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Abstract

Disease surveillance data are commonly used by epidemiologists, veterinary and plant

pathologists, and wildlife and plant ecologists to identify, understand, mitigate, and prevent

the spread of infectious disease. We develop three statistical methods that may be applied

to spatio-temporal disease surveillance data to understand different aspects of an infectious

disease outbreak.

First, we develop a method that provides individual-level inference on spatial covari-

ates despite using several types of spatially aggregated binary disease surveillance data.

Our method provides individual-level inference on spatial covariates by applying a series of

transformations, including a change of support, to a bivariate point process model. The

series of transformations preserves the convenient interpretation of desirable binary regres-

sion models that are commonly applied to individual-level disease surveillance data. Using a

simulation experiment, we compare the performance of the proposed method under varying

types of spatial aggregation against the performance of standard approaches using the origi-

nal individual-level data. We illustrate our method by modeling individual-level probability

of infection using a disease surveillance data set that has been aggregated to protect several

at-risk or threatened species of bats in the northeastern U.S.

Second, we develop a staged approximate Bayesian model averaging (SABMA) method

to estimate the spatio-temporal origins of an epidemic. Specifically, we estimate the number,

locations, and times that a pathogen was introduced into a population using spatio-temporal

binary disease surveillance data. We employ an ensemble of simple ecological diffusion

processes to model the spatio-temporal spread of the pathogen from multiple locations. We

study the statistical properties of the SABMA method, in terms of credible interval coverage

for parameters and out-of-sample prediction performance, using a simulation experiment.



We then apply our SABMA method to two sets of binary disease surveillance data in white-

tailed deer (Odocoileus virginianus); the first in the lower peninsula of Michigan in the U.S.,

and the second in southern Wisconsin and northern Illinois in the U.S.

Third, we develop a Bayesian hierarchical mixture of ecological diffusion models (BHMEDM)

that provides inference on the number, locations, and times of pathogen introduction during

an epidemic, using spatio-temporal binary disease surveillance data. Our model incorporates

a mixture of ecological diffusion processes that account for both the growth and diffusion

of the pathogen. As part of the hierarchical framework, we obtain inference on the spatio-

temporal process that produced the pathogen introductions, and predict where new pathogen

introductions are likely to occur in the future. We demonstrate the BHMEDM using binary

disease surveillance data in white-tailed deer from southern Wisconsin and northern Illinois

in the U.S.
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Abstract

Disease surveillance data are commonly used by epidemiologists, veterinary and plant

pathologists, and wildlife and plant ecologists to identify, understand, mitigate, and prevent

the spread of infectious disease. We develop three statistical methods that may be applied

to spatio-temporal disease surveillance data to understand different aspects of an infectious

disease outbreak.

First, we develop a method that provides individual-level inference on spatial covari-

ates despite using several types of spatially aggregated binary disease surveillance data.

Our method provides individual-level inference on spatial covariates by applying a series of

transformations, including a change of support, to a bivariate point process model. The

series of transformations preserves the convenient interpretation of desirable binary regres-

sion models that are commonly applied to individual-level disease surveillance data. Using a

simulation experiment, we compare the performance of the proposed method under varying

types of spatial aggregation against the performance of standard approaches using the origi-

nal individual-level data. We illustrate our method by modeling individual-level probability

of infection using a disease surveillance data set that has been aggregated to protect several

at-risk or threatened species of bats in the northeastern U.S.

Second, we develop a staged approximate Bayesian model averaging (SABMA) method

to estimate the spatio-temporal origins of an epidemic. Specifically, we estimate the number,

locations, and times that a pathogen was introduced into a population using spatio-temporal

binary disease surveillance data. We employ an ensemble of simple ecological diffusion

processes to model the spatio-temporal spread of the pathogen from multiple locations. We

study the statistical properties of the SABMA method, in terms of credible interval coverage

for parameters and out-of-sample prediction performance, using a simulation experiment.



We then apply our SABMA method to two sets of binary disease surveillance data in white-

tailed deer (Odocoileus virginianus); the first in the lower peninsula of Michigan in the U.S.,

and the second in southern Wisconsin and northern Illinois in the U.S.

Third, we develop a Bayesian hierarchical mixture of ecological diffusion models (BHMEDM)

that provides inference on the number, locations, and times of pathogen introduction during

an epidemic, using spatio-temporal binary disease surveillance data. Our model incorporates

a mixture of ecological diffusion processes that account for both the growth and diffusion

of the pathogen. As part of the hierarchical framework, we obtain inference on the spatio-

temporal process that produced the pathogen introductions, and predict where new pathogen

introductions are likely to occur in the future. We demonstrate the BHMEDM using binary

disease surveillance data in white-tailed deer from southern Wisconsin and northern Illinois

in the U.S.
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List of Figures

1.1 The motivating data set shows which counties contained bats that were indi-

vidually tested for P. destructans, the causative agent of white-nose syndrome,

within the northeastern United States from 2008-2012. The counties that con-

tained at least one bat that tested positive for P. destructans are shown in

purple fill while counties with no positive bats are shown in white fill. The

covariates ‘proportion of land classified as forest’ (inset right) and ‘presence of

karst’ (inset left) from Monroe county, Indiana, USA (outlined in bold black).

Karst is a type of landscape characterized by caves and sinkholes that can

provide habitat to cave-hibernating bats. Spatially referenced wildlife data

are often accessible to researchers in aggregated form to reduce the potential

for human contact. When binary data within a county are aggregated into an

indicator that denotes whether the county contained at least one sampled bat

that tested positive, individual-level spatial covariates and inference cannot

be obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Graphical representations of the types of aggregation for spatially referenced

binary data found in Table 1.1. The data set shown under Type A is pro-

gressively aggregated across sub-regions, starting from the exact locations of

all observations (Type A data) and ending with binary indicators (Type E

data). We define yi as the binary mark associated with the ith spatially refer-

enced observation. For the jth subregion, we define nj as the total number of

observations contained therein. We also define vj as a binary indicator that

at least one observation with yi = 1 occurred in the jth subregion. . . . . . 6
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1.3 Panels (A) and (B) show box plots of results from small and large average sam-

ple size simulation experiment settings where x(s) = z(s). Panels (C) and (D)

show small and large sample size simulation experiments where x(s) 6= z(s).

We show maximum likelihood estimates of β1 obtained using five different

models (each under a different data aggregation scenario), which included:

Scen. 1) logistic regression with no data aggregation (Type A data); Scen.

2) a joint model for n1j and n0j where binary data were aggregated into counts

for each subregion (Type C data); Scen. 3) a joint model for vj and nj using

data aggregated into a count and indicator variable for each subregion (Type

D data); Scen. 4) a conditional model for vj given nj using data aggregated

into a count and indicator variable for each subregion (Type D data); Scen.

5) a Bernoulli model for vj using data aggregated into an indicator variable for

each subregion (Type E data). Each of the four panels used 1,000 simulated

data sets, and each panel shows the true value of β1 = 1 (dotted line). The

distribution of β̂1 from scenario five (Bernoulli model) was such that some

estimates fell outside the upper bounds of the plots. Each box plot shows

(from bottom to top) the lower bound of 1.5 times the inter-quartile range,

the 25th percentile, the median, the 75th percentile, and the upper bound of

1.5 times the inter-quartile range. See Table 1.2 for a summary of all settings. 15
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1.4 Binary regression model coefficient estimates and 95% CIs for the spatial co-

variate ‘proportion of land classified as forest’ (forest) that affects the proba-

bility of P. destructans infection for cave-hibernating bats in the northeastern

United States (see Figure 1.1 for visual). Estimates were obtained from the

joint model for n1j and n0j in (1.6-1.7), the joint model for vj and nj in (1.8)

and (1.9), the conditional model for vj given nj in (1.9), and the Bernoulli

model for vj in (1.11) that were fit using the respective data types. Here,

n1j is the number of observations in the jth county that tested positive or

suspect positive for WNS, n0j is the number of observations in the jth county

that tested negative, nj is the total number of observations in the jth county,

and vj = I(n1j > 0). Also, using data that consists of the binary indicators

(vj), we give the areal-level results for logistic regression models that have the

covariates of county centroid value of forest (Areal County Centroid), county

averaged forest (Areal County Average), and county averaged forest in karst

landscape (Areal % Forest in Karst). We delineate which models can recover

individual-level inference (pink) and which are suited to areal-level inference

(blue). For each model, we give the coefficient estimate (box) followed by the

95% CI limits (whisker ends). . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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A.2 Panels (E) and (F) show box plots of results for β0 from small and large

average sample size simulation experiment settings where x(s) = z(s). Panels

(G) and (H) show small and large sample size simulation experiment settings

where x(s) 6= z(s). We show estimates of β0 obtained using five different

models (each under a different data aggregation scenario), which included:

Scen. 1) logistic regression with no data aggregation (Type A data); Scen. 2)

a joint model for n1j and n0j where binary data were aggregated into counts

for each subregion (Type C data); Scen. 3) a joint model for vj and nj using

data aggregated into a count and indicator variable for each subregion (Type

D data); Scen. 4) a conditional model for vj using data aggregated into an

indicator variable for each subregion (Type E data). Each of the four panels

used 1,000 simulated data sets, and each panel shows the true value of β0

(dotted line). The distribution of β̂0 from scenario five (Bernoulli model) was

such that some estimates fell outside the upper bounds of the plots. Each

box plot shows (from bottom to top) the lower bound of 1.5 times the inter-

quartile range, the 25th percentile, the median, the 75th percentile, and the

upper bound of 1.5 times the inter-quartile range. See Table A.2 for a
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for each subregion (Type C data); Scen. 3) a joint model for vj and nj

using data aggregated into a count and indicator variable for each subregion

(Type D data); Scen. 4) a conditional model for vj using data aggregated

into an indicator variable for each subregion (Type E data). A smaller log

MSPE is indicative of a estimated intensity surface that is closer to the true

intensity surface. Each of the four panels used 1,000 simulated data sets. The

distributions of the log MSPE from scenarios four and five (Conditional and

Bernoulli models) were such that some estimates fell outside the upper bounds

of the plots. Each box plot shows (from bottom to top) the lower bound of

1.5 times the inter-quartile range, the 25th percentile, the median, the 75th
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xviii



A.4 Box plots of the mean squared predictive errors (MSPE) of the estimated

probability surfaces p̂(s) from each data scenario and data set in each setting.

Panels (M) and (N) show the log transformed MSPE obtained from small and

large average sample size simulation experiment settings where x(s) = z(s).

Panels (O) and (P) show the log transformed MSPE from small and large

sample size simulation experiment settings where x(s) 6= z(s). We show the

MSPE calculated using estimates from five different models (each under a dif-

ferent data aggregation scenario), which included: Scen. 1) logistic regression

with no data aggregation (Type A data); Scen. 2) a joint model for n1j and

n0j where binary data were aggregated into counts for each subregion (Type
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Introduction

According to the World Health Organization, three of the ten leading causes of death

worldwide in 2020 stemmed from broad categories of infectious disease (lower respiratory

infections, neonatal conditions, and diarrheal diseases; World Health Organization, 2020). It

was estimated that these disease categories and other infectious diseases yearly take the lives

of at least 6.1 millions of people around the world and negatively impact global economic

output (World Health Organization, 2020). For example, Fan et al. (2018) estimated that

the yearly influenza pandemic alone costs the world economy approximately $500 billion in

lost economic output and life. By contrast, the current COVID-19 pandemic is estimated

to have taken the lives of approximately 4.8 million people (as of October 4, 2021; World

Health Organization, 2021). The equivalent of nearly 16 trillion U.S. dollars was provided

globally in 2020 to soften the economic disruption, while the global economy shrunk by 3.5%

(Yeyati and Filippini, 2021). However, these statistics fail to encompass the human misery

caused by illness and death of loved ones and caregivers. For example, Hillis et al. (2021)

estimated that as of April 30, 2021 at least 1.56 million children globally (likely much higher)

have lost a primary or secondary care-giver to COVID-19. During the pandemic, mental

health has declined, particularly among those with lower socioeconomic status, due to social

isolation, job loss/economic uncertainty, and other factors (Graham, 2020; Cost et al., 2021;

Panchal et al., 2021; Giuntella et al., 2021). These sobering facts highlight the importance of

health care and public health monitoring measures to identify and contain infectious disease

outbreaks at an early stage. Collecting and analyzing disease surveillance data is one way

that public health researchers identify factors that contributed to an outbreak. Public health

officials can then advocate for policies that reduce the risk for similar outbreaks.

An early example of data collection and analysis that helped identify, contain, and pre-

vent infectious disease outbreaks comes from the 1854 cholera epidemic in the Soho area of

London, England. This epidemic is at least partially notable because of its virulence - it

xxviii



resulted in the deaths of over 500 individuals in ten days. As the outbreak unfolded, a local

surgeon, Dr. John Snow, collected data by interviewing inhabitants and plotted the number

and locations of cholera cases on a street map of the area (Chave, 1958; Centers for Disease

Control and Prevention, 2012). Dr. Snow’s analysis led him to hypothesize that the outbreak

was caused by contaminated water from the Broad Street pump. As the outbreak waned,

Dr. Snow met with the local governing board and recommended that the pump handle be

removed (Chave, 1958). Though incredulous, the local board acquiesced. Later that year,

a local priest, Reverend Henry Whitehead, conducted an independent investigation of the

epidemic among his parishioners in an attempt to disprove Dr. Snow’s hypothesis. At the

conclusion of his investigation, Reverend Whitehead concurred with Dr. Snow’s belief that

the outbreak was likely caused by contaminated water from the pump. Further, he concluded

that the source of the contamination was likely the contents of a sick child’s diaper that had

been washed into a leaky cistern just a few feet from the Broad Street pump. Whitehead

later credited deactivating the Broad Street pump with preventing a second wave of cholera

in the same neighborhood soon after the first wave had concluded (Chave, 1958). While

Dr. Snow’s theory about the spread of cholera via contaminated water was not immediately

accepted, his efforts are remarkable, in part, for his use of spatial analysis (Chave, 1958;

Centers for Disease Control and Prevention, 2012). These events are also instructive be-

cause the location of an outbreak or pathogen introduction can be discerned separately from

the source of the pathogen. In this case, the location of the cholera pathogen introduction

for the neighborhood was the cistern and the adjacent pump, while the originating source of

the pathogen in the neighborhood was the sick child. In the subsequent 167 years, the field

of epidemiology has evolved into a mature science with a rich knowledge base in infectious

disease. Likewise, fields such as wildlife disease ecology and animal pathology have appeared

and matured. In modern times, the collection and analysis of disease surveillance data has

become essential to quickly identify and mitigate disease outbreaks, particularly in the age

of emerging zoonotic diseases like COVID-19 (Simonsen et al., 2016; Watsa and Wildlife

Disease Surveillance Focus Group, 2020; Ibrahim, 2020; Budd et al., 2020).

Disease surveillance data come in several forms with various spatio-temporal resolutions,
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from counts of individuals (human, animal, or plant) that were diagnosed with a disease

(within a geopolitical area over a time period), to individual diagnostic test results (at

precise times and locations). Whole volumes have been written about how to effectively es-

tablish and execute disease surveillance programs for human, animal, and plant health (e.g.,

Salman, 2003; Institute of Medicine, 2007; Lee et al., 2010; M’ikanatha et al., 2013; World

Organization for Animal Health, 2021; also see Artois et al., 2009 for a chapter about wildlife

disease surveillance). Disease surveillance programs exist at the local, state/provincial, na-

tional, and international levels. At the national level within the U.S., disease surveillance

data are collected by a number of agencies and departments, including the U.S. Depart-

ment of Agriculture’s Animal and Plant Health Inspection Service (APHIS; livestock and

plant), the Centers for Disease Control and Prevention (human), the U.S. Food and Drug

Administration (human), the Department of Defense (human; United States Government

Accountability Office, 2003), and the U.S. Geological Survey (wildlife). At the international

level, infectious disease surveillance data is collected by the World Health Organization and

the World Organization for Animal Health.

The prudence of collecting infectious disease surveillance data in humans, livestock, and

plants is well-recognized. Conducting surveillance for infectious disease in wildlife popu-

lations is also prudent in several respects. First, altruistically, it is wise to protect envi-

ronmental and ecosystem health (Wilcox et al., 2012). Infectious disease can ravage local

species populations, impact the health of the ecosystem, and reduce biodiversity (Wilcox

et al., 2012). In fact, the Endangered Species Act in the U.S. (16 U.S.C. Ch. 35) codifies the

protection of endangered species, including from the ravages of infectious disease. Second,

infectious disease outbreaks in farmed and hunted wildlife can have a negative impact on

local economies in the form of lost hunting revenue (Narrod et al., 2012; Barratt et al., 2019;

Erickson et al., 2019). Third, pathogens in wildlife or livestock may jump between species

and infect humans (Aguirre et al., 2012). Examples of this include avian influenza, swine

flu, Nipah virus, Middle East respiratory syndrome, and Ebola (Rohr et al., 2019). In fact,

it is estimated that up to 76% of emerging infectious diseases in humans are zoonotic (Rohr

et al., 2019).
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The U.S. Geological Survey National Wildlife Health Center (NWHC) in the U.S. is one of

the primary research institutions for tracking and studying infectious disease in wildlife. Ex-

amples of diseases that have been of interest include: avian influenza (birds), chronic wasting

disease (CWD; deer and other cervids), West Nile virus (e.g., birds, humans), and white-

nose syndrome (WNS; bats). The disease surveillance data that motivate the methodological

developments in this dissertation came from partnering with researchers at the NWHC and

numerous state agencies. In particular, we were granted access to surveillance data on WNS

in multiple species of bats and CWD in white-tailed deer (Odocoileus virginianus). While

the data examples in this dissertation are wildlife-centric, the methods that are developed

and presented may be applied to plant and human infectious disease surveillance data as

well.

The objective of my research was to expand on previous work by Hefley et al. (2017c)

to model the dynamics of CWD in Wisconsin. Additionally, a major effort would focus

on forecasting how CWD will spread in the upper Midwestern U.S. states. The process of

attaining these goals was broken into several steps, the first few of which were the focus of

my master’s research (Walker, 2018; Walker et al., 2020) and PhD dissertation.

The first challenge was that the CWD surveillance data suffered from location error.

Location error occurs when the recorded location of an observation is different from its true

location. In the case of the CWD surveillance data, the location of each tested deer was

recorded as the centroid of the section of land that the deer occupied (the area of each section

was ≈ 2.59 km2, according to the Public Land Survey System). Without accounting for

this location error, commonly used binary regression models for disease risk factor analyses

would provide biased inference on parameters associated with spatial covariates. Walker

et al. (2020) developed a method that applied a change of support (COS) transformation to

account for location error and obtain unbiased inference on spatial covariates.

Chapter 1 of this dissertation was published as Walker et al. (2021). This chapter ex-

tended the ideas presented in Walker et al. (2020) to enable individual-level spatial inference

on various types of aggregated disease surveillance data. Chapter 1 acknowledged that

disease surveillance data are often aggregated to protect privacy. The chapter identified
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several types of aggregated data and detailed how a COS transformation could be used to

obtain several distributional results. Models based on these distributional results enabled

individual-level spatial inference that would have otherwise been impossible to obtain from

aggregated data.

The second challenge was to extend the capability developed by Hefley et al. (2017b) and

showcased in Hefley et al. (2017c) and Hefley et al. (2020). Hefley et al. (2017c) modeled

the spatio-temporal dynamics of the growth and spread of CWD across southwestern Wis-

consin in the U.S. Hefley et al. (2017c) assumed that a single location and time of pathogen

introduction was responsible for the spread of the pathogen. Likewise, Hefley et al. (2020)

modeled the spatio-temporal dynamics of the growth and spread of the causative pathogen

for WNS across the eastern U.S., assuming a single location and time of pathogen introduc-

tion. Unlike Hefley et al. (2017c), however, Hefley et al. (2020) also estimated the location

and time of pathogen introduction. Holistically, disease surveillance data of both CWD in

Wisconsin (and the surrounding states) and WNS in the continental U.S. have suggested

that the respective pathogens were introduced at multiple locations and times. Hence, a

single introduction model would be inadequate for holistically modeling the spread of either

pathogen. Methods would need to be developed that could both estimate the number, loca-

tions, and times that the pathogen was introduced and also estimate the diffusion and growth

dynamics of the pathogen. Once these and other modeling capabilities were developed, they

could be combined for a future multi-state analysis of CWD surveillance data.

Chapter 2 and chapter 3 of this dissertation were developed somewhat concurrently to

ensure success and provide options for a future multi-state CWD data analysis. The purpose

of chapter 2 was to first examine whether it was possible to estimate the number, locations,

and times of pathogen introduction and tackle the associated trans-dimensional estimation

problem. This research effort resulted in an approximate Bayesian model-averaged method

for estimating the number, locations, and times of pathogen introduction using an ensemble

of simple ecological diffusion processes. Chapter 3 tackled the additional problem of ob-

taining inference on the spatio-temporal process associated with the number, locations, and

times of pathogen introduction. Ultimately, in chapter 3 the trans-dimensional estimation
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problem was re-framed and addressed using tools from mixture model analysis and the miss-

ing data literature. An additional goal of obtaining inference on the spatio-temporal process

associated with the number, locations, and times of pathogen introduction was addressed

using a point process model. Partway through development of chapter 3, a collaborator and

applied mathematician, Dr. Ian McGahan, introduced an approximate analytical solution

to the ecological diffusion partial differential equation (PDE) used by Hefley et al. (2017c)

and Hefley et al. (2020). Dr. McGahan’s addition was crucial because the method in chapter

3 could be adapted to estimate the spatio-temporal diffusion and growth dynamics of the

pathogen.

The research in this dissertation represents a considerable contribution to my original ob-

jectives by enabling inference on the spread, growth, and spatial distribution of the causative

pathogen for CWD in the upper Midwestern U.S. The work of integrating the methods from

Walker et al. (2020), chapter 1 (Walker et al., 2021), and chapter 3 in a multi-state CWD

data analysis will be accomplished at a later time.
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Chapter 1

Recovering Individual-level Spatial

Inference from Aggregated Binary

Data.

1.1 Abstract

Binary regression models are commonly used in disciplines such as epidemiology and ecology

to determine how spatial covariates influence individuals. In many studies, binary data are

shared in a spatially aggregated form to protect privacy. For example, rather than reporting

the location and result for each individual that was tested for a disease, researchers may

report that a disease was detected or not detected within geopolitical units. Often, the spatial

aggregation process obscures the values of response variables, spatial covariates, and locations

of each individual, which makes recovering individual-level inference difficult. We show that

applying a series of transformations, including a change of support, to a bivariate point

process model allows researchers to recover individual-level inference for spatial covariates

from spatially aggregated binary data. The series of transformations preserves the convenient

interpretation of desirable binary regression models that are commonly applied to individual-

level data. Using a simulation experiment, we compare the performance of our proposed
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method under varying types of spatial aggregation against the performance of standard

approaches using the original individual-level data. We illustrate our method by modeling

individual-level probability of infection using a data set that has been aggregated to protect

several at-risk or threatened species of bats. Our simulation experiment and data illustration

demonstrate the utility of the proposed method when access to original non-aggregated data

is impractical or prohibited. This chapter was published as an article in Spatial Statistics as

Walker et al. (2021).

1.2 Introduction

Spatially referenced binary data are among the most common types of data that enable

inference about spatial covariates. Scientists and policy makers are often interested in un-

derstanding how spatial covariates influence the probability of a binary outcome, such as

whether a plant or animal tests positive or negative for a disease. Sometimes spatial binary

data are aggregated to protect privacy. For example, wild plants and animals are protected

by law (e.g., threatened or endangered species under the U.S. Endangered Species Act (ESA)

of 1973). As a result, spatially referenced binary data involving protected plants and ani-

mals may be reported in aggregate to reduce the potential for human contact (e.g., tourism,

vandalism, and theft). The aggregation process can make individual-level inference difficult

to obtain for spatial covariates because the original values of the binary responses, locations,

and spatial covariates cannot be recovered.

An example where spatial binary data are aggregated is a disease surveillance study for

white-nose syndrome (WNS), which is caused by the fungal pathogen P. destructans. In a

disease surveillance study, binary observations are collected on individual bats found within

geopolitical areas (counties). However, the observations are aggregated to the county-level

when making them accessible to researchers and the public in accordance with federal law and

to protect the wildlife (see Figure 1.1). The map in Figure 1.1 indicates which counties in

the northeastern United States contained individual bats that were tested and which counties

had at least one diagnosed case of WNS from 2008-2012. When the individual test results are
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P. destructans Not Detected

P. destructans Detected

Figure 1.1: The motivating data set shows which counties contained bats that were indi-
vidually tested for P. destructans, the causative agent of white-nose syndrome, within the
northeastern United States from 2008-2012. The counties that contained at least one bat
that tested positive for P. destructans are shown in purple fill while counties with no positive
bats are shown in white fill. The covariates ‘proportion of land classified as forest’ (inset
right) and ‘presence of karst’ (inset left) from Monroe county, Indiana, USA (outlined in bold
black). Karst is a type of landscape characterized by caves and sinkholes that can provide
habitat to cave-hibernating bats. Spatially referenced wildlife data are often accessible to
researchers in aggregated form to reduce the potential for human contact. When binary data
within a county are aggregated into an indicator that denotes whether the county contained
at least one sampled bat that tested positive, individual-level spatial covariates and inference
cannot be obtained.

aggregated as shown in Figure 1.1, it can be difficult to recover the original individual-level

inference for spatial covariates because the original values of the binary response, location,

and spatial covariates for each observation are unknown. For these types of data, researchers

commonly resort to fitting regression models to the aggregated data and may interpret the

areal-level inference about spatial covariates as if it was obtained from a model that was

fit to individual-level data, which is a well-documented ecological fallacy (Piantadosi et al.,

1988; Gotway and Young, 2002).

Univariate point process-based methods have traditionally formed the backbone of efforts

to make individual-level inference on spatially aggregated data (e.g., Bradley et al., 2016;
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Hefley et al., 2017a; Taylor et al., 2018; Gelfand and Shirota, 2019). Perhaps less common,

bivariate point process models enable individual-level inference on spatially aggregated data

where the non-aggregated data consist of binary marks at specific locations (Diggle et al.,

2010a; Chang et al., 2015; Wang et al., 2017; Johnson et al., 2019; Walker et al., 2020). For

binary data, these methods are capable of recovering individual-level inference on spatial

covariates under varying types of spatial aggregation (see Table 1.2 and Figure 1.2). For

example, when the individual-level binary data are aggregated over areal units into separate

counts of the number of observations with a specific binary mark, the methods by Wang et al.

(2017), Johnson et al. (2019), and Walker et al. (2020) can be used to recover individual-level

inference for spatial covariates (see Table 1.1, Type C). When at least some of the binary

data are aggregated into counts (e.g., number of observations with a mark of zero) and the

rest of the data are not aggregated, the methods from Diggle et al. (2010a), Chang et al.

(2015), and Walker et al. (2020) can be used to recover individual-level inference for spatial

covariates (see Table 1.1, Type B).

Aside from Type B and C data, we have identified two additional types of aggregated

data that appear in practice. First, when the data are aggregated into counts of the total

number of observations in areal units and also aggregated into binary indicators that denote

whether at least one observation in the areal unit had a mark of one, the existing methods

are insufficient to recover individual-level inference on spatial covariates (see Table 1.1 and

Figure 1.2, Type D). Likewise, to the best of our knowledge, no methods exist to recover

individual-level inference on spatial covariates when the aggregated data consist only of

the binary indicators over areal units (see Table 1.1 and Figure 1.2, Type E). This is

unfortunate because, presumably, data categorized as Type D or E are more likely to be

accessible when compared to data of Type B or C. We hypothesize that Type D and Type E

data would be more accessible because Type D and E are a degraded form of Types A-C data

and offer a higher degree of privacy protection. Thus, Type D and E aggregated data are

an untapped data source for individual-level inference. For example, the disease surveillance

example from Figure 1.1 may be classified as Type E data.

The contribution of this chapter is to enable individual-level inference for spatial co-
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Figure 1.2: Graphical representations of the types of aggregation for spatially referenced bi-
nary data found in Table 1.1. The data set shown under Type A is progressively aggregated
across sub-regions, starting from the exact locations of all observations (Type A data) and
ending with binary indicators (Type E data). We define yi as the binary mark associated
with the ith spatially referenced observation. For the jth subregion, we define nj as the total
number of observations contained therein. We also define vj as a binary indicator that at
least one observation with yi = 1 occurred in the jth subregion.
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variates from Type D and E aggregated binary data. We accomplish this by transforming

the bivariate inhomogeneous Poisson point process (BIPPP) regression model and applying

several distributional results. Importantly, and following Walker et al. (2020), the proposed

methods preserve the interpretation of commonly used binary regression methods (e.g., logis-

tic and probit regression). Thus the proposed methods are easy to interpret and are widely

applicable to aggregated binary data.

The remainder of this chapter proceeds as follows: In the Methods Section, we review

regression models for binary data, including the BIPPP. We then present several distribu-

tional results for the transformed BIPPP that may be used to recover individual-level spatial

inference under various types of aggregation. In the Simulation Experiment Section, we eval-

uate and compare the proposed models to traditional approaches for the analysis of spatial

binary data (e.g., logistic regression) using a simulation study. In the Application Section,

we apply our proposed regression models to a data example from wildlife disease surveillance

where the aggregated data result in a binary indicator for each geopolitical unit. Finally,

in the Discussion Section, we identify potential modifications and model comparisons that

practitioners may consider.

1.3 Methods

1.3.1 Binary Regression

Binary regression is arguably one of the most popular types of regression models and can be

written as

yi ∼Bernoulli(pi), (1.1)

g(pi) =β0 + x′iβ, (1.2)

where yi is the ith binary response from y ≡ (y1, y2, . . . , yn)′, n is the number of observations,

pi is the probability that yi = 1, and g(·) is an appropriate link function (e.g., logit or

7



probit). Additionally, β0 is an intercept, xi ≡ (x1, x2, . . . , xq)
′ is a vector of q covariates, and

β ≡ (β1, β2, . . . , βq)
′ is a vector of q regression coefficients. Regression models like (1.1-1.2)

are often used to model spatial binary data (e.g., Gelfand and Schliep, 2018; Diggle and

Giorgi, 2019). In the case that (1.2) includes spatial covariates x(s), then pi becomes a

spatially varying function such that

g(p(s)) = β0 + x(s)′β, (1.3)

where s ≡ (s1, s2)′ is a coordinate vector within the study area S (i.e., s ⊆ S). In what

follows, we specify g(·) using the logit link function, however, as with any binary regression

model, the choice is flexible.

A similar spatial binary regression model to (1.1) and (1.3) that incorporates the locations

of n observations in a study area S ⊂ R2, is the bivariate point process (Gelfand and

Schliep, 2018). Perhaps the most common type of point process used for binary data is

the bivariate inhomogeneous Poisson point process (BIPPP; Gelfand and Schliep, 2018).

The BIPPP is a joint distribution composed of a Poisson probability mass function that

generates n, a location density that generates the coordinates of each observation, ui, and

the Bernoulli probability mass function from (1.1) that generates binary outcomes, y, called

marks (Gelfand and Schliep, 2018). The BIPPP can be written as:

f(n,u1,u2, . . . ,un,y|λ, p) =
e−(

∫
S λ(s)ds)(

∫
S λ(s)ds)

n

n!
×

n∏
i=1

λ(ui)∫
S λ(s)ds

p(ui)
yi(1− p(ui))1−yi , (1.4)

where λ(·) is a spatially varying thinned intensity function that captures both the distribution

of bats and the sampling process (Gelfand and Shirota, 2019). The function p(·) is identical

to (1.3) and may be viewed as a classification function because it relates a binary mark to

each of n locations. For example, in our motivating data set, the binary marks represent

test results for individual bats that tested positive (i.e., yi = 1) or negative (yi = 0) for

P. destructans, the causative agent of WNS. We note that the BIPPP offers no obvious

8



advantage for spatial binary data over the model formed from (1.1) and (1.3) unless the

binary observations are spatially aggregated, the locations of the observations are obscured

by location error (e.g., Walker et al., 2020), or the observations are collected via preferential

sampling (e.g., Diggle et al., 2010b).

In many applications, researchers often specify λ(·) using

log(λ(s)) = α0 + z(s)′α , (1.5)

where α0 is an intercept, z(s) ≡ (z(s)1, z(s)2, . . . , z(s)r)
′ is a vector of r spatial covariates,

and α ≡ (α1, α2, . . . , αr)
′ is a vector of r regression coefficients (Gelfand and Schliep, 2018).

Some situations may require an alternative, and potentially more flexible, specification in

(1.5). For example, a Gaussian process could be added to (1.5) by way of a spatial random

effect (Gelfand and Schliep, 2018). We focus on a log-linear specification for λ(·) because

the specification is reasonable for our motivating data set and because we can more easily

discover parameter identifiability issues.

1.3.2 Change of Support and Distributional Results

While the distributions from (1.1) and (1.4) are appropriate for spatially referenced binary

data, they are inadequate when the spatial binary data are aggregated (see Table 1.1). In

what follows, we outline several transformations of the BIPPP that result in distributions

that match the distributional attributes of aggregated spatial binary data of Types C, D,

and E (see Table 1.1 and Figure 1.2).

The transformation of a spatial process from continuous to areal support is called a

change of support (COS). To implement a COS, the study area S is partitioned into J non-

overlapping subregions, A1,A2, . . . ,AJ , such that S = ∪Jj=1Aj. The partition is determined

by how the data were aggregated. For example, our motivating data set reported the county

that each bat was sampled from in the northeastern United States (see Figure 1.1). Thus,

S is defined by the combined area of the counties that contained sampled bats and the

partition is defined by the boundaries of the counties which contained the bats.
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If we know the number of observations with a mark of one (n1j) and a mark of zero (n0j)

contained within the jth subregion (see Table 1.1 and Figure 1.2, Type C data), a result

of applying the COS to the BIPPP is n1j and n0j are Poisson random variables distributed

as follows (Gelfand and Schliep, 2018):

n1j ∼Pois(

∫
Aj
λ(s)p(s)ds), (1.6)

n0j ∼Pois(

∫
Aj
λ(s)(1− p(s))ds). (1.7)

The joint distribution of n1j and n0j is an appropriate density for binary data that have

been aggregated into counts and results in a regression model that recovers individual-level

inference on spatial covariates. Effectively, this models two point patterns, with intensities

λ(s)p(s) and λ(s)(1 − p(s)), for presence and absence of a mark. Wang et al. (2017) and

Walker et al. (2020) both used this type of binary regression model to make individual-

level inference from aggregated binary data using spatial covariates. Similar to (1.6-1.7),

the number of observations in the jth subregion, nj = n1j + n0j, is also a Poisson random

variable (Cressie and Wikle, 2011, p. 207),

nj ∼Pois(

∫
Aj
λ(s)ds). (1.8)

1.3.3 Proposed Change-of-Support based Methods

In some cases, we may have access to nj (e.g., the total number of individuals tested within

each county) and a binary indicator vj = I(n1j > 0) for each subregion (see Table 1.1 and

Figure 1.2, Type D data). In our motivating data set, vj = 1 indicates that the jth county

contains at least one sampled bat that tested positive for the pathogen, and vj = 0 indicates

that all of the sampled bats tested negative in the county. Conditioning vj on nj, we obtain

the following density:

vj|nj ∼Bern(1− (1− p̃j)nj), (1.9)
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where

p̃j =

∫
Aj λ(s)p(s)ds∫
Aj λ(s)ds

. (1.10)

The conditional distribution of vj given nj is an appropriate density for binary data that

have been aggregated into Type D data. The joint density of (1.8) and (1.9) can also be

used to construct a regression model for Type D aggregated binary data. Models based on

(1.9) or the joint distribution of (1.8) and (1.9) are a novel development because both can

recover individual-level inference on spatial covariates from Type D aggregated data (see

Table 1.1).

Under the form of aggregation in Type E data, we may assume only vj is given for each

subregion (see Table 1.1 and Figure 1.2). The data generated by the indicator function

follow a Bernoulli distribution and is given as follows:

vj ∼ Bern(1− e−
∫
Aj

λ(s)p(s)ds
). (1.11)

A model for Type E data based on (1.11) is also a novel development, as the model is capable

of recovering individual-level inference on spatial covariates from Type E aggregated data.

1.3.4 Parameter Identifiability

The distributions presented in Section 1.3.3 form the basis for regression models that recover

individual-level spatial inference from various types of aggregated binary data (see Table

1.1 and Figure 1.2). Like all binary regression models and point process models, the pro-

posed transformed BIPPP models may have parameter identifiability issues (e.g., complete

separation; Hefley and Hooten, 2015) when sample size is small or the data contain little

information (e.g., a very large number of zeros).
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1.3.5 Model Implementation

We use the Nelder-Mead algorithm in the program R to numerically minimize the negative

log-likelihoods for the densities introduced in this chapter and simultaneously estimate all

parameters (R Core Team, 2021). Evaluating the negative log-likelihood functions requires

approximating the integrals contained therein. We approximate the integrals using simple

quadrature for ease of implementation (e.g.,
∫
Aj λ(s)ds ≈

∑K
k=1 |W | ∗ λ(sk), where λ(sk)

is the value of λ(s) at the kth quadrature point and |W | is the area of a grid cell that is

both a subset of Aj and approximated by a quadrature point). For all model parameters,

we approximate variances by inverting the Hessian matrix and then construct Wald-type

confidence intervals (CIs).

1.4 Simulation Experiment

We conducted a simulation experiment to compare the performance of our proposed models,

using different types of aggregated binary data, to traditional models for non-aggregated

binary data (e.g., logistic regression). We simulated data using a unit square study area,

S = [0, 1] × [0, 1], that was divided into 400 regular grid cells (subregions), such that S =

∪400
j=1Aj and |Aj| = 1

400
. We generated spatial covariates, x(s) and z(s), and simulated the

locations and binary marks of observations from a BIPPP where the intensity function was

log(λ(s)) = α0 + α1z(s) and the classification function was logit(p(s)) = β0 + β1x(s). We

focused on and compared estimates of β1 among five models because β1 is highly affected by

aggregation and inference on the slope parameters of the classification function is likely to

be the focus of many applied studies (Walker et al., 2020). We accomplished the comparison

of estimates of β1 by assessing bias, coverage probabilities (CPs), and relative efficiency for

estimates of β1 among the following five scenarios:

1. A traditional logistic regression model from (1.1) and (1.3) fit to non-aggregated data

(see Table 1.1 and Figure 1.2, Type A);

2. A joint model for n1j and n0j that is specified by combining the distributions in (1.6)
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and (1.7; see Table 1.1 and Figure 1.2, Type C);

3. A joint model for vj and nj that is specified by combining the distributions in (1.8)

and (1.9; see Table 1.1 and Figure 1.2, Type D);

4. The conditional model for vj given nj from (1.9; see Table 1.1 and Figure 1.2, Type

D);

5. The Bernoulli model for vj from (1.11; see Table 1.1 and Figure 1.2, Type E).

We simulated 1000 data sets from four different settings using a combination of two

factors: covariate equivalence (x(s) = z(s) vs. x(s) 6= z(s)); and average sample size (small

vs. large). Thus our simulation experiment uses a total of 4,000 simulated data sets and

realizations of z(s) and x(s). Each simulated data set was aggregated to fit each data type in

scenarios 2-5. We drew each spatial covariate realization from a low-rank Gaussian process

(Higdon, 2002) on a 200×200 grid with knots at every fourth grid cell to reduce computation

time. We chose parameter values of α1 = 1, and β1 = 1 for all settings. We chose values for

α0 and β0 for each setting such that the average sample size per subregion was either 10 or

50 (small vs. large) and the proportion of subregions that contained a binary mark of one

was approximately constant across all settings. The values of α0 and β0 in settings 1-4 were

7.800, 9.410, 7.820, 9.405 and −5.500,−7.070,−4.750,−6.350, respectively.

We fit the model in scenario one (i.e., traditional logistic regression) using the glm function

in R to obtain the maximum likelihood estimates (MLEs) of β0 and β1. We fit the models

in scenarios two through five as described in Section 1.3.5. For each model and setting, we

calculated and compared the CPs from the 95% Wald-type CIs for β1. We also constructed

box plots comparing the distribution of β̂1 obtained from the 1000 data sets for each scenario

and setting. We calculated the standard deviation of the empirical distribution of the 1000

estimates of β1 in each scenario. We then calculated the relative efficiency of β̂1 for scenarios

two through five by dividing the standard deviation of the distribution of β̂1 for the respective

scenario by that of scenario one. Lastly, we calculated the mean squared predictive error

(MSPE) in the estimated intensity and probability surfaces for each of the models in scenarios

13



two through five. However, we only calculated the MSPE for the estimated probability

surface for the model in scenario one.

When binary data are generated according to a BIPPP and then spatially aggregated,

we expect to obtain unbiased estimates in scenarios two, three, four, and five. Of the

proposed models based on the distributional results presented in Sections 1.3.2-1.3.3, we

expect that the model for scenario two will have the highest relative efficiency among all

settings covered by the experiment, followed by the models from scenarios three, four, and

five. We expect the MSPE of the estimated intensity and probability surfaces to be smallest

for the model in scenario two, followed by three, four, and five. We provide annotated R code

capable of reproducing the simulation experiment in the simulation.R file in the supporting

information for Walker et al. (2021).

1.4.1 Simulation Results

In our simulation experiment, we crossed two factors (average sample size per subregion and

covariate equivalence) with two levels each. With our choices of α0, the average numbers

of observations within each grid cell were about 10.2 and 50.1 for small and large sample

settings, respectively. With our choices of β0 for each setting, we maintained a proportion

of approximately 0.11 of grid-cells that contained a binary mark of one (see Table 1.2).

As expected, under the model and data in scenario one (traditional logistic regression

with no data aggregation), the MLEs for β1 appear to be unbiased for all settings and had

CPs between 0.945 and 0.951. Under the model and data in scenario two (joint distribution

of n1j and n0j) the MLEs for β1 appear to be unbiased for all settings in the simulation study

(see Figure 1.3 for graphical comparisons of estimates and Appendix A for additional plots

and summaries). The CPs for β̂1, in scenario two, were between 0.94 and 0.961 for all

settings. Additionally, the relative efficiency of β̂1, obtained from scenario two, ranged from

about 1.1 (settings 1, 2) to about 1.2 (setting 3). The CPs obtained for scenarios one and

two, and efficiencies for scenario two, are available in Table 1.2.

Under the model and data in scenario three (joint distribution of vj and nj) the MLEs
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Figure 1.3: Panels (A) and (B) show box plots of results from small and large average sample
size simulation experiment settings where x(s) = z(s). Panels (C) and (D) show small and
large sample size simulation experiments where x(s) 6= z(s). We show maximum likelihood
estimates of β1 obtained using five different models (each under a different data aggregation
scenario), which included: Scen. 1) logistic regression with no data aggregation (Type
A data); Scen. 2) a joint model for n1j and n0j where binary data were aggregated into
counts for each subregion (Type C data); Scen. 3) a joint model for vj and nj using data
aggregated into a count and indicator variable for each subregion (Type D data); Scen. 4)
a conditional model for vj given nj using data aggregated into a count and indicator variable
for each subregion (Type D data); Scen. 5) a Bernoulli model for vj using data aggregated
into an indicator variable for each subregion (Type E data). Each of the four panels used
1,000 simulated data sets, and each panel shows the true value of β1 = 1 (dotted line).
The distribution of β̂1 from scenario five (Bernoulli model) was such that some estimates
fell outside the upper bounds of the plots. Each box plot shows (from bottom to top) the
lower bound of 1.5 times the inter-quartile range, the 25th percentile, the median, the 75th

percentile, and the upper bound of 1.5 times the inter-quartile range. See Table 1.2 for a
summary of all settings.
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for β1 appear to be unbiased for all settings in the simulation study (see Figure 1.3). The

CPs for β̂1, in scenario three, were between 0.946 and 0.964 for all settings. Additionally,

the relative efficiency of β̂1, obtained from scenario three, ranged from about 1.4 (setting 4)

to about 1.8 (setting 2). The CPs and efficiencies obtained for scenario three are available

in Table 1.2.

Under the model and data in scenario four (conditional distribution of vj given nj) the

MLEs for β1 appear to be unbiased for all settings in the simulation study (see Figure 1.3).

The CPs for β̂1, in scenario four, were between 0.919 and 0.943 for all settings. Additionally,

the relative efficiency of β̂1, obtained from scenario four, ranged from about 1.4 (setting

4) to about 1.9 (setting 2). Finally, under the model and data in scenario five (Bernoulli

distribution of vj), the MLEs for β1 were weakly identifiable with efficiencies of β̂1 ranging

from about 13.1 (setting 4) to over 18,000 (setting 3) and CPs between 0.819 and 0.956. The

CPs and efficiencies obtained for scenarios four and five are available in Table 1.2.

As expected, the MSPE of the estimated probability surfaces was smallest for the model

in scenario one, followed by two, three, four, and five across all settings. In general, the MSPE

of the estimated intensity surfaces were smallest for the model in scenario two, followed by

three, four, and five. Plots showing the distributions of the MSPE for the estimated intensity

and probability surfaces among each of the scenarios for all settings are given in Appendix

A.

1.5 Application

1.5.1 Disease Risk Factor Analysis

The distributional results outlined in the Methods Section are useful for disease risk factor

analyses when data have been spatially aggregated. Using the transformed distributions en-

ables researchers to recover individual-level inference about how spatial covariates influence

the probability of infection. We illustrate our proposed methods using disease surveillance

data collected to understand and manage the spread of white-nose syndrome (WNS). As
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previously mentioned, WNS is a fungal disease caused by the pathogen P. destructans that

threatens several North American species of bats (Ingersoll et al., 2016). The earliest docu-

mentation of the disease in North America was in 2006 based on photographic evidence from

Howes Cave, near Albany, New York (Blehert et al., 2009; Frick et al., 2010; Hefley et al.,

2020). The pathogen, P. destructans, has since spread throughout the eastern and midwest-

ern United States resulting in high mortality rates among several species of cave-hibernating

bats. Surveillance for P. destructans in the United States began in 2007 using a combination

of passive and active surveillance methods. During 2007–2012, samples were obtained from

individual bats associated with morbidity or mortality investigations occurring year-round at

underground hibernacula or on the above-ground landscape. An individual sample consisted

of a bat carcass, biopsies of wing skin, or tape lifts of fungal growth on the muzzle. A small

number of individual samples were also obtained from target species (including Myotis spp.,

Perimyotis subflavus, and Eptesicus fuscus) that were admitted to rehabilitation facilities

or state diagnostic laboratories for rabies testing from approximately December to May. A

positive or negative diagnosis of WNS in individual bats was determined by observing char-

acteristic histopathologic lesions in skin tissues using light microscopy (Meteyer et al., 2009).

A diagnosis of ‘suspect WNS’ was assigned to individuals with clinical signs suggestive of

the disease that had ambiguous skin histopathology or that had the causative agent (P.

destructans) detected by fungal culture, fungal tape lift, or polymerase chain reaction in

the absence of available or definitive histopathology and regardless of observed clinical signs

(Lorch et al., 2010). We treated ‘suspect WNS’ diagnoses as positive cases for our analysis.

We illustrate our modeling approach using a subset of the WNS surveillance data collected

during 2008–2012 that included individual samples of little brown bats (Myotis lucifugus),

big brown bats (Eptesicus fuscus), northern long-eared bats (Myotis septentrionalis), and

tri-colored bats (Perimyotis subflavus). This resulted in a total of 428 samples with 226

positive or suspected positive cases of WNS (Ballmann et al., 2021). As a result of the

data collection process, the study area S was defined as the 120 counties that contained at

least one bat that was tested for WNS between 2008 and 2012. The resulting study area

collectively covered approximately 195,000 km2. We note that this number reflects the sum
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of the areas of the included counties rather than the area of the northeastern United States.

To comply with the Endangered Species Act and protect the bats and their environment,

the locations of the tested bats were recorded as the respective county centroids and thus

suffered from bounded location error (sensu Walker et al., 2020). As bounded location

error is equivalent to aggregation in this instance, the original data are Type C and require

an appropriate model (i.e. the joint model for n1j and n0j from (1.6-1.7)) to obtain bias

corrected individual-level inference. As Type C data can be further aggregated to become

Type D and E, the WNS data are well-positioned to demonstrate our proposed models.

We were interested in two spatial covariates when we evaluated our proposed models.

The first spatial covariate was ‘presence of karst’ (karst), a type of landscape characterized

by cave formation. Therefore, the presence of karst in any particular area serves as a plau-

sible surrogate covariate for the presence or absence of caves where bats might congregate

(Medellin et al., 2017). The second spatial covariate was ‘proportion of land classified as

forest’ (forest) and was calculated from the 2011 National Land Cover Database by deter-

mining what proportion of land within each 300m × 300m grid cell in the study area was

composed of any kind of forest (Homer et al., 2015). The forest covariate is notable because

the proportion of the immediate vicinity that is covered in forest may be an ecologically

relevant predictor for the presence of WNS (Jachowski et al., 2014).

We fit each of four regression models that enable individual-level spatial inference from

aggregated binary data (i.e., the joint model for n1j and n0j from (1.6-1.7); the joint model

for vj and nj from (1.8) and (1.9); the conditional model for vj given nj from (1.9); and

the Bernoulli model for vj from (1.11)) to the WNS data set under the types of aggregation

introduced in Table 1.1 (Types C, D, and E). We incorporated the spatial covariate ‘presence

of karst’ in the thinned intensity function, λ(s), of the proposed transformed models and we

included ‘proportion of land classified as forest’ (forest) as the spatial covariate in p(s) in

the transformed models.

We also fit three logistic regression models to the Type E aggregated WNS data, con-

sisting of indicator variables (see Table 1.1, Type E). These three models represent the

approach some researchers resort to when attempting to make individual-level inference
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from aggregated data. The first model that was fit to Type E data used the value of the

forest covariate from the centroid of each county (Areal County Centroid), while the second

model used the average of the forest covariate for each county (Areal County Average). The

third logistic regression model that was fit to Type E data used the average of the forest

covariate across areas in each respective county where karst landscape was present (Areal %

Forest in Karst).

We fit the regression models that enable individual-level spatial inference from aggregated

binary data as outlined in Section 1.3.5 using the program R. We used the glm function in

the program R to fit the specified logistic regression models (R Core Team, 2021). Numer-

ically optimizing the likelihood functions for the proposed regression models each required

approximately one and a half hours on a standard desktop computer. We compare MLEs

and Wald-type 95% CIs among the proposed regression models and we provide the MLEs

and Wald-type 95% CIs for the three logistic regression models fit to Type E data as a ref-

erence. We provide annotated R code capable of reproducing the disease risk factor analysis

in the wns.R file in the supporting information for Walker et al. (2021) and in Ballmann

et al. (2021).

1.5.2 Results

Our results show that the proposed regression models give similar inference to each other

regardless of the type of data or level of aggregation, as long as the appropriate model is used

(see Figure 1.4 for comparisons and Appendix A for additional plots). The joint model for

n1j and n0j from (1.6-1.7) provided the most precise estimates and matched the distribution

of the available WNS data. As a result, the joint model for n1j and n0j provides the most

efficient individual-level inference among the proposed models. This is unsurprising because

the data, which are Type C, contain the most information (see Table 1.1).

The results for the logistic regression models fit to Type E data differed among themselves

substantially, although the 95% CIs for β̂forest overlapped between two pairs of the three

models. While it would be tempting to compare the results from the logistic regression

20



●

0

2

4

6

8

Joint
Model

Joint
Model

Conditional
Model

Bernoulli
Model

Areal
County

Centroid

Areal
County
Average

Areal
% Forest
in Karstvjvj, njvj, njn1j, n0j

β̂forest

Individual Inference
Areal Inference

Figure 1.4: Binary regression model coefficient estimates and 95% CIs for the spatial co-
variate ‘proportion of land classified as forest’ (forest) that affects the probability of P.
destructans infection for cave-hibernating bats in the northeastern United States (see Fig-
ure 1.1 for visual). Estimates were obtained from the joint model for n1j and n0j in (1.6-1.7),
the joint model for vj and nj in (1.8) and (1.9), the conditional model for vj given nj in (1.9),
and the Bernoulli model for vj in (1.11) that were fit using the respective data types. Here,
n1j is the number of observations in the jth county that tested positive or suspect positive
for WNS, n0j is the number of observations in the jth county that tested negative, nj is the
total number of observations in the jth county, and vj = I(n1j > 0). Also, using data that
consists of the binary indicators (vj), we give the areal-level results for logistic regression
models that have the covariates of county centroid value of forest (Areal County Centroid),
county averaged forest (Areal County Average), and county averaged forest in karst land-
scape (Areal % Forest in Karst). We delineate which models can recover individual-level
inference (pink) and which are suited to areal-level inference (blue). For each model, we give
the coefficient estimate (box) followed by the 95% CI limits (whisker ends).
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models fit to Type E data against the models that produce individual-level inference, it

would be fallacious to do so (Piantadosi et al., 1988; Gotway and Young, 2002).

1.6 Discussion

Our results demonstrated that models based on the proposed distributional results were

capable of recovering individual-level inference on spatial covariates from aggregated binary

data. As the degree of data aggregation increases, from Type C data to Type E, the relative

efficiency of slope parameter estimates and intercept estimates decreases (see Appendix A

for additional results). Further, the probability of obtaining extreme values of coefficient

estimates and standard errors from the proposed models increases as aggregation increases

from Type A to Type E data. However, even without more specific information than an

indicator variable (i.e., Type E data) for each county, our results show that it may be

possible to recover individual-level inference.

In many situations, such as our WNS surveillance data, data curators will be unable to

release the exact locations of binary data (i.e., Type A data). Likewise, there will be many

situations where data curators may be unwilling or unable to release Type C aggregated data

because the data contain too much specific information to adequately protect privacy. The

next level of privacy protection that enables individual-level inference comes from releasing

the number of observations in each subregion (nj) and an indicator variable for each subregion

(vj = I(n1j > 0)). Releasing nj and vj would provide the data required to fit models based

on (1.9) and the joint density of (1.8) and (1.9). We note that inference from the joint

model for vj and nj is usually preferable in practice if n1j and n0j are unavailable. This

is because parameter estimates from the joint model for vj and nj are more efficient than

that of the conditional model. The model for Type E data based on (1.11) has an increased

probability of providing extreme coefficient estimates and large or infinite standard errors

for some situations (similar to complete separation in binary regression models). However, if

auxiliary information is available about λ(·) (e.g., the sampling design for the study or a point

estimate for λ(·)), models based on (1.11) would have a higher probability of being useful
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(i.e., estimates may not be extreme and confidence intervals may be of reasonable width).

In general, if individual-level inference is required, we recommend that practitioners fit the

appropriate model for the type of aggregated data that is available to them. If the standard

errors are large for the parameters of interest in the appropriate model, we recommend

applying standard techniques to address complete separation (e.g., a Firth correction; Firth,

1993).

Two issues linger from our disease risk factor analysis. First, in some disease risk factor

analyses there may be a need to account for spatial correlation among the responses. A

spatial random effect may be added to the models proposed in this chapter, either in the

specification for λ(s), or p(s), or both (e.g., Diggle et al., 1998), as follows:

log(λ(s)) =α0 + z(s)′α+ η(s), (1.12)

logit(p(s)) =β0 + x(s)′β + γ(s), (1.13)

where each value of η(s) and γ(s) is assumed to follow a multivariate normal distribution,

as follows: 

η(s1)

...

η(sn)

γ(s1)

...

γ(sn)


∼ N(

0

0

 ,
Ση Σηγ

Σγη Σγ

). (1.14)

Here, Ση and Σγ are block diagonal components of the covariance matrix and Σηγ = Σ′γη

is an n × n block of zeros. Although practitioners could perform standard visual model

checking procedures (e.g., semivariogram) to determine if spatial auto-correlation occurs in

either the location data or the binary marks, we are unaware of how these techniques could

be applied to aggregated data. Instead, we recommend that practitioners fit the proposed
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models with a spatial random effect(s), and then again without, and perform model selection

(Burnham and Anderson, 2002).

The second common issue for disease risk factor analyses is that collection of opportunistic

disease surveillance data is often and likely the result of preferential sampling. Preferential

sampling arises if η(s) andγ(s) from (12-14) are correlated, or when the off-diagonal blocks

of the covariance matrix are non-zero. Including a spatial random effect is therefore a

straightforward way to account for preferential sampling that may be present when using

any of the models included in this chapter (Diggle et al., 2010b). Adapting assumptions 1-3

from Diggle et al. (2010b) to our notation from (4) and assuming that (4) is specified with

spatial random effects:

1. η(s) ∼ N(0,Ση), where η(s) is a spatial random effect assumed to follow a multivariate

normal distribution and s is the coordinate vector in the study area S (i.e., s ⊆ S).

2. U ∼ IPPP(λ(s)) where U ≡ (u1,u2, ...,un)′ is a matrix of locations for the tested

bats generated from an inhomogeneous Poisson point process with log(λ(s)) = α0 +

z(s)′α+ θη(s) and θ as a scaling parameter.

3. yi ∼ Bern(p(ui)), where yi is the ith observation, ui is the location of the ith bat, and

g(p(s)) = β0 + x(s)′β + η(s). For our purposes, g(·) is the logit link.

Following Diggle et al. (2010b), the model specified in items 1-3 accounts for preferential

sampling.

Lastly, non-spatial individual-level covariates (e.g., sex or age) can be included in models

for Type B and C data (e.g., Walker et al., 2020). However, due to the constraints inherent in

the aggregation process for Type D and E data, it is not likely that non-spatial, individual-

level covariates would be available. A future contribution might incorporate non-spatial,

aggregated individual-level covariates (e.g., average age of tested individuals in a county)

into the proposed transformed models for data Types D and E. Furthermore, Taylor et al.

(2018) and Heaton et al. (2020) showed it may be possible to relax the assumption of a

discretized partition of the study area that normally applies to models that include a COS
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transformation. Relaxing this assumption would accommodate overlapping and uncertain

subregion boundaries.
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Chapter 2

A Staged Approximate Bayesian

Model Averaging Method for

Estimating the Number, Locations,

and Times of Introduction for a Novel

Pathogen.

2.1 Abstract

Disease surveillance data are an important resource for epidemiologists, animal and plant

pathologists, and ecologists to identify, understand, and mitigate the spread of infectious

disease in human, livestock, wildlife, and plant populations. While methods exist to identify

likely sources of a pathogen in simple circumstances or forecast the spread of an infectious

disease in broad terms, few methods explicitly estimate the spatio-temporal origins of a

pathogen (i.e., the locations and times that a pathogen was introduced) and the number of

pathogen introductions in a widespread epidemic. We outline a likelihood based method and

a staged approximate Bayesian model averaging (SABMA) method to obtain this inference
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under an ensemble model of simple ecological diffusion processes for the spread of a pathogen

through a population. We evaluate the predictive performance and credible interval coverage

of the SABMA method compared to the inference and predictive ability of the likelihood-

based method via a simulation experiment. We then apply the likelihood-based and SABMA

methods to two sets of disease surveillance data on chronic wasting disease (CWD) in white-

tailed deer (Odocoileus virginianus); the first in the lower peninsula of Michigan in the U.S.,

and the second in southern Wisconsin and northern Illinois in the U.S.

2.2 Introduction

In epidemiology, animal and plant pathology, and disease ecology, a central concern of re-

searchers is to identify and understand outbreaks of infectious disease. The collection and

analysis of spatial and spatio-temporal disease surveillance data, related to the presence and

prevalence of infectious disease, provide essential insight into the dynamics, severity, and

causes of infectious disease outbreaks (Lee et al., 2010). Specifically, researchers may use

disease surveillance data to identify clusters of infectious disease cases, determine the severity

of an outbreak, and identify high-risk populations. Further, disease surveillance data may

also be used to inform public health measures to mitigate the spread of the pathogen, assess

the effectiveness of interventions, and form and test hypotheses about risk factors associ-

ated with the start and growth of an outbreak (Garcia-Abreu et al., 2002). In this chapter,

we focus on this last aspect by estimating the spatio-temporal origins of an outbreak and

predicting the spread of the pathogen.

Many non-spatial methods are capable of modeling and forecasting the temporal spread

of infectious disease (e.g., susceptible, infectious, recovered (SIR) compartmental models;

Vynnycky and White, 2010; Adivar and Selin Selen, 2013). Additionally, many methods are

capable of identifying the likely source or timing of an outbreak (e.g., case-control analysis

and epidemic curve analysis; National Research Council, 2009; Borgan et al., 2018; Egan

and Hall, 2015). However, efforts to estimate or obtain inference on the spatio-temporal

origins (i.e., the location and time of pathogen introduction) of an outbreak have focused
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on two main areas: geographic clustering or profiling, and Bayesian spatio-temporal mod-

eling. Geographic clustering or profiling identifies high-likelihood areas of pathogen origin

without estimating the time of pathogen introduction from temporal data (LeComber et al.,

2011; Mohler and Short, 2012; Stevenson et al., 2012; Verity et al., 2014). Bayesian spatio-

temporal models often employ differential or partial differential equations (PDEs) to mech-

anistically account for the spread of the pathogen that caused an outbreak For example,

Legrand et al. (2009) and Hefley et al. (2020) developed and implemented different Bayesian

spatio-temporal dynamic models that could simultaneously account for the dynamic process

of a pathogen invasion and estimate the initial location and time of introduction for the

pathogen. However, many infectious disease outbreaks are not well explained using a model

that assumes a single pathogen introduction (e.g., Levy et al., 2011; Verity et al., 2014;

Kissler et al., 2019). While Hefley et al. (2020) noted that their proposed model could be

modified by including mixtures of diffusion models to estimate multiple locations and times

of introduction, Hefley et al. (2020) assumed the number of introductions was known and

stopped short of implementing their idea for their preferred dynamic spatio-temporal model.

The main technical problem that hampered Hefley et al. (2020) was the infeasibility of

sampling a random number of three-dimensional vectors (locations and times of introduc-

tion). In contrast, Verity et al. (2014) developed a method in the geographic clustering

literature to estimate the number and locations of introduction while ignoring time, and

Levy et al. (2011) developed a distance-based Bayesian clustering method to select the num-

ber of introductions and estimate the locations and times of introduction. Levy et al. (2011)

did not, however, employ a diffusion PDE as Legrand et al. (2009) and Hefley et al. (2020)

had done, nor did Levy et al. (2011) account for uncertainty in the number of introductions

that best fit the data. The purpose of this chapter is to develop a method that estimates

the number, locations, and times that a pathogen was introduced into a population using an

ensemble of PDE-based diffusion processes to account for the spread of the pathogen. Our

method should also be capable of predicting the individual-level probability of being infected

at any location and time, and provide a measure of uncertainty in the estimated number of

pathogen introductions.
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The remainder of the chapter proceeds as follows: First, we introduce a simple diffusion

process for pathogen spread and an ensemble model framework that is capable of modeling

the number, locations, and times of introduction. We then outline a staged approximate

Bayesian model-averaging (SABMA) method that provides approximate Bayesian inference

on the number, locations, and times of pathogen introduction. Next, we conduct a sim-

ulation experiment to evaluate the performance of our SABMA method, present results

from the simulation experiment, and apply our method to two ecological disease surveillance

data examples. Finally, we discuss the ramifications of our simulation experiment and data

examples and suggest future lines of research.

2.3 Methods

2.3.1 Ecological Diffusion From One Introduction

An ecological diffusion process is a partial differential equation (PDE) that can be used to

describe the movement of biotic entities from an initial high concentration to a dispersed

low concentration. Researchers have previously used ecological diffusion PDEs to model the

spread of infectious agents (Garlick et al., 2011, 2014; Hefley et al., 2017b,c, 2020). The PDE

for ecological diffusion originating from a single location is expressed as:

∂

∂t
u(s, t) =

(
∂2

∂s2
1

+
∂2

∂s2
2

)
[µ(s)u(s, t)] (2.1)

where u(s, t) is the intensity of pathogen particles at any given location s ≡ (s1, s2)′ ⊆ S and

time t ⊆ T . We define µ(s) as the diffusion coefficient that determines the rate of spread

for any location. Integrating the pathogen intensity u(s, t) over a given spatial area provides

the expected pathogen concentration within that area at that time.

The pathogen intensity u(s, t) at any given location and time is unobserved. However, bi-

nary disease surveillance data are commonly collected from individuals and contain informa-

tion about the latent pathogen intensity. Let yi be the ith binary observation (i = 1, 2, ..., n),

where yi = 1 denotes the presence of the pathogen in that individual and yi = 0 otherwise.
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If we assume that yi is related to the latent pathogen intensity u(si, ti) at the ith location and

time through some link function g(·), we define a statistical model for binary spatio-temporal

disease surveillance data based on (2.1) as follows:

yi ∼ Bern(p(si, ti)) (2.2)

g(p(si, ti)) = u(si, ti) (2.3)

∂

∂t
u(s, t) =

(
∂2

∂s2
1

+
∂2

∂s2
2

)
[µ(s)u(s, t)]. (2.4)

Under the ecological diffusion process and Dirichlet boundary conditions, researchers may

use disease surveillance data collected over space and time to estimate µ(s) and then back-

cast and forecast to estimate the spatial distribution of the pathogen at earlier and later

time points, respectively. Assuming that the pathogen was introduced at an exact location

and time, back-casting could enable the estimation of the location of pathogen introduction,

ω ≡ (ω1, ω2)′ ⊆ S, the time of introduction, t0, and the initial pathogen intensity, θ, similar

to Legrand et al. (2009) and Hefley et al. (2020).

2.3.2 An Ensemble of Ecological Diffusion Processes for Multiple

Introductions

While some infectious disease outbreaks are well explained using a model that assumes a

single pathogen introduction (e.g., white-nose syndrome in bats in the eastern U.S.; Drees

et al., 2017), other disease outbreaks may require a more complex modeling method that

assumes multiple pathogen introductions at different times within the study area S (e.g.,

chagas disease and influenza; Levy et al., 2011; Kissler et al., 2019). In a multiple intro-

duction scenario, the total pathogen intensity u(si, ti) at the location and time of the ith

observation may be viewed as a sum of J component pathogen intensities:

u(si, ti) =
J∑
j=1

uj(si, ti) (2.5)
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where uj(si, ti) represents the pathogen intensity at the ith location and time that was con-

tributed by the jth introduction (j = 1, 2, ..., J ; Hefley et al., 2020). Each of the J component

pathogen intensities arises from an ecological diffusion process with unique initial conditions:

uj(s, t0j) =


θj if s = ωj

0 if s 6= ωj

, (2.6)

where t0j is the time of the jth introduction, θj is the intensity of pathogen released at the jth

introduction, and ωj is the location of the jth introduction. Following Hefley et al. (2020),

we assume the diffusion rate is constant (i.e., µ(s) = µ) and specify Dirichlet boundary

conditions. As a result, the analytical solution to the jth ecological diffusion PDE at an

arbitrary time t and location s is (Pielou, 1969, Ch 11, Eq. 11.3):

uj(s, t) =
θj

4πµ(t− t0j)
exp

{
−||s−ωj ||2
4µ(t−t0j )

}
, (2.7)

where ||s−ωj||2 the squared Euclidean distance between any location s and the jth location

of introduction ωj. The ensemble ecological diffusion model then becomes:

yi ∼ Bernoulli(pi) (2.8)

g(p(si, ti)) = u(si, ti) (2.9)

u(si, ti) =
J∑
j=1

uj(si, ti) (2.10)

uj(si, ti) =
θj

4πµ(ti − t0j)
exp

{
−||si−ωj ||2
4µ(ti−t0j )

}
. (2.11)

Within this specification, the unknown parameters are Φ ≡ (µ,ω1, ...,ωJ , t01 , ..., t0J , θ1, ..., θJ)′

and J, where Φ: µ ⊂ R+, ω1, ...,ωJ ⊆ S, t01 , ..., t0J ⊂ T ⊂ R, θ1, ..., θJ ⊂ R+, and J is a

positive integer (i.e., J = 1, 2, ...). The log-likelihood for the ensemble model is as follows:
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log f(y|Φ, J) =
n∑
i=1

[yilog

(
g−1

(∑J
j=1

θj
4πµ(ti−t0j )

exp

{
−||si−ωj ||2
4µ(ti−t0j )

}))
+

(1− yi)log

(
1− g−1

(∑J
j=1

θj
4πµ(ti−t0j )

exp

{
−||si−ωj ||2
4µ(ti−t0j )

}))
], (2.12)

where y = (y1, y2, ..., yn)′.

2.3.3 Fitting the Ensemble Model

The ensemble model in (2.8-2.11) may be fit in a frequentist or Bayesian paradigm to ob-

tain inference on the parameters of interest. Maximum likelihood estimates (MLEs) for the

parameters Φ may be obtained if the true parameter values are not close to the boundary

of the parameter space (e.g., if ωj is not close to the boundary of S; Marchand and Straw-

derman, 2004). We can obtain MLEs using common numerical optimization methods, such

as the BFGS algorithm from the optim function in the program R (Nocedal and Wright,

2006; R Core Team, 2021). After obtaining MLEs, we may approximate the variances of the

parameter estimates Φ̂ and obtain Wald-type confidence intervals by inverting the Hessian

matrix. However, in some circumstances, such as fitting a mis-specified model or a model

with weakly identifiable parameters, MLEs may be unavailable or the Hessian may be sin-

gular (Albert and Anderson, 1984). Moreover, a maximum likelihood estimation approach

for the model in (2.8-2.11) must assume one of the following: 1) J is known; 2) J can be

selected using a model selection criterion (e.g., Bayesian information criterion); 3) J can be

estimated using a mixed integer optimization method (see Kronqvist et al., 2019 for a review

of different methods). To the best of our knowledge, mixed integer optimization methods

do not provide a measure of uncertainty associated with the MLE of J . Not accounting for

uncertainty in the selection or estimation of J may lead to underestimating the uncertainty

associated with the other parameter estimates Φ̂ (Madigan and Raftery, 1994).

Under the Bayesian paradigm, classical Markov chain Monte Carlo (MCMC) methods

such as the Metropolis-Hastings algorithm or Gibbs sampler are unfortunately difficult to ap-

ply because the number of parameters may be large (as J increases), closed-form solutions for
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the full conditional posterior distributions are unavailable, and estimating all parameters is a

challenging trans-dimensional problem. The trans-dimensional nature of estimating param-

eters in (2.8-2.11) exists because for every one unit increase in the value of J , the number of

parameters to be estimated increases by four (θj+1, t0j+1, and ωj+1 ≡ (ω1,j+1, ω2,j+1)′). Thus,

sampling from the posterior distribution of J changes the dimension and meaning of the pa-

rameters in the joint posterior distribution p(Φ, J |y). We address this trans-dimensional

difficulty by obtaining inference from p(Φ, J |y) using a staged approximate Bayesian model

averaging (SABMA) method. In the first stage, we sample from p(J |y) using the Markov

chain Monte Carlo model composition (MC3) method (Madigan and York, 1995). We em-

ploy a Laplace approximation to the marginal likelihood (LAML) for each candidate value

of J as part of the MC3 algorithm. In the second stage, we obtain approximate samples from

p(Φ|y, J) using the weighted Bayesian bootstrap (WBB; Newton and Raftery, 1994; Newton

et al., 2021). As p(Φ, J |y) = p(Φ|y, J)p(J |y), our staged approach provides valid approx-

imate inference on p(Φ, J |y). Additionally, employing a Bayesian model averaging method

may improve the quality of inference on Φ and the predictive performance of the model

beyond what is available with the likelihood-based method, as measured by the logarithmic

scoring rule (Madigan and Raftery, 1994; Gneiting and Raftery, 2007).

2.3.4 Markov Chain Monte Carlo Model Composition (MC3)

In the first stage of the SABMA method, we employ the MC3 method to obtain the posterior

distribution p(J |y). The MC3 method is used in Bayesian model averaging to calculate the

posterior probability of candidate models given the data (Madigan and York, 1995). It is

thus possible to obtain a Markov chain for J (J (r): r = 1, 2, ...,m) with the stationary

distribution p(J |y). Let nbd(J (r)) be the set of models with different values of J in the

neighborhood for the current model J (r), then:

nbd(J (r)) =

 {1, 2, 3, 4, 5} if J (r) ≤ 2

{J (r) − 2, J (r) − 1, J (r), J (r) + 1, J (r) + 2} if J (r) ≥ 3,
(2.13)
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and the MC3 algorithm is given as (Madigan and York, 1995):

1. Define J ′ by randomly selecting one value of J from nbd(J (r));

2. Calculate

h =
#nbd(J (r))f(J ′|y)

#nbd(J ′)f(J (r)|y)
, (2.14)

where #nbd(·) is the number of candidate models in the neighborhood of J (r) or J ′.

Based on how (2.13) was specified, #nbd(·) = 5.

3. Generate v ∼ Uniform(0, 1) and update

J (r+1) =

 J ′ if v ≤ h

J (r) otherwise.
(2.15)

The last component required to obtain a Markov chain J (r) is to specify a form for f(J |y).

Laplace Approximation to the Marginal Likelihood

We now specify a form for f(J |y) using the Laplace approximation to the marginal likelihood

(LAML). The LAML is a popular approximate method for Bayesian model selection and

model averaging. Let {M1,M2, ...} ⊂ M be the set of candidate models where each model

assumes a different value for J = 1, 2, .... The marginal likelihood, p(y|MJ), for a given

model MJ is defined as:

p(y|MJ) =

∫
φMJ

p(y|φMJ
)p(φMJ

)dφMJ
, (2.16)

where φMJ
is the vector of parameters in the model MJ . If we assume a uniform prior on

J (i.e., p(J) ∝ 1 for all J = 1, 2, ...), the posterior mode of p(J |y) is approximated by the

following form of the LAML:
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LAML(MJ) = −2 log p(y|φ̂MJ
) + kMJ

log n, (2.17)

where MJ is the given model, and p(y|φ̂MJ
) is the likelihood for the given model evaluated at

the vector of MLEs φ̂MJ
of the parameters of interest. Additionally, φMJ

≡ (φ1, φ2, ...φkMJ )′

is the vector of parameters for the given model MJ and kMJ
is the number of parameters in

model MJ . Therefore, the explicit form of f(J |y) from (2.14) is:

f(J |y) ∝ exp{−1

2
LAML(MJ)}. (2.18)

2.3.5 The Weighted Bayesian Bootstrap

In the second stage of the SABMA method, we address the problem of obtaining approximate

draws from p(Φ|y, J). Rather than using classical MCMC methods like the Metropolis-

Hastings algorithm or a Gibbs sampler, we choose an approximate Bayesian method, the

weighted Bayesian bootstrap (WBB), to fit the ensemble model and obtain inference (Newton

and Raftery, 1994; Newton et al., 2021). The WBB is ideal for our purposes because the

WBB requires the repeated optimization of the weighted likelihood that can be easily done

in parallel, the WBB is compatible with flat priors, and the WBB is simple to implement

(Newton and Raftery, 1994; Newton et al., 2021). Further, the WBB adapts well to changing

the number of model parameters in Φ between draws according to the posterior distribution

of J , thus solving the trans-dimensionality problem.

To sample from the approximate posterior distribution p(Φ|y, J), we scale the likelihood

for each observation by a random weight, wi ∼ Exp(1). The resulting randomly weighted

posterior distribution is proportional to the likelihood times flat prior distributions. One

draw Φ(r) from the posterior distribution p(Φ|y, J) is generated as follows:

1. Sample w= (w1, ..., wn)′ where wi ∼ Exp(1) for the ith element in w;

2. Solve Φ(r) = arg maxΦ

∑n
i=1wilog(p(yi|Φ, J)).

We complete step 2 on (2.12) using the BFGS method from the optim function in R. We
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repeat the above procedure m times (r = 1, ...,m) to obtain m draws from the approximate

posterior distribution of p(Φ|y, J).

2.4 Simulation

We conducted a simulation experiment to show the validity of our SABMA method for ob-

taining an approximation of p(Φ, J |y). We show the validity of the SABMA method by

evaluating out-of-sample prediction performance and credible interval coverage for parame-

ters in the ensemble model in (2.8-2.11). We also compare the prediction performance and

coverage probabilities obtained by the SABMA method against the prediction performance

and confidence interval coverage obtained using a likelihood-based model fitting and selec-

tion method. We first define a study area and describe how locations and times of pathogen

introduction were simulated. Next, we describe how the training and prediction sets of bi-

nary spatio-temporal disease surveillance data were simulated. We then describe how we

implemented the SABMA and likelihood-based methods to fit the ensemble model and how

we measured the predictive performance of the models. Lastly, we present the results of the

simulation experiment.

We defined a unit square study area, S = [0, 1]× [0, 1], with a circular sampling field (for

locations of pathogen introduction) centered at (0.5, 0.5)′ with a radius of 0.45. Locations

of pathogen introduction could be sampled within the circle with a constant probability of

1
π(0.45)2 and zero outside the circle. We simulated 1,000 scenarios, where each scenario had a

pre-specified number of pathogen introductions J , from one to five, with each value of J as-

signed to 200 scenarios. We simulated the coordinates of the location of the first introduction

from a uniform distribution over the sampling field. Where applicable, the location of the

second introduction was drawn from the uniform distribution over the sampling field, except

for a 0.1 radius circle cutout centered at the location of the first introduction. Likewise,

where applicable, the location of the third introduction was simulated from the same uni-

form sampling field, except for two 0.1 radius circle cutouts centered at the locations of the

first and second introductions. This pattern was followed for the locations of the fourth and
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fifth introductions whenever applicable. The times of the five potential introductions were

drawn from scaled beta distributions and constrained such that t01 < t02 < t03 < t04 < t05 ,

as follows:

If J ≥ 1, t01 ∼ 30 ∗ Beta(2, 15); (2.19)

If J ≥ 2, t02 =


t∗02

if t∗02
> t01

t01 + 1.1 if t∗02
< t01 ;

(2.20)

If J ≥ 3, t03 =


t∗03

if t∗03
> t02

t02 + 1.1 if t∗03
< t02 ;

(2.21)

If J ≥ 4, t04 =


t∗04

if t∗04
> t03

t03 + 1.1 if t∗04
< t03 ;

(2.22)

If J = 5, t05 =


t∗05

if t∗05
> t04

t04 + 1.1 if t∗05
< t04 ;

(2.23)

where

if J ≥ 2, t∗02
∼ 30 ∗ Beta(8, 20); (2.24)

If J ≥ 3, t∗03
∼ 30 ∗ Beta(20, 20); (2.25)

If J ≥ 4, t∗04
∼ 30 ∗ Beta(20, 8); (2.26)

If J = 5, t∗05
∼ 30 ∗ Beta(15, 2). (2.27)

In each scenario, we randomly sampled the locations and times of n = 2, 000 training

observations and n∗ = 400 prediction observations. We chose n = 2, 000, rather than a

larger number, to keep the simulation computation time at a reasonable level for 1,000

scenarios. We chose n∗ = 400 because it is common and feasible for practitioners to set

a similarly-sized fraction of their data as a prediction set. The locations of observations
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were sampled with a constant probability of 1
π(0.45)2 inside the sampling circle (centered at

(0.5, 0.5)′ with a radius of 0.45) and a probability of zero outside the circle. We assigned a

sampling time to each sampled location from both data sets, drawn from a discrete uniform

distribution over t = {12, 13, ..., 47, 48}. We finished constructing the training data and

prediction data using (2.8-2.11) as the generative model for the binary marks y (training

data) and y∗ ≡ (y∗1, y
∗
2, ..., y

∗
n∗) (prediction data), respectively. In this chapter, we follow

Hefley et al. (2020) in using the standard log-normal cumulative distribution function as

g−1(·). We also specified θ = θj = 1000 for j = 1, ..., J , and µ = 0.0001 for all scenarios.

Thus, yi is the ith binary mark associated with the ith location and time, si and ti, in the

training data set. Likewise, y∗i is the ith binary mark associated with the ith location and

time, s∗i and t∗i , in the prediction data set. Figure 2.1 shows a plot of a partial example

training data set with observations that were sampled at t = 12, 24, 36, 48.

Once the data were generated, we fit the model in (2.8-2.11) twice each for j = 1, 2, 3, 4, 5, 6, 7.

The first set of models were fit using the likelihood-based method with BIC for model se-

lection. The second set of models was fit using our SABMA method. Both model fitting

methods involved the BFGS algorithm from optim function in R. We assumed starting values

of θj = 1000 for j = 1, 2, ...7 and µ = 0.0001. Since practitioners may be able to guess rea-

sonable starting values for t01 , ..., t07 based on data, we attempted to recreate this ‘guessing’

behavior by drawing starting values for t01 , ..., t07 from (N(t01 , 2
2),...,N(t07 , 2

2)). Addition-

ally, we employed K-means clustering on the locations of observations where yi = 1 to obtain

starting values for the location of introduction parameters ω1, ...,ω7.

To apply the likelihood-based estimation method for each scenario, we obtained the MLEs

Φ̂ from each of seven models using the BFGS algorithm from the optim function in R. We

then used the MLEs of the parameters for each model to calculate the BIC value for each of

the seven models. We selected the model with the lowest BIC value to obtain our estimate of

the number of introductions, Ĵ . We estimated the variances of Φ̂, given the selected model,

and obtained Wald-type 95% confidence intervals for Φ̂ by inverting the Hessian matrix. We

then calculated the 0.95 confidence interval coverage probabilities for Φ.

To apply the SABMA method, we first retrieved the MLEs that were obtained for each
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Figure 2.1: Panels A-D: Plots showing the introduction and diffusion of pathogen particles
across a study area, as evidenced by locations of simulated individuals marked in orange that
are positive for a pathogen. The black represents the locations of simulated individuals that
do not have the pathogen. Individuals at every location in the study area were tested across
thirty-seven time points, although only t = 12, 24, 36, and 48 are shown. Two introductions
occurred before time t = 12 and a third introduction occurred between t = 12 and t =
24. Panels E-H: An example simulated data set showing binary marks associated with
individuals at randomly sampled locations and times (t = 12, 24, 36, and 48 are shown).
An orange dot shows that an individual has the pathogen, and a black dot shows that an
individual does not have the pathogen. The top and bottom plots shared the same locations
and times of pathogen introduction.
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of the seven models when employing the likelihood-based method. We used the MLEs to

calculate the LAML for each of the seven models. We then used the MC3 algorithm to obtain

4,000 draws from p(J |y) in the first stage. The first 2,000 draws were discarded as burn in,

leaving 2,000 draws. In the second stage we used the remaining MC3 draws to specify which

models would be fit via the WBB. We then employed the WBB to obtain 2,000 draws from

the approximate posterior distributions p(Φ|y, J). We obtained 95% credible intervals and

calculated the 0.95 credible interval coverage probabilities.

2.4.1 Evaluating Predictive Performance

For each of 1,000 scenarios, we evaluated the predictive performance of the ensemble model

fit using the SABMA method versus the likelihood-based method. Predictive performance

was evaluated using the logarithmic scoring rule on out-of-sample prediction data (LSR;

Gneiting and Raftery, 2007). We selected the LSR because it is a strictly proper rule and

because the LSR matches the likelihood employed when fitting the models and generating

the data (Gneiting and Raftery, 2007). Cases of disease were comparatively rare in our

simulation experiment and data examples. To evaluate the quality of prediction from the

two models, recall that y∗ ≡ (y∗1, y
∗
2, ..., y

∗
n∗)
′ is the prediction set of observations that is

generated from the true model. Each prediction observation is associated with a location

s∗i and time t∗i . The formula for the LSR of the BIC selected model is equivalent to the

log-likelihood for the Bernoulli distribution as follows:

LSRBIC =
n∗∑
i=1

y∗i log(g−1(u(s∗i , t
∗
i ))) + (1− y∗i ) log(1− g−1(u(s∗i , t

∗
i ))), (2.28)

where g−1(u(s∗i , t
∗
i )) is the predicted probability of y∗i = 1, given the selected value of J and

the MLEs of Φ.

We define the formula for the LSR for m WBB draws (r = 1, 2, ...,m) from the approxi-

mate posterior distributions of p(Φ|y, J) as follows:
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LSRWBB =
n∗∑
i=1

y∗i log(
1

m

m∑
r=1

{
g−1(u(s∗i , t

∗
i ))

(r)

}
)+

(1− y∗i ) log(1− 1

m

m∑
r=1

{
g−1(u(s∗i , t

∗
i ))

(r)

}
), (2.29)

where g−1(u(s∗i , t
∗
i ))

(r) is the predicted probability that y∗i = 1, given the rth draw from the

approximate posterior distribution p(Φ, J |y). When using the LSR to compare the predictive

performance of models, the better model is identified by the LSR value that is least negative.

For each simulated scenario we also compared how the SABMA and likelihood-based

methods performed in estimating or selecting the true number of introductions J . We

tabulated the number of the 2,000 MC3 draws that correctly identified J for each true

value of J , separately. A classification success for the MC3 algorithm was declared if the

mode of the MC3 draws was the true value of J for a particular data set. We also tabulated

the number of scenarios in which BIC correctly identified the true value of J , separately.

The simulation experiment required approximately seventy-five hours on a rented 96-core

AWS elastic computing server for 1,000 scenarios.

2.4.2 Results

After generating 1,000 simulated data sets and fitting the various ensemble models using the

SABMA and likelihood-based methods, the model with the correct value of J was selected

by BIC and estimated by MC3 in 88% of the scenarios (see Tables 2.1-2.2 for selection

and estimation breakdowns). The MC3 credible interval coverage for J was 0.892. We note

that the likelihood-based method did not produce a coverage probability for J. The average

LSRBIC was approximately -149.85 with a standard error of approximately 2.76. The average

LSRWBB was approximately -140.40 with a standard error of approximately 1.65. Therefore,

the SABMA ensemble model performed better than the BIC selected ensemble model in

terms of out-of-sample prediction using the LSR. The collective coverage of the credible

intervals for all parameters in Φ from the SABMA method was approximately 0.926, while

the collective coverage probabilities of the confidence intervals for the parameters in the
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likelihood-based method was approximately 0.882.

We note that 469 of the scenarios contained abnormalities where at least one BIC value

was an NA. In scenarios where the BIC value from one or more models was an NA, we removed

those models from consideration and conducted model selection using the remaining criterion

values. This approach follows an ad hoc procedure that practitioners might use. We also

note that the Hessian on the BIC-selected ensemble model was singular for twenty-three of

the 1000 data sets, and therefore confidence intervals were unavailable. When calculating

confidence interval coverage probabilities, we treated these cases as if the confidence intervals

did not cover the true values. Additionally, when the WBB produced a draw from p(Φ|y, J)

that was invalid because the BFGS algorithm did not converge, the draw was excluded from

further calculations. Lastly, where applicable, the confidence intervals for t02 , t03 , t04 , and

t05 from the BIC-selected ensemble model were obtained using the delta method from the

car package in the program R (Fox et al., 2020; R Core Team, 2021). The delta method

was necessary because extensive experimentation by the authors found that estimating the

change in time between introductions resulted in more accurate estimation of J and the

times of introduction, as opposed to estimating the time of introduction for all introductions

directly.

Table 2.1: Results for BIC-selected value of J compared to the true value of J for each
scenario. The generative model for each scenario contained between one to five introductions.
We fit models to each data set that assumed anywhere from one to seven introductions. The
bold numbers (across the diagonal from left to right) show the number of times that the model
with the true number of introductions was correctly selected (197+189+175+157+162

1000
× 100 =

88.0% correctly selected).

Model Choice for True Number of Introductions in the Generative Model

Number of Introductions 1 2 3 4 5

1 197 1 0 0 0
2 3 189 5 0 0
3 0 9 175 8 1
4 0 1 18 157 8
5 0 0 2 30 162
6 0 0 0 3 21
7 0 0 0 2 8
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Table 2.2: Results for the MC3 estimated and classified value of J compared to the true
value of J for each scenario. The generative model for each scenario contained between
one to five introductions. We fit models to each data set that assumed anywhere from
one to seven introductions. We tabulated the number of the 2,000 MC3 draws that were
associated with each value of J separately. The classified value of J was determined by the
mode of the MC3 draws. The bold numbers (across the diagonal from left to right) show
the number of times that the model with the true number of introductions was correctly
estimated (197+189+175+157+162

1000
× 100 = 88.0% correctly estimated).

Model Choice for True Number of Introductions in the Generative Model

Number of Introductions 1 2 3 4 5

1 197 1 0 0 1
2 3 189 5 1 0
3 0 9 175 10 5
4 0 1 18 157 14
5 0 0 2 30 162
6 0 0 0 2 18
7 0 0 0 0 0

2.5 Michigan Data Example

We illustrate the utility of the SABMA and likelihood-based methods with an exploratory

analysis of binary spatio-temporal surveillance data for CWD in white-tailed deer, collected

in the lower peninsula of Michigan in the U.S. Our purpose is to obtain inference about the

number, locations, and times that the pathogenic prion was introduced in the study area.

We hypothesize that cases of CWD in the lower peninsula of Michigan in the mid-2010’s are

the result of approximately three to four separate pathogen introductions in the vicinity.

Chronic wasting disease (CWD) is an invariably fatal transmissible spongiform encephalopa-

thy that affects cervids (e.g., elk, deer). First discovered in captive deer populations in

Colorado, USA in the 1960s, it has spread to at least 26 U.S. states and can be found in

five additional countries (Rivera et al., 2019). The causative prion has been found to spread

by contact between deer (including between carcasses and live individuals) via saliva, urine,

feces, and blood, and has been found to persist in the environment on vegetation and soil

(Rivera et al., 2019). Thus, transmission may occur directly between individuals or indirectly

through the environment.
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Figure 2.2: Plot of the lower peninsula of Michigan in the U.S. with the approximate
locations of deer that tested positive for CWD (red) and negative for CWD (black) from
2002 - 2020.

The Michigan Department of Natural Resources has collected surveillance data on CWD

since 2002. We defined our study area as the lower peninsula of Michigan covering ap-

proximately 106,000 km2 that contained the primary outbreaks of CWD in Michigan. We

restricted our analysis to data that were collected from 2002 (when surveillance for CWD

began in Michigan) through the beginning of 2020. Including observations from these years

allowed us to capture the initial diffusion dynamics of the early outbreaks. We then ran-

domly split the data into a training set (80,401 obs. with 154 positive cases) and a prediction

set (16,080 obs. with 22 positive cases). In all, our analysis included 96,481 deer, of which

176 tested positive for CWD (see Figure 2.2 for a plot of the study area and data).

After examining the data, we determined that J = 1, 2, ..., 10 was a reasonable range for

the possible values of J . To apply the likelihood-based method, we fit ten models of the

form following (2.8-2.11) with each assuming a different value of J . We followed Hefley et al.

(2020) in using the standard log-normal cumulative distribution function as g−1(·). We fit
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each model using the BFGS algorithm in the optim function in R. We chose starting values

for locations of introduction using K-means clustering on the locations of observations where

yi = 1. We chose starting values for times of introduction using the earliest date of a CWD

case within each cluster, subtracted by three years. We made this time adjustment based

on the assumption that CWD was present several years before it was detected. We then

calculated the BIC value for each candidate model and selected the model with the lowest

BIC value. To apply the SABMA method, we first retrieved the MLEs that were obtained

for the ten candidate ensemble models when employing the likelihood-based method. We

then calculated the LAML for each of the ten candidate ensemble models and employed the

MC3 algorithm to draw 2,000 samples from p(J |y). For this application, we redefined the

neighborhood from (2.13) as:

nbd(J (r)) =



{1, 2, 3, 4} if J (r) = 1

{1, 2, 3, 4, 5} if J (r) = 2

{1, 2, 3, 4, 5, 6} if J (r) = 3

{J (r) − 3, J (r) − 2, J (r) − 1, J (r), J (r) + 1, J (r) + 2, J (r) + 3} if 4 ≤ J (r) ≤ 7

{5, 6, 7, 8, 9, 10} if J (r) = 8

{6, 7, 8, 9, 10} if J (r) = 9

{7, 8, 9, 10} if J (r) = 10.

(2.30)

In due course, we obtained 2,000 approximate draws from p(Φ, |y, J) using the WBB. Finally,

we used the LSR to compare the predictive performance of the ensemble model that was

fitted using the SABMA method against the predictive performance of the BIC-selected

ensemble model.

2.5.1 Results

The result of the SABMA method was a point-mass distribution for p(J |y) at J = 4. The

mean times of introduction were: 1991.829 (October 30, 1991), 2015.663 (August 31, 2015),
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Table 2.3: Inference for each parameter in Φ obtained using the SABMA and likelihood-
based methods. We first present posterior summaries, composed of posterior means and
95% credible intervals, for parameters in the ensemble model obtained using the SABMA
method. We then present MLEs and upper and lower limits of 95% confidence intervals for
the same parameters obtained using the likelihood-based method.

SABMA Likelihood
Parameter Mean 2.5% 97.5% MLE 2.5% CL 97.5% CL

µ 0.00219 0.00072 0.00317 0.00236 0.00173 0.00323

ω11 (Long.) -84.598 -84.765 -84.517 -84.592 -84.654 -84.530
ω12 (Lat.) 42.936 42.787 43.085 42.943 42.857 43.030

t01 1991.829 1808.234 2004.892 2004.802 2004.538 2005.066
θ1 28,348 15,769 93,507 23,978 17,401 33,040

ω21 (Long.) -85.468 -85.499 -85.430 -85.475 -85.508 -85.443
ω22 (Lat.) 43.271 43.246 43.294 43.270 43.243 43.298

t02 2015.663 2011.976 2016.850 2016.079 2015.222 2016.937
θ2 14,111 10,219 18,516 13,673 9,586 19,503

ω31 (Long.) -85.133 -85.179 -85.079 -85.138 -85.181 -85.096
ω32 (Lat.) 43.248 43.217 43.277 43.247 43.216 43.277

t03 2012.365 2011.835 2014.675 2012.086 2008.599 2015.573
θ3 22,820 8,750 30,649 25,713 18,796 35,176

ω41 (Long.) -84.477 -84.508 -84.437 -84.476 -84.537 -84.414
ω42 (Lat.) 42.169 42.121 42.205 42.168 42.104 42.231

t04 2017.246 2015.980 2018.345 2017.184 2015.331 2019.037
θ4 5,518 1,943 9,008 6,330 2,809 14,262

2012.365 (May 13, 2012), and 2017.246 (March 31, 2017). We provide posterior summaries

(posterior mean and credible intervals) for all parameters in Φ in Table 2.3. Additionally,

we provide a plot of posterior inference on ω1,ω2,ω3, and ω4 within the lower peninsula of

Michigan (see Figure 2.3).

The likelihood-based method selected the ensemble model where J = 4. The MLEs

of times of introduction were: 2004.802 (October 20, 2004), 2016.079 (January 30, 2016),

2012.086 (February 1, 2012), and 2017.184 (March 9, 2017). We provide the MLEs and

95% Wald-type confidence intervals from the BIC-selected ensemble model in Table 2.3.

Additionally, we provide a plot of the confidence regions for ω1,ω2, ...,ω7 within the study

area (see Figure 2.3). We note that the confidence intervals for t02 , t03 , and t04 were obtained

using the delta method from the car package in the program R (Fox et al., 2020; R Core

Team, 2021). The delta method was necessary because extensive experimentation by the
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Figure 2.3: Kernel density plot (left) of p(ω1,ω2,ω3,ω4|y, J = 4) within the lower peninsula
of Michigan in the U.S. The frequentist 95% confidence regions (right) for ω1,ω2, ...,ω4

within the lower peninsula of Michigan in the U.S.

authors found that estimating the change in time between introductions resulted in more

accurate estimation of J and the times of introduction, as opposed to estimating the time

of introduction for all introductions directly. We found that the likelihood-based method

performed slightly better than the SABMA method in terms of out-of-sample predictive

performance using the LSR (-116.6055 vs. -116.8642).

2.6 Wisconsin and Illinois Data Example

We now apply the SABMA and likelihood-based methods to a more difficult scenario of ana-

lyzing binary spatio-temporal disease surveillance data for chronic wasting disease (CWD) in

white-tailed deer, collected in southern Wisconsin and northern Illinois. Like the Michigan

data example, we complete an exploratory analysis. The Wisconsin and Illinois Departments

of Natural Resources have collected disease surveillance data on CWD since 2001 and 2002,

respectively. Obtaining sensible inference in this data scenario is more challenging because

disease surveillance data was not widely collected in either Wisconsin or Illinois before the
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first cases of CWD were detected. Therefore, much less information is available from the

surveillance data on when and where the causative pathogen appeared. Nevertheless, our

purpose is to conduct an exploratory analysis to obtain inference about the number, loca-

tions, and times of pathogenic prion introduction in the study area. We hypothesize that

cases of CWD in southern Wisconsin and northern Illinois are the result of approximately

three to six separate pathogen introductions in the vicinity.

We defined a study area in southern Wisconsin and northern Illinois covering approxi-

mately 34,500 km2 that contained the initial outbreaks of CWD in both states. We restricted

our analysis to data that were collected from 2001 (when CWD was first discovered in Wis-

consin) through 2006. Including observations from these years allowed us to capture the

initial diffusion dynamics of the early outbreaks in both states, while balancing computa-

tional considerations. We then randomly split the data into a training set (75,392 obs. with

799 positive cases) and a prediction set (15,078 obs. with 159 positive cases). In all, our

analysis included 90,470 deer, of which 958 tested positive for CWD (see Figure 2.4 for a

plot of the study area and data).

After examining the data, we determined that J = 1, 2, ..., 15 was a reasonable range for

the possible values of J . To apply the likelihood-based method, we fit fifteen models of the

form following (2.8-2.11) with each assuming a different value of J . We followed Hefley et al.

(2020) in using the standard log-normal cumulative distribution function as g−1(·). We fit

each model using the BFGS algorithm in the optim function in R. We chose starting values

for locations of introduction using K-means clustering on the locations of observations where

yi = 1. We chose starting values for times of introduction using the earliest date of a CWD

case within each cluster, subtracted by three years. We made this time adjustment based

on the assumption that CWD was present several years before it was detected. We then

calculated the BIC value for each candidate model and selected the model with the lowest

BIC value. To apply the SABMA method, we first retrieved the MLEs that were obtained

for the fifteen candidate ensemble models when employing the likelihood-based method. We

then calculated the LAML for each of the fifteen candidate ensemble models and employed

the MC3 algorithm to draw 2,000 samples from p(J |y). For this application, we redefined
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Figure 2.4: Plot of the study area in southern Wisconsin and northern Illinois in the U.S.
with the approximate locations of deer that tested positive for CWD (red) and negative for
CWD (black) from 2001 – 2006.
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the neighborhood from (2.13) as:

nbd(J (r)) =



{1, 2, 3, 4} if J (r) = 1

{1, 2, 3, 4, 5} if J (r) = 2

{1, 2, 3, 4, 5, 6} if J (r) = 3

{J (r) − 3, J (r) − 2, J (r) − 1, J (r), J (r) + 1, J (r) + 2, J (r) + 3} if 4 ≤ J (r) ≤ 12

{10, 11, 12, 13, 14, 15} if J (r) = 13

{11, 12, 13, 14, 15} if J (r) = 14

{12, 13, 14, 15} if J (r) = 15.

(2.31)

In due course, we obtained 2,000 approximate draws from p(Φ, |y, J) using the WBB. Finally,

we used the LSR to compare the predictive performance of the ensemble model that was

fitted using the SABMA method against the predictive performance of the BIC-selected

ensemble model.

2.6.1 Results

The result of the SABMA method was a discrete distribution for p(J |y) such that Pr(J =

7|y) = 0.9675 and Pr(J = 8|y) = 0.0325. The mean times of introduction for J = 7

were: 1985.889 (November 21, 1985), 1894.146 (February 23, 1894), 1994.221 (March 22,

1994), 1994.781 (October 13, 1994), 1872.770 (October 8, 1872), 1648.640 (August 22, 1648),

and 1392.451 (June 14, 1392). The mean times of introduction for J = 8 were: 1983.975

(December 22, 1983), 1988.736 (September 26, 1988), 1817.557 (July 23, 1917), 1979.195

(March 13, 1979), 1980.596 (August 5, 1980), 1732.342 (May 5, 1732), 1764.451 (June 13,

1764), and 1798.512 (July 6, 1798). We provide posterior summaries (posterior mean and

credible intervals) for all parameters in Φ in Table 2.4. Additionally, we provide a plot of

posterior inference on p(ω1,ω2, ...,ωJ |y, J) within the study area (see Figure 2.5).

The likelihood-based method selected the ensemble model where J = 7. The MLEs

of times of introduction were: 1988.062 (January 1, 1988), 1925.671 (September 2, 1925),
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Table 2.4: Posterior summaries, composed of posterior means and 95% credible intervals, for
parameters in the ensemble model fit using the SABMA method. We first present summaries
for WBB draws corresponding to J = 7, followed by summaries for WBB draws where J = 8

J = 7 J = 8
Parameter Mean 2.5% 97.5% Mean 2.5% 97.5%

µ 0.00014 0.00005 0.00025 0.00012 0.00006 0.00018

ω11 (Long.) -89.943 -90.027 -89.907 -89.929 -89.988 -89.902
ω12 (Lat.) 43.089 43.079 43.100 43.084 43.076 43.093

t01 1985.899 1966.176 1996.530 1983.975 1964.355 1996.894
θ1 4,485 2,165 6,330 4,733 2,193 7,378

ω21 (Long.) -89.555 -89.661 -89.434 -89.778 -89.808 -89.747
ω22 (Lat.) 43.260 43.148 43.383 43.110 43.102 43.121

t02 1894.146 1636.453 1994.800 1988.736 1970.814 1998.469
θ2 16,311 3,464 36,677 3,644 1,703 6,209

ω31 (Long.) -89.789 -89.843 -89.764 -90.158 -90.319 -90.082
ω32 (Lat.) 43.107 43.098 43.116 43.101 43.072 43.149

t03 1994.221 1981.283 1999.830 1817.557 1680.769 1906.675
θ3 2,615 1,614 4,804 23,344 16,985 36,559

ω41 (Long.) -88.926 -88.955 -88.898 -89.876 -89.901 -89.836
ω42 (Lat.) 42.429 42.394 42.475 42.771 42.740 42.801

t04 1994.781 1973.806 2002.925 1979.195 1956.822 1992.862
θ4 2,020 435 4,835 4,345 2,406 6,677

ω51 (Long.) -88.894 -88.974 -88.824 -89.663 -89.728 -89.626
ω52 (Lat.) 42.118 41.994 42.228 43.382 43.246 43.446

t05 1872.770 1554.685 1998.009 1980.596 1926.103 2006.080
θ5 23,072 3,048 59,876 4,627 1,448 9,783

ω61 (Long.) -88.775 -88.821 -88.724 -88.756 -88.825 -88.660
ω62 (Lat.) 42.571 42.477 42.671 42.620 42.493 42.741

t06 1648.640 1188.930 1884.732 1732.342 1451.360 1844.861
θ6 73,768 44,351 100,489 51,798 22,826 90,008

ω71 (Long.) -90.089 -90.194 -89.963 -89.464 -89.627 -89.317
ω72 (Lat.) 42.953 42.749 43.071 43.127 42.974 43.218

t07 1392.451 765.367 1743.294 1764.451 1503.463 1969.954
θ7 75,756 39,381 135,598 28,787 6,379 43,539

ω81 (Long.) -88.901 -88.981 -88.852
ω82 (Lat.) 42.227 41.952 42.346

t08 1798.512 1617.372 1935.709
θ8 42,399 18,281 64,677
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Figure 2.5: Kernel density plot (left) of p(ω1,ω2, ...,ωJ |y, J) within the study area in
southern Wisconsin and northern Illinois in the U.S. The 95% confidence regions (right)
for ω1,ω2, ...,ω7 within the study area in southern Wisconsin and northern Illinois in the
U.S.

1996.582 (August 1, 1996), 1995.669 (September 2, 1995), 1902.046 (January 17, 1902),

1710.411 (May 31, 1710), and 1485.846 (November 5, 1485). We provide the MLEs and

95% Wald-type confidence intervals from the BIC-selected ensemble model in Table 2.5.

Additionally, we provide a plot of the confidence regions for ω1,ω2, ...,ω7 within the study

area (see Figure 2.5). We note that the confidence intervals for t02 , t03 ,...,t07 were obtained

using the delta method from the car package in the program R (Fox et al., 2020; R Core

Team, 2021). The delta method was necessary because extensive experimentation by the

authors found that estimating the change in time between introductions resulted in more

accurate estimation of J and the times of introduction, as opposed to estimating the time

of introduction for all introductions directly. We found that the SABMA method performed

better than the likelihood-based method in terms of out-of-sample prediction performance

using the LSR (-710.8041 vs. -714.0254).
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Table 2.5: Inference for each parameter in Φ in the ensemble model from the likelihood-based
method. We present the MLE and upper and lower limits of the respective 95% confidence
interval for each parameter.

Parameter MLE 2.5% CL 97.5% CL

µ 0.00015 0.00006 0.00035

ω11 (Long.) -89.941 -89.965 -89.916
ω12 (Lat.) 43.089 43.079 43.100

t01 1988.062 1975.094 2001.031
θ1 4,753 3,256 6,937

ω21 (Long.) -89.548 -89.605 -89.491
ω22 (Lat.) 43.261 43.212 43.311

t02 1925.671 1843.770 2007.572
θ2 15,050 8,426 26,882

ω31 (Long.) -89.785 -89.799 -89.771
ω32 (Lat.) 43.108 43.099 43.117

t03 1996.582 1990.390 2002.774
θ3 2,403 1,667 3,465

ω41 (Long.) -88.922 -88.951 -88.893
ω42 (Lat.) 42.434 42.404 42.465

t04 1995.669 1985.116 2006.222
θ4 2,111 1,012 4,407

ω51 (Long.) -88.896 -88.965 -88.826
ω52 (Lat.) 42.092 41.988 42.196

t05 1902.046 1789.647 2014.445
θ5 22,292 8,570 57,876

ω61 (Long.) -88.776 -88.823 -88.730
ω62 (Lat.) 42.568 42.482 42.653

t06 1710.411 1412.809 2008.014
θ6 77,312 54,283 110,109

ω71 (Long.) -90.098 -90.181 -90.015
ω72 (Lat.) 42.962 42.833 43.091

t07 1485.846 980.371 1991.321
θ7 74,298 37,021 149,110
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2.7 Discussion

We have proposed two methods to fit an ensemble model and obtain inference on the number,

locations, and times of introduction of a novel pathogen using binary spatio-temporal disease

surveillance data. We evaluated the two methods of fitting the ensemble model by conducting

a simulation experiment and an exploratory analysis of two CWD surveillance data sets.

Our simulation experiment demonstrated that the model fit using our SABMA method

performed similarly to traditional BIC-based model selection in estimating the number of

introductions, and performed better than the BIC-selected models in estimating the locations

and times of introduction. The simulation experiment also showed that the model fit using

the SABMA method was better in terms of predictive performance according to the LSR.

While the likelihood-based method produced an ensemble model that was marginally better

at estimation and prediction in a well-behaved disease surveillance example from Michigan,

the sensibility of inference from the likelihood-based ensemble model began to break down

in the data example from Wisconsin and Illinois. Particularly, the upper confidence limits

on some times of introduction from the likelihood-based method were past 2006, when the

last observation was collected. In contrast, the SABMA method provided upper credible

interval limits on most of the times of introduction that were sensible, given the difficulties

of the Wisconsin/Illinois data set. However, both the likelihood-based and SABMA methods

produced some unreasonable MLE/posterior mean values and wide confidence or credible

intervals on times of introduction. Despite this, the SABMA ensemble model fit to the

Wisconsin/Illinois data set was preferred to the likelihood-based method in terms of out-of-

sample predictive performance according to the LSR. It is notable that the likelihood-based

method performs relatively well in simulation and the Michigan data example, and that

the likelihood-based method may be considered an early step in implementing the SABMA

method.

Many compartment-based infectious disease forecasting models explicitly account for the

incubation time of the pathogen (between exposure and when clinical symptoms present

themselves (Vynnycky and White, 2010). The minimum incubation time for CWD in deer
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in an experimental setting was about fifteen months (Williams et al., 2002; Williams and

Miller, 2002). When estimating the locations and times that the pathogen was introduced,

we did not explicitly account for the incubation period (and the possible symptomatic pe-

riod) between the time that a deer was infected and the time that the deer tested positive

for CWD. Our ensemble model could be adjusted to account for the uncertainty due to

these lag times and would likely result in estimates of pathogen introduction times that are

earlier. Previous work has also shown that the susceptibility of deer to the pathogen may be

affected by individual-level covariates (e.g., age, sex; Heisey et al., 2010). Future work may

append a susceptibility component to the total pathogen intensity to account for differences

in susceptibility among individual deer.

Due to data privacy concerns, disease surveillance data may only be available in an ag-

gregated form within study area subregions and segments of time (e.g., counts of individuals

with positive and negative test results). If the aggregated form of the data matches any

of Data Types B-E from Walker et al. (2021) or Chapter 1, the distributional results from

Walker et al. (2021) or Chapter 1 may be adapted to the components of the ensemble model

in (2.8-2.11) to estimate J and Φ. For example, suppose the data are counts of individuals

that tested positive (n1l) and negative (n0l) for an infectious disease in the lth space-time

cube composed of a subregion and time interval (Al×Tl) for l = 1, 2, ..., L. The joint model

for these counts (Type C aggregated data) can be adapted from Walker et al. (2021) and

(2.8-2.11) as follows:

n1l ∼Pois(

∫
Al

∫
Tl
λ(s, t)p(s, t)dtds), (2.32)

n0l ∼Pois(

∫
Al

∫
Tl
λ(s, t)(1− p(s, t))dtds), (2.33)

g(p(s, t)) = u(s, t) (2.34)

u(s, t) =
J∑
j=1

uj(s, t) (2.35)

uj(s, t) =
θj

4πµ(t− t0j)
exp

{
−||s−ωj ||2
4µ(t−t0j )

}
, (2.36)
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where λ(s, t) is the sampling intensity that influenced how many individuals were tested

within each space-time cube. If λ(s, t) is known, it may be substituted directly. Alterna-

tively, λ(s, t) may be specified using a function of spatial covariates and parameters, and

the parameters may be jointly estimated with Φ. A common specification for the sampling

intensity is log(λ(s, t)) = β0 +x(s, t)′β. Here, x(s, t) is a vector of spatial covariates that may

vary over time, β is a corresponding vector of regression parameters, and β0 is an intercept

parameter.

The approach from this chapter uses an analytical solution (2.7) to the simple ecological

diffusion PDE (2.1) under certain simplifying assumptions. As it has been said, “all models

are wrong, but some are useful” (Box and Draper, 1987). We therefore acknowledge that

the constant diffusion assumption required for (2.7) may be too strong for some scenarios,

particularly when applied to data collected long after an initial outbreak or when inhomoge-

nous diffusion is suspected. Additionally, (2.1) is incapable of accounting for growth in the

pathogen intensity over time, as the pathogen reproduces and sheds from its host. As such,

future work will address the problem of obtaining inference on the number, locations, and

times of introduction as well as inhomogenous pathogen diffusion and growth dynamics. As

our method stops short of attempting to draw inference about contributing spatial factors

that may influence where pathogen introductions occur, future work may also address this

challenge.
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Chapter 3

Predicting the Risk of Novel

Pathogen Introductions from Disease

Surveillance Data

3.1 Abstract

In the course of an infectious disease outbreak, researchers often must estimate or infer the

source of the causative pathogen, the risk factors associated with the spread and growth of

the pathogen, and risk factors that may be associated with new outbreaks. Because the exact

time and location of introduction for the pathogen is usually unobserved, these questions

must be addressed using incomplete or indirect data, such as disease surveillance data. We

introduce a Bayesian hierarchical mixture of ecological diffusion models (BHMEDM), for

disease surveillance data, that estimates parameters associated with the dynamic process of

a pathogen diffusing and multiplying through a study area from multiple initial locations.

We address several computational challenges and provide inference for the number, locations,

and times of introduction of the pathogen into a population. We also obtain inference on the

spatio-temporal process associated with the pathogen introductions and predict where new

introductions are likely to occur in the future. We apply this method to disease surveillance
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data for chronic wasting disease in white-tailed deer (Odocoileus virginianus) from southern

Wisconsin and northern Illinois in the United States.

3.2 Introduction

Scientists and practitioners working in areas such as public health, animal and plant pathol-

ogy and disease ecology are often concerned with identifying and studying outbreaks of

infectious disease. One way that outbreaks are identified and studied is through collecting

disease surveillance data. Disease surveillance data, often consisting of individual or aggre-

gated test results for a pathogen, contain information about the presence and prevalence of

infectious disease. When analyzed, disease surveillance data provide clues about the origins

and causes of an outbreak, and inform current understanding of how pathogens diffuse and

grow through a population or ecosystem (Lee et al., 2010). In this chapter, we again focus

on studying the initiation and progression of infectious disease outbreaks. However, we re-

frame and address the trans-dimensional estimation problem from Section 2.3.3 using tools

and ideas from the mixture model, point process, and missing data literature. Incorporating

tools and ideas from these areas in our estimation framework allow us to make predictions

about where the pathogen is likely to be introduced in the future (which we did not attempt

in Chapter 2).

Non-spatial methods, such as compartmental models, are commonly used to forecast the

temporal spread of a pathogen through a population (Vynnycky and White, 2010; Adivar

and Selin Selen, 2013). Additionally, non-spatially explicit methods such as case-control

and epidemic curve analysis are commonly used to identify the likely physical source of a

pathogen and the time of pathogen introduction in infectious disease outbreaks (Borgan

et al., 2018; Egan and Hall, 2015). In contrast, methods that explicitly model the spatio-

temporal dynamics of an outbreak are less frequently employed (e.g., using partial differential

equations or agent-based models; Legrand et al., 2009; Garlick et al., 2014; Hefley et al.,

2017c; Hefley et al., 2020; Banks and Hooten, 2021). Likewise, methods that explicitly

estimate the spatio-temporal origins of an outbreak, while forecasting the spread of the
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pathogen, are much less common than non-spatially explicit methods. For example, the

spatial, but not temporal, origins of an outbreak can be identified using geographic clustering

or profiling (LeComber et al., 2011; Mohler and Short, 2012; Stevenson et al., 2012; Verity

et al., 2014). Levy et al. (2011) estimated the locations and times that a pathogen was

introduced into a population using a distance-based epicenter regression model, but they did

not forecast the spatio-temporal spread of the pathogen. To the best of our knowledge, only

Legrand et al. (2009), Hefley et al. (2020), and Chapter 2 of this dissertation estimate the

location and time of pathogen introduction while forecasting the spread of the pathogen. Of

these, only Chapter 2 of this dissertation accounts for and estimates more than one location

and time of pathogen introduction. However, the method in Chapter 2 relied on a simplified

representation of homogeneous ecological diffusion with no pathogen growth that may be

unrealistic in practice.

Predicting where novel pathogens may be introduced into a population in the future is

a difficult problem, at least partially because pathogens can adapt in unexpected ways to

form a niche in otherwise inhospitable new environs (Roy et al., 2017). It is well recognized

that the movements of plants, animals, and people are large drivers for the risk of a novel

pathogen introduction (Fèvre et al., 2006; Santini et al., 2018; Gottwald et al., 2019; Kraemer

et al., 2019). Efforts to predict the risk of pathogen introductions have relied on both

mechanistic and phenomenological models to account for the movement of animals or people.

For example, Gottwald et al. (2019) developed a method that produced census-tract level risk

predictions for a pathogen introduction across the U.S. The Gottwald et al. (2019) method

relied on pathogen distribution and prevalence data from countries where the pathogen was

already present, data about travel between those countries and the U.S., and data about

travel between U.S. census tracts. Likewise, Oleson and Wikle (2013) developed a dynamic

spatio-temporal model that produced county-level risk predictions for the introduction of

avian influenza into poultry farms in the U.S. by migrating waterfowl. The Oleson and

Wikle (2013) model relied on counts of migrating waterfowl across the U.S. over time and the

number of poultry farms in each U.S. county. The resulting spatio-temporal model predicted

the varying weekly county-level risk of pathogen introduction throughout the waterfowl
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migration season. Methods that relied on spatial or environmental covariates (e.g., elevation

variability, forest density, and climate) have also been used to predict the risk of other

spatially-referenced events (e.g., tornado touchdowns; Karpman et al., 2013) or invasive

species introductions (e.g., Asian giant hornet queen wintering and hive sites; Norderud et al.,

2021). In particular, Karpman et al. (2013) modeled the locations of tornado touchdowns

and spatially predicted the future touchdown risk in the eastern U.S. using an inhomogeneous

Poisson point process.

To the best of our knowledge, no methods exist that provide a unified framework to

estimate the origins of an infectious disease outbreak, predict the growth and spread of the

pathogen, and predict where new introductions are likely to occur in the future. This chapter

seeks to fill that gap in the literature. In this chapter, we propose a Bayesian hierarchical

mixture of ecological diffusion models (BHMEDM) with a spatio-temporal inhomogeneous

Poisson point process (IPPP) component. The BHMEDM incorporates partial differential

equations (PDEs) that represent ecological diffusion processes with exponential growth. In-

cluding these PDEs make the BHMEDM capable of providing predictive inference on the

growth and diffusion of a pathogen through a study area over time. The mixture aspect of

the BHMEDM enables inference on the number, locations, and times that a pathogen was

introduced, and the spatio-temporal IPPP component of the model provides inference on

the spatio-temporal process for the locations and times of pathogen introduction. The IPPP

component also enables prediction for where new introductions are likely to occur in the

future. We then apply the BHMEDM to binary spatio-temporal disease surveillance data

of chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) in southern

Wisconsin and northern Illinois in the U.S. Importantly, we obtain predictive inference about

where new pathogen introductions are likely to occur in a broader region that includes much

of Illinois, Iowa, Michigan, Minnesota, and Wisconsin.
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3.3 Methods

3.3.1 Sum of Ecological Diffusion with Exponential Growth PDEs

An ecological diffusion with exponential growth process is a PDE that describes the move-

ment of biotic entities across a region of interest over time from an initial intensity at some

location or area, while accounting for growth in intensity due to favorable reproductive con-

ditions. Researchers have previously used ecological diffusion PDEs to model the spread of

pathogens from a single location of introduction (Garlick et al., 2011; Garlick et al., 2014;

Hefley et al., 2017b; Hefley et al., 2017c; Hefley et al., 2020). However, numerically solving

the PDEs associated with these models has been sufficiently difficult that researchers have

historically been limited to modeling epidemics caused by a single pathogen introduction. We

present a sum of ecological diffusion PDEs that accounts for a pathogen spreading through

a population from multiple locations. We also present several techniques that reduce the

computational burden and make the model more practical to fit.

Let s ≡ (s1, s2)′ be the coordinates of any given point within a two dimensional study area

S and let t signify time in some interval T . Assuming that pathogens may be introduced to a

population at multiple times and locations, the unobserved total pathogen intensity u(s, t) at

any location and time can be viewed as a sum of J component pathogen intensities. These

component pathogen intensities, in turn, are modeled by individual PDEs that represent

ecological diffusion with exponential growth. The sum of J PDEs for ecological diffusion with

exponential growth can be expressed as (Hefley et al., 2017c; Hefley et al., 2020; Chapter 2):

u(s, t) =
J∑
j=1

uj(s, t), (3.1)

∂

∂t
uj(s, t) =

(
∂2

∂s21
+ ∂2

∂s22

)
[µ(s)uj(s, t)] + λ(s)uj(s, t), (3.2)

where µ(s) is a common spatially varying diffusion coefficient that determines the rate of

spread for any location, and γ(s) is a commonly shared growth rate for the pathogen at any

location. Integrating u(s, t) over any spatial area provides the expected pathogen concen-
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tration within that area at that time.

To initiate this group of ecological diffusion processes, J initial intensities uj(s, t0j) (for

j = 1, 2, ..., J) must be defined across the study area, where t0j is the time that the jth

introduction occurred and ωj ≡ (ω1,j, ω2,j)
′ is the vector of coordinates for the center of

the initial intensity. Following Hefley et al. (2017c) and Williams et al. (2017), we choose

bivariate Gaussian kernel initial conditions:

cj(s, t0j) =
θj√

4π2σ2
1σ

2
2

e
{
−(s1−ω1,j)2

2σ2
1

}
e
{
−(s2−ω2,j)2

2σ2
2

}
, (3.3)

where uj(s, t0j) =
cj(s,t0j )

µ(s)
and θj is a scaling factor for the initial pathogen intensity of the

jth introduction. We define σ2 = σ2
1 = σ2

2 as the common variance of the Gaussian kernel

initial conditions.

Computational Challenges with Solving PDEs

Numerically solving PDEs over space and time is a significant computational challenge that

prevents the wide-spread use of PDEs in statistical applications. Typically, to obtain a value

from the PDE at a particular location and time, practitioners must numerically approximate

the solution to the PDE (e.g., using the finite difference method). Additional computational

tools, such as homogenization, have made PDE-based models more accessible for statistical

applications (Garlick et al., 2011; Hooten et al., 2013). Broadly speaking, homogenization

is a harmonic mean-based form of upscaling that improves the efficiency and stability of an

algorithm for solving a PDE (Hooten et al., 2013). For example, Hefley et al. (2017c) used

the homogenization technique and the finite difference method to approximate the ecological

diffusion PDE in (3.2) for a single pathogen introduction. Following Hooten et al. (2013)

and Hefley et al. (2017c), the homogenized PDE is given as:

∂

∂t
cj(s, t) = µ̄(s)

(
∂2

∂s21
+ ∂2

∂s22

)
cj(s, t) + λ̄(s)cj(s, t), (3.4)

where the homogenized diffusion rate µ̄(s) is:
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µ̄(s) =

(
1
|A|

∫
A

1
µ(s)

ds

)−1

, (3.5)

and the the homogenized growth rate λ(s) is:

λ̄(s) =
µ̄(s)

|A|

∫
A

λ(s)

µ(s)
ds. (3.6)

We define cj(s, t) as the homogenized pathogen intensity for the jth introduction and uj(s, t) ≈
cj(s,t)

µ(s)
at any location and time after t0j .

Unfortunately, certain computational barriers persist in numerically solving a sum of

PDEs in (3.1-3.3). For example, the stability of the finite difference approximation is depen-

dent upon the level of temporal resolution in the model. Additionally, the computational

complexity of the mathematical model in (3.1-3.3) renders it inappropriate when the spread

of a pathogen is known to be from multiple initial locations that are separated in space and

time. We address these computational issues in subsequent sections.

Analytical Solution to Homogenized Ecological Diffusion

The homogenized PDE in (3.4) has been central to several statistical applications (Hooten

et al., 2013; Williams et al., 2017; Hefley et al., 2017b,c; Lu et al., 2020; Hefley et al., 2020).

However, numerically solving (3.4) is computationally intensive and, in some cases, pro-

hibitive. We now introduce an analytical solution to the homogenized ecological diffusion

PDE in (3.4) that was obtained through collaboration with Dr. Ian McGahan at the Univer-

sity of Wisconsin. The analytical solution provides an approximation to the PDE in (3.2) for

any location and time in the study domain and results in substantial computational savings

when obtaining uj(s, t). To obtain the analytical solution, we first transform both the initial

conditions from (3.3) and the homogenized PDE from (3.4) into the Fourier parameter space.

Second, we solve the resulting ordinary differential equation. Lastly, we back-transform the

solution to the ordinary differential equation into real space. The result is an analytical

solution to the homogenized PDE for any location and time after the initial time t0j , as
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follows (Logan, 2014):

uj(s, t) =
1

µ(s)

θj
2π(σ2 + 2µ̄(s)(t− t0j))

eλ̄(s)(t−t0j )e

−||s−ωj ||
2

2(σ2+2µ̄(s)(t−t0j ))
, (3.7)

where ||s − ω||2 is the squared Euclidean distance between any location s and the location

of introduction ωj. We can directly substitute the analytical solution in (3.7) for (3.2) when

specifying (3.1-3.3). As a result, we may obtain the pathogen intensity at any location and

time much faster and easier than numerically solving (3.2) or even (3.4). We derive the

analytical solution from (3.7) in Appendix B.

3.3.2 A Bayesian Hierarchical Mixture of Ecological Diffusion Mod-

els

We introduce a Bayesian hierarchical mixture of ecological diffusion models (BHMEDM),

based on (3.1, 3.3, 3.7), that may be fit to binary spatio-temporal disease surveillance data.

In the context of disease surveillance, the pathogen intensity at any given location and time

is unobserved. Rather, practitioners may have binary data from individuals that denote the

presence or absence of the pathogen. Thus, the ith observation is a binary mark reported

for an individual at a specific location si and time ti, such that yi = 1 (for i = 1, ..., n)

denotes the presence of the pathogen in that individual and yi = 0 otherwise. These binary

observations may be viewed as Bernoulli random variables, each dependent on the latent

total pathogen intensity u(si, ti) and the deterministic approximate PDE analytical solution

in (3.7) as follows:
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yi ∼ Bern(p(si, ti)), (3.8)

p(si, ti) = g−1(u(si, ti)e
b′iτ ), (3.9)

u(si, ti) =
J∑
j=1

uj(si, ti), (3.10)

uj(si, ti) =
1

µ(si)

θj
2π(σ2 + 2µ̄(si)(ti − t0j))

eλ̄(si)(ti−t0j )e

−||si−ωj ||
2

2(σ2+2µ̄(si)(ti−t0j ))
, (3.11)

where p(si, ti) is the probability that yi = 1 and g−1(·) is a suitable inverse-link function (e.g.,

standard log-normal cumulative distribution function). We define eb′iτ as a susceptibility

factor that accounts for differences in susceptibility to the pathogen among individuals.

This susceptibility factor is dependent on individual-level attributes (e.g., sex), denoted by

the covariate vector bi for the ith observation, and a vector of susceptibility parameters τ .

As before, the unobserved total pathogen intensity u(si, ti) at the ith location and time

can be viewed as a sum of J component pathogen intensities. Thus, we assume that cases of

an infectious disease within a population are the result of one or more pathogen introductions

across a study area. Particularly, the location-level risk associated with having the pathogen

is cumulative, according to how many pathogen introductions occurred beforehand as well

as the locations of the introductions relative to the locations of sampled individuals. This

corresponds to the idea that an individual may be exposed to the pathogen from one or more

sources with varying degrees of exposure from each source at any given time. The common

diffusion and growth terms across the J homogenized PDEs are represented as:

log(µ(s)) = α0 + z(s)′α, (3.12)

λ(s) = γ0 + w(s)′γ. (3.13)

As specified, µ(s) and λ(s) are dependent on log-linear and linear models, respectively.

We define α0 as an intercept parameter, z(s) as a vector of spatial covariates, and α as

the corresponding vector of slope parameters that influence the diffusion of the pathogen.
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Likewise, we define γ0 as an intercept parameter, w(s) as a vector of spatial covariates, and

γ as the corresponding vector of slope parameters that influence the growth of the pathogen.

Predicting where pathogen introductions are likely to occur in the future is difficult (Roy

et al., 2017). In some cases, data may be available about the movements of plants, animals, or

people to inform a model and predict the risk of a pathogen introduction (Oleson and Wikle,

2013; Gottwald et al., 2019). In other circumstances, environmental or spatial covariates may

act as surrogates for the underlying spatio-temporal process that influences the introduction

of a novel pathogen. We propose to obtain predictive inference on this spatio-temporal

process by specifying a spatio-temporal inhomogeneous Poisson point process (IPPP) as a

joint model for J , Ω ≡ (ω1,ω2, ...,ωJ)′, and t0 ≡ (t01 , t02 , ...t0J )′ in the initial conditions

(3.3). Inference on the hyper-parameters in the IPPP is the key to overall predictive inference

on where introductions are likely to occur in a broader spatial domain. We define the spatio-

temporal IPPP as follows (Gelfand and Schliep, 2018):

p(J,Ω, t0|Λ) =
e−

∫
S
∫
T Λ(s)dtds(

∫
S

∫
T Λ(s, t)dtds)J

J !

J∏
j=1

Λ(ωj, t0j)∫
S

∫
T Λ(s, t)dtds

, (3.14)

where Λ(s, t) is the spatio-temporally varying intensity function and T is the temporal

domain. The intensity may be specified as log(Λ(s, t)) = β0 + x(s)′β, where x(s) is a vector

of spatial covariates and β is a corresponding vector of regression parameters.

While inference on J , Ω, and t0 may be interesting, p(β0,β|J,Ω, t0) and the posterior

predictive distribution of the IPPP, p(J̃ , Ω̃, t̃0|J,Ω, t0), provide predictive inference on where

introductions are likely to occur. If S ⊂ S̃, Ω ⊂ S, and Ω̃ ⊂ S̃, we may draw from

the posterior predictive distribution for the number, locations, and times of new pathogen

introductions, p(J̃ , Ω̃, t̃0|J,Ω, t0) (Hooten and Hefley, 2019):

p(J̃ , Ω̃, t̃0|J,Ω, t0) =

∫
β0

∫
β

p(J̃ , Ω̃, t̃0, β0,β|J,Ω, t0)dβdβ0 (3.15)

=

∫
β0

∫
β

p(J̃ , Ω̃, t̃0|β0,β, J,Ω, t0)p(β0,β|J,Ω, t0)dβdβ0, (3.16)

where J̃ , Ω̃, and t̃0 are the number, locations, and times of pathogen introduction that are
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likely to occur in the larger study area S̃, given the spatio-temporal IPPP. Thus, inference

on the spatio-temporal IPPP process, including from the posterior predictive distribution,

may inform public health, agricultural, and wildlife management policy to reduce the risk of

new pathogen introductions.

3.3.3 Model Fitting

BHMEDM

Ordinarily, one might fit the BHMEDM using an MCMC algorithm and use a Metropolis-

Hastings algorithm to sample J , Ω, and t0. However, fitting the BHMEDM to obtain

inference on J , Ω, and t0 is computationally difficult because J is a discrete, unknown

parameter that presents a trans-dimensional estimation problem. That is, as J increases by

one, the number of parameters that must be estimated increases by three (t0J+1
and the two

coordinates in ωJ+1). Thus, as currently specified, tuning an MCMC algorithm to fit the

BHMEDM is difficult, if not impossible. In the remainder of this section, we turn to ideas

from the mixture model and missing date literature to overcome these trans-dimensionality

and model tuning challenges. Specifically, we will define an over-parameterized finite mixture

model of ecological diffusion processes (Rousseau and Mengersen, 2011), where the locations

and times of pathogen introduction have been fixed. We will then rely on a form of indicator

variable selection to eliminate superfluous pathogen introductions (Rousseau and Mengersen,

2011). Finally, we explain how to use Bayesian imputation to obtain inference from the

spatio-temporal IPPP component of the model (Scharf et al., 2017).

We now define the over-parameterized mixture model. Let J∗ to be an arbitrarily large

integer such that J < J∗. In this context, J is the unknown but true number of introduc-

tions, as before. We note that computational feasibility may limit the size of J∗. Fixing

J∗ in this way results in an over-parameterized number of pathogen introductions, which

we call pseudo-introductions (Rousseau and Mengersen, 2011). Pseudo-introductions are

composed of the matrix of potential locations of introduction Ω∗ ≡ (ω∗1,ω
∗
2, ...,ω

∗
J∗)
′ and the

corresponding potential times of introduction t∗0 ≡ (t∗01
, t∗02

, ..., t∗0J∗ ). We will define how the
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pseudo-introductions are selected shortly. With this modification, the mixture of component

pathogen intensities in (3.1) may be re-expressed as:

u(si, ti) =
J∗∑
j=1

vjuj(si, ti), (3.17)

where vj is a binary indicator that denotes whether the jth component pathogen intensity con-

tributes to the total pathogen intensity. Thus, when vj = 1, uj(si, ti) denotes the pathogen

intensity at the ith location and time that is contributed by the jth pseudo-introduction. As

before, the PDE for the jth ecological diffusion model that provides uj(si, ti) is approximated

by the analytical solution to the homogenized PDE in (3.7)

After J∗ has been pre-chosen, we then use expert elicitation to select where and when

pathogen introductions were likely to have occurred as well as stochastically define addi-

tional pseudo-introductions in the vicinity of the elicited locations and times. Alternatively,

we may randomly draw the location and time of pseudo-introductions from a uniform space-

time cube or polyhedron defined in the study area and temporal domain (S × T ). The

extent of this space-time cube or polyhedron may be informed by the data or be defined

through expert elicitation. After J∗ pseudo-introductions are defined, we consider the se-

lected t∗0j and ω∗j values to be fixed for j = 1, 2, ..., J∗. We then rely upon the posterior

inference from the binary indicators, v ≡ (v1, v2, ..., vJ∗)
′ to “empty” the model of superflu-

ous pseudo-introductions and provide a measure of uncertainty in the locations and times of

the true pathogen introductions (Rousseau and Mengersen, 2011; Thompson et al., 2017).

Thus, pseudo-introductions (the pairing of a pre-specified location and time) and the cor-

responding ecological diffusion processes are components of the BHMEDM that are then

added or removed by indicator variables. We can now easily fit the BHMEDM in (3.8-3.9,

3.17, 3.11-3.13) using an MCMC algorithm (see Appendix C).

Inference about the number, locations, and times of pathogen introduction are available

as derived quantities through the posterior distributions of vj (i.e., v) and the J∗ pre-specified

pseudo-introduction locations and times. We define J∗∗k =
∑J∗

j=1 v
k
j as the derived kth pos-

terior draw from the distribution of the indicator variables that represents inference on the
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number of pathogen introductions. We define Ω∗∗k ≡ (ω∗∗k1 ,ω∗∗k2 , ...,ω∗∗k
J∗∗k)

′ as the kth de-

rived draw from the distribution of the indicator variables and associated pseudo-introduction

locations that represents inference on the locations of pathogen introduction. Likewise, we

define t∗∗k0 ≡ (t∗∗k01
, t∗∗k02

, ..., t∗∗k0
J∗∗k

)′ as the corresponding kth derived draw from the distribution

of the indicator variables and associated pseudo-introduction times that represent inference

on the distribution of the times of pathogen introduction. If the pseudo-introductions have

been correctly specified, then (J∗∗k,Ω∗∗k, t∗∗k0 )′ represents a draw from p(J,Ω, t0|y, ...). How-

ever, if a subset of the pseudo-introductions are mis-specified, then at best (J∗∗k,Ω∗∗k, t∗∗k0 )′

represents a draw from a distribution that approximates p(J,Ω, t0|y, ...).

Understanding that the set of pseudo-introductions may be mis-specified, we employ

Bayesian imputation and substitute J∗∗k, Ω∗∗k, and t∗∗k0 for J , Ω and t0 in 3.14 within the

kth MCMC iteration to obtain inference on the parameters of the IPPP, β0 and β (Scharf

et al., 2017). Let J∗∗, Ω∗∗, and t∗∗0 be the sets of J∗∗k, Ω∗∗k, and t∗∗0 , respectively, for all

k. We may then obtain draws from p(β0,β|J∗∗,Ω∗∗, t∗∗0 ). If S ⊂ S̃, Ω ⊂ S, and Ω̃ ⊂ S̃,

we may draw from the posterior predictive distribution for new pathogen introductions,

p(J̃ , Ω̃, t̃0|J∗∗,Ω∗∗, t∗∗0 ) using (3.15-3.16; Hooten and Hefley, 2019).

3.4 Wisconsin and Illinois Data Example

We illustrate the utility of our BHMEDM with an exploratory analysis of spatio-temporal

disease surveillance data for chronic wasting disease (CWD) in white-tailed deer collected

in southern Wisconsin and northern Illinois in the U.S. Our purpose is two-fold: first, to

model the influence of spatial, ecologically relevant covariates on the diffusion and growth

dynamics of CWD in white-tailed deer; second, to obtain inference on the spatio-temporal

process for the pathogen introductions and predict where new introductions are likely to

occur in the future. We hypothesized that cases of CWD in Wisconsin and Illinois within

the first few years of surveillance data collection are the result of three to six separate

pathogen introductions in the vicinity.

Chronic wasting disease (CWD) is an invariably fatal transmissible spongiform encephalopa-
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thy that affects cervids (e.g., elk, deer). First discovered in captive deer populations in Col-

orado, U.S. in the 1960s, it has spread to at least 26 U.S. states and can be found in five

additional countries (Rivera et al., 2019). The causative prion has been found to spread

by contact between deer (including between carcasses and live individuals) via saliva, urine,

feces, and blood, and has been found to persist in the environment on vegetation and soil

(Rivera et al., 2019). Thus, transmission may occur directly between individuals or indirectly

through the environment.

Modeling the disease dynamics of infectious diseases like CWD may be complicated for at

least two reasons. First, the dynamic spread of CWD may be linked to both migrations and

animal movement within the home range (often dependent on landscape characteristics).

Second, modeling efforts should account for pathogen reservoirs in the environment (also

possibly dependent on landscape characteristics; Rivera et al., 2019). For example, deer

may be more likely to travel quickly through landscape that is open, such as pasture or

cropland, and travel slowly or linger in forested areas. Additionally, there is evidence that

certain land cover types and soil components act as reservoirs for the prion, and hence

allow it to persist in the environment (Rivera et al., 2019). When the prion persists in the

environment it can multiply because it may be picked up by an uninfected deer, replicate

within that deer, and then return to the environment in greater numbers as it is shed by the

deer.

Modeling the spatio-temporal process for novel pathogen introductions provides another

layer of difficulty. For example, when an infected deer travels long distances to choose a

new home range, certain ecologically related spatial covariates (e.g., forest and crop density,

and water availability) may influence the choice of home range, and therefore the locale of

the resulting novel pathogen introduction. Other spatial factors like distance to nearest deer

farm or distance to nearest highway can also impact how humans might facilitate the novel

introduction of the pathogen through transporting infected captive animals or discarding

infected carcasses.

The Wisconsin and Illinois Departments of Natural Resources have collected disease

surveillance data on CWD since 2001 and 2002, respectively. We defined a study area S in
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Figure 3.1: The study area in southern Wisconsin and northern Illinois in the U.S. with
plotted locations of deer that tested positive for CWD (red) and negative for CWD (black)
between 2001 and 2006.

southern Wisconsin and northern Illinois covering approximately 34,500 km2 that contained

the initial outbreaks of CWD in both states. We restricted our analysis to data that were

collected from 2001 (when CWD was first discovered in Wisconsin) through 2006. Including

observations from these years allowed us to capture the initial diffusion and growth dynamics

of the early outbreaks in both states, while balancing computational considerations. In all,

our analysis included 90,467 deer, of which 958 tested positive for CWD (see Figure 3.1 for

a plot of the study area and data).

As forest and human development land cover, or lack thereof, are thought to influence

the diffusion of the pathogen, we included forest density and development density as spatial

covariates in the diffusion component of the BHMEDM (Rivera et al., 2019). The forest and

development density covariates were obtained from the 2001 National Land Cover Database

(NLCD) by calculating the percentage of land within 300m ×300m grid cells classified as

forest and developed by humans, respectively (Homer et al., 2007). We also included a

spatial indicator variable (east vs. west) in the diffusion component of the BHMEDM that
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differentiates between the east and west sides of the study area. We include this spatial

indicator to check whether the east and west parts of the study area that contain CWD

cases are influenced by slightly different diffusion and growth processes.

We included three spatial covariates related to soils across the study area in the growth

component of the BHMEDM: percent clay, percent organic carbon content, and cation ex-

change capacity. Clay content has been shown to affect the persistence of pathogenic prions

in the soil (Walter et al., 2011; Dorak et al., 2017; Rivera et al., 2019), while cation exchange

capacity and organic carbon content of soils may also be of interest. The clay, organic

carbon, and cation exchange covariates were obtained from the ISRIC SoilGrids database

using the program QGIS (Poggio et al., 2021; QGIS Development Team, 2021). Following

Hefley et al. (2017c), we included the forest and development density spatial covariates in the

growth component of the BHMEDM. We also included the east vs west indicator variable.

All spatial covariates in the BHMEDM, except for the east vs. west covariate, were centered

and scaled. Then, all spatial covariates were homogenized from a resolution of 300m × 300m

to a resolution of 4, 500m × 4, 500m while fitting the BHMEDM (original resolution shown

in Figure 3.2). Lastly, as sex of deer is associated with the susceptibility of individual

deer to developing CWD, we included the sex of the deer in the susceptibility factor of the

BHMEDM. We employ descriptive notation for the parameters in the BHMEDM to aid the

reader (i.e., αforest, αdevelopment, αevw, γclay, γcec, γsocc, γforest, γdevelopment, γevw, and τsex).

We must pre-specify potential locations and times of pseudo-introduction to fit the

BHMEDM model. We drew the locations of forty pseudo-introductions from two separate

bivariate uniform distributions defined on two regions of the study area that were identified

by the data as having the majority of the CWD cases. We drew twenty pseudo-introductions

for each region. We drew the times of pseudo-introduction in decimal years from a uniform

distribution with lower and upper bounds of 1994.000 and 2004.000, respectively. The range

of drawn dates for the pseudo introductions was (1994.003, 2003.670), in decimal years.

We specified priors for the parameters in the BHMEDM as follows: qj ∼ Beta(0.5, 0.5),

(α0,α)′ ∼ MVN(0, 106I), (γ0,γ)′ ∼ MVN(0, 106I), and (log (θ), τsex)
′ ∼ MVN((36, 0)′,

(
2 0
0 1

)
).

We fit the BHMEDM using Algorithm 1 in Appendix C. We used Bayesian imputation
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Figure 3.2: Centered and scaled (CS) spatial covariates used in the BHMEDM to obtain
inference on the growth and diffusion of the causative prion across the study area. The
forest density (A), development density (B), and east vs. west indicator (C) spatial covariates
were included in the diffusion term of the BHMEDM. The clay density (D), cation exchange
capacity density (E), and oil organic carbon content (F) spatial covariates were included in
the growth term of the BHMEDM. The forest density, development density, and east vs.
west indicator spatial covariates were also included in the growth term of the BHMEDM.
The east vs. west indicator spatial covariate was not centered and scaled.

73



and an MCMC algorithm to fit the IPPP component of the model from (3.14) by substi-

tuting J∗∗k, Ω∗∗k, and t∗∗k0 for J , Ω, and t0 at the kth iteration. We specified the vector

x(s) in the intensity Λ(s, t) as the centered and scaled transformations of distance to nearest

highway, water density, crop density, and forest density (all shown in Figure 3.3). Like the

forest and development spatial covariates, the crop and water density spatial covariates were

derived from the 2001 NLCD as the percentage of land cover within 300m ×300m grid cells

classified as crops or water, respectively. We specified priors for the parameters in the IPPP

as follows: (β0,β) ∼ MVN(0, 106I). For both the BHMEDM and IPPP component, we

employed 50,000 MCMC iterations and an adaptive Metropolis-Hastings algorithm to tune

the proposal distributions (Roberts and Rosenthal, 2007; Roberts and Rosenthal, 2009). We

discarded the first 8,000 MCMC iterations as burn-in. We calculated the predicted proba-

bility of CWD infection for female and male deer across the study area between 2001 and

2008. After employing Bayesian imputation to fit the IPPP component, we obtained 42,000

draws from the posterior predictive distribution of the IPPP across most of the northern

Midwest U.S. (where S̃ included much of Illinois, Iowa, Michigan, Minnesota, and Wiscon-

sin). We subsequently obtained the mean number of introductions likely to occur in each

county across the predicted region between January 1, 2004 and December 31, 2013.

3.5 Results

An increase in the forest density covariate was associated with a decrease in the diffusion

rate of the pathogen. The development density and east vs. west (evw) covariates were not

significant to the diffusion of the pathogen, according to the associated parameter 95% cred-

ible intervals. Increases in the percent cation exchange capacity of the soil and forest density

covariates were associated with an increased growth rate. The clay concentration and or-

ganic carbon content of the soil covariates were found to not influence the growth rate of the

pathogen, according to the associated parameter 95% credible intervals. Likewise, the devel-

opment density and east vs. west indicator covariates did not influence the growth rate. We

provide posterior summaries (mean values and credible intervals) for α0, αforest, αdevelopment,
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Figure 3.3: Centered and scaled (CS) spatial covariates of interest across Illinois, Iowa,
Michigan, Minnesota, and Wisconsin. When fitting an IPPP to Bayesian imputed pathogen
introductions, the spatial covariates were used from within the study area in southern Wis-
consin and northern Illinois (outlined in black). When drawing from the posterior predictive
distribution of the IPPP, the spatial covariates were used within the broader region of most
of Illinois, Iowa, Michigan, Minnesota, and Wisconsin.
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Figure 3.4: Histograms of the distribution of pre-specified pseudo-introduction times (left
panel) and posterior-selected pseudo-introduction times (right panel) in decimal years, within
the study area.

αevw, γ0, γclay, γcec, γsocc, γforest, γdevelopment, γevw, log (θ), and τsex from the BHMEDM in Ta-

ble 3.1. The derived distribution of J∗∗ had a mean of 12.1 introductions and a 95% credible

interval from 10 to 15. The times associated with the posterior-selected pseudo-introductions

ranged between 1994.347 (May 7, 1994) and 2002.538 (July 16, 2002). We provide a com-

parison of the distribution of pre-specified times of introduction and posterior-selected times

of introduction in Figure 3.4. Plots that compare the distribution of pre-specified locations

of pseudo-introduction with that of the posterior-selected locations of pseudo-introduction

are provided in Figure 3.5. The results of calculating the predicted probability of CWD

infection for female and male deer across the study area from 2001 to 2008 are provided in

Figure 3.6.

We provide posterior summaries (mean values and credible intervals) for β0, βhighway,

βwater, βcrop, and βforest from the IPPP in Table 3.1. While the 95% credible intervals for

the slope parameters all included zero (except for the water density covariate), the placement

and skew of each posterior distribution, relative to zero, provided information that was
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Figure 3.5: Pre-specified pseudo-introduction locations (left panel) and posterior-selected
pseudo-introduction locations (right panel) within the study area in southern Wisconsin and
northern Illinois. The two regions of the study area are outlined in black that were identified
by the data as containing the majority of the CWD cases. Twenty pseudo-introductions
were randomly drawn from each region.

evident via the posterior predictive distribution summaries. We obtained 42,000 draws from

the posterior predictive distribution of the IPPP across most of the northern Midwest U.S.

(Illinois, Iowa, Michigan, Minnesota, and Wisconsin) and calculated the mean number of

introductions likely to occur in each county across the region between January 1, 2004 and

December 31, 2013 (see Figure 3.7).

3.6 Discussion

In this chapter, we introduced a BHMEDM that included an IPPP component and applied

the BHMEDM in an exploratory analysis of CWD surveillance data. With the BHMEDM,

we obtained inference on the diffusion and growth dynamics for the causative pathogen of

an infectious disease. We also obtain Bayesian inference on the number, locations, and

times that a pathogen was introduced into a population. From the IPPP component of the

model, we obtained inference on the spatio-temporal process for the number and locations
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Table 3.1: Posterior summaries for parameters in the Bayesian hierarchical mixture of eco-
logical diffusion models (BHMEDM) and inhomogeneous Poisson point process (IPPP) com-
ponent (obtained using Bayesian imputation).

Quantile
Model Parameter Mean 2.5% 50% 97.5%
BHMEDM α0 17.455 17.216 17.461 17.667

αforest -0.028 -0.055 -0.028 -0.002
αdevelopment 0.012 -0.051 0.011 0.080

αevw 0.064 -0.140 0.064 0.268
γ0 0.154 0.099 0.156 0.205
γclay -0.0003 -0.015 -0.0003 0.015
γcec 0.027 0.004 0.027 0.051
γsocc -0.017 -0.037 -0.017 0.002
γforest 0.033 0.021 0.032 0.045

γdevelopment 0.004 -0.018 0.004 0.026
γevw 0.009 -0.041 0.007 0.066

log(θ) 34.887 34.593 34.904 35.110
τsex 0.212 0.160 0.212 0.266

IPPP β0 -70.368 -510.229 -11.401 2.576
βhighway -0.313 -3.293 -0.212 1.993
βwater -190.639 -1352.265 -35.488 -0.326
βcrop 0.379 -1.129 0.246 2.928
βforest 0.033 -1.389 -0.012 1.743
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Figure 3.6: Plots of the predicted probability of infection for CWD broken down by sex of
deer, across the study area from 2001 - 2008. The predicted probabilities of infection from
2007 - 2008 are forecasts because we only included disease surveillance data from 2001 - 2006
when fitting the BHMEDM.
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Figure 3.7: Plot of the mean number of pathogen introductions expected within each county
across most of the northern Midwest U.S. (Illinois, Iowa, Michigan, Minnesota, and Wis-
consin) in the time between January 1, 2004 and December 31, 2013, given the number,
locations, and times of selected pseudo-introductions in the study area (southern Wisconsin
and northern Illinois).

of pathogen introduction. We also used the IPPP to obtain predictive inference for which

counties in the upper mid-western U.S. may have an increased risk for novel introductions.

Like the ensemble model in Chapter 2 of this dissertation, the BHMEDM may be modified

to accommodate any type of aggregated binary data from Chapter 1.

Because J∗ must be finite, the uncertainty related to inference from the posterior dis-

tribution of v and the associated set of selected pseudo-introductions J∗∗, Ω∗∗, and t∗∗0 is

limited by the number, locations, and times of the pre-specified pseudo-introductions. That

is, the degree of uncertainty in the locations and times of pathogen introductions is depen-

dent on how the locations and times of pseudo-introductions were specified and the distance

between each pseudo-introduction in space and time. Verity et al. (2014) and Thompson

et al. (2017) sought to resolve this problem by specifying a Dirichlet process model with

an infinite number of locations and times of introduction. While instructive, the Dirichlet

process model is impractical for the large number of observations in the CWD data set.

Thus, we address the behavior of the BHMEDM using a heuristic related to spatial infill

asymptotics and using ideas from over-fitted or over-parameterized mixture models.

Infill asymptotics are concerned with the consistency of parameter estimates within a

spatio-temporal model, particularly as the number of observations increases and the distance
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between observations in space and time decreases in a fixed study area (see Stein, 2010, for

an overview of spatial asymptotics). A heuristic, related to spatio-temporal infill of pseudo-

introductions, is that we may conceivably obtain more valid inference on the spatio-temporal

IPPP component of the model as J∗ increases and the spatio-temporal distance between

pseudo-introductions decreases to zero.

In infinite mixture model theory, if an infinitely dense grid of pseudo-introductions is

specified, the selected pseudo-introductions create a type of space-time cloud around the

true introduction locations and times and provide a measure of uncertainty regarding the

true locations and times of introduction (Thompson et al., 2017). In the case of over-fitted or

over-parameterized mixture models, where J∗ > J , Neal (2000) acknowledged that properly

eliminating superfluous model components can be a challenging technical problem. However,

Rousseau and Mengersen (2011) showed that certain prior specifications will asymptotically

empty the model of superfluous pseudo-introductions.

Several features of the BHMEDM are important to note. First, inference from the IPPP,

including from the posterior predictive distribution of introductions, is highly dependent

upon the locations of the pseudo-introductions that were pre-specified for the BHMEDM.

This dependence is reduced if the resolution is low for the spatial covariates in the IPPP. One

way to assess this dependence is to fit the BHMEDM multiple times with separate sets of

pre-specified pseudo-introductions and compare inference from the IPPP among the model

fits. Additionally, one may perform Bayesian model averaging across the separate BHMEDM

fits to account for the uncertainty in the process of pre-specifying pseudo-introductions. On

the other hand, the practitioner may assess how the selected pseudo-introductions affect

inference from the IPPP by comparing inference from the IPPP fit to the selected pseudo-

introductions (J∗∗, Ω∗∗, and t∗∗0 ), versus inference from the IPPP fit to the set of pre-specified

pseudo-introductions (J∗, Ω∗, and t∗0).

Second, we note that the spatial covariate effect sizes from the diffusion and growth com-

ponents of the BHMEDM tend to attenuate as more pseudo introductions are pre-specified

in the mixture. This phenomenon is an artifact of decreasing the spatio-temporal distance

between pseudo-introductions as J∗ increases. Specifically, as more pseudo-introductions
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are selected from a neighborhood, the diffusion and growth terms of the BHMEDM are less

integral to properly fitting the data.

Third, practitioners should carefully choose the hyper-parameters on the beta hyper-

prior for the Bernoulli distribution of vj. In our disease surveillance data example we chose

hyper-parameters equal to 0.5 to produce a Jeffreys hyper-prior. A hyper-prior that tends

to move P (vj = 1) close to zero for j = 1, ..., J∗ should properly empty pseudo-introductions

from the BHMEDM (Rousseau and Mengersen, 2011).
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Appendix A

Additional Details of Simulation

Experiment and Data Example From

Chapter 1

A.1 Introduction

This appendix provides additional results for the simulation experiment and additional infor-

mation about the white-nose syndrome data example presented in Chapter 1. This appendix

was originally published as Supporting Material for Walker et al. (2021). Figures and tables

are labeled identically to the chapter (e.g., Figure 1.1, etc). The R code that reproduces the

simulation experiment and the figures is found in the simulation.R file in the Supporting

Material associated with Walker et al. (2021). The R code that reproduces the results from

the data example and the associated figures is found in the wns.R file, also in the Supporting

Material associated with Walker et al. (2021).
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A.2 Simulation Experiment

We conducted a simulation experiment to compare performance of our proposed models,

using different types of aggregated binary data, to traditional models for non-aggregated

binary data (e.g., logistic regression). We generated simulated data using a unit square study

area, S = [0, 1] × [0, 1], that was divided into 400 regular grid cells (subregions), such that

S = ∪400
j=1Aj and |Aj| = 1

400
. We generated spatial covariates, x(s) and z(s), and simulated

the locations and binary marks of observations from a BIPPP where the intensity function

was log(λ(s)) = α0 +α1z(s) and the classification function was logit(p(s)) = β0 +β1x(s). We

focused on and compared estimates of β0 and β1 among five models because β0 and β1 are

highly affected by aggregation and inference on the parameters of the classification function

is likely to be the focus of many applied studies (Walker et al., 2020). We accomplished the

comparison of estimates of β0 and β1 by assessing bias, coverage probabilities, and relative

efficiency for estimates of β0 and β1 among the following five scenarios:

1. A traditional logistic regression model from (1.1) and (1.3) fit to non-aggregated data

(see Table 1.1 and Figure 1.2, Type A);

2. A joint model for n1j and n0j that is specified by combining the distributions in (1.6)

and (1.7; see Table 1.1 and Figure 1.2, Type C);

3. A joint model for vj and nj that is specified by combining the distributions in (1.8)

and (1.9; see Table 1.1 and Figure 1.2, Type D);

4. The conditional model for vj given nj from (1.9; see Table 1.1 and Figure 1.2, Type

D);

5. The Bernoulli model for vj from (1.11; see Table 1.1 and Figure 1.2, Type E).

We simulated 1000 data sets from four different settings using a combination of two

factors: covariate equivalence (x(s) = z(s) vs. x(s) 6= z(s)); and average sample size (small

vs. large). Thus our simulation experiment uses a total of 4000 simulated data sets and

realizations of z(s) and x(s). Each simulated data set was aggregated to fit each data type
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in scenarios 2-5. We drew each spatial covariate realization from a low-rank Gaussian process

(Higdon, 2002) on a 200×200 grid with knots at every fourth grid cell to reduce computation

time. We chose parameter values of α1 = 1, and β1 = 1 for all settings. We chose values for

α0 and β0 for each setting such that the average sample size per subregion was either 10 or

50 (small vs. large) and the proportion of subregions that contained a binary mark of one

was approximately constant across all settings (see Table A.1).

Covariate Average
Equivalence Sample

Setting x(s) = z(s) Size α0 β0

1 Yes Small 7.800 -5.500
2 Yes Large 9.410 -7.070
3 No Small 7.820 -4.750
4 No Large 9.405 -6.350

Table A.1: Settings from the simulation experiment using covariate equivalence (x(s) = z(s)
vs. x(s) 6= z(s) and two average sample sizes (small vs. large), along with the values for α0

and β0 that were used when simulating data.

We fit the model in scenario one (i.e., traditional logistic regression) using the glm function

in R to obtain the maximum likelihood estimates (MLEs) of β0 (R Core Team, 2021). We fit

the models in scenarios two through five as described in Section 1.3.5. For each model and

setting, we calculated and compared the coverage probabilities (CPs) from the 95% Wald-

type CIs for β0. We also constructed box plots comparing the distribution of β̂0 obtained

from the 1000 data sets for each scenario and setting. We calculated the standard deviation

of the empirical distribution of 1000 estimates of β0 in each scenario. We then calculated

the relative efficiency of β̂0 for scenarios two through five by dividing the standard deviation

of the distribution of β̂0 for the respective scenario by that of scenario one. Additionally,

we calculated the mean squared predictive error (MSPE) in the estimated intensity and

probability surfaces for each of the models in scenarios two through five. However, we only

calculated the MSPE for the estimated probability surface for the model in scenario one.

Lastly, we produce four data sets (each data set generated from a different simulation setting)

and fit each of the models for Type C-E data in the appropriate data scenario. We then

produce plots of the estimated intensity and probability surfaces obtained from each of the
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Figure A.1: Two plots showing a realization of the spatial covariates that were used for x (s)
(left) and z (s) (right). In all cases x (s) and z (s) are spatially correlated and drawn from
a low-rank Gaussian process on a 200 × 200 grid with knots at every fourth grid cell. The
grid in each plot shows the partition of the study area into the 400 subregions over which
the data were aggregated.

models for Types C-E data (for a total of thirty-two estimated surfaces).

When binary data are generated according to a BIPPP and then spatially aggregated,

we expect to obtain unbiased estimates in scenarios two, three, four, and five. Of the models

based on the distributional results presented in Sections 1.3.2-1.3.3, we expect that the model

for scenario two will have the highest relative efficiency among all settings covered by the

experiment, followed by the models from scenarios three, four, and five. We expect the MSPE

of the estimated intensity and probability surfaces to be smallest for the model in scenario

two, followed by three, four, and five. The detailed R code capable of reproducing the

simulation experiment may be found in the simulation.R file in the supporting information

associated with Walker et al. (2021). Plots showing results from all settings in the simulation

experiment are provided in this appendix.

A.2.1 Spatial Covariates

The spatial covariates used for all simulated data sets in the settings outlined above are

similar in characteristics to the covariates shown in Figure A.1.

100



A.3 Results

This section contains the supplemental results from the simulation experiment. We first

provide a summary of the results for β0 in Table A.2. The subsequent figures allow the

reader to empirically evaluate bias and relative efficiency among all five data scenarios for the

four settings. Figure A.2 contains comparisons of the estimates of β0. In Section A.3.1 we

provide results that address the question of how well the estimated intensity and probability

surfaces match the true intensity and probability surfaces, using mean squared predictive

error (MSPE). We accomplish this by first providing graphical summaries of mean squared

predictive error (MSPE) for all scenarios, data sets, and settings in Figures A.3-A.4. We

then provide and evaluate plots of example estimated intensity and probability surfaces

obtained from each of the models for Types C-E data using an example of covariates and

data from each of the four settings.

In our simulation experiment, we crossed two factors (average sample size per subregion

and covariate equivalence) with two levels each. With our choices of α0, the average num-

bers of observations within each grid cell were 10.2 and 50.1 for small and large sample

settings, respectively. With our choices of β0 for each setting, we maintained a proportion

of approximately 0.11 of grid-cells that contained a binary mark of one (see Table A.2).

As expected, under the model and data in scenario one (traditional logistic regression

with no data aggregation), the MLEs for β0 appear to be unbiased for all settings and had

CPs between 0.950 and 0.956. Under the model and data in scenario two (joint distribution

of n1j and n0j) the MLEs for β0 appear to be unbiased for all settings in the simulation

study (see Figure A.2 for graphical comparisons of estimates). The CPs for β̂0, in scenario

two, were between 0.948 and 0.957 for all settings. Additionally, the relative efficiency of β̂0,

obtained from scenario two, ranged from about 1.06 (settings 4) to about 1.11 (setting 3).

The coverage probabilities obtained for scenarios one and two, and efficiencies for scenario

two, are available in Table A.2.

Under the model and data in scenario three (joint distribution of vj and nj) the MLEs

for β0 appear to be unbiased for all settings in the simulation study (see Figure A.2). The
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CPs for β̂0, in scenario three, were between 0.944 and 0.969 for all settings. Additionally,

the relative efficiency of β̂0, obtained from scenario three, ranged from about 1.14 (setting

4) to about 1.39 (setting 2). The coverage probabilities and efficiencies obtained for scenario

three are available in Table A.2.

Under the model and data in scenario four (conditional distribution of vj given nj) the

MLEs for β0 appear to be unbiased for all settings in the simulation study (see Figure A.2).

The CPs for β̂0, in scenario four, were between 0.905 and 0.938 for all settings. Additionally,

the relative efficiency of β̂0, obtained from scenario four, ranged from about 1.16 (setting

4) to about 1.66 (setting 1). Finally, under the model and data in scenario five (Bernoulli

distribution of vj), the MLEs for β0 were weakly identifiable with efficiencies of β̂0 ranging

from about 31.8 (setting 4) to over 3,900 (setting 3) and CPs between 0.510 and 0.777. The

coverage probabilities and efficiencies obtained for scenarios four and five are available in

Table A.2.

Covariate CP CP CP CP CP Eff. Eff. Eff. Eff.
Equivalence Sample Scen. Scen. Scen. Scen. Scen. Scen. Scen. Scen. Scen.

Setting (x(s) = z(s)) Size 1 2 3 4 5 2 3 4 5
1 Yes Small 0.950 0.956 0.969 0.905 0.605 1.10 1.37 1.66 653.0
2 Yes Large 0.956 0.957 0.960 0.910 0.510 1.10 1.39 1.64 248.7
3 No Small 0.951 0.948 0.944 0.915 0.777 1.11 1.20 1.22 3,929
4 No Large 0.953 0.957 0.955 0.938 0.663 1.06 1.14 1.16 31.78

Table A.2: Results from our simulation experiment using two sample sizes (small vs. large)
and two levels of covariate equivalence (x(s) = z(s) vs. x(s) 6= z(s)). For each setting, we
show the relative efficiency (Eff.) for estimating β0 and the 95% CI coverage probability
(CP) for each of the models that were based on the proposed distributional results (using
appropriate types of aggregated data) for 1,000 simulated data sets. We also report the 95%
CI coverage probabilities for logistic regression using the exact locations of observations. We
calculate the relative efficiency for each model as the ratio of the standard deviation of the
empirical distribution of β0 from the respective model against that of logistic regression.

A.3.1 MSPE of Estimated Risk and Intensity Surfaces and Exam-

ple Estimated Surfaces

We evaluate the performance of the models for Type A and C-E data in estimating the

risk and intensity surfaces (λ(·) and p(·)) using mean squared predictive error (MSPE). The
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Figure A.2: Panels (E) and (F) show box plots of results for β0 from small and large average
sample size simulation experiment settings where x(s) = z(s). Panels (G) and (H) show
small and large sample size simulation experiment settings where x(s) 6= z(s). We show
estimates of β0 obtained using five different models (each under a different data aggregation
scenario), which included: Scen. 1) logistic regression with no data aggregation (Type A
data); Scen. 2) a joint model for n1j and n0j where binary data were aggregated into counts
for each subregion (Type C data); Scen. 3) a joint model for vj and nj using data aggregated
into a count and indicator variable for each subregion (Type D data); Scen. 4) a conditional
model for vj using data aggregated into an indicator variable for each subregion (Type E
data). Each of the four panels used 1,000 simulated data sets, and each panel shows the true
value of β0 (dotted line). The distribution of β̂0 from scenario five (Bernoulli model) was such
that some estimates fell outside the upper bounds of the plots. Each box plot shows (from
bottom to top) the lower bound of 1.5 times the inter-quartile range, the 25th percentile, the
median, the 75th percentile, and the upper bound of 1.5 times the inter-quartile range. See
Table A.2 for a summary of all settings.
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estimated surfaces were produced using the inverse link functions from the paper and linear

combination of the relevant coefficient estimates and spatial covariates x(s) and z(s):

λ(s) = eα0+z(s)α1 ,

p(s) =
eβ0+x(s)β1

1 + eβ0+x(s)β1
.

The estimated surfaces were then compared against the true surfaces (calculated using

the true parameter values) at all locations in the unit study area using MSPE. In the context

of our simulation, ’all locations’ refers to all 40,000 grid cell centroids given by our definition

of the covariates x(s) and x(s) (each covariate defined on a 200× 200 grid). Figures A.3-

A.4 contain the graphical comparisons of MSPE for the estimated intensity and risk surfaces

among the models for Types A and C-E data in all four settings. In addition, we provide

example estimated risk and intensity surface maps (λ(·) and p(·)) from a simulated data set

from each of the four simulation settings for each of the following models: the joint model

for Type C data, the joint model for Type D data, the conditional model for Type D data,

and the Bernoulli model for Type E data. The maps were produced using the inverse link

functions from the paper and linear combination of the relevant coefficient estimates and

spatial covariates x(s) and z(s). Figures A.5-A.12 contain the estimated λ(s) and p(s)

surfaces from all four models from Settings 1-4. We provide Table A.3 as a quick reference

for locating the figures for the intensity and risk surfaces for each simulation setting.

Figures for Estimated Figure for Estimated
Setting λ(s) Surface p(s) Surfaces
1 Figure A.5 Figure A.6
2 Figure A.7 Figure A.8
3 Figure A.9 Figure A.10
4 Figure A.11 Figure A.12

Table A.3: Figure titles for the figures that contain example estimated intensity (λ(s)) and
risk surfaces (p(s)) for each simulation setting.

The plots of MSPE across models and settings in Figures A.3-A.4 and the plots of

the estimated surfaces λ(s) and p(s) in Figures A.5-A.12 highlight that as the degree of
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data aggregation increases, from Type C data to Type E, the relative efficiency of parameter

estimates decreases (in terms of the precision of estimated parameters for a given number

of sampled individuals). Further, the probability of obtaining extreme values of coefficient

estimates and standard errors (and by extension, intensity and probability surfaces) from

the proposed models increases as aggregation increases from Type C to Type E data due

to identifiability issues. As a result, we see weaker performance (as measured by MSPE) in

estimating intensity and risk surfaces among the conditional and Bernoulli models for Type

D and E data.

A.4 Disease Risk Factor Analysis Data and Figures

This section contains the estimated risk and intensity maps (λ(·) and p(·)) from the risk

factor analysis for each of the following models: the joint model for Type C data, the joint

model for Type D data, the conditional model for Type D data, and the Bernoulli model for

Type E data. The maps were produced using the inverse link functions from the paper and

linear combination of the relevant coefficient estimates and spatial covariates:

λ(s) = eα0+z(s)αkarst ,

p(s) =
eβ0+x(s)βforest

1 + eβ0+x(s)βforest
,

where z(s) is spatial covariate that takes a value of 1 wherever karst landscape is present, and

0 everywhere else. Additionally, x(s) is a spatial covariate for proportion of land classified

as forest, that takes a value between 0 and 1 inclusive. Figure A.13 contains the estimated

λ(s) surfaces from all four models, while Figure A.14 shows the estimated p(s) surfaces for

the same models. The portrayals of λ̂(s) and p̂(s) in Figures A.13-A.14 highlight that as

the degree of data aggregation increases, from Type C data to Type E, the relative efficiency

of parameter estimates and the unreported intercept estimates decreases (in terms of the

precision of estimated parameters for a given number of sampled individuals). Further, the

probability of obtaining extreme values of coefficient estimates and standard errors from the
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Figure A.3: Box plots of the log transformed mean squared predictive errors (MSPE) of the

estimated intensity surfaces λ̂(s) from each data scenario and data set in each setting. Panels
(I) and (J) show the log transformed MSPE obtained from small and large average sample
size simulation experiment settings where x(s) = z(s). Panels (K) and (L) show the log
transformed MSPE from small and large sample size simulation experiment settings where
x(s) 6= z(s). We show the log MSPE calculated using estimates from four different models
(each under a different data aggregation scenario), which included: Scen. 2) a joint model
for n1j and n0j where binary data were aggregated into counts for each subregion (Type C
data); Scen. 3) a joint model for vj and nj using data aggregated into a count and indicator
variable for each subregion (Type D data); Scen. 4) a conditional model for vj using data
aggregated into an indicator variable for each subregion (Type E data). A smaller log MSPE
is indicative of a estimated intensity surface that is closer to the true intensity surface. Each
of the four panels used 1,000 simulated data sets. The distributions of the log MSPE from
scenarios four and five (Conditional and Bernoulli models) were such that some estimates
fell outside the upper bounds of the plots. Each box plot shows (from bottom to top) the
lower bound of 1.5 times the inter-quartile range, the 25th percentile, the median, the 75th

percentile, and the upper bound of 1.5 times the inter-quartile range.
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Figure A.4: Box plots of the mean squared predictive errors (MSPE) of the estimated prob-

ability surfaces p̂(s) from each data scenario and data set in each setting. Panels (M) and
(N) show the log transformed MSPE obtained from small and large average sample size sim-
ulation experiment settings where x(s) = z(s). Panels (O) and (P) show the log transformed
MSPE from small and large sample size simulation experiment settings where x(s) 6= z(s).
We show the MSPE calculated using estimates from five different models (each under a dif-
ferent data aggregation scenario), which included: Scen. 1) logistic regression with no data
aggregation (Type A data); Scen. 2) a joint model for n1j and n0j where binary data were
aggregated into counts for each subregion (Type C data); Scen. 3) a joint model for vj and
nj using data aggregated into a count and indicator variable for each subregion (Type D
data); Scen. 4) a conditional model for vj using data aggregated into an indicator variable
for each subregion (Type E data). A smaller MSPE is indicative of a estimated probability
surface that is closer to the true probability surface. Each of the four panels used 1,000
simulated data sets. Each box plot shows (from bottom to top) the lower bound of 1.5 times
the inter-quartile range, the 25th percentile, the median, the 75th percentile, and the upper
bound of 1.5 times the inter-quartile range.
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Figure A.5: An example estimated λ(s) surface across the simulated unit study area from
Setting 1, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right).
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Figure A.6: An example estimated p(s) surface across the simulated unit study area from
Setting 1, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right).
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Figure A.7: An example estimated λ(s) surface across the simulated unit study area from
Setting 2, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right).
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Figure A.8: An example estimated p(s) surface across the simulated unit study area from
Setting 2, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right).
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Figure A.9: An example estimated λ(s) surface across the simulated unit study area from
Setting 3, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right). We note
that the scales of the legends on the four plots are different from each other.
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Figure A.10: An example estimated p(s) surface across the simulated unit study area from
Setting 3, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right).
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Figure A.11: An example estimated λ(s) surface across the simulated unit study area from
Setting 4, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right). The
surface produced by the Conditional model for Type D data (bottom left) is starkly different
because the sign of the estimate of the slope parameter α1 was negative. We note that the
scales of the legends on the four plots are different from each other.
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Figure A.12: An example estimated p(s) surface across the simulated unit study area from
Setting 4, obtained by fitting the following models to an example data set: 1) Joint model
for Type C data (top left); 2) Joint model for Type D data (top right); 3) Conditional model
for Type D data (bottom left) 4) Bernoulli model for Type E data (bottom right). We note
that the scales of the legends on the four plots are different from each other.
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proposed models increases as aggregation increases from Type C to Type E data due to

identifiability issues.

We took several steps to ensure that the aberrant results for the Bernoulli model for Type

E data were the result of identifiability issues in the intercept terms for the model, α̂0 and

β̂0. First, we determined through a sensitivity analysis that the parameter estimates from

the Bernoulli model were not sensitive to the parameter starting values that we provided to

the optim function in the program R. Next, we confirmed that α̂0 and β̂0 from the Bernoulli

model were highly correlated, using the cov2cor function on the inverse of the Hessian matrix

in R. Third, we refit a constrained Bernoulli model using a fixed value for α0 = 5.9631673

(the MLE of α0 from the joint model of n1j and n0j). This fixed value for α0 was reasonable

because the joint model for n1j and n0j (Type C data) provides the most precise inference.

Refitting the Bernoulli model with this constraint on α0 produced inference that was more

reasonable (see Figure A.15). The sensitivity analysis, the correlated estimates, and the

improved performance of the constrained Bernoulli model all confirm that the unconstrained

Bernoulli model for Type E data has a higher probability of extreme coefficient estimates

and standard errors. Additionally, we demonstrate that incorporating auxiliary information

about λ(s) into the Bernoulli model improves the quality of inference.
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Figure A.13: The estimated λ(s) surface across the northeastern United States obtained
from the following models: 1) Joint model for Type C data (top left); 2) Joint model for
Type D data (top right); 3) Conditional model for Type D data (bottom left) 4) Bernoulli
model for Type E data (bottom right). The estimates for α1 had a negative sign from the
conditional model for Type D data and the Bernoulli model.
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Figure A.14: The estimated p(s) surface across the northeastern United States obtained from
the following models: 1) Joint model for Type C data (top left); 2) Joint model for Type D
data (top right); 3) Conditional model for Type D data (bottom left) 4) Bernoulli model for
Type E data (bottom right). Risk probabilities differed significantly for the Bernoulli model
because the Bernoulli model provided a large negatively-signed estimate for β0 in comparison
to the other models, due to identifiability issues in α0 and β0.
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Figure A.15: Top: The comparison of estimates and 95% CIs for βforest across methods
after refitting the Bernoulli model with a fixed value for α0. All other estimates and CIs are
identical to Figure 1.4 in Chapter 1. For each model, we give the coefficient estimate (box)
followed by the 95% CI limits (whisker ends). Bottom Left: The estimated λ(s) surface
across the northeastern United States obtained from the Bernoulli model with a fixed value
for α0. Bottom Right: The estimated p(s) surface across the northeastern United States
the Bernoulli model with a fixed value for α0.
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A.5 Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply

endorsement by the U.S. Government.
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Appendix B

The Analytical Solution for the

Homogenized PDE

We now derive the analytical solution to the homogenized ecological diffusion with exponen-

tial growth PDE in (3.7). This analytical solution provides an approximation to the PDE

in (3.2) for any location and time in the study domain and results in substantial computa-

tional savings. We obtained the analytical solution through collaboration with an applied

mathematician, Dr. Ian McGahan, at the University of Wisconsin. This analytical solution

may be derived through several steps outlined in Logan (2014). To simplify the derivation,

we define s1,j = (s1 − ω1,j), s2,j = (s2 − ω2,j), sj ≡ (s1,j, s2,j)
′, and tj = (t − t0j). First, we

transform the homogenized PDE from (3.4) into a Fourier parameter space as follows:

ĉt,j(kj, tj) = FT[cj(sj, tj)] =
1

2π

∫ ∞
−∞

∫ ∞
−∞

c(sj, tj)e
i(k1,js1,j+k2,js2,j)dsj, (B.1)

where kj ≡ (k1,j, k2,j)
′ is a vector of real-valued parameters in Fourier space. We also

note that FT[ ∂
∂s1,j

cj(sj, tj)] = ik1,j ĉ(kj, tj) and FT[ ∂
∂s2,j

cj(sj, tj)] = ik2,j ĉ(kj, tj). Thus, (3.4)

becomes a separable ordinary differential equation:

121



ĉt,j(kj, tj) = −µ̄(k2
1,j + k2

2,j)ĉj(kj, tj) + λ̄ĉj(kj, tj), (B.2)

ĉt,j(kj, tj) = (−µ̄(k2
1,j + k2

2,j) + λ̄)ĉj(kj, tj), (B.3)

ĉt,j(kj, tj)

ĉj(kj, tj)
= −µ̄(k2

1,j + k2
2,j) + λ̄. (B.4)

Integrating both sides of (B.4) with respect to tj results in:

log(ĉj(kj, tj)) = (−µ̄(k2
1,j + k2

2,j) + λ̄)tj + A(kj), (B.5)

ĉj(kj, tj) = eA(kj)e(−µ̄(k2
1,j+k

2
2,j)+λ̄)tj , (B.6)

where A(kj) is an arbitrary function of kj, similar to a constant of integration.

Second, we transform the Gaussian kernel initial conditions from (3.3) into Fourier space:

ĉj(kj, t0j) = FT[cj(sj, t0j)] =θe
−σ2

1k
2
1,j

2 e
−σ2

2k
2
2,j

2 . (B.7)

Solving (B.6) when tj = 0 (i.e., when t = t0j) reveals that ĉj(kj, tj = 0) = eA(kj) = ĉj(kj, t0j).

Thus, we arrive at the unique solution to (3.4) given the specified initial condition in Fourier

space, written:

ĉj(kj, tj) = ĉj(kj, t0j)e
(−µ̄(k2

1,j+k
2
2,j)+λ̄)tj . (B.8)

Third, we invert the Fourier transform to convert (B.8) back to the physical space:
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cj(sj, tj) =FT−1[ĉj(kj, tj)], (B.9)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

ĉj(kj, t0j)e
(−µ̄(k2

1,j+k
2
2,j)+λ̄)tje−i(k1,js1,j+k2,js2,j)dkj, (B.10)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

θe
−σ2

1k
2
1,j

2 e
−σ2

2k
2
2,j

2 e(−µ̄(k2
1,j+k

2
2,j)+λ̄)tje−i(k1,js1,j+k2,js2,j)dkj, (B.11)

=
θ

2π

∫ ∞
−∞

∫ ∞
−∞

eλ̄tje
−σ2

1k
2
1,j

2 e−µ̄k
2
1,je−i(k1,js1,j)e

−σ2
2k

2
2,j

2 e−µ̄k
2
2,je−i(k2,js2,j)dk1,jdk2,j,

(B.12)

=
θ

2π
eλ̄tj

∫ ∞
−∞

e
−σ2

2k
2
2,j

2 e−µ̄k
2
2,je−i(k2,js2,j)

(∫ ∞
−∞

e
−σ2

1k
2
1,j

2 e−µ̄k
2
1,je−i(k1,js1,j)dk1,j

)
dk2,j.

(B.13)

After completing the square of the integrands and evaluating the integrals in (B.13), we

have:

cj(sj, tj) =
θ

2π

√
1

σ2
1 + 2µ̄tj

√
1

(σ2
2 + 2µ̄tj)

eλ̄tje
−(s1,j)2

(σ2
1+2µ̄tj) e

−(s2,j)2

(σ2
2+2µ̄tj) . (B.14)

Recall that uj(s, t) = 1
µ(s)

cj(s, t), s1,j = (s1 − ω1,j), s2 = (s2,j − ω2,j), tj = (t − t0j), and

σ2 = σ2
1 = σ2

2 from assumed symmetry. Then, (B.14) may be simplified and rewritten as:

uj(s, t) =
1

µ(s)

θ

2π(σ2 + 2µ̄(t− t0j))
eλ̄(s)(t−t0j)e

−||s−ωj ||
2

2(σ2+2µ̄(t−t0j)) , (B.15)

which is the same as (3.7).

123



Appendix C

MCMC Algorithm to Fit BHMEDM

We use a Markov chain Monte Carlo (MCMC) method to sample from the posterior distri-

bution of the parameters in the BHMEDM in (3.8-3.9,3.17, 3.11-3.13).
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Algorithm 1: The Markov chain Monte Carlo algorithm used to sample from the

posterior distribution of parameters in the BHMEDM specified in (3.8-3.9,3.17, 3.11-

3.13). In this algorithm, k is the current iteration and n.mcmc is the total number

of iterations. We denote y ≡ (y1, y2, ..., yn)′ where the ith position contains a binary

indicator that the ith individual has the pathogen. The vector vk ≡ (vk1 , v
k
2 , ..., v

k
J∗)

contains the indicators that determine if the jth pseudo-introduction is included in the

model at the kth iteration. We define j′ as the set of all j = 1, 2, ..., J∗ where j′ 6= j. We

define log(θ) as the log-transformed initial concentration of pathogen that is common for

all introductions. Whenever M-H is used, we refer to the adaptive Metropolis-Hastings

algorithm (Roberts and Rosenthal, 2007; Roberts and Rosenthal, 2009).

Result: We obtain samples from p(v, α0,α, γ0,γ, log(θ), τ |y)

Set initial values for v, α0, α, γ0, γ, log(θ), and τ ;

while k < n.mcmc do

for j ← 1 to J do

Gibbs sample (vkj |y,vk−1
j′>j,v

k
j′<j, α

k−1
0 ,αk−1, γk−1

0 ,γk−1, log(θ)k−1, τ k−1) ;

end

M-H sample (αk0,α
k|y,vk, γk−1

0 ,γk−1, log(θ)k−1, τ k−1) ;

M-H sample (γk0 ,γ
k|y,vk, αk0,αk, log(θ)k−1, τ k−1) ;

Gibbs sample (log(θ)k, τ k|y,vk, αk0,αk, γk0 ,γk);

end

For Algorithm 1, the full-conditional distribution of vj at the kth iteration is:

(vkj |y,vk−1
j′>j,v

k
j′<j, α

k−1
0 ,αk−1, γk−1

0 ,γk−1, log(θ)k−1, τ k−1) ∼ Bern(q̃j), (C.1)

where

q̃j =
qj ∗ p(y|..., vkj = 1)

qj ∗ p(y|..., vkj = 1) + (1− qj) ∗ p(y|..., vkj = 0)
, (C.2)
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and

qj = P (vj = 1) ∼ Beta(0.5, 0.5). (C.3)

Here, p(y|..., vkj = 1) = p(y|vk−1
j′>j,v

k
j′<j, α

k−1
0 ,αk−1, γk−1

0 ,γk−1, log(θ)k−1, τ k−1, vkj = 1) is the

likelihood of the data from (3.8) given vkj = 1.

Likewise, p(y|..., vkj = 0) = p(y|vk−1
j′>j,v

k
j′<j, α

k−1
0 ,αk−1, γk−1

0 ,γk−1, log(θ)k−1, τ k−1, vkj = 0) is

the likelihood of the data from (3.8) given vkj = 0. We sample from the posterior distributions

of α0, α, γ0, and γ by using the adaptive Metropolis-Hastings algorithm (Roberts and

Rosenthal, 2007; Roberts and Rosenthal, 2009). We use random-walk proposal distributions

that are dependent on the posterior draws from the previous step. Following Hefley et al.

(2020), the full-conditional distribution of (log(θ), τ )′ at the kth iteration is:

p(log(θ), τ |·) ∼ MVN(Ad,A), (C.4)

where A = ((1,bi)
′(1,bi)+Σ−1

τ )−1, d = ((1,bi)
′(h−u)+Σ−1

τ µτ ), and the prior on (log(θ), τ )′

is MVN(µτ ,Στ ). Further, h ≡ (h1, h2, ..., hn)′ and u ≡ (log(
∑J

j=1 vj ∗
uj(s1,t1)

θ
), log(

∑J
j=1 vj ∗

uj(s2,t2)

θ
), ..., log(

∑J
j=1 vj ∗

uj(sn,tn)

θ
))′. We obtain hi as follows:

p(hi|·) ∝

 TN((1,bi)
′(log(θ), τ ), 1)∞0 , yi = 1

TN((1,bi)
′(log(θ), τ ), 1)0

−∞ , yi = 0
, (C.5)

where TN(·) is the truncated normal distribution. Additionally, because log(u(si, ti)e
b′iτ ) =

log(u(si, ti))+b′iτ , and log(u(si, ti)) = log(θ)+log(
∑J

j=1 vj∗
uj(si,ti)

θ
), then log(u(si, ti)e

b′iτ ) =

log(
∑J

j=1 vj ∗
uj(si,ti)

θ
)e(1,bi)

′(log(θ),τ )).
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