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CHAPTER 1

INTRODUCTION

The contamination of organic compounds in groundwater

and soil has rapidly emerged as a world-wide environmental

issue. There are a number of techniques available to

remediate soil contaminated with organic compounds,

including physical containment, in situ chemical treatment

and in situ biological treatment. Among these techniques, in

situ biodegradation, which treats organic contaminants by

stimulating native microbial populations, has proven to be

the most complete, cost-effective solution for ultimate

cleanup of organic sludge.

The development of an in situ biodegradation process

depends heavily upon the reaction kinetics and transport

phenomena. The knowledge comes from not only laboratory

experiments and field investigation, but also model

development and numerical simulation. The latter is highly

important in evaluating the treatment potential and

optimizing the process design and operation. Moreover, it

sheds light on the dynamics of cleanup processes, thereby

showing insight into the progress of a biodegradation

process

.

One of the most important aspects of modeling and

numerical simulation of biodegradation processes is the
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numerical techniques for solving the model equations. In

general, the mathematical model for a biodegradation process

consists of several convection-dispersion partial

differential equations (PDE's), which include the terms of

accumulation, dispersion, convection and reaction. The

dispersion is relatively small for the flow through porous

media; thus, these PDE's are generally convection-dominated.

The difficulty encountered in solving this type of PDE's

numerically is that numerical oscillations and diffusion may

adversely affect the accuracy of the numerical solution.

Moreover, these PDE's couple one another through nonlinear

reaction terms, and sometimes, they are also coupled with

other ordinary differential equations (ODE's) or algebraic

equations, thereby rendering the numerical techniques even

more complicated. In Chapter 2, a new numerical method, the

three-point backward finite difference method (TPB method),

is derived for solving convection-dispersion PDE's. The

method substantially reduces numerical oscillations and

diffusion and is very effective in solving a system of PDE's

with nonlinear reaction terms or a system of PDE's coupled

with other ODE's or algebraic equations.

The first phase of an in situ bioremediation process is

often an in situ neutralization process because an organic

sludge is often an acid or base sludge. In Chapter 3, a

mathematical model for in situ neutralization is developed.
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The process features fast reaction and relatively slow

adsorption/desorption, giving rise to a nonequilibrium

model. The model equations consist of one PDE and two ODE ' s

,

and the TPB method developed in Chapter 2 is applied to

solve these equations. Numerical simulation is conducted to

show the effects of various parameters on the neutralization

time and possible accumulation of base in the soil bed,

which may convert the acidic soil into basic soil. Since an

in situ neutralization process can be visualized as an in

situ chemical treatment process, the model developed in this

chapter can be extended to any other nonequilibrium system

in which a contaminant deposited in a soil bed is to be

eliminated with another chemical agent.

In comparison with the model for in situ chemical

treatment, the model for in situ biological treatment is

more complicated because it considers not only the fate of

contaminants in soil, but also the effects of insufficient

supply of nutrients and growth of microorganisms on the rate

of biodegradation. Moreover, the rate of biodegradation may

be limited by transport resistance to contaminant migration.

In Chapter 4, a mathematical model for in situ

biodegradation of organic sludge is developed. The model

equations consist of three convection-dispersion PDE s and

one ODE. The TPB method is employed to solve the model

equations, and numerical simulation is performed to show the
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effects of the model parameters on the rate of

biodegradation. Furthermore, the recycle of unreacted

contaminants is simulated, providing insight into the

cleanup process as well as the information for process

design and optimization.

The major conclusions drawn from the present study are

summarized in Chapter 5. Some recommendations for future

work are also outlined in this chapter.
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CHAPTER 2

THREE-POINT BACKWARD FINITE DIFFERENCE METHOD

FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC

PARTIAL DIFFERENTIAL EQUATIONS

The development and numerical solution of mathematical

models that describe the dynamics of transport phenomena and

reactions occurring in chemical process systems have

received considerable attention. Mathematical modeling of a

tubular flow system, e.g., a fixed-bed reactor or an

adsorption bed, often results in a system of partial

differential equations (PDE's) including the terms for

accumulation, axial diffusion (dispersion) , convection and

reaction. These equations are termed mixed hyperbolic-

parabolic PDE's (mixed PDE's) (see, e.g., Lapidus and

Pinder, 1982); they are also known as convection-diffusion

or convection-dispersion PDE's.

Mixed PDE's have conventionally been solved by finite

difference methods. However, two major difficulties are

encountered in applying the methods. The first is that most

of the finite difference methods suffer from nonphysical

numerical oscillations and excessive numerical diffusion

(dissipation) , and this becomes even more severe if mixed

PDE's are convection-dominated (Finlayson, 1980; Allen et

al . , 1988). Consequently, the finite difference methods for
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such equations have been considered to be suitable when

large errors are tolerable ( Khanna and Seinfeld, 1987).

Numerous attempts have been made to improve the accuracy of

finite difference methods for mixed PDE ' s and the focus has

been on approximating the first-order temporal and spatial

derivatives

.

In approximating the first-order temporal derivative,

the Euler method, based on forward or backward differencing,

leads only to first-order temporal accuracy, and the Crank-

Nicolson method, based on the trapezoidal formula, leads to

second-order temporal accuracy. Obviously, the latter is

more desirable than the former from the standpoint of

accuracy; nevertheless, the Crank-Nicolson method has at

least two major disadvantages. One is that the trapezoidal

formula may result in a nondissipative scheme, i.e., the

truncation error does not decay with the increase in time,

even though the scheme is stable (Warming and Bean, 1978).

The other is that this method induces unwanted finite

oscillations near a point of discontinuity (see, e.g.,

Smith, 1985) .

In approximating the first-order spatial derivative, the

central difference formula tends to induce phase errors

(Oran and Boris, 1987; Allen et al. , 1988). The phase errors

appear in the form of numerical oscillations (see, e.g.,

Finlayson, 1980; Smith, 1985). The upstream (upwind) formula
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can eliminate the oscillations; however, it does so at the

expense of numerical smearing at fronts that should, in

fact, be sharp. This is caused by amplitude error, which

appears in the form of numerical diffusion (Allen et a_l. ,

1988). The two types of error described here are of greatest

concern when a PDE is convection-dominated.

In the first part of this chapter, three-point backward

finite differencing (TPB) is introduced to approximate the

first-order temporal and spatial derivatives in mixed PDE ' s

.

The temporal and spatial accuracy of the resultant method is

of second order. It substantially reduces numerical

oscillations and diffusion. Furthermore, the method

generates a tridiagonal matrix on the left-hand side of the

resultant finite difference equations; it is computationally

efficient

.

The second major difficulty encountered in applying a

finite difference method to a system of mixed PDE ' s is

caused by the coupled nonlinear reaction terms. A system of

nonlinear finite difference equations is generated at each

time step. Consequently, the tridiagonal matrix method,

although highly efficient in solving linear finite

difference equations, is not applicable for such a system.

The common methods for solving these nonlinear finite

difference equations are the quasi-linearization, Newton and
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predictor-corrector methods. However, the first is of low-

order accuracy, and the second or third requires iteration

at each time step (see, e.g., Davis, 1984).

In the second part of this chapter, a two-step expansion

technique is developed to linearize the finite difference

equations and to uncouple the mixed PDE ' s ; the accuracy of

the expansion is of third order. Subsequently, the

tridiagonal matrix method is applied to solve the resultant

linear finite difference equations. The two-step expansion

technique can be extended to uncouple a system of mixed

PDE ' s coupled with ordinary differential equations ( ODE ' s

)

and/or algebraic equations, thereby providing a highly

effective technique for numerical simulation of complicated

mathematical models.

2.1 ALGORITHM FOR A PDE WITH A LINEAR REACTION TERM

Let us consider the convection-diffusion mass transfer

equation with a linear reaction term

3x

Transforming this equation into the dimensionless form gives

- ^r - kU (2.2)30 Pe ___2 3X

where

* = ?• *! ** = §*• s = ^ < 2 - 3 '
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The appropriate initial and boundary conditions are (see,

e.g., Wen and Fan, 1975)

9=0, U(0,X) = G(X) (2.4)

(2.5)
1 an

x - °< uo - <-5IIS + u >

x=o
+

X = 1, 1^=0 (2.6)

where G(X) is a given function and UO is a constant.

2.1.1 Three-Point Backward Difference Formulation

Finite difference methods resort to differencing to

approximate the derivatives in a PDE . To formulate a second-

order spatial derivative, the central differencing is well

accepted and the spatial accuracy of this scheme is of

second order. To express first-order temporal and spatial

derivatives, the three-point backward (TPB) temporal

differencing yields

an n+l 3U
n+1 - 4U

n
+ Un_1

( 35> 23e
+ 0<Ae

»
<2 ' 7)

where superscript n stands for the n-th time step. Note that

the TPB temporal differencing is a three time-level scheme;

it has the same form as the two-step Gear method for

initial-value ordinary differential equations. The TPB

spatial differencing is expressed as

3U . - 4U . , + U . .

'H>3-
J

.J"
1 ^ + °,AX2

, (2-8)
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where subscript j stands for the j-th grid point and j = 0,

1, . . . , N. Note that the truncation error of both difference

expressions is of second order.

2.1.2 Derivation of the Scheme

Application of the TPB differencing, equations (2.7) and

(2.8), to approximate the first-order temporal and spatial

derivatives in equation (2.2) yields

3U
n+1 - 4U

n
+ U

n_1

__J 3 3

2A0

, 8
2
U
n+1

3U
n+1

= k<^> " 'ax
1

' -^+
+ 0(Ae

>

1 U
n+
J- 2U

n+1
+ U

n+
J 3U

n+1 - 4U
n+

J + U
n+

J
= , 3 + 1 3 3-1 , _ _J 3-1 3-2

Pe v

AV 2 ' 2AX
AX

- kUn+1 + 0(A9 2+AX 2
) (2.9)

Rewriting this expression and ignoring the second-order

truncation error result in

r
„B+1 _ (r . 4 r )U

n+
^ +(3 + 2r

1
+ 3r + r Q )U

n+1 - r un+
J2 j-2 1 2' 3-I v

1 2 3' 3 1 3+1

= 4U
n

- \j
n~ X

(2.10)

(2.11)

(2.12)

3

where

r
l
= 2A6

PeAX 2

r
2
= A0

AX

r
3
= 2A6 k (2.13)

Equation (2.10) can be solved by the Gauss elimination

method at each time step. It is highly desirable, however,
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to form a tridiagonal matrix on the left-hand side of

equation (2.10), thereby reducing the computational effort.

To accomplish this, U . on the left-hand side of equation
J *

(2.10) need be eliminated. Such a tridiagonal matrix can be

generated by approximating the convection term with a

"delta" form (Warming and Beam, 1978)

AU
n

= U
n+1 - U

n
(2.14)

Rewriting equation (2.9) leads to

3U
n+1 - 4U

n
+ U

n_1

_J 2 L_
2A6

, a
2
u
n+1

au
n+1

3U
n

3U
n

^i (^ ) " ^ +
( 3X

2)
" ( 3X^> " *** + °^ Q >

3
2
U
n+1

3U
n

= fe'-i
1

' - <ixK - -ax
1

'
- sur + ° (Ae2)

(2.15)

Subsequently, 3U./3X is approximated by the three-point

backward formula, and 3AU./3X is approximated by the

upstream formula, thereby yielding

3Un+1 - 4U
n

+ U
n_1

2 2 1_
2Ae

, <TJ - 2U
n+1

+ U
n+

] AU
n

- AU
n

,

= L_#_l±i 2 izli 2 2zl
Pe v

A „2 ' AXaa

3U
n
- 4U

n
+ U

n
_.

3 = J" 1 i-£ _ kU. + 0(A6 +AX ) (2.16)2AX J

Ignoring the second-order truncation error and rewriting

equation (2.16) give
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(-rr 2r
2
)u£j (3 2r 1+ 2r 2+ r

3
>U^

+1 - r^+J

"Vj-2 + 2r
2
U
j-l

+(4 " V U
j " UT

X
(2 ' 17 '

2 < j < N-l

where r , r and r are defined in equations (2.11), (2.12)

and (2.13), respectively. Equation (2.17) gives rise to the

general finite difference expression for the TPB method. The

accuracy of the method is of second order. Note that a

tridiagonal coefficient matrix is generated on the left-hand

side of equation (2.17).

For j = 1, 3U/3X is approximated by upstream scheme

only, i.e.,

3U?
+1

- 4U? + U?"
1

1 Uf 1
- 2U?

+1
+ U*

+1
U?

+1
- U*

+1
1 1 1_ _2 1 . _ _1

2A9 Pe (

AV 2
' AXAX

- icU^
+1

+ 0(A9
2
+AX ) (2.18)

To eliminate U_ , the boundary condition given by equation

(2.5) is approximated by a three-point forward formula,

thereby giving

, -3D"
+1

+ 40f
J - U?

+1
n+1» - - k——ss — + C 1

< 2 - 19 >

or

U*
+1

= 4rX+1
- rX+1

+ r * ( 2 ' 20 >

4 1 4 2 o

where

r
4 * 3 + 2PeAX

(2 - 21)

r c = 2r„AX Pe UO (2.22)
5 4

Substitution of equation (2.20) into equation (2.18) yields
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(3 + 2r
1
+ 2r

2
+ r

g
- 4r^

4
- Sr^)^

-<r
2
- r

x
r
4
- 2r

2
r
4
)U

2

= 4 U^ - U
11" 1

+ (r
1

+ 2r
2
)r

5
(2.23)

For j = N, the boundary condition, equation (2.6), is

approximated by the central difference formula,

and, therefore,

U
N+ 1=

U
N-1 (2 - 25 »

Substituting this expression into equation (2.17) leads to

<~ 2r
l-

2r
2
)U
N-i +(3 + 2r

!
+ 2r

2
+ r3>°S

+1

= -r
2«S_ 2 * 2'

2<-l + « 4 " r
2
)U
S * ""n

1
' 2 - 26 »

The tridiagonal system of equations (2.17), (2.23) and

(2.26) with unknown U. through UN can be solved rapidly and

stably by the tridiagonal matrix method (see, e.g., Smith,

1985). Then, U can be obtained from equation (2.20).

2.1.3 Starting Algorithm

The TPB method is a three time-level method; thus, a

starting algorithm is required to calculate U., j = 0, 1,

..., N. Moreover, the accuracy of the entire method will be

influenced if the accuracy of the starting algorithm is not

at least of second order. In the present work, the starting

algorithm has been derived by combining the trapezoidal

formula of temporal differencing and the three-point

backward spatial differencing. The temporal and spatial

2-9



accuracy of the resultant method is of second order.

Although it is nondissipative , the method is employed only

for the first step. The derivation of the method is similar

to that of the Crank-Nicolson method except that the first-

order spatial derivative is approximated by the TPB

differencing; it is given as follows:

u
n+1

-u
n

_J 1
A9

a
2
u
n+1

. a
2
u
n

. au
n+1

. au
n

k k
= -±-( i) + -i-( i) - If—i) - If ll - - u

n+1 - - u
n

2Pe v

ov 2
; 2Pe v

ov 2
;

2
y 3X ;

2
l 3X ; 2 1 2 13X 3X j j

+ 0(A0
2

)

1 U
n^~ 2U

n+1
+ U

n+
^ 1 U* - 2U

n
+ U

n
,

2Pe *
A „2

; 2Pe v „2 '

AX AX

1 U
n+1 - U

n+
J 1 3U

n
- 4U

n
, + U

n
„

2 Hi 3 3-1 3-2
2 AX 2 2AX

k k
n+1 n 2 2- -r U. - - U . + O(A0 +AX )

2 j 2 j

(2.27)

Note that (3U/3X) is approximated through the upstream

scheme to generate a tridiagonal matrix on the left-hand

side of the finite difference equations. Rewriting equation

(2.27) gives

. ...n+1 , , . _ ...n+1 ,Tn+ l
(
"S 1- Wl +(1 + 2S

1
+ S

2
+ S

3
)U

j "
S

l
U

j + l

" " \ S
2
U"-2 + (S

1
+

2 = 2
)Uj.^(l- 2*!" f -j" V U

J
+ S

l°j + 1

2<j<N-l (2.28)

where

S= AQ
= (2.29)

2PeAX
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s 2= 5S (2 - 30 »

s
3=^ (2.31,

For j = 1 and j = N, the same treatment of the boundary

conditions as equations (2.18) through (2.26) can be

applied.

2.1.4 Stability

The TPB method is a three time-level implicit method;

thus, it is unconditionally stable for a mixed PDE without a

reaction term. Inclusion of the reaction term magnifies the

complexity of the stability analysis; it varies from case to

case. Nevertheless, the TPB method is more stable than the

commonly used finite difference methods, such as the Crank-

Nicolson and implicit Euler methods; the temporal

differencing of the TPB method is identical to that of the

two-step Gear method.

2.1.5 Example

The TPB method has been applied to the solution of the

following convection-diffusion PDE;

au i_ a^u au
ae Pe

8X
2 ax (2.32)

In this example, Pe is considered to be 1000, thereby

rendering the PDE to be convection-dominated. Equation
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(2.32) has been solved subject to the following initial and

boundary conditions, i.e.,

6=0, U(0,X) = (2.33)

X = 0, U(6,0) = 1 (2.34)

X = 1, |£ = (2.35)

The resultant solution is given in Figure 2.1. For

comparison, the solutions obtained with two conventional

methods are also presented in the same figure (Finlavson,

1980). In contrast to the TPB method, the backward Euler

method with the central differencing of the convection term

causes appreciable numerical oscillations, and the backward

Euler method with the upstream differencing of the

convection term induces noticeable numerical diffusion. Note

that the number of grid points is equal to 50 for all three

methods; the time-step size is 0.01 for the TPB method and

0.0005 for the others. It is worth mentioning that the

boundary condition at X=0, equation (2.34), is justifiable

in the light of a relatively large Pe. The boundary

condition satisfying the flux conservation, as given in

Equation (2.5), yields essentially identical solutions to

those obtained with equation (2.34).
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2.2 ALGORITHM FOR PDE ' s WITH COUPLED NONLINEAR REACTION

TERMS

In the preceding section, the TPB method for a mixed PDE

with a linear reaction term has been developed. If we have a

system of mixed PDE's with coupled nonlinear reaction terms,

the method yields a system of nonlinear finite difference

equations that need be solved at each time step. In this

section, a two-step expansion technique is derived to

convert the nonlinear finite difference equations into

linear ones which can be solved with the tridiagonal matrix

method.

2.2.1 Two-Step Expansion of Nonlinear Reaction Terms

The general form of a mixed PDE is

3U 1 8
2
U 3U -,„. ,„ __.

ae = Pi ^2 " ax
+ f(u) (2 - 36)

where f(U) is any given nonlinear function of U. Application

of the TPB method to this equation yields

3U
n+1

- 4U
n

+ U
n_1

2 2 2_
2Ae

3
2un+ l

gu
n+ l

= k {^ " (ax
1

)
+ f < u

j
>

+ °< Ae
>

, U
n+ }- 2U

n+1
+ U

n+
J AU

n
- AU

n
,

Pe v

A __2
; AX

SU*- 4U
n
_ 1+ U

n
_.

2-± i-^ + f(U. ) + 0(A9 +AX ) (2.37)2AX
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or

= -r
2
U^_

2
2r

2
tJ»_1+ (4-r

2
,0»- U^ 1

* 2A9 f(U*
+1

,

2 < j < n-1 (2.38)

where r and r are defined in equations (2.11) and (2.12),

respectively. To solve equation (2.38) with the tridiagonal

matrix method, f(U. ) can be approximated with the

Taylor-series expansion, i.e.,

f(9 + A9) = f(9) + f'(©) A0 + 0(A9
2

) (2.39)

or

3f(u") 3U
n

f(U^
+1

) = f(U^) + -J- —^ A9 + 0(A9
2

) (2.40)
J 3 3U

n 39
J

where the truncation error is of second order. To increase

the order of accuracy, the following expansion is carried

out

;

According to the Taylor-series expansion,

f(9 + AG) = f(9) + f 1 (©) A9 + | f'(9)A9 2
+ 0(A9

3
)

(2.41)

f(9 - A9) = f(9) - f'(9) A9 + | f ,! (9)A9
2

- 0(A9 3
)

(2.42)

Subtracting the latter from the former gives

f(9 + A9) = f(0 - A9) + 2f*(9) A9 + 0(A9
3

) (2.43)

or

3f(U
n

) 3U
n

f(U, )
- f(U

I

J

1
) + 2 -J- --^ A9 + 0(A9 J

) (2.44)
3 3 3U

n 36
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Note that this equation involves two time levels, n and n-1

;

thus, it is termed as the two-step Taylor-series expansion

(or two-step expansion in short). In equation (2.44), both

3f (U
1

?) /3U
1
? and au^/ae are evaluated at time level n.

3 3 3

affU^/au 1

? can be calculated analytically, and au./ae can be
J J J

obtained through the following finite difference

approximation;

au
n

, u
1
? - 2U

n
+ u*

,

ae Pe v

AV 2
'

AX

3U
n- 4U

n
_ 1+ U*

2AX
+ f(U

j
) + ° {AX } (2.45)

Consequently, all the terms on the right-hand side can be

evaluated at time level other than n+1 . Substitution of

equation (2.44) into equation (2.38) leads to a tridiagonal

system. It is worth mentioning that the two-step expansion

r\ 4- 1

of f(U. ) introduces two truncation errors. One is due to
3

the expansion in equation (2.44) and the order of error is

3
0(A0 ) ; the other is due to the finite difference

approximation of au./39 in equation (2.45) and the order of

2error is 0(AX A9). since both truncation errors are of third

order, the accuracy of the two-step expansion is of third

order, which is one order higher than that of the TPB

method. Therefore, the two-step expansion can be applied to

linearize the finite difference equation, equation (2.38),

without additional loss of accuracy.
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2.2.2 Uncoupling PDE's with Coupled Nonlinear Reaction

Terms

.

The two-step expansion can also be applied to a system

of mixed PDE's with coupled nonlinear reaction terms, which

can be represented as follows:

3U. 3
2
U. 3U.

1
+ f, (U) , i = 1, 2, . . . , m36 Pe ^v 2 3X i

(2.46

where U = (u\, U_ , ..., U ) and m is the number of PDE's.
x z m

The finite difference expression of equation (2.46) can be

written in the same form as equations (2.38), i.e.,

(-r - 2r )(U.)
n+

^ + (3 + 2r„ + 2r„)(U.) n+1 - r,(U.)
n+

J1 2
/x

1 3~1 1 2 i'j l
x

l 3+1

= -r (U.)
n

o + 2r (U.)
n

, + (4 - r^)(U.) r
?

2 l j-2 2 i 3-1 2 13
- (U. )

r}~ 1
+ 2A6 f . (U

n+1
) ,

i j 1 3

2 < 3 < N-l, 1 < i < m (2.47)

Y% Jim 1

where f.(U. ) can be expressed in terms of the following

two-step expansion;

f .(U*
+1

) = f.tU^ 1
) + (J i-J- —±-± )2A9 (2.48)13 13 K-l

a( „ }

n 36
k' 3

In this equation, 3f . (U . ) /3 (U. ) . can be obtained

analytically from the given f.(U), and 8(U, ) ./36 can be
1 ^ 3

evaluated in the same way as equation (2.45). Since f.(U. )

is evaluated at the time levels of n and n - 1, equation

(2.47) can be solved with the tridiagonal matrix method.
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2.2.3 Uncoupling PDE's Coupled with ODE ' s and/or Algebraic

Equations

The two-step expansion technique can be extended to a

system of mixed PDE's coupled with ordinary differential

equations (ODE's) and/or algebraic equations. For

simplicity, it is assumed that the mixed PDE's given in

equation (2.46) are coupled with one ODE and one algebraic

equation; they are expressed as

3U

3^ = g x
(U) (2.49)

h
1
(U) = (2.50)

where U = (U„ , U_ , . . . , U _) and m is the number of PDE's.
l 2 m+2

The first step for solving this system of equations is to

solve the PDE's by the finite difference equation given in

equation (2.47). f.(U. ) in equation (2.47) can be

expressed as

f.(U*
+1

) = f .(u""
1

) + ("J? 1 i _kl )2AQ (2>51)
i j i j fc-i

(

.n ae
k' j

i = 1 , 2 , . . . , m

where 3(U
, , ) . /3© is equal to g,(U.) in equation (2.49) andm+1 3 ^ 1 j

a (U
, n ) . /3© can be obtained by taking the derivative of

m+2 j
2 a

equation (2.50) with respect to 9, i.e.,

= (2.52)
3tV 5 j> m±2

3h
l<

5"> 3'V"
39 " k=1 8(0^ 39

In this equation, 3(U ,_) ./3© is the only unknown and can be^ m+2 j
x

readily solved. With 3(U
,

J

n
/ae and 3(U

, n )

n
/36 available,1 v m+1

'

y v m+2

'

y
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f.(U. ) can be calculated from equation (2.51); equation

(2.46) can then be solved for U., i=l , 2, ..., m. The second

step is to solve the ODE in equation (2.49) for (U „ )

r
?
+

;

ys I 1

finally, equation (2.50) is solved for (U _ ) . . The samem+2 j

procedure can be followed if the number of ODE ' s or the

number of algebraic equations is greater than one.

2.2.4 Example

To test the TPB method for a system of mixed PDE's with

nonlinear reaction terms, the following example provides a

comparison of the numerical solution obtained by the TPB

method with the available analytical solution.

A system of mixed PDE's is given as:

3U 3
2
U 3U 1

ai -k—T ~ ax
+ 2U

2 -<Pi +1 > u
i

(2 ' 53 >

3X

3U„ , 3
2
U„ 3U„ uj'

5
4

2 2 2 2^ = S 7T- ~ -ZZ + 2 7^ - =- + 2)U (2.54)39 Pe _„2 3X U
1

v Pe ' 2
v

'

3U. 3
2
U 3U U

2
9

= - + 3 —- -
( + 3)U (2.55)

36 Pe av 2 3X U. *Pe ' 3
v ;

The initial and boundary conditions for the above equations

are

:

6=0, U
1
(0,x) = e~

X
(2.56)

U
2
(0,x) = e"

2x
(2.57)

U
3
(0,x) = e~

3x
(2.58)

X = 0, U
1
(6,0) = (1+6)

2
(2.59)

U (9,0) = (1+e)
2

(2.60)
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u
3
(e,0) = (l+e)

3
(2.61)

x = 1, U (9,1) = (l+9)
2
e
_1

(2.62)

U
2
(9,l) = (l+9)

2
e"

2
(2.63)

U
3
(9,l) = (l+9)

3
e~

3
(2.64)

The numerical solution of equations (2.53) through (2.55)

obtained by the present method is compared to its analytical

solution given below.

U (9,x) = (1 + 9)
2
e~

X
(2.65)

U
2
(9,X) = (1 + 9) e

^
(2.66)

U
3
(9,x) = (1 + 9) e

°x
(2.67)

It is shown in Table 2.1 that the numerical solution is

highly accurate.

2.3 CONCLUDING REMARKS

The three-point backward (TPB) finite difference method

has been developed for solving mixed hyperbolic-parabolic

(convection-diffusion) PDE * s . For a mixed PDE with a linear

reaction term, the present method resorts to the three-point

backward differencing to approximate the first-order

temporal and spatial derivatives, and the temporal and

spatial accuracy is of second order. Moreover, the resultant

finite difference equations are solved with the tridiagonal

matrix method at each time step. The results of calculation

have demonstrated that the TPB method substantially reduces
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the numerical oscillations and diffusion; moreover, it is

computationally efficient.

For a system of mixed PDE ' s with coupled nonlinear

reaction terms, a two-step expansion technique has been

derived to linearize the finite difference equations and

uncouple the PDE ' s . The accuracy of the two-step expansion

technique is of third order. The results of calculation have

shown this technique can be applied to a coupled system

without additional loss of accuracy. Moreover, the present

method can be effectively extended to a system of mixed

PDE ' s coupled with ODE s and/or algebraic equations.
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Figure 2.1. Finite difference solutions for the example:
a. TPB method (AX=0.02, A9=0.01)
b. Euler method with the central differencing

(AX=0.02, A6=0.0005)
c. Euler method with the upstream differencing

(AX=0.02, A9-0.0005)
d. Exact solution.
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Table 2.1. Comparison between the Numerical and Analytical Solution

of a System of Mixed PDE ' s With Coupled Nonlinear Reaction Terms

e

0.10 5.00 0.0003 0.0012 0.0026

0.20 5.00 0.0003 0.0011 0.0022

0.30 5.00 0.0003 0.0010 0.0018

0.40 5.00 0.0003 0.0009 0.0014

0.50 5.00 0.0003 0.0008 0.0011

0.60 5.00 0.0003 0.0006 0.0007

0.70 5.00 0.0003 0.0005 0.0003

0.80 5.00 0.0002 0.0004 0.0000

0.90 5.00 0.0002 0.0003 -0.0004

* AX = 0.025, A9 = 0.025

r. = (U. ___ - U. , )/ U.
l i,TPB i,analy l.analy
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CHAPTER 3

MODELING AND NUMERICAL SIMULATION OF

IN SITU NEUTRALIZATION PROCESSES

Soil neutralization is an important in situ treatment

technology that is used for the cleanup of acid sludge as

well as the improvement of pH of soil. In this chemical

treatment, a solution of base is allowed to flow into the

soil to neutralize the deposited acid. Since the transport

process and chemical reactions involved in the treatment are

complicated and the cost for neutralization is relatively

high, it is desirable that mathematical models be developed

to optimize the design of the treatment system.

Mathematical models for the movement of solute through

the soil media have been reported by numerous researchers

(Jury et a_l. , 1983; Robert et al . , 1985; Valocchi , 1985;

Nielsen et al. 1986; Short, 1986; Grenney et al . , 1987).

These works have concentrated on the fate of chemicals in

the subsurface environment. In contrast, the mathematical

models for in situ chemical treatment processes have seldom

been studied (Kosson et §_1 . , 1987; Wu et al^. , 1988). In

these processes, contaminants deposited in soils are

eliminated with chemical agents by means of chemical

reactions. As a result, the models need consider not only
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the transport and reaction of contaminants, but also those

of chemical agents.

In the present work, in situ neutralization is modeled

as a typical nonequilibrium adsorption/desorption system.

The mechanism of neutralization, which is substantially

different from that of ion exchange, is discussed. The model

equations have been nondimensionalized, and then,

dimensional analysis and numerical simulations have been

conducted to determine the effects of different

dimensionless model parameters on the performance of the

treatment systems; such information is useful for the design

of the system.

3.1 MECHANISMS OF SOIL NEUTRALIZATION

Soil neutralization can be applied to either acidic

soil or basic soil. In practice, the neutralization of

acidic soil is more important. To understand the mechanism

of neutralization of acidic soil, it is useful to know how

acidic soil forms. According to ion exchange theory, acid

soil is formed by exchanging metal ions originally existing

in soil with hydrogen ions. Consequently, hydrogen-saturated

soil and clay are formed. However, hydrogen-saturated

minerals are highly unstable. Coleman and Craig (1961) have

reported that hydrogen-saturated soil and clay prepared by
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strong-acid leaching or dialysis decompose rapidly to

aluminum- and iron-saturated materials. The half life for the

temperature-dependent decomposition is only a few hours for

many minerals. The resultant polymers of hydroxy-Al and

hydroxy-Fe can be held between the lattices of expanding

soil minerals. According to Bohn (1979), the mechanism of

the neutralization of acidic soil can be represented as

neutralization reactions of the polymers on the surfaces of

soil particles. Since the neutralization reaction is very

fast, the interphase transport of base from the bulk liquid

to the surface of soil particles is considered as the rate

limiting step of the process.

3.2 MODEL DESCRIPTION AND EQUATIONS

The entire mass of acid sludge to be neutralized can be

visualized as a fixed bed. The bulk liquid is defined as the

liquid phase and the soil particles are defined as the solid

phase. The components involved are acid and base. One

dimensional flow is assumed to prevail in the liquid phase.

This gives rise to the following equation describing the

effects of convection, axial dispersion, and interphase mass

transfer.

3C, 3
2
C. 3C „

at* " E7^- V
33T -7V< cb" V (3 - 2)

3x
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It is worth noting that the acid transfer rate from the

solid phase to the liquid phase is very small, and its

effect can be included in the base transfer term. In the

convection term, v is the vertical pore velocity of

solution. It is assumed to be constant and related to the

superficial velocity, v , by

v
f

V - ~ (3.2)

We are concerned with the fate of acid as well as the

possible accumulation of base in it. If Z is the number of

hydroxyl ions in a base molecule, we have

9q zkba *
'C. - C. ) , q^ > (3.3)at p * b b' '

Ma

3c
*b V

at " p
(c
b - C

b>' qa - ° (3 - 4)

The initial conditions for equations (3.1), (3.3) and (3.4)

are, respectively,

at t = 0, C (0,x) = (3.5)

q (0,x) = q (3.6)^a '
cio

qb
(0,x) = (3.7)

The boundary conditions for equation (3.1) are (Wen and Fan,

1975)

ac
at X = 0, vC. = v(C, ) - E(^—-) (3.8)bo b o+ 3x o+

ac
at x = L, -^ = o (3.9)

3-4



3.3 ADSORPTION/DESORPTION RELATIONS

In equation (3.1), the interphase mass transport is

*
related to C, , the concentration of base in the solution

D

which would be in equilibrium with that in the solid phase.

Available experimental data indicate that when acidic soil

is mixed with basic solution, the solution will be acidic if

the resultant soil is acidic upon establishment of the

adsorption/desorption equilibrium. In other words, no basic

solution remains, which would be in equilibrium with the

acidic soil. For those locations where q is equal to zero,

base will be adsorbed on soil surfaces and a linear sorption

equilibrium isotherm can be assumed. Thus,

if q > 0, C* = (3.10)
a d

and

* qb
if qa

= 0, C
b

= — (3.11)
P

In equations (3.10) and (3.11), only the interphase

transport is considered; the mass transfer rate does not

depend on the concentration of acid in the solid phase. This

is not the case if the transport process is further analyzed

in terms of the double layer theory ( Iwata et al . , 1988).

This theory portrays the surface of soil particles at a low

pH as positively charged, and the mass transfer rate of

hydroxyl ions as proportional to the charge density, which,
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in turn, is related to the pH in the soil. If the mass flux

induced by electric potential is expressed in linear form,

we have

J'= k
a (qa

- q*) (3.12)

Here q is the acid concentration where pH is equal to the

isoelectric point so that the ion velocity is zero.

Since the double layer and interphase transport overlay

each other, the two processes are in parallel instead of in

series. Thus, the overall mass transfer will be

J = k. (C.- C*) + k (q - q*) (3.13)
b b b a x ^a ^a'

If q is very small and C, is equal to zero, equation (3.13)
3. D

can be simplified to

J = kb (C
b

- C**) (3.14)

where

C
b* = -iT qa (3 - 15 '

b

Generally, k need be determined experimentally. For
CL

simplicity, it is assumed that

k, >> k
b a

in this work. In other words, the effect of double layer on

the rate of mass transfer is assumed to be negligibly small,

**
and thus, C. approaches zero.
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3.4 DIMENSIONLESS FORM OF GOVERNING EQUATIONS OF THE MODEL

To better understand the effects of the various

parameters of the model on the solution and to better

analyze the performance of different numerical methods, it

is desirable to rewrite equations (3.1), (3.3) and (3.4) and

the initial and boundary conditions, equations (3.5) through

(3.9), in dimensionless form. For this purpose, the

following dimensionless variables are defined;

tv
e =

L

x = X
L

V
C
b

C
bo

qa
=

qa

qao

V *qb
ec,.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
bo

After substituting these definitions into equations (3.1)

through (3.9), we obtain

3C E 3
2
C 3C k

b
aL _ qb

39~ =
( VL )~2 aX~ " ( "7v~ )(Cb " pK /€

) (3.21)
OA P

3q kKaL eC
v,^ = -(— )( — )CWZ , q > (3.22)

36 v ev '
x pa ' b ^a

3q k aL q.

= (—=— )(C - —
) , q = (3.23)

30 K €V M b pK /€ J
'

4a v
'

P

Note that E/vL is the reciprocal of the Peclet number and

k,aL/ev is the Stanton number for interphase mass transfer.
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Also note that the Stanton number may have different forms

for different mass transfer expressions. The other two

dimensionless groups can be defined as follows:

R = —£2 (3.24)
° ^ao

- PK
PK = E (3.25)

p €

K in the above expression can be regarded as the

dimensionless linear isotherm partition coefficient since

this expression can be rewritten as

- %
K = — (3.26)
P CC

b

By substituting equations (3.24) and (3.25) as well as the

definitions of Peclet number and Stanton number into

equations (3.21) through (3.23), we obtain, respectively,

ac i a
2
c ac q

ii~ " Pi ^2- " 1ST - SV 5
b " f > < 3 ' 27 »

P

3^a
a?" = " St

m
R
o
C
b
Z '

<*a > ° (3 ' 28)

3% %^—- = St (C. -) , q = (3.29)3e nr b - ' ^a v '

K
P

The corresponding initial conditions are

at e = 0, C
b
(0,X) = (3.30)

ia
(0,X) = 1 (3.31)

qb
(0,X) = (3.32)

The corresponding boundary conditions are
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at X = 0, 1 = (C
b

- ^ 3^) o+ (3.33)

3C
at X = 1, ^- =0 (3.34)

3.5 SOLUTION ALGORITHMS

Equation (3.27) is a convection-dispersion partial

differential equation (PDE) coupled with ordinary

differential equations, equations (3.28) and (3.29). The

three-point backward finite difference method developed in

Chapter 2 has been applied to solve these equations. The

detail of the numerical procedure is given below.

Application of the TPB method to equation (3.27) yields

__ n+1 - n - n-1
3C. . - 4C. . + C. .

b, j b,j b,j
2A0

1 CK
n+ l

- 2CK
n+1

+ C *t\
.

. b,3 + l b_j b, j-1
" PS AX

2

(c.
n+1 - cK

n
4 )- (c^t* - c.

n
.

f Jv b, 3 b, j ' b, j-1 b, j-1 1

AX

F n - n - n - n+1
3C, . - 4C. . „ + C, . _

, „ q,b, 3 b,3-l b,3~2
f
= n+1 _ ^b , 3

2AX m l b,j ^ '

P

(3.35)

Since equation (3.27) is coupled with equation (3.29),

equation (3.35) can not be solved independently. If the
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second-order Runge-Kutta method is applied to equation

(3.29), q. . can be expressed as

- n+1

r-
= v*" 1 + b^ + b3Vj (3 - 36)

where

Aest
b = —- (3.37)

2K
P

Aest Aest
b = ^(1 —£') (3.38)

2K K
P P

l Aest (Aest )

2

b, = —(1 -
m

+ ^ ) (3.39)
J

K K 2K
P P P

Substituting equation (3.36) into equation (3.35) yields

<"r
i-

2r 2> 6b?3-i
+ (3 + 2r

i
+ 2r

2
+ r3" "aVS?"

= n+l
r
l
C
b.j+l

= (
-r2» 5b?j-2

+ 2r
2
5b? 3 -l

+
<
4 - r

2
+ r

3
b 2» 5b?3

" ^J
1

+ '3¥b"j < 3 - 40 '

where

2Ae Ae o.^o*.r
i

= 1' T o
= T^ '

r
-5

= 2Aestm1 PeAX 2 2 AX 3 m

Note that a tridiagonal system is generated in equation

(3.40). In each time step, equation (3.40) is solved with

the tridiagonal method for C, . , 1=0, N. After C, isy b,j J b,j

obtained, q or q, . is calculated by the second-order
a , j D , j

Runge-Kutta method, which gives
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q
n+1 = q

n
. - 0.5St R Z(CK

n+1
+ C "

. ) , q
n

. >Ha,j Ma,j m o v b,j b.j'' Ha
,

j

(3.41)

qK
n+1

= iv,
n

- + - 5S * R Z(CK
n+1

+ c\
n

.), q
n

. =
^b , j ^b , j m o v b , j b ,

J
'

Ha,j

(3.42)

Note that base accumulates only after acid is completely

neutralized. Therefore, at any grid point, if q .is
a , 2

greater than zero, q is calculated by equation (3.41)a / J

,. , n+1 _ c n . . n+1while q, remains zero. If q .is equal to zero, q,_ . is

calculated by equation (3.42).

3.6 RESULTS AND DISCUSSION

Equations (3.27) through (3.29) contain four

dimensionless numbers, Peclet number, Stanton number, R
o

and K . The extent of axial dispersion is considered to be
P

slight in a nonequilibrium system (Grenney, 1987); thus, Pe

is fixed at 100. The effects of the remaining three

parameters, St , R and K , on the neutralization time andmo p

the accumulation of base in the solid phase are analyzed.

The neutralization time, t , is defined as the time required

to completely neutralize the acid in the solid phase, and

its dimensionless form is defined as the dimensionless

neutralization time, © . Since the rate of neutralization
n

varies along the soil bed, the accumulation of base in the

solid phase occurs where the neutralization has already been
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accomplished. This not only renders the solid phase basic,

but also increases the neutralization time since the base

accumulated in the solid phase becomes unavailable for

neutralization.

3.6.1 Effect of St
m

By definition, St mainly reflects the ratio of the1 m

mass transfer coefficient to the pore velocity or the ratio

of the interphase transport rate of the key component to the

rate of transport of this component accompanied by the

convective flow through the soil bed (or the convective

transport rate in short). As a result of the interphase

transport of base from the liquid phase into the soil

particles, neutralization of acid and accumulation of base

in the solid phase take place. Meanwhile, as a result of the

convective transport, a portion of base in the feed solution

moves along with bulk flow and eventually flows out of the

soil bed. The larger the St , the faster the neutralization59 m

rate and the more extensive the accumulation of base as well

as the less active the convective transport. This is

demonstrated in the concentration profile of base in the

solution, C, , at a fixed time but at different values of St
b m

in Figure 3.1. Note that when St is large, the interphase

transport is dominant and a large portion of the base in the

solution is adsorbed into the solid phase before being
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convected out of the soil bed. Consequently, the change in

the concentration profiles of the base in the solution, C, ,b

is indeed steep. In contrast, when St is small, them

convective transport is dominant, and a large portion of the

base moves out of the soil bed before being adsorbed into

the solid phase. Thus, the change in the concentration

profile of the base in the solution is quite flat. In an

extreme case of St being zero, no interphase mass transport

occurs, and therefore, the profile of C, remains fixed at

1.

Figures 3.2 and 3.3 show the concentration profiles of

base in the solution, C, , acid in the solid phase, a , and
b a

base in the solid phase, q. , with St of 2 and 20,r ^b m

respectively.. To render q, to be within a range from to 1

,

q, /K , instead of q. , is plotted against X. When St is 2

,

^b p ^b ' *" a m

all three profiles are quite flat. However, as St increases

to 20, these profiles become very steep, and the profile of

q, /K approaches to that of C, ; this can be attributed to
^b p b

the very fast interphase transport. Obviously, the larger

the St , the closer the two profiles; as St approaches to
m * m rr

infinity, the two profiles will merge, i.e., q. = K C This

indicates that an equilibrium will be established between

the liquid and solid phases, and the mass transport will

cease to be the rate limiting step.
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In Figure 3.4, the dimensionless neutralization time,

9 , defined as the dimensionless time required to neutralize
n

all of the acid, is plotted against St at fixed R and K .e m op
It indicates that as St increases, Q approaches

asymptotically to a certain value and remains constant for

St > 3. Thus, e is mainly determined by the ratio of the
m

concentration of base in the feed solution to the initial

concentration of acid in the solid phase, R , and by the
o

dimensionless linear isotherm partition coefficient, K . In
P

the region of St < 3, the interphase mass transport becomes

the controlling step of the entire process, and therefore,

St significantly affects e . Note that the critical value
m 3 1 n

of St , e.g., 3, in Figure 3.4, will vary with changes in R

and K .

P

3.6.2 Effect of R
o

By definition, R represents the ratio of the

concentration of base in the feed solution to the initial

concentration of acid in the soil. Comparison of Figure 3.5

with Figure 3.2 indicates that the increase in R from 0.05

to 0.1 does not significantly affect the concentration

profile of base in the solution, C. . However, it

significantly affects the concentration profile of acid in

the solid phase, q , since the rate of change of the acid

concentration is proportional to R , as indicated in
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equation (3.28). The dimensionless neutralization time, e ,n

depends upon the rate of change of the acid concentration in

the solid phase; thus, the larger the R , the smaller the

8 . This is plotted in Figure 3.6 with St as the parameter,n m

Note that the change in R has a pronounced effect on e
o n

when St is small. Under this situation, the accumulation of
m

base in the solid phase is not appreciable, and Q is mainly

determined by the rate of change of the acid concentration.

With the increase in St , the rate of accumulation of base,
m

expressed in equation (3.29), becomes increasingly

important. Consequently, the effect of R on is reduced.

It is also observed in Figure 3.5 that R only slightly

affects the profile of Q^/K • Nevertheless, the actual

extent of accumulation of base in the solid phase increases

with R according to the definition of q , equation (20).

3.6.3 Effect of K
P

The dimensionless linear isotherm partition

coefficient, K , signifies the adsorption/desorption

equilibrium relationship of base or the capacity of base to

accumulate in the solid phase. The larger the K , the

greater the capacity of accumulation of base in the solid

phase. Moreover, K affects the rate of accumulation of base

in the solid phase. As indicated in equation (3.29), the

larger the K , the faster the rate of accumulation of basea p'
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in the solid phase. Figures 3.2 and 3.7 demonstrate that as

K decreases from 40 to 4 and St remains constant, q, /K
p m op
increases. But, if the corresponding q is calculated in

both cases, q. will decrease, which is consistent with

equation (3.29). The effect of K on 9 can also be divided^ v p n

into two regions. As observed in Figure 3.8, K has little

effect on 9 when St is 2 . This is due to the slow rate ofm

accumulation of base in the solid phase. In contrast, 9c n

significantly increases with the increase in K when St isa J p m

20. The reason is that with the increase in K , both the
P

rate and capacity of base to accumulate in the solid phase

increase.

3.7 CONCLUDING REMARKS

A model for simulating the in situ neutralization

process has been developed, and the mechanism and

equilibrium relations are discussed. The model gives rise to

a convection-dispersion PDE and a set of two ODE's. The PDE

has been solved with a three-point backward finite

difference method. Four dimensionless numbers have been

identified as the physically significant parameters. The

extent of axial dispersion is considered to be slight in a

nonequilibrium system; thus, Pe is fixed at 100. The
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effects of the other three dimensionless numbers, St ,m

R and K , are summarized as follows:
o p

a. St reflects mainly the ratio of the rate ofm 2

interphase transport of the key component to the rate of

convective transport of this component. The mass transport

in the neutralization process can be divided into two

regions. When St is greater than a critical value, thea m a

interphase transport is more dominant than the convective

transport, and the accumulation of base is significant. When

St is smaller than this critical value, both interDhasem

transport and convective transport are appreciable, and the

accumulation of base is unimportant.

b. R represents the ratio of the concentration of base
o r

in the feed solution to the initial concentration of acid in

the solid phase. The larger the R , the faster the rate of

change of acid concentration in the solid phase, and thus,

the shorter the neutralization time. Moreover, R has a more
o

pronounced effect on the neutralization time for a smaller

St than for a larger St .

m 3 m

c. K , signifying the capacity of base to accumulate in

the solid phase, affects appreciably the dimensionless

neutralization time, 9 , only if St is near or greater than
n m

the critical value. In this case, the rate of the

accumulation of base in the solid phase is enhanced

substantially. The larger the K , the more extensive the
hr
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accumulation of base in the solid phase, and thus, the

longer the dimensionless neutralization time, e .

n

The present model can be extended readily to any

nonequilibrium in situ chemical treatment system in which a

contaminant deposited in the solid phase will be eliminated

with a chemical agent by means of a fast chemical reaction.
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NOTATION

2 3
a = surface area of the control volume, m /m

3
C, = concentration of base in the liquid phase, kmol/m

C. = concentration of base in the solution which would be
D

3
in equilibrium with that in the soil, kmol/m

**
C. = equilibrium concentration of base which is defined by

3equation (3.15), kmol/m

3
C. = concentration of base in the feed solution, kmol/m
DO

C. = dimensionless concentration of base in the liquid

phase, C
b
= C

b
/C
bo

2
E = dispersion coefficient, m /hr

J = total mass flux of base from liquid phase to solid

2
phase, kg/m /hr

J 1 = mass flux of base induced by electric potential,

2kg/m /hr

k = mass transfer coefficient of the acid due to
a

2electrical potential, kg/m hr

k, = mass transfer coefficient of the base, m/hr
D

3
K = linear isotherm partition coefficient, m /kg

L = depth of the contaminated soil, m

q = concentration of acid in the solid phase, kmol/kg
cl

q = initial concentration of acid in the solid phase,
^ao

kmol/kg
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q = dimensionless concentration of acid in the solid
^a

phase, qa
= qa/qao

q = concentration of base in the soil, kmol/kg

q = dimensionless concentration of base in the soil, q. =

pV eC
bo

v = pore velocity of the liquid, m/hr

v
f

= superficial velocity of the liquid, m/hr

t = time, hr

t = neutralization time, hr
n

x = vertical position, m

X = dimensionless vertical position, X = x/L

Z = number of hydroxyl ions in a base molecule, Z is equal

to 2 in the present work.

GREEK LETTERS

3
p = bulk density of the soil, kg/m

€ - volumetric content of liquid in the control volume

9 = dimensionless time, 9 = tv/L

9 = dimensionless neutralization time, 9 = t v/L
n n
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CHAPTER 4

MODELING AND SIMULATION OF IN SITU

BIOREMEDIATION PROCESSES

In situ bioremediation of contaminated soil is an

innovative and cost effective treatment technology. This

technology exploits the capability of naturally occurring

microorganisms to decompose toxic substances deposited in a

soil bed; it can be applied to the cleanup of organic

sludge, where organic compounds with high molecular weights

are adsorbed on the soil particles. To aerobically operate

the biodegradation process, water containing oxygen is

allowed to flow through the soil bed. The flow behavior of

water through the soil bed is very similar to that observed

in bioremediation of contaminated groundwater.

Several mathematical models have been proposed for

simulating in situ bioremediation of contaminated

groundwater (Bouwer and McCarty, 1984; Borden and Bedient,

1986; Molz et al . . 1986; Lee et al_. , 1988). These models

focus mainly on contaminant transport from the bulk liquid

to microorganisms attached to particle surfaces (Baveye and

Valocchi , 1989); the transport within the pore network is

seldom studied because contaminants are mainly in the bulk

liquid. Few models have been proposed for bioremediation of

contaminated soil. In bioremediation of contaminants in a
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soil bed, contaminants are initially adsorbed in soil

particles. Consequently, the rate of biodegradation is

generally controlled by transport resistance to contaminant

migration within the pore network, and the transport

resistance to contaminant diffusion across a stagnant layer,

or immobile water, adjacent to particle surfaces becomes

negligible.

In this chapter, a mathematical model has been

developed for simulating bioremediation of contaminated

soil. The effects of insufficient oxygen supply, growth of

biomass and resistance to contaminant migration on the rate

of contaminant degradation have been examined by numerically

simulating the dynamic behavior of in situ biodegradation

processes.

4.1 MODEL DEVELOPMENT

Organic contaminants are initially deposited in a soil

bed. Water is allowed to flow through the bed continuously,

thereby saturating the bed. The dissolved oxygen in the

water effects aerobic biodegradation. By consuming

substrate, including all contaminants, oxygen and other

nutrients, naturally occurring microorganisms grow both in

the solid phase as immobile microcolonies , which are

clusters of microorganisms attached to the surface of soil
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particles, and in the liquid phase as suspended

microorganisms

.

4.1.1 Assumptions

The following major assumptions are made in deriving

the model equations for bioremediation of contaminated soil.

a. Water in interstices or pores of the soil bed

constitutes the liquid phase and the remaining part of the

bed is considered as the solid phase. No gas phase exists

because the bed is saturated with water.

b. Only three components, substrate, oxygen and

biomass, are involved in biodegradation.

c. Macroscopically , one dimensional flow prevails

through the liquid phase. The void fraction in any cross-

section of the soil bed is constant, and thus, the pore

velocity of water is constant.

d. No convective flow and dispersion occur in the solid

phase

.

e. The microcolonies in the solid phase are attached to

the surface of soil particles, i.e., the interface between

the solid and liquid phases, where the supply of oxygen is

more effective than the inside of soil particles.

f. The biodegradation by microcolonies takes place at

the interface between the liquid and solid phases; in
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other words, no reaction proceeds in the bulk of the solid

phase

.

g. The concentration gradients across the stagnant

liquid layer, adjacent to the interface between the liquid

and solid phases, are negligible, and thus, the

concentrations of substrate and oxygen extracted by the

microcolonies are equal to those in the bulk of the liquid.

The stagnant layer is extremely thin due to the small

average diameter of the macropores in soil which is

generally less than 0.5 mm ( Iwata et a.1 . , 1988).

h. The microcolonies cover only a portion of the

interfacial area.

4.1.2 Derivation of a General Model

The schematic diagram of the transport and

biodegradation in a controlled volume is given in Figure

4.1. The mass balance of component i in the liquid phase

gives rise to

ac ac. ac.
eA(Ax)

at" " eA( "Eair
+ vCiMx- 6A( -EalT

+ vC.)| A + 6A(Ax)r^ - A(Ax)aj^ (4.1)
1 Ix+Ax i J l

where subscript i is s, o or b, standing for substrate,

oxygen or biomass, respectively; A is the cross-sectional

area; a is the interfacial area per unit volume of the bed;

and € is the void fraction of the bed or the volume fraction
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of the bulk of the liquid phase. Dividing both sides of

equation (4.1) by AAx and letting Ax approach to zero give

3C. 3
2
C. 3C.

e^ = 6E-^ - ev^ + *r. - aj
4

(4.2)

The corresponding mass balance in the solid phase yields

3q.
pA(Ax) ^ = A(Ax)aj* (4.3)

where p is the bulk density of the bed. This equation can be

simplified to

3q
i

p at"
= ah (4 ' 4)

The rate of mass transfer of component i from the

liquid phase to the interface must be equal to the sum of

the rate of its transfer from the interface to the bulk of

the solid phase and the rate of its consumption at the

interface, i.e.,

.L .s , sf

.

, . _

.

aj
i

= aj
i

+ p(-r
i

) (4.5)

Substituting this equation into equation (4.2) leads to

ac. a
2
c. ac.

« 3^ - eE -r1
- ev

asr
+ «i + "V - aJl (4 - 6 »

ax

Equations (4.4) and (4.6) are the general transport

equations for component i in the solid and liquid phases,

respectively. This set of equations gives rise to two

classes of transport models, equilibrium and

nonequilibrium.

If the rates of adsorption and desorption of all

components are sufficiently fast so that the concentrations
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in the liquid phase, C.'s, are in equilibrium with those in

the solid phase, q.'s, the resultant model will be an

equilibrium model. For component i in such a model,

equations (4.4) and (4.6) merge naturally into a single

equation through an equilibrium relation (see Appendix I).

The equilibrium model is widely used in simulating in situ

bioremediation of contaminated groundwater (see, e.g.,

Valocchi, 1985). In contrast, if the rates of adsorption and

desorption of any one of the components are controlled by

transport within the pore network in the solid phase so that

its concentration in the liquid phase is not in equilibrium

with that in the solid phase, the resultant model will be a

nonequilibrium model. Separate equations, equations (4.4)

and (4.6), are required for this component.

In bioremediation of contaminated soil, the substrate

is initially deposited in soil particles and the rate of

substrate desorption from the soil particles to the liquid

phase is generally controlled by transport within their pore

network; thus, the concentration of substrate in the liquid

phase is not in equilibrium with that in the solid phase.

Consequently, the nonequilibrium model is more appropriate

than the equilibrium model for bioremediation of

contaminated soil.
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4.1.3 Derivation of the Nonequilibrium Model

As stated earlier, both equations (4.4) and (4.6) are

required for substrate. In terms of the film model, the mass

flux of the substrate, 1 , in these equations can be
s

expressed as

(-J') = k;(q, - q*> (4.7)

where q is the concentration of substrate in the solid
s

phase which would be in equilibrium with that in the liquid

phase , i.e.,

q* = K, C (4.8)
^s ds s

Substituting this expression into equation (4.7) yields

«-£> Vft " c
s»

(4 - 9 »

ds

where

k = k'K, (4.10)
s s ds

Substitution of equation (4.9) into equations (4.6) and

(4.4) results, respectively, in

3C 3 C 3C T _ q
s „ s s L sf , . s _, .e—— = €E —t— - €v -

—

+ er + pr + ak (-— - C
3t « 2 3x s r s s K, s

3x ds

(4.11)

4ir = - ak
s (

fe-"
°
s )

(4 - 12)
ds

The flux of oxygen, j , is negligible because the solid

phase hardly adsorbs oxygen; thus,

3q
1

= (4.13)
3t
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2
3C 3 C 3C . -

e^r2 = eE —^ - €v ^-S + e r
L

+ pr
sr

(4.14)
3t 2 3x o ^ o

oX

The rates of exchange between biomass in the form of

immobile microcolonies and that in the form of suspended

microorganisms are not controlled by transport within the

pore network of the solid phase because the microcolonies

are mainly at the interface between the liquid and solid

phases. Thus, a local adsorption-desorption equilibrium

exists, which can be expressed as

<*b
= K

db
C
b {4 - 15)

where K,, is the partition coefficient of biomass.

Substituting equation (4.15) into equation (4.4) and

combining the resultant expression with equation (4.6) lead

to a single expression, i.e., (see Appendix I)

3C 3
2
C 3C

ax

where

R
b

= 1 + -^SS (4.17)

This expression is termed as the retardation factor of

biomass

.

The reaction terms in equations (4.11), (4.14) and

(4.16) can be expressed in terms of the Monod model (see,

e.g., Bailey and Ollis, 1987). The rate of biomass growth in

the form of the suspended microorganisms in the liquid

phase, r. , is expressed as
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c c
r
b = "m c

b ( lTT§- )( irT§-) - k
d
C
b (4 ' 18 >

s s o o

where the first term on the right-hand side is for the

growth and the second term is for the decay. The rate of

bioraass growth in the form of microcolonies at the

interface, r. , is expressed as

f
C C

r
b = ^mqb ( iTT§- )( irT§- ) " k

dqb (4 ' 19)
s s o o

where q. is the concentration of microcolonies at the

interface, based on the mass of the solid phase. Note that

as stated in assumption g, the concentrations of substrate

and oxygen extracted by the microcolonies are equal to those

in the bulk of the liquid phase. Similarly, the rate of

substrate degradation by the suspended microorganisms in

the liquid phase, -r , is

<"r
s> =^ Cb<K-T§-><F^T> < 4 - 20 >

s s s o o

The rate of substrate degradation by the microcolonies at

sf
the interface, -r , is

s

^ C C
, sr. m , s . , o, t * *t \(-r

g )
= — qb <K-Tc- ,( K-+C- ) (4 ' 21)

s s s o o

The rate of oxygen consumption in the bulk of the liquid

L sf
phase, -r , and that at the interface, -r , are expressed,

o o

respectively, as

<-r
o»

- -y5 Vir?5-"ir?§-> (4 - 22>
o s s o o

<-r
o
f

> =ht VirS§-><irr§-> < 4 - 23 >

o s s o o
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Substituting the above kinetic expressions and the

equilibrium relation of biomass, equation (4.15), into

equations (4.11), (4.14) and (4.16) gives rise,

respectively, to (see Appendix II)

3C 3
2
C 3C k a q

s _ s _ s _s_ 2* c )

9t 3X
2 ** «

' Kds
S>

- T
2 R

b
cb'F^§-"FTi-» < 4 - 24 '

s s s o o

3C 3
2
C 3C [L C C

it
2 = E r^

2
- V55T - / R

b
cb<r^§-' <rr§-» <

4 - 25 '

3x o s s o o

3C. a2CK 3CK C C
R
b wr " E —r - v

*nr
+
"mRbcb<ic-fi-» «st§-'

3x s s o o

" k
d
R
b
C
b (4 ' 26)

These three equations together with equation (4.12)

rewritten as

3q k a q

st
2 r ( k!-- c

s» < 4 - 27 >

ds

constitute the nonequilibrium model.

4.1.4 Dimensional Analysis

To better understand the effects of the model

parameters on the solution, it is desirable to rewrite

equations (4.24) through (4.27) in dimensionless form. For

this purpose, the following dimensionless variables are

defined.

tv
9 = — (4.28)

X = £ (4.29)
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c =
s

c
s
*

CsO

c =
o

c
o

c «of

5
b =

b b
*

C „R Y
sO s s

% =
q q /K,
^s ^s ds
a *

(4.30)

(4.31)

(4.32)

(4.33)

~S0

In these definitions, C , is the concentration of oxygen in

*
the feed solution and C _ is the concentration of substrateso

in the liquid phase which would be in equilibrium with the

initial concentration of substrate in the solid phase, q .

Note that in the definition of the dimensionless

concentration of biomass , C, , the numerator stands for the
b

total biomass in the forms of both suspended microorganisms

in the liquid phase and microcolonies at the interface, and

the denominator stands for the maximum quantity of biomass

produceable from the available substrate deposited in the

bed. Substitution of the dimensionless variables into

equations (4.24) through (4.27) results, respectively, in

3C 1 3
2
C 3C

zir- = s 5^ ~ S^2 + St (q - C )36 Pe ov 2 3X m XMs s'

c c

- N
r i

R
s
c
b ( ^—?- )(r—zr) ( 4 - 34 )

' X ° K +C K +C
s s o o

3C 1 3
2
C 3C C C

=t2 = -2 - _2 _ N w c. (
2- )( SL) (4.35)

36 Pe ax
2 3X r,l b^

+a >^ +g
s s o o
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3a
b

1 3
2
C
b

1 3C
b

ae R
b
Pe

ax
2 R

b
3X

r , 2 b

3q

36 - R - I <«s - V
s

where

Pe = Lv
E

r, 1 V

r,2

k
d
L

V

St
m

k aL
s
ve

R =
s

h =
K
s
*

C
S0

K =
o

K
o

C
of

W =
C* R Y
sO s s

C _Y
of o

c c

+ n ^zr^r )<z—=-)
' K +C K +C

s s o o

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

Among the dimensionless numbers, N and N , defined

in equations (4.39) and (4.40), respectively, are known as

the reaction units; the former is for the growth of biomass

and the latter is for the decay of biomass. These numbers

reflect the magnitudes of reaction rates. R , defined in

equation (4.42), is the retardation factor of substrate. W,

defined in equation (4.45), is the ratio of the maximum

quantity of biomass produceable from the available substrate
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to that of biomass produceable from the available oxygen;

thus, it can be termed as the oxygen supply number.

For a soil bed with a depth of L and a cross-sectional

area of A the quantity of substrate initially deposited in
*

the liquid phase is LAeC and the quantity of substrate

initially deposited in the solid phase is LApq . The sum of

these two quantities is the total quantity of the substrate

in the bed, LAeC R , where R is defined in equation

(4.42). Thus, the maximum quantity of biomass produceable

from the substrate is LAeC -R Y . In case neither substrate
sO s s

nor oxygen flows out of the bed, the maximum quantity of

biomass produceable from the substrate is equal to that from

the oxygen which is equal to t vAeC ,Y , where v is theIa ^ m of o

pore velocity of water and t is the minimum time required

for completing the biodegradation process under the

conditions of plug flow and negligible mass transfer

resistance. This and equation (4.45) lead to

t v C* R Y

"T- = c-y
? -- = w (4 ' 46)

of o

Thus, W can also be defined as the minimum dimensionless

time for completing a biodegradation process.

The Damkohler number for bioremediation of contaminated

soil can be defined by dividing equation (4.39) with

equation (4.41), i.e.,

N [1

Da
St k (a/e)

(4l4/)
m s
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This number signifies the ratio of the maximum specific

growth rate to the maximum substrate transfer rate.

When the aqueous solubility of the substrate in

bioremediation of contaminated soil is sufficiently low so

that C ^ is much less than the saturation constant of
sO

substrate. K , the dimensionless saturation constant of
s

substrate, K , will be much greater than unity.

Consequently, a modified Damkohler number, Da', is defined

as follows:

Da ' =IT(a77T (4 - 48)
s v

Note that Da 1 is inversely proportional to the mass transfer

coefficient of substrate, k .

s

4.2 SOLUTION ALGORITHM AND NUMERICAL SOLUTION

The model equations developed in the preceding section

consist of three convection-dispersion partial differential

equations (PDE's) and one ordinary differential equation

(ODE). As discussed in Chapter 2, two major difficulties are

encountered in solving these equations. One is that

numerical solution of a convection-dispersion PDE is

adversely affected by numerical oscillations and diffusion

if the convection term is more dominant than the dispersion

term. The other is that the three PDE's are coupled through
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the nonlinear reaction terms, and they are also coupled with

the ODE. These difficulties have been overcome by resorting

to the three-point backward finite difference method (TPB

method), developed in Chapter 2. The numerical procedure for

solving equations (4.34) through (4.37) is given below.

Equations (4.34) through (4.36) can be compactly

rewritten as

3C. 3
2
C. 3C.

ae
1 " p

i,i —T - p
2,i aiT

+ V i -•.«». b (4.49)
3X

where subscript i refers to component i, and P and

P_ . are the coefficients for the dispersion and convection

terms, respectively. The nonlinear reaction terms in

equation (4.49), f., i=s, o, b, can be expressed as

C C

ssobs ms s r,lsb-
+a

-
+
-

s s o o

(4.50)

C C
f (C ,C ,C. ) = - N ,W C, (

— )( —

)

(4.51)
° S ° b r ' 1 b

K +C K +C
s s o o

C C
f. (C ,C ,C. )

= N C. (
=- )( — ) - N C (4.52)

b s o b r,l b ^ +
-

R +g
r,2 b

s s o o

According to Chapter 2, the finite difference approximation

of equation (4.49) can be written as

(-r„ .- 2r„ ,)(C.)^
+
J +(3+ 2r, .+2r« .HC.)

1?* 1
x l,i 2,i /x i'j-1 1,1 2,i /v i'j

.- . n+1-r
i,i

(c
i»j + i

-r
2,i'

5
i>J-2

+2r
2.i<

5 i'j-l
+

' 4 - r 2.i'<
5
i'"
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-(C. )

n
-

1
+ 2A9 f?

+1
, (4.53)

i = s , o, b

where

2P .A9
r

1
.=

lr
t (4.54)

P
2 ^9

Equation (4.53) is a system of nonlinear equations due to

the existence of the nonlinear reaction term, f.

According to the two-step expansion given in equation

(2.43), f. can be expressed as

3f
n

f
n+l = f

n 1 + 2 (_i )Ae (4.56)

The derivatives of f.'s with respect to 9 in equation (4.56)

are obtained as follows:

3f 3f 3C 3f 3C 3f 3C. 3f 3q

9Q
3C

9Q
3C

3e
3C.

3e
3q " (

'

s o b ^s

3f 3f 3C 3f 3C 3f 3C,
2 _ 2 £ + 2 2 + 2 ^ /a sr\

3e "ac 3* ac
3e ac*e

<4 - 58)

S O b

3f, 3f, 3C 3f. 3C 3f. 3C._b = _b_^ +
_b_2

+
_b_b

(4 59)30 - 39 - 39 - 39 14. oy)
3C 3C 3C,sob

The derivatives of f.'s with respect to C. in equations

(4.57) through (4.59) are obtained analytically from

equations (4.50) through (4.52); 3C./39 can be calculated

from the finite difference approximation of equations (4.34)

through (4.36). Meanwhile, the evaluation of 3q /39 in
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equation (4.57) can be directly obtained from equation

(4.37). With all these derivatives available, f. can be
l

evaluated from equation (4.56); subsequently, C. is

obtained with the tridiagonal method from equation (4.53).

After equations (4.34) through (4.36) are solved with

the TPB method at each time step, the ODE among the model

equations, equation (4.37), can be solved for q. with the

second order Runge-Kutta method. The resultant scheme is

—n+1 . —n+1 . ~n . —

n

. . __.
q = b,C + b.C + b_q 4.60
^s Is 2s 3^s

where

A0St
b = _

m
(4.61)

2K,
ds

Aest AGSt
b
9

= _
m

( 1 z-2 ) (4.62)
2K, K,

ds ds

Aest (Aest )

2

b = 1 S + J5- (4.63)

ds ds

The starting algorithm is also given in Chapter 2.

Two classes of numerical simulation have been conducted

with the developed algorithm. One is for the once-through

operation for which the initial and boundary conditions are

At e = 0, C (0,X) = 1.00, q (0,X) = 1.00

C (0,X) = 0.05, C. (0,X) = 0.01
O D

3C
At x = o, c.(e,o) = (c.)

o+
- ^ (uc) 0+ . i = s, o, b

where
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c (e,o) = o.oo

c (e,0) = 1 .00

c\(e,o) = o.oi

ac.
At X = 1, -^ = 0, i = s, o, b

The other is for the recycle operation, in which the

effluent containing unreacted substrate is recycled to the

top of the bed to eliminate the substrate, i.e.,

contaminants, to the maximum extent possible. For this

operation, the initial conditions and the boundary

conditions at X=l are the same as those for the once-through

operation. The boundary conditions at the inlet of the bed

are

3C
At x = o, c.(e,o) =

( c.) o+
-

jfe (ajr) 0+ , i = s, o, b

where

0(6,0) = C (9-A9, 1)

c (e,o) = l.oo
o

c
b
(e,o) = c

b
(e-Ae, 1)

where the residence time of the recycle stream is assumed to

be very short and equal to A©, the dimensionless temporal

step size for the numerical integration. It is also assumed

that no reaction takes place in the recycle stream. The

parameters used in the simulation are given in Table 4.1.
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4.3 RESULTS AND DISCUSSION

The results have been obtained from simulating both

once-through and recycle operations. Analysis of the

dynamics of the once-through operation enables us to

determine the effects of various model parameters on the

rate of biodegradation. Insight into the in situ

bioremediation process can be gained through understanding

the dynamics of the recycle operation.

4.3.1 Dynamics of the Once-Through Operation

The effects of model parameters on the rate of

biodegradation have been analyzed by focussing on the

modified Damkbhler number, Da', the retardation factor of

substrate, R , and the oxygen supply number, W.

Figures 4.2 through 4.4 reveal the effect of Da' on the

rate of biodegradation. Da' reflects the ratio of the

maximum specific growth rate to specific substrate transfer

rate. When the maximum specific growth rate is fixed, the

larger the Da 1

, the smaller the transfer rate, or the larger

the resistance to substrate transport. When Da' is equal to

1, C is much lower than q (see Figure 4.2). The difference

between C and q represents the departure of the state of

the system from its equilibrium state, which is determined

by the rate of substrate transport. When Da 1 decreases to
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0.5, the rate of substrate transport increases, but the

difference between C and q continues to be appreciable (see

Figure 4.3). When Da 1 further decreases to 0.1, the rate of

substrate transport becomes so fast that C approaches to

q . A comparison between Figures 4.2 and 4.4 shows the

smaller the Da 1

, the faster the rate of biodegradation.

The rate of biodegradation is also affected by the

retardation factor of substrate, R . By definition, R
s * s

signifies the magnitude of the equilibrium constant of

substrate, K, . The larger the R , the larger the K, , and,
ds s as

from equation (4.7) or (4.9), the smaller the concentration

gradient, or the driving force. A comparison between Figures

4.4 and 4.5 indicates that when R increases from 20 to 60
s

and Da 1 remains at 0.1, the difference between C and q
s ^s

increases, or the nonequilibrium behavior is enhanced. This

is because the rate of substrate transport is decreased. R
s

in bioremediation of contaminated soil may be larger than

60. The larger the R , the slower the rate of substrate

transport, and thus, the slower the rate of biodegradation.

The oxygen supply number, W, is another factor

affecting the rate of biodegradation; it signifies the ratio

of the maximum quantity of biomass produceable from the

available substrate to that from the available oxygen. The

larger the W, the lesser the available oxygen. Figures 4.3

through 4.5 show that when W is 12.5 and Da 1 or R is small,
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the oxygen in the liquid phase is rapidly consumed and the

insufficient oxygen supply through the liquid phase becomes

rate-limiting. A comparison between Figures 4.3 and 4.6

reveals that when W decreases to 6 from 12.5, the effect of

the insufficient oxygen supply becomes less profound and the

resistance to the substrate desorption becomes increasingly

dominant . Note that the increase in R can change the rate-

limiting step for the same W. For instance, as R increases

from 20 to 80 and W remains 12.5, we see from Figures 4.3

and 4.7 that the difference between C and q increases
s ^s

significantly and the value of C becomes very low,

indicating that the resistance to the substrate desorption

is rate-limiting.

4.3.2 Dynamics of the Recycle Operation

The once-through operation discussed in the preceding

subsection has demonstrated the effects of substrate

transport resistance and insufficient oxygen supply on the

rate of biodegradation. However, the once-through operation

is seldom employed because the contaminants would flow into

the groundwater underneath the bed. The recycle operation

provides a means to eliminate the substrate, i.e.,

contaminants, to the maximum extent possible.

The simulated concentration profiles are plotted at

different dimensionless time in Figures 4.8 through 4.11.
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At e of 2 and 4, three distinct reaction zones are observed

in the bed (Figures 4.8 and 4.9). In the upper zone, the

concentrations of both oxygen and recycled substrate are

high, thereby exhibiting a high rate of biodegradation and

steep decline in the concentration profiles. In the middle

zone, the rate of biodegradation becomes moderate because it

is constrained by the low concentrations of both oxygen and

substrate in the liquid phase; consequently, the

concentration profiles become rather flat. Oxygen is

totally consumed in the lower zone, and thus, degradation of

substrate ceases. Figure 4.10 demonstrates that at 8 of 6,

the middle zone expands substantially as the result of

biodegradation; meanwhile, the lower zone shrinks

significantly. The concentration profiles at e=8 (Figure

4.11) indicate that the biodegradation process is almost

complete. The fact that the oxygen supply number, W, is also

equal to 8 is a proof of equation (4.46), which shows that W

can also be defined as the minimum dimensionless time for

completing a biodegradation process. Note that how close the

dimensionless biodegradation time is to W depends on both

the mass transfer resistance and hydraulic dispersion. The

larger the mass transfer resistance and hydraulic

dispersion, the longer the dimensionless biodegradation

time. If they are negligible, the dimensionless time will be

equal to W.
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4.4 CONCLUDING REMARKS

A mathematical model for biodegradation of contaminants

deposited in a soil bed has been developed. The transport

resistance to contaminant migration within the pore network

in soil particles is considered. The model equations

comprise three convection-dispersion partial differential

equations and one ordinary differential equation.

The numerical simulation of the once-through operation

has revealed the effects of model parameters on the rate of

biodegradation and has demonstrated that a nonequilibrium

model is more appropriate than an equilibrium model; the

rate of biodegradation may be limited not only by the

insufficient oxygen supply, but also by the transport

resistance to the substrate desorption. Under certain

circumstances, the latter is even more dominant than the

former

.

The simulation of the operation involving the recycle

of unreacted substrate, i.e., contaminants, has indicated

that biodegradation takes place mainly in the upper part of

the bed and that the oxygen supply factor, W, can serve as

an estimation of the dimensionless biodegradation time if

the mass transfer is relatively fast.
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NOTATION

a = interfacial area per unit volume of the soil bed,

L
2
/L

3

C. = concentration of component i in the liquid phase,

M /L
3

3
C = concentration of oxygen in the feed solution, M /L

C. = dimensionless concentration of component i

2
E = dispersion coefficient, L /t

j. = transport flux from the liquid phase to the interface,

M/L
2
/t

5
j. = transport flux from the interface to the bulk of the

2solid phase, M/L /t

k, = reaction rate constant for the decay of biomass, t

k = mass transfer coefficient of substrate, L/t
s

3
K = saturation constant of oxygen, M/L

3
K = saturation constant of substrate, M/L
s

K , . = dimensionless linear isotherm partition coefficient of
di *

component i

L = depth of the contaminated soil bed, L

q. = concentration of component i in the solid phase, M/M

dry soil

q. = dimensionless concentration of component i in the

solid phase

L 3
r. = reaction rate in the liquid phase, M/L /t
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sf
r. = reaction rate at the interface, M/M dry soil/t

"Kdi
R. = 1 + = retardation factor for component i

v = pore velocity of the liquid, L/t

t = time, t

x = vertical position, L

X = dimensionless depth

Y = yield factor of oxygen

Y = yield factor of substrate
s *

Greek letters

3
p = bulk density of the soil bed, M dry soil/L

e = void fraction of the soil bed

fi = maximum specific growth rate of biomass, t

6 = dimensionless time

Superscript

n = n-th time step

L = liquid phase

s = solid phase

Subscripts

i = s, o, b for substrate, oxygen and biomass,

respectively

j = j-th grid point
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Table 4.1. Parameter Values for the Numerical Simulation

N , = 12.0
r , 1

N _ = 0.2
r,2

K = 3.0
s

K =0.05
o

Pe = 100 W =6,8, 12.5

R = 20, 60, 80
s

RL = 50
b

St = 4, 8, 20, 40
m

D* - 0.1, 0.2, 0.5, 1
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Figure 4.1. Schematic diagram of transport and biodegradation in a

controlled volume.
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9=3: Da'=l, R =20 and W=12.5.
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Figure 4.3. Concentration profiles for the once-through operation at
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Figure 4.4. Concentration profiles for the once-through operation at
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Figure 4.5. Concentration profiles for the once-through operation at
9=3: Da" =0.1, R =60 and W=12.5.
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Figure 4.6. Concentration profiles for the once-through operation at
0=3: Da' =0.5, R =20 and W=6.
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Figure 4.8. Concentration profiles for the recycle operation at 6=2
Da* =0.2, R = 20 and W=8
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Figure 4.9. Concentration profiles for the recycle operation at 9=4
Da* =0.2, R =20 and W=8
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Figure 4.10. Concentration profiles for the recycle operation at 9=6:

Da '=0.2, R =20 and W=8
s
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Figure 4.11. Concentration profiles for the recycle operation at 9=8
Da* =0.2, R =20 and W=8
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The major conclusions reached in the present thesis are

recapitulated. This is followed by the presentation of

recommendations for future work.

5 . 1 CONCLUSIONS

The present study has yielded the following significant

conclusions

.

1. A new finite difference method, the three-point backward

finite difference method (TPB method), has been developed

for solving a system of convection-dispersion PDE's, which

have important applications in chemical and environmental

engineering. This method can be applied to convection-

dominated PDE's without significant numerical dispersion and

oscillations, and to a system of convection-dispersion PDE's

with coupled nonlinear reaction terms. Moreover, the method

can be extended to a system of convection-dispersion PDE's

coupled with ordinary differential equations (ODE's) or

algebraic equations. Therefore, the present study provides a

general numerical technique for solving various convection-

dispersion models.
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2. A mathematical model for in situ neutralization has been

developed. The process, featuring fast reaction and

relatively slow adsorption-desorption, gives rise to a

nonequilibrium model. It comprises three governing

differential equations, of which one is a convection-

dominated partial differential equation (PDE) for base in

the liquid phase, one is an ordinary differential equation

(ODE) for base in the solid phase, and one is an ODE for

acid in the solid phase. Dimensional analysis and numerical

simulation have been conducted to investigate the effects of

the model parameters on the concentration profiles,

neutralization time, and extent of accumulation of base in

the solid phase. Since an in situ neutralization process can

be visualized as an in situ chemical treatment process, the

model can be extended to any other nonequilibrium system in

which a contaminant deposited in a soil bed is to be

eliminated with another chemical agent.

3. A mathematical model for in situ biodegradation of

contaminated soil has been developed. In this process,

contaminants are initially deposited in a soil bed, and the

rates of adsorption and desorption of contaminants are

limited by transport within the pore network; thus, the

local equilibrium assumption, widely used for simulation of

in situ biodegradation of groundwater, is inappropriate.

This observation gives rise to a nonequilibrium model
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consisting of three PDE ' s and one ODE. The effects of

insufficient oxygen supply, growth of biomass and transport

resistance to contaminant migration on the rate of

contaminant degradation have been examined by numerical

simulation. The results indicate that the rate of

biodegradation may be constrained not only by insufficient

oxygen supply, but also by resistance to the contaminant

migration. The effect of recycling the unreacted

contaminants from the bottom of the bed to the top has also

been examined through simulation, showing that

biodegradation takes place mainly in the upper part of the

bed.

5.2 RECOMMENDATIONS

The recommendations for future work are listed below.

1. Experiments are strongly suggested for evaluating model

parameters. Four classes of parameters which are of

particular interest are kinetic parameters, including all

parameters appearing in the Monod model; equilibrium

parameters, namely, adsorption-desorption equilibrium

constants; hydraulic parameters, including the void fraction

of the bed, the hydraulic conductivity determining the pore

velocity of the liquid, and the density of the bed; and

transport parameters, namely, the mass transfer
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coefficients. The first two classes of parameters can be

evaluated from batch experiments, and the third class can

be obtained from experiments conducted in a soil column. The

last class can be determined either from experiments or by

fitting the computation results from the model simulation to

the data from the column experiments.

2. The present model and numerical technique can be

extended to develop a model for in situ biodegradation of

contaminated soil in the unsaturated zone, where air is

present in the soil bed. Consequently, the gas phase must be

considered besides the liquid and solid phases. Biomass is

not in the gas phase. In some applications, the vapor

pressure of substrate is very low and the existence of

substrate in the gas phase is negligible. Thus, only oxygen

need be considered in the gas phase. If the transport of

oxygen from the gas phase to the liquid phase is limited and

oxygen in the gas phase is not in equilibrium with that in

the liquid phase, an additional PDE for oxygen in the gas

phase is required. Consequently, the model equations will

consist of four PDE's and one ODE. If the existence of

substrate in the gas phase is included and the concentration

of substrate in the gas phase is in equilibrium with that in

the liquid phase, the governing equation for substrate in

the gas phase can be combined with that in the liquid phase.

In this case, the number of equations will remain the same.
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Stripping by air injection and biodegradation are considered

simultaneously in this model. The TPB method developed in

the present thesis can be applied to solve these equations.

3. The present model can also be extended to develop a

nonequilibrium model for remediation of contaminated

groundwater. For instance, almost all remediation of

groundwater at contaminated sites is based on groundwater

extraction by wells or drains, usually accompanied by

treatment of the extracted water prior to disposal. This

often causes an initial decrease in contaminant

concentrations in the extracted water, followed by a

leveling of concentration, and sometimes a gradual decline

that is generally expected to continue over decades. This

process was recently analyzed by Machay and Cherry (1989).

They pointed out that dissolved organic contaminants

generally move more slowly through granular aquifers than

the groundwater itself because of sorptive interactions with

the aquifer solids. However, they did not mention the effect

of the slow rate of contaminant diffusion through the

aquifer solid on contaminant desorption, which is often a

rate-limiting factor and gives rise to nonequilibrium

desorption. Thus, a nonequilibrium model is required.

4. The application of the concept of controlled release to

in situ bioremediation is a promising subject (Fan, 1989).

The controlled release of nutrients, such as oxygen
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acceptors, and microorganisms can manipulate the

concentration profiles and optimize the utilization of

nutrients. Mathematical modeling of such a process can be

based on the model developed in the present study and

the nonequilibrium treatment of substrate in the present

study can be extended to oxygen and biomass, though mass

transfer models more sophisticated than the film model may

be required to describe the controlled release of oxygen and

biomass (Fan and Singh, 1989).

5. The rate of biodegradation of contaminants in soil is

mainly controlled by the rate of their diffusion through

soil particles, Thus, it may be advantageous to increase

porosity of the soil bed and decrease the size of the soil

particles by mechanical means when it is economically

feasible to do so, e.g., when the soil bed is relatively

shallow and highly impervious (Fan, 1989). Some of the

mechanical means are drilling, filling, dynamiting, grinding

and any combination of these.
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APPENDIX I

DERIVATION OF THE EQUILIBRIUM MODEL

In this model, the concentration of each component in

the liquid phase is in equilibrium with that of the

corresponding component in the solid phase. Thus, for

component i

,

q. = K..C. (AI.l)^1 di 1

where a linear equilibrium isotherm is assumed. Substituting

this equation into equation (4.4) in the text results in

3C.
fiKdiJT = aj

?
(AI - 2)

Combining this equation with equation (4.6) in the text

gives

3C. 3C.
€ it"

+ pKdiarr

3
2
C. 3C. f

= €E r^ - ev r~ + erS pr, - aJ®+ ajf (AI.3)
3x

2 3x 1 1 1 1

or

3C. 3
2
C. 3C. f

eR
i IT - eE TIT - ev 55T

+ er
i

+ "I (AI - 4 >

3x

where

R
i - 1 +—

This expression is the governing equation for the

equilibrium model; note that no mass transfer term is

involved

.
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APPENDIX II

DERIVATION OF EQUATIONS (4.24) THROUGH (4.26)

The procedures for deriving equations (4.24) through

(4.26) in the text are the same. Thus, only equation (4.24)

is derived here for illustration.

Substitution of equations (4.20) and (4.21) into

equation (4.11) in the text gives

9C 3
2
C 3C q

at _ 2 ax s v k, s'
ax ds

11 c c
m , s . . o .

Y
€

b ( K +C M K +C '

s s s o o

-ir* <*b<irr§-><ir^§->
(AII - 1>

s s s o o

Substituting equation (4.15) in the text into this equation

and dividing both sides of resultant expression by € yield

ac 3
2
C 3C k a qs _ p
s _ s _s_ 2* r \

at " E
I 2

v
ax

+
i

( k„
c
s }

3x ds

" Y- (1 + "i— '
C
b ( irTc- )( K-fC-»

or

s s s o o

2
ac a C 30 k a qs _ s _ s _s_ 2s.

at " E
I 2

v
ax

+
i

( k. V
3x ds

- 7
s Rbcb ( irri-» <r^» < AI1 - 2

s s s o o

which is equation (4.24) in the text.

A-

2



MODELING OF IN SITU NEUTRALIZATION AND

BIODEGRADATION PROCESSES

AND NUMERICAL SIMULATION WITH

THE THREE-POINT BACKWARD FINITE DIFFERENCE METHOD

by

JIANCHU WU

B.S., Tianjin University, Tianjin, China. 1982

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirement of the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1989



Biodegradation has proven to be an effective method for

remediation of contaminated soil. Modeling and simulation of

in situ biodegradation processes have been conducted in the

present thesis.

To facilitate the simulation, a three-point backward

finite difference method (TPB method) has been developed for

a system of convection-dispersion partial differential

equations (PDE's). The method renders the second-order

temporal and spatial accuracy and substantially reduces the

numerical oscillations and diffusion. The resultant finite

difference equations are solved with the tridiagonal matrix

method at each time step. For a system of convection-

dispersion PDE's with coupled nonlinear reaction terms, a

two-step expansion technique is derived to linearize the

finite difference equations and uncouple the PDE's. The

accuracy of the expansion is of third order. Consequently,

each PDE can be solved independently with the tridiagonal

matrix method. Moreover, this method can be extended to a

system of mixed PDE's coupled with ordinary differential

equations and/or algebraic equations.

A model for in situ neutralization, which is often the

first stage of in situ biodegradation, has been developed.

The process, featuring fast reaction and relatively slow

adsorption-desorption, gives rise to a nonequilibrium model

comprising a convection-dispersion PDE for base in the



liquid phase, an ordinary differential equation (ODE) for

base in the solid phase, and an ODE for acid in the solid

phase. Dimensional analysis has been performed and numerical

simulation has been conducted with the TPB method to

investigate the effects of the model parameters on the

concentration profiles, neutralization time, and extent of

accumulation of base in the solid phase.

A model for in situ biodegradation of contaminants

adsorbed in a soil bed has also been developed. The

transport resistance to contaminant migration within the

pore network in soil particles is considered. The model

equations consist of three convection-dispersion PDE s and

one ordinary differential equation. Dimensional analysis has

been performed and numerical simulation has been conducted

with the TPB method. The results show that the rate of

biodegradation may be limited not only by insufficient

oxygen supply, but also by transport resistance to the

substrate desorption. Moreover, the simulation of the

operation involving the recycle of unreacted contaminants

has been conducted, indicating that biodegradation takes

place mainly in the upper zone of the bed.






