§

//A SANSKRIT USER INTERFAC%/

oy
DAVID GEORGE NCHLE
¢®

B.S. Ohio State University, 1979

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

{ANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

Major Prof

All202 kkEk2l

éﬁé?
.ff;;'?t CONTENTS
&3
c. 2
1. Introductiom..... e § S RERG 6 S . G & 8 e
2. Description of the ProbleM...ccscsvecressrssannaancns
0 B 72031 5 o o S
2.2 Devanagri Scriptecececececess Saae b e EiaEEs 8 e R eETE R
2.3 The Grammar Engine Project...... Sl § EeEe
3. User Interface...... 4% iR ¢ Seessscssacnsuvacsanan
3.1 RequirementS...... tessessiesessnresevnbunanaans
3.2 Desighe.ee.. aw e e w A eI e 8 e s 8 o W e e e
4, Development HistOoTrV.eeaess i & avesessnas -
4,1 Environment....... § RERAEE § RS ERG § L ¥ &% RS
4.2 Development of Prototypes and Independent
Software Modules...... SNy & § b ST 8 e
4.3 Installation in a Word ProcCesSSOr..eceeecessccsecs
4.4 General ProblemS....seveenccesccnaes 3 iR § s

21

21

21

Conclusion...

References...

® 8 5 9 8840 E0 0SS0 EOAEEESEBIESESSAS RS ETE e

5586804083008 FTEsIEssIstANETEEBReTRTRASESAS

ACknOWledgementS---.---ac----.uo.c.-.oo-.-.a.o.-----

FigureS.essas

8.1 Figure 1l

8.2 TFigure 2

8.3 Figure 3

8.4 Figure 4

- The Devanagri Alphabet...ccccecececess
- Keyboard Input CodeS..cevescvcnsseae
- Nlmeric EnCOding Schme..-.-.......-

= Subsystem DecomposSitiONeeecesceveoss

- e

25

27

30

31

31

32

35

38

1. Introduction

This paper describes a master's project involved-with the
Grammar Engine*, an experiment in natural language
understanding with the Sanskrit language. The.author
developed a user interface that has already been used 1in
word processing applications and is intended to be the user

interface for the Grammar Engine system.

The Sanskrit language and its script, Devanagri, pose some
interesting user interface and translation problems. The
ability to use standard English keyboards to input Devanagri
was desired. Normally, Devanagri syllables containing
multiple consonants and a vowel are written with one symbol
and it is desirabie to enter them as separate alphabetic
characters. This user interface was designed to allow its
use for a variety of input character sets and amy output
character set and is presently capable of allowing for
printing of any output character set whose characters can be
depicted with an 11x7 dot matrix. Phonetic, numeric and
keyboard input character sets are able to be printed
presently. Although hardware is not available to allow

printing of the complex Devanagri charﬁbters, the

* Grammar Engine is a registered trademark of Grammar
Engine Inc.

translation to a numeric print code has been achieved.
Translation by combining Devanagri characters into numeric
codes that represent syllables has been planned for and is

expected to be developed with little additional effort.

Chapter 1 is this introduction. Chapter 2 contains a
description of the entire Sanskrit Grammar Engine project
and the user interface portion of it developed by the
author. In order to do this properly, Sanskrit and the
Devanagri script will be described and the problems
associated with their translation.outlined. Chapter 3
outlines the requirements and design of the user interface.
Chapter 4 relates the development history and describes the
_ adapting of the software for use in a word processdr to
print drafts of books containing Saﬁskrit text. Chapter 5
concludes the paper with a description of the current status
of the work and the results obtained. Further work planned
for the project is outlined and related work in this area is

discussed.

A list of references, the figures and the attachments follow

chapter 5.

2. Description of the Problem

2.1 Sanskrit

Sanskrit is an ancient, Asian Indian language that
originally was a commonly spoken language several thousand
years ago: In this period, scholars realized that languages
evolved and they wished to preserve the true meaning of
important religious works written in Sanskrit. Thus, the
language was studied extensively and many grammars were
produced, debated and refined. Panini wrote the definitive
Sanskrit grammar {1] about 2,000 years ago. This was
recognized as a remarkable piece of work and efforts to
produce other grammars ceased while attention was turned to
the étudy of Panini's grammar. Sanskrit means "made smooth
or "polished" and Panini's grammar is considered to be a

complete description of this structured and refined

language.

Panini's grammar has been taught to young Indian boys by
having them memorize the 35 or so pages of 4,000 sutras (or
rules) by the time they are 10 years old. The grammar is

still studied this way today.

The grammar is essentially a set of 4,000 rules divided into
8 books of 4 chapters each that is known as the "sutrapath".
In Sanskrit, words are not pre-ordained, they are derived by

applying the rules to a set of ™2000 roots ("dhatupath') and

some associated lists ('"ganapath"). This is the type of
regularity that contributes to the preservation and

standardization of the language.

Many treatises [2][3][7] have been written about the
grammar. Panini is recognized as having used all of the
techniques identified by Noam Chomsky (recognized as the
greatest linguist of our time) in the production of this
grammar. Some of these techniques provide means of
incorporating semantics into grammatical descriptioms and

afford the grammar a depth unparalleled in any other natural

language.
2.2 Devanagri Script

Sanskrit is writtem in the Devanagri script. The basic
Devanagri alphabet with the phonetic representation of the
pronunciation is given in Figure 1 [4][5][6]. This script
is oriented towards consonants and syllables. Syllable
symbols basically consist of a symbol for a consonant or
group of consonants with a vowel marking appended to the
top, bottom, or either side. Symbols for consonant groups
are called compound consonants and typically look like a
shorthand version of the separate consonants. Consonant
groups are sometimes written separately, but compounding is
preferred. Hundreds of unique syllable symbols are

possible.

The shaping of Devanagri symbols reflect the type of writing
implements that were traditionally used to write them. The
symbols have not evolved for use with printing presses as
Roman symbols have. Although some typewriters for printing
Devanagri script have been fabricated, computer terminals

are not known to be available.

A basic alphabet comsisting of 49 symbols and a few
diacratic marks exists and has been used to type Devamagri
script, after a fashionm, thus avoiding the problem of
printing hundreds of unique symbols of different sizes.

When thi; is d;ne, even the vowels are presented as separate

forms.
2.3 The Grammar Engine Project

Grammar Engine Inc. was founded in 1982 by Arvind Rana, a
computer écientist, and his father, Jag Deva Singh, a
professor of linguistics and Sanskrit scholar, with the
express purpose of experimenting with Sanskrit and
computing. A long term project was envisioned to take
advantage of the extraordinary structure of Panini's grammar
in implementing Sanskrit on a computer system. They saw the
S-nskrit language as having a concise, static, complete and
therefore less ambiguous, more manageable description than
other natural languages. From this attempt, insight into

the nature of language and the process of making intelligent

machines would be obtained.

The computer implementation of Panini's grammar (the Grammar
P P

Engine) was to be approached from two directioms:

1. A linguistic database of rtules was to be accumulated
with some type of classifications or labels placed on
the data items. Essentially, this process would
involve entering and manipulating the text of the
grammar, The classifications (ex. rule, definition,
exception, etc.) would evolve as more knowledge was
accumulated. This would result in a rule base that

might later prove useful,

2. Parts of rules and eventually sections of the grammar
were to be modeled in order to experiment with
different knowledge representation strategies. This
process would first involve studying the structure of
the grammar in order to infer how Panini devised it.
Once models wer; constructed, they could be checked

for consistency and perhaps tested on text.

In the beginning stages of the project, logistical problems
of working with Sanskrit and Devanagri script would be
tackled. The logistical problems were mainly associated

with input and output.

The first piece of software needed for the project was a

user interface for Sanskrit/Devanagri input and output so
that files containing rules and other text could be entered
and dealt with effectively. Most of the remainder of this
paper focuses on the author's development of a flexible user
interface designed to function as part of the Grammar Engine

and later adapted to other applicationms.

3. User Interface
3.1 Requirements

Roman script based languages use the same set of symbols for
both input and output. Devanagri script has far too many
unique symbols to put them on a normal keyboard as single
keys. Oriental languages have similar problems and the

solutions have ended up being awkward and expensive.

Input could be managed with the simple 49 alphabetic
character symbols, but many more symbols, approximately 300,
are required for high quality output. Limiting input to the
49 simple alphabetic characters can be considered as a
viable solution because Devanagri typeﬁriters only have
these characters. The input symbols could be translated in
a computer system by grouping them into syllables and
replacing them with complex symbols to form all possible

output symbols.

If an English keyboard was to be used, a way to print

inputted text back out as the actual keystrokes* entered

* Throughout this paper, the term "keystroke'" will be used
to indicate the ASCII code which stands for the Roman
character pictured on a given key on the keyboard. When
a "keystroke" is viewed with an editor after being
stored in a file, it will, of course, be again in the
form of a symbol and not a number.

might be useful. Indeed, if the translator were made
general enmough, printing of phonetic and internal numeric

representations might also be permitted.

An input encoding was desired that would allow nmormal
English keyboards to be used immediately, as Devanagri
keyboards are not available. It was desired to be able to
output Devanagri symbols on both video termimals and line
printers, although suitable hardware might not be purchased
for some time. In the mean time, simple terminals and dot
matrix printers that were at hand were to be used and the
design and software made so that it could be extended for

better hardware.

3.2 Design

3.2.1 High Level Design This section will present the high
level design of the User Interface Subsystem by examining
its inputs and outputs. The keyboard input language is the
single type of input and printing instructions are the

output.

3.2.1.1 Selection of the Keyboard input language for

English keyboards Keycaps were not going to be replaced on
the terminals, so a keyboard input language was designed in
such a way as to strike a balance between human factors
considerations and ease of tramslation. Selection of

keystrokes was done to allow persons familiar with Roman

s Y e

characters and their English pronunciations and Devanagri
characters and their Sanskrit pronunciations to relate omne
with the other. Control characters were not used for
entering Sanskrit as they were needed for their normal
functions. Some of the 49 input characters would be
required to be entered with multiple keystrokes to allow

full use of all control characters.

In an input encoding made up of one aqd two character codes,
the "first set" could be considered to be those characters
allowed to be alone or to stand as the first of a two
character code. The "follow set” could then be considered
to be those character codes allowed to be second in a two
character string. By selecting a. "follow set” disjoint from
a "first set" for input tokens représenting the alphabetic
characters, the program to translate between input
keystrokes and output printing codes could be built as a
simple finite state machine [8]. Pronunciations are
frequently represented with Roman characters by linguists.
This was taken advantage of in choosing the input keyboard
keystrokes that were to represent alphabetic characters. A
small "follow set" consisting of the "h'" and "™" characters
was settled on and capitals were used to represent some
symbols like long vowels. It was recognized that after
using the keyboard awhile, users might like some changes

made in the input keystrokes (within limits), so a mechanism

- 11 -

to permit this was desired.

The input codes are given in figure 2. This table has three

columns:
- the phonetic representation
- the Devanagri script symbol

- the keyboard input keystrokes

3.2.1.2 Selection of output codes Because of the

dependence on printer hardware, it was decided to have a
numeric code that would eventually be looked up in a table
where an associated sequence of printing instructions would
be located. The codes themselves are arbitrary (except that
the symbols in the input domain need the same encoding as in

the output domain).

The needed table would have the following two columns and it
will be given later in this document as part of amother

table.

- the sequence of printing instructions

- the numeric code

3.2.2 Detailed Design of User Interface Subsvstem The

detailed design of the User Interface Subsystem will be

discussed in this section by first defining the central data

-12 -

structure involved, the internal numeric codes. The
subsystem will then be broken down into functionmal pieces
(in the same way that it was designed) and-each piece (or

module) described in detail.

3.2.2.1 Selection of Internal Numeric Codes Like any

computer language, Sanskrit was expected to have an internal
numeric representation. As described above, 49 Devanagri
characters were to comprise the input domain and required a
corresponding number of numeric codes.” This set was
selected for use as the internal encoding for the Grammar
Engine. Output (printing) codes were to be produced by the
user interface from translation of the internal numeric

codes as mneeded.

The encoding scheme is given in figure 3. This table has

three columns:

- the numeric code (which might change based on
advantages that certain encodings might have for other

subsystems in the Grammar Engine)
- the Devanagri script symbol

- the phonetic representation

3.2.2.2 Incoming Translations The incoming translation was

always from keyboard type input to internal numeric code and

was made straightforward by the simplification of the

- 13 -

"follow set".

3.2.2.3 Qutgoing Translations QOutgoing Translations would

always be from numeric code to a set of printing or
displaying instructioms. This makes it heavily dependent on
the hardware. To allow for the eventual use of various
devices, the output codes table described above would
eventually be expanded to hold these sequences of printing
or.displaying instructions. (Note that different tables
would exist for different devices.) At present, it holds a
one character print instruction for the reasons outlined

below.

An Okidata Microlime 92 Serial Dot Matrix Printer [6] was
initially available for use with the Grammar Engine project.
The printhead allowed up to 64 11x7 dot matrix symbols to be
downline loaded and printed via host software. In this
context, downline loading refers to the process of sending
information to the printer that programs it as to how to
print an alternate character set. This process is
accomplished by sending a sequence of codes that include a
normal ASCII code and eleven numbers, each representing a
column in the dot matrix., The ASCII code is them sent to
the printer when it is in the "print altermate character
set" mode to request printing of the downline loaded symbol.
A full dot addressing (graphics) mode is also available in

the device. As characters of the same size as the normal

- 14 -

Roman fonts were desired, the former capability was selected
to be the basis for the initial implementation. Extension
to other printers and printing methods was to be a

consideration in the software design.
Functions were defined to allow:

¢ fabrication of the output symbols by users who knew the

scripts and were not computer programmers
¢ translation to printer command sequences via commands
¢ downline loading of these symbols via commands

With several hundred symbols needed for Devanagri output and
only 64 allowable downline loaded characters, software would
be required to change the loaded characters occasionally to

make them all available as needed.

In examining some of the symbols of even average complexity,
it was realized that an 11x7 matrix was not nearly fine-
grained enough to allow recognizable representations of many
of the characters in the basic alphabet, much less the far
more complex compound characters. It was then clear that
eventually a better printer would be needed to print normal

size Devanagri symbols.

Thus, the initial implementation would involve printing of

one character symbols that could be defined with an 11x7

- B

matrix and subsequent implementations would allow more

complex printing instructions either by:

- sequences of characters and backspaces to allow

overprinting of several primitives to form one symbol,
— use of XY addressable graphics capabilities,

- or a printer with more dots on the printhead that could

print more complex characters.

It was recognized that different fonts or the use of
different, but equivalent syllable symbols might cause

changes to be made in this encoding.

3.2.2.4 BSubsystem Decomposition Once the input, output and

central data structures had been defined, an overall picture
of the inside of the subsystem could be generated. The
‘printing symbols would include all of the input symbols as
well as several hundred combination symbols. It seemed
reasonable to eventually derive one master encoding that
included all numeric codes and use it for both purposes.

The following activities needed to be integrated into the

subsystem:

1. User defined pictures (from normal editable files)
must be translated into sequences suitable to command
the printer as to how to print the user definable

symbols. (CSBUILDER)

it Ty =

2. The printer command sequences must be sent to the
printer (downline load the character definitions).

(CSLOADER)

3. The alternate character set must be demonstrated for

debugging purposes. (CSDEMO)

4. Keyboard input must be parsed and translated into the

central alphabetic numeric code. (XALL)

5. The simple alphabetic numeric code must be translated
into complex numeric code. If printing of complex
symbols was not desired, then this step could be

skipped. (STOC)

6. Numeric code must be translated into some print codes
for some type of output (numeric, keyboard, phometic,
simple alphabetic Devanagri or complex Devanagri with

combined syllable symbols). (PALL)

Figure 4 depicts a subsystem decomposition that has all
language specific data outside of the modules and in user

changeable files,

These data files are the interfaces between modules and are

of the following types:

1, Character Picture Files -

- LJ -

contain user—editable, character per—dot-
representations of print symbols with an associated
ASCII character must be unique and correlate with the
master translation table. An example is given in

Attachment I.
Loadable Numeric Files -

contain the output from translation of the character
picture files which are the associated ASCII character
and numbers that must be sent to the printer to
downline load (define) character in its memory. An

example is given in Attachment II.

-

Numeric Code Files -

contain the version of what would correspond to ASCIT
for Roman script which are the intermal
representations of symbols. An example is given in

Attachment III.

Master Translation Table - is a three column table
mapping input keystrokes to intermal code and also to
an associated ASCII character used as a printing label
that must cor¥espond to that used in the character

picture files. An example is given in Attachment IV.

Keyboard Input Files -

- 18 -

contain keystrokes as they would entered at the
terminal in an editable format. An example is given

in Attachment V.

3.2.2.5 Mogdule Descriptions The development strategy was

to devise each module as a separate program that used files
as input and output. This was to make the testing easier
and allow pieces to be incorporated into other software in a
variety of ways. The development of the simple to complex
numeric code translator (STOC) was postponed until
acquisition of a printer capable of printing complex

symbols.

3.2.2.5.1 CSBUILDER The Character Set Builder performs the

following steps:
1. asks the user for the input and output filenames

2. reads the input file which contains character pictures

and translates to loadable numeric codes
3. writes the loadable numeric codes into the output file

3.2.2.5.2 CSLOADER The Character Set Loader performs the

following steps:
1. asks the user for the input filename

2. reads the input file which contains loadable numeric

codes and tramslates to printer instructions to load

3.

- 19 -

characters

writes the printer instructions to the printer

3.2.2.5.3 CSDEMQ The Character Set Demonstrator performs

the following steps:

1.

3.

asks the user for the input filename

reads the input file which contains loadable numeric
codes and translates to printer instructions to print

samples of the characters

writes the printer imstructions to the printer

3.2.2.5.4 ZXALL The Translate All program performs the

following steps:

1-

asks the user for the master translation table,

keyboard input and numeric code output filenames
reads and stores the master translation table file

reads the input file which contains the keystrokes to
be tramslated and translates to numeric code by
looking them up in the master translation table (a
linear search is presently used, but this may change

if more speed is required)

writes the numeric codes to the designated output file

- 20 -

3.2.2.5.5 PALL The Print All program performs the

following steps:

1. asks the user for the master translation table and

numeric code input filenames

2. reads and stores the master tramslation table file

3. reads the input file which contains numeric codes and
translates to printer instructioms to print the
characters by looking them up in the master
translation table (once again, a linear search was

used and may change if more speed is required)

4, writes the printer instructions to the printer

- 21 -

4. Development History
4,1 Enviromment

An IBM Personal Computer [9][10] with a 10 megabyte hard
disk and one floppy disk drive was made available for use
with the user interface portion of the project. This system
was directly connected to the Okidata printer and was set up
to run IBM PC DOS operating system [12]. IBM Advanced BASIC
[11] was the only high level language available and was
therefore selected for use. A visual editor, VEDIT, was
available to allow entry of user defined keystroke codes and

printing matrices.

4.2 Development of Prototypes and Independent Software

Modules

Experiments were conducted to try out the printer
capabilities for downline loading of characters. Attachment
V1 contains pictures and code used in an experiment to print
a picture of the Grammar Engine Inc. company logo with 12
downline loaded characters. This experiment was successful,
but resulted in horizontal blank lines in the logo because
the bottom (eighth) row of dots is never defined in downline

loaded characters.

Modules were developed one by one and tested individually

with handmade data and eventually with input that was output

i

from other modules.

4.3 Installation in a Word Processor

During the spring of 1983, Jag Deva Singh was finishing work
on a book written mainly in English that frequently used
Sanskrit examples. A way to use word processing for this
book to produce a version to be sent to India for
publication was desired. Although no printer capable of
printing full Devanagri script was available to us, the
Indian publisher could typeset the book if the Devamagri

portions were represented in phonetic symbols.

This application sized up as the perfect place to try out
the software. Integration of the individual modules into
this software was accomplished by rémoviug the imstructions
to request and read file names from the user and changing to
internal data structures to pass the information from one
module to the next. The integrated source code versions are

in Attachment VII.

This use of the user interface software proved to be a
success when some of the typists using the word processor

who were not familiar with software, had no major problems.

At one point, a number of chapters were typed with the wrong
keystrokes used comnsistently for one of the alphabetic imput

characters because they better fit the pattern of the

- 23 -

keystréke definitions. Another typist preferred the
original way of entering the symbol. The "wrong" set of
keystrokes was added to the table as a second way of
entering that alphabetic symbol and work proceeded with each
typist using the keystrokes that they preferred. The format
of the table allows multiple input strings to map to the
same numeric code. Reference 7 is the book as produced by
the word processor and user interface software and as sent

to India for publicatiom.

This experience clearly demomstrated the functionality,
extensibility, modularity and flexibility of the software

design.

4.4 General Problems

The following is a list of problems that were encountered
during the design, implementation and subsequent usage of

the software that and are still unresolved:

- The complexity of some characters does not allow them

to be printed with an 11x7 dot matrix.

- Only 64 downline loadable characters are allowed in the
particular printer that was used. Several hundred
would allow much greater flexibility in the

implementation of combined character printing.

- 34 -

- The translation to combined characters has not been
developed yet. (It is, however, designed and will not

be a major effort.)

- No mechanism exists in the Advanced BASIC language to
allow files to be included or libraries to be used so

that commonly used routines could be readily shared.

- 25 =

5. Comclusion

The Sanskrit user interface is now ready to be used by the
Grammar Engine software when it becomes available. A
generalized translation mechanism based on user defined
input tables formed the heart of the software. This
mechanism simplified the problem of doing several
translations by genmeralizing to ome case that not only
includes a range of possible uses besides those involved in

the original problem.

The code was easily adapted to do tramslation for a word
processor and performed well when used to assist in the
publication of a book containing Sanskrit text. Dr. Singh's

book is nmow in publication in India.

Methods of printing complex Devanagri symbols via the use of
primitives are being examined. 1Im particular, current work
at Stanford University was found [16] that relates to
typography [15] and Indian scripts [l4]. One of the
techniques ﬁhat may be adapted from this work involves the
definition of a set of primitive strokes of symbols that
allow printing of any complex Devanagri symbol when used in

various combinations.

Aside from the printing of full Devanagri script, the user

interface may soon be extended in a number of ways:

— B -

- A standard numeric code may be agreed upon for
Sanskrit. If a standard is selected, the user

interface may be altered to use it.

- Either an actual Sanskrit keyboard will be developed or
a graphics display with light pen selection will be

implemented.

- Graphics capabilities may be used to provide
information displayed in color. An example of the use
of this capability would be color coding the grammar

rules according to type.

Members of the Grammar Engine project are proceeding with
the study of the grammar. A very large project is now
underway involving Stanford and a number of other
institutions dealing with situated language in gemeral [18],
Directors of the project are interested in sharing
information with Grammar Engine project members [17] and

intend to do so.

6.

[1]

(2]

[3]

[4]

(5]

[6]

(7]

(8]

9]

- 27 -

References

Vasu, Srisa Chandra The Ashtadhyayi of Panini. Delhi,

India: Motilal Banarsidass, 1891, reprinted 1962.

Bohtlingk, Otto Panini's Grammatik. Germany: Georg

Olms Verlagsbuchhandlung, 1964.

Faddegon, Barend Studies on Panini's Grammar.
Amsterdam: Uitgave Van De N. V. Noord-Hollandsche

Uitgeversmaatschappi, 1936.

Lanman, Charles Rockwell A Sanskrit Reader.

Cambridge, Massachusetts: Harvard University Press,

1967.

Macdomell, Arthur A. A Sapskrit Grammar for Students.

London: Oxford University Press, 1927.

Perry, Edward Delavan A Sanskrit Primer. USA:

Columbia University Press, 1927.

Singh, J. D. Panini - His Description of Samskrit, An
Analytical Study of Astadhyayi. In publicationm.

Barrett, William A. and John D. Couch Compiler
Construction: Theorvy and Practice. USA: Science

Research Associates, 1979.

International Business Machine Corporation. Personal

[10]

(11]

[12]

(13]

[14]

[15]

- 28 -

Computer XT Hardware Reference Library: Technical

Reference International Business Machine Corporatiom,

1983,

International Business Machine Corporation. ZPersonal

Computer XT Hardware Reference Library: Guide to
Operations International Business Machine Corporation,

1983.

International Business Machine Corporation. Persomal

Computer Hardware Reference Library: BASIC

International Business Machine Corporation, 1982.

International Business Machine Corporation. Personal
Computer Computer Lapnguage Series: Disk Operating
System by Microsoft, Inc. Intermational Business

Machine Corporatiom, 1983.

Okidata. Microline 92 Serial Dot Matrix Printer.

Okidata.

Ghosh, Pijush K. An Approach to Iype Design apd Text
Composition in Indian Scripts. Stanford, Califormia:
Department of Computer Science, Stanford University,

1983.

Ghosh, Pijush K and Charles A. Bigelow. A Formal

-Approach to Lettershape Description for Type Design

Stanford, California: Department of Computer Science,

- 99 =

Stanford University, 1983.

[16] Knuth, Donald E. Private Communication, Stanford

University, November, 1983.

[17] Winograd, Terry. Private Communication, Stanford

University, November, 1983.

[18] "Center for the Study Of Language and Information
Research Program on Situated Language.'" AL Magazine,

Vol. 5, No. 2, Summer 1984, 65-70.

- 30 -

7. Acknowledgements

I would like to thank my advisor, Dr. Rod Bates for his
advice and encouragement as well as the other members of my
masters' committee, Dr. Rich McBride and Dr. Roger Hartley,
for theirs. The Computer Science Department staff assisted
me extemsively in producing this paper. Arvind Ranma
provided a wonderful opportunity to do a project that was
both interesting and useful and made the project quite
rewarding. His wife and family welcomed me into their home
and made the entire experience most enjoyable. My fellow
graduate students (in the Summer—On-Campus Program) have
encouraged me not only during this project and the
production of this paper, but during the entire course of my

graduate studies. I am deeply indebted to you all.

@]

8. Figures

8.1 Figure 1L - TH- Devanagri Rlphabet

THE DEVANAGARI LETTERS

VoweLs. CovsonanTs,
laitial. Nedial, Eqeieslemt Tquivelemt Equivaleal
ss} - 3 r
— s k-h CI®R p-h
o T g 19 b :
b i T gk 219 bu | F
3“ 3: n 7{ m
{ f\i ; c q
. -h
T T T ; = T« lgz
: 2 : ;i}orgj-h ;E 31 E_
Eil . o 3)
ar
R T i ors)
R etz o olg, |2
T allrh)T g g &l
T dh E_ H s E.
= & - " ¢t
L 9 th o|t b (Visarga)
WYo T :
e\‘? Y dh @ | *mor rh (Anusvira)
% " L

_32....

8.2 Figure 2 - Keyboard Input Codes

Phonetic Keyboard Devanagri

ll-“ L] c
=

ai E

au 0

kh | kh

gh gh

=1
)

W g By A GGy g Y g

- 33 -

8.2 Figure 2 - Keyboard Input Codes (cont.)

Phonetic

Keyboard

Devanagri

B 5 ga9d Wﬂmﬂmwmaxﬁﬁ:ﬁng

34

8.2 Figure 2 - Keyboard Input Codes {cont.)

Phonetic Keyboard Devanagri
bh . bh H
m m pui
y y A
r r oy

I I ol
U v =
% sh 37
$ s a
s ; &
h h, H '&\'
m M -

h .

35

8.3 Figure 3 - Numeric Encoding Scheme

Phonetic Numeric Devanagri
1 H
a -1 T
l 2 s,
T -2 g
u 3 3
[-3)
r 4 H
T 4 7
] 5 <@
e 6 L3
ai 8 ?)'
0 i 3?'-
au 9 \%}
k 38 h
kh 30 <4
g 27 JT
gh 22 31
T 17 3

36

8.3 Figure 3 - Numeric Encoding Scheme (cont.)

Phonetic Numeric Devanagri
¢ 35 w2l
ch 32 =)
j 25 T
jh 20 ot oy
(1 15 o7
t 36 e
th 33 3
d 28 E
dh 23 S

n 18 -TJT
t 37 o
th 34 a
d 29 A
di 24 &)
n 19 ul
p 39 o
ph 31 th
b 26 o

3?

8.3 Figure 3 - Numeric Encoding Scheme (cont.)

Phonetic Numeric Devanagri
bh 21 Eal
m 16 H
y 1 =x
r 13 oL
l 14 oA
U 12 =
§ 40 a
s 41 |
S 42 b
h 10 CN
m 44 -

h 45 :

- 18 -

8.4 Figure & - Sub-y-tcm_D-compo'iticn

> CS3uU/LDER

CsLorder fRinTE A
> -
\/_
- OSbemo AUNTER
\/’_
>
XALL
A

ALL | FRINTER

Rttachmant I - Sample Character Picture File

n.li' D
MOMMMMRKKN "
" "

MK XXX “
X Xx "
L1} n "
" 1]
n oM “
“ b " ' Q
A T
" i1}
" o x x "
n " » "
1] N X "
1] “ x (1]
MMM RX "
" c 1] ' n
R
(1] "
n X u K "
" x "
" u i
" » "
" X XX i
L] d [] ' n
BN "
" (1]
" KX XX "
“ x x "
" " x]
HOMMMMNMMAN M
“ o o [}
L] ® [] v n
1]]
L] (L]
HEXX "
X x "
n x M M
¥ ORMKHNMNN "
" x » (1]
] f u ’ Q
(1] "
o 11}
L] XK u "
" x "
(1] x L]
“ 1]

Attachment I - Sample Character Picture File (cont.)

1] g L1} ' Q

" "
[1] n
"oRuN RN M
" x “ H
11} x ® 1]
(1] x x E1]
it HUMNNX "
[1] h 11] . D

" HHHHH MK "
u K x "
" HHURNK KN "
" MM MM L
"X MxRx M
" "
n x x u
[1] i (1] § D

n x "
" x (1]
[1] u]
" x "
" HRERHHK "
" [1]
" x x u
1] J 11 . n

[1] 11

YOMMKNHKX M

n u (1}
MM MRHR "
1] X i
" RHEXMMHN "
" k 1] % g

11} "
n 1)

HORRMRNEN "

(] x » n
" x x "
'] u » 1]
"MXM RXX M
[1] 1 (1] " R

" "
[1] 1]
"N KRN "
" u x R "
un u x M [1]

UHHMAMR Ao "
"y ® Mxx "

‘Rttachment I

[1] m " ’ n

" "
" 11
" oK X X"
"ox ow X "
] X X x"
UHMXHAAKR N x!"
" x ®» Xx "
11} n " W Q

[1] 1]
19 "
(1] “ x n
L] Y3 b “
"X XKXX "
W x x (1]
(1] K x 1]
1] o " ' n

[1] 11}
[}] 1]
1] x x 7"
1] x x 1]
(1] x x "
“w x (1]
" 3 i1l
11} p 11 n

1} 1]
" 1}
q 1]

X ®

n x » 1
n x x (1]
" x R an
1u x "
1} q iwn . g

“u "
[1] (1]
u MK KX "
n x x i
"OMKM KKK "
i MM XX "
1 X HHX L
1] r n Q

" “
" "
[1] “ [1]
" x n
[} x i1
[1] x "
L HEHHKNN M

- iii -

- Sample Character Picture File

(cont.)

Attachment
[1] ' 1 Q
" o X
H
YoM ORMMMX
" by o
" X X
" * X
" X X
" t " ' g
1}
n
"MK wK
"X oX X X
" X K X
"X] X
" =

o X
" u " i n
Y ORMRMNRX
1]

xX X X X

X X X X

X xXx X x
x

I

- Sample Character Picture File

(cont,)

Rttachmant I

11} y u - n

L1} x 1}
“x HUXN ™
(1] X X ® 1]
"HRRK X w
1} ® K n
" ® » "
"MK "
" z " ' D

" » "
"o HXX xux "
"y X x x"
"x X x x"
"OXXXXx "
[[] x n
"o uxX "
1] n 1] i D

1] X * []]
[1] x x H x "
UOMKHXKK X »"
" x H X x"
YOMKKKK "
(1] "
H x x u
11 B " v n

H x U
" x x x i
[} K “ W (1]
" H X x"
"M MK "
11} x Y] (1]
"OMKNNX "
n C 111 ’ Q

" n
n [1]
L] x x x (L]
“u X [1]
u ® 1]
" x x "
" K)‘ x x "
1} D 1] = n

" 1]
(1] 11}
WM MK KKK "
" x x "
UMM NARR "
" x x 113

UMMM H MR "

-uv—

- Sample Character Picture File

(cont.)

Rttachment I

llEll' n

i

1]

YORKRERMNN

1] »
H1]

] KR XK
" ox X
MR M MMM R X K
[1] F (1] y D
HOMMHNR RN
" ox X
" ox X
H x x

TOMMMKHNN

IIGII' n

KX

ORMKHRHK

" ox X
1]] x
"o X
MMM RRNN
"Hll'n

1] o
" MHUH
"y X X
XX X
RS ETaT

"X X

" x K
lIIII'D

" X
UHMMRNN XXX
" X X
W X X
URHMHHK

Iix

llx

llJll'n

(1] ®

" XX K
oMM X
Wit XX
UH

llx ']

- Sample Character Picture File

(cont,)

Rttachment I

11} K |1}) D

" x x [1}
"rXXX HRN "
[1] x " K 13
n x x x (1]
vOoXXXX u
(1] "
" x K i
111 L 11 ¥ n

L1 x 1]
"% XN
(1] 7] K Y 111
" XMX X x"
|1} x 10
" x "
"OXMXX "
(1] M " ' Q

11} [18
(1] 1]
"MK KRRRN u
11} e "
1] x "
L) '3 (1]
MOMMHMNRRNK u
(1] N (1] ' D

MK XXNNX "
'] H "
1] x M
1] x i1}
1] x "
1] i1
(1] K K "
n 0 [1} ’ n

[1] "
" (1]

" HHHHRKN "

n x il
(1] x (1
n x i1
(1] x 11}
1] p " ' n

1@ 11}
1] “
1] u x x n
“ o ox b &
v oxXXX "
" x x [1]

L1} ' WM "

- vii -

- Sample Character Picture File

(cont.)

Rttachment
ngw . D
"OXMNNKRN
1")(o
" ® »
11 H X

OMMEHNRNR
“ N

" x

IIR"' A

"MK » X

1] X
UMK K HN

[1] »
"MK KKN
" X
"OMMKMMNNK
" SN ' D

" WHKKNMX
11} e
" HHEK KKK
“"w X
TOMMHRNNN

" X
IITIC' n

" HMHHM MK
MH KKK KK

ORMRRRKN
IIUII'Q
[} xu

"X x
11 X X
MMM NMXKX
" x o
" x X

[1] o X

o

X X X X X

I

"
i

L1}

"

= iy =

- Sample Character Picture File

(cont.)

Rttachment II

]

-

N eroeeeda

m

4Q
40

mm-.-‘--dd-‘n.-

[

'
)
L]
L
1
Y
24

]

it S S I~ T I R

OO EEI~-~000060880OG

@ " A w . A - - A -

[~

[

64
72
az
22
aa
32
124
124
31
124
16
i8
&8
18
72
56
2
2 ,
124
127
73
i8
a8 ,
124
"]
48

1
9

]

000G

- @ @ W@ a @ & - - = .

4

— Sample Lcadable Numeric File

s, s, 89,6, 5,5, 9, 9, 0
65 , 65 , 65 , 65 , 65 , 65 , 65, 61 , O
{1, 1, 69, 125, 69 , 1t , 1 , 1 , O
113, 41, 37, 37, 37, 37, 41, 113, @
112 , 42, 3 , 356 , 38 , 36 , 42, 112, Q
@, 68, 124 , 68 , 2 , @ , @ , 2, ©
60 , 68 , 64 , 64 , B4 , 68 , 60 , 4 , @
31, 13, 77, 93, 21, 21 , 21 , 2, O
@, 31, 80, 8@, 16, 16 , 16 , 0, O
124 , 84 , 84 , B4 , 84 , 68 , 68 , @ , Q
68 , 68 , 68 , 68 , 68 , 68 , 68 ;7 S6 , ©
, 3 , 36, 42, 112, @, 68, 124 , €68 , O
, 36 , 36 , 42, 112 , @, 60 , 64 , 64 , 60
124 , 16 , 16 , 16, 16 , 16, 124 , @, O
4 , 8, 16, 96, 16 , 8, 4, 0, 0
8, 16 , 32, 64 , 32, 16, 8, 4, Q
124 , 52 , 52, S2 , 84 , 84 , 72, @, O
124 , 64 , B4 , B4 , 64 , 64 , 64 , O , @
120 , 4 , S, 5, 4, 4, 120 , 2, 0
, 4, 8, 16, 32, 16 , 8, 4, 124 , O
12¢ , 5,5, 5, %, 5, 121 , &, ©@
3, 65, 65, 65, 65 , 65, 320 , @ , Q@
124 , 4 , 8, 16, 32, 64 , 124 , @, 0
, 64 , 64 , 60 , @ , 15 , 2, 2, 2, 12
TR, TE G 48 ¢ O 4 15 5 B 4 B 4 2 4, 12
, 82 , 82 , 82, 126 , @, 15, 2, 2, 12
g4 , 84 , 20 , 31 , @, 15, 2, 2, 12
, 80 , 80 , 80 , 124 , @, 15, 2, 2, 12
64 , 64 , 64 , 68 , 6@ , 4 , @ , @ , O
, 84 , 84 , 84 , B4 , B4 , 84 , 40 , @, O
, 68 , 68 , 68 , 68 , 84 , 84 , 116 , @ , O
17 , 17, 81, 81, 17, 17, 14 , @, O
, 68 , 68 , 68 , 68 , 68 , 68 , 56 , @ , ©
, 16 , 42 , 68 , 64 , @, 15, 2, 2, 12
, 18, 18, 18, 12, @, 15, 2, 2, 12
, 68 , 68 , 40 , & , @, 15, 2, 2, 12
, 82 , 82, 16,902, @, 15, 2, 2, 12
, 72,72, 64, 0, 0, 15, 2, 2, 12
€8 , 68 , 68 , 68 , 68 , €8 , 68 , 0 , O
{, 1,1, 985,65, t,1, 0,0
4 , 4, 4, 124 , 4 , 4, 4 , @, 2
, 16 , 16 , 16 , 40 , 68 , 68 , @ , @, O
, 17 4, 17, 17 4 17 4, 17 4, 17, 14, @, O
gs , &6 , 86 , 85 , 85 , 84 , 36 , 9, ©
21 , 21, 85,21 , 21, 21, 8, @, O
84 , 84 g4 , B4 , B84 , B4 , B4 , 32, O
, 4,8, 17, 33, 16 , 8, 4, 124 , ©
31, 4, 4, 68, 68, 4, 31, 8, 0
84 84 , 84 , B84 , B4 , 84 , 84 , 36, O

Attachment III - Sample Numeric Code File

3 1 1 188 9 1 5 9 1 2 3 4
i 11 12 2 5 2 9 1 @ S 2
2 8 & 5 2 @ 2

a e
Q0
@~
-
@4y

1
Q2

Rttachment IV - Sample Master Translation Table

_4‘ Wpanen
-2, "U

-2,1

-1,"A

1' ll'. "
a' '.i "
3,%"u "
4, "R
5' I‘L 11}
6y "@ "
7’ Mg M
B‘ np w
9‘ wp v
1@, “H

19, "h

11‘ "Y ",0
12,"v ", p
13,r ", q
14’ £ B
15’ uy u' s

I LG T AR = e
anow

3

-

17468 *,d
18, "N ", v
lg' "o ",N
20, "Jh", x

22, "gh", z
23,"Dh", A
24, "dh", B
25‘ “J “'C

26,"b “,D
27‘ llu II‘E
281 IID II'F

29,"d ", 8
30, "kh",H
31, “ph"; I
32, "ch",J
33, "Th*,K
34, "th", L
35, %c "M
36,"T “,N

37‘ " "'O
Ba'llk Il’p
39‘ up u‘G
39, P 0
4@, “sh", R
41,"8 ", 8
42‘ !1' II'T

44‘ "M u| U

Rttachment V - Sample Keyboard Input File

?aeiou
REIOU

r'\r

ar*ea
r'\or'\v

r™~ aR e

a

a

"w* 3R e

" 1

2

Rttachment VI - Logo Building Experiment

139 OPEN *1*,#1, “ciGEILCS"
143 OPEN 0", #2, "1pti:®
158 FOR CHRCTRX = | TO 12 STEP 1|

160 INPUT #1, NONS

179 PRINT "loading next character: “| NAMS

189 PRINT #2,CHR$(27) j“XA" [NAMS

190 FOR COLX = | TD {1 STEP |

200 INPUT #1,COLCODEX

212 PRINT COLCODEX;

220 PRINT #2,CHRS (COLCODEX) |

239 NEXT COL¥

240 PRINT "" REM put a lire feed out after mach character
243 PRINT #2, *"

258 MNEXT CHRCTRX

255 REM put a line feed out after all done (clears garbage out)
263 PRINT 82, °*“

288 PRINT #2, CHR$(27) *“1*; “GRAMMAR"; CHR$(27){ "2%] “1234"
290 PRINT #2, CHR$({27); "1"; " ENGINE™; CHR$(27); "2 "S&678"
320 PRINT #2, CHR®(27)) *i1=; *“ INC"; CHR$(27); ="2"; “SABC"
318 PRINT %2, CHRs(27); “a"

R0, 12T BT 12T 1Y T T T T
ngh T BT s 2 T 1B, 18T
“3%,127,127,7,7,7,7,7,7,7,7, 7
"4*,7,7,7,7,127,127,127,127,0,9,0

nge @,9,127, 127,127,127, 28, 28, 28, 28, 28

*g", 28, 28, 28, 28, 28, 28, 28, 28, 28, 127, 127

“T%, 127, 127,60, 124, 124, 92, 92, 28, 28, 28, 28

“g", 28,28, 28,28,127,127,127,127,0,9,0

"9 8,8, 127,127,127,127,112,112, 112,112,112
“qe,112,112,112,112,112,112,112,112,112,127,127
wpe, 127, 127,118, 182,112, 113,113, 115415, 118,118
“ge, 124, 124,129, 128, 127, 127,127, 127,0,9, 0

GRANKARPT™ Grammar]
EHG“E::HH Englne m
¥ Inc

20

Attachment VII - Progra-s as Used in Word Processor
BUILDE

10 REM CS.BRS - build a character set

20 DIM R$ (7}

3@ INPUT “"input file:",F1$: INPUT "output file:",F2%
4@ OBEN "I",#1,F1s : OPEN "O",#2,F2$

5@ FOR Cx=1 7O B4 : IF EOF(1) THEN END

6@ INPUT #1,N$,A%$: PRINT "translating : ";N$
70 FOR W¥=Q TO 6 : IF EDF(1) THEN 179

B2 INPUT #1,R$(W%) : PRINT R$(WX) : NEXT W%
9@ PRINT #2, "%";A$;", "iN$;

12@ FOR Kx=1 TO 11 : Sx=0

11@ FOR Wx=3 TO 6

12@ IF MIDS (R$(WX), KX, 1) ()" * THEN SX=SX+(2~W¥)
130 NEXT W%
140 PRINT #2,", ";S%; : NEXT K%

150 PRINT #2,"" ¢ NEXT Cx%
160 IF EDF (1) THEN END
17@ PRINT "character partially defined" : BEEP 1 END

- 11 -

Rttachwent VII - Programs as Usad in Word Processor
(Cont.) '

CSLOADER

361@ REM

3620 REM subroutine to load a character set

3630 REM

364@ OPEN "I", #6,CXs$

365@ FOR CC=1 TO &4 : IF EOF (&) THEN 3700

3660 INPUT #6,ADS$,NM$: PRINT #2,CHR$(27) ;AD$;NM$

3678 FOR C=1 TO 11 : IF EOF(S) THEN KK=Q ELSE INPUT #&, KK
3680 PRINT #2,CHRS(KK)j3; : NEXT C

36990 NEXT CC

3720 CLOSE #6

371@ REM load master translatz table.

3722 REM

373@ OPEN “I", #6, "san.mxt"

3740 ON ERROR GOTO 376@

375@ FOR M.C=0 TO 63 : INPUT #6,M. N(M.C),M.K$(M.C) , M. M8 (M.C) 1 NEXT
376@ CLOSE #6

377@ ON ERROR GOTO 3510 : RESUME 3780

3780 RETURN

Attachment VII - Programs as Used in Word Processor
(Cont.)
10@ REM CSDEMO.BAS - demonstrate a character set

110
120
13¢
135
149
158
160
i7e
180
139
200
219
229
230
240
259
268
279
280
290
323
310Q
320
330
340
35
369
37@

REM This program reads one line of input per character
REM containing the name that is to reference it and 11l
REM numbers describing each celumm that has been

REM downline loaded into the lpt. The name is the

REM only field used to print the actual character.
INPUT "Loaded character set file? ", FILENRAMES$

OPEN "I", #1,FILENARMES

OPEN "O",#2,"1pt1:"

FOR CHRCTRX = 1 TO 64 STEP 1

IF EDF (1) THEN GOTOD 310

INPUT #1, NAMS

PRINT "printing next character: “; NAMS

PRINT #2, CHR$(27); "1"; NAM$; " — "3 CHR$(27); "2"; NAMS
FOR COLX = 1 TO 11 STEP 1

IF EOF(1) THEN GOTO 35@

INPUT #1, COLCODE¥

PRINT COLCODEX;

NEXT COL%

PRINT ““: REM put a line feed out after each character
PRINT #2, *¢

NEXT CHRCTR%

PRINT #2, CHR$(27); “1%;

IF EQF (1) THEN END

PRINT "Can't load more than &4 characters..." : BEEP
END

PRINT #2, CHR$(27); "1"“j

PRINT “"Partially defined character..." : BEEP

END

Attachwent VII - Programs as Used in Word Processor
{Cont.) ' '

XALL/PALL

379@ REM XSTRING - Translate string from keybocard input
380@ REM

"3818 TSXe="" : TKX$="" : LOCC=0

3820 FOR P=1 TO WL 1 TK$=MIDS(WDS(WN) P, 1)+" ©

3830 [F P(WL THEN THKX$=MIDS$ (WD$ (WN),P+1,1)

3849 IF TH$="r " AND TKX$="™" THEN TK$="r~" p GOTO 3860
385@ IF THs="s " AND THKX$="h" THEN TK$="sh®" ELSE 3870
3860 P=pP+i

3870 FOR X=0 TO M.C- 1

3880 IF M. K$(X)=TK$ THEN TSX$=TSX$+M.M$(X) : GOTO 3910
389@ NEXT X

3900 TSX$=TSX$+CHRS$ (27) +CHRS (49} +LEFT$ (TK$, 1)} +CHR$ (27) +CHRS (S8)
39035 LOCC=LOCC+4

391@ NEXT P

3922 WD$ (WN)=CHRS$ (27) +CHR$ (5@) +TSX$+CHRS (27) +CHRS (49)
3925 WL=LEN(TSX$)=- LDCC

3938 RETURN

A SANSKRIT USER INTERFACE

by

DAVID GEORGE NOHLE

B. 8., Ohio State University, 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

A SANSKRIT USER INTERFACE
by David George MNohle

AN ABSTRACT OF A MASTER'S REPORT

This paper describes a master's project involved with the
Grammar Engine*, an experiment in natural language
understanding with the Sanskrit language. The author
developed a user ilnterrface that has already been used in
word processing applications and is intended to be the user
interface for the Grammar Engine system.

The Sanskrit language and its script, Devanagri, pose soue
interesting user interface and translation problems. The
ability to use standard English keyboards to input Devanagri
was desired. Normally, Devanagri syllables containing
multiple consonants and a vowel are written with ome symbol
and it is desirable to enter them as separate alphabetic
characters. This user interface was designed to allow its
use for a variety of input character sets and any output
character set and is presently capable of allowing for
printing of any output character set whose characters can be
depicted with an 11x7 dot matrix. Phonetic, numeric and
keyboard input character sets are able to be printed
presently. Although hardware is not available to allow
printing of the complex Devanagri characters, the
translation to a numeric print code has been achieved.
Translation by combining Devanmagri characters into numeric
codes that represent syllables has been planned for and is
expected to be developed with little additional effort.

* Graumar Engine is a registered trademark of Grammar
Engine Inc.

