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Abstract 

The environmental impact of the beef industry has recently become an area of increasing 

scientific investigation. One of the objectives of this thesis was to examine how genetic selection 

and breeding could influence the environmental sustainability of the beef sector by estimating 

genetic variance parameters and discovering loci associated with predicted methane traits. 

Observed feed intake of 830 crossbred steers was used to calculate predicted methane traits via 

three enteric methane estimation equations from Ellis et al. (2007), Mills et al. (2001), and IPCC 

(2019). Variance components were estimated using genomic best linear unbiased prediction 

(GBLUP). Heritabilities for each predicted methane trait ranged from 0.70 to 0.74. Spearman 

correlations of estimated breeding values for each trait were 0.99. Together, these results suggest 

any of the three predicted methane, if used for selection, would rank animals very similarly in 

addition to making genetic progress in a relatively short amount of time. A genome-wide 

association study was also performed for each predicted methane trait. While none of the single 

nucleotide polymorphisms (SNP) reached the set significance threshold, an analysis of the 25 

SNP nearest to the threshold showed each predicted methane trait was associated with the same 

genetic loci. Candidate genes found near the top 25 SNP indicate collagen related genes could be 

tied to predicted methane traits.  

Another objective of this thesis was to use a stochastic model to simulate a 100 head 

cow-calf operation to determine land, water, and fertilizer requirements as well as methane 

emissions for various regional beef production scenarios. The simulations were parameterized to 

replicate 74 different land regions in the Great Plains and six varying genetic potentials for 

mature body weight and peak lactation for cattle within those regions for a total of 444 unique 

scenarios. Further, the resource inputs of diets including corn products were compared to diets 



  

including grain sorghum products in regions where grains are often fed by cow-calf producers. 

Lastly, total herd weaning weights for each scenario were estimated based on differences in 

mature body weight and lactation potential. These weaning weights were used to evaluate 

resource use efficiency of each genetic potential. The average amount of land use for each herd 

was 711 hectares when corn products were used and 714 hectares when sorghum products were 

used. Corn-based diets required an average of 30,588,948 liters of total (irrigation and drinking) 

water per herd per year, while sorghum-based diets required an average of 42,776,720 liters per 

herd per year. There were negligible differences in fertilizer estimates between corn and 

sorghum-based diets (26,532 and 26,523 kilograms of nitrogen per year, respectively). The 

average enteric methane production for all scenarios was 8,898 and 8,925 kilograms per herd per 

year for corn and sorghum-based diets, respectively. In general, large, high lactation cattle had 

the largest environmental footprint, whereas small, low lactation cattle had the slightest. 

Depending on the variable evaluated, the impact of body size and lactation potential varied in 

importance. However, animals with a higher lactation potential required more land to grow 

feedstuffs regardless of size. Although heavier animals had a larger environmental impact than 

lighter animals with the same lactation potential for total land, blue water, fertilizer, and enteric 

methane production. When resource use was scaled by kilograms of weaning weight, small, high 

lactation animals tended to be the most efficient, provided adequate resources can be provided in 

a cost-effective manner to achieve their genetic potential. 
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Chapter 1 - Literature Review of Methane Production Genetics in 

Beef Cattle 

 Introduction 

Methane (CH4) is a greenhouse gas (GHG) with 84 times more global warming potential 

than carbon dioxide (CO2) over a twenty-year timeframe (Myhre et al., 2013). Domesticated 

ruminants, which produce CH4 during their digestive process, are a source of anthropogenic 

GHGs and contribute to climate change. Gerber et al. (2013) reported domesticated ruminants 

are responsible for 14.5% of global anthropogenic GHG emissions. More specifically, cattle in 

both the beef and dairy sectors are responsible for 65% of that 14.5% figure (Gerber et al., 2013). 

Different areas of the world contribute proportionally more or less to the global emission of 

enteric methane. For example, Latin America and the Caribbean outstrip the rest of the world in 

terms of gross emissions related to all beef cattle while South Asia is the greatest source of 

methane emissions from dairy cattle. (Gerber et al., 2013). The methane produced from ruminant 

digestion was the largest source of anthropogenic CH4, contributing 28% of all methane sources 

in the United States (EPA, 2021). Moreover, enteric fermentation accounts for almost 29% of the 

total carbon footprint of the agricultural sector (EPA, 2021). Holistically, livestock are 

responsible for roughly 2-3% of total anthropogenic GHGs in the United States (EPA, 2021).  

Even though enteric methane emissions have gotten attention due to their contribution to 

climate change, it is often overlooked that methane production is a loss of energy and an overall 

inefficiency in the ruminant digestive system (Johnson and Johnson, 1995). Reducing methane 

production would not only reduce GHGs but could make animals more profitable. 

In order to reduce methane production, thereby slowing climate change and increasing 

producer profitability, an efficient way of measuring methane on a large scale needs to be found. 
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This can be done using methane production models, mathematical expressions of enteric 

fermentation. These are inexpensive, quick, easy, and acceptably accurate (Kebreab et al., 2016). 

Once a benchmark has been established, next step is to investigate ways methane emissions can 

be lowered. One avenue available to reduce cattle’s carbon footprint is to take advantage of the 

natural variation between animals and breed specifically for individuals that produce less 

methane. However, methane production is strongly linked to dry matter intake, which in turn, is 

strongly linked to economically important traits like body weight and carcass characteristics. 

Thus, any decisions about reducing CH4 output from the animal must be weighed against 

potential losses in productivity or system-wide efficiency. While reducing climate change is 

vital, it is also imperative that other aspects of sustainability be considered, including consumer 

needs and producer profitability. 

 Rumen Function and Methane 

 Ruminant animals can be considered up-cyclers. They take organic matter that is inedible 

or lowly digestible in humans, e.g., grass, and transform it into higher quality products, e.g., beef 

and milk. They are able to do this because of their unique digestive system, which encompasses 

four compartments. Of those four compartments, the largest in adult animals is the rumen. The 

rumen is where enteric fermentation takes place. Microorganisms live within the rumen and 

ferment plant matter by breaking it down on a chemical level. A subset of the microbial 

population in the rumen are methanogenic archaea which utilize hydrogen and carbon dioxide, 

waste products of the chemical reactions of the bacteria that directly digest plant matter, to 

produce methane (Moss et al., 2000). The methane and excess carbon dioxide are eructated or 

released through the mouth.  
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 When plant matter is digested, it is broken down into hexose. Hexose breaks down into 

two pyruvate molecules. From pyruvate, the volatile fatty acids acetate, butyrate, and propionate 

are synthesized. Acetate and butyrate production release hydrogen and carbon dioxide into the 

rumen. Propionate production releases CO2 but removes hydrogen from the rumen (Figure 1.1; 

Ungerfeld, 2013). 

Because the hydrogen and carbon dioxide necessary to create enteric methane are 

products of the rumination process, it follows the more rumination that occurs, the more 

hydrogen and carbon dioxide are produced in the rumen. The more of those elements that are 

present, the more substrate methanogenic microorganisms have to feed on, and the more CH4 

they generate (Moss et al., 2000). This central idea plays into three factors that affect methane 

production: feed intake level, passage rate, and dietary composition. 

Total methane production increases as dry matter intake (DMI) increases (Blaxter and 

Clapperton, 1965; Johnson and Johnson, 1995). In other words, as the amount of feed increases, 

the more substrates the rumen microbes have to turn into methane.  

Passage rate, how quickly feed flows through the rumen into the next digestive 

compartment, is also an important component in ruminant digestion. In ruminant digestion, the 

faster the passage rate, the less opportunity there is for microbial action in the rumen; the less 

microbial action upon feedstuffs, the less methane byproduct is produced. (Moss et al., 2000).  

 Another major aspect in methane production is dietary composition. Johnson and Johnson 

(1995) reported the digestion of cell wall fibers increased methane production because of the 

increased production of acetate. Acetate formation from pyruvate creates hydrogen as a by-

product (Moss et al., 2000). It appears the rumen favors acetate formation until the diet reaches 

90% concentrate (Johnson and Johnson, 1995), at which point it begins to generate propionate at 
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higher levels and starch-fermenting bacteria compete with the methanogenic archaea for 

hydrogen (Moss et al., 2000). Dietary fat also plays a role in enteric fermentation. Fat has been 

shown to lower methane production, but the exact mechanism remains unknown (Patra, 2013). 

Hypotheses include lipids lowering feed intake (Kebreab et al., 2016), the rumen prioritizing the 

biohydrogenation of fatty acids above methane production (Johnson and Johnson, 1995), and 

inhibited archaea function (Johnson and Johnson, 1995). In summation, the rumen is an intricate 

ecosystem with many interacting organisms, however knowledge of its function enables 

prediction of methane production. 

 Methane Measurement Techniques 

 In order to reduce the cattle industry’s carbon footprint, it is necessary to accurately 

calculate how much methane cattle are producing during their life. Directly measuring an 

animal’s methane production can be difficult and/or costly. Nonetheless, several techniques have 

been devised to balance obtaining the highest-quality data with ease and affordability.  

 Respiration chambers are considered the gold standard of methane measurement because 

they capture all methane emissions the animal produces while inside. These chambers house 

animals inside a containment unit attached to a ventilation system. Air is drawn in and out of 

these vents via a pump system. In-going and out-going air are run through sensors which 

measure the concentration of CH4. The difference between the two samples is how much 

methane the animal produced (Hegarty et al., 2012). 

While respiration chambers are the most accurate, respiration chambers do have 

drawbacks. Chiefly, animals in respiration chambers are stressed due to the unfamiliar conditions 

and limited space. This stress manifests itself as reduced feed intake, which in turn, reduces 

methane emissions (Ellis et al., 2007). Moreover, because the animal is confined, it cannot graze 
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and must be delivered feed. Because animals are not consuming as much and are not fed fresh 

forages, it is difficult to extrapolate respiration chamber data to pasture animals (Johnson et al., 

1994). The cost of constructing the facilities necessary for respiration chambers causes this 

method of methane measurement to be the most expensive. 

 A similar, but less intensive form of respiration chambers has been developed for use in 

feedlots, the milking parlor, or on pasture. These are commonly known as hood calorimeters, 

headboxes, or under the commercial name of GreenFeed Emission (GEM) units (C-lock Inc., 

Rapid City, SD, USA). These units offer feed pellets to attract the animal and only measure 

methane while the animal is visiting the unit. Headboxes work by means of a fan pulling air in 

past the animal’s head, capturing the animal’s eructated methane along the way. Hristov et al. 

(2015) suggested the GEM unit (C-lock Inc., Rapid City, SD, USA) provides an acceptable 

estimation on methane production, but detailed some potential pitfalls of the technique, such as 

the process being voluntary and subject to complete head insertion. 

 Another commonly used methane measurement procedure is the tracer gas technique. An 

identifiable compound, often sulfur hexafluoride, is in liquid form when it is put inside a tube 

that allows the compound to escape as a gas at a known rate (Johnson et al., 1994). This tube is 

inserted into an animal’s rumen where the tracer gas is assumed to be emitted in the same 

quantity as methane (Johnson et al., 1994). By means of a collection apparatus around the 

animal’s mouth and nostrils, the animal’s eructation can be captured in a canister carried by the 

animal. Upon analysis, the quantity of tracer gas can be determined via gas chromatograph, and 

with it, the quantity of methane (Johnson et al., 1994). Tracer gas is cheaper and less of an 

imposition on the animal than respiration chambers, however the stress of carrying the collection 

apparatus and frequent handling to change gas canisters can reduce animal intake and methane 
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production (Hegarty et al., 2007). Nonetheless, the tracer gas methods produced results very 

similar to those found in respiration chambers. Grainger et al. (2007) found a slight decrease, 

roughly 8%, in methane quantity from the respiration chamber to the tracer gas technique and 

concluded that difference was likely due to the tracer gas method not capturing hindgut methane. 

 Modeling Methane Production 

Directly measuring a group of livestock’s methane production can be a drain on both time 

and funds. Therefore, a variety of methane prediction models have been created. An animal’s 

methane production can be estimated relatively simply and inexpensively when a few variables 

are input into a model.  Models can be either empirical or mechanistic, each with its own 

advantages and limitations. 

 Empirical Models 

 Empirical, or statistical, models are equations used to estimate enteric methane 

production based on dietary factors (Kebreab et al., 2016). There are a variety of statistical 

models ranging from fixed values set by the International Panel on Climate Change (IPCC, 

2019) to multifaceted equations including linear and nonlinear regressions (Mills et al., 2003). 

Table 1.1 outlines a few models to illustrate the variety of complexity and options available.  

Empirical models rely on nutrient intake quantities to estimate the methane output. Generally, 

either dry matter intake (DMI), gross energy intake (GEI), or metabolizable energy intake (MEI) 

is used as the basis for most equations, given the fact these measurements are highly correlated 

with methane production (Blaxter and Clapperton, 1965) and explain the most variation (r2) 

between animals (Ellis et al., 2007; Mills et al., 2003).  

More variables can lead to better model fit at the expense of increased complexity (Ellis 

et al., 2007). However, whether the additional effort is warranted appears to be based on the 
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variation of the diets in the dataset. Ellis et al. (2007), found increased complexity only 

marginally improved equation accuracy in a dairy dataset where the diets were all very similar. 

Alternatively, adding more variables greatly improved model accuracy in a beef dataset where 

different ration compositions had been pooled together because the additional variables 

accounted for more of the variation found in the beef diets. These variables can range from basic 

composition of the ration (forage percentage) to more detailed elements (cellulose and fiber 

content). While quantity of feed is usually the main indicator of methane production, feed 

composition can play an important role in accurately estimating CH4. In fact, the equation from 

Moe and Tyrell (1979) relies solely on measurements of the ration rather than measurements 

taken from animals, and still is comparable with contemporary models (Ellis et al., 2009).  

 The primary advantages of empirical models are their relative simplicity, speed, ease of 

use, and low cost. These models were developed specifically to obtain methane production 

information without having to measure CH4 directly, which is both expensive and time 

consuming. The input variables for empirical models are measurements that are either commonly 

taken in a research setting (e.g., DMI), determined with proximate analysis of a ration (e.g., 

cellulose), or estimated from generalized values when ration composition is known but samples 

of the ration are not available (e.g., gross energy intake (GEI)). Furthermore, empirical models 

are ideal tools for estimating the methane production of a large population of animals, because of 

their ability to estimate group means. As an example of empirical models’ uncomplicated nature, 

IPCC Tier 1 (IPCC, 2019) has an established value for the methane output of an individual 

animal. Alternatively, the next level of complexity, IPCC Tier 2 (IPCC, 2019), has only one 

variable (GEI).  
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 The key limitation of empirical models is their inherent imprecision. Because they cannot 

capture every facet of methanogenesis these models cannot be perfectly accurate. Escobar-

Bahamondes et al. (2016) performed an evaluation of 54 extant equations using datasets from 

beef cattle fed high-forage and low-forage diets. The authors found the best fitting equations for 

the high-forage diets had root square mean prediction error (RSMPE) of 23.9 to 28.6%, where 

lower values indicate greater accuracy. Similarly, the best fit equations had concordance 

correlation coefficients (CCC) ranging from 0.601 to 0.725, where positive one indicates perfect 

concordance. The equations for the low-forage dataset were less precise with RMPSE ranging 

from 32.3% to 57.3% and CCC of 0.354 to 0.521. Ellis et al. (2010) performed a similar 

evaluation on nine equations with both group means and individual information on dairy cattle. 

This study showed RMSPE of 24.0% to 38.2% and CCC of 0.000 to 0.271 for the group mean 

dataset. Alternatively, the individual dataset had RMSPE of 20.2% to 52.5% and CCC of 0.009 

to 0.493. Holistically, while empirical models do provide a reasonable estimate of methane 

production, they are not perfectly accurate and any estimates should be reported with an estimate 

of error. 

 The same simplicity that is a boon to empirical models can also be a drawback. Because 

these models rely on relationships between nutrient intake and methane emissions without 

accounting for any underlying biology, the models may produce results that go against known 

biological principles (Ellis et al., 2010; Johnson and Johnson, 1995). Dietary fat, for instance, 

increases energy intake, but lowers methane production. A meta-analysis performed by Patra 

(2013) on 29 experiments totaling 1339 observations showed fat supplementation decreased CH4 

output. In this particular example, using models involving factors like GEI and MEI without a 

dietary fat component would lead to an overestimation of methane production. Because 
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empirical models can only account for the variables they are given, all other factors are 

considered random error when the models are evaluated. Because the rumen is a complex and 

ever-changing environment with relationships and mechanisms that are still unknown, it is 

impossible to create a simple, easy-to-use equation that captures and quantifies every variable. 

Moreover, empirical models tend to fail when they are used outside of the specific 

scenario for which they were developed. For example, if a model developed based on 

information from dairy cattle is applied to a feedlot dataset, the accuracy is drastically reduced 

(Moraes et al., 2014). Expanding even further, empirical models bring animals to the average, 

losing any differences between animals with the same predictor variables. This variation, 

however, is the key to selection and genetic progress. 

 Mechanistic Models 

 Contrary to empirical models, mechanistic models, also known as dynamic models, 

attempt to emulate the biological process of methanogenesis in the rumen. These models 

simulate the interaction between microbial populations, feed substrates, and environmental 

conditions like pH and passage rate to estimate how much hydrogen will be available to reduce 

CO2 into CH4 and water (Bannink et al., 2011). More precisely, mechanistic models attempt to 

estimate hydrogen sources and sinks with the underlying assumption that all excess hydrogen 

will be used in CH4 production. They accomplish this by utilizing various sub-models that work 

together so the output of one model becomes the input for another. 

 The first set of inputs in a mechanistic model are centered around feed. Each model has 

its own specific set of inputs, but all models share a few common ration elements such as 

protein, ammonia, lipids, starch, cellulose, and hemicellulose expressed as moles, and microbial 

population pools, expressed as grams (Baldwin, 1995; Dijkstra et al., 1992). While the chemical 
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composition of the ration is important, there are other feedstuff characteristics required by most 

mechanistic models, including feed intake and various factors that affect passage rate like 

particle size (Baldwin, 1995; Dijkstra et al., 1992). 

 One unique facet of dynamic models is the microbial pools. Microbial pools are the sub-

models that change the simulated feed substrates, such as corn, soybean meal, or hay, into the 

intermediates (monosaccharides, oligosaccharides, and unsaturated fatty acids), which determine 

how much methane will be produced. Dijkstra et al. (1992) categorized microbes into three 

populations: amylolytic which digest starch, fibrolytic/cellulolytic which digest structural 

carbohydrates like cellulose, and protozoa, which are both amylolytic and predatory to fibrolytic 

cells. The separation of microbial pools allows for the model to be more finely tuned relative to 

the extent and speed that feedstuffs are digested.  

The alternate approach, modeling the microbial pool as a single whole, was developed by 

Baldwin (1995). This model assumes the difficulty of parameterizing complex microbial 

interactions outweighs any accuracy the model would gain from doing so. It can be challenging 

to determine what proportion of small saccharide products are fermented by the amylolytic and 

cellulolytic populations and in what proportion by the soluble carbohydrate fermenters (Baldwin 

et al., 1970). Additionally, specifying a set of volatile fatty acid (VFA) stoichiometric 

coefficients for each pool can lead to inaccuracy because the exact mix of microbes varies 

heavily with diet (Baldwin, 1995). 

One of the most important components of mechanistic models is volatile fatty acid 

stoichiometry, i.e., the relative concentration of each VFA. The amount of a specific VFA 

produced can be predicted by the quantity and composition of substrate fermented in the rumen 

(Argyle and Baldwin, 1988; Bannink et al., 2006; Murphy et al., 1982). Each VFA has a 
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chemical reaction required to produce it and each reaction has its own set of products and 

reactants. Often, one of those products is hydrogen. Because hydrogen gas is the limiting 

reactant for methane production, the amount of hydrogen in the rumen has a direct correlation on 

the amount of methane emitted. Thus, by determining how much hydrogen is released and used 

in the formation of VFAs, the quantity of free hydrogen gas can be calculated, which, in turn, 

corresponds to the volume of methane produced.  

As shown in Figure 1.2, the models assume hydrogen is used to: i) support microbial 

growth with ammonia (0.41 mol H2/g microbial matter), ii) biohydrogenate unsaturated fatty 

acids (2 mol H2/ mol unsaturated fatty acid), iii) produce propionate and valerate (1 mol H2/ mol 

VFA), and iv) reduce CO2 to CH4 and water (Baldwin, 1995). 

Originally, dynamic models only dealt with methane from microbes in the rumen (87-

90% of all ruminant methane (Murray et al., 1976)), but an advancement by Mills et al. (2001) 

made it possible to estimate production of methane from hindgut fermentation. The addition of 

hindgut methanogenesis enables a more accurate estimate of total animal CH4 production. 

There are two key advantages mechanistic models have over their empirical cousins: 

improved accuracy and assessment of mitigation options. Because mechanistic models rely on 

the biology of nutrient digestion and absorption, they are more sensitive to changes in the diet. 

For example, lipids are generally considered antagonistic to methane production (Kebreab et al., 

2016). However, the most accurate empirical models do not account for them while mechanistic 

models do. The additional sensitivity makes mechanistic models more accurate. Benchaar et al. 

(1998) showed that mechanistic models explained 70% of the variation between actual methane 

production observations whereas empirical models only explained 42-57%. The greater accuracy 

of dynamic models was demonstrated again by Kebreab et al. (2008), where two mechanistic 
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models more accurately predicted observed methane production than two empirical models. One 

mechanistic model was better for dairy data while the other was better for feedlot data, but both 

exceeded the predictive power of the empirical models. 

The other advantage of mechanistic models is the ability to assess methane mitigation 

options. Empirical models are direct relationships between feedstuffs and methane output; 

therefore, they lack the nuance necessary to assess possible mitigation strategies. Dynamic 

models can evaluate small adjustments, making them the best tool for the assessment of 

mitigation practices. According to Kebreab et al. (2006), mechanistic models are the preferred 

tool when evaluating methane mitigation through dietary changes. Mitigation strategies need to 

be assessed for total methane production, but also need to be realistic and profitable.  

A major drawback of mechanistic models are the intrinsic complexities and numerous 

inputs required to operate them. Dynamic models rely on VFA stoichiometry to determine how 

much excess hydrogen will be available for CH4 production. Therefore, if the estimates of the 

VFAs are inaccurate, all of the downstream data, including methane production, are inaccurate. 

Morvay et al. (2011) performed an evaluation of models that predict VFA stoichiometry. Though 

the best fit model, developed by Bannink et al. (2006), did well when it estimated acetate and 

propionate it had much higher root mean squared prediction error for butyrate, valerate, and 

other branched chain VFAs.  

Furthermore, mechanistic models are large, possibly requiring up to 19 variables 

(Bannink et al., 2011) including feed quality measurements which are not commonly taken (e.g., 

cellulose, hemicellulose, and lignin). Because of this, dynamic models may be deemed too 

complex for many purposes. Instead, researchers may utilize empirical models and accept the 

decreased accuracy of predictions for a given dataset (Kebreab, et al., 2006). 
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There are two commonly used dynamic models used in the literature. The first is 

MOLLY, developed in its modern form by Baldwin (1995) using the VFA stoichiometry of 

Murphy et al. (1982). MOLLY adapts the equations of Argyle and Baldwin (1988) to account for 

the effects of water kinetics and pH on rumen stoichiometry. MOLLY has 15 input variables and 

one microbial pool. The other frequently used dynamic model is known as COWPOLL. It was 

originally developed by Dijkstra et al. (1992), then updated to include intestinal fermentation 

(Mills et al., 2001), along with a revised VFA stoichiometry sub-model by Bannink et al. (2008). 

Though COWPOLL was developed for dairy cattle modeling (and performed very well in 

Kebreab et al. (2008), with a CCC of 0.75 for dairy cattle), it was modified for beef cattle by 

Ellis et al. (2010). Moreover, COWPOLL was adapted by Bannink (2011) to be utilized as the 

IPCC Tier 3 methane prediction model. When the two mechanistic models were compared, 

MOLLY outperformed COWPOLL in predicting methane output from feedlot cattle (Kebreab et 

al., 2008).  

 Conclusion 

 Methane models are a relatively quick and simple way to estimate how much methane a 

ruminant will produce. The simpler equations like the IPCC Tier 2 model (IPCC, 2019), provide 

a rough estimate that is best for assessing the amount of methane a given population of cattle is 

producing at the moment. More complex models, such as the mechanistic models, require more 

information than the empirical models, but provide greater accuracy and allow for the 

investigation of mitigation options. 

 Heritability of Methane Production 

One possibility to reduce enteric methane production that has been considered by the 

scientific community is to breed animals that naturally produce less methane. For this strategy to 
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be effective, methane production must be a heritable trait. Further, in order to approximate how 

quickly progress can made, it is useful to know how much variation in a population is genetic. 

Methane production heritabilities have been estimated in a variety of populations. Thus, a wide 

range of heritability estimates for methane production exists in the literature.  

In cattle, heritability estimates have been taken on different populations with different 

measurement techniques, such as beef or dairy animals with methane production measured either 

directly or predicted with equations. Thus, heritability estimates in the literature have ranged 

from 0.07 to 0.52.  

Fortunately, Brito et al. (2018) performed a meta-analysis of 60 published articles 

looking at an assortment of methane-related traits in both cattle and sheep. The authors used the 

reported standard error (estimated in cases where no standard error was reported) in order to 

weight each estimate in the analysis. Then the authors fit a random-effects model where the 

published estimate from each study was equal to the weighted population parameter mean, plus 

the among-study deviation from the mean, plus residual error. 

Four meta-analysis scenarios were studied: one looking at cattle and sheep data together, 

one with just cattle data (Table 1.2), one with just sheep data, and one using only cattle data 

comparing studies that used direct observation to studies that used predictions. Heterogeneity 

was calculated along with a 95% confidence interval for each methane related trait in each 

scenario. When looking solely at methane production for only cattle data, Brito et al. (2018) 

found the average heritability estimate was 0.25 ± 0.02. The 95% CI was calculated to be (0.22 - 

0.29). Though the standard error was fairly low, the estimates in the literature varied greatly. The 

root cause of the inconsistences seems to be coming from articles that utilized predicted methane 

emissions rather than direct measurements in order to estimate heritability. When breaking 
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publications down into studies that used direct methane measurements and those that used 

predicted values, studies in the former group showed no significant variation. Conversely, the 

estimates of studies which employed predicted methane measurements exhibited large amounts 

of variation. This variation is most likely based in the fact that prediction models are simply 

estimates of methane production, not actual observations. In other words, there is some 

embedded uncertainty in those phenotypes. Further compounding the issue, is heritability is also 

an estimate with its own uncertainty and error. It is logical for the heritability estimates of 

methane production based on prediction equations to have high variation because the 

heritabilities are estimates of estimates. 

 Conclusion 

 Methane is a low-to-moderately heritable trait. Therefore, it is possible to reduce methane 

through selection and breeding and to estimate the rate at which genetic progress can be made. 

However, genetic progress through selection can only be made if methane production 

phenotypes are collected on large numbers of candidates for selection. These phenotypes would 

also need to be direct measures of methane production because while predicted methane 

equations are good tools when a gross accounting of methane production is needed, they fail 

when it comes to providing the fine level of variation between individuals required for selection. 

If methane production based on prediction equations were used for selection, methane 

production would not be the only trait affected because methane production is highly correlated 

with other economically important traits. 

 Methane and Relationships to Other Traits 

 When selecting on a trait, such as methane production, it is important to know the other 

traits with which the trait of interest has correlations. In other words, it is important to know how 
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the performance of other traits will be affected before selection begins. In beef production, 

economically important traits that may be related to methane include growth, feed efficiency, 

and meat quality. 

 Dry Matter Intake 

 The relationship between dry matter intake (DMI) and methane production in ruminants 

has been known at least since the first half of the 20th century. The relationship between the two 

traits is strongly positive. If dry matter intake increases, methane production also increases. This 

is because the more an animal ingests, the more substrates there are for the rumen microbiome to 

break down. A byproduct of this microbial degradation is hydrogen which, along with carbon 

dioxide, is reduced by methanogenic archaea to produce methane gas (Hungate, 1967). Further, a 

diet of roughages has been shown to increase methane production compared to a diet of 

primarily concentrates (Johnson and Johnson, 1995). 

A study authored by Kriss in 1930 was one of the first papers examine the correlation 

between DMI and methane production. The author analyzed a series of 131 respiratory 

calorimetric experiments, 123 with steers and 8 with dry cows. Of these trials, 54 offered the 

subjects roughage rations while the other 77 trials offered a mix of roughage and grain. Kriss 

(1930) found the phenotypic correlation between the DMI of the animals and the methane 

production to be 0.942 (0.01) for roughage diets and 0.963 (0.006) for the mixed diets. 

Compared to later estimates, the correlations reported by Kriss (1930) are rather high, possibly 

because of the state of technology used to measure methane available when this study was 

conducted. Alternatively, it may be because Kriss (1930) combined data from steers of various 

weights with mature cows which resulted in the kind of statistical variation that was not possible 

to account for with the methodology of the time. 
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 Nkrumah et al. (2006) selected 27 feedlot steers for differences in residual feed intake 

(RFI) in order to determine the associations between RFI and other traits. In the process, the 

authors measured methane production in an indirect calorimetry system and DMI was measured 

via an automated feeding system. Nkrumah et al. (2006) estimated the phenotypic correlation 

between methane production and DMI to be 0.38 (P < 0.05). Contrary to Kriss (1930), the 

estimates of Nkrumah et al. (2006) are fairly low. This might be because the study only consisted 

of 27 animals or because the animals were selected for differing residual feed intake which, as 

noted in a later section, may influence the amount of methane an animal produces. 

Similarly, Fitzsimons et al. (2013) performed an experiment evaluating the relationship 

of RFI with other traits. Fitzsimons et al. (2013) analyzed the methane production of 22 

Simmental heifers on a grass silage diet using the sulfur hexafluoride (SF6) tracer gas technique 

developed by Johnson et al. (1994). Fitzsimons et al. (2013) measured each animal for five 

consecutive days during two periods. The authors found the phenotypic correlation of methane 

production and DMI to be 0.43 (P < 0.01).  

Herd et al. (2014), Manzanilla-Pech et al. (2016), and Donoghue et al. (2016) all reported 

very similar phenotypic correlations between DMI and methane production. These three studies 

produced phenotypic correlations between methane production and dry matter intake of 0.65 

(0.02), 0.70 (0.02), 0.71 (0.02), respectively. The similarity in the three figures may be because 

Manzanilla-Pech et al. (2016) and Donoghue et al. (2016) are extensions of Herd et al. (2014). 

The 777 Angus bulls and heifers used in Herd et al. (2014) made up a large portion of the 1020 

and 1046 Angus animals used in Manzanilla-Pech et al. (2016) and Donoghue et al. (2016), 

respectively. These studies were able to utilize a comparably large number of animals by taking 

advantage of federally owned cattle herds and measuring the animals over the course of multiple 
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years. The protocol required the animals to be trained in a respiration chamber for a 24-hour 

period then measured for methane production in a different chamber for two consecutive 24 

hours periods. The large difference between the estimates from Nkrumah et al. (2006) and 

Fitzsimons et al. (2013) and these three studies is unclear but may be because the latter studies 

had a much larger sample size or because the animals were not selected based on differences in 

residual feed intake. 

Herd et al. (2016) performed three trials in an attempt to evaluate the phenotypic 

relationship between methane production and feed efficiency. The first was performed in a 

feedlot setting, allowing the animals to eat ad libitum (n = 41). The other two were done in 

respiration chambers wherein one group was limit-fed grain (n = 59) and the other limit-fed 

forage (n = 57). For the feedlot trial the authors utilized two GreenFeed Emission Monitor 

(GEM) units (C-lock Inc., Rapid City, SD, USA). The relationship between DMI and methane 

production varied across all three, with correlations of 0.28 (P < 0.10), 0.55 (P < 0.05), and 0.61 

(P < 0.05), for the feedlot trial, grain-fed chamber trial, and roughage-fed chamber trial, 

respectively. The association between methane production and DMI for the respiration trials is 

lower than reported by Herd et al. (2014), Manzanilla-Pech et al. (2016), and Donoghue (2016). 

However, the feedlot trial produced a surprisingly low correlation, even lower than Nkrumah et 

al. (2006), which may be due to how the methane measurements were collected.  

In another paper examining the differences between high and low RFI animals, 

McDonnell et al. (2016) found methane production phenotypically correlated with DMI at 0.42 

(P < 0.05), but only when animals were on pasture. In this study, 28 Limousin-Friesian cross 

heifers, 14 with high phenotypic RFI and 14 with low phenotypic RFI, were monitored over 

three periods. The first period lasted 40 days and the animals were fed grass silage. The next 
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period last 57 days and the animals were turned out onto a perennial ryegrass pasture. The final 

period lasted 41 days and the heifers were supplied with a mixed ration of 70% concentrate and 

30% corn silage. Dry matter intake was measured as the difference between feed offered and 

feed refused for Period 1, the n-alkane technique developed by Mayes et al. (1986) for Period 2, 

and an automated feed intake system for Period 3. Methane production was measured for 5 days 

during each period using the SF6 technique (Johnson et al., 1994). When methane production 

was correlated with DMI within each period, the only significant phenotypic correlation was 

found when the animals were on pasture. The authors acknowledged DMI is generally highly 

correlated with methane production in ruminants; however, they noted the only significant 

correlation between the two traits was found when the technique for calculating DMI was most 

error prone. Moreover, the authors also admit that due to the nature of the experiment, the diet 

period was inextricably confounded with age and body weight, both of which influence DMI and 

methane production. 

Velazco et al. (2016) performed a very similar experiment as McDonnel et al. (2016). 

The authors observed the actual methane production of 39 Angus cattle that differed in RFI 

while the animals were on pasture. The cattle in Velazco et al. (2016) were separated into two 

groups; one group was comprised of 19 steers and the other had 20 heifers. To measure 

individual methane production, the authors set up two GEM (C-lock Inc., Rapid City, SD, USA) 

units in the paddocks where each group was grazing. The animals were rotated between 

paddocks to avoid confounding sex, paddock, and monitoring unit. Additionally, the authors 

used the equation of Minson and McDonald (1987) to predict DMI on pasture. This equation 

uses liveweight and average daily gain to estimate dry matter intake within 1% of the actual 

DMI, as reported by the equation’s original authors (Minson and McDonald, 1987). When the 



20 

authors ran Pearson correlations between methane production and predicted DMI, the result was 

0.41 (P < 0.05). Not surprisingly, the correlation between methane production and dry matter 

intake calculated by Velazco et al. (2016) is similar to that calculated by McDonnel et al. (2016). 

In an Australian study, Bird-Gardiner et al. (2017) analyzed two datasets separately but 

with the same methodology. One set was 119 Angus heifers (interestingly, these were the 

progeny of the animals used in Donoghue et al. (2016)) who were feed an ad libitum diet of 

alfalfa and oaten hay chaff. Several cohorts of Angus steers, 326 in total, made up the other 

dataset. The steers were fed a high-grain feedlot diet. Both sets of animals had methane 

production measured by GEM (C-lock Inc., Rapid City, SD, USA) units; the heifers for a 15-day 

period and the steers for 70 days. The correlation between methane production and DMI found 

by Bird-Gardiner et al. (2017) are in line with those published by Herd et al. (2014), Manzanilla-

Pech et al. (2016), Donoghue et al. (2016), and Herd et al. (2016). The correlations between the 

two traits for the heifers was 0.75 (P < 0.05), while the correlation for the steers was 0.62 (P < 

0.05). The authors hypothesize the correlation was greater for the heifers because those animals’ 

diet rather than sex or location, although the factors were confounded.  

Renand et al. (2019) also investigated the methane production of heifers fed an ad libitum 

roughage diet. This study focused on 22-month-old Charolais heifers. Of the total 326 heifers, 

258 were kept as at a farm near Galle, France and the other 75 head were kept at a research farm 

near Borculo, France. The Galle farm fed the heifers housed there a diet comprised primarily of 

fescue silage, while the animals at the Borculo facility received meadow hay. Both facilities 

measured methane production using a GEM (C-lock Inc., Rapid City, SD, USA) unit and 

calculated DMI as the difference in dry matter between feed offered and feed refused. Although 

the animals were the same breed and both fed roughage diets, the correlation between methane 



21 

production and dry matter intake varied. For the heifers at the Galle farm the correlation was 

0.36 (P < 0.001). Alternatively, the heifers at the Borculo farm had a correlation of 0.48 (P < 

0.001). While the correlations between each farm may be different, perhaps owing to the 

difference in digestibility between silage and hay, neither correlation is too far off from other 

studies in the Northern hemisphere, including Nkrumah et al. (2006), Fitzsimmons et al. (2013), 

and McDonnel et al. (2016).  

Thus far, the correlations between methane production and DMI which have been 

discussed are solely phenotypic correlations. While phenotypic correlations are important, they 

only reflect phenotypes and do not provide insight into the genetic relationships between traits. 

Genetic correlations, such as those generated by Donoghue et al. (2016) and Manzanilla-Pech et 

al. (2016), can provide this information.. Donoghue et al. (2016) calculated a genetic correlation 

between methane production and DMI of 0.84 (0.06) using a traditional best linear unbiased 

prediction (BLUP) analysis implemented in ASREML software. Manzanilla-Pech et al. (2016) 

had access to genomic information, allowing the authors to create a genomic relationship matrix 

and perform a genomic best linear unbiased prediction (GBLUP) which yielded a genetic 

correlation of 0.83 (0.05).  

 Live Weight 

The previous studies show methane production is moderately to highly correlated with 

DMI. Dry matter intake is also strongly related to body weight and growth in cattle (Herd et al., 

2014; Donoghue et al., 2016; Manzanilla-Pech et al., 2016). Those two facts help explain why 

methane production is also linked to growth traits and overall body weight.  
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The weight of an animal is usually taken at several points during its life. In the beef 

industry, those weights are commonly measured at birth, weaning, one year of age, and as a final 

live weight or mature weight.  

 Before discussing the relationships, it should be noted that in Herd et al. (2014), 

Donoghue et al. (2016) and Manzanilla-Pech et al. (2016), a majority of the animals were 

approximately one year old (a smaller proportion were approximately two years old) when the 

methane measurements were taken. Thus, all correlations from those three papers should be 

interpreted as live weight at various ages correlated with methane measurements when the 

animal was roughly one year old. As shown in Table 1.3, the phenotypic correlation between 

methane production and birth weight is relatively low. Herd et al. (2014) reported the association 

at 0.19 (0.05), while Donoghue et al. (2016) published a correlation of 0.26 (0.04). At weaning, 

the correlation of live weight with methane production jumps to roughly 0.50 and increases 

further at yearling to approximately 0.60. However, correlations with finished weight show a 

modest reduction in the correlation, similar to that exhibited at weaning. 

In this case, the genetic correlations between methane production and weight traits are 

higher than the phenotypic correlations. As Table 1.3 shows, the genetic correlations follow the 

same curvilinear pattern as the phenotypic correlations (Donoghue et al., 2016).  

 Manzanilla-Pech et al. (2016) reported slightly different correlations. In the Manzanilla-

Pech et al. (2016) study the phenotypic correlation of methane production and test live weight 

(when the animals were approximately one year old) was 0.67 (0.02) and the genetic correlation 

between the two traits was 0.80 (0.06).   

 Angus cattle, the breed used in Herd et al. (2014), Donoghue et al. (2016), and 

Manzanilla-Pech et al. (2016), were not the only breed to show significant associations between 
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methane production and liveweight. Renand et al. (2019) examined two populations of 22-

month-old Charolais heifers for methane production. When the authors correlated the body 

weight and methane production for each population, they reported very similar numbers. The 

Galle herd had a correlation of 0.68 (P < 0.001) whereas the Borculo herd had a correlation of 

0.70 (P < 0.001).  

 On the whole, live weight is strongly correlated with methane production. This can be 

explained logically as on average the heavier the animal, the more feed it consumes, and the 

more feed it consumes, the more methane it produces; alternatively, larger animals may also 

have larger rumens, larger rumens imply more microbes, which in turn imply more methane 

production. Therefore, in order to lower methane production and maintain the same weight 

producers and packers have come to expect, it is important to select more feed efficient animals.  

 Average Daily Gain and Feed Efficiency 

 Average daily gain (ADG) estimates how much an animal’s body weight increased on a 

daily basis over a period of time. Because beef animals are usually feed to a certain end weight, 

animal that reach that goal more quickly may increase profitability. Further, because ADG and 

feed efficiency are closely tied to cost of gain, measures of feed efficiency are important for the 

commercial cow-calf, stocker, and feedlot sectors.  

 Feed efficiency directly affects producers’ bottom line by determining the amount of  

feed required; therefore, it is important to estimate the relationship between feed efficiency and 

methane production when evaluating methane reduction strategies. This is precisely what Freetly 

and Brown (2013) did when the authors regressed methane production on the ratio of body 

weight gain to dry matter intake, known as gross feed efficiency (GFE). Freetly and Brown 

(2013) had two groups of interest, a group of 37 steers with ad libitum access to a finishing diet 
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and a group of 46 heifers provided a ration of 60% corn silage, 30% alfalfa hay, and 10% wet 

distiller’s grain. The DMI of each animal was measured for one day, which may have been 

insufficient for accurate DMI estimates, before the animals were moved into respiration 

chambers for 15 days to measure their methane production. The animals also had their RFI 

calculated as the residual errors of a regression of ADG and mid-test metabolic body weight 

(BW0.75). The steer and heifer data were treated as distinct and the regression of methane 

production on GFE and DMI was performed for each sex. For the steers, neither GFE nor DMI 

were significant in explaining the variation of methane production. In contrast, both predictor 

variables provided some information for the heifer data. In particular, GFE had a regression 

coefficient of 231.9 (standard error of 99.3, P < 0.02), indicating that as GFE increased, methane 

production also increased. Whether this finding was due to sex or diet is impossible to tell. 

 During the feedlot portion of the trials performed by Herd et al. (2016), the animals were 

measured for ADG and feed conversion ratio (FCR) which is ratio of DMI and ADG 

(DMI/ADG). These feed efficiency and growth measurements taken in the feedlot were tested 

for correlation in the three settings in which methane was gathered: a feedlot, a respiration 

chamber when the animals were fed grain, and a respiration chamber when the animals were fed 

roughage. The only significant correlation the authors reported was between feedlot FCR and 

methane production from the roughage-fed chamber test. The relationship was a negative 

correlation, -0.31 (P < 0.05), implying methane production had an undesirable association with 

FCR because lower FCR values indicate more efficient animals. Though the lack of significance 

between FCR and methane production in the other settings does seem to make the significant 

correlation a tenuous one.  
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 While Herd et al. (2016) did not find a significant correlation between methane 

production and ADG, Velazco et al. (2016) did. In that study, the authors reported a Pearson 

correlation coefficient of 0.33 (P < 0.1) between daily methane production and ADG. This 

finding suggests animals that produce more methane also gain more body weight per diem. 

Unlike Herd et al. (2016), Velazco et al. (2016) did not find a significant correlation between 

methane production and FCR, though in the case of the latter study FCR was based on predicted 

DMI estimates, which may not have captured the outliers. 

 Renand et al. (2019) collected data on several measures of feed efficiency including feed 

efficiency ratio (FER). A feed efficiency ratio is ADG divided by DMI, the reciprocal of FCR. 

Renand et al. (2019) found ADG was significantly correlated with methane production at 0.44 (P 

< 0.001) and 0.26 (P < 0.05) for the Galle heifer group and Borculo heifer group, respectively. In 

contrast, only the Galle heifers had significant associations between methane production and 

FER. This correlation is small at 0.14 (P < 0.05). This study also calculated residual ADG, or the 

difference between observed ADG and expected ADG as determined by regressing ADG on 

metabolic body weight and DMI. For residual ADG, positive values are more desirable because 

positive values indicate animals gained more per day than expected. Residual ADG only had a 

significant small correlation with methane production in the Galle heifers at 0.17 (P < 0.01). 

 The results reported here indicate methane production is positively associated with 

growth and gain. This makes logical sense because the more animal eats, the more weight it 

gains and the more methane it produces. Further, it seems feed efficiency is associated with 

methane production in a manner which indicates the more efficient an animal is, the more 

methane it will produce. This too makes logical sense because most of the feed efficiency traits 

discussed thus far have been ratios involving gain and DMI. This begs the question: What is the 
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connection between methane production and a measure of feed efficiency for which weight and 

gain have been accounted? 

 Residual Feed Intake 

Residual feed intake is another measure of feed efficiency which has often been 

investigated alongside methane production. Residual feed intake is the difference between 

observed feed intake and the expected feed requirements for an animal of a given weight, rate of 

gain, and body composition. Expected dry matter intake can be calculated by performing 

regression of DMI on ADG and metabolic body weight (Koch et al., 1963). 

Residual feed intake has been phenotypically and genetically linked with methane 

production in several studies. Nkrumah et al. (2006) followed a group of 29 steers for two years.  

Steers were separated into three groups: high, medium, and low RFI, as determined by the 

standard deviations (SD) from the means of their respective contemporary group. The high-RFI 

cattle had RFI greater than 0.5 standard deviations (SD) above the mean, the medium animals 

ranged ± 0.5 SD around the mean, and steers ranked as low RFI were 0.5 SD below the mean. 

The phenotypic relationship between methane production and RFI was calculated as moderate 

and positive at 0.44 (P < 0.05). Furthermore, low RFI steers produced 28% less methane per day 

than high RFI animals and 24% less than medium RFI animals. 

 One of the next papers to explore the relationship between methane production and RFI 

was Hegarty et al. (2007). Three measurements of RFI were defined: RFIEBV which is the 

midpoint of the parental expected breeding values (EBV) for RFI, RFI70d which is the observed 

individual RFI for the 70-day testing period, and RFI15d which denotes the residual feed intake 

for the 15 days the animals were under observation for methane collection. The authors chose to 

use RFI15d to reflect the diminished feed intake brought on by the stress of using the SF6 
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technique (Johnson et al., 1994). The authors of Hegarty et al. (2007) performed a linear 

regression to predict methane production using RFI15d as the independent variable. The resulting 

equation indicated reducing RFI15d by 1 kilogram per day would reduce methane production by 

13.3 gram per day (r2 = 0.12, P < 0.01). This result, while significant, does not explain much 

variation in the data possibly due to the confounding factors involved in only measuring RFI for 

15 days rather than the standard 70 days. Hegarty et al. (2007) also compared the methane 

production from the ten highest RFI15d steers and the ten lowest RFI15d steers. The low RFI15d 

animals emitted 25% less methane than the high RFI15d animals, which is consistent with 

Nkrumah et al. (2006). 

 Fitzsimons et al. (2013) compared high-RFI heifers to low- and medium-RFI heifers. 

Each group was measured for total methane production and metabolic methane intensity (defined 

as methane output adjusted for metabolic body weight). The high-RFI heifers averaged 297 

grams of methane per day whereas the low-RFI heifers averaged 260 grams, a significant 

difference (P < 0.05). Likewise, the high RFI-heifers produced significantly more grams of 

methane per kilogram of metabolic body weight than the low-RFI heifers, 2.9 and 2.5, 

respectively (P < 0.05). Interestingly, VFAs were also measured and the low-RFI group had a 

higher concentration of propionate (P < 0.10) and a lower acetate:propionate ratio than the high-

RFI heifers (3.5 vs. 4.6, P < 0.07). This suggests more hydrogen is being directed toward 

propionate production and less excess hydrogen for the formation of methane in lower RFI 

animals.  

 Alemu et al. (2017) performed an observational study including RFI and methane 

production phenotypes. The authors detailed a trial in which 98 crossbred heifers were tested for 

72 days to gauge their individual RFI. Of those 98 heifers, 16 were selected for methane testing, 
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8 with negative RFI and 8 high positive RFI. Both groups had similar body weights and ADG. 

This subset of heifers was tested for methane production over two 25-day periods. During each 

period, each animal spent two days in a respiration chamber and the rest of the time in a pen 

equipped with a GEM (C-lock Inc., Rapid City, SD, USA) unit. When methane production was 

measured in the open lot, the low-RFI heifers had significantly lower emissions than the high-

RFI heifers, averaging 202.5 grams per day and 222.2 grams per day (P < 0.02), respectively. In 

contrast, when methane production from the respiration chamber was compared between groups, 

there was no significant difference (P < 0.4). The authors speculated this is likely because the 

added stress of being in respiration chamber depressed DMI, which, in turn, brought down 

methane production. Both groups exhibited a significant decrease in methane production (P < 

0.001) between the GEM (C-lock Inc., Rapid City, SD, USA) and respiration measurement 

techniques.  

 In a Canadian experiment, the authors of Manafiazar et al. (2020a) examined yearling 

heifers and mature cows for methane production and RFI-fat (RFI with backfat added as 

predictor variable in the regression equation) under dry lot conditions. This study consisted of 

eight trials using yearling heifers and six trials using mature cows. In total there were 147 high 

RFI-fat heifers, 69 high RFI-fat cows, 167 low RFI-fat heifers, and 70 low RFI-fat cows selected 

for methane production analysis. Each trial was conducted for at least 72 days after an initial 

adjustment period where the animals had their methane production measured via a GEM (C-lock 

Inc., Rapid City, SD, USA) unit. Numerically, the low RFI-fat heifers produced less methane 

than the high RFI-fat heifers and this trend continued in the mature cows. However, inference on 

the effect of RFI-fat on methane production cannot be made because of a significant statistical 

interaction between trial and RFI-fat. 
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 Interestingly, heifers from Manafiazar et al. (2020a) were followed into the pasture 

setting and re-measured for methane production using both a GEM (C-lock Inc., Rapid City, SD, 

USA) unit and an open path Fourier-transform infrared spectrophotometer (OP-FITR) as detailed 

in Manafiazar et al. (2020b). The heifers retained the designations of high or low RFI-fat from 

the previous study; however, each animal had new DMI phenotype which was determined using 

indigestible pellets recovered by fecal sampling twice daily. Two trial periods were of interest, 

one lasting seven days while the heifers were being dosed with alkane (adjustment period) and 

the four days following that period (assessment period). When methane production was being 

measured by the GEM (C-lock Inc., Rapid City, SD, USA) unit, there was no significant 

difference in methane production between the high and low RFI-fat groups during the adjustment 

period. In contrast, during the assessment period when methane production was measured using 

the GEM (C-lock Inc., Rapid City, SD, USA) unit, the low RFI-fat heifer produced significantly 

less methane than the high RFI-fat heifers (238.7 grams per day and 250.7 grams per day, 

respectively, P < 0.009). Alternatively, methane production was measured using the OP-FITR, 

which was only during the assessment period, the low RFI-fat heifers produced numerically less 

methane; however, there was significant interaction between RFI-fat and testing method, 

preventing further inference on the main effect of RFI-fat. 

Not all studies report a relationship between methane production and RFI, especially on 

different nutritional planes. Jones et al. (2011) examined two groups of beef cows, one with high 

EBVs for RFI and the other with low EBVs for RFI. These EBVs were calculated based on each 

animal’s record of a post-weaning RFI test done earlier in the animal’s life. Methane emissions 

were measured by an OP-FITR in each group during two different periods: once while pregnant 

and consuming a poor-quality forage and again while the cows were lactating and grazing a 
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high-quality, highly digestible forage. There was no difference in methane production between 

the two groups while the animals were grazing low-quality pasture. In contrast, while nursing, 

the low-RFI group exhibited a more favorable methane intensity, or grams of methane per 

kilogram of body weight, than the high-RFI animals (0.34 vs. 0.46, P < 0.05). The authors 

suggest the poor-quality forage did not have enough crude protein to adequately support the 

rumen microbial population, thus making the low-RFI animals unable to fulfill their genetic 

potential.  

Freetly and Brown (2013) preformed a multiple regression analysis of methane 

production on RFI and each animal’s 24-hour DMI before the methane measurement on both a 

group of steers and a group of heifers. The results indicated RFI was not a significant predictor 

of methane production for either steers or heifers. Therefore, the authors concluded methane 

production does not decrease with increased feed efficiency.  

Mercadante et al. (2015) noted mixed results for the relationship between methane 

production and RFI. In this study, Nellore cattle were performance tested for RFI and methane 

production. The animals consisted of a group of 56 heifers and a group of 62 steers, each fed the 

same ration of 45.5% hay and 55.5% concentrate. Both groups were subjected to what the 

authors termed an RFI-growth period, consisting of over 100 days for each sex. Once the RFI-

growth period was finished, new groups were formed. Low RFI animals had observations less 

than 0.5 SD from the sample population’s mean. The low RFI group consisted of 11 males and 

11 females. The high RFI animals had observations greater than 0.5 SD from the sample 

population’s mean. The high RFI group had 12 males and 12 females. The high and low groups’ 

methane production was measured for six days via the SF6 method (Johnson et al., 1994). When 

the methane production of the two groups was compared, no significant difference was found. 
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However, the authors also performed another RFI test on both the high- and low-RFI males, 

denoted RFI-met. The RFI-met trial lasted 32 days, including while the animals were being 

measured for methane production. Based on the new RFI measurements, the animals were re-

grouped with 9 steers in the low-RFI category (negative RFI) and 14 steers in the high-RFI 

category (positive RFI). When the average methane production of each new group was compared 

(though the methane production of each animal was the same as the previous analysis), the low-

RFI group had significantly less methane production than the high-RFI group (P < 0.024). The 

credibility of the latter analysis must be considered carefully because the RFI-met period was not 

long enough to provide an accurate measurement of RFI (BIF, 2018).    

Like Mercadante et al. (2015), McDonnel et al. (2016) did not find any significant 

difference in methane production between high-RFI heifers and low-RFI heifers. Tellingly, there 

was no interaction effect between RFI and diet on methane production, but there was a 

significant effect for diet (P < 0.001). This further bolsters the idea that methane production is 

driven by the type of feed ingested (Johnson and Johnson, 1995). 

 Velazco et al. (2016) utilized records of 39 grazing yearlings to determine the 

relationship between daily methane production with mid-parent EBV for residual feed intake 

(RFIEBV). The authors utilized a GEM (C-lock Inc., Rapid City, SD, USA) unit to measure 

methane production, and also predicted methane using the equation in Blaxter and Clapperton 

(1965).  The authors also predicted DMI on pasture with the Minson and McDonald (1987) 

method.  A moderate negative phenotypic correlation of -0.55 (P < 0.01) was noted between 

mid-parent RFIEBV and observed methane emissions, thus the authors concluded that animals 

with more favorable RFI do not exhibit lower methane production. Further, the low-RFI cattle 

still had a higher predicted daily methane output after adjusting for live weight. Velazco et al. 
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(2016) did note the animals with lower mid-parent RFIEBV were heavier, which increased the 

predicted DMI and, in turn, increased the predicted daily methane production of those animals.  

 Herd et al. (2016) also reported negative phenotypic correlations between methane 

production and RFI. The authors calculated three different RFI measurements: 1) observed RFI 

from a feedlot trial (RFI), 2) the average of the parent EBVs (RFIEBV), and 3) the mid-parent 

EBV corrected for test weight (RFIEBV-C). Each of these measurements was correlated to the 

methane production from the three phases of the trial: the feedlot, the grain-fed respiration 

chamber, and the roughage-fed respiration chamber. As shown in Table 1.4, only methane 

emissions from when the animals were fed roughages had any significant correlations with any 

RFI measurements (-0.37 with feedlot RFI, and -0.35 with RFIEBV). Because animals with a low 

RFIEBV were heavier on average in Herd et al. (2016), their weight may have confounded the 

results of the methane production analyses. When test weight was accounted for (RFIEBV-C), no 

significant correlation was found. To explain the negative correlation between RFI and the 

roughage-fed chamber methane emissions, the authors put forth two explanations. First, lower 

RFI may not be associated with methane emissions in younger, growing animals. Alternatively, 

growing animals may have higher methane output per unit of feed intake.  

 The literature is divided as to whether methane production is positively or negatively 

correlated with RFI, or if the two are correlated at all. Therefore, more studies with sufficient 

statistical power and appropriate experimental design need to be conducted to determine the true 

nature of the association between methane production and residual feed intake.   

 Body Composition Traits 

For the beef industry, body composition traits such as body fat and ribeye area determine 

yield and quality grades. These traits are important to consumer satisfaction and when marketing 
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on a quality grid. Two papers have investigated these relationships: Herd et al. (2014) and 

Donoghue et al. (2016). These studies reported very similar results, likely because the 777 

animals analyzed by Herd et al. (2014) make up the majority of the 1046 animals analyzed by 

Donoghue et al. (2016). 

 Herd et al. (2014) used ultrasound to obtain measurements of rib fat, rump fat, and ribeye 

area (REA) on animals approximately 600 days in age. The Beef Improvement Federation (BIF) 

defines rib fat as the amount of subcutaneous fat between the 12th and 13th rib (2018). Rump fat 

is the measure of subcutaneous fat taken between an animal’s hooks and pins (BIF, 2018). The 

ribeye area is a cross-sectional area of the longissimus dorsi between the 12th and 13th ribs (BIF, 

2018). The phenotypic correlations between methane production and body composition traits 

were 0.13 (± 0.04) for rib fat, 0.17 (± 0.04) for rump fat, and 0.29 (± 0.04) for REA. 

Donoghue et al. (2016) included the same measurements as Herd et al. (2014) but also 

incorporated intramuscular fat (IMF) collected via ultrasound. Phenotypic correlations between 

methane production and carcass traits were similar to those in Herd et al. (2014): 0.10 (± 0.4) for 

rib fat, 0.13 (± 0.04) for rump fat, 0.28 (± 0.03) for REA, and 0.15 (± 0.04) for IMF. The genetic 

correlation between methane production and rib fat was negligible at 0.11 (± 0.16). The 

correlation between methane production and rump fat was also not different from zero (0.10 ± 

0.15). Alternatively, REA and IMF both showed a greater genetic correlation than the phenotypic 

correlation with methane emissions with 0.40 (± 0.16) and 0.36 (± 0.16), respectively.  

 Conclusion 

 Some genetic antagonisms exist between methane output and economically important 

traits, suggesting that selecting for reduced methane production directly would be detrimental to 

traits such as live weight and marbling. Alternatively, methane ratio traits have been created as a 
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way to select for animals that are most efficient in methane production. Using ratio traits, 

however, puts more selection emphasis on the trait with greater genetic variability and is an 

inefficient method of animal selection. Yet another option would be to select on animals with a 

negative residual methane phenotype. Much like negative RFI animals, negative residual 

methane animals produce less methane than expected. While residual methane has been shown to 

have few unfavorable correlations with economically important traits (Herd et al., 2016), this 

strategy has its own pitfalls. Chief among these is how to measure expected methane production 

as the most common method is through published regression equations predicting methane 

production from observed DMI. Furthermore, there is some concern in the scientific community 

whether selecting on a residual from regression would generate genetic gain. Ultimately, the best 

solution would be a well-constructed selection index and carefully planned breeding program to 

optimize selection on methane production while accounting for the economic balance between 

multiple economically relevant traits. 

 Methane Production and Genetic Loci 

 Single nucleotide polymorphisms (SNP) are variations at a single base pair in organism’s 

genome. These variants can be associated with favorable traits, like reduced methane production. 

Selection programs utilizing genotypic information can greatly increase the rate of genetic 

change compared to phenotypic or even pedigree selection because incorporating SNP 

information improves the accuracy of genetic evaluations. Furthermore, genetic evaluations 

based on genotypes can be equally applied to any member of the population, from an embryo to 

a mature sire. 

 The earliest paper detailing SNP related to methane emissions was de Haas et al. (2011). 

Originally, 558 dairy heifers were sequenced for 54,001 SNP using the Illumnia 50k SNP panel. 
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After editing for SNP quality and prevalence, the authors were left with 548 animals and 43,011 

SNP for each. Of those, only seven SNP were associated with predicted methane production (had 

a Bayes factor greater than 10.1, which was deemed to be the mathematical threshold for 

significance). The seven significant SNP all had small posterior probabilities, where a posterior 

probability is the likelihood a SNP is responsible for the trait of interest. The largest posterior 

probability (0.066) belonged to a SNP on chromosome 18. This SNP in particular explained a 

mere 0.2% of the total genetic variance for methane production. A SNP on chromosome 13 had 

the next highest posterior probability of 0.036. Despite the meager explanation of variation by 

each SNP individually, when direct genomic values were used in genetic predictions, the 

estimates were almost twice as accurate as pedigrees alone were used.  

 Pickering et al. (2015) preformed a similar analysis wherein the authors used predicted 

methane emissions on 731 dairy cattle and 48,957 quality-filtered SNP. The primary difference 

between the two studies was de Haas et al. (2011) predicted average methane production 

between weeks 1-27 of lactation, while Pickering et al. (2015) predicted weekly methane 

emissions over the course of a 44-week lactation. Because feed intake and, therefore, methane 

emissions change over time in lactating cows, weeks 10, 20, 30, 40, and 44 were chosen as the 

variables for an association analysis. They reported 35, 41, 33, 38, and 39 SNP markers that 

reached a significance threshold of P < 0.001 for weeks 10, 20, 30, 40, and 44, respectively. 

Eight SNP surpassed a higher significance threshold, -log10(P) of 4, indicating the SNP had a 

large influence on predicted methane emissions during that week. Of those eight, one SNP 

located on chromosome 7 met the -log10(P) significance threshold in every week. The average 

SNP effect across all weeks was -0.43 grams of methane per day. Although the two studies 

shared many similarities in their design and execution, none of the SNP identified by Pickering 
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et al. (2015) were reported as significant by de Haas et al. (2011). This implies methane 

production is a polygenic trait and has numerous SNP associated with it. 

 Manzanilla-Pech et al. (2016) used a different approach to identify SNP affecting 

methane production. In this study, the authors used three populations of cattle to achieve a 

multitude of goals: 1) identify SNP associated with methane traits in an Angus population, 2) 

validate those SNP across breed types utilizing a lactating Holstein population (POP1), and 3) 

ascertain if the SNP correlated with methane production in the Angus group correlated with SNP 

for DMI and live weight in a second Holstein population (POP2) from a previous study. The 

Angus population had methane measured in respiration chambers, while Holstein POP1 used the 

sulfur hexafluoride (SF6) tracer technique. Two statistical thresholds were used to determine 

significance: the first was a strict P < 0.001 and the other was a more relaxed P < 0.005. 

Moreover, the authors utilized a false discovery ratio in order to approximate how many 

significant SNP may truly have an effect on the phenotype. In the Angus population, 3304 SNP 

met the P < 0.005 significance threshold and 803 surpassed the more conservative P < 0.001 

limit. The false discovery ratios were 0.95 and 0.78, respectively. This implies only about 165-

176 SNP have true associations with methane production. Single nucleotide polymorphisms of 

significance were scattered throughout the genome, but strong associations were seen on 

chromosome 2, 4, 12, 14, 20, and 30. When compared to de Haas et al. (2011) and Pickering et 

al. (2015), there is very little commonality. Disharmony in these papers may be due to the 

differences in measurement style, or it may be due to the differences in populations, e.g., breed 

and maturity. The one point of consensus is on chromosome 4, where Pickering et al. (2015) 

identified two significant SNP which match those identified by Manzanilla-Pech et al. (2016). 

For Holstein POP1, there were 2762 SNP were found to meet the liberal significance for 
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methane production and only 568 SNP exceeded the more stringent level. The false discovery 

ratios were not reported for this group. Few significant SNP for methane production were shared 

across breed. Only 23 SNP were shared between the Angus group and the Holstein POP1 at the 

more liberal significance threshold. The overlap dropped to 0 SNP between the Angus group and 

the more conservative threshold for Holstein POP1. Therefore, the authors concluded the SNP 

controlling methane production might be different across populations. As has already been 

established, both weight and DMI are highly genetically and phenotypically correlated with 

methane production. Because of this, Manzanilla-Pech et al. (2016) wanted to ascertain which 

SNP were shared between methane production, DMI and live weight in the Angus population. 

The authors discovered that 19% of significant SNP for methane production were also significant 

for live weight and dry matter intake. These SNP were located primarily on chromosomes 4, 12, 

and 14. Furthermore, some of the methane production loci identified by Manzanilla-Pech et al. 

(2016) were also associated with other traits in the literature.  

Manzanilla-Pech et al. (2016) is not alone in identifying pleiotropic SNP associated with 

methane production. Pszczola et al. (2018) analyzed the breath of 287 Holstein cows for methane 

concentration through an infrared spectroscope, collected the animals’ genotypes, and used 

Bayesian Variable Selection to perform a GWAS. Pszczola et al. (2018) identified 50 SNP 

associated with methane production that had a Bayes Factor greater than ten. Of those, three SNP 

had a Bayes Factor greater than 30, indicating very strong associations with methane production. 

In total, only 0.154% of the genetic variation in methane production was explained by these 

SNP. The lack of explanation may because of the limitations in the experimental design. 

Alternatively, it is also possible that methane’s polygenic nature contributed to explaining a low 

percent of the genetic variation in the trait. Pszczola et al. (2018) identified 130 known genes as 
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candidates for influencing methane production but focused on the most promising five: 

CYP51A1 on BTA 4, PPP1R16B on BTA 13, and NTHL1, TSC2, and PKD1 on BTA 25. All of 

these genes are related to processes which influence the digestive tract. PKD1 in particular is 

linked to the development of the digestive tract. This suggests that PKD1 may directly or 

indirectly impact methane production by slightly altering the structural development of the 

rumen, thereby affecting methanogens by affecting the environment in which they live. 

None of the genes Pszczola et al. (2018) singled out were corroborated by Calderon-

Chagoya et al. (2019) when the latter performed a GWAS on 280 cattle. Calderon-Chagoya et al. 

(2019) set out to identify genomic locations associated with methane production in dairy and 

dual-purpose cattle in Mexico. Notably, this study measured methane production on Bos taurus, 

Bos indicus, and crossbreeds of the two utilizing a headbox. Calderon-Chagoya et al. (2019) 

reported that 46 of 21,958 SNP were significantly associated with methane emissions. Ten of 

these 46 SNP had been previously associated with milk traits, particularly fatty acid content. As 

these were dual-purpose animals, some SNP associated with methane production were also 

related to meat traits. Unsurprisingly, some SNP were found in quantitative trait loci (QTL) 

regions that have been associated with feed efficiency traits, such as DMI, RFI, and daily weight 

gain. More curiously, the authors also found markers located in QTLs associated with 

intramuscular fat and two different fatty acid concentrations.  

 Selection 

 Selection and mating are the two best tools in an animal breeder’s toolkit. They are the 

means by which genetic changes in animal populations are made. Therefore, it is important to 

have the proper selection strategy to make the desired changes without losing much, if any, gains 

in other important traits. 
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 Methane production has strong correlations with other economically important traits and 

with DMI in particular. As methane production decreases so does DMI, which also brings down 

live weight, milk production, and several other traits upon which the beef industry depends. 

Therefore, selecting animals based solely on methane production is generally not considered an 

effective strategy if producers want to remain profitable (Hegarty and McEwan, 2010; Herd et 

al., 2014). Instead, there a few tactics producers could use to reduce methane production without 

losing economic viability. One is to select on traits which may be related to methane production, 

but not to dry matter intake, such as residual feed intake. Another is to use ratio traits, like 

methane yield or methane intensity. However, the optimum strategy would be to use a selection 

index where methane production is just one of many traits. 

 Residual Feed Intake 

 Including residual feed intake as selection criterion in order to reduce methane production 

would provide several benefits over other mitigation strategies. For instance, some animal 

scientists believe low RFI bulls would ubiquitously reduce methane production throughout the 

industry, as opposed to a feed supplement mitigation approach which only reduce emissions in 

feed lots. More importantly, RFI has very few unfavorable associations with other traits, making 

it a safe target for indirect methane diminution. The amount of methane reduced would depend 

on the rate of adoption of RFI into an individual’s breeding scheme and the selection pressure 

placed upon it. Both of these factors and their impact on methane abatement were quantified in 

Alford et al. (2006).  

Alford et al. (2006) described a gene flow model which simulated the effects of improved 

RFI on methane production over the course of 25 years. It was assumed that breeding plans 

would not solely depend on reducing RFI, so a modest decrease of 0.08 kg dry matter per animal 
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per day was set as an annual rate of genetic change. In addition, it was also assumed all genetic 

change would come from sires with low RFI EBVs and replacement heifers would be selected 

for other traits. Another assumption the authors had to make was how quickly and to what extent 

RFI would be adopted into the Australian national herd’s breeding plan. Based on estimates from 

previous literature, Alford et al. (2006) decided on a 30% maximum adoption percentage for the 

southern region and 15% maximum adoption in the northern area. Farms in the south were 

mainly composed of Bos taurus breeds, i.e., the breeds upon which RFI information was 

available for sires. The northern region had cattle heavily influenced by Bos indicus lines and it 

was assumed that region’s maximum adoption percentage would be half that of the south. By the 

end of the simulation, the individual cow herd that selected for low RFI produced between 

11.22-17.93% less CH4 than the same herd in the starting year. The variation in production 

depended on the age of the cow as the sires of the younger cows had more genetic gain to pass 

on than the sires of the older cows. Furthermore, the youngest sires at the end of the simulation 

were producing 21.48% less methane than their unselected predecessors. The average individual 

100-head herd in year 25 was producing 15.9% less methane than an unselected herd. Over the 

course of the simulation, the national herd saved 568,100 tons of methane, cumulatively. By year 

25, the industry-wide savings was 60,900 tons annually, or a 3.1% reduction from the base year. 

Additionally, an increase in either annual genetic gain from additional selection pressure on the 

maternal side or adoption rate from a sustainability campaign would further reduce the amount of 

methane being produced. A 50% increase in genetic gain from the assumed decrease, 0.08 kg 

DM per head per day reduction to 0.12 kg DM per head per day reduction, would yield a year 25 

reduction of 84,400; however, an increase in adoption rate, from 30% to 45% in the southern 
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herd and 15% to 22.5% in the northern herd, would reduce methane output by 91,300 tons 

annually in year 25 compared to the base year. 

 Ratio Traits 

 Methane yield (g CH4/ kg DMI) and methane intensity (g CH4/ kg product or g CH4/ kg 

live weight) have both been proposed as possibilities measures of methane efficiency. The 

benefit of using a ratio trait is ratio traits spread out the selection pressure and thereby reduce any 

adverse effects that come with selecting for methane production directly. In other words, they are 

measures of efficiency rather than raw observations.  

 Donoghue et al. (2016) showed methane yield was either uncorrelated or very mildly 

correlated with economically important traits, either phenotypically or genetically. In particular, 

methane yield had no association with dry matter intake, circumventing the main problem of 

selecting upon methane production. Methane intensity has been less well studied, but according 

to results from Herd et al. (2013), this trait has negative associations with DMI and live weight. 

Both methane yield and methane intensity were shown to be heritable, estimates of 0.20 and 

0.25, respectively (Manzanilla-Pech et al., 2016). Therefore, selection and genetic gain for either 

trait is possible. 

 One issue critics of ratio traits might point out is one way to reduce the ratio (which is 

favorable) is to increase the denominator. In other words, selecting on either methane yield or 

methane intensity traits would favor fast-growing, high-intake cattle, which may increase overall 

methane emissions per head. Another concern from a genetic standpoint is selection based on 

ratio traits can come with unintended consequences because it places higher than expected 

emphasis on the trait with higher genetic variance (Gunsett, 1984; van der Werf, 2004). 
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 Residual Methane Traits 

 To prevent the uneven selection pressure ratio traits can cause, it may be more 

advantageous to use residual methane production instead. Residual methane production is the 

same idea as residual feed intake, observed measurement value minus the expected value 

calculated from an equation. In the case of residual methane production, smaller values are more 

favorable. 

𝑅𝑀𝑃𝑖𝑗 = 𝑂𝑖 − 𝐸𝑗  

where RMPij is the residual methane production of the ith animal based on the jth methane 

prediction equation, O is the observed methane production of the ith animal, and E is the 

expected methane production based on the jth methane prediction equation, such as IPCC Tier 2 

(IPCC, 2019).  

 Residual methane traits and their associations were studied by Herd et al. (2014), 

Donoghue et al. (2016), and Manzanilla-Pech et al. (2016). The general conclusion was none of 

the residual methane traits showed any strong phenotypic association with DMI and the genetic 

correlations ranged from -0.25 to 0.10. The phenotypic correlations of residual methane traits 

and live weight were also modest, from -0.01 to 0.16. Each study varied in the ways the authors 

calculated expected methane, stretching from published equations to simple linear regressions to 

a trivariate analysis of DMI, live weight, and methane production. The assortment of tactics 

accounts for the range in correlation values. Nonetheless, the residual methane production based 

on the trivariate analysis performed by Manzanilla-Pech et al. (2016) proved to have the least 

impact DMI and live weight and should be the choice of animal breeders wanting to select on 

residual methane production.  
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The hidden difficulty of the residual methane production trait is in selecting the correct 

modeling equation and obtaining the required component data. As shown in the variability of the 

associations between residual methane production traits and dry matter intake, how one estimates 

expected methane could alter the selection decision being made. A decision regarding how to 

estimate methane would need to be finalized and implemented industry-wide for any enduring 

progress to be achieved.  

 Selection Index 

 A selection index is a form of multiple trait selection where each trait in the breeding 

objective receives an economic weight or measure of importance. Selection indices have been 

calculated in beef cattle with several objectives in mind. Two of the most common types of 

selection indices are maternal indices and terminal indices. A maternal index typically places 

emphasis on traits important for replacement heifers. On the other hand, a terminal index works 

on the assumption all offspring will be harvested and therefore puts all of the weighting on 

growth and carcass traits. Using a selection index is the most efficient and profitable way of 

selecting animals for breeding. Indices are also flexible and can be adjusted to suit new breeding 

goals, such as reducing methane emissions.  

Wall et al. (2010) undertook a massive project to determine the effect of including 

methane production into the breeding goals of the United Kingdom (UK). The authors assessed 

six common breeding goals, three in sheep, two in beef cattle, and one in dairy cattle. For the 

purposes of this review, the focus will be on the objectives of the beef cattle segment. In the beef 

cattle segment, there were two indices, a terminal index and a maternal index, each with its own 

set of traits. The terminal index focuses on carcass traits like birth weight, 400-day weight, and 

ultrasonic fat depth. The maternal index includes carcass traits but puts a much larger emphasis 
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on maternal traits such as calving interval, gestation length, age first calving, and lifespan. Wall 

et al. (2010) first created a model to capture the range of methane production associated with 

differences in animal performance. This model was simply called the Genetic GHG model. The 

Genetic GHG model used the IPPC Tier 2 model (IPCC, 2006), where methane production was 

predicted from gross energy intake. The starting parameters for the GHG Genetic model were 

100 breeding cows with a 600 kg liveweight that were primarily fed forages. Each herd had a 2% 

death rate and 3% open cow rate after the breeding season. Calves were assumed to be weaned at 

210 days of age and slaughtered when they reached 600 kg. Of those calves, 98% of them were 

assumed to survive from weaning to slaughter. Because Wall et al. (2010) used the Tier 2 model 

(IPCC, 2006), it was assumed each animal consuming forage emitting 6.5% of its gross energy 

intake as methane, whereas each animal consuming concentrates over 90% emitted only 3% of 

its gross energy intake as methane. The authors fail to specify if the slaughter animals were 

grass-finished or grain-finished. In effect, Wall et al. (2010) used the Genetic GHG model as a 

basis on which to create an environmental index. The Genetic GHG model determined how 

much one unit of change in each selected trait would have on emissions. Then each trait received 

a weighting according to how great an effect changing each trait had and whether changing the 

trait increased or decreased methane emissions. As shown in Table 1.5, Wall et al. (2010) found 

improved fertility, e.g., a reduced age at first calving and calving interval, improved the 

environmental footprint of a maternally focused herd by reducing the number of unproductive 

days. In addition, a reduction in mature weight corresponded to less methane production because 

of the strong negative correlation between methane production and live weight (Herd et al., 

2014). In the terminal herd (Table 1.6), Wall et al. (2010) reported improved carcass weight and 

feed efficiency, as measured by RFI, reduced GHG emissions. As weanling survival increased, 
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however, the percent of animals that survive from weaning to slaughter increased. Therefore, 

methane production also increased because more animals survived to produce methane. The 

contrast between increased fertility for replacement heifers in the maternal index but decreased 

weanling survival in the terminal index seems counter-intuitive; however, these new selection 

indices were developed to reduce methane, not to optimize profit as is the case for most indices. 

This is why looking beyond purely methane production is important. Strictly reducing methane 

might lead to unfavorable outcomes such as decreased beef production. In contrast, reducing 

emission intensity would encourage improvement in production traits while diluting the methane 

output. Therefore, it is often the case where producer profitability is better matched to breeding 

plans that lower emission intensity than breeding plans that aim to lower gross emissions.  

Wall et al. (2010) did not stop at creating a stand-alone environmental index. The authors 

considered the standard selection index used in the UK. The standard index was developed to 

maximize profitability. Wall et al. (2010) then built a framework through which the standard 

index traits would receive different weightings in accordance with new environmentally focused 

breeding objectives. To combine the standard UK index with the environmental index developed 

by Wall et al. (2010), the first step was to establish the phenotypic and genetic parameters and 

correlations between the traits in the breeding goal. These were taken from a literature review 

conducted by another project (DEFRA, 2009). The next challenge was to translate environmental 

costs into economic terms. To accomplish this, Wall et al. (2010) used the shadow price of 

carbon. Here, the shadow price of carbon refers to the economic value of damages associated 

with methane emissions expressed as carbon dioxide equivalents (CO2e; Price et al., 2007). To 

cover the range of uncertainty around the shadow price of carbon Wall et al. (2010) used four 
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different prices, resulting in four hybrid objectives. The shadow prices and how they were 

determined are listed here: 

 CO2£12: £12/t CO2e, the approximate 2009 median price for the European allowance 

carbon units   

 CO2£26.50: £26.50/t CO2e, the 2009 Shadow price of Carbon (SPC) from Price et al. 

(2007) 

 CO2£32.90: £32.90/t CO2e, the 2020 SPC from Price et al. (2007) chosen to represent a 

future price of carbon in 2-3 generations in sheep, beef and dairy. It is usual to forecast 

values when deriving index weights as the results of a selection decision today are 

expressed/realized in the future. 

 CO2£100: £100/t CO2e, a worst-case scenario for price of carbon to ensure an adequate 

range for the results 

Wall et al. (2010) examined the differences in trait weights for the standard objective, the 

environmental objective of reducing GHG per breeding cow (the gross emissions objective), the 

environmental objective of reducing GHG per kg of meat (the emission intensity objective), and 

the four hybrid objectives. As the breeding goal is altered from a purely economics-driven goal 

to goals which would also reduce methane emissions, different traits become more or less 

important. Mathematically, the more important a trait became in a given breeding objective, the 

further from zero its index weight became in that objective. As the breeding objective shifted 

focus from the standard objective to the gross emissions objective, selection became very 

focused increasing on 200-day weight, carcass weight, and calving interval (Table 1.7). Because 

larger animals consume more feed and thereby produce more methane (Herd et al., 2014), 

selecting for heavier terminal offspring (200-day weight and carcass weight) increased methane 
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production in the short-term, but that is balanced by decreasing mature cow size which lessened 

methane in the long-term. This can physically be achieved by selecting for large, terminal sires, 

but more moderate-sized replacement females. Moreover, an increased calving interval 

decreased the number of cattle produced overall which decreased the amount of methane 

produced, though this has the downside of also creating less profit for producers. The gross 

emissions objective was also weighted against high-RFI, which contributed to greater methane 

production per animal as demonstrated by Nkrumah et al. (2006) and Hegarty et al. (2007). The 

intensity objective was more restrained in its weightings of maternal cow traits. It only put a mild 

positive weighting on 200-day weight and carcass weight. This objective weighted against high 

mature weights and high RFI values, but to a much more subtle degree. In contrast to the gross 

emissions objective, the intensity objective was weighted to decrease the calving interval and age 

at first calving. Notably, the authors set the weightings of many of the other traits included in the 

standard index to zero in the environmentally focused objectives. For example, carcass condition 

scores, gestation length, calving difficulties, and lifespan all received zero weightings. The 

hybrid objective with the lowest carbon price, Eco+ CO2£12, had weightings very similar to 

those of the standard objective, save the hybrid objective put some weighting on RFI. As the 

carbon price increased, less weight was put on keeping the calving interval low while more 

weight was put on increasing 200-day weight and carcass weight. Interestingly, the traits that 

received zero weighting in the environmental objectives, carcass condition scores, gestation 

length, calving difficulties, and lifespan, had the same weightings in all the hybrid objectives as 

they had in the standard objective. It is important to keep in mind the hybrid objectives had a 

partial focus on producer earnings which translates to pounds of sellable beef. As the weightings 

in each objective changed in accordance with the breeding goal, the response in traits changed 
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with them. However, the traits in the selection indices were not the only ones to change. The 

selection indices used in Wall et al. (2010) relied on the correlations between traits to indirectly 

select against methane production and the repercussions are shown in Table 1.8. Curiously, the 

standard objective was better at reducing mature weight than the environmentally focused 

objective. However, the environmental objectives led to a greater increase in carcass weight. 

Moreover, as methane production began to play a larger role in the breeding objective, gestation 

length increased while RFI decreased. Wall et al. (2010) had similar results for the terminal 

index to those found in the maternal index. The index weightings for the terminal index are 

shown in Table 1.9. As in the maternal index, carcass weight received a large weighting under 

the gross emissions objective. However, in that same objective, weanling survival was actually 

selected against. On the contrary, the intensity objective placed very little emphasis on any traits 

in the terminal index. As in the maternal index, the hybrid breeding objectives began weighted 

similarly to the standard objective when the shadow price of carbon is low, but then grew closer 

to the gross emission objective weightings as the price increased. In the terminal index the 

weightings for even the highest shadow price of carbon were much closer to the weightings 

under the standard objective than the weightings under the gross emissions objective. This 

indicates that current paradigms would have to radically shift before the beef industry switched 

to primarily focusing on methane reduction. When Wall et al. (2010) examined the trait 

responses in the terminal index under different breeding objectives, the author found the 

environmental focused objectives actually increased carcass weight more than the standard 

objective (Table 1.10). In addition, the environmental objectives decreased RFI, a favorable 

result. However, not all responses were favorable. Wall et al. (2010) also calculated increased 

carcass fat score, gestation length, and calving difficulty while decreased carcass condition score, 
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all of which producers would prefer to avoid. In summary, Wall et al. (2010) showed methane 

production could be incorporated into selection indices already in use and would have some 

measurable effect. This idea was further expanded upon in Lopez-Paredes et al. (2018), wherein 

the authors used a population of Spanish Blonde d'Aquitaine as a case study. 

Lopez-Paredes et al. (2018) used records from the Spanish Breeders Association of 

Blonde d′Aquitaine in order to calculate means, variances, and genetic parameters for maternal 

traits like calving interval and age at first calving, as well as terminal traits like carcass weight 

and growth. The authors of Lopez-Paredes et al. (2018) used the IPCC Tier 2 (2006) mode, in 

combination with gross energy intake estimates from previous literature to approximate methane 

production. The authors approximated methane production for both the average breeding cow 

and the average feedlot animal and expressed those values as kg of CH4 per slaughtered calf per 

year. Lopez-Paredes et al. (2018) modeled three breeding objectives. The first was a benchmark 

scenario where profits were optimized, and methane production was not included in the breeding 

goal. The second scenario implemented a carbon tax of 1.22€/kg CH4. This was very similar to 

the hybrid objectives of Wall et al. (2010). However, the shadow price of carbon in Lopez-

Paredes et al. (2018) was assumed to be equivalent to roughly 48.89£/t CO2e, between the 

highest and second-highest carbon prices modeled by Wall et al. (2010). Finally, the last scenario 

considered by Lopez-Paredes et al. (2018), was a carbon quota. In this objective, meat 

production traits were optimized while methane production was held constant. The intensity 

index in Wall et al. (2010) mirrors the quota scenario, in that the goal of both was to find the 

balance between meat production and methane production. It is also worth noting Lopez-Paredes 

et al. (2018) assumed the amount of methane would be kept constant by varying the number of 

animals while the amount of product would continue to increase via means of selecting for more 
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efficient animals. The economic weights of the traits in the selection indices in each scenario 

were based on a bioeconomic profit function developed by Lopez-Paredes et al. (2017). The 

basic function would determine profit per year. The index weights were defined as the partial 

derivative of the profit function with respect to the trait considered and expressed as euros per 

slaughtered calf per year. Modifications were made to each function, depending on which 

objective was being met. The simplest index weight equation was used for the benchmark 

objective: 

EVi = ∂ ((I – FAT – PROD) • cs)/ ∂xi 

where EVi is the index weight of trait i, I is the income per slaughtered calf, FAT is the cost of 

the finishing calves to meet their energy requirements in the feedlot until a fixed age of 

slaughter, PROD is the cost of production per slaughtered calf, including feeding cost of heifers, 

cows, and culled cows to meet their energy requirements minus income per culled cow carcass at 

sale, cs is 365 divided by the age of calf at slaughter, and xi is the value of trait i.  

For the carbon tax objective, Lopez-Paredes et al. (2018) used the following equation: 

EVi = ∂ ((I – FAT – PROD) • cs – (t • (Mcow + Mcalf)))/ ∂xi 

where EVi is the index weight of trait i, I is the income per slaughtered calf, FAT is the cost of 

the finishing calves to meet their energy requirements in the feedlot until a fixed age of 

slaughter, PROD is the cost of production per slaughtered calf, including feeding cost of heifers, 

cows, and culled cows to meet their energy requirements minus income per culled cow carcass at 

sale, cs is 365 over the age of calf at slaughter, t is the rate of carbon tax (1.22€/kg CH4), Mcow is 

the kg of methane per slaughtered calf per year for cows, replacement heifers, and cull cows, 

Mcalf is the kg of methane per slaughtered animal per year for feedlot animals, and xi is the value 

of trait i.  
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Finally, the equation for the carbon quota objective restricted the amount of progress that could 

have been made in every given trait by how much the change in the trait would change the 

amount of methane produced. 

𝐸𝑉𝑖 =  
𝜕((𝐼 − 𝐹𝐴𝑇 − 𝑃𝑅𝑂𝐷) • 𝑐𝑠

𝜕𝑥𝑖
− ((𝐼 − 𝐹𝐴𝑇 − 𝑃𝑅𝑂𝐷) • 𝑐𝑠) • 

𝜕(𝑀𝑐𝑜𝑤 + 𝑀𝑐𝑎𝑙𝑓)
𝜕𝑥𝑖

𝑀𝑐𝑜𝑤 + 𝑀𝑐𝑎𝑙𝑓
 

where EVi is the index weight of trait i, I is the income per slaughtered calf, FAT is the cost of 

the finishing calves to meet their energy requirements in the feedlot until a fixed age of 

slaughter, PROD is the cost of production per slaughtered calf, including feeding cost of heifers, 

cows, and culled cows to meet their energy requirements minus income per culled cow carcass at 

sale, cs is 365 over the age of calf at slaughter, Mcow is the kg of methane per slaughtered calf per 

year for cows, replacement heifers, and cull cows, Mcalf  is the kg of methane per slaughtered calf 

per year for feedlot animals, and xi is the value of trait i.  

With the profit equations developed for each breeding objective, Lopez-Paredes et al. 

(2018) was able to compute the selection index weights for each objective. In the benchmark 

objective, 48% of the selection weight was placed on cow traits, while 52% was placed on calf 

traits. As can be seen in Table 1.11, increasing carcass weight gain and decreasing mature weight 

were the highest priorities for the benchmark objective. Under the carbon tax objective, selection 

pressure was shifted away from calf growth to improving cow traits. The importance of cow 

traits increased because shorter non-productive lengths, like calving intervals, also imply less 

methane production per slaughtered calf per year. In addition, this objective also places 4.9% of 

the index weight on methane traits, the greatest emphasis of all objectives. In contrast to the 

carbon tax objective, the carbon quota objective placed more emphasis on calf traits than cow 

traits. This was because carcass weight gain in particular was highly heritable and greatly 
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increased the income portion of the profit equation upon which all index weights were based. 

The carbon quota objective also considered methane traits, but to a smaller degree (1.8%) than 

the carbon tax objective. In general, all objectives were similar in a few key respects with the 

differences being mostly in magnitude. For example, in all objectives, mature weight, age at first 

calving, calving interval, and calving ease all received negative index weights because decreases 

in those traits not only reduced costs of production but also reduced methane production per 

slaughtered calf per year. Conversely, weaning weight, carcass gain, carcass confirmation score, 

and cull cow carcass weight all received positive index weights because they all increased the 

amount of income seen by operations. The response seen in traits under the three breeding 

objectives was expressed both in the units of the trait and as euros per slaughtered calf per year 

(Table 1.12). The benchmark objective showed 97% of the genetic response profit was derived 

from improved calf traits which increased profit. Reducing calving interval and age at first 

calving also increased profit, but to a lesser degree. However, because larger cows require more 

feed to meet their needs and this objective allowed for the largest cows, the benchmark scenario 

cited an increased mature weight as its largest genetic cost. Despite the larger mature weight, the 

benchmark scenario actually showed a decrease in methane production for the cow herd. This 

reduction is likely due to the decrease in non-productive days which increased the number of 

slaughtered calves per year, consequently decreasing the ratio of kg CH4 per slaughtered calf per 

year. The total profit of this objective was 68.84€ per slaughtered calf per year. The profitability 

of the carbon tax objective fell to 60.98€ per slaughtered calf per year, not only because methane 

production itself was a cost, but also because calf traits were not selected for as intensely as in 

the benchmark objective and a beef operation’s revenue would not be as great. In an attempt to 

limit the amount of methane being produced by reducing the size of both cows and calves, this 
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objective also limited the amount of product produced. The final objective, the carbon quota 

objective, actually improved profitability over the benchmark objective. The carbon quota 

objective selected for slightly smaller mature cows with slightly improved fertility (age at first 

calving and calving interval) as compared to the benchmark scenario. Those minute changes lead 

to not only improved profitability by decreased costs, but also to lower methane emissions per 

animal than in the benchmark scenario. However, the increased profit per animal is balanced 

with the assumption of fewer animals in order to cap the amount of methane produced. Lopez-

Paredes et al. (2018) concluded adding methane traits to the breeding goal will affect the future 

type of beef animal. Moreover, the inclusion of methane in the breeding objective would affect 

producer profitability by either reducing the amount of meat produced or reducing the number of 

animals available in order to hold methane at a constant level. None of the scenarios modeled by 

Lopez-Paredes et al. (2018) considered the social implications of reducing methane. Lopez-

Paredes et al. (2018) recommended all genetic, economic, and social facets should be carefully 

weighed before any decisions are set by policy makers. 

 Selection indices are the most efficient selection tools producers have available. They 

allow for an optimization of multiple trait selection and can be customized for almost any 

breeding goal. While methane production is not included in any national breeding objectives at 

the moment, under certain market conditions, such as carbon taxes or carbon quotas, selection 

indices can be adapted to accommodate these forces (Wall et al., 2010; Lopez-Paredes et al., 

2018). In fact, given the right market forces, selection indices can be leveraged to increase 

profitability while simultaneously decreasing methane production of beef operations (Lopez-

Paredes et al., 2018).  
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 Conclusion 

In terms of choosing the correct trait for a breeding scheme, the decision depends on the 

breeding objective. An overall reduction in methane emissions may be achieved by directly 

selecting against methane production or by selecting for lower RFI. Alternatively, cattle selected 

on methane yield or intensity would increase methane production per head but could lower 

overall emissions by producing fast-growing animals and meeting demands with fewer cattle. 

Residual methane production traits would focus on the animals producing less methane than 

expected, which may or may not reduce overall methane emissions but would increase the 

efficiency of each animal. Finally, the optimal solution may be selection indices. Selection 

indices would incorporate methane production traits into a model with the correlation of other 

traits already considered. Additionally, selection indices could be made for a variety of scenarios 

and producers would be able to select of index appropriate from their needs. However, selection 

indices require the direct measurement of methane production on a large number of animals 

which is a logistical hurdle at the present time. Regardless of the selection methodology, it is 

possible to reduce methane production through breeding which would result in sustained and 

cumulative benefits to the beef industry as a whole. 
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Figure 1.1  

Main ruminal pathways where free hydrogen is used or released 

 

Adapted from Ungerfeld, 2013 
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Figure 1.2  

Sources and sinks of hydrogen during ruminal fermentation 

 

Adapted from Kebreab et al., 2004 
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Table 1.1  

Empirical models for estimating enteric methane from ruminant animals 

Equation Reference 

7.42 + 94.28 * DMIa (kg/d) * 0.05524 (MJ/g CH4) Kriss, 1930 

-2.07 + 2.636 * DMIa (kg/d) -0.105 * DMIa (kg/d)2 Axelsson, 1949 

5.447 + 0.469 * (energy digestibility at maintenance intake, % of GEb) + 

multiple of maintenance * (9.930 - 0.21 * (energy digestibility at maintenance 

intake, % of GEb))/100 * GEIc (MJ/d) 

Blaxter and 

Clapperton, 1965 

4.38 (±1.46) + 0.0586 (±0.0175) * MEId (MJ/d) Ellis et al., 2007 

North American dairy cattle milking 8400 kg milk/head/yr.:  

    138 kg CH4/head/yr. 

All other North American cattle:  

    64 kg CH4/head/yr. 

IPCC, 2019 

[0.07 *GEIc]/0.05565 

Alternatively 

Cattle fed ≥85% concentrate: 

    4.0% ± 1.0% of GEIc 

Cattle fed < 85% concentrate: 

    7.0% ± 1.0% of GEIc 

IPCC, 2019 

0.341 + 0.511 * NSCe (kg/d) + 1.74 * HCf (kg/d) + 2.652 * CELg (kg/d) 
Moe and Tyrrell, 

1979 

56.27 – (56.27 + 0) * e^(-0.028 * DMIa (kg/d)) Mills et al., 2003 

a = dry matter intake  
b= gross energy  
c= gross energy intake 
d= metabolizable energy intake 
e= non-structural carbohydrate 
f= hemicellulose 
g= cellulose 
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Table 1.2  

Summary of heritabilities estimates for methane production in beef and dairy cattle 

Heritability ± SE Population Methane Measurement Type Study 

0.17 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.15 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.26 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.22 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.07 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.36 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.35 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.52 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.52 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.37 ± 0.11 Dual Purpose Prediction Kandel et al. (2012) 

0.35 ± 0.12 Dairy Prediction de Haas et al. (2011) 

0.13 ± 0.04 Dairy Prediction Pickering et al. (2015) 

0.24 ± 0.01 Dairy Prediction Kandel et al. (2017) 

0.25 ± 0.01 Dairy Prediction Vanrobays et al. (2016) 

0.47 ± 0.07 Beef Prediction Sobrinho et al. (2015) 

0.32 ± 0.07 Beef Prediction Sobrinho et al. (2015) 

0.19 ± 0.05 Beef Prediction 
Manzanilla-Pech et al. 

(2016) 

0.15 ± 0.05 Beef Prediction 
Manzanilla-Pech et al. 

(2016) 
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0.21 ± 0.06 Dairy Direct 
Laasen and Løvendahl 

(2016) 

0.25 ± 0.16 Dairy Direct Lassen et al. (2016) 

0.24 ± 0.15 Dairy Direct Lassen et al. (2016) 

0.23 ± 0.23 Dairy Direct 
Manzanilla-Pech et al. 

(2016) 

0.24 ± 0.06 Beef Direct Arthur et al. (2016) 

0.18 ± 0.06 Beef Direct Arthur et al. (2016) 

0.27 ± 0.07 Beef Direct Arthur et al. (2016) 

0.19 ± 0.06 Beef Direct Arthur et al. (2016) 

0.20 ± 0.05 Beef Direct Hayes et al. (2016) 

0.18 ± 0.05 Beef Direct Hayes et al. (2016) 

0.30 ± 0.06 Beef Direct 
Manzanilla-Pech et al. 

(2016) 

Adapted from Brito et al. (2018) 
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Table 1.3  

Phenotypic and genetic correlations (standard error) between methane production and body 

weight in beef cattle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d=direct weaning weight 

m=maternal weaning weight 

  

Trait 

Herd et al. (2014) Donoghue et al. (2016) 

Phenotypic Genetic Phenotypic Genetic 

Birth Weight 0.19 (0.05) NA 0.26 (0.04) 0.36 (0.18) 

Weaning Weight 0.50 (0.04) NA 0.53 (0.03) 
0.84d (0.09) 

/0.32m (0.19) 

Yearling Weight 0.57 (0.03) NA 0.61 (0.09) 0.86 (0.06) 

Finished Weight 0.49 (0.05) NA 0.56 (0.03) 0.79 (0.08) 
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Table 1.4  

Correlations between different quantifications of residual feed intake (RFI) and measurements of 

methane production (CH4) under various circumstances 

 Feedlot RFIa RFIEBV
b RFIEBV-C

c 

Feedlot CH4 -0.05 -0.09 0.08 

Grain chamber CH4 -0.05 -0.04 0.01 

Roughage chamber CH4 -0.37* -0.35* -0.15 

 

aRFI measured under feedlot conditions with a high grain diet 
bRFI for an individual expressed as the average of the parent’s expected breeding value for RFI 
c RFI for an individual expressed as the average of the parent’s expected breeding value for RFI 

corrected for body weight 

*P < 0.05 

Adapted from Herd et al., 2016 
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Table 1.5  

Greenhouse gas (GHG) values for maternal cattle with discounted genetic expressions and the 

GHG weights for each goal trait. Positive trait values indicate a decrease in GHG emissions 

Trait 

GHG value (-1*kg 

CO2e/breeding cow/ 

unit change in trait) 

Discounted genetic 

expression (per 

breeding cow) 

GHG index weight 

(-1*kg CO2e 

/breeding cow) 

Calving interval (days) 7.46 0.774 5.77 

Age at first calving 

(days) 
3.85 0.141 0.54 

Maternal 200-day 

weight (kg) 
8.80 0.654 5.76 

Mature weight 

(maintenance) (kg) 
-0.878 0.774 -0.68 

Mature weight 

(replacement) (kg) 
-1.89 0.141 -0.27 

Mature weight 

(combined) (kg) 
  -0.95 

Carcass weight (kg) 12.26 0.680 8.34 

RFI of breeding animals 

(kg of DMI/day) 
0.43 0.774 0.33 

RFI of growing animal 

(kg of DMI/day) 
0.38 0.680 0.26 

*RFI is residual feed intake; DMI is dry matter intake; CO2e is carbon dioxide equivalent 

Adapted from Wall et al., 2010 
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Table 1.6  

Greenhouse gas (GHG) values for terminal cattle with discounted genetic expressions and the 

GHG weights for each goal trait. Positive trait values indicate a decrease in GHG emissions  

Trait 

GHG value (-1*kg 

CO2e/breeding cow/ 

unit change in trait) 

Discounted genetic 

expression (per 

breeding cow) 

GHG index weight 

(-1*kg CO2e 

/breeding cow) 

Carcass weight (kg) 12.26 0.430 5.27 

Residual feed intake 

of growing animal 
0.38 0.430 0.16 

Weanling survival -16.54 0.654 -10.82 

*CO2e is carbon dioxide equivalent 

Adapted from Wall et al., 2010 
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Table 1.7  

Selection index weights used in maternal beef when seven different breeding objectives were 

selected: 

Standard set of economic weights (Standard); Environmental weights expressed per breeding 

cow (Gross Emissions); Per kilogram of meat (Emission Intensity); Combined economic and 

environmental weights at four carbon prices (Eco+CO2£) 

 Breeding objectives and selection index weights 

 
Standard 

(£) 

Gross 

Emissions 

(kg CO2e) 

Emission 

Intensity 

(kg CO2e 

/ kg meat) 

Eco+ 

CO2£12 

(£) 

Eco+ 

CO2£26 

(£) 

Eco+ 

CO2£32.90 

(£) 

Eco+ 

CO2£100 

(£) 

Trait names        

200-day 

weight 
0.73 5.75 0.05 0.80 0.88 0.92 1.31 

Carcass 

weight 
0.70 8.34 0.07 0.80 0.92 0.97 1.53 

Carcass 

condition 

score 

6.70 0 0 6.70 6.70 6.70 6.70 

Gestation 

length direct 
-1.17 0 0 -1.17 -1.17 -1.17 -1.17 

Calving 

ease direct 
-2.88 0 0 -2.88 -2.88 -2.88 -2.88 

Calving 

ease 

maternal 

-2.19 0 0 -2.19 -2.19 -2.19 -2.19 

Calving 

interval 
-0.83 5.77 -0.01 -0.76 -0.68 -0.64 -0.25 

Age at first 

calving 
-48.11 0.54 -0.002 -48.10 -48.10 -48.09 -48.10 

Lifespan 6.63 0 0 6.63 6.63 6.63 6.63 

Mature 

weight 
-0.23 -0.95 -0.01 -0.24 -0.26 -0.26 -0.33 

RFI 

growing 
0 -0.26 -0.002 -0.003 -0.01 -0.01 -0.03 
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animals 

RFI 

breeding 

animals 

0 -0.33 -0.003 -0.004 -0.01 -0.01 -0.03 

*RFI is residual feed intake; CO2e is carbon dioxide equivalent 

Adapted from Wall et al., 2010 
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Table 1.8  

Index and correlated trait responses for maternal beef index when seven different breeding 

objectives were selected: 

Standard set of economic weights (Standard); Environmental weights expressed per breeding 

cow (Gross Emissions); Per kilogram of meat (Emission Intensity); Combined economic and 

environmental weights at four carbon prices (Eco+CO2£) 

 Breeding objectives and trait responses (in trait units per annum) 

 
Standard 

 

Gross 

Emissions 

(kg CO2e) 

Emission 

Intensity 

(kg CO2e 

/ kg meat) 

Eco+ 

CO2£12 

 

Eco+ 

CO2£26 

 

Eco+ 

CO2£32.90 

 

Eco+ 

CO2£100 

 

Trait names        

200-day 

weight 

maternal (kg) 

0.168 0.009 0.000 0.157 0.146 0.141 0.103 

Carcass 

weight (kg) 
2.699 3.548 3.684 2.855 3.001 3.054 3.361 

Carcass 

condition 

score (1-4) 

0.031 0.018 0.018 0.030 0.030 0.030 0.027 

Gestation 

length-direct 

(days) 

-0.050 0.022 0.017 -0.044 -0.038 -0.036 -0.018 

Calving 

interval 

(days) 

-0.711 0.317 -0.448 -0.632 -0.546 -0.512 -0.256 

Age at first 

calving 

(days) 

-0.005 -0.010 -0.005 -0.005 -0.006 -0.006 -0.008 

Lifespan 

(number of 

lactations) 

0.037 0.012 0.015 0.035 0.034 0.033 0.027 

Mature 

weight (kg) 
-3.505 0.449 -0.079 -3.221 -2.912 -2.787 -1.827 
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RFI growing 

animals (kg 

of DMI/ day) 

-4.020 -9.931 -10.432 -4.700 -5.377 -5.634 -7.339 

RFI breeding 

animals (kg 

of DMI/ day) 

-4.092 -7.489 -7.386 -4.531 -4.960 -5.121 -6.152 

*RFI is residual feed intake; DMI is dry matter intake; CO2e is carbon dioxide equivalent 

Adapted from Wall et al., 2010 
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Table 1.9  

Selection index weights used in terminal beef index when seven different breeding objectives 

were selected: 

Standard set of economic weights (Standard); Environmental weights expressed per breeding 

cow (Gross Emissions); Per kilogram of meat (Emission Intensity); Combined economic and 

environmental weights at four carbon prices (Eco+CO2£) 

 Breeding Objectives and selection index weights 

 
Standard 

(£) 

Gross 

Emissions 

(kg CO2e) 

Emission 

Intensity 

(kg CO2e 

/ kg meat) 

Eco+ 

CO2£12 

(£) 

Eco+ 

CO2£26 

(£) 

Eco+ 

CO2£32.90 

(£) 

Eco+ 

CO2£100 

(£) 

Trait names        

Carcass 

weight 
1.20 5.27 0.04 1.26 1.34 1.37 1.73 

Carcass fat 

score 
-6.00 0 0 -6.00 -6.00 -6.00 -6.00 

Carcass 

condition 

score 

7.00 0 0 7.00 7.00 7.00 7.00 

Gestation 

length direct 
-1.00 0 0 -1.00 -1.00 -1.00 -1.00 

Calving 

difficulty 

direct 

-2.88 0 0 -1.00 -2.88 -2.88 -2.88 

RFI of 

growing 

animals 

0 -0.16 -0.002 -0.002 -0.004 -0.01 -0.02 

Survival 

from birth 

to wean 

0 -10.82 0.05 -0.13 -0.29 -0.36 -1.08 

*RFI is residual feed intake; CO2e is carbon dioxide equivalent 

Adapted from Wall et al., 2010 
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Table 1.10 

Index and correlated trait responses for terminal beef index when seven different breeding 

objectives were selected: 

Standard set of economic weights (Standard); Environmental weights expressed per breeding 

cow (Gross Emissions); Per kilogram of meat (Emission Intensity); Combined economic and 

environmental weights at four carbon prices (Eco+CO2£) 

 Breeding objectives and trait responses (in trait units per annum) 

 
Standard 

 

Gross 

Emissions 

(kg CO2e) 

Emission 

Intensity 

(kg CO2e 

/ kg meat) 

Eco+ 

CO2£12 

 

Eco+ 

CO2£26 

 

Eco+ 

CO2£32.90 

 

Eco+ 

CO2£100 

 

Trait 

names 
       

Carcass 

weight 
2.317 2.514 2.504 2.343 2.370 2.380 2.454 

Carcass 

fat score 
-0.035 0.047 0.048 -0.031 -0.027 -0.025 -0.011 

Carcass 

condition 

score 

0.063 0.033 0.032 0.062 0.060 0.060 0.055 

Gestation 

length - 

direct 

0.016 0.068 0.066 0.019 0.022 0.023 0.033 

Calving 

difficulty -

direct 

0.005 0.012 0.012 0.005 0.006 0.006 0.007 

RFI of 

growing 

animals 

-2.721 -8.743 -9.006 -3.039 -3.386 -3.528 -4.685 

Shear 

force 
-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

Birth 

Survival 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Survival 

from birth 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 



70 

to wean 

Docility 

score 
0.009 0.006 0.006 0.009 0.009 0.009 0.009 

Adapted from Wall et al., 2010 
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Table 1.11 

Economic weights of three breeding objectives per unit of increase of each trait in euros per 

slaughtered calf per year (€/sc/year) and per additive standard deviation (€/sc/year/σa), relative 

importance (RI)  

  Benchmark Carbon Tax Carbon Quota 

  
€/SC 

/year 

€/SC 

/year/σa 

RI 

(%) 

€/SC 

/year 

€/SC 

/year/σa 

RI 

(%) 

€/SC 

/year 

€/SC 

/year/σa 

RI 

(%) 

Cow 

Traits 
          

 
Mature 

weight 
−0.5 −25.15 18.7 −0.6 −30.27 18.2 −0.47 −23.73 18.1 

 
Age at first 

calving 
−0.13 −12.13 9.0 −0.16 −14.60 8.8 −0.13 −11.4 8.7 

 
Calving 

interval 
−1.39 −10.85 8.1 −1.65 −27.36 16.4 −1.31 −10.25 7.9 

 
Calving ease 

maternal 

−14.1

6 
−6.49 4.8 

−16.7

6 
−7.68 4.6 

−13.4

2 
−6.15 4.7 

 

Weaning 

weight 

maternal 

0.2 2.37 1.4 0.25 2.91 1.7 0.12 1.38 1.1 

 

Cull cow 

carcass 

conformation 

score 

3.16 2.88 2.1 3.16 2.88 1.7 3.16 2.88 2.2 

 

Cull cow 

conformation 

score 

0.14 4.77 3.6 0.11 3.91 2.3 0.11 3.99 3.1 

Calf 

Traits 
          

 Calving ease 
−14.1

6 
−12.58 9.4 

−16.7

6 
−14.89 8.9 

−13.4

2 
−11.93 9.1 

 
Weaning 

weight 
0.2 3.02 2.3 0.25 3.75 2.2 0.12 1.77 1.3 

 Carcass 

conformation 
19.40 12.27 9.1 19.4 12.27 7.4 19.40 12.27 9.4 
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score 

 
Carcass 

weight gain 
0.782 41.65 31.0 0.713 38.0 22.8 0.802 42.69 32.6 

Methane 

Traits 
          

 
Calf sector 

methane 
- - - −1.22 −3.68 2.2 −0.34 −1.03 0.8 

 

Breeding 

cow sector 

methane 

- - - −0.54 −4.56 2.7 −0.16 −1.35 1.0 

Adapted Lopez-Paredes et al., 2018 
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Table 1.12 

Annual genetic change traits in three breeding objectives expressed in unit of trait (parenthesis) 

and in euros per slaughtered calf per year (€/sc/year)  

  Benchmark Carbon Tax Carbon Quota 

  
Change 

in trait 
€/sc/year 

Change 

in trait 
€/sc/year 

Change 

in trait 
€/sc/year 

Cow 

Traits 
       

 
Mature weight 

(kg) 
6.75 −3.37 −0.84 0.50 6.27 −2.95 

 
Age at first 

calving (days) 
−12.03 1.56 −10.32 1.65 −12.80 1.66 

 
Calving 

interval (days) 
−2.73 3.79 −2.61 4.30 −2.76 3.61 

 
Calving ease 

maternal (1-4) 
0.00 −0.06 0.00 −0.08 0.00 −0.06 

 

Weaning 

weight 

maternal (kg) 

−3.88 −0.78 −3.26 −0.81 −4.10 −0.49 

 

Cull cow 

carcass 

conformation 

score (1-15) 

0.12 0.38 0.15 0.47 0.14 0.39 

 

Cull cow 

conformation 

score (kg) 

4.68 0.66 −0.58 −0.06 4.36 0.48 

Calf 

Traits 
       

 
Calving ease 

(1-4) 
0.04 −0.59 0.04 −0.70 0.04 −0.56 

 
Weaning 

weight (kg) 
4.16 0.83 2.42 0,61 3.84 0.46 

 Carcass 

conformation 
0.38 7.47 0.40 7.74 0.38 7.43 
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score (1 -15) 

 
Carcass weight 

gain (g/day) 
75.58 58.95 70.90 50,55 75.30 60.39 

Methane 

Traits 
       

 

Methane from 

calf during 

fattening (kg) 

2.91 − 2.38 −2.90 2.81 −0.95 

 

Methane from 

breeding cows 

(kg) 

−0.30 – −0.53 0.29 −0.84 0.07 

Profit  68.84  60.98  69.48  

Adapted Lopez-Paredes et al., 2018 
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Chapter 2 - Genetic Evaluation of Methane Traits Estimated by 

Different Methane Prediction Equations 

 Abstract 

 Enteric methane is a potent greenhouse gas and represents an inefficiency in the ruminant 

digestive system. Genetic selection offers a permanent and cumulative opportunity to diminish 

enteric methane emissions as long as selection pressure is maintained. Logistic and monetary 

difficulties in directly measuring methane emissions can make the genetics evaluation on a proxy 

trait like predicted methane production a more feasible option, while understanding that 

inclusion of genotyping data can allow for quicker genetic progress. Thus, three predicted 

methane production traits were calculated for 830 crossbred steers fed in seven groups. The 

methane prediction equations used included models from Ellis et al. (2007), Mills et al. (2003), 

and IPCC (2019). Pearson correlations between the traits were all greater than 0.99, indicating 

that each prediction equation behaved similarly. Further, the Spearman correlations between the 

estimated breeding values for each trait were also 0.99, which suggests any of the predicted 

methane traits could be used without substantially changing the selection candidates. The 

heritabilities of Ellis predicted methane production, Mills predicted methane production, and 

IPCC predicted methane production were 0.71, 0.74, 0.70, respectively. No single nucleotide 

polymorphism reached the threshold for significance for any of the traits. Nonetheless, the SNP 

closest to the significance threshold indicate genes related to collagen, intracellular microtubules, 

and DNA transcription may play a role in predicted methane production or its component traits. 
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 Introduction  

Ruminant animals eructate enteric methane as by-product of their digestive process. 

Methane is a greenhouse gas that has 84 times more global warming potential than carbon-

dioxide over a 20-year timeframe (Myhre et al., 2013). Further, enteric methane represents an 

inefficiency of the ruminant system. Anywhere from 2-12% of energy consumed by cattle is 

emitted as methane (Johnston and Johnston, 1995). 

Phenotypic and genetic variation in methane production between animals has been 

reported (Blaxter and Clapperton, 1965: Herd et al., 2016; Renand et al., 2019), which implies 

reduction of methane emissions through breeding is possible. Breeding for methane reduction 

offers several benefits that other methods like feed additives and methane inoculants (covered 

extensively in Beauchemin et al., 2020) do not; namely, that genetic improvements are 

permanent and cumulative as long as selection pressure on the trait of interest is maintained. The 

drawback for selecting for animals solely based on methane production is the fact methane 

production is genetically and phenotypically correlated to dry matter intake (DMI) and body 

weight (Herd et al., 2014). This means selecting for reduced methane production directly could 

also reduce DMI and body weight.  

Several studies have been conducted to determine quantitative trait loci (QTL) associated 

with predicted methane production. One of the first studies to examine the single nucleotide 

polymorphisms (SNP) was de Haas et al. (2011), where the authors predicted methane emission 

of 665 Holstein cattle. Seven significant SNP were on 5 chromosomes (chromosomes 13, 18, 24, 

26, and 27), though the most significant SNP only explained 0.2% of the genetic variance. None 

of the SNP reported by de Hass et al. (2011) were corroborated in Pickering et al. (2015), despite 

both studies using the same methane prediction equation on Holstein cattle. Instead, Pickering et 
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al. (2015) found one SNP on chromosome 7 was repeatedly associated with predicted methane 

over the course of a lactation period. Genome-wide association studies (GWAS) with predicted 

methane trait evaluation has not been extensively conducted in beef cattle; however, Uemoto et 

al. (2020a) did perform a GWAS with two predicted methane traits in Japanese Black cattle. The 

authors did not detect significant SNP associated with either trait. It should be noted that Uemoto 

et al. (2020a) used a different prediction equation than de Haas et al. (2011) and Pickering et al. 

(2015). Regardless of methane prediction equation selected, the QTL associated with predicted 

methane production traits remain unclear.  

In order for selection of animals with low methane production to be possible, a large 

number of animals must be phenotyped. There are several techniques to phenotype animals for 

methane production, such as respiration chambers and portable emission measuring units 

(reviewed in Garnsworthy et al., 2019). However, it can be costly and time-consuming to obtain 

direct methane production measurements, especially on the number of animals needed to create a 

reliable reference population for genetic selection. Instead, it is more efficient to select on an 

indicator trait such as predicted methane production, or to utilize these indicator traits to bolster 

genetic prediction while large numbers of animals with methane emissions data are phenotyped. 

Several equations which use variables that are simpler or more cost-effective to measure than 

direct methane production (e.g., dry matter intake) have been formulated to estimate these values 

(Ellis et al., 2007; IPCC, 2019, Mills et al., 2003).  

The objectives of this study were to evaluate the genetic correlations between different 

methane prediction models, calculate the heritabilities of these predicted methane prediction 

traits, and identify quantitative trait loci for each trait. 
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 Materials and Methods 

 Study Design and Data Collection 

Full details on animals and study design are described in Ahlberg et al. (2019). Briefly, 

feed intake information was obtained on 830 crossbred steers from May 2014 to May 2018 at the 

Willard Sparks feedlot at Oklahoma State University. All animal procedures were approved by 

the Institutional Animal Care and Use Committee at Oklahoma State University (protocol AG13-

18) in accordance with Federation of Animal Science Societies (FASS, 2010) guidelines. Steers 

were fed in seven groups with two feeding protocols. Three groups were fed using a slick bunk 

protocol (group 1, n = 119; group 2, n = 115; group 3, n = 120) and four groups had ad libitum 

access to feed (group 4, n = 105; group 5, n = 123; group 6, n = 126; group 7 n = 122). Within 

group, steers were blocked by weight (heavy and light) then randomly assigned to one of four 

pens. Each pen held approximately 30 animals. Each steer was implanted with Compudose 

(Elanco Animal Health, Greenfield, IN), an implant containing estradiol 17ß (E2 ß), per facility 

protocol.  

While on test, each group received a mixed ration of approximately 15% cracked corn, 

51.36% wet corn sweet bran, 28.44% prairie hay, and 5.20% mineral supplement. The rations 

were analyzed by Dairy One, Inc. (Ithaca, New York) for percent dry matter and gross energy 

estimates. The quality of ingredients differed slightly for each group which led to variations in 

the gross energy values. The gross energy of the diet was 18.99, 19.40, 18.26, 18.89, 18.82, 

18.68, and 18.91 megajoule (MJ) per kilogram dry matter (DM) for groups 1 through 7, 

respectively. 

All animals were allowed a 21-d acclimation period followed by a 70-d feed intake trial 

period as outlined in the Beef Improvement Federation guidelines (BIF, 2016). Feed intake was 
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measured using an Insentec system (Hokofarm Group, Netherlands). The system consisted of 6 

feed bunks and 1 water bunk placed under shade in each pen. Body weights were measured 

every 14 d during the 70-d trial period. 

Phenotypes were filtered using the procedures outlined in Allwardt et al. (2017). Briefly, 

start and end weights were filtered based on bunk volume and system settings. Body weight was 

filtered for appropriateness by assuming that animals could gain or lose a maximum of 50 

kilograms between weighing days. Methane traits were only calculated for animals with average 

daily feed intake that passed these quality control filters. 

 Phenotypes 

 Average daily gain (ADG) was found by regressing time on the body weight 

measurements of each animal to account for differences in rumen fill. Mid-test body weight was 

calculated for each steer by multiplying each animal’s ADG by 35 then adding the intercept from 

the regression analysis. 

Methane emissions were predicted for each animal using three different methane 

prediction models. All models selected for use in this study were chosen for a multitude of 

reasons: 1) all utilize feed intake in some way, a trait that was consistently measured across 

groups, 2) all have performed well when evaluated against observed methane datasets (Ellis et 

al., 2007; Ellis et al., 2009; Kebreab et al., 2008), and 3) all are commonly used throughout 

methane prediction literature (de Haas et al. 2011, Pickering et al., 2015, Hayes et al., 2016). 

The first methane prediction trait was predicted using the model outlined in Ellis (Ellis et al., 

2007) and detailed here: 

𝐸𝑀𝑃𝑖 =
[3.272  + ( 0.736 ∗ 𝐷𝑀𝐼𝑖) ]

0.05565
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where EMPi is the average daily methane emission of animal i in grams from the Ellis et al. 

(2007) equation and DMIi is average daily dry matter intake of animal i in kilograms. Ellis et al. 

(2007) used a dataset of observed methane measurements from 172 trials (83 beef and 89 dairy) 

to create 32 original methane prediction equations. Of those 32 equations, 14 were trained on the 

beef data, 8 were trained the on dairy data, and 10 were trained on the combined data. The 

authors then tested the 32 methane prediction equations against each other and several extant 

equations to determine which model was the most accurate for each dataset. This equation had 

the lowest error of all the equations when evaluating the combined dataset (Ellis et al., 2007). It 

was chosen for inclusion because the diet formulation of the steers in this study, a major factor in 

methane production, most closely aligned with the average diet composition in the combined 

dataset of Ellis et al. (2007). 

Second, methane production was predicted with the first nonlinear equation from Mills et 

al. (2003) as follows: 

 𝑀𝑀𝑃𝑖 =  
56.27 −  (56.27 ∗  e−0.028∗𝐷𝑀𝐼𝑖)

0.05565
 

where MMPi is the average daily methane emission of animal i in grams from the Mills et al. 

(2003) equation and DMIi is average daily dry matter intake of animal i in kilograms. Most 

methane equations are linear regressions (Ellis et al., 2007), and thus as the predictor variable 

(often DMI) continues to increase as the predicted methane production continues to increase. 

However, Mills et al. (2003) reasoned that a nonlinear, diminishing returns relationship between 

intake and methane production may be more biologically appropriate. This equation was chosen 

to be included in this study due to its nonlinear nature. It is worth noting that Mills et al. (2003) 

trained and evaluated this model on a dairy cattle dataset, and it was not tested in beef cattle data. 
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By applying it to a beef dataset as in this study, it is assumed that there are no differences in rate 

of methane production between beef and dairy animals. 

Finally, methane production was also predicted using the IPCC Tier 2 (IPCC, 2019) 

equations as follows: 

𝐼𝑀𝑃𝑖𝑗 =  
𝐺𝐸𝑗 ∗ (

6.3
100) ∗ 𝐷𝑀𝐼𝑖

0.05565
 

where IMPij is the average daily methane emission in grams of animal i consuming ration j as 

calculated by the IPCC (2019) equation, GE is the gross energy of ration j in MJ per kilogram, 

DMIi is the average daily dry matter intake of animal i. The International Panel on Climate 

Change (IPCC) is the intergovernmental body tasked with assessing the science concerning 

anthropogenic climate change, of which ruminant emissions are a part. The IPCC has created 

three models used for estimating enteric methane production. Tier 2 (IPCC, 2019) was chosen 

for this study as it is more accurate than Tier 1 while Tier 3 required input variables not gathered 

during the course of the trial. 

 Genotypes 

Two tubes per animal containing 8.5 milliliters of blood were drawn on days when 

weights were collected during the feeding period in vacutainer tubes containing 1.5 mL of the 

anticoagulant citrate dextrose. Samples of DNA were extracted using a 

phenol:chloroform:isoamyl alcohol extraction and ethanol precipitation. The DNA samples were 

sent to GeneSeek (Lincoln, NE) for genotyping on the GeneSeek Genomic Profiler genotyping 

array (GGP 150K). Thresholds for quality control were set so that that SNP with minor allele 

frequency less than 0.05 and SNP and animals with call rates less than 0.90 were removed from 

the analysis. After quality control, 782 animals and 124,100 SNP were used in the analysis. 
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 Statistical Analysis 

For statistical analysis, data from all groups was included. All analyses were performed 

with R (R Core Team, 2020), with the exception of the genetic evaluation. The minimum, mean, 

maximum, standard deviation for each trait, and Pearson and Spearman correlations between the 

traits were calculated with the “stats” package in R (R Core Team, 2020). The “stats” package in 

R (R Core Team, 2020) was also used to determine differences (P < 0.05) between the trait 

means with a two-tailed t-test. 

Genetic analyses were conducted using genomic best linear unbiased prediction 

(GBLUP) methodology (Aguilar et al., 2010; Christensen and Lund 2010) where all relationships 

were defined solely using genomic data. Genetic relationships were determined using the 

genomic relationship matrix technique described in VanRaden (2008) and constructed as 

follows: 

𝑮 =  
𝒁𝒁′

2 ∑ 𝑝𝑖(1 − 𝑝𝑖)
 

where G is the genomic relationship matrix and Z is a matrix generated by subtracting P (allele 

frequencies, pi, expressed as a difference from 0.5) from M (a matrix of markers each individual 

inherited). 

The three predicted methane traits would not converge in a multivariate model because of 

the extremely high correlations between them. Therefore, variance components and heritabilities 

for each trait were estimated using an average information restricted maximum likelihood 

(AIREML) algorithm in the BLUPF90 software package (Misztal et al., 2014) using the 

following univariate animal model: 

[𝒚𝑖] = [𝑿𝑖𝒃𝑖] + [𝒁𝑖𝒖𝑖] + [𝒆𝑖] 
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where y is a vector of phenotypes for trait i, b is a vector of fixed effects (group) and covariates 

(midtest weight) for trait i, X is an incidence matrix relating phenotypes to the fixed effects and 

covariates in b for trait i, u is a vector of additive direct genetic effects for trait i, Z is an 

incidence matrix relating phenotypes to the additive direct genetic effects in u for trait i, and e is 

a vector of random residuals for trait i. All the predicted methane equations chosen for this study 

are functions of feed intake (DMI or gross energy intake). Body weight and DMI have a strong, 

positive correlation (Martin et al., 1955). Therefore, to account for differences in predicted 

methane production caused by differences in body weight, mid-test weight was added as a 

covariate to the animal model. 

The univariate animal model was used to calculate each animal’s estimated breeding 

value (EBV) and standard error of prediction for each trait utilizing the BLUPF90 suite of 

programs. The standard error of prediction for each animal for each trait was squared to calculate 

the prediction error variance. The prediction error variance for each EBV was then used to 

estimate the accuracy of the EBV in R (R Core Team, 2020). The following accuracy equation 

defined in the Beef Improvement Federation Guidelines (BIF, 2020) was used: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐵𝐼𝐹 = 1 − (√
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
) 

Further, classical animal breeder accuracy was also calculated using the following conversion 

equation from the Beef Improvement Federation Guidelines (BIF, 2020): 

𝑟𝐸𝐵𝑉,𝐵𝑉 = √1 − (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐵𝐼𝐹)2 

where rEBV,BV is the correlation between the estimated breeding value and the true breeding 

value. Pearson and Spearman correlations between the EBV for each trait were calculated using 

the “stats” R (R Core Team, 2020). 



84 

 A GWAS was conducted for each trait using the postGSf90 function in the BLUPF90 

suite of programs (Misztal et al., 2014) in combination with the univariate animal model 

employed for the variance component estimation and EBV calculations. The P-values of each 

SNP were matched to the ARS 1.2 SNP map provided by Neogen (Lincoln, NE) for the GGP 

150k genotyping chip. Manhattan plots were then created using the qqman package in R (Turner, 

2018). The cattle ARS 1.2 assembly (Rosen et al., 2020) was used in combination with JBrowse 

(Buels et al., 2016) to search for possible candidate genes. Candidate genes were determined to 

be any genes with functions possibly related to predicted methane production within 250 

kilobases upstream or downstream of the SNP of interest. A range of 250 kilobases was chosen 

to account for moderate linkage disequilibrium (McKay et al., 2007). The UniProt Consortium 

database (2021) was used to investigate functionality of candidate genes. In addition, the cattle 

QTL database (Hu et al., 2019) was used to determine if any SNP close to the significance 

threshold in this study have also been associated with other traits in previous literature 

 Results and Discussion 

 Summary Statistics 

The summary statistics for each methane production trait are listed in Table 2.1. All traits 

had significantly different means (P < 0.001). This has been observed in previous literature as 

Ellis et al. (2007), Ellis et al. (2009), and van Lingen et al. (2019) have all reported differences in 

predicted methane estimates when applying multiple prediction models to the same dataset. The 

standard deviation for EMP was much lower than that of the other two traits. This is because the 

prediction models are formulated in such way that the change in grams of methane result ing 

from a one-unit change in DMI for the equation from Ellis et al. (2007) was less than the rate of 

change from the other equations until the equation from Mills et al. (2003) reaches 28 kilograms 
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of DMI. In other words, the difference in methane production between an animal with a DMI of 

10 kilograms and an animal with a DMI of 11 kilograms is not as great for the Ellis et al. (2007) 

equation as it was for the other equations. This formulation restrained the predicted methane 

production of the animals in this dataset to a narrower margin, and consequently a smaller 

standard deviation, than the other two equations. As previously stated, the equation from Mills et 

al. (2003) was chosen for inclusion because a nonlinear association between methane production 

and intake was thought to be more biologically appropriate as it would be unlikely for methane 

production to continue to increase at the same rate as DMI increases. In short, the Mill et al. 

(2003) equation was intended to limit the maximum methane predicted. Therefore, it is 

interesting to note that MMP had the greatest mean and maximum of all the traits. The 

aforementioned relative rate of increase in predicted methane from one additional unit of DMI at 

the levels of DMI seen in this data is much greater for the Mills et al. (2003) equation compared 

the equations detailed by Ellis et al. (2007) and IPCC (2019). Further, the Mills et al. (2003) 

equation was trained on feed intake observations in mature dairy cattle. The coefficients detailed 

in the model may have been accurate for the high DMI observed in dairy cattle, but the model 

may not perform as well when data from lower intake beef animals. This relatively poor 

performance was demonstrated by the Mills et al. (2003) model’s high root mean square 

prediction error when attempting to predict the observed methane production of a beef dataset 

(Ellis et al., 2007).  

The Pearson phenotypic correlations between all three traits were above 0.99 because 

each trait was derived from feed intake (Table 2.2). The high Pearson correlations indicate the 

values themselves behaved similarly, even though the actual predicted methane measurements 

differed.  
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The Spearman correlation for EMP and MMP was 1, indicating these traits ranked 

animals the exactly the same. The Spearman correlations between EMP and IMP and between 

IMP and MMP were also very high at 0.99. High Spearman coefficients indicate the animals’ 

phenotypes ranked similarly regardless of trait. 

 Heritability 

The genetic variance estimates for each trait are reported in Table 2.3. The heritabilities 

were 0.71 ± 0.11, 0.74 ± 0.11, and 0.70 ± 0.11 for EMP, MMP, and IMP, respectively. In 

comparison, Brito et al. (2018) estimated the heritability of predicted methane in cattle to be 0.26 

± 0.02. Brito et al. (2018) performed a meta-analysis of methane heritability estimates from 18 

studies. Of those 18 studies, however, only 8 used a prediction method to obtain methane 

phenotypes. Further, the majority of the 8 predicted methane studies were conducted in dairy 

cattle. Of all the literature compiled by Brito et al. (2018), only one study reported the 

heritability of predicted methane in beef cattle, Sobrinho et al. (2015). The authors of Sobrinho et 

al. (2015) used three different equations to estimate predicted methane for 955 Nellore cattle. 

None of the equations overlapped between and this study and Sobrinho et al. (2015), however, 

body weight was also fitted as a covariate in the genetic analysis for both. The heritability of 

predicted methane was 0.32 ± 0.07, for all three prediction models used. Another study that 

estimated the heritability of predicted methane traits in beef cattle was Uetmoto et al. (2020a). 

The authors of Uemoto et al. (2020a) utilized two methane prediction equations. One was 

developed by Uemoto et al. (2020b) for cattle on high concentrate diets and the other from 

Shibata et al. (1993) which has been adopted for national greenhouse gas evaluations in Japan. 

Uemoto et al. (2020a) calculated heritabilities of 0.54 ± 0.05 of 0.56 ± 0.05 for predicted 

methane emission of Japanese Black steers using the equations of Uemoto et al. (2020b) and 
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Shibata et al. (1993), respectively. The heritabilities reported for predicted methane traits in this 

study are greater than the heritabilities reported for predicted methane traits in Brito et al. (2018), 

Sobrinho et al. (2015), or Uemoto et al. (2020a).  

Alternatively, the traits presented in this study can be viewed as functions of average 

daily DMI in a population of growing animals. From that perspective, herititablies of 0.71 ± 

0.11, 0.74 ± 0.11, and 0.70 ± 0.11 are within literature estimates. For example, Ahlberg et al. 

(2019), reported the heritability of DMI to be 0.67 (± 0.04). This is especially pertinent since the 

animals in Ahlberg et al. (2019) had substantial overlap with the animals analyzed in this study 

(578 animals in common with an addition 252 animals in this study). Further, Koch et al. (1963) 

and Archer et al. (1997) estimated the heritability of DMI for cohorts of Angus, Hereford, and 

Shorthorn growing animals to be 0.64 (± 0.12) and 0.62 (± 0.12), respectively. More recently, 

Freetly et al. (2020) calculated 0.82 (± 0.12) as the heritability of for average daily dry matter in 

growing heifers.  

 Estimated Breeding Values 

Estimated breeding values were generated for each steer and each trait (Table 2.4). As 

expected, the mean EBV for each trait was approximately zero. Generally, these estimates follow 

the same pattern as the summary statistics for the phenotypic traits. Ellis methane production has 

the smallest range of values and the correspondingly lowest standard deviation. Curiously, while 

both MMP and IMP had a greater range than EMP, IMP had a greater standard deviation, where 

the standard deviations for EMP and MMP were relatively similar. The difference may lie in the 

fact that IMP has a slightly larger phenotypic range than MMP or perhaps it is because the IPCC 

et al. (2019) methane prediction equation was different for each group due to the inclusion of the 
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group-specific GE for the ration. This latter hypothesis would be supported by the relatively 

large residual variance of IMP as seen in Table 2.3.  

 Similar to the phenotypes of the traits, the EBV all share a very high Spearman 

correlation of 0.99. This supports the premise that any of the predicted methane traits described 

in this study could be utilized for selection and the animals would rank almost exactly the same.  

 When discussing the accuracy, it is important to remember the accuracy is not how 

accurate the models used were in predicting actual methane production of the animals. Instead, 

accuracy is defined here as the correlation between the EBV and the true breeding value of any 

given individual. The BIF accuracies for each trait are lower than the conventional accuracies 

because the BIF Guidelines (2020) utilize a more conservative estimate. Nonetheless, even with 

the more stringent calculation, the BIF accuracies for the EMP, MMP, and IMP are moderately 

high. In addition, the conventional breeder’s accuracies are very high. The high accuracies of this 

traits are to be expected due to the correspondingly high heritability estimates because the higher 

the heritability, the more an individual’s own phenotype can be relied on as an indicator for that 

individual’s true breeding value. In fact, the mean accuracy for IMP and MMP are slightly larger 

than the square root of the heritability estimates for those traits, as would be expected when some 

of the animals had relatives with phenotypes in the data. 

 Selection 

The predicted methane production traits examined in this study and in other literature 

have been shown to have genetic variation between animals (Table 2.3, de Hass et al., 2011, 

Pickering et al., 2015), therefore reducing predicted methane production via selection is possible. 

The high heritabilities of the three methane prediction traits (0.70 - 0.74) indicate genetic 

progress could be made relatively quickly because an animal’s own phenotype would be a good 
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indicator of its offsprings’ phenotype. Further, any of the three traits examined would be equally 

effective because the Spearman correlations of the EBV for each trait were 0.99. Nonetheless, in 

a national genetic evaluation, the ideal setup would be for each animal to have predicted methane 

production estimated from the same equation. From the equations presented here, the Ellis et al. 

(2007) equation would likely be the best choice for a national beef evaluation because it would 

be the most robust to animals fed varying diets. In addition, the GWAS demonstrates that all the 

methane prediction traits are associated with the same genetic loci and candidate genes.  

There are drawbacks to selecting on predicted methane traits due to their high 

correlations with DMI, body weight, and gain. Any direct selection to decrease predicted 

methane traits would also decrease those associated traits. Therefore, it would be most 

advantageous to account for those correlations by including predicted methane production in a 

properly weighted selection index with DMI, body weight, and gain. Not only would a selection 

index account for the correlations between predicted methane production and economically 

important traits, but it would also give a weight to predicted methane production to ensure it was 

not over-emphasized. 

 SNP Effects 

Observed methane has been shown to have high phenotypic (0.71 ± 0.02) and genetic 

(0.84 ± 0.06) correlations with DMI (Donoghue et al., 2016). The correlation between DMI and 

predicted methane production, often a function of DMI, are even higher. Pickering et al. (2015) 

and de Haas et al. (2011) reported a phenotypic correlation of 0.99 for DMI and predicted 

methane while Pickering et al. (2015) and Uemoto (2020a) both reported 0.999 genetic 

correlation between the two traits. The Pearson correlations between average daily DMI and each 

predicted methane trait used in this analysis ranged from 0.99 to 1. Therefore, it is important to 
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understand whether any significant SNP association found for predicted methane traits are also 

significant for DMI. 

 The threshold for significance for SNP was set at 5 on a -log10 P-value scale. As shown in 

Figures 2.1 to 2.3, no SNP exceeded this threshold, likely because of the small sample size. 

Interestingly, IMP and MMP resulted in SNP much closer to the significance threshold than 

EMP. Table 2.5 details the 25 SNP closest to the significance threshold for each trait. Both IMP 

and IMP had the same top 25 SNP, while MMP identified rs110629540 on Bos taurus autosome 

(BTA) 9 rather than rs110629540 on BTA 14.  

Two SNP close to the threshold for significance in all traits have been associated with 

other traits in previous literature. One SNP on BTA 3, rs110220315, was significantly associated 

with vitamin D intake in beef cattle by Casas et al. (2013). The authors reported rs110220315 to 

be within 10,000 bases of CYP2J2, a gene related to the bioactivation of vitamin D. However, 

the authors of Casas et al. (2013) utilized the University of Maryland version 3 assembly which 

placed rs110220315 approximately 600,000 bases downstream of its ARS 1.2 assembly locus. 

The difference in location for rs110220315 between the assemblies used by Casas et al. (2013) 

and this study makes it difficult to determine if there is a relationship between vitamin D intake 

and predicted methane production. The other SNP previously identified in literature is 

rs133609351 on BTA 20. This SNP was associated with milk yield, milk fat percentage, and 

milk protein percentage by Jiang et al. (2019). However, Jiang et al (2019) employed the UMD 

3.1 cattle genome assembly which positioned rs133609351 nearly 23,000 bases upstream of the 

locus reported in the ARS 1.2 assembly. Nonetheless, a 23,000 base pair range still falls within 

the range of LD (McKay, 2007) and milk yield, like predicted methane production, is heavily 

driven by DMI (Brown et al., 1977). 
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In addition, three SNP in the top 25 SNP for all three methane prediction traits, were 

located within 250 kilobases of other loci that had been previously associated with other traits. 

One such SNP was rs109043582 on BTA 3, which is located in the same gene (DAB1) as two 

SNP associated with rump width by Cole et al. (2011) and another associated with metabolic 

body weight by Seabury et al. (2017). Both rump width and metabolic body weight may be 

related to predicted methane as larger animals tend to eat more and are therefore expected to 

produce more methane than smaller animals. Similarly, rs41652941 on BTA 4 was near two SNP 

associated with body weight gain (Snelling et al., 2010). In addition, rs134083327 on BTA 12 

was also in close proximity to a SNP identified by Seabury et al. (2017) as associated with ADG. 

Body weight and ADG are both highly correlated with DMI and, as a function of DMI, predicted 

methane production. 

There were 14 candidate genes identified for each trait because several top SNP clustered 

around the same candidate gene or were in a region with no identified genes. It is worth noting 

that of the 14 candidate genes for EMP and IMP, 13 were also candidate genes for MMP. 

Generally, most candidate genes shared between all three traits can be grouped by functionality. 

The largest functional group were related to collagen. For example, COL1A1, DCN, and P4HA2 

are a component of collagen, bind collagen, and play a role in collagen fibril organization, 

respectively (The UniProt Consortium, 2021). Collagen is connective tissue and the most 

abundant protein in animals (Shoulders and Raines, 2009). High turnover rate of collagen has 

been linked with accelerated growth rate in cattle (Wu et al., 1981) and lambs (Sylvestre et al., 

2002). Feed intake (DMI) shares a strong phenotypic (0.60) and genetic (0.87 ± 0.09) correlation 

with growth (ADG) (Nkrumah, et al., 2007). Further, predicted methane traits are functions of 
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DMI; therefore, animals with genetic variants enabling high collagen turnover may exhibit 

accelerated growth and a subsequentially greater DMI.  

Another group of candidate genes with similar function were associated with 

microtubules. Both HOOK1 and DAB1 are linked to microtubule binding, while KIF13A depends 

on microtubules for intracellular transport. Microtubules provide structure to the cytoskeleton 

and differences in genes controlling their arrangement may imply differences in cell energy 

efficiency. Two other functional groups were apparent, one concerned with ubiquitin ligase 

(FBXO4, FBXO5, and MARCH3) and the other linked to regulating the binding of RNA 

polymerase II for DNA transcription (ELK3 and ZNF93). The function of each of these groups is 

very broad making it difficult to determine their specific potential role in predicted methane 

production. Ubiquitin is involved in post-translational modifications of several different proteins 

while all DNA that expresses proteins needs to be transcribed (The UniProt Consortium, 2021). 

Interestingly, ELK3 was identified as a possible regulator for genes related to feed conversion 

ratio and feed efficiency ratio traits in de Lima et al. (2020). 

There were a few candidate genes that did not fall into any general group. For example, 

TRIL is related to immunity and inflammation (The UniProt Consortium, 2021) which is not 

uncommon as genes related to the immune system have been previously associated with 

divergent weight gain and feed intake (Lindholm-Perry et al., 2016a-b). Curiously though, TRIL 

in has also been suggested to have a role in leptin sensitivity (Moura-Assis et al., in press). The 

inhibition of TRIL in certain neurons may lead to a reduction of inflammation in the 

hypothalamus, which, in turn, may also lead to an increased sensitivity to hypothalamic leptin. 

Because leptin is a hormone related to feed intake (Nkrumah et al., 2004), it is possible that a 

slight increase in TRIL may lead to reduced leptin sensitivity and increased feed intake. Another 
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gene close to significance for all three traits, DDC, is involved in the transformation of L-dopa to 

the hormone dopamine (The UniProt Consortium, 2021). The connection between DDC and 

predicted methane production is unclear; however, it was suggested to be differentially expressed 

in low and high residual feed intake animals, along with COL1A1 and KIF21A (related to 

KIF13A) by Chen et al. (2011). One SNP (rs43076526 on BTA7) was the closet to significance 

for all predicted methane traits and had two potential candidate genes nearby. The first, 

MARCH3, has already been discussed while the second was ALDH7A1. The latter gene produces 

a protein that protects the cell from oxidative stress (The UniProt Consortium, 2021). Moreover, 

ALDH7A1 may also be linked to collagen turnover because oxidative stress may decrease 

collagen synthesis in some muscle groups (Archile-Contreras and Purslow, 2011). Thus far, all 

candidate genes discussed have been shared by all three traits, however, GDF6 was only in the 

top 25 SNP of IMP. This gene is involved in the formation of the skeleton (The UniProt 

Consortium, 2021) and was suggested as a candidate gene for ADG, weight, and other growth 

parameters by Zhang et al. (2018). 

 Conclusion 

 All three predicted methane traits, as determined by equations from Ellis et al. (2007), 

Mills et al. (2003), and IPCC (2019), produced similar estimates of methane production. All 

three traits demonstrated genetic variation, which indicates genetic selection on predicted 

methane production is possible. Moreover, all predicted methane traits had a heritabilities 

ranging from 0.70 to 0.74, suggesting genetic progress could be made relatively quickly. None of 

the 124,100 SNP investigated reached the threshold for significance; however, the 25 SNP 

closest to that threshold were investigated and found to be very similar between all three traits. 

Candidate genes 250 kilobases upstream or downstream of those SNP were identified and 
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assessed for functionality. Several candidate genes grouped together in a functional group related 

to collagen. Prior literature suggests collagen turnover is related to growth rate and feed intake. 

Given the predicted methane traits used in this study are functions of feed intake, the relationship 

between predicted methane production and collagen warrants further investigation.   
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Figure 2.1 

Manhattan plot showing result of genome-wide association mapping for methane production 

predicted by Ellis et al., 2007 
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Figure 2.2 

Manhattan plot showing result of genome-wide association mapping for methane production 

predicted by Mills et al., 2003 with a significance threshold of 5.0 
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Figure 2.3 

Manhattan plot showing result of genome-wide association mapping for methane production 

predicted by IPCC, 2019 with a significance threshold of 5.0 
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Table 2.1 

Summary statistics of average daily methane production (g methane/d) for each methane 

estimation equation 

 Mean Minimum Maximum 
Standard 

Deviation 

EMP 200.9a 138.2 272.7 19.7 

MMP 261.8b 156.4 368.2 31.3 

IMP 229.0c 131.8 344.5 32.0 

Means with different superscripts are statistically different 

EMP is methane predicted using an equation adapted from Ellis et al. (2007) 

MMP is methane predicted using an equation adapted from Mills et al. (2003) 

IMP is methane predicted using an equation adapted from IPCC (2019) 
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Table 2.2 

Phenotypic correlations (Pearson above the diagonal, Spearman below the diagonal) between 

methane prediction traits 

 EMP MMP IMP 

EMP  0.99* 0.99* 

MMP 1*  0.99* 

IMP 0.99* 0.99*  

*P < 0.01 

EMP is methane predicted using an equation adapted from Ellis et al. (2007)  

MMP is methane predicted using an equation adapted from Mills et al. (2003) 

IMP is methane predicted using an equation adapted from IPCC (2019) 
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Table 2.3 

Variance components (standard errors) for each predicted methane trait  

 Genetic Variance Residual Variance Heritability 

EMP 150.57 (27.0) 62.4 (21.9) 0.71 (0.11) 

MMP 401.4 (69.2) 143.8 (55.6) 0.74 (0.11) 

IMP 390.9 (71.0) 165.1 (57.5) 0.70 (0.11) 

EMP is methane predicted using an equation adapted from Ellis et al. (2007)  

MMP is methane predicted using an equation adapted from Mills et al. (2003) 

IMP is methane predicted using an equation adapted from IPCC (2019) 
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Table 2.4 

Summary statistics and accuracies of estimated breeding values for average daily methane 

production (g methane/d) for each methane estimation equation 

 Mean Minimum Maximum 
Standard 

Deviation 

BIF 

accuracy 

Classical 

Animal 

Breeding 

Accuracy 

EMP 0.003 -38.7 30.8 11.0 0.46 0.84 

MMP -0.01 -48.8 34.8 13.5 0.51 0.87 

IMP 0.004 -63.9 50.4 17.7 0.46 0.84 

EMP is methane predicted using an equation adapted from Ellis et al. (2007)  

MMP is methane predicted using an equation adapted from Mills et al. (2003) 

IMP is methane predicted using an equation adapted from IPCC (2019) 
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Table 2.5 

Single nucleotide polymorphisms (SNP) most closely associated with predicted methane 

production traits 

SNP ID 
Chromosome: 

Position 

-log10 

P-value 

Candidate 

Gene 
Candidate Gene Function 

rs110220315 3: 86090597 1.31 HOOK1 Microtubule binding 

rs110058749 3: 88164394 1.37 DAB1 Microtubule binding 

rs41652941 4: 67207224 1.24 TRIL Lipopolysaccharide binding 

rs110309656 5: 21475995 1.26 DCN Collagen binding 

rs109244569 5: 21516232 1.42 DCN Collagen binding 

rs137645685 5: 60495101 1.34 ELK3 

DNA-binding transcription factor 

activity, RNA polymerase II 

specific 

rs43497423 7: 3522788 1.33 ZNF93 

DNA-binding transcription factor 

activity, RNA polymerase II 

specific 

rs43508672 7: 22191462 1.24 P4HA2 Collagen fibril organization 

rs43508669 7: 22195580 1.24 P4HA2 Collagen fibril organization 

rs43508667 7: 22197623 1.48 P4HA2 Collagen fibril organization 

rs29023390 7: 22202959 1.35 P4HA2 Collagen fibril organization 

rs43508661 7: 22204260 1.25 P4HA2 Collagen fibril organization 

rs43141114 7: 22268814 1.35 P4HA2 Collagen fibril organization 

rs43509246 7: 22328341 1.51 P4HA2 Collagen fibril organization 

rs43076526* 7: 27252564 1.82 
MARCH3 E3 ubiquitin protein ligase 

ALDH7A1 Oxidoreductase 

rs41621748 8: 56479469 1.25 
No identified 

genes 
 

rs109044910 9: 18387990 1.21 
LOC 

101903114 
Non-coding RNA 

rs43605790╪ 9: 89807465 1.27 FBXO5 Negative regulation of ubiquitin 
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protein ligase; Microtubule 

polymerization 

rs134083327 12: 10040464 1.28 
No identified 

genes 
 

rs110629540¶ 14: 68002844 2.56 GDF6 Skeletal formation 

rs110393484 16: 37286950 1.23 F5 Blood coagulation 

rs134127572 19: 36424186 1.39 COL1A1 Component of group I collagen 

rs133609351 20: 32437127 1.23 FBXO4 

Substrate recognition component of 

SCF ubiquitin protein ligase 

complex 

rs133044483 23: 39502283 1.22 KIF13A 
Microtubule dependent intracellular 

transport 

rs136158794 23: 39522823 1.2 KIF13A 
Microtubule dependent intracellular 

transport 

rs133940625 24: 53068328 1.26 DDC L-dopa decarboxylase activity 

*Multiple candidate genes 
╪SNP in top 25 for Ellis predicted methane and IPCC predicted methane only 
¶SNP in the top 25 for Mills predicted methane only 

Possible candidate genes within 250 kilobases of the SNP 

 Candidate gene functions according to The UniProt Consortium. 
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Chapter 3 - Environmental Sustainability of Simulated Cow-Calf 

Operations in the Great Plains 

 Abstract 

Environmental sustainability is a key component to overall sustainability of the beef 

industry. Simulation provides the opportunity to assess the environmental impact of current 

practices and evaluate the outcomes of alternative strategies. The objective of this project was to 

use a stochastic model to simulate a 100 head cow-calf operation to determine land, water, and 

fertilizer requirements as well as methane emissions for various regional beef production 

scenarios. The simulations were parameterized to replicate 74 different land regions in the Great 

Plains and six varying genetic potentials for mature body weight and peak lactation for cattle 

within those regions for a total of 444 unique scenarios. Further, the resource inputs of diets 

including corn products were compared to diets including grain sorghum products in regions 

where grains are often fed by cow-calf producers. The average amount of land use for each herd 

was 711 hectares when corn products were used and 714 hectares when sorghum products were 

used. Corn-based diets required an average of 30,588,948 liters of blue water (irrigation and 

drinking water) per herd per year, while sorghum-based diets required an average of 42,776,720 

liters per herd per year. There were negligible differences in fertilizer estimates between corn 

and sorghum-based diets (26,532 and 26,523 kilograms of nitrogen per hectare, respectively). 

The average enteric methane production for all scenarios was 8,898 and 8,925 kilograms per 

herd per year for corn and sorghum-based diets, respectively. In general, large, high lactation 

cattle had the largest environmental footprint, whereas small, low lactation cattle had the 

smallest. Depending on the variable evaluated, the impact of body size and lactation potential 

varied in importance. However, animals with a higher lactation potential required more land to 
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grow feedstuffs regardless of size. For total land, blue water, fertilizer, and enteric methane 

production, however, heavier animals had a larger environmental impact than lighter animals 

with the same lactation potential. Small, high lactation animals had the smallest environmental 

impact when natural resource use was scaled by kilograms of calf weaned. 

 Introduction 

Sustainability in beef production has recently received a great deal of attention. Like all 

businesses, beef sustainability has three pillars: environmental, social, and economic. While all 

pillars are of equal importance, the environmental pillar has received the most scrutiny from the 

public. The most discussed aspect of the environmental pillar is the greenhouse gas (GHG) 

footprint of the beef industry; however, this pillar also encompasses the land, water, and fertilizer 

resources necessary for beef production. The technique for determining the environmental 

footprint of a product like beef, is known as a life cycle assessment (LCA). A LCA tracks the 

environment impact of a product from its manufacturing (including necessary inputs) through to 

its disposal. 

Performing a LCA of beef in the United States is a difficult task. This is partly because 

the resources used and the GHGs emitted are difficult to track and accurately measure. Further 

compounding the problem is the large scale of the United States beef industry and the variety of 

management and environmental conditions. The USDA reports there are over 93 million beef 

cattle in the United States as of January 1, 2021 (USDA NASS, 2021), and all are being raised in 

a diverse array of climate and management scenarios. Thus, one of the most robust and effective 

methods available to the scientific community to investigate the environment footprint of the 

beef industry is simulation. 
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Simulation is the act of using real world data and a variety of statistical models to predict 

or recreate the outcome of a system. For environmental sustainability of beef, this means using 

the real- world practices of beef cattle producers, coupled with natural phenomena like weather 

and the approximated nutrient requirements of cattle, their emissions, and the natural resources 

required in their upkeep. 

One of the first major studies to use a fully self-contained model was Rotz et al. (2013). 

Here the authors developed a tool, the Integrated Farm System Model (IFSM), to assess the 

environmental and economic sustainability of farming systems. The model was first applied to 

the Meat Animal Research Center (MARC), a facility with known feed and water use quantities 

and management practices, in order to determine accuracy of the predictions from the model. 

The model itself utilized crop production, weather, land resources, and cattle diets as inputs. In 

turn, the model simulated values for feed production, resource use, and GHG emissions. Over a 

24-year simulation, the production system at MARC produced an average of 10.9 (± 0.6) kg 

carbon dioxide equivalent per kilogram of body weight sold per year. Further, this system 

required an annual 26.5 (± 4.5) MJ of fossil fuel energy and 2790 (± 910) liters of irrigation 

water per kilogram of body weight sold. When compared to the real-world data, all of the 

simulated data was within 1% of the reported numbers. These results show that not only can 

simulation data be more easily gathered than real-world data, but simulations can also be 

extremely accurate.  

Before a simulation that captured the environmental impact of the beef industry could be 

created, data about real-world production practices needed to be gathered so the information 

input into the simulation would be accurate. Therefore, a series surveys were sent out to 

producers involved in all stages of raising beef (Asem-Hiablie, et al., 2015, Asem-Hiablie, et al., 
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2016, Asem-Hiablie, et al., 2017, Asem-Hiablie, et al., 2018a, Asem-Hiablie, et al., 2018b). Each 

publication reported the results of the survey from a different area of the United States. These 

surveys queried information about the cattle themselves (body weight, number of head), 

management practices (stocking rate, cow-to-bull ratio), and resources used (land, time, and 

machinery required). These surveys were then followed up with a representative number of farm 

visits to corroborate the general information gathered. 

All the survey information (Asem-Hiablie, et al., 2015, Asem-Hiablie, et al., 2016, Asem-

Hiablie, et al., 2017, Asem-Hiablie, et al., 2018a, and Asem-Hiablie, et al., 2018b), along with 

other information like weather and soil type, were used as inputs in the simulation performed by 

Rotz et al. (2019). The IFSM was used for a farm-gate LCA, or a measurement of the 

environmental footprint of animals from birth until they leave the feedlot. That information was 

used in combination with packing, processing, distribution, retail, and consumption data to 

calculate a baseline measurement for environmental sustainability in the United States. The 

average annual GHG emission was found to be 243 (± 26) teragrams of carbon dioxide 

equivalent per kilogram of carcass weight. In addition, the average annual blue water 

consumption was 23.2 (± 3.5) teraliters per kilogram of carcass weight. Rotz et al. (2019) 

demonstrated the powerful ability of simulation. Without simulation, estimating GHG emission 

and water footprint across an area as large as the United States with any reliability would have 

been an unwieldy endeavor. 

With the vast number of beef cattle and the variety of different management practices 

used across the US, the task of cataloging and calculating natural resources going into the beef 

production system and the resulting GHG emissions is a daunting task. Luckily, the system of 

beef production lends itself to simulation, and simulation has been proven to be an accurate way 
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to assess resource use in beef production. While simulation is used extensively in LCAs, it can 

also be utilized in a similar manner to answer targeted research questions, about the 

environmental impact of beef production as outlined below. 

 Materials and Methods 

 Simulation Model Details and Static Parameters 

This study utilized a stochastic simulation model developed to simulate beef productions 

systems while accounting for the natural variation in production that occurs due to random 

change, management decisions, and environmental factors. A full description of the mechanics 

and assumptions of the cow-calf simulation model (CCSM) used can be found in in Aherin 

(2020). Briefly, a stochastic model was used to simulate the occurrences of incidences like birth, 

weaning, morbidity, and culling seen in real-world production systems. The model captures the 

variation and complex feedback structure inherent in a beef production system by drawing from 

a distribution of production outcomes (parameterized from literature estimates for these 

outcomes) and having the resulting most probable outcome for one or multiple events determine 

the distribution of outcomes for other events. For example, nutrition affects postpartum interval 

length, which in turn affects the chances of an individual animal being culled. Any number of 

years and iterations can be parameterized. For this study, a timeframe of 24 production years, 

modeled with data from1995 through 2018, and 25 iterations was set for each scenario. These 

parameters balanced run time with generating enough information to have a reasonable estimate 

for each scenario across a variety of conditions and outcomes. 

While each simulation had several variable inputs capturing the specifics of each 

scenario, most of the model’s assumptions remained static. The model begins by assuming each 

herd is a 100- head straightbred cow-calf operation comprised of Angus cattle. Each herd is 
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assumed to retain replacement heifers bred to purebred Angus bulls. Cows are exposed for 

breeding for 63 days each year, from May 1 to July 3. The model assumed that each herd is on 

pasture from May 1 to October 31. The model took genetic factors like body weight and lactation 

potential, as well as environmental factors like weather into account to estimate the net energy 

requirement of each animal each day. From May 1 to October 31, the model calculated how 

much forage was available for grazing and, using the net energy of the forage specified by the 

user, calculated how much forage each animal needed to consume every day to maintain a body 

condition score of 5. Each animal could eat up to 2.7% of their bodyweight per day. If the animal 

could not meet its needs on forage alone, it was assumed that the animal was supplemented until 

either its needs are met, or supplementation accounted for 20% of the animal’s daily intake. If 

the animal still could not consume enough net energy, it resulted in a loss of body condition and 

the odds of pregnancy and staying in the herd decreased. From November 1 to April 31 of the 

following year, the animals were assumed to be delivered a daily ration of hay and supplement to 

meet their nutritional needs. 

The model output a variety of information ranging from the birth date of each animal to 

cost of production. For the purposes of this study, the outputs of most interest were the dry 

matter weights of the forage, delivered ration, and supplementation diets of each year of each 

iteration of each scenario, in addition to the number of animals in each age class (replacement 

heifer, bred heifer, or mature cow) for each year in each iteration of each scenario. 

 Variable Inputs 

The Great Plains is a large region in the Central United States that is host to a large 

population of beef cows. For the purposes of this study, the Great Plains is defined as North 

Dakota, South Dakota, Nebraska, Kansas, Oklahoma, and Texas. These six states constitute a 
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vast area of land with a variety of different climates, management practices, and resources; 

therefore, further subdivision was necessary. Major Land Resource Areas (MLRAs) are areas 

that a have distinct pattern of climate, soil, and natural resources (NRCS, 2006). These MLRAs 

are the basic land regions for each scenario. Within the Great Plains, as defined for this study, 

there are 74 MLRAs (Figure 1). 

The CCSM used variables that changed as each scenario was parameterized. For this 

project, animal genetic potentials (body weight, lactation potential), management techniques 

(diet formulation, stocking rate, etc.), MLRAs, and environmental components (climate and 

forage resource composition) were altered to create 444 unique scenarios which were 

parameterized in the CCSM. 

 Animal and Stocking Rate Parameters 

The inputs parameterizing the animals were drawn from studies that describe the 

management practices of beef producers in various regions and were the same studies that 

provided the inputs for Rotz et al. (2019) (e.g., Asem-Hiablie, et al., 2015, Asem-Hiablie, et al., 

2016, Asem-Hiablie, et al., 2017, Asem-Hiablie, et al., 2018a, and Asem-Hiablie, et al., 2018b). 

The two papers used for this study detailed the Southern Plains (Asem-Hiablie et al., 2015) and 

the Northern Plains (Asem-Hiablie et al., 2016). Each study (Asem-Hiablie et al., 2015, Asem-

Hiablie et al., 2016) separates the region of interest into East, Central, and West in order to 

capture the management differences which occur as precipitation and forage resources change. 

Each MLRA was assigned to one of the regions described in either Asem-Hiablie et al. (2015) or 

Asem-Hiablie et al. (2016) These regions are the North East, North Central, North West, South 

East, South Central, or South West, and grouping was based on the geographic location of the 

MLRA. As seen in Table 3.1, each region has a unique average cow body weight and stocking 
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rate which was used a baseline for each scenario (Asem-Hiablie et al., 2015, Asem- Hiablie et 

al., 2016). The average cow body weight for each region was designated moderate body weight 

for the MLRAs in that region. Likewise, the average stocking rate of each region became the 

stocking rate associated with moderate-sized cows in each MLRA. Using the average cow body 

weight in each region as a baseline, the mature body weight of large cows was one standard 

deviation greater than the mature body weight of the moderate cattle if standard deviation 

information was available or 45.5 kg greater if no standard deviation of body weight was 

reported (Asem-Hiablie et al., 2015, Asem- Hiablie et al., 2016). Similarly, the mature body 

weight of small cows was one standard deviation less than the mature body weight of the 

moderate cows if standard deviation information was available or 45.5 kg less if no standard 

deviation of body weight was reported (Asem-Hiablie et al., 2015: Asem- Hiablie et al., 2016). 

The stocking rates for the large and small cattle were found by dividing the new body weight by 

the body weight of the moderate cow and multiplying that ratio by the stocking rate of the 

moderate cow. The body weights and stocking rates of replacement heifers and bred heifers were 

also defined. Body weight was set at 58% of mature cow body weight for replacement heifers 

(Larson, 2007) and 85% of mature cow body weight for bred heifers (Jurgens et al., 2012). 

Stocking rate was set for replacement and bred heifers as described above. Peak lactation 

potential was set at 11 kg (high) or 8 kg (low) as these values were slightly higher than average 

and slightly lower than average peak lactation yields, respectively (NRC, 2016). All possible 

pairwise combinations of these size and lactation potential values were utilized, which provided 

a combination of six genetic potentials simulated within each MLRA environment. 

Weaning weights for each genetic potential were estimated using a regression equation 

expressed mathematically below: 
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𝑊𝑊1  =  246 +  ( 0.1476 ∗  (𝑀𝑊𝑖  −  547.95)) 

where WW1 is the intermediate weaning weight 246 is the national average weaning weight of 

calves from beef production operations with between 50 and 199 animals (USDA, 2020), 0.1476 

is the change in kilograms of calf weaning weight per 1 kilogram change in mature cow 

bodyweight (Ziegler, 2020), MW is the average mature weight of the genetic potential i, and 

547.95 is the average mature bodyweight of cattle in all scenarios.  

The intermediate weaning weight was then adjusted for lactation potential using the 

equation below: 

𝑊𝑊2  =  𝑊𝑊1  +  (6.6 ∗  (𝐿𝑃 𝑖 −  9.8)) 

where WW2 is the approximated weaning weight fully adjusted for maternal genetic potential, 

6.6 is a regression coefficient drawn from King et al. (2020) which reported that adjusted-205 

day weaning weight increases by 6.6 kilograms for every 1 kilogram increase in lactation 

potential, LP is the peak lactation in kilograms for lactation potential i, and 9.8 is the average 

peak lactation of Angus cattle (Fraga, et al., 2013) used to scale the lactation potentials.  

 Forage Parameters 

Because cow-calf herds depend heavily on grazing forages for feedstuffs, the annual 

production and seasonal nutritional composition of the forages in each MLRA was calculated 

and is outlined in Table 3.2a-b. 

The Natural Resource Conservation Service (NRCS) provided estimates of annual forage 

production for intensively managed pasture ground and extensively managed rangeland within 

each MLRA (NRCS, personal communication, 2021). The NRCS also provided the area of each 

type of grazing land within each MLRA (NRCS, personal communication, 2021). Total annual 
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forage yield for each MLRA was calculated as the annual forage yield of pasture and rangeland 

and weighted by the respective relative percent area in each MLRA. 

It is important to note the CCSM only accepts the net energy maintenance and net energy gain 

estimates of forage as inputs, not specific forage types or diets. The user is required to calculate 

the composition of the forage resource and appropriately calibrate the net energy estimates. The 

net energy estimates for grazing land were determined by first obtaining plant community 

composition from each MLRA (EDIT, 2021). The forage community composition was then 

narrowed down to those grass or forb species whose yields contributed at least five percent of the 

total yield. Of those high-yield species, only species with literature estimates of chemical 

composition throughout several months were used to represent each MLRA (Appendix A.1). 

Because species were selected for inclusion based on the highest annual yield, the implied 

assumption is the forage species with largest annual production also made up the majority of the 

herd’s grazing diet. The percent composition for each species in each type of grazing land for 

each MLRA was found by dividing the mean annual production of each species by the sum of 

the production for all representative species in that type of gazing land in that MLRA. It is 

important to note that this process was only for estimating forage energy content of each MLRA 

and had no bearing on determining total forage yield. Next, a database of acid detergent fiber 

(ADF), total digestible nutrients (TDN), and or net energy estimates of over 40 species of grasses 

was compiled from literature. It included monthly data for the months of May through October 

(when the cattle were assumed to be on pasture). Chemical compositions were estimated for 

months with missing data using existing information as a basis for extrapolation. For example, 

the average ADF of two adjacent months was used if the ADF for a month between them was 

missing. The TDN was estimated by this equation from Adams et al. (1995): 
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𝑇𝐷𝑁𝑖𝑗 = 88.9 − (0.779 ∗ 𝐴𝐷𝐹𝑖𝑗) 

where TDN is percent total digestible nutrients of the ith forage species in the jth month and 

ADF is the acid detergent fiber of the ith forage species in the jth month. Net energy 

maintenance for each forage species for each month was calculated by the equation below 

(Lardy, 2018): 

𝑁𝐸𝑀𝑖𝑗  =  ((𝑇𝐷𝑁𝑖𝑗  ∗   0.01318)–  0.132) ∗  2.204 

where NEM is net energy maintenance in megacalories per kilogram of dry matter for the ith 

forage species in the jth month and TDN is percent total digestible nutrients of the ith forage 

species in the jth month. In addition, the TDN values were used to estimate net energy gain using 

this equation from Lardy, 2018: 

𝑁𝐸𝐺𝑖𝑗  =  ((𝑇𝐷𝑁𝑖𝑗  ∗   0.01318)–  0.459) ∗  2.204 

where NEg is net energy gain in megacalories per kilogram of dry matter for the ith forage 

species in the jth month and TDN is percent total digestible nutrients of the ith forage species in 

the jth month. Once net energy estimates for each species and month were established, those 

values were multiplied by the percent composition for each species to create the net energy 

estimates for pasture and for rangeland for each MLRA. The final net energy estimates for forage 

in each MLRA for the months of May through October were the sum of the net energy estimates 

for pasture and rangeland weighted by the percent of pasture and rangeland in each MLRA. The 

net energy estimates of forage for each MLRA for the months of November through April were 

set equal to the net energy estimate of October. This was because the cattle were assumed to be 

delivered feed from November through April and the forage net energy estimate for those 

months was arbitrary and not used by the model for any relevant output described herein. 

 Fed Diet Parameters 
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Cattle diets vary greatly depending on location and price. Therefore, each MLRA was 

assigned to one of six diet regions: North East, North West, Central East, Central West, South 

East, or South West. These regions had some overlap with those developed by Asem-Hiablie et 

al. (2015) and Asem-Hiablie et al. (2016) but were independent entities based on availability of 

forage production data. The MLRAs in the Eastern regions had predominately cool-season 

forages, while those in the Western regions had more warm-season forages. The North region 

consisted of those MLRAs with the majority of their land mass in either North Dakota or South 

Dakota. The Central region consisted of those MLRAs with the majority of their land mass in 

either Nebraska or Kansas. The South region consisted of those MLRAs with the majority of 

their land regions in Oklahoma or Texas. Extension nutritionists were contacted via email to 

obtain information on common fed diets and supplementation formulation (Jason Banta, personal 

communication; Janna Block, personal communication; Karl Hoppe, personal communication; 

Jaymelynn Farney, personal communication; Gregory Lardy, personal communication; Ryan 

Rueter, personal communication; Karla Wilke, personal communication). Those formulations 

used in the CCSM are fully laid out in Table 3.3. Each diet follows a general pattern: any hay is 

assumed to be either mid-bloom smooth brome, bermuda, or prairie hay, according to the most 

common forage species available in the region. In addition to hay was either whole grain corn, 

corn dry distillers’ grains with solubles (CDDGS), a mix of the two, or mid- bloom alfalfa hay. 

The net energy for each delivered ration and supplementation diet was calculated as weighted 

average based on the percent of each ingredient and the net energy values of each ingredient 

(Jurgens et al., 2012; Johnston and Moreau, 2017). While the composition of each diet was 

crafted to match regional feedstuffs, it is important to note that much like forages, the CCSM 
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only provides the net energy for the delivered ration and supplement as a whole. The formulation 

of those diets and overall net energy estimation is determined externally by the user. 

Another aspect of this study was to explore the environmental impact of substituting all corn and 

corn products fed to cow-calf operations with grain sorghum and grain sorghum products. 

Therefore, after the amount of corn and CDDGS required on dry matter basis was calculated, 

grain sorghum and grain sorghum distillers’ grain (SDDGS) were used to replace corn grain and 

corn DDGS, respectively, based on net energy maintenance equivalency. Those equivalencies, 

on a dry matter basis, are as follows: 1.173 kg of grain sorghum was substituted for every 1 kg of 

whole grain corn and 1.046 kg of SDDGS was substituted for every 1 kg of CDDGS. 

To estimate land use, crop yields were obtained for each MLRA. A representative county 

was chosen for each MLRA and estimates of annual corn, grain sorghum, grass hay, and alfalfa 

hay yields from 1995 to 2019 were obtained from the National Agriculture Statistics Service 

(NASS, 2021). Those annual estimates were averaged for each crop for each MLRA. In two 

cases, no county data was available: grain sorghum yield estimates for counties in North Dakota 

and alfalfa hay and grass hay yields for counties in Texas. The average sorghum yield of all the 

counties in South Dakota which are on the North Dakota border were averaged applied to all the 

MLRAs which laid fully in North Dakota. Texas only reports state-wide average alfalfa yields. 

Therefore, the average of the state-wide alfalfa and grass hay yields from 1995 to 2019 were 

used as representative values. The yield values reported by the NASS (2021), were measured in 

bushels per acre for grain crops or tons per acre for forage crops. These values were adjusted to 

kilograms per hectare from bushels per acre for grain crops and tons per acre forage crops. 

 Climate Parameters 
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Climate plays a very large role in the energy requirement of cattle, as well how much 

irrigation will be needed to produce feedstuffs. To accommodate these facts, a representative 

county was chosen from each MLRA and monthly temperature and precipitation data from 1995 

to 2019 was gathered for that county from the National Centers for Environmental Information 

(NOAA, 2021). Where climate information was missing, the average temperature or 

precipitation of the known records was used. 

 Land Use 

As described before, the CCSM generated the kilograms of dry matter of forage, 

supplement, and delivered ration required every year to keep each animal at a body condition 

score of 5 given the parameters provided for genetic potentials and nutritional densities in each 

MLRA. Those values were averaged for all 24 years in each iteration, then averaged for all 25 

iterations to determine the weight of each diet required for each combination of genetics and 

location in the typical year. The amount of supplement and delivered ration were multiplied by 

the percent of each feedstuff assumed to be in the given diet. These calculations yielded the dry 

matter weight of each feedstuff necessary. The kilograms of dry matter of each feedstuff were 

divided by literature estimates of percent dry matter of each feedstuff which generated the 

kilograms of feedstuffs on an as-fed basis (Jurgens et al., 2012; Johnston and Moreau, 2017). 

Because it was assumed that all feedstuffs consumed in each MLRA were grown in that area, the 

as-fed feedstuff values were divided by the average yield to calculate the hectares required to 

grow feedstuffs for each feedstuff for each MLRA. In addition, both CDDGS and SDDGS on an 

as-fed basis were divided by corn and sorghum yield of the appropriate MLRA, respectively. 

Interestingly, the amount of land required to grow crops is not necessarily equivalent to 

the land required to grow feedstuffs for beef production. Because dry distillers’ grain is a by-
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product of the ethanol process rather than a direct input, its environmental footprint for beef 

production needs to be scaled (FAO, 2016). One way to perform this scaling, or allocation, is by 

mass. Dividing the weight of dry distillers’ grain with solubles by the weight of the grain before 

processing produced an allocation percentage (FAO, 2016). This allocation percentage was 

applied to all resource inputs of dry distillers’ grain with solubles, including land, water, and 

fertilizer. Corn distillers’ grain with solubles was allocated 30% of the natural resources used to 

produce corn, while SDDGS was allocated 32% of the natural resources used to produce 

sorghum (Johnston, personal communication). 

Once the allocations were applied, the total land use for growing feedstuffs was 

calculated by summing the amount of land necessary to produce each feedstuff required in each 

diet. If field grain products were used, the amount of land required for feedstuffs was calculated 

twice (once for corn- based diets and again for sorghum). 

Further, the amount of land used for grazing was found by multiplying the number of 

animals of each class (replacement heifers, bred heifers, and mature cows) in the average year by 

the stocking rate of that class for each unique scenario. The total amount of land required for 

beef production was calculated by summing grazing land and crop land. This was also performed 

twice, where appropriate, to account for use of corn vs sorghum-based products. 

 Water Use 

In beef cattle production, the blue water footprint is the water used for crop irrigation and 

for cattle to drink (Rotz et al., 2019). Estimating irrigation first requires knowing how much 

water crops require. This can be done using the Blaney-Criddle methodology (Blaney and 

Criddle, 1950; Brouwer and Heibloem, 1986). Briefly, the mean monthly temperature for a 

representative county was used in combination with the mean percentage of daily sunlight hours 
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for each month based on latitude in order to estimate baseline evapotranspiration for each 

MLRA. Next, the growing season for each irrigated crop (alfalfa, corn, and sorghum only, as 

grass hay and grazed forage was assumed to be non-irrigated) was calculated. The Field Crops 

Usual Planting and Harvesting Dates publication (USDA, 2010) detailed the planting and harvest 

date for each crop in each state. For corn and sorghum, the beginning of the growing period was 

set as the beginning date in the most active period of planting for each crop in each state, as 

appropriate for which state captured the majority of the MLRA of interest. The end of the 

growing period was the assumed to be the start date plus the number of growing period days 

specific to each crop outlined in Brouwer and Heibloem (1986). For corn and sorghum, the time 

between the planting date and the end of the growing period was considered the growing season. 

For example, the median planting date for corn in North Dakota was May 2 and requires 125 

days of growth; therefore, the growing season was May 2 through September 7. For alfalfa, the 

growing season was considered to begin 40 days before the median first harvest date in each 

state (Anderson, 2019). The growing season for alfalfa was assumed to end the median day of 

the last harvest for each state. Data to establish a unique growing period for each crop was 

available in each state, except for sorghum in North Dakota, which was assumed to be the same 

as the growing season for sorghum in South Dakota. Once the growing season for each crop was 

established, development stages were assigned to periods within the growing season for each 

crop in each state. The length of each development stage for each crop was set according to 

Brouwer and Heibloem (1986). Next, crop coefficients were introduced to adjust the baseline 

evapotranspiration for a given crop in a given development stage. These values varied as the 

crops developed, except for alfalfa. The crop coefficient for alfalfa was assumed to always be 

1.05, which is the coefficient recommended for alfalfa for regions with strong winds such as the 
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Great Plains (Brouwer and Heibloom, 1986). The daily water requirement in a given month for a 

given crop in a given state was calculated as a weighted average of the number of days the crop 

was in a given development stage divided by 30 (all months were assumed to have 30 days) 

multiplied by the appropriate crop coefficient. For example: sorghum in Kansas in June spends 4 

days in one development stage and the other 26 days in another development stage; therefore, the 

equation to determine the daily water requirement for sorghum in Kansas in June is as follows: 

(
4

30
∗ 0.35) +  (

26

30
∗ 0.75) = 0.6967 𝑚𝑚 𝑝𝑒𝑟 𝑑𝑎𝑦 

where 0.35 and 0.75 are crop coefficients for different growing stages in corn. The water 

requirement for each crop in each state is detailed in Table 3.4. The daily average water 

requirements were multiplied by 30 to get millimeters of water required per month per crop per 

state. Once monthly water requirements were found, rainfall from the observed monthly 

precipitation was retrieved from a representative county in each MLRA (NCEI, NOAA, 2021). 

The precipitation was converted into millimeters, scaled to the length of the growing season for 

each crop in each state, and converted into effective rainfall (the amount of rain that sinks deep 

enough into the soil for crops to use) using the methodology of Brouwer and Heibloem (1986). 

Irrigation water needs (millimeters) were calculated by subtracting effective rainfall for each 

crop from the water requirements for each crop in each MLRA. It was assumed that all irrigation 

had no inefficiencies, such as leaks. The total volume of irrigation water (liters) was found by 

multiplying the applied water needs for each crop in each MLRA by the land required by the 

same crop in the same MLRA by 10,000 (square meters in one hectare). 

Drinking water for each herd in each unique scenario was estimated using the 

information in Spencer et al. (2017). A baseline of 31.04 liters water per day was set for a 500 kg 

dry cow for days where ambient temperature was equal to or less than 4° C. Deviations from that 
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baseline were a change of 3.785 liters per day per 90.72 kg increase/decrease in body weight, a 

change of 3.785 liters per day for each 3.9 kg increase/decrease in peak lactation potential, and a 

change of 3.785 liters per day for every 10° F increase above 4° C in temperature. Using these 

guidelines, the 31.04 liter per day baseline was adjusted by mean mature cow body weight, 

average monthly temperature, and peak lactation potential for each unique scenario. The water 

requirements equation assumed cows to be in peak lactation from May 1 to October 31 and all 

classes of cattle drank the same amount as the mature cows. These daily estimates were 

multiplied by 30 to get monthly drinking water per cow, then by multiplied 100 to get monthly 

drinking water per herd. Next, all months were summed to find an estimate of annual drinking 

water required per herd. Finally, irrigation water required in the average year was added to 

annual drinking water per herd to find the blue water footprint for each unique scenario. 

 Fertilizer Use 

Estimates of applied nitrogen, phosphorus, and potassium were determined for each 

unique scenario. The average annual yield of alfalfa, grass hay, corn grain, and sorghum grain 

for each MLRA (NASS, USDA, retrieved April 2021) was used in combination with fertilizer 

recommendations equations for each crop from Gerwing and Gelderman (2005). Grazing land 

forage was also assumed to be fertilized and was estimated using the equations for grass 

(Gerwing and Gelderman, 2005), where forage yield for each MLRA was found as described 

above. The existing soil nutrient variables in the equations were set to zero due to lack of 

availability of data in each MLRA to account for these variables. Thus, the results for fertilizer 

estimates are the upper limits of the fertilizer that would likely be applied in practice and are 

likely slightly overestimated for some production scenarios. Next, the nitrogen fertilizer 

estimates were converted from pounds per acre to kilogram per hectare. Phosphorus and 
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potassium estimates were converted from parts per million to kilogram per hectare, assuming the 

sample depth was 0.15 meters (equivalent to the 6-inch depth as specified by Gerwing and 

Gelderman (2005)) and assuming bulk density was 1473.7 kilograms per cubed meter (NRCS, 

2021). The fertilizer estimates were multiplied by the land allocated for each feedstuff and 

summed to get total nitrogen, phosphorus, and potassium estimates for each scenario. This 

process was performed twice: once summing the fertilizer requirements for alfalfa, grass hay, 

pasture, and corn products, and then again replacing corn products with sorghum products. 

 Methane 

Methane is a by-product of ruminant fermentation and a potent GHG. There are several 

empirical equations that can be used to estimate methane production. The most common is the 

IPCC Tier 2 model (IPCC, 2019), which is as follows (modified to account for an annual gross 

energy intake estimate): 

𝐸𝐹 =
𝐺𝐸𝐼 ∗ (

𝑌𝑚

100)

55.65
 

where EF is the kilograms of methane per head per year, GEI is gross energy intake in 

megajoules per herd per year, and Ym is the percent of gross energy in feed converted to 

methane which is set at 7% for animals consuming a ration composed of greater than 75% forage 

(IPCC, 2019).  

The gross energy of each feedstuff was estimated using the chemical composition of each 

feedstuff (Jurgens et al., 2012) and this equation from Weiss and Tebbe (2019): 

𝐺𝐸𝑖  =  𝐶𝑃𝑖  ∗  0.056 +  𝐹𝑖  ∗  0.094 +  (100 −  𝐶𝑃𝑖  −  𝐹𝑖  −  𝐴𝑖)  ∗  0.042 

where GE is gross energy in megajoules per kilogram of the ith feedstuff on a dry matter basis, 

CP is the percent crude protein of the ith feedstuff on a dry matter basis, F is percent ether extract 

of the ith feedstuff on a dry matter basis, and A is the ash of the ith feedstuff on a dry matter 
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basis. For each MLRA, the most dominant species from a list of common grasses (big bluestem, 

grama grass, Kentucky bluegrass, and smooth brome) for which chemical compositions were 

known was identified. This species was used as a representative value of all the forage produced 

in that MLRA due to the difficulty of finding complete chemical compositions for other species. 

Once the gross energy of each feedstuff was calculated, those values were multiplied by 

the kilograms of dry matter intake of the supplement, delivered ration, or forage in the average 

year for each unique scenario modeled. This calculation produced the average annual gross 

energy intake for each scenario. The IPCC Tier 2 (IPCC, 2019) model was used to estimate the 

methane produced in each scenario using the gross energy intake specific to each region. The 

emission factor that resulted detailed the kilograms of methane emitted from each herd in each 

scenario in the average year. Like land, water, and fertilizer, this process was repeated twice, 

once using forages and corn products, then again with forages and sorghum products. 

 Results and Discussion 

Each MLRA has a unique combination of mature cow body weight, diet formulation, 

forage composition and yield, and climate, and the impact of these differences can be seen in 

Appendix A. These various factors in each MLRA and simulation make it somewhat difficult to 

evaluate differences between MLRAs. However, some general trends can be found within the 

results. It should be noted that the values for land, water, and fertilizer reported are the estimates 

for those resources after the mass allocations for CDDDS and SDDGS have been applied. 

 Land Use 

The estimates for allocated land use are listed in Appendix A (A.2) and are representative 

of the average year (the average of all 25 iterations of the 24 simulated years). The minimum 

value for land needed to grow feedstuffs was roughly 31 ha for small, low milking cattle fed 
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corn-based diets. The maximum amount of land needed to grow feedstuffs was 127 ha used to 

feed large, high milking cattle with only prairie and alfalfa hay. The average amount of land used 

to grow feedstuffs was 58 ha if corn products were used and 61 ha if sorghum products were 

used. In general, diets that did not include grain, or included only dry distillers’ grain (see Table 

3.3) required more land than diets that included grain. This is because the net energy of diets 

formulated with grain have a much higher net energy concentration. Therefore, less land is 

required to meet each animal’s net energy needs. However, with all land use discussions, the 

amount of land required is not the only consideration when discussing sustainability. For 

example, although diets utilizing only forage-based products require the most land, they also 

utilize only human-inedible foodstuffs. 

When considering the effect of genetic potential on total land used for growing 

feedstuffs, including both supplementation and the delivered ration, the higher lactation animals 

required more land than the low lactation animals and the larger animals required more land than 

the smaller animals, on average, as would be expected. This trend continued regardless of 

whether corn or sorghum products were used. However, it is interesting to note that lactation was 

a larger driver of supplemental feed use while grazing pasture than body size. The small, high 

milking cattle often consumed the most supplemental feed while grazing, followed by the 

medium, high milking animals. Their smaller size prohibited them from being able to consume 

enough forage to meet those needs. Thus, those animals were supplemented at a greater rate 

while grazing pasture than the low lactation animals. However, when grazing land was also 

included, size became the primary driver of total land use because larger animals required a 

lower stocking rate and thus more acres of grazable pasture for each 100 head herd. On a per 

kilogram weaned basis (average weaning weight for each genetic potential), the lower lactation 



125 

animals required less land for feedstuffs than high lactation animals with smaller animals being 

more efficient than larger ones of the same lactation potential (Table 3.5a-b). Conversely, body 

weight was the primary driver of grazing land efficiency. The small body weight animals used 

the least amount of grazing land per kilogram weaned, followed by the moderate, high lactation 

animals. Interestingly, the large, high milking animals used grazing land more efficiently than 

the moderate and large, low milking cattle, which ranked second to last and last, respectively. 

Nevertheless, in terms of total land use per kilogram of weaning weight, the smaller animals 

were the most efficient and higher lactation animals were more efficient than lower lactation 

animals of the same size. This assumes that enough supplementation can be provided in a cost-

effective manner to offset their increased energy and supplementation needs. 

The regions that required the least amount of crop land were in the Western areas of 

Nebraska, Kansas, Oklahoma, and Texas. This is because those regions primarily used by-

products for grain feedstuffs, for which only roughly 30% of the total land used for production 

was allocated to the land use of the herd. In addition, these regions had high grass and alfalfa hay 

yields and lighter mature animals than those regions further east or north. On the contrary, the 

regions with the highest demand for land to grow feedstuffs were located in Western North 

Dakota and Central South Dakota through Central Nebraska. In some cases, the regions with the 

lowest requirements neighbored the regions with some of the highest requirements. Several 

factors influenced the differences between regions with high and low crop land requirements. 

First, the high-demand regions were those that did not feed grain but utilized alfalfa instead. 

Because alfalfa is less energy-dense, more of it was required to meet the herds’ nutritional needs. 

Second, the high demand regions were, in general, further east or further north than the low 

demand regions. This is because the high demand regions usually had heavier mature cattle 
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because the mean body weight of cattle increased further north at the same longitude or further 

east at the same latitude. Lastly, the high demand regions had lower grass and alfalfa yields than 

the low demand regions, possibly because of differences in irrigation practices that were not 

accounted for in this simulation. The regions with the highest demand for grazing land were 

those located in far West Texas, despite having some of the lightest mature body weights, 

because forage is often scarce in those areas. Conversely, the regions with the highest stocking 

rate were in Eastern Kansas and Nebraska where high-quality, intensively managed pastures 

made up the majority of the grazing land. 

The average total amount of land required for diets using corn products was 711 hectares. 

Conversely, the average total amount of land required for diets using sorghum products was 714 

hectares. Grazing was the majority of total land use, accounting for between 70-92% of all 

hectares required for the herd, irrespective of whether corn or sorghum was used. Because 

grazing was the primary use for land, small animals were more efficient than large animals in 

their total land use; and because animals of the same size received the same amount of grazing 

land and high lactation animals weaned a heavier calf crop, high milking animals were more 

efficient than low milking animals of the same size. Further, again because grazing land was the 

majority of land use, regions with very low stocking rates required the most total land. 

 Water Use 

The estimates for allocated irrigation water use are in Appendix A (Table A.3) and all 

values are representative of the average year as defined in the previous section. The average 

amount of water used for irrigation is 28,941,643 liters for corn-based diets and 41,129,415 liters 

for sorghum-based diets. Corn-based rations required less irrigation water than sorghum-based 

rations in almost every MLRA, contrary to general assumptions about water use of sorghum. 



127 

This is due to the fact that while sorghum does have a lower water requirement per plant, it also 

has a lower yield and a lower net energy concentration. The amount of extra land, and the 

associated extra water, to produce the same net energy as corn outweighed sorghum’s water 

efficiency. This result may be exacerbated in this study due to the difference in management 

practices between corn and sorghum production. Corn is often cultivated in a manner to 

maximize yield while sorghum is often grown in areas where corn cannot be produced, which 

may bias the calculations in favor of corn simply due to where producers choose to grow 

sorghum rather than any inherent deficiency in sorghum yield. It is worth noting that in MLRAs 

where sorghum yields were high, the difference between water allocated to corn products and the 

water allocated to sorghum products became much narrower than those areas with high corn 

yield and low sorghum yield. In fact, in MLRA 152B (Southeast Texas) corn yields were lower 

than sorghum yields (for unknown reasons), and in this region sorghum was a more water-

efficient crop. Herds consuming sorghum-based diets required at least 1.5 million fewer liters of 

allocated water per herd than the same herds fed corn in that region, regardless of the animals’ 

genetic potential. This suggests that if the beef industry switched to sorghum products and crop 

producers changed management strategies to meet the new demand (and/or sorghum breeders 

improved yield through breeding), sorghum yields may improve enough to outweigh the 

advantage of corn-based systems. Though the result of these potential changes is somewhat 

speculative, it does highlight one potential area whereby the beef industry might decrease its 

water footprint. 

Irrigation demands for different genetic potentials are confounded with climatic and diet 

differences across regions, making it difficult to determine exactly how much more water 

efficient one type of animal is compared to another. On average, lactation drove irrigation 
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demand, similar to land used for growing feedstuffs, because of the extra supplement required 

over the grazing season. Within lactation potential, heavier animals required more irrigation 

water than lighter animals, as would be expected. In contrast, when the efficiency of genetic 

potentials was examined, small, low milking cattle and moderate, low milking cattle required the 

least amount of irrigation per kilogram of weaning weight. The genetic potential with the third 

lowest demand for irrigation per kilogram of weaning weight was the small, high milking 

animals, followed by the large, low milking animals. The moderate, high milking and large, high 

milking cattle were the least efficient users of irrigation water. 

Drinking water, like irrigation water, is entangled with differences in body size and 

climate between regions. Nonetheless, body weight was the driving factor in drinking water 

consumption with large animals requiring more water than smaller ones. Because of the added 

demands of milk production, high lactating animals required more drinking water than low 

lactation animals of the same size. Conversely, lactation seemed to have a greater impact on 

drinking water efficiency than body weight. Small and moderate weight cattle with high lactation 

potential used the least drinking water per kilogram of calf weaned. However, small, low milking 

animals were slightly more efficient with their drinking water than large, high milking cattle 

which were slightly more efficient than moderate, low milking cattle. The least water efficient 

animals were large, low lactation animals requiring much more drinking water per kilogram of 

weaning weight, relative to other genetic potentials. Drinking water comprised anywhere from 1-

23.5% of blue water use (8.76% average) when corn products were used in the diet. When 

sorghum products were used, drinking water only accounted for 1-11% of the blue water 

footprint (4.8% average). The difference between the percentages is due to the increased need for 

land, and subsequently irrigation, of sorghum-based diets while water intake is held constant. 
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The variation in percent drinking water reported in this study resulted from decreased irrigation 

requirements due to diet formulation or precipitation in some regions while simultaneously 

having increased drinking water requirements due to either heavier than average mature cattle or 

increased temperature. Rotz et al. (2019) reported that 5% or more of the beef’s industry blue 

water footprint was from drinking water, which is somewhat lower than the estimates reported 

here. The reason for the discrepancy is Rotz et al. (2019) included regions in the West and 

Southwest United States which require drastically more irrigation than the regions examined 

here. 

Regional variation was clearly evident in water requirement estimation. To begin with, 

dissimilarities in diet formulation and body weight lead to large gaps in irrigation requirements. 

The minimum value for irrigation was 4,859,473 liters, which was for small, low milking cattle a 

diet comprised of prairie hay and CDDGS. The maximum amount of water used to grow 

feedstuffs was 157,706,847 liters to feed prairie hay and alfalfa to large, high milking animals. 

The differences between the regions with the highest (Western South Dakota) and lowest 

(Western Texas) irrigation demands are multifaceted. Firstly, the size and lactation potential of 

the animals vary greatly (see Appendix A for requirement differences due to genetic potentials). 

The animals in Western South Dakota weighed, on average 647 kilograms, compared to the 

animals in Western Texas, which weighed 459.5 kilograms. Assuming each animal ate 2.7% of 

its body weight per day, the heavier animals ate 5.0625 kilograms more dry matter per day. As a 

herd, they ate 506 kilograms more per day. In addition, the animals with the most irrigation 

demands were in the North West diet region. As shown in Table 3, the animals in the North West 

diet region are fed alfalfa instead of grain. Alfalfa is less energy dense than grain meaning more 

of it is required to obtain the same net energy. This fact, in addition to alfalfa being a water 
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intensive crop and MLRA 63A receiving relatively little precipitation compared to regions 

further east, meant that substantial amounts of water must be supplied via irrigation. Conversely, 

the region with the lowest irrigation demand was in the South West. While 77E is an arid 

climate, the animals are fed dry distillers’ grain and prairie hay. Prairie hay was assumed to be 

non-irrigated, and most of the water footprint from dry distillers’ grain is allocated to production 

of the crop itself rather than to DDGS. While the differences between the irrigation extremes is 

large, they are understandable in the context of the assumptions made in this study. Similarly, the 

regional differences in drinking water were logical when put in context. The regions with the 

greatest demand for drinking water were in far Southern Texas where the high average 

temperature required the animals to drink more. The Western regions of the Great Plains 

demanded less drinking water because the animals there are smaller, on average, than those in 

the Eastern regions. 

The average blue water use (irrigation and drinking water) across all regions was 

30,588,949 liters and 42,776,720 liters in the average year for diets using corn and sorghum-

based products, respectively. The primary driver between the difference in blue water use 

estimates was the difference in land, and associated irrigation, required by each crop to grow the 

requisite net energy. Consequently, the regions with the largest blue water use were those in the 

Northwest Dakotas while the regions with the lowest blue water use were in West Texas. Again, 

while these results seem unexpected, they are understandable given the assumptions of the 

model; namely, diet formulations in different regions and the assumption grass hay and grazing 

land were not irrigated. In general, high lactation animals required more blue water than low 

lactation animals, with larger animals using more blue water than smaller animals of the same 

lactation potential, as would be expected. This trend held for both corn and sorghum diets. While 



131 

grazing land was assumed to not be irrigated, harvested feedstuffs were irrigated in MLRAs 

where precipitation did not meet the water needs of the crop. Therefore, the increased need for 

supplementation of high lactation animals resulted in an increased need for harvested feedstuffs 

and an increased blue water use compared to low lactation animals of the same weight. 

Curiously, the genetic potentials followed an unusual pattern when blue water use was scaled by 

weaning weight. The most efficient animals were the small and moderate low lactation animals 

because of their limited irrigation water use. Next were the small, high milking cattle followed 

by the large, low milking cattle. While the large, low lactation animals used less blue water, the 

slightly larger calf of the small, high milking animal showed the latter genetic potential to be 

more efficient in its average blue water use. Finally, as with irrigation water, the moderate and 

large high lactation animals used the most blue water per kilogram of calf weaned. 

 Fertilizer Use 

Fertilizer amounts for each scenario are detailed in Appendix A (Table A.4). It is 

important to remember that the values reported here are the maximum amount of nutrients that 

would be recommended to be applied based on feedstuff yield because no data was available on 

starting soil fertility differences in the MLRA regions. These values did not take any existing soil 

nutrients, recycling done by the animals, or left-over plant residue into account. Thus, these 

values are a gross generalization and likely overestimate the amount of fertilizer required (in 

some cases by a wide margin) and a more sophisticated method with soil fertility data specific to 

each region would be required to make specific policy or management decisions. 

The difference in fertilizer between corn-based diets and sorghum-based diets is 

negligible. The average nitrogen for corn diets was 26,532 kilograms per year and 26,524 

kilograms per year for sorghum diets. In addition, the average phosphorus was 630,014 
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kilograms per year for corn diets and 630,021 kilograms per year for sorghum diets. Lastly, the 

potassium estimates were 1,803,550 kilograms per year and 1,803,400 kilograms per year for 

corn and sorghum diets, respectively. If the beef industry were to entirely switch over to 

sorghum and practices stayed as they currently stand, there would be little difference in the 

amount of fertilizer applied for feedstuffs. However, if the beef industry switched to sorghum 

and practices changed to meet new demand, it is unclear how fertilizer application would change. 

Sorghum yields would likely increase, requiring fewer hectares, but fertilizer application per 

hectare may also increase to produce those higher yields. 

Mature body weight was the characteristic that largely determined relative nitrogen use 

between genetic potentials, regardless of diet formulation. Because larger cattle required more 

land for grazing, they also required more nitrogen than smaller cattle. Within each weight 

category, high milking animals had more nitrogen use than low lactation animals due to the 

increased supplement and delivered rations provided to the high milking cattle. This pattern held 

for nitrogen use scaled by weaning weight, with small, high lactating animals being the most 

efficient and large, low lactating animals being the least efficient. This trend did not continue in 

phosphorus or potassium estimates for each genetic potential. Instead, those nutrients did not 

follow a simple pattern. Instead, the large, high lactation animals were followed by the medium, 

high milking cattle, then the large, low lactation animals. The small, high milking animals were 

next, while the medium, low milking and small, low milking cattle required the least 

phosphorous and potassium fertilizer. Here, the trend may have been partially driven by lactation 

potential and the additional supplement high milking animals tended to require; however, the 

greater area of grazing land used by the large, low lactation cattle outweighed the small, high 

lactation animals in terms of fertilizer requirements. 
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Regionally, the highest nitrogen use was in Central Texas where the vast areas of land 

allocated to each animal increased the gross amount of nitrogen applied to grazing land. In 

addition, the heavier body weights in these regions (compared to West Texas and Oklahoma 

which had even more diluted stocking rates), increased the requirement for grain-based 

feedstuffs, which, in turn, further increased nitrogen application. The regions with the least 

nitrogen application were those in Western North and South Dakota where alfalfa, which 

requires no applied nitrogen, replaced grain. Interestingly, those regions also required the most 

phosphorus and potassium, precisely because alfalfa typically requires those nutrients to be 

applied in large quantities. Alternatively, the regions with the least amount of phosphorus and 

potassium applied were in East Texas, where the only grain product being fed was 

CDDGS/SDDGS and there was less demand for feedstuffs due to lighter weight cattle and denser 

stocking rate, which reduced the need for those nutrients. 

 Methane Production 

The values of estimated methane emissions for each scenario are in Appendix A (Table 

A.5). The average methane for all scenarios when corn products were used was 8,898 kilograms 

per herd per year. The average methane for all scenarios when sorghum products were used was 

8,925 kilograms per herd per year. Methane production tends to increase as forage intake 

increases (IPCC, 2019), therefore, diets formulated with grains were compared to diets not 

including grains. For diets that used corn products, the average yearly methane production for the 

herd was 8,866 kilograms. For diets that used sorghum products, the average yearly methane 

production was 8,899 kilograms for the herd. When animals were only fed harvested or grazed 

forages, an average of 9,059 kilograms of methane per herd per year was produced. While these 

differences are not exceedingly large, this is because the majority of the diets fed were comprised 
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of forage, regardless of whether they included grain-based components or not. In addition, 

harvested forages have a lower net energy concentration than grains, which means more 

harvested forages are required to meet the same energy requirements. Further, no diets were 

formulated in such a way to take advantage of the more favorable methane conversion rate seen 

when animals are fed a diet of greater than 25% forage (IPCC, 2019). 

The increase in kilograms of methane from diets comprised of only harvested forages 

was inextricably confounded with larger mature body weight. Larger animals produced more 

methane per year than smaller animals, and the high lactation animals produced more methane 

than the low lactation animals of the same size. This trend held for both corn and sorghum 

product diets. The IPCC Tier 2 model (IPCC, 2019) assumed that 7% of all gross energy intake 

was converted into methane. Therefore, the genetic potentials that consumed the most also 

produced the most methane. The range in methane efficiency was between the different genetic 

potentials was 285 and 31 grams of methane per kilogram of weaning weight (very similar 

estimates for sorghum). For comparison, Rotz et al, (2019) reported 370 grams per kilogram of 

carcass weight for the national cow-calf sector; however, this value also includes methane from 

manure and is scaled by carcass weight of harvested beef, rather than the carcass weight of the 

cow-calf sector. Comparisons of the genetic potentials showed the small, high lactation cattle 

produced the least amount of methane per kilogram of weaning weight, closely followed by 

small, low lactation animals. Curiously, the next most efficient genetic potentials were moderate 

and large, high milking cattle. Finally, the moderate and large low lactation cattle were the had 

the greatest methane yields. 

No clear pattern emerged when the methane production of different regions was 

compared. The regions with the greatest methane production clustered around Central Texas and 
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Western North Dakota. For a combination of reasons (cattle size, forage energy, and diet 

formulation), the animals in these regions tended to require more gross energy. Conversely, 

regions with the least methane production were centered around Eastern Kansas and Nebraska, 

as well as West Texas. Likely the same combination of reasons caused the animals in these 

regions to require less gross energy, but there were no clear patterns that emerged to explain 

these differences. 

 Conclusions 

Using current practices, feeding corn and corn products rather than grain sorghum and 

grain sorghum products would lead to a lower land and water footprint for the beef industry. 

However, in regions where sorghum yields are equivalent or higher than corn, sorghum-based 

diets have a distinct advantage in irrigation requirements. Because of this, the advantage noted 

for corn-based diets could change if sorghum was grown on higher-quality land that is generally 

allocated to corn production, or if sorghum genetic improvements substantially improved yield in 

the future. Still, the difference between the two crops is slim for the cow-calf sector due to the 

relatively low levels of grain fed. It is unclear how much wider the margin would be when 

applied to the feedlot sector, where higher-concentrate diets are commonly fed. 

Differences between genetic potential for milk and mature weight demonstrated that large, high 

lactation animals require more resources and emit more methane than other combinations. High 

lactation animals had a larger environmental footprint than low lactation animals of equivalent 

size because of their increased energy requirements. Efficiencies of natural resource use per 

kilogram of calf weaned suggest small, high lactation animals often have the smallest 

environmental impact per unit of product. However, it is worth noting weaning weight estimates 

were based on national averages and certain assumptions. Actual weaning weights for each 
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genetic potential will likely vary by region. For example, larger body weight animals may have 

larger calves under conditions where forage production is greater per hectare than the same size 

animals under different conditions. Therefore, optimal genetic potential may change within 

region.  

Further, the model presented here assumes land was an unlimited resource, or as much 

land as was necessary to meet each herd’s needs was available. The optimal genetic potential, 

choice of grain, and overall environmental impact may change if those factors were to be 

evaluated on a limited land basis.  

Each MLRA is a unique region in the Great Plains with its own combination of climate, 

diet, stocking rate, and genetic potentials. All suggestions of changing production practices to 

better meet sustainability goals need to be considered on a regional, if not operational level for 

feasibility and effectiveness. Lastly, all environmentally sustainable practices need to be 

balanced with social and economic factors.  
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Figure 3.1 

Major Land Resource Areas of the Great Plains  

 
Adapted from ArcGIS Online, 2021
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Table 3.1 

Mature cow bodyweight, lactation potential, stocking rate, and annual forage production for 

various regions across the Great Plains 

 

MLRA 

Mature Cow 

Bodyweight 

(kg) 

Peak 

Lactation 

(kg 

milk/day) 

Hectares per 

Cow-calf 

Pair 

Hectares per 

Bred Heifer 

Hectares per 

Replacement 

Heifer 

Forage 

Production 

(kg/ha) 

102A-LH 677.0 11 3.20 2.70 1.85 1628.05 

102A-LL 677.0 8 3.20 2.70 1.85 1628.05 

102A-MH 608.0 11 2.90 2.43 1.66 1628.05 

102A-ML 608.0 8 2.90 2.43 1.66 1628.05 

102A-SH 539.0 11 2.50 2.16 1.47 1628.05 

102A-SL 539.0 8 2.50 2.16 1.47 1628.05 

102B-LH 677.0 11 3.20 2.70 1.85 1764.17 

102B-LL 677.0 8 3.20 2.70 1.85 1764.17 

102B-MH 608.0 11 2.90 2.43 1.66 1764.17 

102B-ML 608.0 8 2.90 2.43 1.66 1764.17 

102B-SH 539.0 11 2.50 2.16 1.47 1764.17 

102B-SL 539.0 8 2.50 2.16 1.47 1764.17 

102C-LH 677.0 11 3.20 2.70 1.85 1535.45 

102C-LL 677.0 8 3.20 2.70 1.85 1535.45 

102C-MH 608.0 11 2.90 2.43 1.66 1535.45 

102C-ML 608.0 8 2.90 2.43 1.66 1535.45 

102C-SH 539.0 11 2.50 2.16 1.47 1535.45 

102C-SL 539.0 8 2.50 2.16 1.47 1535.45 

106-LH 582.5 11 2.60 2.24 1.53 1808.88 

106-LL 582.5 8 2.60 2.24 1.53 1808.88 

106-MH 537.0 11 2.40 2.07 1.41 1808.88 

106-ML 537.0 8 2.40 2.07 1.41 1808.88 

106-SH 491.5 11 2.20 1.89 1.29 1808.88 

106-SL 491.5 8 2.20 1.89 1.29 1808.88 
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112-LH 582.5 11 2.60 2.24 1.53 1907.92 

112-LL 582.5 8 2.60 2.24 1.53 1907.92 

112-MH 537.0 11 2.40 2.07 1.41 1907.92 

112-ML 537.0 8 2.40 2.07 1.41 1907.92 

112-SH 491.5 11 2.20 1.89 1.29 1907.92 

112-SL 491.5 8 2.20 1.89 1.29 1907.92 

116A-LH 582.5 11 2.60 2.24 1.53 1907.61 

116A-LL 582.5 8 2.60 2.24 1.53 1907.61 

116A-MH 537.0 11 2.40 2.07 1.41 1907.61 

116A-ML 537.0 8 2.40 2.07 1.41 1907.61 

116A-SH 491.5 11 2.20 1.89 1.29 1907.61 

116A-SL 491.5 8 2.20 1.89 1.29 1907.61 

116B-LH 582.5 11 2.60 2.24 1.53 1907.49 

116B-LL 582.5 8 2.60 2.24 1.53 1907.49 

116B-MH 537.0 11 2.40 2.07 1.41 1907.49 

116B-ML 537.0 8 2.40 2.07 1.41 1907.49 

116B-SH 491.5 11 2.20 1.89 1.29 1907.49 

116B-SL 491.5 8 2.20 1.89 1.29 1907.49 

117-LH 582.5 11 2.60 2.24 1.53 1907.78 

117-LL 582.5 8 2.60 2.24 1.53 1907.78 

117-MH 537.0 11 2.40 2.07 1.41 1907.78 

117-ML 537.0 8 2.40 2.07 1.41 1907.78 

117-SH 491.5 11 2.20 1.89 1.29 1907.78 

117-SL 491.5 8 2.20 1.89 1.29 1907.78 

118A-LH 582.5 11 2.60 2.24 1.53 1907.72 

118A-LL 582.5 8 2.60 2.24 1.53 1907.72 

118A-MH 537.0 11 2.40 2.07 1.41 1907.72 

118A-ML 537.0 8 2.40 2.07 1.41 1907.72 

118A-SH 491.5 11 2.20 1.89 1.29 1907.72 
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118A-SL 491.5 8 2.20 1.89 1.29 1907.72 

118B-LH 582.5 11 2.60 2.24 1.53 2036.45 

118B-LL 582.5 8 2.60 2.24 1.53 2036.45 

118B-MH 537.0 11 2.40 2.07 1.41 2036.45 

118B-ML 537.0 8 2.40 2.07 1.41 2036.45 

118B-SH 491.5 11 2.20 1.89 1.29 2036.45 

118B-SL 491.5 8 2.20 1.89 1.29 2036.45 

119-LH 582.5 11 2.60 2.24 1.53 2040.57 

119-LL 582.5 8 2.60 2.24 1.53 2040.57 

119-MH 537.0 11 2.40 2.07 1.41 2040.57 

119-ML 537.0 8 2.40 2.07 1.41 2040.57 

119-SH 491.5 11 2.20 1.89 1.29 2040.57 

119-SL 491.5 8 2.20 1.89 1.29 2040.57 

133B-LH 582.5 11 2.60 2.24 1.53 1496.87 

133B-LL 582.5 8 2.60 2.24 1.53 1496.87 

133B-MH 537.0 11 2.40 2.07 1.41 1496.87 

133B-ML 537.0 8 2.40 2.07 1.41 1496.87 

133B-SH 491.5 11 2.20 1.89 1.29 1496.87 

133B-SL 491.5 8 2.20 1.89 1.29 1496.87 

135B-LH 582.5 11 2.60 2.24 1.53 1883.15 

135B-LL 582.5 8 2.60 2.24 1.53 1883.15 

135B-MH 537.0 11 2.40 2.07 1.41 1883.15 

135B-ML 537.0 8 2.40 2.07 1.41 1883.15 

135B-SH 491.5 11 2.20 1.89 1.29 1883.15 

135B-SL 491.5 8 2.20 1.89 1.29 1883.15 

150A-LH 582.5 11 2.60 2.24 1.53 3149.43 

150A-LL 582.5 8 2.60 2.24 1.53 3149.43 

150A-MH 537.0 11 2.40 2.07 1.41 3149.43 

150A-ML 537.0 8 2.40 2.07 1.41 3149.43 
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150A-SH 491.5 11 2.20 1.89 1.29 3149.43 

150A-SL 491.5 8 2.20 1.89 1.29 3149.43 

150B-LH 582.5 11 2.60 2.24 1.53 2411.66 

150B-LL 582.5 8 2.60 2.24 1.53 2411.66 

150B-MH 537.0 11 2.40 2.07 1.41 2411.66 

150B-ML 537.0 8 2.40 2.07 1.41 2411.66 

150B-SH 491.5 11 2.20 1.89 1.29 2411.66 

150B-SL 491.5 8 2.20 1.89 1.29 2411.66 

152B-LH 582.5 11 2.60 2.24 1.53 1756.50 

152B-LL 582.5 8 2.60 2.24 1.53 1756.50 

152B-MH 537.0 11 2.40 2.07 1.41 1756.50 

152B-ML 537.0 8 2.40 2.07 1.41 1756.50 

152B-SH 491.5 11 2.20 1.89 1.29 1756.50 

152B-SL 491.5 8 2.20 1.89 1.29 1756.50 

42-LH 550.5 11 17.0 14.51 9.9 536.65 

42-LL 550.5 8 17.0 14.51 9.9 536.65 

42-MH 505.0 11 16.0 13.31 9.08 536.65 

42-ML 505.0 8 16.0 13.31 9.08 536.65 

42-SH 459.5 11 14.0 12.11 8.26 536.65 

42-SL 459.5 8 14.0 12.11 8.26 536.65 

53A-LH 635.0 11 7.5 6.34 4.33 1192.45 

53A-LL 635.0 8 7.50 6.34 4.33 1192.45 

53A-MH 582.0 11 6.80 5.82 3.97 1192.45 

53A-ML 582.0 8 6.80 5.82 3.97 1192.45 

53A-SH 529.0 11 6.20 5.29 3.61 1192.45 

53A-SL 529.0 8 6.20 5.29 3.61 1192.45 

53B-LH 647.0 11 3.60 3.03 2.07 1048.00 

53B-LL 647.0 8 3.60 3.03 2.07 1048.00 

53B-MH 600.0 11 3.30 2.81 1.91 1048.00 



142 

 

53B-ML 600.0 8 3.30 2.81 1.91 1048.00 

53B-SH 553.0 11 3.00 2.59 1.76 1048.00 

53B-SL 553.0 8 3.00 2.59 1.76 1048.00 

53C-LH 647.0 11 3.60 3.03 2.07 1269.92 

53C-LL 647.0 8 3.60 3.03 2.07 1269.92 

53C-MH 600.0 11 3.30 2.81 1.91 1269.92 

53C-ML 600.0 8 3.30 2.81 1.91 1269.92 

53C-SH 553.0 11 3.00 2.59 1.76 1269.92 

53C-SL 553.0 8 3.00 2.59 1.76 1269.92 

54-LH 635.0 11 7.50 6.34 4.33 854.76 

54-LL 635.0 8 7.50 6.34 4.33 854.76 

54-MH 582.0 11 6.80 5.82 3.97 854.76 

54-ML 582.0 8 6.80 5.82 3.97 854.76 

54-SH 529.0 11 6.20 5.29 3.61 854.76 

54-SL 529.0 8 6.20 5.29 3.61 854.76 

55A-LH 647.0 11 3.60 3.03 2.07 1504.19 

55A-LL 647.0 8 3.60 3.03 2.07 1504.19 

55A-MH 600.0 11 3.30 2.81 1.91 1504.19 

55A-ML 600.0 8 3.30 2.81 1.91 1504.19 

55A-SH 553.0 11 3.00 2.59 1.76 1504.19 

55A-SL 553.0 8 3.00 2.59 1.76 1504.19 

55B-LH 677.0 11 3.20 2.70 1.85 1336.89 

55B-LL 677.0 8 3.20 2.70 1.85 1336.89 

55B-MH 608.0 11 2.90 2.43 1.66 1336.89 

55B-ML 608.0 8 2.90 2.43 1.66 1336.89 

55B-SH 539.0 11 2.50 2.16 1.47 1336.89 

55B-SL 539.0 8 2.50 2.16 1.47 1336.89 

55C-LH 647.0 11 3.60 3.03 2.07 1456.93 

55C-LL 647.0 8 3.60 3.03 2.07 1456.93 



143 

 

55C-MH 600.0 11 3.30 2.81 1.91 1456.93 

55C-ML 600.0 8 3.30 2.81 1.91 1456.93 

55C-SH 553.0 11 3.00 2.59 1.76 1456.93 

55C-SL 553.0 8 3.00 2.59 1.76 1456.93 

56-LH 677.0 11 3.20 2.7 1.85 1788.63 

56-LL 677.0 8 3.20 2.7 1.85 1788.63 

56-MH 608.0 11 2.90 2.43 1.66 1788.63 

56-ML 608.0 8 2.90 2.43 1.66 1788.63 

56-SH 539.0 11 2.50 2.16 1.47 1788.63 

56-SL 539.0 8 2.50 2.16 1.47 1788.63 

58C-LH 635.0 11 7.50 6.34 4.33 556.33 

58C-LL 635.0 8 7.50 6.34 4.33 556.33 

58C-MH 582.0 11 6.80 5.82 3.97 556.33 

58C-ML 582.0 8 6.80 5.82 3.97 556.33 

58C-SH 529.0 11 6.20 5.29 3.61 556.33 

58C-SL 529.0 8 6.20 5.29 3.61 556.33 

58D-LH 635.0 11 7.50 6.34 4.33 719.07 

58D-LL 635.0 8 7.50 6.34 4.33 719.07 

58D-MH 582.0 11 6.80 5.82 3.97 719.07 

58D-ML 582.0 8 6.80 5.82 3.97 719.07 

58D-SH 529.0 11 6.20 5.29 3.61 719.07 

58D-SL 529.0 8 6.20 5.29 3.61 719.07 

60A-LH 635.0 11 7.50 6.34 4.33 723.74 

60A-LL 635.0 8 7.50 6.34 4.33 723.74 

60A-MH 582.0 11 6.80 5.82 3.97 723.74 

60A-ML 582.0 8 6.80 5.82 3.97 723.74 

60A-SH 529.0 11 6.20 5.29 3.61 723.74 

60A-SL 529.0 8 6.20 5.29 3.61 723.74 

61-LH 635.0 11 7.50 6.34 4.33 983.57 
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61-LL 635.0 8 7.50 6.34 4.33 983.57 

61-MH 582.0 11 6.80 5.82 3.97 983.57 

61-ML 582.0 8 6.80 5.82 3.97 983.57 

61-SH 529.0 11 6.20 5.29 3.61 983.57 

61-SL 529.0 8 6.20 5.29 3.61 983.57 

62-LH 635.0 11 7.50 6.34 4.33 917.48 

62-LL 635.0 8 7.50 6.34 4.33 917.48 

62-MH 582.0 11 6.80 5.82 3.97 917.48 

62-ML 582.0 8 6.80 5.82 3.97 917.48 

62-SH 529.0 11 6.20 5.29 3.61 917.48 

62-SL 529.0 8 6.20 5.29 3.61 917.48 

63A-LH 647.0 11 3.60 3.03 2.07 964.47 

63A-LL 647.0 8 3.60 3.03 2.07 964.47 

63A-MH 600.0 11 3.30 2.81 1.91 964.47 

63A-ML 600.0 8 3.30 2.81 1.91 964.47 

63A-SH 553.0 11 3.00 2.59 1.76 964.47 

63A-SL 553.0 8 3.00 2.59 1.76 964.47 

63B-LH 647.0 11 3.60 3.03 2.07 1092.44 

63B-LL 647.0 8 3.60 3.03 2.07 1092.44 

63B-MH 600.0 11 3.30 2.81 1.91 1092.44 

63B-ML 600.0 8 3.30 2.81 1.91 1092.44 

63B-SH 553.0 11 3.00 2.59 1.76 1092.44 

63B-SL 553.0 8 3.00 2.59 1.76 1092.44 

64-LH 635.0 11 7.50 6.34 4.33 851.92 

64-LL 635.0 8 7.50 6.34 4.33 851.92 

64-MH 582.0 11 6.80 5.82 3.97 851.92 

64-ML 582.0 8 6.80 5.82 3.97 851.92 

64-SH 529.0 11 6.20 5.29 3.61 851.92 

64-SL 529.0 8 6.20 5.29 3.61 851.92 
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65-LH 647.0 11 3.60 3.03 2.07 1133.99 

65-LL 647.0 8 3.60 3.03 2.07 1133.99 

65-MH 600.0 11 3.30 2.81 1.91 1133.99 

65-ML 600.0 8 3.30 2.81 1.91 1133.99 

65-SH 553.0 11 3.00 2.59 1.76 1133.99 

65-SL 553.0 8 3.00 2.59 1.76 1133.99 

66-LH 647.0 11 3.60 3.03 2.07 1122.77 

66-LL 647.0 8 3.60 3.03 2.07 1122.77 

66-MH 600.0 11 3.30 2.81 1.91 1122.77 

66-ML 600.0 8 3.30 2.81 1.91 1122.77 

66-SH 553.0 11 3.00 2.59 1.76 1122.77 

66-SL 553.0 8 3.00 2.59 1.76 1122.77 

67A-LH 635.0 11 7.50 6.34 4.33 577.63 

67A-LL 635.0 8 7.50 6.34 4.33 577.63 

67A-MH 582.0 11 6.80 5.82 3.97 577.63 

67A-ML 582.0 8 6.80 5.82 3.97 577.63 

67A-SH 529.0 11 6.20 5.29 3.61 577.63 

67A-SL 529.0 8 6.20 5.29 3.61 577.63 

70A-LH 550.5 11 17.0 14.51 9.9 505.44 

70A-LL 550.5 8 17.0 14.51 9.9 505.44 

70A-MH 505.0 11 16.0 13.31 9.08 505.44 

70A-ML 505.0 8 16.0 13.31 9.08 505.44 

70A-SH 459.5 11 14.0 12.11 8.26 505.44 

70A-SL 459.5 8 14.0 12.11 8.26 505.44 

70B-LH 550.5 11 17.0 14.51 9.9 579.85 

70B-LL 550.5 8 17.0 14.51 9.9 579.85 

70B-MH 505.0 11 16.0 13.31 9.08 579.85 

70B-ML 505.0 8 16.0 13.31 9.08 579.85 

70B-SH 459.5 11 14.0 12.11 8.26 579.85 
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70B-SL 459.5 8 14.0 12.11 8.26 579.85 

71-LH 647.0 11 3.60 3.03 2.07 1369.40 

71-LL 647.0 8 3.60 3.03 2.07 1369.40 

71-MH 600.0 11 3.30 2.81 1.91 1369.40 

71-ML 600.0 8 3.30 2.81 1.91 1369.40 

71-SH 553.0 11 3.00 2.59 1.76 1369.40 

71-SL 553.0 8 3.00 2.59 1.76 1369.40 

72-LH 550.5 11 17.0 14.51 9.9 805.36 

72-LL 550.5 8 17.0 14.51 9.9 805.36 

72-MH 505.0 11 16.0 13.31 9.08 805.36 

72-ML 505.0 8 16.0 13.31 9.08 805.36 

72-SH 459.5 11 14.0 12.11 8.26 805.36 

72-SL 459.5 8 14.0 12.11 8.26 805.36 

73-LH 580.5 11 6.80 5.80 3.96 1279.56 

73-LL 580.5 8 6.80 5.80 3.96 1279.56 

73-MH 535.0 11 6.30 5.32 3.63 1279.56 

73-ML 535.0 8 6.30 5.32 3.63 1279.56 

73-SH 489.5 11 5.80 4.90 3.34 1279.56 

73-SL 489.5 8 5.80 4.90 3.34 1279.56 

74-LH 580.5 11 6.80 5.80 3.96 1852.12 

74-LL 580.5 8 6.80 5.80 3.96 1852.12 

74-MH 535.0 11 6.30 5.32 3.63 1852.12 

74-ML 535.0 8 6.30 5.32 3.63 1852.12 

74-SH 489.5 11 5.80 4.90 3.34 1852.12 

74-SL 489.5 8 5.80 4.90 3.34 1852.12 

75-LH 647.0 11 3.60 3.03 2.07 1609.32 

75-LL 647.0 8 3.60 3.03 2.07 1609.32 

75-MH 600.0 11 3.30 2.81 1.91 1609.32 

75-ML 600.0 8 3.30 2.81 1.91 1609.32 
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75-SH 553.0 11 3.00 2.59 1.76 1609.32 

75-SL 553.0 8 3.00 2.59 1.76 1609.32 

76-LH 582.5 11 2.60 2.24 1.53 1912.63 

76-LL 582.5 8 2.60 2.24 1.53 1912.63 

76-MH 537.0 11 2.40 2.07 1.41 1912.63 

76-ML 537.0 8 2.40 2.07 1.41 1912.63 

76-SH 491.5 11 2.20 1.89 1.29 1912.63 

76-SL 491.5 8 2.20 1.89 1.29 1912.63 

77A-LH 550.5 11 17.0 14.51 9.9 727.09 

77A-LL 550.5 8 17.0 14.51 9.9 727.09 

77A-MH 505.0 11 16.0 13.31 9.08 727.09 

77A-ML 505.0 8 16.0 13.31 9.08 727.09 

77A-SH 459.5 11 14.0 12.11 8.26 727.09 

77A-SL 459.5 8 14.0 12.11 8.26 727.09 

77B-LH 550.5 11 17.0 14.51 9.9 1020.87 

77B-LL 550.5 8 17.0 14.51 9.9 1020.87 

77B-MH 505.0 11 16.0 13.31 9.08 1020.87 

77B-ML 505.0 8 16.0. 13.31 9.08 1020.87 

77B-SH 459.5 11 14.0 12.11 8.26 1020.87 

77B-SL 459.5 8 14.0 12.11 8.26 1020.87 

77C-LH 550.5 11 17.0 14.51 9.9 764.07 

77C-LL 550.5 8 17.0 14.51 9.9 764.07 

77C-MH 505.0 11 16.0 13.31 9.08 764.07 

77C-ML 505.0 8 16.0 13.31 9.08 764.07 

77C-SH 459.5 11 14.0 12.11 8.26 764.07 

77C-SL 459.5 8 14.0 12.11 8.26 764.07 

77D-LH 550.5 11 17.0 14.51 9.9 584.85 

77D-LL 550.5 8 17.0 14.51 9.9 584.85 

77D-MH 505.0 11 16.0 13.31 9.08 584.85 



148 

 

77D-ML 505.0 8 16.0 13.31 9.08 584.85 

77D-SH 459.5 11 14.0 12.11 8.26 584.85 

77D-SL 459.5 8 14.0 12.11 8.26 584.85 

77E-LH 550.5 11 17.0 14.51 9.9 940.71 

77E-LL 550.5 8 17.0 14.51 9.9 940.71 

77E-MH 505.0 11 16.0 13.31 9.08 940.71 

77E-ML 505.0 8 16.0 13.31 9.08 940.71 

77E-SH 459.5 11 14.0 12.11 8.26 940.71 

77E-SL 459.5 8 14.0 12.11 8.26 940.71 

78A-LH 550.5 11 17.0 14.51 9.9 1438.80 

78A-LL 550.5 8 17.0 14.51 9.9 1438.80 

78A-MH 505.0 11 16.0 13.31 9.08 1438.80 

78A-ML 505.0 8 16.0 13.31 9.08 1438.80 

78A-SH 459.5 11 14.0 12.11 8.26 1438.80 

78A-SL 459.5 8 14.0 12.11 8.26 1438.80 

78B-LH 550.5 11 17.0 14.51 9.9 951.95 

78B-LL 550.5 8 17.0 14.51 9.9 951.95 

78B-MH 505.0 11 16.0 13.31 9.08 951.95 

78B-ML 505.0 8 16.0 13.31 9.08 951.95 

78B-SH 459.5 11 14.0 12.11 8.26 951.95 

78B-SL 459.5 8 14.0 12.11 8.26 951.95 

78C-LH 550.5 11 17.0 14.51 9.9 1300.81 

78C-LL 550.5 8 17.0 14.51 9.9 1300.81 

78C-MH 505.0 11 16.0 13.31 9.08 1300.81 

78C-ML 505.0 8 16.0 13.31 9.08 1300.81 

78C-SH 459.5 11 14.0 12.11 8.26 1300.81 

78C-SL 459.5 8 14.0 12.11 8.26 1300.81 

79-LH 580.5 11 6.80 5.80 3.96 1632.32 

79-LL 580.5 8 6.80 5.80 3.96 1632.32 
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79-MH 535.0 11 6.30 5.32 3.63 1632.32 

79-ML 535.0 8 6.30 5.32 3.63 1632.32 

79-SH 489.5 11 5.80 4.90 3.34 1632.32 

79-SL 489.5 8 5.80 4.90 3.34 1632.32 

80A-LH 580.5 11 6.80 5.80 3.96 1991.36 

80A-LL 580.5 8 6.80 5.80 3.96 1991.36 

80A-MH 535.0 11 6.30 5.32 3.63 1991.36 

80A-ML 535.0 8 6.30 5.32 3.63 1991.36 

80A-SH 489.5 11 5.80 4.90 3.34 1991.36 

80A-SL 489.5 8 5.80 4.90 3.34 1991.36 

80B-LH 580.5 11 6.80 5.80 3.96 1576.79 

80B-LL 580.5 8 6.80 5.80 3.96 1576.79 

80B-MH 535.0 11 6.30 5.32 3.63 1576.79 

80B-ML 535.0 8 6.30 5.32 3.63 1576.79 

80B-SH 489.5 11 5.80 4.90 3.34 1576.79 

80B-SL 489.5 8 5.80 4.90 3.34 1576.79 

81A-LH 550.5 11 17.0 14.51 9.9 798.61 

81A-LL 550.5 8 17.0 14.51 9.9 798.61 

81A-MH 505.0 11 16.0 13.31 9.08 798.61 

81A-ML 505.0 8 16.0 13.31 9.08 798.61 

81A-SH 459.5 11 14.0 12.11 8.26 798.61 

81A-SL 459.5 8 14.0 12.11 8.26 798.61 

81B-LH 550.5 11 17.0 14.51 9.9 1355.32 

81B-LL 550.5 8 17.0 14.51 9.9 1355.32 

81B-MH 505.0 11 16.0 13.31 9.08 1355.32 

81B-ML 505.0 8 16.0 13.31 9.08 1355.32 

81B-SH 459.5 11 14.0 12.11 8.26 1355.32 

81B-SL 459.5 8 14.0 12.11 8.26 1355.32 

81C-LH 550.5 11 17.0 14.51 9.9 1427.12 
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81C-LL 550.5 8 17.0 14.51 9.9 1427.12 

81C-MH 505.0 11 16.0 13.31 9.08 1427.12 

81C-ML 505.0 8 16.0 13.31 9.08 1427.12 

81C-SH 459.5 11 14.0 12.11 8.26 1427.12 

81C-SL 459.5 8 14.0 12.11 8.26 1427.12 

81D-LH 550.5 11 17.0 14.51 9.9 303.54 

81D-LL 550.5 8 17.0 14.51 9.9 303.54 

81D-MH 505.0 11 16.0 13.31 9.08 303.54 

81D-ML 505.0 8 16.0 13.31 9.08 303.54 

81D-SH 459.5 11 14.0 12.11 8.26 303.54 

81D-SL 459.5 8 14.0 12.11 8.26 303.54 

82A-LH 550.5 11 17.0 14.51 9.9 1202.98 

82A-LL 550.5 8 17.0 14.51 9.9 1202.98 

82A-MH 505.0 11 16.0 13.31 9.08 1202.98 

82A-ML 505.0 8 16.0 13.31 9.08 1202.98 

82A-SH 459.5 11 14.0 12.11 8.26 1202.98 

82A-SL 459.5 8 14.0 12.11 8.26 1202.98 

82B-LH 580.5 11 6.80 5.80 3.96 1646.08 

82B-LL 580.5 8 6.80 5.80 3.96 1646.08 

82B-MH 535.0 11 6.30 5.32 3.63 1646.08 

82B-ML 535.0 8 6.30 5.32 3.63 1646.08 

82B-SH 489.5 11 5.80 4.90 3.34 1646.08 

82B-SL 489.5 8 5.80 4.90 3.34 1646.08 

83A-LH 580.5 11 6.80 5.80 3.96 1541.50 

83A-LL 580.5 8 6.80 5.80 3.96 1541.50 

83A-MH 535.0 11 6.30 5.32 3.63 1541.50 

83A-ML 535.0 8 6.30 5.32 3.63 1541.50 

83A-SH 489.5 11 5.80 4.90 3.34 1541.50 

83A-SL 489.5 8 5.80 4.90 3.34 1541.50 
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83B-LH 580.5 11 6.80 5.80 3.96 1316.39 

83B-LL 580.5 8 6.80 5.80 3.96 1316.39 

83B-MH 535.0 11 6.30 5.32 3.63 1316.39 

83B-ML 535.0 8 6.30 5.32 3.63 1316.39 

83B-SH 489.5 11 5.80 4.90 3.34 1316.39 

83B-SL 489.5 8 5.80 4.90 3.34 1316.39 

83C-LH 580.5 11 6.80 5.80 3.96 1337.47 

83C-LL 580.5 8 6.80 5.80 3.96 1337.47 

83C-MH 535.0 11 6.30 5.32 3.63 1337.47 

83C-ML 535.0 8 6.30 5.32 3.63 1337.47 

83C-SH 489.5 11 5.80 4.90 3.34 1337.47 

83C-SL 489.5 8 5.80 4.90 3.34 1337.47 

83D-LH 580.5 11 6.80 5.80 3.96 1502.32 

83D-LL 580.5 8 6.80 5.80 3.96 1502.32 

83D-MH 535.0 11 6.30 5.32 3.63 1502.32 

83D-ML 535.0 8 6.30 5.32 3.63 1502.32 

83D-SH 489.5 11 5.80 4.90 3.34 1502.32 

83D-SL 489.5 8 5.80 4.90 3.34 1502.32 

83E-LH 580.5 11 6.80 5.80 3.96 1486.57 

83E-LL 580.5 8 6.80 5. 3.96 1486.57 

83E-MH 535.0 11 6.30 5.32 3.63 1486.57 

83E-ML 535.0 8 6.30 5.32 3.63 1486.57 

83E-SH 489.5 11 5.80 4.90 3.34 1486.57 

83E-SL 489.5 8 5.80 4.90 3.34 1486.57 

84A-LH 580.5 11 6.80 5.80 3.96 2037.81 

84A-LL 580.5 8 6.80 5.80 3.96 2037.81 

84A-MH 535.0 11 6.30 5.32 3.63 2037.81 

84A-ML 535.0 8 6.30 5.32 3.63 2037.81 

84A-SH 489.5 11 5.80 4.90 3.34 2037.81 
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84A-SL 489.5 8 5.80 4.90 3.34 2037.81 

84B-LH 580.5 11 6.80 5.80 3.96 1851.07 

84B-LL 580.5 8 6.80 5.80 3.96 1851.07 

84B-MH 535.0 11 6.30 5.32 3.63 1851.07 

84B-ML 535.0 8 6.30 5.32 3.63 1851.07 

84B-SH 489.5 11 5.80 4.90 3.34 1851.07 

84B-SL 489.5 8 5.80 4.90 3.34 1851.07 

84C-LH 580.5 11 6.80 5.80 3.96 1941.66 

84C-LL 580.5 8 6.80 5.80 3.96 1941.66 

84C-MH 535.0 11 6.30 5.32 3.63 1941.66 

84C-ML 535.0 8 6.30 5.32 3.63 1941.66 

84C-SH 489.5 11 5.80 4.90 3.34 1941.66 

84C-SL 489.5 8 5.80 4.90 3.34 1941.66 

85-LH 580.5 11 6.80 5.80 3.96 2055.90 

85-LL 580.5 8 6.80 5.80 3.96 2055.90 

85-MH 535.0 11 6.30 5.32 3.63 2055.90 

85-ML 535.0 8 6.30 5.32 3.63 2055.90 

85-SH 489.5 11 5.80 4.90 3.34 2055.90 

85-SL 489.5 8 5.80 4.90 3.34 2055.90 

86A-LH 580.5 11 6.80 5.80 3.96 2138.97 

86A-LL 580.5 8 6.80 5.80 3.96 2138.97 

86A-MH 535.0 11 6.30 5.32 3.63 2138.97 

86A-ML 535.0 8 6.30 5.32 3.63 2138.97 

86A-SH 489.5 11 5.80 4.90 3.34 2138.97 

86A-SL 489.5 8 5.80 4.90 3.34 2138.97 

86B-LH 580.5 11 6.80 5.80 3.96 2213.45 

86B-LL 580.5 8 6.80 5.80 3.96 2213.45 

86B-MH 535.0 11 6.30 5.32 3.63 2213.45 

86B-ML 535.0 8 6.30 5.32 3.63 2213.45 
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86B-SH 489.5 11 5.80 4.90 3.34 2213.45 

86B-SL 489.5 8 5.80 4.90 3.34 2213.45 

87A-LH 580.5 11 6.80 5.80 3.96 1982.85 

87A-LL 580.5 8 6.80 5.80 3.96 1982.85 

87A-MH 535.0 11 6.30 5.32 3.63 1982.85 

87A-ML 535.0 8 6.30 5.32 3.63 1982.85 

87A-SH 489.5 11 5.80 4.90 3.34 1982.85 

87A-SL 489.5 8 5.80 4.90 3.34 1982.85 

87B-LH 582.5 11 2.60 2.24 1.53 2008.45 

87B-LL 582.5 8 2.60 2.24 1.53 2008.45 

87B-MH 537.0 11 2.40 2.07 1.41 2008.45 

87B-ML 537.0 8 2.40 2.07 1.41 2008.45 

87B-SH 491.5 11 2.20 1.89 1.29 2008.45 

87B-SL 491.5 8 2.20 1.89 1.29 2008.45 

LL-large body weight, low lactation, LH- large body weight, high lactation, ML- moderate body 

weight, low lactation, MH-moderate body weight, high lactation, SL- small body weight, low 

lactation, SH- small body weight, high lactation  
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Table 3.2a 

Net energy maintenance estimates of grazed forages for each month for each Major Land 

Resource Area (megacalories per kilogram of dry matter) 

MLRA Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

102A 1.48 1.48 1.48 1.48 1.63 1.63 1.51 1.48 1.44 1.47 1.48 1.48 

102B 1.49 1.49 1.49 1.49 1.68 1.67 1.52 1.50 1.45 1.49 1.49 1.49 

102C 1.31 1.31 1.31 1.31 1.49 1.45 1.44 1.37 1.34 1.30 1.31 1.31 

106 1.31 1.31 1.31 1.31 1.49 1.45 1.44 1.37 1.34 1.30 1.31 1.31 

112 1.61 1.61 1.61 1.61 1.64 1.63 1.58 1.57 1.60 1.60 1.61 1.61 

116A 1.85 1.85 1.85 1.85 1.73 1.78 1.70 1.71 1.73 1.83 1.85 1.85 

116B 1.92 1.92 1.92 1.92 1.75 1.81 1.73 1.75 1.78 1.89 1.92 1.92 

117 1.79 1.79 1.79 1.79 1.70 1.74 1.67 1.67 1.69 1.77 1.79 1.79 

118A 1.42 1.42 1.42 1.42 1.55 1.55 1.48 1.46 1.45 1.42 1.42 1.42 

118B 1.34 1.34 1.34 1.34 1.53 1.5 1.46 1.41 1.38 1.34 1.34 1.34 

119 1.30 1.30 1.30 1.30 1.40 1.38 1.36 1.33 1.32 1.30 1.30 1.30 

133B 1.25 1.25 1.25 1.25 1.45 1.44 1.38 1.33 1.30 1.26 1.25 1.25 

135B 1.20 1.20 1.20 1.20 1.39 1.38 1.32 1.27 1.24 1.20 1.20 1.20 

150A 1.29 1.29 1.29 1.29 1.49 1.48 1.39 1.36 1.35 1.29 1.29 1.29 

150B 1.35 1.35 1.35 1.35 1.43 1.44 1.42 1.42 1.42 1.42 1.35 1.35 

152B 1.18 1.18 1.18 1.18 1.37 1.37 1.32 1.26 1.23 1.18 1.18 1.18 

42 1.13 1.13 1.13 1.13 1.17 1.14 1.16 1.16 1.16 1.13 1.13 1.13 

53A 1.45 1.45 1.45 1.45 1.69 1.63 1.52 1.48 1.43 1.45 1.45 1.45 

53B 1.47 1.47 1.47 1.47 1.69 1.63 1.51 1.48 1.43 1.46 1.47 1.47 

53C 1.32 1.32 1.32 1.32 1.64 1.56 1.48 1.41 1.35 1.32 1.32 1.32 

54 1.20 1.20 1.20 1.20 1.72 1.58 1.44 1.37 1.28 1.20 1.20 1.20 

55A 1.34 1.34 1.34 1.34 1.57 1.52 1.47 1.40 1.36 1.34 1.34 1.34 

55B 1.44 1.44 1.44 1.44 1.70 1.64 1.53 1.49 1.43 1.43 1.44 1.44 

55C 1.47 1.47 1.47 1.47 1.71 1.68 1.53 1.5 1.44 1.47 1.47 1.47 

56 1.37 1.37 1.37 1.37 1.52 1.48 1.43 1.40 1.40 1.37 1.37 1.37 

58C 1.21 1.21 1.21 1.21 1.65 1.54 1.43 1.35 1.29 1.22 1.21 1.21 
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58D 1.25 1.25 1.25 1.25 1.59 1.50 1.45 1.37 1.33 1.26 1.25 1.25 

60A 1.21 1.21 1.21 1.21 1.64 1.51 1.44 1.35 1.28 1.21 1.21 1.21 

61 1.23 1.23 1.23 1.23 1.58 1.50 1.43 1.36 1.30 1.23 1.23 1.23 

62 1.23 1.23 1.23 1.23 1.58 1.50 1.43 1.36 1.30 1.23 1.23 1.23 

63A 1.21 1.21 1.21 1.21 1.60 1.48 1.44 1.35 1.29 1.21 1.21 1.21 

63B 1.20 1.20 1.20 1.20 1.66 1.55 1.44 1.36 1.28 1.20 1.20 1.20 

64 1.23 1.23 1.23 1.23 1.58 1.48 1.43 1.36 1.32 1.24 1.23 1.23 

65 1.28 1.28 1.28 1.28 1.44 1.40 1.41 1.35 1.35 1.28 1.28 1.28 

66 1.25 1.25 1.25 1.25 1.53 1.45 1.42 1.35 1.32 1.25 1.25 1.25 

67A 1.24 1.24 1.24 1.24 1.52 1.44 1.41 1.34 1.31 1.24 1.24 1.24 

70A 1.22 1.22 1.22 1.22 1.43 1.37 1.37 1.29 1.26 1.22 1.22 1.22 

70B 1.24 1.24 1.24 1.24 1.33 1.29 1.34 1.28 1.29 1.24 1.24 1.24 

71 1.25 1.25 1.25 1.25 1.48 1.43 1.42 1.34 1.30 1.25 1.25 1.25 

72 1.23 1.23 1.23 1.23 1.47 1.40 1.40 1.32 1.29 1.23 1.23 1.23 

73 1.24 1.24 1.24 1.24 1.48 1.41 1.42 1.33 1.29 1.24 1.24 1.24 

74 1.17 1.17 1.17 1.17 1.39 1.37 1.35 1.27 1.24 1.18 1.17 1.17 

75 1.25 1.25 1.25 1.25 1.45 1.41 1.41 1.34 1.29 1.25 1.25 1.25 

76 1.20 1.20 1.20 1.20 1.41 1.40 1.37 1.30 1.25 1.20 1.20 1.20 

77A 1.24 1.24 1.24 1.24 1.54 1.44 1.44 1.33 1.30 1.24 1.24 1.24 

77B 1.28 1.28 1.28 1.28 1.46 1.41 1.45 1.34 1.33 1.28 1.28 1.28 

77C 1.24 1.24 1.24 1.24 1.43 1.38 1.39 1.31 1.29 1.24 1.24 1.24 

77D 1.27 1.27 1.27 1.27 1.34 1.29 1.34 1.33 1.32 1.27 1.27 1.27 

77E 1.26 1.26 1.26 1.26 1.48 1.41 1.42 1.34 1.31 1.26 1.26 1.26 

78A 1.27 1.27 1.27 1.27 1.45 1.40 1.41 1.33 1.31 1.27 1.27 1.27 

78B 1.30 1.30 1.30 1.30 1.41 1.40 1.44 1.35 1.35 1.30 1.30 1.30 

78C 1.28 1.28 1.28 1.28 1.45 1.39 1.41 1.33 1.32 1.28 1.28 1.28 

79 1.00 1.00 1.00 1.00 1.17 1.15 1.15 1.08 1.06 1.01 1.00 1.00 

80A 1.27 1.27 1.27 1.27 1.47 1.41 1.41 1.34 1.32 1.27 1.27 1.27 

80B 1.25 1.25 1.25 1.25 1.45 1.40 1.41 1.33 1.29 1.25 1.25 1.25 
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81A 1.28 1.28 1.28 1.28 1.40 1.36 1.41 1.31 1.31 1.28 1.28 1.28 

81B 1.28 1.28 1.28 1.28 1.40 1.36 1.41 1.31 1.31 1.28 1.28 1.28 

81C 1.16 1.16 1.16 1.16 1.35 1.36 1.33 1.25 1.21 1.16 1.16 1.16 

81D 1.10 1.10 1.10 1.10 1.14 1.08 1.10 1.24 1.18 1.09 1.10 1.10 

82A 1.27 1.27 1.27 1.27 1.41 1.42 1.42 1.33 1.30 1.27 1.27 1.27 

82B 1.27 1.27 1.27 1.27 1.46 1.40 1.41 1.34 1.32 1.27 1.27 1.27 

83A 1.21 1.21 1.21 1.21 1.39 1.40 1.34 1.28 1.25 1.21 1.21 1.21 

83B 1.26 1.26 1.26 1.26 1.43 1.41 1.41 1.33 1.29 1.26 1.26 1.26 

83C 1.27 1.27 1.27 1.27 1.48 1.43 1.39 1.33 1.31 1.26 1.27 1.27 

83D 1.28 1.28 1.28 1.28 1.50 1.46 1.40 1.35 1.33 1.28 1.28 1.28 

83E 1.26 1.26 1.26 1.26 1.52 1.43 1.36 1.32 1.31 1.26 1.26 1.26 

84A 1.18 1.18 1.18 1.18 1.40 1.38 1.34 1.27 1.23 1.18 1.18 1.18 

84B 1.05 1.05 1.05 1.05 1.22 1.18 1.18 1.12 1.09 1.05 1.05 1.05 

84C 1.20 1.20 1.20 1.20 1.41 1.40 1.34 1.29 1.24 1.20 1.20 1.20 

85 1.12 1.12 1.12 1.12 1.31 1.27 1.26 1.20 1.16 1.12 1.12 1.12 

86A 1.16 1.16 1.16 1.16 1.35 1.38 1.30 1.24 1.21 1.16 1.16 1.16 

86B 1.27 1.27 1.27 1.27 1.46 1.45 1.33 1.32 1.30 1.27 1.27 1.27 

87A 1.25 1.25 1.25 1.25 1.44 1.43 1.34 1.31 1.28 1.25 1.25 1.25 

87B 1.22 1.22 1.22 1.22 1.41 1.43 1.31 1.28 1.26 1.22 1.22 1.22 
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Table 3.3b 

Net energy gain estimates of grazed forages for each month for each Major Land Resource Area 

(megacalories per kilogram of dry matter) 

MLRA Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

102A 0.69 0.69 0.69 0.69 0.91 0.91 0.79 0.76 0.72 0.75 0.69 0.69 

102B 0.75 0.75 0.75 0.75 0.96 0.95 0.8 0.78 0.73 0.77 0.75 0.75 

102C 0.44 0.44 0.44 0.44 0.77 0.73 0.72 0.65 0.62 0.58 0.44 0.44 

106 0.43 0.43 0.43 0.43 0.77 0.73 0.72 0.65 0.62 0.58 0.43 0.43 

112 0.83 0.83 0.83 0.83 0.92 0.91 0.86 0.85 0.88 0.88 0.83 0.83 

116A 1.11 1.11 1.11 1.11 1.01 1.05 0.98 0.99 1.01 1.11 1.11 1.11 

116B 1.20 1.20 1.20 1.20 1.04 1.09 1.01 1.03 1.06 1.17 1.20 1.20 

117 1.02 1.02 1.02 1.02 0.98 1.02 0.94 0.95 0.97 1.05 1.02 1.02 

118A 0.72 0.72 0.72 0.72 0.85 0.85 0.78 0.76 0.75 0.72 0.72 0.72 

118B 0.55 0.55 0.55 0.55 0.81 0.78 0.74 0.69 0.66 0.62 0.55 0.55 

119 0.63 0.63 0.63 0.63 0.73 0.72 0.69 0.66 0.65 0.63 0.63 0.63 

133B 0.53 0.53 0.53 0.53 0.76 0.74 0.69 0.64 0.61 0.56 0.53 0.53 

135B 0.47 0.47 0.47 0.47 0.71 0.7 0.64 0.59 0.56 0.52 0.47 0.47 

150A 0.57 0.57 0.57 0.57 0.79 0.78 0.70 0.67 0.65 0.59 0.57 0.57 

150B 0.63 0.63 0.63 0.63 0.71 0.72 0.70 0.70 0.70 0.69 0.63 0.63 

152B 0.46 0.46 0.46 0.46 0.72 0.73 0.67 0.61 0.58 0.53 0.46 0.46 

42 0.46 0.46 0.46 0.46 0.49 0.46 0.48 0.49 0.49 0.46 0.46 0.46 

53A 0.73 0.73 0.73 0.73 0.97 0.91 0.8 0.76 0.71 0.73 0.73 0.73 

53B 0.75 0.75 0.75 0.75 0.97 0.91 0.79 0.76 0.71 0.74 0.75 0.75 

53C 0.53 0.53 0.53 0.53 0.92 0.84 0.76 0.69 0.63 0.59 0.53 0.53 

54 0.48 0.48 0.48 0.48 1.00 0.86 0.72 0.65 0.56 0.48 0.48 0.48 

55A 0.62 0.62 0.62 0.62 0.85 0.80 0.74 0.68 0.64 0.62 0.62 0.62 

55B 0.72 0.72 0.72 0.72 0.97 0.92 0.80 0.76 0.71 0.71 0.72 0.72 

55C 0.75 0.75 0.75 0.75 0.99 0.96 0.80 0.78 0.72 0.74 0.75 0.75 

56 0.66 0.66 0.66 0.66 0.81 0.77 0.73 0.69 0.69 0.66 0.66 0.66 

58C 0.49 0.49 0.49 0.49 0.92 0.82 0.71 0.63 0.57 0.50 0.49 0.49 

58D 0.53 0.53 0.53 0.53 0.87 0.78 0.73 0.65 0.61 0.54 0.53 0.53  

60A 0.49 0.49 0.49 0.49 0.92 0.79 0.72 0.63 0.56 0.49 0.49 0.49 

61 0.51 0.51 0.51 0.51 0.86 0.78 0.71 0.63 0.58 0.51 0.51 0.51 

62 0.51 0.51 0.51 0.51 0.86 0.78 0.71 0.63 0.58 0.51 0.51 0.51 

63A 0.49 0.49 0.49 0.49 0.88 0.76 0.72 0.63 0.57 0.49 0.49 0.49 

63B 0.48 0.48 0.48 0.48 0.94 0.83 0.72 0.63 0.56 0.48 0.48 0.48 

64 0.51 0.51 0.51 0.51 0.86 0.76 0.71 0.64 0.60 0.52 0.51 0.51 

65 0.56 0.56 0.56 0.56 0.72 0.68 0.69 0.63 0.63 0.56 0.56 0.56 

66 0.53 0.53 0.53 0.53 0.81 0.73 0.70 0.63 0.6 0.53 0.53 0.53 

67A 0.52 0.52 0.52 0.52 0.81 0.72 0.70 0.63 0.59 0.52 0.52 0.52 

70A 0.52 0.52 0.52 0.52 0.74 0.67 0.68 0.59 0.57 0.52 0.52 0.52 

70B 0.54 0.54 0.54 0.54 0.63 0.59 0.64 0.59 0.59 0.54 0.54 0.54 

71 0.53 0.53 0.53 0.53 0.76 0.71 0.70 0.61 0.58 0.53 0.53 0.53 

72 0.52 0.52 0.52 0.52 0.76 0.69 0.69 0.61 0.58 0.52 0.52 0.52 

73 0.52 0.52 0.52 0.52 0.76 0.69 0.69 0.61 0.57 0.52 0.52 0.52 
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74 0.52 0.52 0.52 0.52 0.73 0.71 0.69 0.61 0.58 0.52 0.52 0.52 

75 0.53 0.53 0.53 0.53 0.73 0.69 0.69 0.61 0.57 0.53 0.53 0.53 

76 0.52 0.52 0.52 0.52 0.74 0.72 0.70 0.62 0.58 0.53 0.52 0.52 

77A 0.52 0.52 0.52 0.52 0.82 0.72 0.72 0.61 0.58 0.52 0.52 0.52 

77B 0.56 0.56 0.56 0.56 0.74 0.68 0.72 0.62 0.61 0.56 0.56 0.56 

77C 0.54 0.54 0.54 0.54 0.74 0.68 0.69 0.61 0.59 0.54 0.54 0.54 

77D 0.54 0.54 0.54 0.54 0.62 0.57 0.62 0.60 0.60 0.54 0.54 0.54 

77E 0.54 0.54 0.54 0.54 0.76 0.69 0.70 0.61 0.59 0.54 0.54 0.54 

78A 0.49 0.49 0.49 0.49 0.73 0.68 0.69 0.61 0.59 0.54 0.49 0.49 

78B 0.58 0.58 0.58 0.58 0.69 0.68 0.72 0.63 0.63 0.58 0.58 0.58 

78C 0.56 0.56 0.56 0.56 0.73 0.67 0.69 0.61 0.60 0.56 0.56 0.56 

79 0.32 0.32 0.32 0.32 0.61 0.59 0.59 0.52 0.50 0.45 0.32 0.32 

80A 0.42 0.42 0.42 0.42 0.75 0.69 0.69 0.62 0.60 0.55 0.42 0.42 

80B 0.43 0.43 0.43 0.43 0.73 0.68 0.68 0.61 0.57 0.53 0.43 0.43 

81A 0.56 0.56 0.56 0.56 0.68 0.64 0.69 0.59 0.59 0.56 0.56 0.56 

81B 0.56 0.56 0.56 0.56 0.68 0.64 0.69 0.59 0.59 0.56 0.56 0.56 

81C 0.43 0.43 0.43 0.43 0.71 0.71 0.68 0.6 0.56 0.51 0.43 0.43 

81D 0.38 0.38 0.38 0.38 0.42 0.35 0.37 0.52 0.46 0.37 0.38 0.38 

82A 0.55 0.55 0.55 0.55 0.69 0.70 0.69 0.61 0.58 0.55 0.55 0.55 

82B 0.49 0.49 0.49 0.49 0.74 0.68 0.69 0.62 0.60 0.55 0.49 0.49 

83A 0.48 0.48 0.48 0.48 0.71 0.71 0.66 0.60 0.56 0.52 0.48 0.48 

83B 0.54 0.54 0.54 0.54 0.71 0.69 0.69 0.61 0.57 0.54 0.54 0.54 

83C 0.54 0.54 0.54 0.54 0.76 0.71 0.67 0.61 0.59 0.54 0.54 0.54 

83D 0.56 0.56 0.56 0.56 0.78 0.74 0.67 0.63 0.61 0.56 0.56 0.56 

83E 0.54 0.54 0.54 0.54 0.8 0.71 0.64 0.60 0.58 0.54 0.54 0.54 

84A 0.39 0.39 0.39 0.39 0.73 0.72 0.67 0.61 0.56 0.52 0.39 0.39 

84B 0.38 0.38 0.38 0.38 0.61 0.58 0.57 0.51 0.48 0.45 0.38 0.38 

84C 0.44 0.44 0.44 0.44 0.73 0.72 0.67 0.61 0.57 0.53 0.44 0.44 

85 0.38 0.38 0.38 0.38 0.66 0.62 0.61 0.55 0.51 0.47 0.38 0.38 

86A 0.44 0.44 0.44 0.44 0.70 0.73 0.65 0.59 0.56 0.52 0.44 0.44 

86B 0.55 0.55 0.55 0.55 0.74 0.73 0.61 0.60 0.58 0.55 0.55 0.55 

87A 0.54 0.54 0.54 0.54 0.72 0.71 0.62 0.59 0.57 0.54 0.54 0.54 

87B 0.50 0.50 0.50 0.50 0.72 0.73 0.62 0.59 0.57 0.53 0.50 0.50 
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Table 3.3 

Diet formulations with net energy estimates of supplemental and delivered rations for each diet region 
  Supplement (summer months) Delivered Ration (winter months) 

North East 88% smooth brome hay 9% whole grain corn 

3% corn dry distillers' grain with solubles 

Net energy maintenance: 1.4311 Mcal/kg DM 

Net energy gain: 0.8388 Mcal/kg DM 

88% smooth brome hay 9% whole grain corn 

3% corn dry distillers' grain with solubles 

Net energy maintenance: 1.4311 Mcal/kg DM  

Net energy gain: 0.8388 Mcal/kg DM 

West 82% prairie hay 

18% alfalfa 

Net energy maintenance: 1.0422 Mcal/kg DM 

Net energy gain: 04886 Mcal/kg DM 

82% prairie hay 

18% alfalfa 

Net energy maintenance: 1.0422 Mcal/kg DM  

Net energy gain: 04886 Mcal/kg DM 

Central East 88% smooth brome hay 9% whole grain corn 

3% corn dry distillers' grain with solubles 

Net energy maintenance: 1.4311 Mcal/kg DM 

Net energy gain: 0.8388 Mcal/kg DM 

88% smooth brome hay 9% whole grain corn 

3% corn dry distillers' grain with solubles 

Net energy maintenance: 1.4311 Mcal/kg DM  

Net energy gain: 0.838 Mcal/kg DM 

West 93% prairie hay 

7% corn dry distillers' grain with solubles 

Net energy maintenance: 1.0754 Mcal/kg DM 

Net energy gain: 0.5156 Mcal/kg DM 

82% prairie hay 

18% alfalfa 

Net energy maintenance: 1.0422 Mcal/kg  

DM Net energy gain: 04886 Mcal/kg DM 

South East 88% bermuda hay 

12% corn dry distillers' grain with solubles Net 

energy maintenance: 0.89 Mcal/kg DM Net 

energy gain: 0.3408 

88% bermuda hay 

12% corn dry distillers' grain with solubles  

Net energy maintenance: 0.89 Mcal/kg DM  

Net energy gain: 0.3408 

West 93% prairie hay 

7% corn dry distillers' grain with solubles 

Net energy maintenance: 1.0754 Mcal/kg DM 

Net energy gain: 0.5156 Mcal/kg DM 

88% prairie hay 

12% corn dry distillers' grain with solubles 

Net energy maintenance: 1.1364 Mcal/kg DM  

Net energy gain: 0.5696 Mcal/kg DM 
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Table 3.4 

Monthly water requirements of crops in the Great Plains (millimeters) 
 

Corn 

 Mar Apr May Jun Jul Aug Sep Oct Nov 

North 

Dakota 
- - 14.4 25.05 34.5 34.5 4.899 - - 

South 

Dakota 
- - 14.4 25.05 34.5 34.5 4.899 - - 

Nebraska - 1.2 17.1 26.79 34.5 21.9 1.401 - - 

Kansas - 6 21.99 30.99 30.45 19.599 - - - 

Oklahoma - 7.2 23.199 32.049 28.398 - - - - 

Texas 9.6 24 33.45 26.85 9.099 - - - - 

Sorghum 

 Mar Apr May Jun Jul Aug Sep Oct Nov 

North 

Dakota 
- - 3.48 26 33 19.95 1.3 - - 

South 

Dakota 
- - 3.48 26 33 19.95 1.3 - - 

Nebraska - - 4.9 20.5 30.9 26.7 11.05 - - 

Kansas - - 5.25 20.9 31.26 26.25 10.4 - - 

Oklahoma - - 6.3 22.5 31.95 25.8 9 - - 

Texas 12.35 22.1 32.3 24.7 - - - - - 

Alfalfa 

 Mar Apr May Jun Jul Aug Sep Oct Nov 

North 

Dakota 
- - 31.5 31.5 31.5 31.5 6.3 - - 

South 

Dakota 
- 11.55 31.5 31.5 31.5 31.5 21 - - 
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Nebraska - 22.05 31.5 31.5 31.5 31.5 31.5 1.05 - 

Kansas - 31.5 31.5 31.5 31.5 31.5 31.5 31.5 1.05 

Oklahoma 21 31.5 31.5 31.5 31.5 31.5 31.5 13.65 - 

Texas 26.25 31.5 31.5 31.5 31.5 31.5 21 - - 
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Table 3.5a 

Annual resource of all genetic potentials fed corn diets across the Great Plains scaled by the 

average kilograms of weaning weight produced 

 

Genetic 

Potential 

Large 

weight, 

high 

lactation 

Large 

weight, 

low 

lactation 

Moderate 

weight, 

high 

lactation 

Moderate 

weight, 

low 

lactation 

Small 

weight, 

high 

lactation 

Small 

weight, 

low 

lactation 

Crop Land 

(ha/kg WW) 
0.00222 0.00215 0.00220 0.00213 0.00217 0.00210 

Grazing Land 

(ha/kg WW) 
0.0225 0.0240 0.0211 0.0226 0.0197 0.0211 

Total Land 

(ha/kg WW) 
0.0245 0.0260 0.0231 0.0245 0.0217 0.0230 

Irrigation 

Water 

(liters/kg WW) 

994 972 980 955 964 940 

Drinking Water 

(liters/kg WW) 
55.4 57.0 54.3 55.9 53.2 54.8 

Blue Water 

(liters/kg WW) 
1049 1027 1034 1012 1018 998 

Nitrogen 

Fertilizer 

(kg/yr/kg WW) 

0.913 0.966 0.862 0.912 0.811 0.859 

Phosphorus 

(kg/yr/kg WW) 
21.7 21.4 21.2 20.9 20.6 20.4 

Potassium 

(kg/yr/kg WW) 
62.1 61.0 60.7 59.6 59.2 58.4 

Methane 

(kg/kg WW) 
0.301 0.312 0.294 0.302 0.285 0.292 
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Table 3.6b 

Annual resource of all genetic potentials fed sorghum diets across the Great Plains scaled by the 

average kilograms of weaning weight produced 

 

Genetic 

Potential 

Large 

weight, 

high 

lactation 

Large 

weight, 

low 

lactation 

Moderate 

weight, 

high 

lactation 

Moderate 

weight, 

low 

lactation 

Small 

weight, 

high 

lactation 

Small 

weight, 

low 

lactation 

Crop Land 

(ha/kg WW) 
0.00229 0.00222 0.00227 0.00219 0.00224 0.00217 

Grazing Land 

(ha/kg WW) 
0.0225 0.0240 0.0211 0.0226 0.0197 0.0211 

Total Land 

(ha/kg WW) 
0.0246 0.0261 0.0232 0.0246 0.0218 0.0231 

Irrigation 

Water 

(liters/kg WW) 

1409 1382 1392 1360 1370 1338 

Drinking Water 

(liters/kg WW) 
55.4 57.0 54.3 55.9 53.2 54.8 

Blue Water 

(liters/kg WW) 
1461 1438 1445 1417 1425 1397 

Nitrogen 

Fertilizer 

(kg/yr/kg WW) 

0.913 0.965 0.861 0.912 0.810 0.858 

Phosphorus 

(kg/yr/kg WW) 
21.7 21.4 21.2 20.9 20.6 20.4 

Potassium 

(kg/yr/kg WW) 
62.1 61.0 60.7 59.6 59.2 58.4 

Methane 

(kg/kg WW) 
0.302 0.313 0.295 0.303 0.286 0.292 
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Appendix A - Additional Tables 

Table A.1 

Forage species used to represent native range and cultivated pasture in each MLRA 

MLRA Range Species Pasture Species 

102A 

Kentucky bluegrass 

smooth brome 

little bluestem 

big bluestem 

Kentucky bluegrass 

smooth brome 

western wheatgrass 

102B 

Kentucky bluegrass 

smooth brome 

little bluestem 

big bluestem 

Kentucky bluegrass 

smooth brome 

western wheatgrass 

102C 

big bluestem 

little bluestem 

sideoats grama 

Indiangrass 

switchgrass 

Kentucky bluegrass 

smooth brome 

white clover 

tall fescue 

sedge 

106 

big bluestem 

little bluestem 

Indiangrass 

sideoats grama 

switchgrass 

Kentucky bluegrass 

smooth brome 

white clover 

tall fescue 

sedge 
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112 

big bluestem 

little bluestem 

Indiangrass 

switchgrass 

white clover 

tall fescue 

Kentucky bluegrass 

orchardgrass 

116A 

 

*assumed to be the same forage 

composition as 112 range 

 

big bluestem 

little bluestem 

Indiangrass 

switchgrass 

white clover 

tall fescue 

Kentucky bluegrass 

orchardgrass 
 
 

116B 

*assumed to be the same forage 

composition as 112 range 

 

big bluestem 

little bluestem 

Indiangrass 

switchgrass 

white clover 

tall fescue 

Kentucky bluegrass 

orchardgrass 

 

117 

*assumed to be the same forage 

composition as 112 range 

 

big bluestem 

little bluestem 

Indiangrass 

switchgrass 

white clover 

tall fescue 

Kentucky bluegrass 

orchardgrass 

 

118A 

alkali sacaton 

blue grama 

sideoats grama 

*assumed to have same forage 

composition as 117 pasture 

 

bermudagrass 

bahiagrass 

dallisgrass 

white clover 

118B 

little bluestem 

big bluestem 

indiangrass 

switchgrass 

*assumed to have same forage 

composition as 117 pasture 

 

bermudagrass 
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bahiagrass 

dallisgrass 

white clover 

119 

*assumed to be the same forage 

composition as 118B range 

 

little bluestem 

big bluestem 

Indiangrass 

switchgrass 

bermudagrass 

bahiagrass 

dallisgrass 

white clover 

133B 

*assumed to be combination of 

87A and 150A range forage 

composition 

 

little bluestem 

switchgrass 

big bluestem 

Indiangrass 

eastern gamagrass 

Florida paspalum 

bermudagrass 

bahiagrass 

sedge 

dallisgrass 

135B 

*assumed to be a combination of 

85, 86A, 87A, and 150A range 

forage composition 

 

little bluestem 

switchgrass 

big bluestem 

Indiangrass 

eastern gamagrass 

Florida paspalum 

bermudagrass 

bahiagrass 

sedge 

dallisgrass 

150A 

little bluestem 

switchgrass 

big bluestem 

Indiangrass 

eastern gamagrass 

Florida paspalum 

 

*assumed to have the same forage 

composition as 133B pasture 

 

bermudagrass 

bahiagrass 

sedge 

dallisgrass 

150B 

saltmeadow cordgrass 

smooth cordgrass 

seashore dropseed 

little bluestem 

*assumed to have the same forage 

composition as 133B pasture 

 

bermudagrass 

bahiagrass 

sedge 
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dallisgrass 

152B 

*assumed forage composition was 

the same as 150B range 

 

saltmeadow cordgrass 

smooth cordgrass 

seashore dropseed 

little bluestem 

bermudagrass 

bahiagrass 

sedge 

dallisgrass 

42 

alkali sacaton 

big sacaton 

black grama 

tobosagrass 

blue grama 

sideoats grama 

* assumed to have the same forage 

composition as 81A pasture 

 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

53A 

western wheatgrass 

green needlegrass 

little bluestem 

Kentucky bluegrass 

smooth brome 

western wheatgrass 

53B 
western wheatgrass 

Kentucky bluegrass 

smooth brome 

Kentucky bluegrass 

crested wheatgrass 

blue grama 

53C 

western wheatgrass 

blue grama 

smooth brome 

big bluestem 

Kentucky bluegrass 

smooth brome 

Kentucky bluegrass 

crested wheatgrass 

blue grama 

54 western wheatgrass 

smooth brome 

crested wheatgrass 

Kentucky bluegrass 

western wheatgrass 

blue grama 

55A 

*assumed to be a combination of 

53B, 55B, and 56 range forage 

composition 

 

big bluestem 

western wheatgrass 

little bluestem 

sideoats grama 

blue grama 

Kentucky bluegrass 

smooth brome 

western wheatgrass 
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sand bluestem 

switchgrass 

alkali sacaton 

big bluestem 

western wheatgrass 

little bluestem 

porcupinegrass 

slender wheatgrass 

Kentucky bluegrass 

wooly sedge 

switchgrass 

55B 

big bluestem 

western wheatgrass 

little bluestem 

porcupinegrass 

slender wheatgrass 

Kentucky bluegrass 

smooth brome 

western wheatgrass 

55C 

western wheatgrass 

Kentucky bluegrass 

smooth brome 

smooth brome 

Kentucky bluegrass 

crested wheatgrass 

blue grama 

56 

big bluestem 

Indiangrass 

little bluestem 

woolly sedge 

switchgrass 

Kentucky bluegrass 

reed canarygrass 

smooth brome 

timothy 

red clover 

58C 

western wheatgrass 

green needlegrass 

needle and thread 

blue grama 

smooth brome 

crested wheatgrass 

Kentucky bluegrass 

western wheatgrass 

blue grama 

58D 

western wheatgrass 

blue grama 

needle and thread 

smooth brome 

crested wheatgrass 

Kentucky bluegrass 

western wheatgrass 

blue grama 

60A 
western wheatgrass 

blue grama 

smooth brome 

crested wheatgrass 

Kentucky bluegrass 

western wheatgrass 

blue grama 

61 

western wheatgrass 

green needlegrass 

big bluestem 

needle and thread 

blue grama 

little bluestem 

Kentucky bluegrass 

smooth brome 

crested wheatgrass 

cheatgrass 

western wheatgrass 
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62 

*assumed to be the same forage 

composition as 61 range 

 

western wheatgrass 

green needlegrass 

big bluestem 

needle and thread 

blue grama 

little bluestem 

Kentucky bluegrass 

smooth brome 

crested wheatgrass 

cheatgrass 

western wheatgrass 

 
 

63A 

western wheatgrass 

blue grama 

big bluestem 

smooth brome 

Kentucky bluegrass 

crested wheatgrass 

blue grama 

63B 

western wheatgrass 

smooth brome 

green needlegrass 

blue grama 

big bluestem 

smooth brome 

Kentucky bluegrass 

crested wheatgrass 

blue grama 

64 

western wheatgrass 

blue grama 

sedge 

needle and thread 

big bluestem 

smooth brome 

crested wheatgrass 

Kentucky bluegrass 

western wheatgrass 

blue grama 

65 

prairie sandreed 

sand bluestem 

little bluestem 

switchgrass 

needle and thread 

sedge 

big bluestem 

sedge 

redtop 

western wheatgrass 

prairie sandreed 

big bluestem 

66 

western wheatgrass 

switchgrass 

big bluestem 

little bluestem 

sand bluestem 

smooth brome 

crested wheatgrass 

Kentucky bluegrass 

western wheatgrass 

blue grama 

67A 

*assumed to be a combination of 

64 and 72 range forage 

composition 

 

western wheatgrass 

big bluestem 

little bluestem 

sideoats grama 

blue grama 

sand bluestem 

switchgrass 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 
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alkali sacaton 

sedge 

needle and thread 

70A 

blue grama 

western wheatgrass 

sideoats grama 

alkali sacaton 

little bluestem 
 
 

* assumed to have the same forage 

compostion as 77C pasute 

 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

70B 

blue grama 

sideoats grama 

little bluestem 

black grama 

alkali sacaton 

sand bluestem 

* assumed to have the same forage 

compostion as 77C pasture 

 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

71 

little bluestem 

big bluestem 

sideoats grama 

western wheatgrass 

blue grama 

switchgrass 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 

72 

big bluestem 

western wheatgrass 

little bluestem 

sideoats grama 

blue grama 

sand bluestem 

switchgrass 

alkali sacaton 

bermudagrass 

bahiagrass 

sedge 

dallisgrass 

73 

big bluestem 

little bluestem 

sideoats grama 

switchgrass 

western wheatgrass 

blue grama 

Indiangrass 

cuman ragweed 

yellow bluestem 

Bermudagrass 

sedge 

74 

big bluestem 

little bluestem 

switchgrass 

Indiangrass 

eastern gamagrass 

sand bluestem 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 



202 

 

 

75 

big bluestem 

little bluestem 

sideoats grama 

Indiangrass 

switchgrass 

smooth brome 

sedge 

Kentucky bluegrass 

little bluestem 

76 

big bluestem 

little bluestem 

Indiangrass 

switchgrass 

eastern gamagrass 

Cuman ragweed 

yellow bluestem 

Bermudagrass 

sedge 

77A 

western wheatgrass 

blue grama 

sideoats grama 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

77B 

blue grama 

sideoats grama 

little  bluestem 

sand bluestem 

western wheatgrass 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

77C 

western wheatgrass 

sideoats grama 

blue grama 

little bluestem 

alkali sacaton 

sand bluestem 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

77D 

blue grama 

black grama 

sideoats grama 

buffalograss 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

77E 

little bluestem 

blue grama 

sideoats grama 

western wheatgrass 

switchgrass 

sand bluestem 

Indiangrass 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

 

 

78A 

*assumed to be an combination of 

78C and 80B range forage 

composition 

 

western wheatgrass 

sideoats grama 

blue grama 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 
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little bluestem 

alkali sacaton 

sand bluestem 

switchgrass 

Indiangrass 

78B 

little bluestem 

sideoats grama 

sand bluestem 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 

78C 

switchgrass 

little bluestem 

Indiangrass 

sideoats grama 

sand bluestem 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 

79 

big bluestem 

switchgrass 

sand bluestem 

little bluestem 

Indiangrass 

eastern gamagrass 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 

80A 

big bluestem 

little bluestem 

switchgrass 

Indiangrass 

sand bluestem 

cuman ragweed 

yellow bluestem 

bermudagrass 

sedge 

80B 

little bluestem 

big bluestem 

Indiangrass 

sideoats grama 

switchgrass 

cuman ragweed 

yellow bluestem 

Bermudagrass 

sedge 

81A sideoats grama 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

81B sideoats grama 

*assumed to have the same forage 

composition as 81A pasture 

 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

81C 

little bluestem 

Indiangrass 

big bluestem 

sideoats grama 

bermudagrass 

dallisgrass 

sedge 
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switchgrass 

eastern gamagrass 

81D 

black grama 

bush muhly 

slim tridens 

*assumed to have the same forage 

composition as 81A pasture 

 

yellow bluestem 

smooth brome 

cheatgrass 

crested wheatgrass 

82A 
little bluestem 

sideoats grama 

*assumed to have the same forage 

composition as 81C pasture 

 

bermudagrass 

dallisgrass 

sedge 

82B 

*assumed to be combination of 

78C and 80A range forage 

composition 

 

big bluestem 

little bluestem 

switchgrass 

Indiangrass 

sand bluestem 

sideoats grama 

*assumed to have the same forage 

composition as 78C pasture 

 

cuman ragweed 

yellow bluestem 

Bermudagrass 

sedge 

83A little bluestem 

*assumed to have the same forage 

composition as 86A pasture 

 

bermudagrass 

yellow bluestem 

sedge 

83B 
little bluestem 

Indiangrass 

*assumed to have the same forage 

composition as 86A pasture 

 

bermudagrass 

yellow 

bluestem sedge 

 

83C 
little bluestem 

Indiangrass 

*assumed to have the same forage 

composition as 86A pasture 

 

bermudagrass 

yellow bluestem 

sedge 
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83D 
switchgrass 

little bluestem 

*assumed to have the same forage 

composition as 86A pasture 

 

bermudagrass 

yellow bluestem 

sedge 

83E switchgrass 

*assumed to have the same forage 

composition as 86A pasture 

 

bermudagrass 

yellow bluestem 

sedge 

84A 

big bluestem 

little bluestem 

Indiangrass 

switchgrass 

eastern gamagrass 

bermudagrass 

dallisgrass 

sedge 

84B 

little bluestem 

Indiangrass 

switchgrass 

big bluestem 

sideoats grama 

bermudagrass 

dallisgrass 

sedge 
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Table A.2 

Estimates of grazing land, crop land, and total land for corn and sorghum formulated diets for a 

100-head cow-calf herd with various genetic potentials for mature weight and peak lactation in 

the Great Plains (hectares) 

 

MLRA 

 

Grazing 

Land 

 

Crop land 

for corn-

based diets 

Crop land 

for 

sorghum-

based diets 

Total land 

for corn-

based 

diets 

 

Total land 

for 

sorghum-

based diets 

102A-LL 293.00 75.63 82.65 368.63 375.65 

102A-LH 293.00 79.36 86.73 372.36 379.73 

102A-ML 263.61 72.46 79.19 336.07 342.80 

102A-MH 263.61 76.17 83.24 339.78 346.85 

102A-SL 234.08 68.98 75.39 303.06 309.47 

102A-SH 234.08 73.23 80.03 307.31 314.11 

102B-LL 293.00 57.99 80.46 350.99 373.46 

102B-LH 293.00 60.70 84.22 353.70 377.22 

102B-ML 263.61 55.60 77.14 319.21 340.75 

102B-MH 263.61 55.60 77.14 319.21 340.75 

102B-SL 234.08 58.72 81.47 292.80 315.55 

102B-SH 234.08 53.34 74.00 287.42 308.08 

102C-LL 293.00 56.27 78.07 349.27 371.07 

102C-LH 293.00 60.09 63.84 353.09 356.84 

102C-ML 263.61 62.82 66.74 326.43 330.35 

102C-MH 263.61 57.10 60.67 320.71 324.28 

102C-SL 234.08 60.32 64.09 294.40 298.17 

102C-SH 234.08 54.18 57.56 288.26 291.64 

106-LL 243.26 67.89 69.57 311.15 312.83 

106-LH 243.26 72.01 73.79 315.27 317.05 

106-ML 224.04 65.93 67.57 289.97 291.61 

106-MH 224.04 70.31 72.06 294.35 296.10 

106-SL 204.69 63.67 65.25 268.36 269.94 

106-SH 204.69 68.08 69.77 272.77 274.46 

112-LL 243.26 58.22 60.31 301.48 303.57 

112-LH 243.26 60.68 62.85 303.94 306.11 

112-ML 224.04 57.08 59.13 281.12 283.17 

112-MH 224.04 59.59 61.73 283.63 285.77 

112-SL 204.69 55.68 57.67 260.37 262.36 
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112-SH 204.69 58.37 60.46 263.06 265.15 

116A-LL 243.26 59.67 63.83 302.93 307.09 

116A-LH 243.26 62.43 66.78 305.69 310.04 

116A-ML 224.04 57.92 61.96 281.96 286.00 

116A-MH 224.04 61.07 65.33 285.11 289.37 

116A-SL 204.69 55.72 59.61 260.41 264.30 

116A-SH 204.69 59.47 63.62 264.16 268.31 

116B-LL 243.26 66.25 68.47 309.51 311.73 

116B-LH 243.26 68.98 71.30 312.24 314.56 

116B-ML 224.04 63.99 66.14 288.03 290.18 

116B-MH 224.04 67.24 69.49 291.28 293.53 

116B-SL 204.69 61.36 63.42 266.05 268.11 

116B-SH 204.69 65.35 67.54 270.04 272.23 

117-LL 243.26 74.10 84.97 317.36 328.23 

117-LH 243.26 78.09 89.54 321.35 332.80 

117-ML 224.04 71.74 82.26 295.78 306.30 

117-MH 224.04 76.17 87.34 300.21 311.38 

117-SL 204.69 69.11 79.25 273.80 283.94 

117-SH 204.69 74.32 85.21 279.01 289.90 

118A-LL 243.26 69.14 73.14 312.40 316.40 

118A-LH 243.26 77.01 81.46 320.27 324.72 

118A-ML 224.04 66.69 70.55 290.73 294.59 

118A-MH 224.04 74.40 78.70 298.44 302.74 

118A-SL 204.69 64.26 67.97 268.95 272.66 

118A-SH 204.69 72.18 76.35 276.87 281.04 

118B-LL 243.26 61.95 65.71 305.21 308.97 

118B-LH 243.26 65.61 69.58 308.87 312.84 

118B-ML 224.04 59.89 63.52 283.93 287.56 

118B-MH 224.04 63.80 67.66 287.84 291.70 

118B-SL 204.69 57.67 61.16 262.36 265.85 

118B-SH 204.69 62.35 66.10 267.04 270.79 

119-LL 243.26 61.71 66.06 304.97 309.32 

119-LH 243.26 76.25 81.62 319.51 324.88 

119-ML 224.04 60.76 65.03 284.80 289.07 

119-MH 224.04 74.58 79.83 298.62 303.87 

119-SL 204.69 60.74 65.02 265.43 269.71 

119-SH 204.69 72.07 77.14 276.76 281.83 
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133B-LL 243.26 58.92 62.37 302.18 305.63 

133B-LH 243.26 71.58 75.77 314.84 319.03 

133B-ML 224.04 56.97 60.31 281.01 284.35 

133B-MH 224.04 68.86 72.89 292.90 296.93 

133B-SL 204.69 57.54 60.91 262.23 265.60 

133B-SH 204.69 65.85 69.71 270.54 274.40 

135B-LL 243.26 53.53 58.59 296.79 301.85 

135B-LH 243.26 67.00 73.34 310.26 316.60 

135B-ML 224.04 52.89 57.89 276.93 281.93 

135B-MH 224.04 65.63 71.84 289.67 295.88 

135B-SL 204.69 51.98 56.90 256.67 261.59 

135B-SH 204.69 62.66 68.59 267.35 273.28 

150A-LL 243.26 46.73 47.66 289.99 290.92 

150A-LH 243.26 48.52 49.49 291.78 292.75 

150A-ML 224.04 44.16 45.04 268.20 269.08 

150A-MH 224.04 47.18 48.12 271.22 272.16 

150A-SL 204.69 42.29 43.13 246.98 247.82 

150A-SH 204.69 45.96 46.87 250.65 251.56 

150B-LL 243.26 49.63 50.19 292.89 293.45 

150B-LH 243.26 54.67 55.29 297.93 298.55 

150B-ML 224.04 48.25 48.80 272.29 272.84 

150B-MH 224.04 53.61 54.22 277.65 278.26 

150B-SL 204.69 46.89 47.42 251.58 252.11 

150B-SH 204.69 52.32 52.92 257.01 257.61 

152B-LL 243.26 57.91 57.82 301.17 301.08 

152B-LH 243.26 70.73 70.62 313.99 313.88 

152B-ML 224.04 57.15 57.07 281.19 281.11 

152B-MH 224.04 68.84 68.73 292.88 292.77 

152B-SL 204.69 56.45 56.36 261.14 261.05 

152B-SH 204.69 66.23 66.13 270.92 270.82 

42-LL 1572.34 38.89 42.13 1611.23 1614.47 

42-LH 1572.34 44.54 48.14 1616.88 1620.48 

42-ML 1442.47 38.38 41.55 1480.85 1484.02 

42-MH 1442.47 43.12 46.58 1485.59 1489.05 

42-SL 1312.46 37.13 40.18 1349.59 1352.64 

42-SH 1312.46 41.70 45.01 1354.16 1357.47 

53A-LL 687.62 65.60 65.60 753.22 753.22 
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53A-LH 687.62 63.67 63.67 751.29 751.29 

53A-ML 630.43 61.77 61.77 692.20 692.20 

53A-MH 630.43 59.93 59.93 690.36 690.36 

53A-SL 573.37 57.66 57.66 631.03 631.03 

53A-SH 573.37 56.70 56.70 630.07 630.07 

53B-LL 328.11 96.63 96.63 424.74 424.74 

53B-LH 328.11 105.01 105.01 433.12 433.12 

53B-ML 304.17 92.46 92.46 396.63 396.63 

53B-MH 304.17 101.31 101.31 405.48 405.48 

53B-SL 280.10 88.57 88.57 368.67 368.67 

53B-SH 280.10 96.94 96.94 377.04 377.04 

53C-LL 328.11 92.71 92.71 420.82 420.82 

53C-LH 328.11 101.63 101.63 429.74 429.74 

53C-ML 304.17 89.21 89.21 393.38 393.38 

53C-MH 304.17 98.48 98.48 402.65 402.65 

53C-SL 280.10 85.27 85.27 365.37 365.37 

53C-SH 280.10 94.88 94.88 374.98 374.98 

54-LL 687.62 69.89 69.89 757.51 757.51 

54-LH 687.62 76.44 76.44 764.06 764.06 

54-ML 630.43 66.69 66.69 697.12 697.12 

54-MH 630.43 74.32 74.32 704.75 704.75 

54-SL 573.37 64.84 64.84 638.21 638.21 

54-SH 573.37 71.81 71.81 645.18 645.18 

55A-LL 328.11 74.67 78.52 402.78 406.63 

55A-LH 328.11 78.57 82.61 406.68 410.72 

55A-ML 304.17 72.31 76.03 376.48 380.20 

55A-MH 304.17 76.32 80.25 380.49 384.42 

55A-SL 280.10 70.02 73.63 350.12 353.73 

55A-SH 280.10 74.23 78.05 354.33 358.15 

55B-LL 293.00 77.70 83.51 370.70 376.51 

55B-LH 293.00 80.87 86.92 373.87 379.92 

55B-ML 263.61 73.65 79.16 337.26 342.77 

55B-MH 263.61 77.78 83.59 341.39 347.20 

55B-SL 234.08 69.41 74.60 303.49 308.68 

55B-SH 234.08 74.02 79.56 308.10 313.64 

55C-LL 328.11 54.83 57.66 382.94 385.77 

55C-LH 328.11 57.49 60.46 385.60 388.57 
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55C-ML 304.17 53.45 56.21 357.62 360.38 

55C-MH 304.17 56.18 59.08 360.35 363.25 

55C-SL 280.10 51.85 54.52 331.95 334.62 

55C-SH 280.10 54.74 57.57 334.84 337.67 

56-LL 293.00 65.29 70.24 358.29 363.24 

56-LH 293.00 68.75 73.96 361.75 366.96 

56-ML 263.61 62.30 67.02 325.91 330.63 

56-MH 263.61 66.16 71.17 329.77 334.78 

56-SL 234.08 59.42 63.92 293.50 298.00 

56-SH 234.08 63.15 67.93 297.23 302.01 

58C-LL 687.62 93.47 93.47 781.09 781.09 

58C-LH 687.62 107.62 107.62 795.24 795.24 

58C-ML 630.43 90.22 90.22 720.65 720.65 

58C-MH 630.43 103.25 103.25 733.68 733.68 

58C-SL 573.37 86.36 86.36 659.73 659.73 

58C-SH 573.37 98.41 98.41 671.78 671.78 

58D-LL 687.62 104.05 104.05 791.67 791.67 

58D-LH 687.62 117.43 117.43 805.05 805.05 

58D-ML 630.43 99.54 99.54 729.97 729.97 

58D-MH 630.43 112.88 112.88 743.31 743.31 

58D-SL 573.37 96.64 96.64 670.01 670.01 

58D-SH 573.37 108.74 108.74 682.11 682.11 

60A-LL 687.62 77.68 77.68 765.30 765.3 

60A-LH 687.62 87.29 87.29 774.91 774.91 

60A-ML 630.43 74.33 74.33 704.76 704.76 

60A-MH 630.43 83.96 83.96 714.39 714.39 

60A-SL 573.37 72.06 72.06 645.43 645.43 

60A-SH 573.37 81.10 81.10 654.47 654.47 

61-LL 687.62 79.03 79.03 766.65 766.65 

61-LH 687.62 85.96 85.96 773.58 773.58 

61-ML 630.43 75.75 75.75 706.18 706.18 

61-MH 630.43 83.58 83.58 714.01 714.01 

61-SL 573.37 72.59 72.59 645.96 645.96 

61-SH 573.37 81.09 81.09 654.46 654.46 

62-LL 687.62 80.67 80.67 768.29 768.29 

62-LH 687.62 90.21 90.21 777.83 777.83 

62-ML 630.43 77.34 77.34 707.77 707.77 
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62-MH 630.43 87.18 87.18 717.61 717.61 

62-SL 573.37 75.18 75.18 648.55 648.55 

62-SH 573.37 84.45 84.45 657.82 657.82 

63A-LL 328.11 111.27 111.27 439.38 439.38 

63A-LH 328.11 126.94 126.94 455.05 455.05 

63A-ML 304.17 107.25 107.25 411.42 411.42 

63A-MH 304.17 122.50 122.50 426.67 426.67 

63A-SL 280.10 103.60 103.60 383.70 383.70 

63A-SH 280.10 117.73 117.73 397.83 397.83 

63B-LL 328.11 90.41 90.41 418.52 418.52 

63B-LH 328.11 98.77 98.77 426.88 426.88 

63B-ML 304.17 86.74 86.74 390.91 390.91 

63B-MH 304.17 95.59 95.59 399.76 399.76 

63B-SL 280.10 83.10 83.10 363.20 363.20 

63B-SH 280.10 91.79 91.79 371.89 371.89 

64-LL 687.62 70.01 70.01 757.63 757.63 

64-LH 687.62 77.75 77.75 765.37 765.37 

64-ML 630.43 67.40 67.40 697.83 697.83 

64-MH 630.43 75.26 75.26 705.69 705.69 

64-SL 573.37 64.91 64.91 638.28 638.28 

64-SH 573.37 72.90 72.90 646.27 646.27 

65-LL 328.11 99.37 99.62 427.48 427.73 

65-LH 328.11 116.59 117.13 444.70 445.24 

65-ML 304.17 96.89 97.17 401.06 401.34 

65-MH 304.17 113.32 113.91 417.49 418.08 

65-SL 280.10 92.57 92.89 372.67 372.99 

65-SH 280.10 109.15 109.79 389.25 389.89 

66-LL 328.11 97.86 98.04 425.97 426.15 

66-LH 328.11 109.87 110.26 437.98 438.37 

66-ML 304.17 93.36 93.57 397.53 397.74 

66-MH 304.17 106.44 106.88 410.61 411.05 

66-SL 280.10 90.50 90.75 370.60 370.85 

66-SH 280.10 102.3 102.78 382.40 382.88 

67A-LL 687.62 63.52 63.75 751.14 751.37 

67A-LH 687.62 72.10 72.60 759.72 760.22 

67A-ML 630.43 60.75 61.02 691.18 691.45 

67A-MH 630.43 69.38 69.94 699.81 700.37 
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67A-SL 573.37 58.39 58.72 631.76 632.09 

67A-SH 573.37 66.45 67.08 639.82 640.45 

70A-LL 1572.34 38.55 42.50 1610.89 1614.84 

70A-LH 1572.34 42.34 46.65 1614.68 1618.99 

70A-ML 1442.47 37.13 40.92 1479.60 1483.39 

70A-MH 1442.47 41.02 45.18 1483.49 1487.65 

70A-SL 1312.46 35.64 39.26 1348.10 1351.72 

70A-SH 1312.46 39.64 43.62 1352.10 1356.08 

70B-LL 1572.34 45.31 53.71 1617.65 1626.05 

70B-LH 1572.34 50.43 59.71 1622.77 1632.05 

70B-ML 1442.47 43.89 52.00 1486.36 1494.47 

70B-MH 1442.47 48.87 57.80 1491.34 1500.27 

70B-SL 1312.46 42.30 50.07 1354.76 1362.53 

70B-SH 1312.46 47.27 55.82 1359.73 1368.28 

71-LL 328.11 65.66 65.83 393.77 393.94 

71-LH 328.11 74.73 75.08 402.84 403.19 

71-ML 304.17 63.37 63.56 367.54 367.73 

71-MH 304.17 72.27 72.66 376.44 376.83 

71-SL 280.10 61.26 61.48 341.36 341.58 

71-SH 280.10 70.00 70.44 350.10 350.54 

72-LL 1572.34 32.76 32.92 1605.10 1605.26 

72-LH 1572.34 36.90 37.16 1609.24 1609.50 

72-ML 1442.47 31.76 31.95 1474.23 1474.42 

72-MH 1442.47 35.80 36.10 1478.27 1478.57 

72-SL 1312.46 30.83 31.04 1343.29 1343.50 

72-SH 1312.46 34.62 34.97 1347.08 1347.43 

73-LL 628.70 34.82 34.86 663.52 663.56 

73-LH 628.70 38.35 38.42 667.05 667.12 

73-ML 576.96 33.55 33.59 610.51 610.55 

73-MH 576.96 37.27 37.34 614.23 614.30 

73-SL 530.94 32.48 32.54 563.42 563.48 

73-SH 530.94 36.26 36.34 567.20 567.28 

74-LL 628.70 57.21 57.30 685.91 686.00 

74-LH 628.70 64.94 65.10 693.64 693.80 

74-ML 576.96 55.44 55.54 632.40 632.50 

74-MH 576.96 62.85 63.03 639.81 639.99 

74-SL 530.94 54.01 54.13 584.95 585.07 



213 

 

 

74-SH 530.94 60.72 60.92 591.66 591.86 

75-LL 328.11 61.26 61.36 389.37 389.47 

75-LH 328.11 69.08 69.25 397.19 397.36 

75-ML 304.17 59.18 59.28 363.35 363.45 

75-MH 304.17 67.09 67.29 371.26 371.46 

75-SL 280.10 57.47 57.58 337.57 337.68 

75-SH 280.10 65.13 65.35 345.23 345.45 

76-LL 243.26 67.87 67.96 311.13 311.22 

76-LH 243.26 76.19 76.37 319.45 319.63 

76-ML 224.04 66.21 66.31 290.25 290.35 

76-MH 224.04 73.74 73.93 297.78 297.97 

76-SL 204.69 64.66 64.78 269.35 269.47 

76-SH 204.69 71.91 72.13 276.60 276.82 

77A-LL 1572.34 38.60 44.52 1610.94 1616.86 

77A-LH 1572.34 40.62 46.83 1612.96 1619.17 

77A-ML 1442.47 36.80 42.43 1479.27 1484.90 

77A-MH 1442.47 39.36 45.36 1481.83 1487.83 

77A-SL 1312.46 35.00 40.34 1347.46 1352.80 

77A-SH 1312.46 38.16 43.96 1350.62 1356.42 

77B-LL 1572.34 37.41 42.33 1609.75 1614.67 

77B-LH 1572.34 40.63 45.95 1612.97 1618.29 

77B-ML 1442.47 35.77 40.45 1478.24 1482.92 

77B-MH 1442.47 39.40 44.54 1481.87 1487.01 

77B-SL 1312.46 34.38 38.86 1346.84 1351.32 

77B-SH 1312.46 38.15 43.09 1350.61 1355.55 

77C-LL 1572.34 37.67 41.91 1610.01 1614.25 

77C-LH 1572.34 40.98 45.57 1613.32 1617.91 

77C-ML 1442.47 36.20 40.26 1478.67 1482.73 

77C-MH 1442.47 39.63 44.05 1482.10 1486.52 

77C-SL 1312.46 34.65 38.52 1347.11 1350.98 

77C-SH 1312.46 38.59 42.88 1351.05 1355.34 

77D-LL 1572.34 38.46 47.16 1610.80 1619.50 

77D-LH 1572.34 42.07 51.55 1614.41 1623.89 

77D-ML 1442.47 37.05 45.42 1479.52 1487.89 

77D-MH 1442.47 40.83 50.00 1483.30 1492.47 

77D-SL 1312.46 35.50 43.49 1347.96 1355.95 

77D-SH 1312.46 39.52 48.33 1351.98 1360.79 
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77E-LL 1572.34 37.32 41.85 1609.66 1614.19 

77E-LH 1572.34 40.09 44.93 1612.43 1617.27 

77E-ML 1442.47 35.73 40.05 1478.20 1482.52 

77E-MH 1442.47 38.78 43.45 1481.25 1485.92 

77E-SL 1312.46 34.07 38.18 1346.53 1350.64 

77E-SH 1312.46 37.46 41.94 1349.92 1354.40 

78A-LL 1572.34 37.97 46.49 1610.31 1618.83 

78A-LH 1572.34 40.35 49.36 1612.69 1621.70 

78A-ML 1442.47 36.04 44.10 1478.51 1486.57 

78A-MH 1442.47 38.95 47.63 1481.42 1490.10 

78A-SL 1312.46 34.41 42.09 1346.87 1354.55 

78A-SH 1312.46 37.80 46.19 1350.26 1358.65 

78B-LL 1572.34 37.38 42.90 1609.72 1615.24 

78B-LH 1572.34 39.48 45.29 1611.82 1617.63 

78B-ML 1442.47 35.65 40.91 1478.12 1483.38 

78B-MH 1442.47 38.23 43.84 1480.70 1486.31 

78B-SL 1312.46 33.95 38.95 1346.41 1351.41 

78B-SH 1312.46 36.98 42.37 1349.44 1354.83 

78C-LL 1572.34 38.97 44.02 1611.31 1616.36 

78C-LH 1572.34 41.58 46.95 1613.92 1619.29 

78C-ML 1442.47 37.11 41.90 1479.58 1484.37 

78C-MH 1442.47 40.24 45.41 1482.71 1487.88 

78C-SL 1312.46 35.36 39.92 1347.82 1352.38 

78C-SH 1312.46 38.88 43.86 1351.34 1356.32 

79-LL 628.70 44.95 45.32 673.65 674.02 

79-LH 628.70 56.89 57.61 685.59 686.31 

79-ML 576.96 43.83 44.22 620.79 621.18 

79-MH 576.96 55.36 56.10 632.32 633.06 

79-SL 530.94 43.87 44.31 574.81 575.25 

79-SH 530.94 53.89 54.67 584.83 585.61 

80A-LL 628.70 48.54 52.29 677.24 680.99 

80A-LH 628.70 50.89 54.81 679.59 683.51 

80A-ML 576.96 46.43 50.01 623.39 626.97 

80A-MH 576.96 49.31 53.10 626.27 630.06 

80A-SL 530.94 44.18 47.58 575.12 578.52 

80A-SH 530.94 47.90 51.57 578.84 582.51 

80B-LL 628.70 40.81 47.39 669.51 676.09 
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80B-LH 628.70 42.38 49.19 671.08 677.89 

80B-ML 576.96 38.99 45.26 615.95 622.22 

80B-MH 576.96 41.16 47.75 618.12 624.71 

80B-SL 530.94 37.23 43.21 568.17 574.15 

80B-SH 530.94 39.93 46.31 570.87 577.25 

81A-LL 1572.34 37.65 43.88 1609.99 1616.22 

81A-LH 1572.34 40.15 46.77 1612.49 1619.11 

81A-ML 1442.47 36.02 41.96 1478.49 1484.43 

81A-MH 1442.47 38.92 45.32 1481.39 1487.79 

81A-SL 1312.46 34.39 40.06 1346.85 1352.52 

81A-SH 1312.46 37.83 44.02 1350.29 1356.48 

81B-LL 1572.34 39.45 41.16 1611.79 1613.50 

81B-LH 1572.34 42.43 44.26 1614.77 1616.60 

81B-ML 1442.47 37.71 39.34 1480.18 1481.81 

81B-MH 1442.47 41.21 42.98 1483.68 1485.45 

81B-SL 1312.46 35.92 37.48 1348.38 1349.94 

81B-SH 1312.46 39.79 41.50 1352.25 1353.96 

81C-LL 1572.34 40.52 40.94 1612.86 1613.28 

81C-LH 1572.34 44.79 45.26 1617.13 1617.60 

81C-ML 1442.47 38.96 39.37 1481.43 1481.84 

81C-MH 1442.47 43.36 43.82 1485.83 1486.29 

81C-SL 1312.46 37.21 37.60 1349.67 1350.06 

81C-SH 1312.46 41.79 42.23 1354.25 1354.69 

81D-LL 1572.34 49.61 54.15 1621.95 1626.49 

81D-LH 1572.34 55.19 60.15 1627.53 1632.49 

81D-ML 1442.47 48.50 52.93 1490.97 1495.40 

81D-MH 1442.47 53.60 58.38 1496.07 1500.85 

81D-SL 1312.46 47.20 51.48 1359.66 1363.94 

81D-SH 1312.46 51.81 56.39 1364.27 1368.85 

82A-LL 1572.34 37.41 42.30 1609.75 1614.64 

82A-LH 1572.34 39.40 44.52 1611.74 1616.86 

82A-ML 1442.47 35.58 40.22 1478.05 1482.69 

82A-MH 1442.47 38.09 43.04 1480.56 1485.51 

82A-SL 1312.46 33.79 38.19 1346.25 1350.65 

82A-SH 1312.46 36.98 41.77 1349.44 1354.23 

82B-LL 628.43 52.24 58.12 680.67 686.55 

82B-LH 628.43 54.32 60.42 682.75 688.85 
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82B-ML 576.96 50.00 55.62 626.96 632.58 

82B-MH 576.96 52.76 58.68 629.72 635.64 

82B-SL 530.81 47.64 52.98 578.45 583.79 

82B-SH 530.81 51.18 56.89 581.99 587.70 

83A-LL 628.70 40.01 43.49 668.71 672.19 

83A-LH 628.70 42.39 46.07 671.09 674.77 

83A-ML 576.96 38.36 41.70 615.32 618.66 

83A-MH 576.96 41.06 44.62 618.02 621.58 

83A-SL 530.94 36.78 39.98 567.72 570.92 

83A-SH 530.94 40.00 43.46 570.94 574.40 

83B-LL 628.70 40.79 46.32 669.49 675.02 

83B-LH 628.70 40.85 46.37 669.55 675.07 

83B-ML 576.96 38.78 44.03 615.74 620.99 

83B-MH 576.96 39.48 44.81 616.44 621.77 

83B-SL 530.94 36.70 41.67 567.64 572.61 

83B-SH 530.94 38.32 43.49 569.26 574.43 

83C-LL 628.70 43.17 43.21 671.87 671.91 

83C-LH 628.70 42.78 42.81 671.48 671.51 

83C-ML 576.96 40.95 40.99 617.91 617.95 

83C-MH 576.96 41.34 41.38 618.30 618.34 

83C-SL 530.94 38.65 38.69 569.59 569.63 

83C-SH 530.94 40.00 40.04 570.94 570.98 

83D-LL 628.70 41.51 42.99 670.21 671.69 

83D-LH 628.70 40.64 42.09 669.34 670.79 

83D-ML 576.96 39.39 40.79 616.35 617.75 

83D-MH 576.96 38.84 40.22 615.80 617.18 

83D-SL 530.94 37.10 38.42 568.04 569.36 

83D-SH 530.94 37.37 38.70 568.31 569.64 

83E-LL 628.70 42.19 46.61 670.89 675.31 

83E-LH 628.70 42.04 46.43 670.74 675.13 

83E-ML 576.96 40.19 44.39 617.15 621.35 

83E-MH 576.96 40.46 44.68 617.42 621.64 

83E-SL 530.94 37.89 41.85 568.83 572.79 

83E-SH 530.94 39.31 43.40 570.25 574.34 

84A-LL 628.70 50.68 55.87 679.38 684.57 

84A-LH 628.70 55.69 61.37 684.39 690.07 

84A-ML 576.96 48.81 53.79 625.77 630.75 
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84A-MH 576.96 53.93 59.42 630.89 636.38 

84A-SL 530.94 46.92 51.70 577.86 582.64 

84A-SH 530.94 52.09 57.35 583.03 588.29 

84B-LL 628.70 44.68 49.34 673.38 678.04 

84B-LH 628.70 50.47 55.61 679.17 684.31 

84B-ML 576.96 43.59 48.11 620.55 625.07 

84B-MH 576.96 49.04 53.99 626.00 630.95 

84B-SL 530.94 42.36 46.71 573.30 577.65 

84B-SH 530.94 47.37 52.10 578.31 583.04 

84C-LL 628.70 41.95 43.84 670.65 672.54 

84C-LH 628.70 45.16 47.19 673.86 675.89 

84C-ML 576.96 40.44 42.26 617.40 619.22 

84C-MH 576.96 43.90 45.87 620.86 622.83 

84C-SL 530.94 38.70 40.44 569.64 571.38 

84C-SH 530.94 42.54 44.44 573.48 575.38 

85-LL 628.70 43.65 45.18 672.35 673.88 

85-LH 628.70 48.73 50.43 677.43 679.13 

85-ML 576.96 42.17 43.65 619.13 620.61 

85-MH 576.96 47.23 48.87 624.19 625.83 

85-SL 530.94 40.87 42.29 571.81 573.23 

85-SH 530.94 45.46 47.02 576.40 577.96 

86A-LL 628.70 41.24 42.25 669.94 670.95 

86A-LH 628.70 45.14 46.25 673.84 674.95 

86A-ML 576.96 39.62 40.59 616.58 617.55 

86A-MH 576.96 43.88 44.95 620.84 621.91 

86A-SL 530.94 38.05 38.98 568.99 569.92 

86A-SH 530.94 42.35 43.38 573.29 574.32 

86B-LL 628.70 45.68 46.80 674.38 675.50 

86B-LH 628.70 51.36 52.61 680.06 681.31 

86B-ML 576.96 44.48 45.56 621.44 622.52 

86B-MH 576.96 50.07 51.29 627.03 628.25 

86B-SL 530.94 43.15 44.19 574.09 575.13 

86B-SH 530.94 48.64 49.83 579.58 580.77 

87A-LL 628.70 43.94 45.76 672.64 674.46 

87A-LH 628.70 50.17 52.25 678.87 680.95 

87A-ML 576.96 42.51 44.27 619.47 621.23 

87A-MH 576.96 48.81 50.83 625.77 627.79 
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87A-SL 530.94 41.76 43.49 572.70 574.43 

87A-SH 530.94 47.33 49.29 578.27 580.23 

87B-LL 243.26 50.02 52.96 293.28 296.22 

87B-LH 243.26 61.53 65.15 304.79 308.41 

87B-ML 224.04 49.42 52.32 273.46 276.36 

87B-MH 224.04 60.78 64.34 284.82 288.38 

87B-SL 204.69 48.90 51.77 253.59 256.46 

87B-SH 204.69 58.75 62.20 263.44 266.89 

LL- large body weight, low lactation, LH- large body weight, high lactation, ML- moderate 

body weight, low lactation, MH- moderate body weight, high lactation, SL- small body weight, 

low lactation, SH- small body weight, high lactation 
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Table A.2 

 

Irrigation estimates for diets formulated with corn and sorghum for a 100-head cow-calf herd 

with various genetic potential for mature weight and peak lactation in the Great Plains 

(Megaliters) 

MLRA 
Irrigation for corn 

diets 

Irrigation for sorghum 

diets 

102A-LL 15.88 35.88 

102A-LH 16.67 37.65 

102A-ML 15.22 34.38 

102A-MH 16.00 36.14 

102A-SL 14.49 32.73 

102A-SH 15.38 34.74 

102B-LL 13.31 80.45 

102B-LH 13.93 84.21 

102B-ML 12.76 77.13 

102B-MH 13.47 81.46 

102B-SL 12.24 73.99 

102B-SH 12.91 78.06 

102C-LL 13.43 24.79 

102C-LH 14.04 25.92 

102C-ML 12.76 23.56 

102C-MH 13.48 24.89 

102C-SL 12.11 22.35 

102C-SH 12.91 23.83 

106-LL 14.33 18.6 

106-LH 15.2 19.72 

106-ML 13.91 18.06 

106-MH 14.84 19.26 

106-SL 13.44 17.44 

106-SH 14.37 18.65 
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112-LL 14.18 19.31 

112-LH 14.78 20.13 

112-ML 13.90 18.93 

112-MH 14.51 19.77 

112-SL 13.56 18.47 

112-SH 14.21 19.36 

116A-LL 14.96 29.99 

116A-LH 15.65 31.37 

116A-ML 14.52 29.11 

116A-MH 15.31 30.69 

116A-SL 13.97 28.00 

116A-SH 14.91 29.89 

116B-LL 15.52 24.80 

116B-LH 16.16 25.83 

116B-ML 14.99 23.96 

116B-MH 15.75 25.17 

116B-SL 14.38 22.97 

116B-SH 15.31 24.47 

117-LL 15.43 53.89 

117-LH 16.26 56.79 

117-ML 14.93 52.17 

117-MH 15.86 55.4 

117-SL 14.39 50.26 

117-SH 15.47 54.05 

118A-LL 18.33 34.24 

118A-LH 20.41 38.14 

118A-ML 17.68 33.02 

118A-MH 19.72 36.84 

118A-SL 17.03 31.82 
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118A-SH 19.13 35.74 

118B-LL 17.49 32.85 

118B-LH 18.47 34.69 

118B-ML 16.89 31.73 

118B-MH 17.93 33.69 

118B-SL 16.24 30.51 

118B-SH 17.49 32.85 

119-LL 15.64 33.16 

119-LH 19.33 40.97 

119-ML 15.40 32.65 

119-MH 18.90 40.08 

119-SL 15.39 32.64 

119-SH 18.27 38.72 

133B-LL 12.28 22.63 

133B-LH 14.92 27.49 

133B-ML 11.87 21.88 

133B-MH 14.35 26.45 

133B-SL 11.99 22.10 

133B-SH 13.72 25.29 

135B-LL 14.05 34.68 

135B-LH 17.59 43.41 

135B-ML 13.88 34.26 

135B-MH 17.23 42.51 

135B-SL 13.65 33.68 

135B-SH 16.45 40.59 

150A-LL 9.51 15.03 

150A-LH 9.88 15.61 

150A-ML 8.99 14.21 

150A-MH 9.61 15.18 
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150A-SL 8.61 13.6 

150A-SH 9.36 14.78 

150B-LL 14.84 20.45 

150B-LH 16.35 22.53 

150B-ML 14.43 19.88 

150B-MH 16.03 22.09 

150B-SL 14.02 19.32 

150B-SH 15.64 21.56 

152B-LL 20.07 18.45 

152B-LH 24.52 22.54 

152B-ML 19.81 18.21 

152B-MH 23.86 21.94 

152B-SL 19.57 17.99 

152B-SH 22.96 21.11 

42-LL 13.04 30.09 

42-LH 14.52 33.50 

42-ML 12.77 29.46 

42-MH 13.93 32.14 

42-SL 12.25 28.26 

42-SH 13.33 30.77 

53A-LL 66.92 66.92 

53A-LH 64.94 64.94 

53A-ML 63.01 63.01 

53A-MH 61.13 61.13 

53A-SL 58.81 58.81 

53A-SH 57.84 57.84 

53B-LL 85.36 85.36 

53B-LH 92.77 92.77 

53B-ML 81.68 81.68 
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53B-MH 89.49 89.49 

53B-SL 78.24 78.24 

53B-SH 85.63 85.63 

53C-LL 91.05 91.05 

53C-LH 99.81 99.81 

53C-ML 87.62 87.62 

53C-MH 96.73 96.73 

53C-SL 83.74 83.74 

53C-SH 93.19 93.19 

54-LL 69.01 69.01 

54-LH 75.47 75.47 

54-ML 65.85 65.85 

54-MH 73.38 73.38 

54-SL 64.03 64.03 

54-SH 70.91 70.91 

55A-LL 19.97 29.74 

55A-LH 21.01 31.29 

55A-ML 19.33 28.80 

55A-MH 20.41 30.40 

55A-SL 18.72 27.89 

55A-SH 19.85 29.57 

55B-LL 19.35 39.60 

55B-LH 20.14 41.22 

55B-ML 18.34 37.54 

55B-MH 19.37 39.64 

55B-SL 17.28 35.38 

55B-SH 18.43 37.73 

55C-LL 18.07 27.25 

55C-LH 18.94 28.58 
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55C-ML 17.61 26.57 

55C-MH 18.51 27.93 

55C-SL 17.08 25.77 

55C-SH 18.04 27.21 

56-LL 16.45 34.02 

56-LH 17.32 35.83 

56-ML 15.69 32.46 

56-MH 16.67 34.48 

56-SL 14.97 30.96 

56-SH 15.91 32.91 

58C-LL 96.88 96.88 

58C-LH 111.55 111.55 

58C-ML 93.51 93.51 

58C-MH 107.02 107.02 

58C-SL 89.51 89.51 

58C-SH 102.00 102.00 

58D-LL 123.26 123.26 

58D-LH 139.11 139.11 

58D-ML 117.91 117.91 

58D-MH 133.72 133.72 

58D-SL 114.49 114.49 

58D-SH 128.81 128.81 

60A-LL 18.06 18.06 

60A-LH 20.29 20.29 

60A-ML 17.28 17.28 

60A-MH 19.51 19.51 

60A-SL 16.75 16.75 

60A-SH 18.85 18.85 

61-LL 76.43 76.43 
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61-LH 83.13 83.13 

61-ML 73.25 73.25 

61-MH 80.83 80.83 

61-SL 70.20 70.20 

61-SH 78.42 78.42 

62-LL 63.75 63.75 

62-LH 71.29 71.29 

62-ML 61.12 61.12 

62-MH 68.9 68.9 

62-SL 59.42 59.42 

62-SH 66.74 66.74 

63A-LL 138.25 138.25 

63A-LH 157.71 157.71 

63A-ML 133.25 133.25 

63A-MH 152.20 152.20 

63A-SL 128.72 128.72 

63A-SH 146.27 146.27 

63B-LL 83.59 83.59 

63B-LH 91.31 91.31 

63B-ML 80.19 80.19 

63B-MH 88.37 88.37 

63B-SL 76.83 76.83 

63B-SH 84.86 84.86 

64-LL 36.90 36.90 

64-LH 40.98 40.98 

64-ML 35.53 35.53 

64-MH 39.67 39.67 

64-SL 34.22 34.22 

64-SH 38.43 38.43 
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65-LL 65.67 66.62 

65-LH 72.91 74.93 

65-ML 63.39 64.45 

65-MH 69.74 71.95 

65-SL 59.72 60.92 

65-SH 65.91 68.31 

66-LL 77.66 78.36 

66-LH 83.29 84.76 

66-ML 73.46 74.23 

66-MH 79.53 81.15 

66-SL 70.31 71.22 

66-SH 75.19 76.97 

67A-LL 30.55 31.52 

67A-LH 33.37 35.44 

67A-ML 28.94 30.08 

67A-MH 31.67 33.99 

67A-SL 27.46 28.82 

67A-SH 29.80 32.42 

70A-LL 6.21 22.54 

70A-LH 6.78 24.64 

70A-ML 5.96 21.63 

70A-MH 6.54 23.74 

70A-SL 5.70 20.70 

70A-SH 6.26 22.73 

70B-LL 9.42 47.35 

70B-LH 10.4 52.29 

70B-ML 9.08 45.68 

70B-MH 10.01 50.35 

70B-SL 8.72 43.84 
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70B-SH 9.59 48.21 

71-LL 30.97 31.54 

71-LH 33.97 35.15 

71-ML 29.66 30.31 

71-MH 32.40 33.73 

71-SL 28.36 29.12 

71-SH 30.89 32.38 

72-LL 27.87 28.43 

72-LH 30.27 31.20 

72-ML 26.63 27.27 

72-MH 28.81 29.87 

72-SL 25.40 26.15 

72-SH 27.17 28.38 

73-LL 39.81 39.87 

73-LH 42.76 42.86 

73-ML 37.96 38.03 

73-MH 41.05 41.17 

73-SL 36.31 36.39 

73-SH 39.25 39.38 

74-LL 37.13 37.38 

74-LH 40.47 40.92 

74-ML 35.56 35.84 

74-MH 38.43 38.93 

74-SL 34.09 34.42 

74-SH 36.30 36.87 

75-LL 28.59 28.90 

75-LH 31.27 31.82 

75-ML 27.44 27.78 

75-MH 29.95 30.58 
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75-SL 26.41 26.78 

75-SH 28.60 29.32 

76-LL 42.96 43.18 

76-LH 46.10 46.53 

76-ML 41.47 41.73 

76-MH 43.83 44.31 

76-SL 39.79 40.09 

76-SH 41.87 42.42 

77A-LL 9.61 35.32 

77A-LH 10.08 37.03 

77A-ML 9.14 33.58 

77A-MH 9.74 35.8 

77A-SL 8.67 31.86 

77A-SH 9.41 34.55 

77B-LL 5.88 24.97 

77B-LH 6.37 27.01 

77B-ML 5.61 23.80 

77B-MH 6.15 26.08 

77B-SL 5.37 22.80 

77B-SH 5.91 25.07 

77C-LL 8.10 24.95 

77C-LH 8.77 27.04 

77C-ML 7.76 23.90 

77C-MH 8.46 26.07 

77C-SL 7.40 22.82 

77C-SH 8.18 25.22 

77D-LL 11.32 54.43 

77D-LH 12.33 59.27 

77D-ML 10.87 52.27 
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77D-MH 11.92 57.3 

77D-SL 10.39 49.94 

77D-SH 11.45 55.05 

77E-LL 5.35 22.49 

77E-LH 5.73 24.06 

77E-ML 5.11 21.47 

77E-MH 5.52 23.20 

77E-SL 4.86 20.42 

77E-SH 5.30 22.29 

78A-LL 10.28 43.84 

78A-LH 10.88 46.42 

78A-ML 9.73 41.52 

78A-MH 10.48 44.70 

78A-SL 9.27 39.55 

78A-SH 10.13 43.22 

78B-LL 7.68 28.17 

78B-LH 8.07 29.62 

78B-ML 7.31 26.82 

78B-MH 7.79 28.60 

78B-SL 6.94 25.47 

78B-SH 7.50 27.52 

78C-LL 14.31 32.25 

78C-LH 15.21 34.27 

78C-ML 13.59 30.63 

78C-MH 14.68 33.08 

78C-SL 12.93 29.13 

78C-SH 14.12 31.81 

79-LL 35.89 37.12 

79-LH 40.92 43.32 



230 

 

 

79-ML 34.37 35.68 

79-MH 38.99 41.47 

79-SL 33.56 35.03 

79-SH 37.16 39.73 

80A-LL 14.13 28.34 

80A-LH 14.76 29.60 

80A-ML 13.49 27.05 

80A-MH 14.27 28.61 

80A-SL 12.80 25.66 

80A-SH 13.81 27.70 

80B-LL 14.33 40.02 

80B-LH 14.83 41.43 

80B-ML 13.66 38.16 

80B-MH 14.37 40.15 

80B-SL 13.02 36.35 

80B-SH 13.91 38.86 

81A-LL 10.62 39.02 

81A-LH 11.28 41.46 

81A-ML 10.13 37.25 

81A-MH 10.91 40.08 

81A-SL 9.66 35.49 

81A-SH 10.55 38.78 

81B-LL 19.77 26.70 

81B-LH 21.18 28.61 

81B-ML 18.85 25.46 

81B-MH 20.52 27.72 

81B-SL 17.92 24.21 

81B-SH 19.73 26.65 

81C-LL 18.77 22.47 



231 

 

 

81C-LH 20.67 24.74 

81C-ML 18.00 21.54 

81C-MH 19.95 23.88 

81C-SL 17.16 20.54 

81C-SH 19.11 22.88 

81D-LL 12.40 37.41 

81D-LH 13.54 40.84 

81D-ML 12.08 36.44 

81D-MH 13.04 39.35 

81D-SL 11.69 35.28 

81D-SH 12.51 37.73 

82A-LL 10.22 30.67 

82A-LH 10.72 32.16 

82A-ML 9.70 29.11 

82A-MH 10.34 31.03 

82A-SL 9.20 27.59 

82A-SH 10.01 30.02 

82B-LL 18.75 43.91 

82B-LH 19.42 45.49 

82B-ML 17.91 41.93 

82B-MH 18.83 44.10 

82B-SL 17.02 39.86 

82B-SH 18.20 42.63 

83A-LL 17.59 32.50 

83A-LH 18.58 34.33 

83A-ML 16.84 31.12 

83A-MH 17.96 33.18 

83A-SL 16.11 29.77 

83A-SH 17.47 32.27 
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83B-LL 18.09 49.96 

83B-LH 18.07 49.91 

83B-ML 17.18 47.46 

83B-MH 17.44 48.17 

83B-SL 16.24 44.87 

83B-SH 16.90 46.70 

83C-LL 26.58 30.22 

83C-LH 26.28 29.88 

83C-ML 25.19 28.65 

83C-MH 25.36 28.84 

83C-SL 23.75 27.01 

83C-SH 24.51 27.87 

83D-LL 22.48 32.17 

83D-LH 21.97 31.45 

83D-ML 21.32 30.52 

83D-MH 20.98 30.03 

83D-SL 20.07 28.73 

83D-SH 20.17 28.87 

83E-LL 22.43 47.79 

83E-LH 22.30 47.51 

83E-ML 21.35 45.49 

83E-MH 21.44 45.68 

83E-SL 20.11 42.84 

83E-SH 20.80 44.33 

84A-LL 11.75 29.79 

84A-LH 12.86 32.60 

84A-ML 11.29 28.61 

84A-MH 12.41 31.46 

84A-SL 10.82 27.43 
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84A-SH 11.91 30.19 

84B-LL 18.57 39.30 

84B-LH 20.49 43.36 

84B-ML 18.01 38.11 

84B-MH 19.72 41.74 

84B-SL 17.36 36.74 

84B-SH 18.87 39.93 

84C-LL 18.09 25.13 

84C-LH 19.41 26.96 

84C-ML 17.40 24.16 

84C-MH 18.83 26.15 

84C-SL 16.62 23.08 

84C-SH 18.19 25.26 

85-LL 14.36 21.45 

85-LH 15.91 23.77 

85-ML 13.83 20.66 

85-MH 15.34 22.92 

85-SL 13.36 19.96 

85-SH 14.63 21.85 

86A-LL 14.84 19.36 

86A-LH 16.18 21.11 

86A-ML 14.22 18.55 

86A-MH 15.69 20.46 

86A-SL 13.62 17.77 

86A-SH 15.07 19.66 

86B-LL 20.62 24.63 

86B-LH 23.18 27.69 

86B-ML 20.08 23.98 

86B-MH 22.60 27.00 
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86B-SL 19.48 23.26 

86B-SH 21.96 26.23 

87A-LL 12.21 20.32 

87A-LH 13.94 23.20 

87A-ML 11.81 19.66 

87A-MH 13.56 22.57 

87A-SL 11.60 19.31 

87A-SH 13.15 21.88 

87B-LL 11.91 19.42 

87B-LH 14.65 23.89 

87B-ML 11.77 19.18 

87B-MH 14.47 23.59 

87B-SL 11.64 18.98 

87B-SH 13.99 22.81 

LL- large body weight, low lactation, LH- large body weight, high lactation, ML- moderate 

body weight, low lactation, MH- moderate body weight, high lactation, SL- small body weight, 

low lactation, SH- small body weight, high lactation 
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Table A.4 

 

Estimates of fertilizer application rates for corn and sorghum-based diets for a 100-head cow-

calf herd with various genetic potentials for mature weight and peak lactation in the Great 

Plains (kilograms per year) 

 

 Corn-based diets Sorghum-based diets 

MLRA Nitrogen Phosphorus Potassium Nitrogen Phosphorus Potassium 

102A-LL 18321 37079 65830 18345 37138 65630 

102A-LH 18498 37470 66521 18524 37532 66311 

102A-ML 16693 33823 60045 16717 33880 59853 

102A-MH 16870 34213 60733 16895 34272 60531 

102A-SL 15045 30522 54180 15067 30575 53997 

102A-SH 15247 30967 54966 15270 31024 54771 

102B-LL 19342 35320 62708 19365 35376 62519 

102B-LH 19501 35608 63216 19525 35667 63019 

102B-ML 17602 32141 57060 17624 32195 56879 

102B-MH 17785 32474 57646 17808 32530 57455 

102B-SL 15863 28963 51414 15884 29014 51240 

102B-SH 16034 29276 51965 16056 29330 51781 

102C-LL 17634 35595 63187 17659 35656 62978 

102C-LH 17804 35888 63704 17831 35952 63486 

102C-ML 16055 32351 57424 16079 32409 57226 

102C-MH 16256 32696 58033 16281 32757 57823 

102C-SL 14473 29099 51649 14496 29155 51461 

102C-SH 14697 29484 52327 14721 29543 52126 

106-LL 16817 31265 55502 16839 31318 55321 

106-LH 17014 31693 56259 17037 31750 56068 

106-ML 15651 29149 51744 15672 29201 51569 

106-MH 15860 29605 52549 15883 29660 52362 

106-SL 14463 26989 47906 14483 27039 47736 

106-SH 14674 27448 48717 14695 27501 48536 

112-LL 17278 30195 53608 17297 30244 53443 

112-LH 17402 30448 54054 17423 30499 53882 

112-ML 16088 28166 50002 16108 28214 49840 

112-MH 16216 28425 50458 16236 28474 50290 
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112-SL 14877 26096 46324 14897 26143 46166 

112-SH 15014 26374 46813 15034 26422 46648 

116A-LL 18045 30402 53957 18019 30401 53672 

116A-LH 18217 30688 54462 18190 30688 54164 

116A-ML 16804 28308 50237 16779 28307 49960 

116A-MH 17001 28635 50814 16975 28635 50522 

116A-SL 15528 26154 46412 15504 26154 46146 

116A-SH 15762 26544 47099 15736 26543 46815 

116B-LL 18095 31031 55074 18068 31030 54785 

116B-LH 18251 31313 55571 18223 31312 55271 

116B-ML 16835 28886 51264 16809 28886 50985 

116B-MH 17020 29221 51855 16993 29220 51562 

116B-SL 15546 26690 47364 15522 26690 47096 

116B-SH 15773 27101 48090 15747 27101 47805 

117-LL 18025 31903 56626 17999 31903 56343 

117-LH 18225 32317 57358 18197 32317 57060 

117-ML 16776 29745 52793 16751 29745 52519 

117-MH 16997 30206 53607 16971 30206 53316 

117-SL 15505 27547 48889 15481 27547 48625 

117-SH 15765 28089 49845 15740 28088 49561 

118A-LL 17915 31296 55550 17890 31295 55275 

118A-LH 18324 32104 56976 18296 32103 56670 

118A-ML 16656 29132 51707 16632 29132 51441 

118A-MH 17057 29923 53103 17030 29923 52807 

118A-SL 15391 26958 47844 15367 26957 47588 

118A-SH 15802 27771 49279 15776 27770 48992 

118B-LL 18453 30574 54275 18431 30574 54027 

118B-LH 18639 30950 54938 18615 30949 54676 

118B-ML 17140 28450 50501 17118 28450 50261 

118B-MH 17338 28852 51211 17315 28851 50957 

118B-SL 15810 26296 46676 15789 26296 46445 

118B-SH 16047 26777 47524 16025 26776 47276 

119-LL 18469 30528 54196 18447 30528 53955 

119-LH 19211 32019 56829 19184 32019 56531 
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119-ML 17209 28518 50623 17188 28518 50386 

119-MH 17916 29936 53128 17889 29936 52836 

119-SL 15990 26592 47199 15969 26591 46961 

119-SH 16569 27754 49250 16543 27753 48969 

133B-LL 14935 30387 53932 14909 30387 53649 

133B-LH 15730 31717 56277 15698 31717 55933 

133B-ML 13925 28271 50172 13900 28270 49899 

133B-MH 14671 29519 52374 14641 29519 52043 

133B-SL 13067 26406 46856 13042 26405 46579 

133B-SH 13588 27278 48395 13560 27278 48078 

135B-LL 17350 29803 52905 17328 29803 52659 

135B-LH 18160 31214 55394 18132 31214 55086 

135B-ML 16195 27824 49388 16173 27824 49145 

135B-MH 16960 29158 51740 16933 29157 51439 

135B-SL 15016 25805 45799 14994 25804 45560 

135B-SH 15658 26923 47771 15632 26922 47483 

150A-LL 26512 29010 51504 26492 29010 51284 

150A-LH 26623 29195 51830 26602 29195 51602 

150A-ML 24487 26835 47640 24468 26834 47432 

150A-MH 24672 27145 48187 24652 27145 47965 

150A-SL 22491 24717 43878 22473 24716 43679 

150A-SH 22717 25094 44543 22697 25094 44327 

150B-LL 21143 29293 52003 21122 29293 51771 

150B-LH 21452 29811 52915 21429 29810 52659 

150B-ML 19629 27240 48354 19608 27240 48128 

150B-MH 19957 27790 49325 19934 27790 49073 

150B-SL 18106 25176 44687 18086 25175 44467 

150B-SH 18438 25733 45670 18416 25733 45425 

152B-LL 16575 29879 53036 16552 29879 52777 

152B-LH 17326 31137 55254 17297 31137 54937 

152B-ML 15490 27893 49507 15466 27893 49251 

152B-MH 16174 29040 51528 16146 29039 51220 

152B-SL 14400 25899 45963 14377 25899 45710 

152B-SH 14973 26859 47655 14945 26859 47359 
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42-LL 28739 160544 285346 28720 160543 285142 

42-LH 29121 161135 286391 29101 161135 286164 

42-ML 26550 147568 262280 26532 147568 262080 

42-MH 26870 148064 263156 26850 148064 262938 

42-SL 24309 134501 239052 24291 134501 238861 

42-SH 24615 134977 239894 24596 134977 239685 

53A-LL 27307 1830220 5400426 27307 1830220 5400426 

53A-LH 27248 1778208 5244588 27248 1778208 5244588 

53A-ML 25086 1721574 5081829 25086 1721574 5081829 

53A-MH 25030 1672133 4933693 25030 1672133 4933693 

53A-SL 22861 1605467 4740863 22861 1605467 4740863 

53A-SH 22831 1579751 4663810 22831 1579751 4663810 

53B-LL 13229 2521534 7514865 13229 2521534 7514865 

53B-LH 13456 2737500 8161907 13456 2737500 8161907 

53B-ML 12342 2411917 7189348 12342 2411917 7189348 

53B-MH 12582 2639728 7871879 12582 2639728 7871879 

53B-SL 11458 2309227 6884601 11458 2309227 6884601 

53B-SH 11685 2524755 7530334 11685 2524755 7530334 

53C-LL 15941 2282433 6797837 15941 2282433 6797837 

53C-LH 16238 2498800 7446018 16238 2498800 7446018 

53C-ML 14887 2195178 6539344 14887 2195178 6539344 

53C-MH 15195 2420175 7213379 15195 2420175 7213379 

53C-SL 13812 2096987 6248104 13812 2096987 6248104 

53C-SH 14132 2330359 6947229 14132 2330359 6947229 

54-LL 19671 1890903 5582028 19671 1890903 5582028 

54-LH 19815 2061670 6093668 19815 2061670 6093668 

54-ML 18093 1801888 5322260 18093 1801888 5322260 

54-MH 18260 2000754 5918087 18260 2000754 5918087 

54-SL 16547 1748025 5167795 16547 1748025 5167795 

54-SH 16700 1929733 5712214 16700 1929733 5712214 

55A-LL 18767 40329 71609 18791 40387 71412 

55A-LH 18951 40730 72318 18977 40791 72110 

55A-ML 17544 37704 66945 17567 37760 66754 

55A-MH 17734 38118 67676 17758 38177 67475 
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55A-SL 16318 35074 62273 16341 35129 62088 

55A-SH 16518 35508 63038 16541 35565 62842 

55B-LL 16072 37285 66186 16099 37350 65964 

55B-LH 16235 37617 66773 16263 37685 66542 

55B-ML 14652 33937 60240 14678 33999 60030 

55B-MH 14864 34369 61003 14891 34435 60781 

55B-SL 13217 30556 54234 13241 30614 54036 

55B-SH 13453 31039 55087 13479 31101 54875 

55C-LL 18113 38410 68202 18136 38465 68015 

55C-LH 18277 38691 68698 18300 38749 68501 

55C-ML 16953 35884 63714 16975 35938 63531 

55C-MH 17120 36172 64221 17143 36228 64029 

55C-SL 15772 33321 59159 15794 33373 58982 

55C-SH 15950 33626 59697 15972 33681 59510 

56-LL 19715 36013 63936 19738 36071 63738 

56-LH 19902 36377 64578 19927 36438 64370 

56-ML 17930 32775 58183 17953 32830 57994 

56-MH 18140 33181 58900 18164 33240 58700 

56-SL 16144 29534 52425 16165 29587 52246 

56-SH 16346 29926 53117 16369 29982 52926 

58C-LL 13129 2238798 6623412 13129 2238798 6623412 

58C-LH 13329 2567467 7607997 13329 2567467 7607997 

58C-ML 12101 2157802 6387701 12101 2157802 6387701 

58C-MH 12285 2460279 7293823 12285 2460279 7293823 

58C-SL 11067 2062439 6108936 11067 2062439 6108936 

58C-SH 11237 2342202 6947017 11237 2342202 6947017 

58D-LL 17152 2038571 6021728 17152 2038571 6021728 

58D-LH 17395 2291877 6780310 17395 2291877 6780310 

58D-ML 15801 1947420 5755678 15801 1947420 5755678 

58D-MH 16044 2200128 6512471 16044 2200128 6512471 

58D-SL 14482 1886956 5581512 14482 1886956 5581512 

58D-SH 14702 2115949 6267284 14702 2115949 6267284 

60A-LL 16890 2031881 6003691 16890 2031881 6003691 

60A-LH 17079 2274784 6731367 17079 2274784 6731367 
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60A-ML 15546 1941455 5739728 15546 1941455 5739728 

60A-MH 15737 2184928 6469111 15737 2184928 6469111 

60A-SL 14227 1878439 5557861 14227 1878439 5557861 

60A-SH 14406 2106996 6242558 14406 2106996 6242558 

61-LL 22925 1754313 5171099 22925 1754313 5171099 

61-LH 23105 1902281 5614280 23105 1902281 5614280 

61-ML 21104 1678641 4951378 21104 1678641 4951378 

61-MH 21308 1845749 5451887 21308 1845749 5451887 

61-SL 19290 1605570 4739432 19290 1605570 4739432 

61-SH 19511 1786860 5282417 19511 1786860 5282417 

62-LL 21425 1792289 5284854 21425 1792289 5284854 

62-LH 21657 1996194 5895574 21657 1996194 5895574 

62-ML 19726 1715571 5061998 19726 1715571 5061998 

62-MH 19964 1925879 5691896 19964 1925879 5691896 

62-SL 18058 1663751 4913701 18058 1663751 4913701 

62-SH 18283 1861681 5506526 18283 1861681 5506526 

63A-LL 12485 2392915 7127738 12485 2392915 7127738 

63A-LH 12868 2725154 8122891 12868 2725154 8122891 

63A-ML 11675 2305153 6867764 11675 2305153 6867764 

63A-MH 12048 2628693 7836860 12048 2628693 7836860 

63A-SL 10869 2225484 6632047 10869 2225484 6632047 

63A-SH 11215 2525161 7529666 11215 2525161 7529666 

63B-LL 13691 2399194 7148201 13691 2399194 7148201 

63B-LH 13934 2617847 7803284 13934 2617847 7803284 

63B-ML 12777 2300560 6855597 12777 2300560 6855597 

63B-MH 13034 2532302 7549894 13034 2532302 7549894 

63B-SL 11860 2202986 6566182 11860 2202986 6566182 

63B-SH 12112 2430415 7247558 12112 2430415 7247558 

64-LL 19784 1869732 5517691 19784 1869732 5517691 

64-LH 19973 2068852 6114178 19973 2068852 6114178 

64-ML 18217 1796893 5306421 18217 1796893 5306421 

64-MH 18409 1999076 5912082 18409 1999076 5912082 

64-SL 16657 1727297 5104853 16657 1727297 5104853 

64-SH 16852 1932749 5720307 16852 1932749 5720307 
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65-LL 14674 2048119 6093429 14673 2048119 6093417 

65-LH 15272 2253226 6706731 15270 2253226 6706706 

65-ML 13763 1973060 5871422 13762 1973060 5871409 

65-MH 14341 2149281 6398145 14339 2149281 6398118 

65-SL 12791 1854649 5519575 12790 1854649 5519560 

65-SH 13376 2024913 6028402 13374 2024913 6028372 

66-LL 14380 2170730 6461774 14379 2170730 6461764 

66-LH 14793 2309873 6877808 14791 2309873 6877786 

66-ML 13419 2050054 6103124 13418 2050054 6103113 

66-MH 13870 2199552 6550096 13867 2199552 6550072 

66-SL 12507 1957547 5828812 12506 1957547 5828799 

66-SH 12920 2073617 6175637 12917 2073617 6175611 

67A-LL 13322 2095832 6196749 13321 2095832 6196739 

67A-LH 13493 2242129 6634614 13491 2242129 6634594 

67A-ML 12262 1974379 5839643 12261 1974379 5839632 

67A-MH 12436 2111763 6250760 12434 2111763 6250736 

67A-SL 11212 1859502 5502198 11211 1859502 5502184 

67A-SH 11380 1967579 5825453 11377 1967579 5825427 

70A-LL 25574 160618 285481 25557 160617 285286 

70A-LH 25675 161029 286207 25656 161029 285994 

70A-ML 23508 147542 262238 23491 147542 262052 

70A-MH 23611 147964 262983 23593 147964 262779 

70A-SL 21439 134446 238958 21422 134445 238779 

70A-SH 21542 134877 239720 21524 134877 239524 

70B-LL 29372 161193 286503 29355 161192 286309 

70B-LH 29509 161732 287455 29489 161731 287240 

70B-ML 27008 148124 263271 26991 148123 263084 

70B-MH 27140 148646 264194 27121 148646 263988 

70B-SL 24637 135021 239980 24621 135021 239801 

70B-SH 24766 135542 240900 24748 135542 240702 

71-LL 16396 1980502 5894358 16395 1980502 5894349 

71-LH 16776 2145281 6387635 16774 2145281 6387617 

71-ML 15302 1891900 5631706 15301 1891900 5631696 

71-MH 15679 2035908 6062677 15677 2035908 6062657 
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71-SL 14210 1801674 5364175 14209 1801674 5364163 

71-SH 14585 1930269 5748917 14583 1930269 5748894 

72-LL 39834 1476545 4234826 39833 1476545 4234816 

72-LH 39945 1573090 4523972 39944 1573090 4523955 

72-ML 36589 1398933 4017882 36588 1398933 4017871 

72-MH 36700 1483544 4271232 36698 1483544 4271213 

72-SL 33342 1321495 3801466 33341 1321495 3801453 

72-SH 33450 1383215 3986163 33448 1383215 3986142 

73-LL 26035 1449297 4267751 26034 1449297 4267743 

73-LH 26170 1537701 4532563 26169 1537701 4532550 

73-ML 23952 1374538 4049890 23951 1374538 4049881 

73-MH 24096 1466593 4325633 24094 1466593 4325618 

73-SL 22103 1306598 3851770 22102 1306598 3851760 

73-SH 22251 1390523 4103112 22250 1390523 4103095 

74-LL 38966 1440728 4239299 38965 1440728 4239289 

74-LH 39400 1547000 4557206 39398 1547000 4557189 

74-ML 35921 1372686 4041654 35920 1372686 4041643 

74-MH 36341 1458999 4299711 36339 1458999 4299692 

74-SL 33223 1308053 3853498 33222 1308053 3853485 

74-SH 33608 1367703 4031643 33606 1367703 4031622 

75-LL 19091 1837621 5466141 19090 1837621 5466132 

75-LH 19471 1989922 5922128 19469 1989922 5922112 

75-ML 17811 1759695 5235496 17810 1759695 5235487 

75-MH 18201 1897489 5647945 18199 1897489 5647927 

75-SL 16543 1687895 5023205 16542 1687895 5023194 

75-SH 16926 1803143 5368033 16924 1803143 5368013 

76-LL 18050 1762351 5249878 18049 1762351 5249869 

76-LH 18535 1872620 5579700 18534 1872620 5579681 

76-ML 16832 1696878 5055973 16831 1696878 5055962 

76-MH 17278 1772882 5283077 17276 1772882 5283056 

76-SL 15616 1621136 4831254 15615 1621136 4831240 

76-SH 16049 1685680 5024009 16047 1685680 5023985 

77A-LL 36565 160583 285420 36548 160582 285229 

77A-LH 36631 160800 285803 36613 160800 285603 
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77A-ML 33590 147468 262108 33574 147468 261927 

77A-MH 33674 147744 262594 33657 147743 262401 

77A-SL 30612 134341 238773 30597 134341 238601 

77A-SH 30716 134681 239373 30699 134680 239186 

77B-LL 51115 160484 285245 51098 160484 285057 

77B-LH 51250 160833 285861 51231 160833 285657 

77B-ML 46953 147386 261962 46937 147385 261782 

77B-MH 47105 147780 262657 47087 147779 262460 

77B-SL 42798 134300 238701 42782 134300 238529 

77B-SH 42954 134708 239420 42937 134708 239231 

77C-LL 38375 160485 285246 38357 160484 285057 

77C-LH 38487 160841 285875 38469 160841 285670 

77C-ML 35261 147406 261997 35244 147405 261816 

77C-MH 35378 147775 262649 35360 147775 262451 

77C-SL 32141 134304 238708 32125 134304 238535 

77C-SH 32274 134729 239457 32256 134728 239266 

77D-LL 29490 160514 285297 29473 160513 285107 

77D-LH 29593 160898 285975 29574 160898 285768 

77D-ML 27105 147444 262065 27088 147444 261882 

77D-MH 27212 147846 262774 27194 147846 262573 

77D-SL 24712 134345 238780 24696 134345 238605 

77D-SH 24824 134771 239532 24807 134771 239339 

77E-LL 47133 160467 285215 47116 160467 285026 

77E-LH 47242 160766 285742 47223 160766 285540 

77E-ML 43298 147374 261941 43282 147374 261761 

77E-MH 43418 147704 262523 43401 147704 262328 

77E-SL 39457 134260 238631 39442 134260 238459 

77E-SH 39590 134626 239275 39573 134626 239088 

78A-LL 71798 160375 285052 71781 160375 284867 

78A-LH 71921 160623 285489 71903 160622 285293 

78A-ML 65930 147254 261728 65914 147253 261553 

78A-MH 66081 147557 262264 66064 147557 262074 

78A-SL 60072 134150 238436 60056 134150 238269 

78A-SH 60248 134503 239059 60231 134503 238876 
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78B-LL 47677 160427 285145 47660 160427 284957 

78B-LH 47759 160652 285542 47741 160652 285344 

78B-ML 43792 147322 261850 43776 147322 261671 

78B-MH 43893 147598 262337 43876 147598 262146 

78B-SL 39905 134206 238535 39889 134206 238366 

78B-SH 40022 134529 239105 40006 134529 238921 

78C-LL 64975 160419 285130 64958 160419 284943 

78C-LH 65099 160687 285603 65081 160687 285404 

78C-ML 59673 147308 261825 59657 147308 261647 

78C-MH 59821 147629 262391 59804 147629 262200 

78C-SL 54370 134196 238516 54355 134195 238348 

78C-SH 54536 134556 239153 54520 134556 238968 

79-LL 33764 1301876 3824171 33762 1301876 3824149 

79-LH 34379 1443213 4246742 34375 1443213 4246701 

79-ML 31114 1239773 3644263 31112 1239773 3644240 

79-MH 31710 1366147 4021990 31707 1366147 4021947 

79-SL 28809 1201121 3533878 28806 1201121 3533852 

79-SH 29333 1293779 3810627 29329 1293779 3810582 

80A-LL 41857 67537 120004 41839 67537 119808 

80A-LH 42013 67779 120432 41994 67779 120227 

80A-ML 38537 62174 110471 38520 62173 110284 

80A-MH 38728 62469 110994 38710 62469 110796 

80A-SL 35559 57363 101923 35543 57363 101746 

80A-SH 35805 57746 102598 35788 57745 102406 

80B-LL 32839 66713 118539 32822 66713 118344 

80B-LH 32925 66874 118822 32907 66873 118620 

80B-ML 30221 61380 109061 30204 61380 108875 

80B-MH 30340 61601 109451 30322 61601 109255 

80B-SL 27885 56622 100605 27868 56622 100427 

80B-SH 28032 56897 101090 28015 56897 100901 

81A-LL 40068 160417 285126 40051 160417 284939 

81A-LH 40154 160682 285594 40136 160682 285396 

81A-ML 36809 147324 261852 36793 147323 261674 

81A-MH 36910 147632 262395 36892 147631 262203 
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81A-SL 33548 134218 238555 33532 134217 238385 

81A-SH 33666 134582 239197 33649 134581 239011 

81B-LL 67650 160358 285023 67633 160358 284839 

81B-LH 67792 160656 285548 67774 160656 285351 

81B-ML 62134 147265 261749 62118 147265 261573 

81B-MH 62301 147615 262366 62284 147615 262175 

81B-SL 56611 134153 238442 56596 134153 238275 

81B-SH 56795 134540 239124 56778 134540 238940 

81C-LL 71229 160397 285092 71212 160397 284906 

81C-LH 71438 160819 285835 71419 160818 285630 

81C-ML 65433 147325 261855 65416 147325 261677 

81C-MH 65648 147759 262620 65630 147759 262423 

81C-SL 59621 134220 238560 59606 134220 238390 

81C-SH 59845 134672 239357 59827 134672 239168 

81D-LL 15756 161721 287428 15734 161721 287187 

81D-LH 15860 162311 288470 15836 162311 288207 

81D-ML 14515 148683 264250 14493 148682 264016 

81D-MH 14607 149220 265199 14583 149219 264945 

81D-SL 13267 135608 241009 13247 135608 240782 

81D-SH 13348 136092 241865 13325 136092 241622 

82A-LL 60101 160367 285038 60085 160367 284853 

82A-LH 60192 160576 285406 60174 160575 285212 

82A-ML 55195 147254 261729 55179 147254 261553 

82A-MH 55310 147518 262195 55293 147518 262007 

82A-SL 50285 134132 238403 50270 134131 238237 

82A-SH 50431 134467 238995 50415 134467 238814 

82B-LL 34829 67823 120512 34811 67823 120316 

82B-LH 34944 68034 120886 34926 68034 120683 

82B-ML 32090 62475 111008 32073 62475 110821 

82B-MH 32243 62756 111504 32225 62756 111307 

82B-SL 29614 57645 102423 29598 57644 102245 

82B-SH 29810 58004 103057 29792 58003 102867 

83A-LL 32081 66647 118423 32063 66647 118231 

83A-LH 32209 66892 118854 32191 66891 118651 
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83A-ML 29530 61331 108975 29513 61331 108791 

83A-MH 29676 61608 109463 29658 61608 109267 

83A-SL 27255 56591 100551 27239 56591 100375 

83A-SH 27429 56922 101133 27411 56921 100943 

83B-LL 27500 66722 118554 27483 66721 118358 

83B-LH 27502 66727 118563 27484 66727 118367 

83B-ML 25302 61368 109040 25285 61368 108854 

83B-MH 25334 61439 109166 25317 61439 108977 

83B-SL 23332 56578 100526 23316 56577 100350 

83B-SH 23409 56743 100818 23393 56743 100635 

83C-LL 27947 66750 118604 27929 66750 118407 

83C-LH 27928 66712 118537 27910 66712 118342 

83C-ML 25708 61387 109073 25691 61387 108886 

83C-MH 25726 61425 109140 25709 61425 108952 

83C-SL 23702 56585 100539 23686 56585 100363 

83C-SH 23764 56717 100772 23748 56716 100590 

83D-LL 31318 66725 118559 31300 66725 118363 

83D-LH 31272 66637 118405 31255 66637 118213 

83D-ML 28809 61364 109032 28792 61364 108846 

83D-MH 28779 61308 108934 28762 61308 108751 

83D-SL 26555 56556 100488 26539 56555 100312 

83D-SH 26569 56583 100536 26553 56583 100359 

83E-LL 30983 66702 118519 30965 66701 118323 

83E-LH 30975 66686 118492 30957 66686 118298 

83E-ML 28508 61357 109020 28491 61357 108834 

83E-MH 28521 61384 109068 28504 61384 108881 

83E-SL 26280 56552 100482 26264 56552 100307 

83E-SH 26351 56693 100729 26335 56692 100548 

84A-LL 42963 67759 120398 42945 67759 120202 

84A-LH 43301 68274 121308 43281 68274 121093 

84A-ML 39582 62419 110907 39565 62419 110718 

84A-MH 39928 62946 111837 39909 62945 111630 

84A-SL 36560 57646 102425 36543 57646 102244 

84A-SH 36907 58177 103362 36889 58176 103163 
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84B-LL 38706 67110 119241 38687 67110 119034 

84B-LH 39062 67699 120281 39041 67699 120052 

84B-ML 35681 61851 109893 35663 61851 109692 

84B-MH 36015 62404 110871 35995 62404 110651 

84B-SL 32974 57146 101531 32956 57145 101337 

84B-SH 33280 57654 102430 33261 57654 102219 

84C-LL 40305 66678 118478 40288 66678 118285 

84C-LH 40507 66995 119037 40488 66995 118830 

84C-ML 37110 61382 109065 37093 61382 108879 

84C-MH 37327 61724 109668 37309 61724 109467 

84C-SL 34243 56633 100625 34227 56633 100448 

84C-SH 34484 57012 101293 34466 57012 101099 

85-LL 42776 66872 118820 42758 66872 118621 

85-LH 43112 67376 119710 43092 67376 119490 

85-ML 39396 61579 109412 39378 61579 109221 

85-MH 39729 62081 110298 39710 62081 110085 

85-SL 36389 56872 101046 36373 56871 100861 

85-SH 36692 57327 101851 36673 57327 101648 

86A-LL 44383 66723 118556 44365 66722 118362 

86A-LH 44656 67118 119254 44636 67118 119042 

86A-ML 40854 61412 109117 40837 61412 108931 

86A-MH 41152 61843 109878 41133 61843 109673 

86A-SL 37706 56674 100697 37690 56674 100519 

86A-SH 38007 57110 101467 37989 57110 101269 

86B-LL 46200 67131 119277 46180 67131 119068 

86B-LH 46605 67701 120283 46583 67701 120048 

86B-ML 42580 61863 109913 42561 61862 109709 

86B-MH 42979 62425 110906 42958 62425 110676 

86B-SL 39342 57151 101539 39324 57151 101341 

86B-SH 39734 57704 102514 39714 57704 102291 

87A-LL 41440 67130 119276 41421 67130 119066 

87A-LH 41861 67781 120423 41839 67780 120183 

87A-ML 38177 61834 109862 38159 61834 109659 

87A-MH 38604 62492 111022 38582 62491 110789 
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87A-SL 35311 57178 101586 35293 57177 101386 

87A-SH 35688 57759 102611 35667 57759 102385 

87B-LL 18524 29465 52305 18502 29464 52065 

87B-LH 19318 30677 54443 19291 30676 54147 

87B-ML 17291 27489 48794 17270 27489 48556 

87B-MH 18074 28685 50903 18048 28685 50611 

87B-SL 16056 25510 45276 16035 25510 45041 

87B-SH 16736 26547 47105 16710 26547 46823 

LL- large body weight, low lactation, LH- large body weight, high lactation, ML- moderate 

body weight, low lactation, MH- moderate body weight, high lactation, SL- small body weight, 

low lactation, SH- small body weight, high lactation 
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Table A.5 

 

Estimates of total herd enteric methane production using a corn-based diet or a sorghum- based 

diet for each scenario (kilograms per year) 

 

MLRA Methane production 

for corn-based diets 

Methane production for 

sorghum-based diets 

102A-LL 9267 9368 

102A-LH 9505 9611 

102A-ML 8655 8751 

102A-MH 8897 8998 

102A-SL 8024 8116 

102A-SH 8319 8416 

102B-LL 9287 9382 

102B-LH 9459 9558 

102B-ML 8654 8745 

102B-MH 8900 8996 

102B-SL 8037 8124 

102B-SH 8278 8369 

102C-LL 9124 9228 

102C-LH 9359 9468 

102C-ML 8490 8590 

102C-MH 8783 8888 

102C-SL 7861 7956 

102C-SH 8203 8304 

106-LL 8278 8369 

106-LH 8564 8660 

106-ML 7869 7956 

106-MH 8182 8275 

106-SL 7432 7517 

106-SH 7751 7841 

112-LL 8054 8137 

112-LH 8189 8275 

112-ML 7683 7764 

112-MH 7841 7926 

112-SL 7287 7366 

112-SH 7472 7555 

116A-LL 9395 9430 

116A-LH 9573 9609 

116A-ML 8933 8966 

116A-MH 9182 9218 

116A-SL 8429 8461 
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116A-SH 8750 8785 

116B-LL 9466 9501 

116B-LH 9622 9658 

116B-ML 8985 9019 

116B-MH 9200 9235 

116B-SL 8451 8484 

116B-SH 8764 8798 

117-LL 9366 9401 

117-LH 9583 9619 

117-ML 8885 8918 

117-MH 9166 9202 

117-SL 8389 8421 

117-SH 8761 8795 

118A-LL 9139 9172 

118A-LH 9762 9799 

118A-ML 8649 8681 

118A-MH 9271 9307 

118A-SL 8162 8193 

118A-SH 8811 8846 

118B-LL 8818 8848 

118B-LH 9078 9109 

118B-ML 8342 8371 

118B-MH 8635 8666 

118B-SL 7858 7886 

118B-SH 8232 8262 

119-LL 8215 8244 

119-LH 9589 9625 

119-ML 7909 7937 

119-MH 9194 9229 

119-SL 7694 7723 

119-SH 8711 8745 

133B-LL 8329 8363 

133B-LH 9612 9654 

133B-ML 7947 7980 

133B-MH 9132 9172 

133B-SL 7812 7845 

133B-SH 8632 8670 

135B-LL 8096 8126 

135B-LH 9566 9603 

135B-ML 7818 7848 

135B-MH 9188 9225 

135B-SL 7511 7540 

135B-SH 8655 8690 
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150A-LL 9518 9544 

150A-LH 9515 9543 

150A-ML 8874 8899 

150A-MH 9071 9097 

150A-SL 8334 8358 

150A-SH 8628 8654 

150B-LL 8926 8954 

150B-LH 9449 9480 

150B-ML 8473 8500 

150B-MH 9032 9062 

150B-SL 8012 8039 

150B-SH 8585 8615 

152B-LL 8238 8269 

152B-LH 9532 9571 

152B-ML 7953 7984 

152B-MH 9113 9150 

152B-SL 7678 7708 

152B-SH 8628 8664 

42-LL 8568 8593 

42-LH 9233 9261 

42-ML 8266 8290 

42-MH 8799 8825 

42-SL 7843 7866 

42-SH 8363 8388 

53A-LL 10572 10572 

53A-LH 10252 10252 

53A-ML 9851 9851 

53A-MH 9624 9624 

53A-SL 9092 9092 

53A-SH 8979 8979 

53B-LL 9577 9577 

53B-LH 10168 10168 

53B-ML 9079 9079 

53B-MH 9710 9710 

53B-SL 8607 8607 

53B-SH 9200 9200 

53C-LL 9356 9356 

53C-LH 9951 9951 

53C-ML 8892 8892 

53C-MH 9519 9519 

53C-SL 8395 8395 

53C-SH 9047 9047 

54-LL 9164 9164 
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54-LH 9681 9681 

54-ML 8571 8571 

54-MH 9203 9203 

54-SL 8112 8112 

54-SH 8686 8686 

55A-LL 9136 9235 

55A-LH 9395 9498 

55A-ML 8684 8780 

55A-MH 8956 9057 

55A-SL 8241 8334 

55A-SH 8538 8636 

55B-LL 9163 9275 

55B-LH 9378 9494 

55B-ML 8529 8635 

55B-MH 8836 8947 

55B-SL 7879 7979 

55B-SH 8233 8339 

55C-LL 8921 9015 

55C-LH 9125 9224 

55C-ML 8516 8608 

55C-MH 8738 8834 

55C-SL 8090 8179 

55C-SH 8334 8428 

56-LL 9547 9645 

56-LH 9809 9913 

56-ML 8880 8974 

56-MH 9189 9289 

56-SL 8225 8315 

56-SH 8525 8621 

58C-LL 8734 8734 

58C-LH 9677 9677 

58C-ML 8303 8303 

58C-MH 9164 9164 

58C-SL 7833 7833 

58C-SH 8624 8624 

58D-LL 8952 8952 

58D-LH 9715 9715 

58D-ML 8417 8417 

58D-MH 9183 9183 

58D-SL 7986 7986 

58D-SH 8681 8681 

60A-LL 8962 8962 

60A-LH 9707 9707 
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60A-ML 8433 8433 

60A-MH 9167 9167 

60A-SL 7990 7990 

60A-SH 8681 8681 

61-LL 9392 9392 

61-LH 9868 9868 

61-ML 8814 8814 

61-MH 9363 9363 

61-SL 8226 8226 

61-SH 8847 8847 

62-LL 9196 9196 

62-LH 9892 9892 

62-ML 8636 8636 

62-MH 9353 9353 

62-SL 8161 8161 

62-SH 8828 8828 

63A-LL 8893 8893 

63A-LH 9806 9806 

63A-ML 8484 8484 

63A-MH 9375 9375 

63A-SL 8098 8098 

63A-SH 8919 8919 

63B-LL 9239 9239 

63B-LH 9835 9835 

63B-ML 8772 8772 

63B-MH 9413 9413 

63B-SL 8312 8312 

63B-SH 8940 8940 

64-LL 9202 9202 

64-LH 9854 9854 

64-ML 8676 8676 

64-MH 9332 9332 

64-SL 8143 8143 

64-SH 8816 8816 

65-LL 8712 8713 

65-LH 9781 9784 

65-ML 8379 8380 

65-MH 9382 9385 

65-SL 7915 7917 

65-SH 8923 8926 

66-LL 9006 9007 

66-LH 9786 9789 

66-ML 8512 8514 
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66-MH 9369 9372 

66-SL 8137 8139 

66-SH 8899 8902 

67A-LL 8889 8890 

67A-LH 9714 9716 

67A-ML 8386 8388 

67A-MH 9204 9207 

67A-SL 7930 7932 

67A-SH 8672 8675 

70A-LL 8735 8759 

70A-LH 9013 9038 

70A-ML 8234 8257 

70A-MH 8553 8578 

70A-SL 7738 7760 

70A-SH 8091 8114 

70B-LL 8806 8829 

70B-LH 9124 9150 

70B-ML 8326 8348 

70B-MH 8677 8702 

70B-SL 7837 7859 

70B-SH 8217 8241 

71-LL 9008 9009 

71-LH 9850 9852 

71-ML 8566 8567 

71-MH 9392 9394 

71-SL 8148 8150 

71-SH 8944 8947 

72-LL 9257 9258 

72-LH 9549 9551 

72-ML 8746 8747 

72-MH 9113 9115 

72-SL 8258 8260 

72-SH 8641 8643 

73-LL 9091 9092 

73-LH 9400 9401 

73-ML 8556 8557 

73-MH 8973 8975 

73-SL 8111 8112 

73-SH 8558 8560 

74-LL 9359 9360 

74-LH 9731 9733 

74-ML 8854 8855 

74-MH 9289 9291 
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74-SL 8421 8422 

74-SH 8825 8828 

75-LL 9117 9118 

75-LH 9889 9891 

75-ML 8658 8659 

75-MH 9433 9435 

75-SL 8240 8241 

75-SH 8984 8987 

76-LL 8564 8566 

76-LH 9250 9252 

76-ML 8179 8180 

76-MH 8779 8781 

76-SL 7795 7797 

76-SH 8364 8367 

77A-LL 9611 9634 

77A-LH 9348 9373 

77A-ML 8994 9016 

77A-MH 8920 8943 

77A-SL 8364 8385 

77A-SH 8442 8464 

77B-LL 9705 9728 

77B-LH 9514 9539 

77B-ML 9100 9122 

77B-MH 9116 9140 

77B-SL 8548 8569 

77B-SH 8651 8674 

77C-LL 9238 9261 

77C-LH 9220 9244 

77C-ML 8682 8704 

77C-MH 8789 8813 

77C-SL 8112 8133 

77C-SH 8359 8382 

77D-LL 8846 8869 

77D-LH 9030 9055 

77D-ML 8335 8357 

77D-MH 8578 8602 

77D-SL 7819 7840 

77D-SH 8107 8131 

77E-LL 9624 9647 

77E-LH 9396 9420 

77E-ML 9055 9077 

77E-MH 8954 8977 

77E-SL 8447 8467 
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77E-SH 8505 8528 

78A-LL 10410 10432 

78A-LH 9556 9580 

78A-ML 9752 9773 

78A-MH 9229 9252 

78A-SL 9120 9140 

78A-SH 8849 8871 

78B-LL 9701 9724 

78B-LH 9293 9317 

78B-ML 9117 9138 

78B-MH 8868 8891 

78B-SL 8460 8481 

78B-SH 8427 8449 

78C-LL 10225 10247 

78C-LH 9531 9555 

78C-ML 9588 9609 

78C-MH 9184 9207 

78C-SL 8935 8955 

78C-SH 8777 8799 

79-LL 8312 8315 

79-LH 9797 9802 

79-ML 7949 7952 

79-MH 9377 9382 

79-SL 7804 7807 

79-SH 8989 8994 

80A-LL 10001 10025 

80A-LH 9622 9646 

80A-ML 9405 9427 

80A-MH 9199 9223 

80A-SL 8775 8796 

80A-SH 8773 8796 

80B-LL 9651 9675 

80B-LH 9423 9447 

80B-ML 9060 9082 

80B-MH 8983 9007 

80B-SL 8493 8515 

80B-SH 8530 8553 

81A-LL 9359 9382 

81A-LH 9176 9201 

81A-ML 8782 8804 

81A-MH 8719 8742 

81A-SL 8192 8212 

81A-SH 8298 8320 
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81B-LL 10446 10468 

81B-LH 9783 9807 

81B-ML 9833 9854 

81B-MH 9438 9461 

81B-SL 9166 9186 

81B-SH 9009 9031 

81C-LL 10418 10440 

81C-LH 9821 9846 

81C-ML 9809 9831 

81C-MH 9498 9522 

81C-SL 9172 9192 

81C-SH 9085 9108 

81D-LL 8368 8397 

81D-LH 9001 9033 

81D-ML 8009 8038 

81D-MH 8568 8598 

81D-SL 7621 7649 

81D-SH 8110 8140 

82A-LL 10113 10135 

82A-LH 9398 9422 

82A-ML 9480 9502 

82A-MH 9027 9049 

82A-SL 8790 8810 

82A-SH 8634 8656 

82B-LL 9505 9529 

82B-LH 9277 9302 

82B-ML 8946 8969 

82B-MH 8863 8886 

82B-SL 8383 8404 

82B-SH 8404 8427 

83A-LL 9264 9287 

83A-LH 9191 9216 

83A-ML 8740 8763 

83A-MH 8717 8741 

83A-SL 8196 8217 

83A-SH 8339 8362 

83B-LL 9318 9342 

83B-LH 9053 9077 

83B-ML 8742 8765 

83B-MH 8592 8615 

83B-SL 8161 8183 

83B-SH 8158 8180 

83C-LL 9433 9457 
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83C-LH 9104 9128 

83C-ML 8825 8848 

83C-MH 8641 8664 

83C-SL 8218 8240 

83C-SH 8180 8202 

83D-LL 9410 9434 

83D-LH 9035 9058 

83D-ML 8804 8826 

83D-MH 8533 8555 

83D-SL 8191 8213 

83D-SH 8056 8078 

83E-LL 9603 9627 

83E-LH 9190 9213 

83E-ML 9019 9042 

83E-MH 8689 8711 

83E-SL 8383 8404 

83E-SH 8262 8284 

84A-LL 9735 9758 

84A-LH 9769 9795 

84A-ML 9188 9211 

84A-MH 9324 9350 

84A-SL 8659 8681 

84A-SH 8847 8872 

84B-LL 9363 9388 

84B-LH 9868 9895 

84B-ML 8932 8956 

84B-MH 9432 9459 

84B-SL 8495 8518 

84B-SH 8973 8998 

84C-LL 9707 9731 

84C-LH 9588 9613 

84C-ML 9181 9204 

84C-MH 9177 9202 

84C-SL 8622 8643 

84C-SH 8724 8748 

85-LL 9570 9594 

85-LH 9839 9866 

85-ML 9065 9089 

85-MH 9407 9433 

85-SL 8600 8622 

85-SH 8899 8923 

86A-LL 9782 9806 

86A-LH 9742 9768 
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86A-ML 9206 9228 

86A-MH 9326 9350 

86A-SL 8641 8663 

86A-SH 8852 8876 

86B-LL 9785 9810 

86B-LH 9981 10009 

86B-ML 9362 9387 

86B-MH 9586 9614 

86B-SL 8829 8853 

86B-SH 9146 9173 

87A-LL 9486 9511 

87A-LH 9843 9872 

87A-ML 8962 8986 

87A-MH 9432 9460 

87A-SL 8594 8618 

87A-SH 8966 8994 

87B-LL 8186 8215 

87B-LH 9538 9573 

87B-ML 7898 7927 

87B-MH 9208 9244 

87B-SL 7621 7649 

87B-SH 8731 8765 

LL- large body weight, low lactation, LH- large body weight, high lactation, ML- moderate 

body weight, low lactation, MH- moderate body weight, high lactation, SL- small body weight, 

low lactation, SH- small body weight, high lactation 
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