (Ex,−→h) of a flow F and an event efn in Ex, we

partition the events in Ex into three sets :
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(1) A set with one element efn, the function call event whose post condition is satisfied by

Inv and has the potential to be removed.

(2) The causal set of efn, causal(efn) = {e : efn −→ e}.

(3) The set of all other events Others = {e : e /∈ causal(efn) ∪ efn}

Let return value(fn) contain the value from fn.return. Let z,z.val denote the key

value pairs in lastz. For a variable z ∈ lastz, let ez.val denote the last event assigning a value

z.val to z in causal(efn). The sets fn.return and lastz are computed by the analyzeNode

algorithm (section 3.4.2).

Derivation Rule: To derive Fopt, we replace S by Sopt : “y = fn opt()”. The function

fn opt() consists of assignment statements of the form z := z.val for every pair in lastz and

it returns return value(fn).

Given a history h = (Ex,−→h) of F i, hopt = {Exopt,−→opt} is an execution history of F i
opt,

such that Exopt = (Ex−causal(efn))∪ {efn opt, e1z.val, ..., retfn opt} where e1z.val, ..., are the

assignment events in fnopt(z:=z.val).

e1 −→opt e2 iff

(a) e1 −→h e2 and e1, e2 6∈ causal(efn),

(b) e1 −→h efn and e2 = efn opt.

(c) retfn −→h e2 and e1 = retfn opt.

We will denote an execution of a flow as follows:

- P = p1, p2, . . . , where pi is an event.

- Px is used to refer to an execution fragment of P up to the event px.

- px.statement is used to denote the statement whose execution causes the event px.

- px.state is used to denote the state before the occurrence of event px and it contains the

values of all global variables at the site where fn executes.
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From the definition of lastz, we know that there exists at least one assignment statement

event in causal(efn) for each variable in last z.

Let P = p1, p2, . . . , be an execution of F i in which all events in causal(fn) appear immedi-

ately after efn. We refer to such an execution as an execution atomic with respect to S (or

atomic to the statement of the event efn). From Lemma 1, we know that such an execution

exists.

We define P t as an execution obtained by removing all events belonging to causal(efn) ex-

cept ez.val, where z ∈ lastz and replacing efn opt and retfn opt with efn and retfn respectively.

Lemma 2: For each execution G = g1, g2, . . . , of F i
opt, there exists an execution P =

p1, p2, . . . atomic with respect to S of F i, such that G = P t.

Proof :

We will prove this by constructing such an execution. Let gl = efn opt. We can find an execu-

tion of F i which is identical to F i
opt until the occurrence of gl. Hence, Pl−1 = p1, p2, . . . , pl−1

is an execution fragment of F i where pi = gi, 1 ≤ i < l. Since S ′ = gl.statement is the next

statement to be executed in F i
opt, the statement S can be executed in F i. Hence, we let pl

= efn to be the next event.

From Lemma 1, we can extend Pl−1 to include atomic execution of causal(efn). Let, frag

= p1, p2, . . . , pl−1, efn, cl+1, . . . , cm such that causal(efn) = {cl+1, . . . , cm}. Next, we ob-

tain fragt (by removing all events in causal(efn) except assignment events ez.val for each

z ∈ lastz). Let fragt = Gk = p1, . . . , pl−1, efn, pl+1, . . . , py where the events pl+1, . . . , py are

the assignment events obtained from the key-value pairs of last z.

From the derivation rule, we know that the set of events for the assignment statements in

fnopt are equal to the assignments in the events pl+1, . . . , py although they may not be in

the same order. However, since the same assignments are made in both cases, we have that

gy+1.state = py+1.state. Since the state after the yth event is the same in both F i and F i
opt,

we have that p1, . . . , py, py+1, . . . is an execution of F i.
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Equivalent flows :

Let F be a flow with history {EX,−→}. We define an equivalence relation between two

executions of the same flow as follows:

Let Ex= {e1, e2, .., .., ei, .., ej, .., en }, where ei and ej are two function call events to functions

fni and fnj respectively. Let ej.statement occur in the function body of fni. Therefore,

ei → ej. Furthermore, assume that ej.statement has been identified by our analysis as

removable. Let Ex′ be an execution of the optimized flow with the following properties: Ex

and Ex′ are identical up to ej. We replace ej.statement in the function fni by assignment

statements z := z.val for z ∈ lastz + fni.return.

Then, we say that Ex and Ex′ are equivalent (Ex⇐⇒ Ex′). Ex is essentially the execution

constructed from Exopt in Lemma 1. From the construction, we have know that for all events

e which are present in both Ex and Exopt, e.state is the same in both executions.

We optimize a flow F ∈ alg and the resulting flow is Fopt. In the optimizing process our

analysis algorithm identifies a function call event efn and marks it removed depending on

its effects on other events in the flow. The tagged function call is then removed by changing

the code of its parent function node. We replace the call with assignment statements based

on the contents of the sets fn.return and lastz. Therefore, for any execution Exopt of Fopt,

there exists an execution Ex of F such that Ex ⇐⇒ Exopt.

3.6.1 Proof of correctness

The following conditions need to be satisfied when removing efnx from F to obtain Fopt. Let

(EX,−→) be the execution history of a flow F and (EXopt,−→) be the execution history of

the optimized flow Fopt.

1. Let e1 be the event representing a function call to fny and e2 be the event

representing its return. We know that in any execution of F , pre(fny) is

true when fny is invoked, and post(fny) holds after e2. We must show that

this is true in any execution of Fopt as well. On the contrary, let Exopt be an execution
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of Fopt in which this is not true. There are two conditions under which this can happen.

Condition 1: In an execution Exopt of Fopt, pre(fny) is true but post(fny) is false. We

know that there exists an execution (Ex,−→) of F such that Ex⇐⇒ Exopt. If fny is

not a parent function of fnx in Ex then the function remains unchanged. Therefore,

since e.state is the same for all events which are present in both Ex and Exopt, if

post(fny) is false after e2 in Eopt then post(fny) was false after e2 in Ex as well,

which is a contradiction.

In the case when fny is a parent function of fnx, then the call to fnx is replaced by

assignment statements which exactly reflects the variable updates made by fnx and its

causal set. Therefore, in both the executions Ex and Exopt the same updates are made.

Hence, if pre(fny) is true then post(fny) is also true in Exopt if it were same case in Ex

Condition 2: In an execution Exopt, pre(fny) is false when fny is invoked. Let Exopt

⇐⇒ Ex. When optimizing we replace the event efnx by assignment statements which

makes the same updates as efnx and causal(efnx). If the function call to fnx happened

before the function call to fny in Ex, the same sequence of updates will take place

in Exopt as well. Therefore, this will not affect pre(fny). If the actions of efnx and

causal(efnx) happened after the function call to fny in Ex, any variable updates by

causal(efnx) and efnx happens after the function fny executes and this does not affect

the pre(fny) in either Ex or Exopt. Therefore in either case, for any execution Exopt

of Fopt when pre(fny) is false there exist an execution Ex of F i where pre(fny) is also

false. This violates our assumptions.

2. F i
opt is deadlock free. From the above argument we see that for any execution Exopt

of Fopt there exists Ex of F i and Ex ⇐⇒ Exopt, where the actions of causal(efnx) +

efnx can happen before or after the execution of any function fny without affecting it.

We also know from Lemma 1 that there does not exist a explicit or an implicit wait
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between events in causal() and any other event in the execution.

Let us consider an execution {Exopt,−→}= e1,..,ei,..en. If this execution is deadlocked

then some event ei is stuck. From the definition of the −→ relation we see that such

a case is only possible when ei is a wait statement and there exists a signal event ej,

ej −→ ei . Therefore the deadlock will happen only if ej the signal event has been

removed. This is possible only if ej ∈ causal(efnx) + efnx . In such a case there has to

be a wait edge between events in causal(efnx) + efnx and the other functions. Since

we have already established that such a wait edge cannot exist, when causal(efnx) +

efnx is removed from F to obtain Fopt, Fopt will be deadlock free if the original flow F

was deadlock free.

3. Algopt ={F 1,..,F i
opt,..,F

n} is deadlock free.

From the definition of an algorithm we know that each flow is independent of the

others and is written to execute and finish on its own. Therefore removing a function

call from a flow F i cannot cause a deadlock in any other flow of the algorithm.

3.7 Implementation

The algorithm in section 3.4.1 can be implemented in many ways. We have chosen to use

existing tools such as ANTLRWorks2, Yices theorem prover8 and Bogor19 to model and

implement the different stages of analyzing a middleware algorithm Alg=(F 1, . . . , F n) and

identifying function calls in its flows which can be removed. This process can be broadly

divided into two steps:

(a) Identify a function call fn in a flow whose post condition is satisfied by the application

property and therefore has the potential to be removed

(b) Determine whether fn can be removed without causing deadlocks or affecting the rest

of the flow.
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The algorithm in section 3.4.1 is written as two functions analyzeFlow and analyzeNode.

The function analyzeFlow identifies functions whose post condition can be satisfied by the

application property (step (a) in the previous paragraph) and the function analyzeNode

analyzes the causal set of fn to determine whether this function can be removed.

To implement analyzeFlow, we use code generated in Java from a parser generator

ANTLRWorks2 to build a call graph of each process type in the algorithm’s specification.

We then perform a depth first search and use a theorem prover8 to check whether the

application properties satisfies the post conditions of any of the function calls. Once a

function call with the potential to be removed has been identified, we model the system

in Bogor19 and perform a state space search to make sure that the application property

satisfies the post conditions of all function calls in the causal set of fn.

3.8 Inputs

The analysis process needs three inputs which must be specified by the algorithm writer:

(a) Specification of the algorithm.

(b) Specification of the network topology on which the algorithm will execute.

(c) The application property.

3.8.1 Grammar for inputs

We have specified grammars to write each of these inputs. The grammars was developed

using ANTLRWorks which is an ANTLR parser generator. ANTLR1 ANother Tool for Lan-

guage Recognition, is a language tool that provides a framework for constructing recognizers,

compilers, and translators from grammatical descriptions containing actions. ANTLRWorks

allows us to specify the grammar, check it for correctness and generate a lexer and a parser

in Java.

Following is a brief description of the grammar for each input.
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• Algorithm: The grammar[Appendix A] for the algorithm allows the algorithm writer

to specify the flows in an algorithm which may consist of one or more process types.

Each process type has its own functions and message handlers (as described in section

3.2.2). It must have one primary message handler and the algorithm writer may

specify secondary message handlers if additional processing of a message is required

for certain message types. Each function and message handler in a process type may

have pre and post conditions. The algorithm writer can also specify interface variables

and global variables.

• Network Topology:The algorithm writer can use the grammar [Appendix B] to define

the network topology of the system on which the algorithm is going to execute. This

input provides three pieces of information:

(a) The number of nodes in the system being analyzed. The nodes are named and

identified by integers.

(b) The topology of how the nodes are connected to each other. A connection between

two nodes represents a one way channel. A bi-directional channel between two nodes

1 and 2 is represented as 1→ 2 and 2→ 1.

(c) The mapping between process types and nodes. This information tells us which

process type is executing on which node.

• Application Property:The application property can be specified by the grammar

specified in Appendix C. The application properties must be described using interface

and global variables with the usual arithmetic, relational and logical operators.

3.9 Processing the inputs

We developed the above grammars in ANTLRWorks and generated a lexers and a parsers

in Java for each of them. We have added actions in the parser for Alg to build a call graph.

Once the call graph has been generated, we perform a depth first search of the call graph and
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use the Yices theorem prover to find if the application property implies the post condition

of any function call in the graph.

If we find a function whose post condition is satisfied by the application property, we

use Bogor to check if the post condition of all functions in the causal set of this function is

also satisfied by the application property.

3.9.1 Bogor Model

The Bogor model is set up with information provided from all the three inputs. The model

has two parts to it. The first part with input from the network topology specification as

described in 3.8.1 sets up the nodes, channels and messages. The second part models the

process types, its functions and message handlers.

Modeling the algorithm in Bogor.

Each process type from the specification of Alg is modeled as a ‘thread’ in Bogor. The

threads are named with a combination of the process type name and the number identifying

the node on which it is executing. This information is provided by the algorithm writer

in the topology specification. For example a ‘thread’ representing a process type called

process executing on node identified by n is named as process n. The threads for our

example system 3.1 is named as : Initializer 1,Responder 2 etc. Functions and message

handlers of a thread are named with the thread name as a prefix. Therefore a function func

of a process type process executing on node n is named as process n func. Figure 3.9.1

shows a snippet of Bogor code for our example system.

Modeling the system topology

Channels and messages are modeled in Bogor as records. Since Bogor does not allow the

declaration of global variables to be shared between thread, we pass channels, global and

interface variables to the threads as parameters and associated functions as parameters.

Declaring channels, global and interface variables as records allows the threads to read and
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write into them and the changes be seen by other threads in the system. Following is how a

channel and message is modeled in Bogor. The channel has been declared with a fixed size

of 10 to limit the state space size.

record Channel {

Message[] content;

int wrap(0, 9) front;

int wrap (0, 9) rear;

// false specifies the empty state

// true specified the non-empty state

boolean state; }

record Message {

int from;

int to;

int seqNo; }

Global and interface variables are also modeled as records. We name the records with the

variable name declared in the algorithm specification. The value of the variable is stored in

the field called ‘value’ in the record. For example the global variable booleanphase1Complete

is modeled as follows in Bogor:

record Phase1Complete{

boolean value; }

When a system in Bogor is instantiated, its ‘MAIN’ thread executes first. Here we set

up all the channels, create instances of global and interface variable and start the threads

representing each process type. Channels are set up as follows : for every x→ y present in

the network topology we create a channel object named c xy. (3.9.1).

active thread MAIN(){
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Channel c_12; //clockwise channel

Channel c_15; //anti-clockwise channel

loc init: do {

c_12 := new Channel;

c_12.content := new Message[10];

c_15 := new Channel;

c_15.content := new Message[10];

// initialize global values

s:=new SystemTerm;

s.value:=false;

// start thread

start Initializer_1(c_12,....);

start Responder_2(c_21,...);

}

thread Initializer_1(Channel c_12,

Channel c_21,

Channel c_15,

...........,

SystemTerm t) {
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TimeStamp initialized;

TimeStamp lastStateChanged;

Phase1Complete p1;

loc init: do {

initialized := new TimeStamp;

initialized.value := 0;

p1:= new Phase1Complete;

p1.value:=false;

} goto phase1;

loc phase1:

invoke Initializer_1_initiatePhase1(c_51,p1,c_51,

c_54,c_43,c_32,

c_21,t,initialized)

goto checkState;

loc checkState:

invoke Initializer_1_checkChangeOfState(

lastStateChanged,

initialized,p1) goto invokephase2;

loc invokephase2:

when p1.value$==$true do {

}goto phase2;

when p1.value$==$false do {} return;

loc phase2:

invoke Initializer_1_initiatePhase2(c_15,c_54,c_43,

c_32, c_21) goto phase1;
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}

3.9.2 Model Checking using Bogor

Once we have modeled our system and algorithm in Bogor we now need to find out if a

function call fn can be removed. To remove this function we must make sure that the post

conditions of all function calls in the causal(fn) is implied by the application property.

We model the expression Iapp− > post condition(fn) using the fun type in Bogor and

check it using the assert action. Bogor state space search with check the assertions in every

execution possible. If the assert fails, a Bogor state space search will return an inconsistent

state.

3.10 Evaluation

The optimization method described in this chapter takes three inputs (figure 1.7) and any

optimizations identified depend on these inputs.

- The application properties: The communication topology and the application behavior

determines the properties which can be identified by the application developers. Typically,

one can identify stronger invariants for more structured applications.

- The algorithm definition: The optimization method relies heavily on the modularity of

the algorithm specification. This modularity is in two levels. First, we want the algorithm

developer to break down the tasks of the algorithm into independent subtasks, each of which

is achieved by a separate flow. An algorithm definition consisting of multiple flows, each

performing a small task, reduces the effort in analysis as we need to analyze a smaller state

space. Second, the modularity in defining a flow as a collection of functions and message

handlers determines the number of functions we can identify as removable. For example,

a process type containing a function which performs many tasks will have a stronger post
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condition and we will need a strong set of application invariants to optimize a flow contain-

ing such a function call. An algorithm is more amenable for optimization when the process

types are specified in a modular fashion with smaller functions.

- The network topology : The topology of a network often determines the logic in the al-

gorithm definition. For example, the termination detection algorithm for a star network is

defined differently from the termination detection algorithm for a bi-directional ring.

Following are a few case studies with different algorithms and application properties.

We show that different optimizations which are obtained using different algorithms and

application properties. We will describe the analysis effort is each case specifying the depth

of the call graphs of each process type and the number of states in the state space search.

3.10.1 Case 1

Consider the termination detection algorithm written for bi-directional rings defined in

Figure 3.7. We will use this algorithm with a tele-teaching application which sends messages

along the clockwise direction in the ring. Let I1 be the instructor in Figure 3.3. Let the nodes

R2, R3, R4 and R5 be the student nodes. A typical tele-teaching application may begin a

session with a teaching phase which involves broadcasting audio/visual content followed by

a question and answer session. The instructor poses a question which is followed by answers

and discussion points made by all the nodes in the system. The instructor poses the next

question when all discussion related to the previous one is over. A tele-teaching application

may use a termination detection algorithm which is initiated by the instructor node to detect

the end of a discussion so that the instructors can proceed to the next question.

Application Property: Since the application does not send any messages in the anti-clockwise

direction, the application behavior assures that the anti-clockwise channels are empty. This

property can be written as follows:

counterClockwiseChan_1.state = "empty" ^ counterClockwiseChan_2.state = "empty" ^
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counterClockwiseChan_3.state = "empty" ^ counterClockwiseChan\_4.state = "empty" ^

counterClockwiseChan_5.state = "empty".

Algorithm : The termination detection algorithm is defined in figure 3.7. We describe how

it works in section 3.1.

Optimization result: The application property implies the post condition of the method

which initiates the second phase of the algorithm. The removal of this function is de-

termined to be safe and its removal will result in no messages being sent in the second

phase(Figure 3.10.1). By removing the method initiatePhase2() from the algorithm, we

obtain the following optimizations:

(a) To determine termination with the original algorithm, this system would send out 10

messages. The optimized algorithm in turn will send out only 5 messages. Thus we reduce

the message exchange by 50 percent.

(b) The optimized algorithm makes fewer function calls. The function initiatePhase2() and

all the function calls in its causal set will not be called.

(c) The termination detection algorithm works in two phases. The second phase starts only

after successful completion of the first one. If the original algorithm detected termination in

time T, the equivalent execution in the optimized algorithm will detect termination in time

less than T. This result is especially relevant in real time systems where using an optimized

version of the middleware algorithm helps the system meet QOS requirements.

Analysis effort : To obtain the above optimization we have had to analyze the flow which

contained the function call that initiates the second phase of the algorithm. The initiator

process had a call graph with a depth of 2. The state space search of the flow consisted of

487404 transition, 84036 states searched, a max depth 180 and took a time of 1:48 minutes.

The modular specification of the termination detection algorithm plays a crucial role in the

optimization process. The algorithm is specified as a two-phase algorithm where the first

phase determines whether messages are in transit in the clock-wise direction and the sec-

ond phase determines messages in transit in the anti-clockwise direction. If the algorithm
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had been developed as a single phase, it would have been difficult to optimize using an

automated process.

(a) Messages in generic algorithm (b) Messages in optimized algorithm

3.10.2 Case 2

Consider the different termination detection algorithm as specified in D. This algorithm

executes on a star network as shown in Figure 3.13. Let the node at the center of the star

network I be the initiator node. The initiator node sends marker messages to other nodes in

the system (A,B,C,D and E). The other nodes in the system respond to the marker message

with their state. Termination is declared when all nodes respond with a passive message.

Application Property: Consider the use of this algorithm with an application which

ensures that when the state of node I is passive, node A will also be passive. This property

can be written as follows: I.state = passive→ A.state = passive.
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Algorithm : The algorithm is specified in D.

Optimization result: The application property implies the post condition of the function

call which determines the state of node A. The removal of this function is determined to

be safe and its removal will result in no message exchanges between I and A. The message

exchange which will be removed in the optimized algorithm is indicated in the figure 3.13.

By removing the function call which determines the state of node A, we obtain the following

optimizations:

(a) To determine termination with the original algorithm, this system would send out 10

messages. The optimized algorithm in turn will send out 8 messages. Here we have reduced

the messages exchanged by 20 percent.

(b) The optimized algorithm makes fewer function calls. The function getState and all the

function calls in its causal set will not be called.

(c) We may not save on time in this case. Termination is detected faster only in executions

where the events corresponding to the message exchange between I and A happen after the

events corresponding to all other message exchanges.

Analysis Effort : To obtain the above optimization we analyzed the instance of the flow

which found the state of node A. This flow included the sending of a marker message from

I to A and its response. The call graph of the process at I had a maximum depth of 2. The

state space search included 786 transitions, 258 states searched, maximum depth 38 and

took a time of 0:01 minutes.

3.10.3 Case 3

Consider the case where we use the termination detection algorithm for bi-directional ring

from case 1 and the application property in case 2.

Application Property: We will use this algorithm with an application which ensures that

when the state of node I is passive, node R2 will also be passive. This property can be

written as follows: I1.state = passive→ R2.state = passive.
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Figure 3.13: Star Network.

Algorithm : The algorithm is specified in 3.7.

Optimization result: We are not able to identify any optimizations in this scenario. The

logic of the algorithm is written with a specific network topology in mind. I1 must send the

marker messages to nodes R3, R4 etc via R2. Therefore message exchange between I1 and

R2 cannot be removed in this case.

In this chapter we described a general methodology to obtain a optimized algorithm

from a general purpose algorithm based on application properties. We provide grammars

for the application developers to specify application properties and for the algorithm writers

to write the algorithm. The framework uses these inputs to identify optimization scenarios.

This technique is more general in nature when compared to the technique described in

chapter 2 and is best suited for algorithms which send out control messages to perform its

tasks (for example state gathering algorithms). In the next chapter we show techniques to

optimize the algorithm based on the network topology.
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Chapter 4

Network Patterns

As described in section 1.1, ‘general purpose’ algorithms which make no assumptions about

the underlying network topology often send out more messages than needed for a particular

network. Hence, there is an opportunity to save on the number of messages being exchanged.

Let G be a graph which describes the network topology for a system. G can be defined as

< V,E >, where V is the set of nodes in the network and E is the set of links connecting

the nodes. A link e ∈ E can be unidirectional or bidirectional.

In this chapter, we describe the optimizations which can be made to a general purpose

distributed algorithm Alg based on the network topology(figure 4.1). Our optimizations are

based on identifying ‘network patterns’. A network pattern is defined by a combination of

a substructure in the network topology G and a pattern in the communication topology of

the algorithm Alg.

Successful identification of network patterns described in this chapter will reduce the

number of messages sent by an algorithm and hence will reduce the state space of the algo-

rithm. Therefore to obtain an algorithm which is optimized with respect to the application

and the network, we must first optimize with respect to the network topology followed by

the optimization with respect to the application as described in the previous chapter.
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Figure 4.1: Optimization based on network topology.

A network pattern contains the following :

(a) A set of nodes N= n1, ....nk and a corresponding set of links connecting them L =

< i, j >: i ∈ N . The graph represented by < N,L > is a subgraph of G where N is a

subset of V and all edges in G between nodes in N are in L. The links in L can either be

unidirectional or bi-directional.

(b) A set of of messages m1,m2, ..,mn sent by Alg which are part of two or more message

chains. The source and the destination nodes of each message in this set belongs to N .

We make the following assumptions about Alg and G :

1) The algorithm Alg is written using rules of our framework defined earlier.

2) Each node in the set V is identified by a unique integer.
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4.1 Message forwarding pattern

Basic message forwarding pattern :

In this pattern, we have three processes i, j, k ∈ V where process i needs to send the same

message to processes j and k. The pattern consists of the following :

(a) Set of nodes N = i, j, k , Set of links L = < i, j >,< j, k >. The links can be either

bidirectional or unidirectional.

(b) Set of messages : {mType1, mType2}, where both messages are instances of the same

message mType. The source node for both the messages is i and the destination nodes for

the messages are j and k respectively.

4.1.1 Identifying the pattern:

To identify such a pattern in a system, we need to check the following :

(a) The network topology has two links < i, j > and < j, k >, and there is no link between

nodes i and k. (b) The code to be executed in process i has the following send statements

which execute one after the other.

send(mType, j)

send(mType, k)

Since there is no direct link existing from process i to process k, the action for the second

send statement will be implemented in two steps. First, process i sends msg to j and then

process j forwards it to k. Therefore, there will three messages sent in the network links

< i, j > and < j, k > when the two sends execute as shown in the first diagram in figure

4.3.
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Figure 4.2: Network connections between i,j,k

(a) Message taking multiple hops to its destination

(b) Message being forwarded by j

Figure 4.3: Messages sent before and after optimization
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4.1.2 Optimization transformation

Since both the send statements in this pattern send the same message to j and k and

the network topology forces the message destined for process k to pass through process j,

we make an optimization where the actions taken for the second send statement can take

advantage of the actions taken for the first. That is, we can transform process j to forward

a copy of the message it receives from process i to k.

Therefore the optimization made when this pattern is identified is that we remove the

second send statement from the code of process i and change the code of the message handler

for the message mType in j so that it forwards this message to k. The process codes running

in process j and k should already have a message handlers for messages of type mType since

these processes are expecting a message of this type in the original algorithm.

The optimized algorithm will have the following changes :

1. The process code of i will have the statement send(mType,k) removed

2. The process code of j will have an additional send statement added at the beginning

of the message handler which processes mType :

prej

mType handler(m,processname){

send(m,k)

s1;

...

sn;

}

postj
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4.2 Extended message forwarding pattern

We can extend the pattern in the previous section to n processes where processes 1, .., n

∈ V are connected in a chain by the edges < 1, 2 >, .. < i, i+ 1 >, .., < n−1, n > ∈ E. This

pattern consists of the following :

(a) Set of nodes N = 1, ...n , Set of links L = < 1, 2 >, .., < i, i + 1 >, .. < n− 1, n >. The

links can be either bidirectional or unidirectional.

(b) Set of messages : mType1, mType2, .... mTypen where all the messages are of the type

mType. The source node for all the messages is 1 and the destination nodes for the messages

are 2, 3, ...n.

4.2.1 Identifying the pattern:

To identify such a pattern in a system we need to check the following :

(a) The network topology has the links < 1, 2 >, .. < i, i + 1 >, .., < n − 1, n > connecting

the nodes 1, .., n.

(b) The process code to be executed in process 1 has send statements to send the same

message to process 2 to n. The sends are written to execute one following the other.

send(mType, 2)

...

send(mType, n)

4.2.2 Optimization transformation

The optimized algorithm will make the following changes :

1. In the code for process 1, it will remove all the statements send(msg,i), where 2 ≤ i ≤

n.
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Figure 4.4: Messages sent before and after optimization

2. In the code for process 2, it will insert an additional send statement added at the

beginning the message handler which processes mtype :

pre2

msg handler(msg,processname){

send(msg,3) s1;

...

sn;

}

post2

4.2.3 Example

Broadcasting a message in a ring: Consider a network with four processes V = 1, 2, 3, 4

and E = < 1, 2 >,< 2, 3 >,< 3, 4 >,< 4, 1 > with the underlying network in shape of

a ring where each link is unidirectional. We assume a simple broadcast algorithm which

sends a message to all processes in the system, one message at a time. Let process 1 be the

broadcasting process. Using the general purpose algorithm, the total number of messages

sent for a broadcast will be 6. We can identify the extended message forwarding pattern

in this example and by changing the code in all four processes, we get the optimized case

where only three messages are sent.
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4.3 Request-Reply pattern

In this pattern, we have three processes i,j,k ∈ V where process i sends the same request

message to processes j and k and waits for a reply back from each one of them. The pattern

consists of the following :

(a) Set of nodes N = i, j, k , Set of links L = < i, j >,< j, k >. The links are bidirectional.

(b) Set of messages : requestType1, requestType2, replyType1, replyType2 . The source

node for the messages requestType1 , requestType2 is i and the destination nodes for them

are j and k respectively. The source nodes for messages replyType1, replyType2 are j and

k and the destination is i.

Identifying the pattern:

To identify this pattern in a system we need to check the following :

(a) The network topology has two bidirectional links < i, j > and < j, k > between the

processes i, j and k.

(b) The code to be executed in process i has the following send and wait statements.

send(requestType, j)

send(requestType, k)

wait(expj)

wait(expk)

(c) The code of j and k have the following send statement in either the message handler for

replyType or in any function called by the same message handler:

send(replyType,i)

As with the previous pattern, the absence of a direct link between processes i and k requires

that the action for the second send statement and its corresponding reply will be taken in

two steps for each. Therefore a total of six messages are sent and received(Fig 4.5).
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Optimization transformation

Just as with the previous patterns, we want that the actions to be taken for sending a

message from i to k take advantage of the actions taken for sending the message from i

to j. In addition to that, in the request-reply pattern, we want to do the same for the

replies as well. Therefore, instead of receiving two replies, process i will receive one message

from j which contains the reply from j and the reply from k piggybacked on it. Since the

process i was not written to receive such a message, we will add a new message handler in

i. Similarly, we need to add a message handler in process j since was not written to expect

a reply message from k.

Therefore, the optimized algorithm will have the following changes (Figure 4.6):

1. The code of i will have the statement send(requestType,k) removed.

2. The process code of j will have an additional send statement added at the beginning

of the message handler which processes requestType :

prej

requestType handler(msg,processname){

send(msg,k)

s1;

...

sn;

}

postj

3. The send(reply,i) in process code of k is replaced with send(replyVector,j). We in-

troduce this new message type whose contents will include a vector which can hold

more than one message. When this message is sent from process k to j, it holds the

message replyType1 from k
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replyVector.add(reply)

send(replyVector,j)

4. We now add a new message handler in process j to processes the replyVector message

k will send it. We also introduce a global variables in the process j called reply from k

to store k’s reply.

prej

replyVector handler(replyVector,processname){

reply from k ← replyVector

}

postj

5. The statement send(reply,i) in process code of j is replaced with the following :

replyVector.add(reply);

wait(reply from k != null);

replyVector.add(reply from k);

send(replyVector, i);

6. Next we add a new message handler in process i for the replyVector message. It calls

the appropriate message handlers for the messages in the vector just received.

prei

replyVector handler(replyVector,processname){

reply ← replyVector.get(0)

replyType handler(reply,j)

reply ← reply piggyback.get(1)
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Figure 4.5: Messages exchanged in Request-Reply pattern

replyType handler(reply,k)

}

posti

4.4 Forwarding Post Conditions

As described in the previous sections, when we recognize a forwarding network pattern, we

are able to reduce the number of messages being sent out by Alg by having a node forward

a copy of its message to another node. In the original algorithm, the message sent from i

to k would have been received by the network layer at j and then forwarded to k. In the

optimized version, we remove the message from i to k and instead have the algorithm layer

at j forward a copy of its message to k.
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Figure 4.6: Messages exchanged and code changes made in the optimized Request-Reply
pattern

In the transformation described earlier, we incorporate the forwarding of message [section

4.1] by placing the send statement at the beginning of a message handler (4.1.2), making it

the first action taken by the algorithm layer at j when it receives mType. This makes the

forwarding the message independent of any action taken at j to process mType. However,

given the format in which an algorithm Alg, we can also place the send statement at the

end of the message handler at process j (Figure 4.3). By doing so, we can assert a stronger

predicate as a pre-condition of the send statement, and carry over this predicate as the post
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Figure 4.7: Forwarding Post Conditions

conditions established at the message handler at j as shown in figure 4.7. This will result in

more information being available for analysis at k which may result in better optimization.

However, if we forward a message at the end of the message handler, we might change

the waiting pattern between processes in the system. For example, prior to optimization,

assume that process k has a wait statement whose variables are modified by the message

handler for mType. Assume that process j has a wait statement whose variables are modified

by a message handler processing a message which is sent by k after it receives the message

mType. Therefore, process k will wait for a message from i and process j will wait for a

message from j [Figure 4.8, solid arrows]. Let j forward the message to k at the end of its

message handler instead of at the beginning. Process k will now wait for message from j

instead of i. Hence, we are changing the waiting pattern in the system and will introduce
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Figure 4.8: Waiting patterns

a deadlock because j is waiting for message from k and k is now waiting for a message

from j. In this case, the set of messages in a network pattern form two or more message

chains. For example, figure 4.3 consists of two message chains, where each chain contains

one message. When we perform transformations for this pattern, we are combining the two

message chains into one.

Let m1 and m2 be the first messages in two message chains. The causal set for sending

these two messages causal(send m1) and causal(send m2) will contain all the message-send

events of the chains except the send event of m1 and m2. Let chain(m1) = e1 + e2., ek, ..en

where e1 is the message send event for m1 and causal(m1) = e2., ek, ..en

chain(m2) = g1 + g2...gm

ei, gi are events as describes in section 3.6.

Executions in the optimized algorithm:

Method 1 : When send(m2) is the first statement in the message handler of m1

With the optimization method described in the previous section, all executions of the the

optimized algorithm will have send event of m2 occur after the send event of m1 (since it

is the first action in the method handler of m1). Therefore e1 → g1 (where → is happens

before relation).

Method 2 : When send(m2) is the last statement in the message handler of m1

In this case ei → g1 where 1 < i ≤ k and ek is the last event of the message handler of m1.

In both cases all execution of the optimized algorithm will have a similar execution in

the original algorithm. The optimized algorithm will have fewer number of messages sent
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Figure 4.9: Deadlock scenario

and we introduce deterministic behavior between a few events as described above.

4.4.1 Preventing deadlocks:

Method 1: The only deterministic behavior introduced in this method is that the event g1

happens exactly after event e1. e1 is the send event of m1 and therefore there is no possibility

of a wait event preceding g1 in causal(send m1).

Method 2: The deterministic behavior introduced by using this method is ei → g1 where

1 ≤ i ≤ k and ek is the last event of the message handler of m1. This means that the

receipt of m2 can happen only after the last event ek of the message handler of m1. This

deterministic behaviors can be seen as introducing an implicit wait. If any of the events

in e1, ...ek is a wait on a message send ∈ causal(send m2) then we would have introduced

a deadlock because ei, 1 < i < k is waiting for an event in causal(send m2) to happen and

send m2 can only happen after ek.

Therefore when we combine two message chains in the different patterns introduced in

this chapter we can use method 2 only if none of the events ei, 1 < i < k is a wait event on

a message being sent in causal(send m2).
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4.5 Additional optimizations enabled by network trans-

formations

As mentioned previously, identification of network patterns and the code transformations

must be made before the analysis for optimizations based on application invariants. We

find that the identification and optimization based on network patterns has a side effect of

introducing deterministic behavior. For example, after optimization shown in figure 4.3(b),

m is always received at process j before it is received at process k. This effect will reduce

the state space of the algorithm which in turn will reduce the effort in analysis when we

optimize the algorithm based on application properties.

Additionally if we are able to forward post condition (figure 4.7) we will be able to make

stronger assertions. This will result in more information being available for analysis which

may result in more optimizations being identified by the analysis described in chapter 3.

In this chapter we introduced ‘network patterns’ and showed that we can reduce the

number of messages sent out by an algorithm based on the network topology of a system.

We can obtain an optimized algorithm with respect to an application and the network by

using these techniques in addition to the optimizations described in the previous chapter.
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Chapter 5

Conclusion

The software executing on a node in a distributed system can be decomposed into many

layers. Each layer is typically developed by a different group of developers and each may use

the services provided by the other layers. The top-most layer, where applications execute,

use the services of the lower layers, such as the network layer, to send and receive messages.

The middleware algorithm layer provides the applications with enhanced services such as

detecting termination of the system, access to shared resources using mutual exclusion and

ordering of messages/events.

Application developers are typically isolated from the details of lower layers and use the

services of the middleware algorithm through published APIs. To increase applicability,

middleware developers, in turn, write generic algorithms which can work with any applica-

tion. The flexibility of ‘one algorithm handles all applications’ often comes at the cost of

performance.

To accommodate systems which may have strict Quality of Service requirements, mid-

dleware developers are often forced to write a version of the generic algorithm optimized

for a particular application. Such an optimized version takes into consideration the context

of the application and how the application uses the middleware algorithm. In this process,

the algorithm developers may remove unnecessary computations and message exchanges to

provide a more efficient version of the generic algorithm.

Re-writing a distributed algorithm can be a time consuming and error prone effort and
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the resulting algorithm will work only for one system. At most, it may address a class of

systems which share the properties based on which the optimized algorithm was written.

In this work, we have proposed an automated solution to this problem which provides

considerable ease in terms of effort and exposure to errors.

5.1 Application Properties and Middleware Algorithms

To optimize a middleware algorithm for an application, we need to know the context in

which the application will use the algorithm. The application context can be specified in

terms of properties relevant to the services of the middleware algorithms. Furthermore, the

middleware algorithm itself must be able to use these properties to perform its task more

efficiently. Therefore, to be able to automate the optimization process, we need the follow-

ing:

(a) Application properties

(b) A generic algorithm developed in a way that is amenable to optimizations.

In this thesis, we have proposed two ways to optimize a generic algorithm. In our first

method, we analyze the application specification to derive properties relevant to the mid-

dleware. Specifically, we developed techniques to identify certain communication patterns

which can be used to create input for the middleware algorithm. We designed the middle-

ware algorithm which can configure/optimize its behavior with respect to the input.

In our second method, we do not analyze the application; rather, we require the developer

to supply application properties. However, we require the algorithm developer to write

generic algorithms in a format amenable to analysis. We provide tools to analyze a generic

algorithm based on the application property and identify scenarios where we can reduce

computation and messages exchanged by the middleware algorithm.
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5.1.1 Optimizing Event ordering Algorithms

In Chapter 2, we have described a way to optimize ordering algorithms used to order events in

an anonymous component based system. Such a distributed system consists of components

which communicate with each other via events. Events are published and consumed on

source and sink ports of a component respectively. This system may use ordering algorithms

to enforce ordering requirements (such as causal ordering or total ordering) on events as they

are delivered to the components.

General purpose ordering algorithms typically make no assumptions about the structure

of an application - that is, they assume that events can be generated at any time. As a result,

they behave conservatively and propagate all relevant dependency information. The event

delivery system then uses this dependency information to deliver events to a component in

the required order. This dependency information can result in large message sizes.

We have shown that we can analyze the application specification and infer pre-existing

ordering between events which is introduced by the application. We provide this informa-

tion to the generic algorithm which then can use it to reduce the dependency information

flowing in the system. The steps in this methodology are as follows: We analyze the system

specification and build a Port Topology Graph (PTG). This graph has two kinds of edges

(a) inter-component edges that link a source port to a sink port and (b) intra-component

edges that link a sink port to a source port within a component. An intra-component edge

exists when the receipt of an event at a sink port of a component produces the publishing

of another event by the component. The PTG is analyzed to produce two tables ‘Genera-

tion rule table’ and a ‘Propagation rule table’. The entries to these tables are formed by

identifying a ‘causal cycle’ pattern in the PTG. The causal cycle provides us with informa-

tion regarding the possible causality between events in the system already enforced by the

application. This information is then exploited to reduce the dependency information that

is propagated. We demonstrate the use of this methodology for two algorithms: a causal

ordering algorithm and a total ordering algorithm. We also show how properties of the

123



underlying middleware can be exploited to optimize the behavior of the algorithms.

The causal order algorithm takes these two tables as input and uses these tables to

propagate dependency information in cases when necessary. A general purpose ordering

algorithm would propagate information in all cases.

5.1.2 Application Property based Optimizations

In our second approach, instead of analyzing the application specification to deduce proper-

ties, we provide rules and grammars for application and middleware algorithm developers to

specify the application properties, the middleware algorithm and the topology of the system.

We show how to optimize the middleware algorithm based on the application properties and

the topology of the system on which it is running.

We have defined a middleware algorithm as a set of non interfering flows where each flow

achieves a specific task. A flow is specified as a set of interacting process types which may

execute on different nodes of the system. We assume that the algorithm writer annotates

each function in a process type with pre and post conditions. We introduced ‘interface

variables’ which can be used to specify application properties. These variable are used to

pass information from the application to the middleware layer. They can also be used in

the pre- and post-condition annotations by the algorithm developer.

Our analysis method creates an intermediate data structure called the ‘call graph’ which

models the calling structure of functions in a process type. It then identifies redundancies

between the application properties and the post conditions of the function calls. When we

find a function fn whose post condition is satisfied by the application invariant, we analyze

the affects of removing the function. We define a causal set of events which is caused by the

function call to fn and remove the call to fn only if (a) no other events in the system is

waiting on fn and its causal set, (b) the post conditions of all the function calls in the causal

set is satisfied and (c) the affects of the events of the causal set on the global variables of the

process type of fn can be determined. The Fig 5.1 shows the steps taken in this process.
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Figure 5.1: Optimization Process

We have demonstrated the above analysis process on a system with a ring topology

using a bi-directional ring termination detection algorithm. We show that if the application

properties specify that messages in the ring flow in only one direction, we can reduce the

number of messages exchanged by the termination detection algorithm by half [Fig 3.10.1].

The number of messages exchanged by the optimized algorithm(Fig 3.10.1 (b)) is the same

as a uni-directional ring termination detection algorithm.

We also show techniques to optimize the number of messages sent by an algorithm based

on the network topology. We describe patterns of message exchanges and show ways to

reduce the number of ‘copies’ of the same message being sent out by forwarding the message

between the recipient nodes.

5.2 Limitation and Future work

To get better optimization results, Alg must be written in a modular fashion by the algo-

rithm writer. An unstructured algorithm with functions having many ‘wait’ statements is

not amenable to optimization. The annotations to a function are the main inputs to the

analysis algorithm. Our analysis relies on the annotation of the functions in two ways :

(a) To determine if the post condition of a function is redundant with respect to the appli-

cation properties which is the primary condition of removal of a function call. The more
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assertions an algorithm writer can make on the values of the global and interface variables

on the post conditions of functions, the better the chances of optimization.

(b) To determine the context of function call from its pre-condition and from the applica-

tion specification. When we analyze a function call to determine the effects of its removal

[analyzeNode() in section 3.4.1], we want to make sure that all events e ∈ causal(fn) can

be predicted.

The analysis process shown in Fig 5.1 has been implemented in three modules. Gen-

eration of the call graph, identifying a function which has the potential of being removed

and then determining whether the function can be removed. We use Bogor to model and

check whether the post conditions of all function calls in causal(fn) are satisfied by the

application invariant.

We generate code in BIR grammar for Bogor from the algorithm specification and the

network specification. However this code has required editing and modification. As Bogor

does not allow global variables the signatures of all function calls have been modified to

pass the global variables as parameters to the functions. Further implementation steps can

be made to eliminate the manual intervention.

When performing a model check, we do not need to analyze the entire state space of a

flow but only part it which begins with the function call to fn with the required parameters

(Fig 5.2). We have manually modeled the Bogor code so that the model check begins with

the call to fn and give it the context in which it is called. This process can be automated

by extending Bogor20 to find the context of a function call.

We have implemented the optimizations based on the application properties and have

specified additional optimizations which can be made based on network topology in Chapter

4. This optimization can be incorporated in our process with extensions to the network

topology grammar and adding more steps to our optimization process shown in Fig 5.1.

Forwarding post conditions with a message increases the asserts which can be made at the

recieving process which may result in increased optimizations.
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Figure 5.2: State space of a flow
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Appendix A

Algorithm Grammar

grammar DistAlg;

options {output=AST;ASTLabelType=CommonTree;backtrack=true; memorize=true;}

@members {

public static void main(String[] args) throws Exception {

DistAlgLexer lex = new DistAlgLexer(new ANTLRFileStream(args[0]));

CommonTokenStream tokens = new CommonTokenStream(lex);

DistAlgParser parser = new DistAlgParser(tokens);

try {

parser.compilationUnit();

} catch (RecognitionException e) {

e.printStackTrace();

}

}

}

compilationUnit

: processTypeWithTrigDecl processTypeDeclaration*

;
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processTypeWithTrigDecl

: ’processType’ Identifier processWithTrigBody

;

processTypeDeclaration

: ’processType’ Identifier processBody

;

typeList

: type (’,’ type)*

;

processWithTrigBody

: ’{’ processWithTrigBodyDeclaration ’}’

;

processBody

: ’{’ processBodyDeclaration ’}’

;

processWithTrigBodyDeclaration

: interfaceVarDecl globalVarDecl* annotatedMessageHandler annotatedTrig annotatedFunction*

;

processBodyDeclaration

: interfaceVarDecl globalVarDecl* annotatedMessageHandler annotatedFunction*

;

annotatedMessageHandler

: preCond messageHandlers postCond

;

messageHandlers

: primaryMsgHandler (secondaryMsgHandler)*

;
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primaryMsgHandler

: ’void’ ’receive’ ’(’ ’message’ Identifier ’,’ ’int’ Identifier ’)’ methodBody

;

secondaryMsgHandler

: ’void’ Identifier ’(’ ’message’ Identifier ’,’ ’int’ Identifier ’)’ methodBody

;

annotatedTrig

: preCond trigFunction postCond

;

trigFunction

: type ’trig’ Identifier methodDeclaratorRest

| ’void’ ’trig’ Identifier voidMethodDeclaratorRest

;

annotatedFunction

: preCond functionDeclaration postCond

;

preCond

: ’pre:’ condition ’;’

;

postCond

: ’post:’ condition ’;’

;

condition

: condOrExp (’->’ condOrExp)*

;

condOrExp

: condAndExp ( ’||’ condAndExp )*

133



;

condAndExp

: condEqualExp ( ’&&’ condEqualExp )*

;

condEqualExp

: condRelExp ( (’==’ | ’!=’) condRelExp )*

;

condRelExp

: condAdditiveExp ( relationalOp condAdditiveExp )*

;

condAdditiveExp

: condMultiplicativeExp ( (’+’ | ’-’) condMultiplicativeExp )*

;

condMultiplicativeExp

: condUnaryExp ( ( ’*’ | ’/’ | ’%’ ) condUnaryExp )*

;

condUnaryExp

: ’+’ condUnaryExp

| ’-’ condUnaryExp

| ’++’ condUnaryExp

| ’--’ condUnaryExp

| condUnaryExpNotPlusMinus

;

condUnaryExpNotPlusMinus

: ’~’ condUnaryExp

| ’!’ condUnaryExp

| primary
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;

functionDeclaration

: ’void’ Identifier voidMethodDeclaratorRest

| type Identifier methodDeclaratorRest

;

interfaceVarDecl

: ’interface:’ (variableDeclarators)*

;

globalVarDecl

: ’global:’ (variableDeclarators)*

;

methodDeclaratorRest

: formalParameters (’[’ ’]’)*

//(’throws’ qualifiedNameList)?

( methodBody

| ’;’

)

;

voidMethodDeclaratorRest

: formalParameters //(’throws’ qualifiedNameList)?

( methodBody

| ’;’

)

;

variableDeclarators

: type variableDeclarator (’,’ variableDeclarator)* ’;’

;
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variableDeclarator

: variableDeclaratorId (’=’ variableInitializer)?

;

variableDeclaratorId

: Identifier (’[’ ’]’)*

;

variableInitializer

: arrayInitializer

| expression

;

arrayInitializer

: ’{’ (variableInitializer (’,’ variableInitializer)* (’,’)? )? ’}’

;

type

: messageType ’[’ ’3’ ’]’

| primitiveType (’[’ ’]’)*

;

primitiveType

: ’boolean’

| ’char’

| ’int’

| ’long’

| ’float’

| ’double’

;

messageType

: ’message’
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;

qualifiedNameList

: qualifiedName (’,’ qualifiedName)*

;

formalParameters

: ’(’ formalParameterDecls? ’)’

;

formalParameterDecls

: type formalParameterDeclsRest

;

formalParameterDeclsRest

: variableDeclaratorId (’,’ formalParameterDecls)?

| ’...’ variableDeclaratorId

;

methodBody

: block

;

qualifiedName

: Identifier (’.’ Identifier)*

;

literal

: integerLiteral

| CharacterLiteral

| StringLiteral

| booleanLiteral

| ’null’

;
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integerLiteral

: DecimalLiteral

;

booleanLiteral

: ’true’

| ’false’

;

// STATEMENTS / BLOCKS

block

: ’{’ blockStatement* ’}’

;

blockStatement

: localVariableDeclarationStatement

| statement

;

localVariableDeclarationStatement

: localVariableDeclaration

;

localVariableDeclaration

: variableDeclarators

;

statement

: block

| ’if’ parExpression statement (options {k=1;}:’else’ statement)?

| ’for’ ’(’ forControl ’)’ statement

| ’while’ parExpression statement

| ’do’ statement ’while’ parExpression ’;’
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| ’repeat’ statement ’until’ parExpression ’;’

| ’return’ expression? ’;’

| ’break’ Identifier? ’;’

| ’continue’ Identifier? ’;’

| ’;’

| statementExpression ’;’

| ’wait’ parExpression ’;’

;

formalParameter

: type variableDeclaratorId

;

forControl

options {k=3;} // be efficient for common case: for (ID ID : ID) ...

: enhancedForControl

| forInit? ’;’ expression? ’;’ forUpdate?

;

forInit

: localVariableDeclaration

| expressionList

;

enhancedForControl

: type Identifier ’:’ expression

;

forUpdate

: expressionList

;
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// EXPRESSIONS

parExpression

: ’(’ expression ’)’

;

expressionList

: expression (’,’ expression)*

;

statementExpression

: expression

;

constantExpression

: expression

;

expression

: conditionalExpression (assignmentOperator expression)?

;

assignmentOperator

: ’=’

| ’+=’

| ’-=’

| ’*=’

| ’/=’

| ’&=’

| ’|=’

| ’^=’

| ’%=’
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;

conditionalExpression

: conditionalOrExpression ( ’?’ expression ’:’ expression )?

;

conditionalOrExpression

: conditionalAndExpression ( ’||’ conditionalAndExpression )*

;

conditionalAndExpression

: inclusiveOrExpression ( ’&&’ inclusiveOrExpression )*

;

inclusiveOrExpression

: exclusiveOrExpression ( ’|’ exclusiveOrExpression )*

;

exclusiveOrExpression

: andExpression ( ’^’ andExpression )*

;

andExpression

: equalityExpression ( ’&’ equalityExpression )*

;

equalityExpression

: relationalExpression ( (’==’ | ’!=’) relationalExpression )*

;

relationalExpression

: additiveExpression ( relationalOp additiveExpression )*

;

relationalOp

: (’<’ ’=’)=> t1=’<’ t2=’=’
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{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() }?

| (’>’ ’=’)=> t1=’>’ t2=’=’

{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() }?

| ’<’

| ’>’

;

additiveExpression

: multiplicativeExpression ( (’+’ | ’-’) multiplicativeExpression )*

;

multiplicativeExpression

: unaryExpression ( ( ’*’ | ’/’ | ’%’ ) unaryExpression )*

;

unaryExpression

: ’+’ unaryExpression

| ’-’ unaryExpression

| ’++’ unaryExpression

| ’--’ unaryExpression

| unaryExpressionNotPlusMinus

;

unaryExpressionNotPlusMinus

: ’~’ unaryExpression

| ’!’ unaryExpression

| primary

;

primary
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: parExpression

| literal

| Identifier (’.’ Identifier)* identifierSuffix?

;

identifierSuffix

: (’[’ expression ’]’)+ // can also be matched by selector, but do here

| arguments

| ’.’ explicitGenericInvocation

;

creator

: createdName (arrayCreatorRest)

;

createdName

: primitiveType

;

arrayCreatorRest

: ’[’

( ’]’ (’[’ ’]’)* arrayInitializer

| expression ’]’ (’[’ expression ’]’)* (’[’ ’]’)*

)

;

explicitGenericInvocation

: nonWildcardTypeArguments Identifier arguments

;

nonWildcardTypeArguments

: ’<’ typeList ’>’

;
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superSuffix

: arguments

| ’.’ Identifier arguments?

;

arguments

: ’(’ expressionList? ’)’

;

// LEXER

DecimalLiteral : (’0’ | ’1’..’9’ ’0’..’9’*) IntegerTypeSuffix? ;

fragment

HexDigit : (’0’..’9’|’a’..’f’|’A’..’F’) ;

fragment

IntegerTypeSuffix : (’l’|’L’) ;

CharacterLiteral

: ’\’’ ( EscapeSequence | ~(’\’’|’\\’) ) ’\’’

;

StringLiteral

: ’"’ ( EscapeSequence | ~(’\\’|’"’) )* ’"’

;

fragment

EscapeSequence

: ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)

| UnicodeEscape

| OctalEscape

;

144



fragment

OctalEscape

: ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)

| ’\\’ (’0’..’7’) (’0’..’7’)

| ’\\’ (’0’..’7’)

;

fragment

UnicodeEscape

: ’\\’ ’u’ HexDigit HexDigit HexDigit HexDigit

;

Identifier

: Letter (Letter|JavaIDDigit)*

;

fragment

Letter

: ’\u0024’ |

’\u0041’..’\u005a’ |

’\u005f’ |

’\u0061’..’\u007a’ |

’\u00c0’..’\u00d6’ |

’\u00d8’..’\u00f6’ |

’\u00f8’..’\u00ff’ |

’\u0100’..’\u1fff’ |

’\u3040’..’\u318f’ |

’\u3300’..’\u337f’ |

’\u3400’..’\u3d2d’ |

’\u4e00’..’\u9fff’ |
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’\uf900’..’\ufaff’

;

fragment

JavaIDDigit

: ’\u0030’..’\u0039’ |

’\u0660’..’\u0669’ |

’\u06f0’..’\u06f9’ |

’\u0966’..’\u096f’ |

’\u09e6’..’\u09ef’ |

’\u0a66’..’\u0a6f’ |

’\u0ae6’..’\u0aef’ |

’\u0b66’..’\u0b6f’ |

’\u0be7’..’\u0bef’ |

’\u0c66’..’\u0c6f’ |

’\u0ce6’..’\u0cef’ |

’\u0d66’..’\u0d6f’ |

’\u0e50’..’\u0e59’ |

’\u0ed0’..’\u0ed9’ |

’\u1040’..’\u1049’

;

WS : (’ ’|’\r’|’\t’|’\u000C’|’\n’) {$channel=HIDDEN;}

;

COMMENT

: ’/*’ ( options {greedy=false;} : . )* ’*/’ {$channel=HIDDEN;}

;

LINE_COMMENT
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: ’//’ ~(’\n’|’\r’)* ’\r’? ’\n’ {$channel=HIDDEN;}

;
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Appendix B

Network Topology Grammar

grammar Network;

options {output=AST;ASTLabelType=CommonTree;backtrack=true; memoize=true;}

@members {

public static void main(String[] args) throws Exception {

NetworkLexer lex = new NetworkLexer(new ANTLRFileStream(args[0]));

CommonTokenStream tokens = new CommonTokenStream(lex);

NetworkParser parser = new NetworkParser(tokens);

try {

parser.system();

} catch (RecognitionException e) {

e.printStackTrace();

}

}

}

system
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: ’System’ STRING ’{’ nodeList channelList mappingList ’}’

;

nodeList

: ’nodelist’ ’:’ integerLiteral (’,’ integerLiteral)* ’;’

;

channelList

: ’channelList’ ’:’ channel (’,’ channel)* ’;’

;

mappingList

: ’mapping’ ’:’ mapping (’,’ mapping)* ’;’

;

mapping

: integerLiteral ’:’ STRING

;

channel

: integerLiteral ’->’ integerLiteral

;

integerLiteral

: DecimalLiteral

;
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//Lexer

DecimalLiteral : (’0’ | ’1’..’9’ ’0’..’9’*) ;

ID : (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*

;

INT : ’0’..’9’+

;

WS : ( ’ ’

| ’\t’

| ’\r’

| ’\n’

) {$channel=HIDDEN;}

;

STRING

: ’"’ ( ESC_SEQ | ~(’\\’|’"’) )* ’"’

;

CHAR: ’\’’ ( ESC_SEQ | ~(’\’’|’\\’) ) ’\’’

;

fragment

HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;

fragment
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ESC_SEQ

: ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)

| UNICODE_ESC

| OCTAL_ESC

;

fragment

OCTAL_ESC

: ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)

| ’\\’ (’0’..’7’) (’0’..’7’)

| ’\\’ (’0’..’7’)

;

fragment

UNICODE_ESC

: ’\\’ ’u’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

;
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Appendix C

Application Properties Grammar

prop : exp

exp : arithexp

|relexp

|logicalexp;

logical exp : rel exp

|¬logical exp

|logical expANDlogical exp

|logical expORlogical exp;

rel exp : arith exp

|rel exp < rel exp

|rel exp ≤ rel exp

|rel exp > rel exp

|rel exp ≥ rel exp
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|rel exp = rel exp

|rel exp 6= rel exp;

arith exp : var

|arith exp ∗ arith exp

|arith exp/arith exp

|arith exp+ arith exp

|arith exp− arith exp;

var : IDENTIFIER;
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Appendix D

Termination Detection Algorithm

Termination Detection Algorithm: Initator

INTERFACE:

processName ∈ 1..n

processName.state ∈ ”active”,”passive”

GLOBAL:

// array of size n where n is the number of nodes in the system

state[n]

trig detectTermination(n):

terminated = false

repeat

resetStateInfo()

getStateofNeighbors()

terminated ← checkForTermination()

until terminated = false

return

Post: ∀ i: i.state = ”passive”
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getStateofNeighbors(): // n = number of neighbors

CO j ← {processNamesofneighbors}

getState(j)

return

Post: ∀ i: state[i] = ”passive” → i.state = ”passive”

getState(processName):

send(marker, processName)

wait(state[processname] != null)

return

Post: state[processName] = ”passive” → processName.state = ”passive”

state handler(state,processName):

if state = active then

state[processName] ← ”active”

else

state[processName] ← ”passive”

end if

Post: state[processName] = ”passive” → processName.state = ”passive”

boolean checkForTermination(states,n):

term = true

for i = {processNamesofneighbors} do

if state[i] = ”active” then

term leftarrow false

end if
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end for

return term

Post: :

receive(msg,processname):

return

resetStateInfo():

for i = 0 to n do

state[i] ← null

end for

return

Termination Detection Algorithm: Responder

INTERFACE:

processName ∈ 1..n

processName.state ∈ ”active”,”passive”

GLOBAL:

reply

trig marker handler(marker,processName): // secondary message handler

if self.state = ”passive” then

reply ← ”passive”

else

reply ← ”active”

end if
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send(state(reply),processName)

return

Post: self.state = passive → reply = passive

receive(msg,processName):

return
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