FRACTURE PARAMETERS FOR CONCRETE IN BENDING

ьу

# Sze-Ting Yap

B.S., Kansas State University, 1984

A MASTER'S THESIS

submitted in cartial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

Department of Civil Engineering

Kansas State University

Manhattan, Kansas

1986

Approved: Major Professor

n

LD 2668 .T4 1986 Y362

TABLE OF CONTENTS

| Cod         |          |                                                  |
|-------------|----------|--------------------------------------------------|
| ACKNOWLEDGE | EMENTS   | iii                                              |
| LIST OF THE | BLES     | iv                                               |
| LIST OF FIG | SURES    | vii                                              |
| NOTATION    |          | ix                                               |
| CHAPTER 1   | - INTROD | UCTION                                           |
| CHAPTER 2   | - LITERA | TURE REVIEW                                      |
|             | 2.1      | Proposed Methods                                 |
|             | 2.1.1    | Proposed Methods for Beams Tested in Three-Point |
|             |          | Bending                                          |
|             |          | (a) RILEM Method                                 |
|             |          | (b) Modified RILEM Method4                       |
|             |          | (c) Direct Energy Method4                        |
|             |          | (d) KIC Methods4                                 |
|             |          | (i) Jeng/Shah Method4                            |
|             |          | (ii) Go Method5                                  |
|             |          | (e) JIC Method5                                  |
|             |          | (f) Bazant Size Effect Method6                   |
|             | 2.1.2    | Proposed Method for Beams Tested in Four-Point   |
|             |          | Bending                                          |
|             | 2,2      | Test Specimens Used at Kansas State University   |
|             |          | and Their Material Properties7                   |
|             | 2.2.1    | Huang's Beams8                                   |
|             | 2.2.2    | Fartash's Beams8                                 |
|             | 2.2.3    | Go's Beams9                                      |
|             | 2.2.4    | Rood's Beams                                     |
|             | 2.3      | Set Up and Testing Procedures9                   |
|             | 2.3.1    | Compliance Measurement                           |
|             | 2.3.2    | Modified Compliance Measurement                  |
|             | 2.3.3    | Precracked Beams                                 |
|             | 2.3.4    | Notched Beams with Tetlon Insert or Sawcut12     |
| CHAPTER 3   | - EXPERI | MENTAL PROGRAM                                   |
|             | 3.1      | lest Specimens                                   |
| CHODICD (   | 3.2      | Set up and lesting Procedure                     |
| CHHPIER 4   | - EVHLUH | Notebook Document                                |
|             | 4.1      | Notched Beams Totted in Three Drint Dending (5   |
|             | 4.1.1    | Notched beams lested in inree-point dending 45   |
|             |          | (a) RILEM Method                                 |
|             |          | (c) Divect Energy Method                         |
|             |          | (d) Kip Methode (7                               |
|             |          | (i) Teng/Shab Method (7                          |
|             |          | (ii) So Method                                   |
|             |          | (e) Jrc Method                                   |
|             |          | (f) Bazant Size Effect Method                    |
|             | 4.1.2    | Notched Beams Tested in Four-Point Bending 48    |
|             | 4.2      | Precracked Beams                                 |
|             |          |                                                  |

## TABLE OF CONTENTS (Continued)

| 4.2.1               | Precracked  | Beams Tested   | in Three-Poin | t Bending | . 49  |
|---------------------|-------------|----------------|---------------|-----------|-------|
|                     | (a) RILEM   | Method         |               |           | . 49  |
|                     | (b) Modif   | ied RILEM Meth | hod           |           | . 49  |
|                     | (c) Direc   | t Energy Metho | od            |           | , 49  |
|                     | (d) KIC M   | ethods         |               |           | . 49  |
|                     | (i)         | Jeng/Shah Meti | hod           |           | . 49  |
|                     | (ii)        | Go Method      |               |           | .50   |
|                     | (e) JTC M   | ethod          |               |           | .50   |
|                     | (f) Bazar   | t Size Effect  | Method        |           | .51   |
| 4.2.2               | Precracked  | Beams Tested   | in Four-Point | Bending . | .51   |
| CHAPTER 5 - CONCLU  | SIONS AND R | ECOMMENDATION  | 5             |           | .52   |
| APPENDIX I - REFERE | NCES        |                |               |           | .54   |
| APPENDIX II- TABLES | AND FIGURE  | S              |               |           | 57    |
| APPENDIX III-P-LPD  | AND P-CMOD  | CURVES         |               |           | . 107 |
|                     |             |                |               |           |       |

#### ACKNOWLEDGEMENTS

The writer wishes to thank Dr. Stuart E. Swartz, professor of Civil Engineering, for his assistance during research and preparation of this thesis.

Thanks are also extended to Dr. Robert Snell, Head, Department of Civil Engineering for his continual support during the entire duration of this research. Thanks also to Mr. Eric H. C. Siew, Mr. Randy Bernhardt, Mr. Ali Nikaeen, and Mr. Russell Gillespie for their encouragement and assistance during testing.

Finally special thanks and appreciation are extended to the writer's family for the valuable encouragement they provided during the course of graduate studies.

The work reported herein has been supported by the National Science Foundation on grants CEE-831736 and MSM-8317136. This support is greatly acknowledeged.

# LIST OF TABLES

| Table | 2.1   | Huang's Mix Designs                                                                                                                                                          |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table | 2.2   | Fartash's Mix Designs14                                                                                                                                                      |
| Table | 2.3   | Go's Mix Design15                                                                                                                                                            |
| Table | 2.4   | Rood's Mix Designs16                                                                                                                                                         |
| Table | 2.5   | Mix Design for Beams Tested in July 1985 and January 1986                                                                                                                    |
| Table | II.1A | Notched Beams, Tested by Rood (12), RILEM Method (10),<br>W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_c = 5.34$<br>x 10 <sup>6</sup> psi (36.8 GPa)                      |
| Table | II.1B | Notched Beams, Tested July 1985, RILEM Method (10), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), E <sub>C</sub> = $5.02 \times 10^6$ psi (34.6 GPa)                          |
| Table | II.1C | Notched Beams, Tested January 1986, RILEM Method (10), B = 3.00 in. (76 mm), E_C = 6.60 $\times$ $10^6$ psi (45.5 GPa)63                                                     |
| Table | 11.2A | Notched Beams, Tested by Rood (12), Modified RILEM<br>Method (14), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm                                                            |
| Table | 11.28 | Notched Beams, Tested July 1985, Modified RILEM Method<br>(14), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), E <sub>c</sub> = $5.02 \times 10^6$ psi (34.6 GPa)              |
| Table | 11.20 | Notched Beams, Tested January 1986, Modified RILEM Method (14), $B = 3.00$ in. (76 mm), $E_C = 6.60 \times 10^6$ psi (45.5 GPa).                                             |
| Table | II.3A | Notched Beams, Tested by Rood (12), Direct Energy '<br>Method (4), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm)<br>E <sub>0</sub> = 5.34 x 10 <sup>6</sup> psi (36.8 GPa) |
| Table | II.4A | Notched Beams, Tested by Rood (12), Jenq/Shah Method<br>(9), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm), $\Xi_C = 5.34 \times 10^6$ psi (36.8 GPa)                      |
| Table | II.4B | Notched Beams, Tested July 1985, Jenq/Shah Method (9),<br>W = 4.00 in. (102 mm), B = 3.00 in (76 mm), $E_{\rm C}$ = 5.02 x<br>10 <sup>6</sup> psi (34.6 GPa)                 |
| Table | II.4C | Notched Beams, Tested January 1986, Jeng/Shah Method<br>(9), W = 8.00 in. (203 mm), B = 3.00 in. (76v mm), $E_{C}$ = 6.60 x 10 <sup>6</sup> psi (45.5 GPa)                   |
| Table | II.4D | Notched Beams, Tested by Go (4), Jenq/Shah Method (9),<br>W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_{C}$ = 4.10<br>x 10 <sup>6</sup> psi (28.2 GPa)                    |
| Table | II.4E | Notched Beams, Tested by Fartash (11), Jeng/Shah Method (9), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm), $E_C = 3.08 \times 10^6$ psi (21.1 GPa)                        |
| Table | II.4F | Notched Beams, Tested by Fartash (11), Jenq/shah Method (9), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_C$ = 3.30 x 10 <sup>6</sup> psi (22.7 GPa)73                    |
| Table | II.5A | Notched Beams, Tested by Rood (12), Go Method (4), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_C = 5.34 \times 106$ osi (36.8 GPa)                                       |

| Table  | II.5B   | Notched Beams, Tested by Go (4), Go Method (4), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_{\rm C}$ = 4.10 x                     |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------|
|        |         | 10 <sup>6</sup> psi (28.2 GPa)                                                                                                        |
| Table  | 11.50   | Notched Beams, Tested by Fartash (11), Go Method (4), W = 4.00in. (102 mm), B = $3.00$ in. (76 mm), E <sub>c</sub> = $3.08$ x         |
|        |         | 10 <sup>6</sup> psi (21.1 GPa)                                                                                                        |
| Table  | II.5D   | Notched Beams, Tested by Fartash (11), Go Method (4), W = $4.00$ in. (102 mm), B = $3.00$ in. (76 mm), E <sub>C</sub> = $3.30 \times$ |
|        |         | 10 <sup>6</sup> psi (22.7 GPa)                                                                                                        |
| Table  | II.6A   | Notched Beams, Tested by Fartash (11), KIC Method (4, 8), $W = 4.00$ in. (102z mm), $B = 3.00$ in. (76 mm), $E_C =$                   |
|        |         | 4.63 x 10 <sup>b</sup> psi (31.9 GPa)78                                                                                               |
| Table  | II.6B   | Notched Beams, Tested by Fartash (11), KIC Method (4, 8 ), W = 4.00in. (102 mm), B = $3.00$ in. (76 mm), E <sub>C</sub> =             |
|        |         | 4.65 x 10 <sup>b</sup> psi (32.0 GPa)79                                                                                               |
| Table  | II.7A   | Precracked Beams, Tested by Rood (12), RILEM Method                                                                                   |
|        |         | (10), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm), $E_C =$                                                                        |
|        |         | 5.34 x 10° psi (36.8 GPa)80                                                                                                           |
| lable  | 11.88   | Precracked Beams, Tested by Rood (12), Modified RILEM                                                                                 |
|        |         | method (10), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76                                                                              |
| T-1-1- |         | mm), $E_c = 5.34 \times 10^{\circ} \text{ ps1}$ (36.8 GPa)                                                                            |
| abie   | 11.68   | Precracked Beams, lested by 60 (4), Modified Rillem                                                                                   |
|        |         | method (10), w = 4.00  in. (102  mm), B = 3.00  in. (76)                                                                              |
| Table  | 11 00   | December Parts Tested by Read (12) Divert Convert                                                                                     |
| aure   | 11. 54  | Mothod (4) H = 4 00 in (102 mm) P = 3 00 in (76 mm)                                                                                   |
|        |         | $F_{-} = 5.74 \times 10^{6} \text{ act} (75.9 \text{ CO}_{-})$                                                                        |
| Table  | 11.9B   | Pregraphed Reams, Tested by Go (4) Binect Energy                                                                                      |
|        |         | Method (4), $W = 4.00$ in. (102 mm), $B = 3.00$ in (75 mm)                                                                            |
|        |         | $E_{\rm p} = 4.10 \times 10^{5} \text{ nsi} (28.2 \text{ GPa})$                                                                       |
| Table  | II.10A  | Precracked Beams, Tested by Rood (12), Jeng/Shah Method                                                                               |
|        |         | (9). $W = 4.00$ in. (102 mm). $B = 3.00$ in. (76 mm). E <sub>0</sub> =                                                                |
|        |         | 5.34 x 10 <sup>6</sup> osi (36.8 GPa)                                                                                                 |
| Table  | II. 10B | Precracked Beams, Tested by Fartash (11), Jeng/Shah                                                                                   |
|        |         | Method (9), W = 4.00 in. (102 mm), B = 3.00 in. (75 mm)                                                                               |
|        |         | $E_{\rm C} = 3.08 \times 10^6 \text{ psi} (21.2 \text{ GPa}) \dots 89$                                                                |
| Table  | II.10C  | Precracked Beams, Tested by Fartash (11), Jeno/Shah                                                                                   |
|        |         | Method (9), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm)                                                                               |
|        |         | , Ec = 3.30 x 10 <sup>6</sup> psi (22.7 GPa)90                                                                                        |
| Table  | II.10D  | Precracked Beams, Tested by Go (4), Jeng/Shah Method (9)                                                                              |
|        |         | W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), E <sup>C</sup> = 4.10                                                                    |
|        |         | x 10 <sup>b</sup> psi (28.2 GPa)                                                                                                      |
| Table  | II.10E  | Precracked Beams, Tested by Huang (8), Jenc/Shah Method                                                                               |
|        |         | (9), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm), $E_C =$                                                                         |
|        |         | 3.21 x 10 <sup>o</sup> psi (22.1 GPa) and $E_c = 4.93 \times 10^{6}$ psi (34.0                                                        |
|        |         | 6Pa)                                                                                                                                  |

v

| Table II.10F | Precracked Beams, Tested by Huang (8), Jeng/Shah Method<br>(9), W = 8.00 in. (203 mm), B = 4.00in. (102 mm), E <sub>C</sub> =<br>3.41 x 10 <sup>6</sup> psi (23.5 GPa) and E <sub>C</sub> = $5.05 \times 10^{6}$ psi (34.8<br>GPa)     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table II.11A | Precracked Beams, Tested by Rood (12), Go Method (4), W<br>= 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_c = 5.34 \times 10^6$ psi (36.8 GPa)                                                                                          |
| Table II.11B | Precracked Beams, Tested by Fartash (11), Go Method (4)<br>, W = 4.00 in. (102 mm), B = 3.00in. (76 mm), E <sub>c</sub> = 3.08<br>x $10^6$ psi (21.2 GPa)                                                                              |
| Table II.11C | Precracked Beams, Tested by Fartash (11), Go Method (4)<br>, W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_C$ = 3.08 x 10 <sup>6</sup> psi (21.2 GPa)98                                                                              |
| Table II.11D | Precracked Beams, Tested by Go (4), Go Method (4), W = 4.00 in: (102 mm), B = 3.00 in. (76 mm), $E_c = 4.10 \times 10^6$ psi (28.2 GPa)                                                                                                |
| Table II.11E | Precracked Beams, Tested by Huang (8), Go Method (4), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), E <sub>c</sub> = 3.21 x 10 <sup>6</sup> psi (22.1 GPa) and E <sub>c</sub> = 4.93 x 10 <sup>6</sup> psi (34.0 GPa)100                |
| Table II.11F | Precracked Beams, Tested by Huang (8), Go Method (4), W = 8.00 in. (203 mm), B = 4.00 in. (102 mm), E <sub>c</sub> = 3.41 x $10^{6}$ psi (23.5 GPa) and E <sub>c</sub> = 5.05 x $10^{6}$ psi (22.1 GPa) .101                           |
| Table II.12A | Precracked Beams, Tested by Fartash (11), KIC Method (4 , 8), $W = 4.00$ in. (102 mm), $B = 3.00$ in. (76 mm), $E_C = 4.63 \times 10^6$ psi (31.9 GPa)                                                                                 |
| Table II.12B | Precracked Beams, Tested by Fartash (11), KIC Method (4, 8), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_c = 4.65 \times 10^6$ psi (32.0 GPa)                                                                                      |
| Table II.12C | Precracked Beams, Tested by Fartash (11), KIC Method (4, 8), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), $E_c = 4.42 \times 10^5$ psi (30.5 GPa)                                                                                      |
| Table II.12D | Precracked Beams, Tested by Huang (8), KIC Method (4, 8), W = 4.00 in. (102 mm), B = 3.00 in. (76 mm), E <sub>c</sub> = 3.39 x $10^{6}$ psi (23.4 GPa) and E <sub>c</sub> = 5.14 x $10^{6}$ psi (35.4 GPa)                             |
| Table II.12E | Precracked Beams, Tested by Huang (8), KIC Method (4, 8), W = 8.00 in. (102 mm), B = 3.00 in. (75 mm), E <sub>c</sub> = 3.63 $\times$ 10 <sup>6</sup> psi (25.0 GPa) and E <sub>c</sub> = 5.12 $\times$ 10 <sup>6</sup> psi (35.3 GPa) |

vi

## LIST OF FIGURES

| Fig.  | 2.1    | Beam Dimensions, Three-Point Bending and Four-Point             |
|-------|--------|-----------------------------------------------------------------|
| Fin.  | 2.2    | P vs (DD. A in Deen Ream load Control C-15 Tested               |
|       |        | by Rood (12)                                                    |
| Fig.  | 2.3    | P vs CMOD, 4 in Deep Beam, Load Control, C-15, Tested           |
|       | ~ /    | by Rood (12)                                                    |
| Fig.  | 2.4    | Compliance Variation for Notched Beams and Presumed             |
| Fig.  | 2.5    | Compliance vs a/W. Large Beams. Mix No. 1. Four-Point           |
|       |        | Bending, Huang (B)21                                            |
| Fig.  | 2.6    | Compliance vs a/W, Small Beams, Mix No.1, Four-Point            |
|       |        | Bending, Huang (B)                                              |
| rig.  | 2. /   | Bending, Huang (A)                                              |
| Fig.  | 2.8    | Compliance vs a/W. Small Beams. Mix No. 2. Four-Point           |
|       |        | Bending, Huang (B)24                                            |
| Fig.  | 2.9    | Compliance vs a/W, Large Beams, Mix No. 1, Three-Point          |
|       |        | Bending, Huang (B)25                                            |
| Fig.  | 2.10   | Compliance vs a/W, Small Beams, Mix No. 1, Three-Point          |
| Fin.  | 2.11   | Compliance vs a/W. Large Reams. Mix No. 2. Three-Point          |
| 3-    |        | Bending, Huang (8)                                              |
| Fig.  | 2.12   | Compliance vs a/W, Small Beams, Mix No. 2, Three-Point          |
|       |        | Bending, Huang (B)28                                            |
| Fig.  | 2.13   | Compliance vs a/W, Group 1-A, Three-Point Bending,              |
| Fin   | 2 14   | Fartash (11)                                                    |
| 1 19. | C. 14  | Fartash (11)                                                    |
| Fig.  | 2.15   | Compliance vs a/W, Group 3-A, Three-Point Bending,              |
|       |        | Fartash (11)                                                    |
| Fig.  | 2.16   | Compliance vs a/W, Group 1-B, Four-Point Bending,               |
| Fin   | 2 17   | Fartash (11)                                                    |
| FIG.  | G = 47 | Fartash (11)                                                    |
| Fig.  | 2.18   | Compliance vs a/W, Group 3-B, Four-Point Bending,               |
| -     |        | Fartash (11)                                                    |
| Fig.  | 2.19   | Compliance vs a/W, Teflon Beams, Three-Point Bending,<br>Go (4) |
| Fig.  | 2.20   | Compliance vs a/W, Precracked Beams, Three-Point                |
|       |        | Bending, Go (4)                                                 |
| Fig.  | 2.21   | CMOD Compliance vs a/W, Three-Point Bending, Rood (12)          |
| Fir.  | 2.22   | 1PD Compliance vs a/W. Three-Boint Rending Bood (12) 79         |
| Fig.  | 3.1    | fc vs Cr. Tested July 1985                                      |
| Fig.  | 3.2    | fc vs €c, Tested January 198643                                 |
| Fig.  | 3.3    | Reverse Testing Configuration for Three-Point bending .44       |
| Fig.  | II.1   | J-Integral Method (4), Notched Beams, Rood (12), $W = 4$        |
|       |        | in                                                              |

## LIST OF FIGURES (Continued)

| Fig. | 11.2 | J-Integral Method (4), Notched Beams, Tested July 1985, |
|------|------|---------------------------------------------------------|
|      |      | W = 7 100                                               |
| Fig. | 11.3 | Bazant Size Effect Method (1, 3), Notched Beams 59      |
| Fig. | II.4 | J-Integral Method (4), Precracked Beams, Rood (12), W = |
|      |      | 4 in                                                    |
| Fig. | II.5 | J-Integral Method (4), Precracked Beams, Go (4), W = 4  |
| -    |      | in                                                      |

NOTATION

- ac Initial Notch Deoth
- ai Initial Crack Length
- a Extended Crack Length
- ag Eouivalent Elastic Crack Length
- 8 Beam Width
- CMOD Crack Mouth Coening Displacement
- $\delta_0, \overline{\delta_0}$  Vertical Displacement
- Ec Young's Modulus
- f'c Concrete Strength
- GF, GF Fracture Energy
- GIC, GIC Critical Energy Release Rate
- JIC Critical J-Integral Value
- KIC Critical Stress Intensity Factor
- K<sup>G</sup>IC Critical Stress Intensity Factor Using Go Method
- K<sup>S</sup>IC Crtical Stress Intensity Factor Using Jeng/Shah Method
- L Total Beam Length
- LPD Load Point Displacement
- M Moment
- Pm Maximum Load
- S Supported Beam Span
- U, Wo Energy Consumption
- W Beam Deoth
- W/C Water/Cement Ratio

### CHAPTER 1

#### INTRODUCTION

Over the years, much effort has been devoted to the development of the experimental procedures, methods, techniques and analysis for the determination of fracture parameters for concrete - critical stress intensity factor (KIC), fracture energy (GF), critical energy release rate (GIC) and critical J-integral (JIC), using bending specimens of various sizes. Therefore, it is the time to propose standardized testing methods.

The group RILEM TC50-FMC, Fracture Mechanics of Concrete (10), has done the most work in the measurement of fracture energy - GF, using notched beams in three-point bending.

Jeng and Shah (9) proposed a two-parameter fracture model to obtain the KIC of bending specimens by estimating an equivalent elastic crack length. This concept is similar to Go's (4) approach, except that the extended crack length of the bending specimen is measured by a compliance calibration technique (4) and initial crack length is measured by a dye penetration technique (4).

Bazant (2, 3) has proposed an R-curve analysis method for the determination of fracture energy of different beam sizes. This method does not require the measurement of the specimen's crack length or the unloading compliance. The only test garamater required is the maximum load value.

In addition, the Modified RILEM Method (14) and Direct Energy

Method (4) were developed by Swartz and Go respectively. These two methods are very similar to the RILEM Method (10). However, the way of measuring energy consumption of the fractured specimen in the Modified RILEM Method (14) is unique and surface roughness is taken into account by the Direct Energy Method (4). The Modified RILEM Method is developed as an alternative for the RILEM Method (10).

A detailed description of these methods is found in Chapter 2.

An extensive evaluation of the validity of all these methods was done based on past data obtained from Huang (8), Fartash (11), Go (4), Rood (12) and recent data from beams tested in July 1985 and January 1986. The results (Appendix II) once again showed that concrete is a notch sensitive material, that is, it behaves differently when notched with teflon or a sawcut, then it does when it is orecracked. As a result, scatter and inconsistent results were obtained based on notched beams (except when the Bazant Size Effect Method (1, 3) was applied) as the results reported by Hillerborg in References 5, 6 and 7. However, consistent results (Appendix II) for K1C, GF, GIC and JIC were obtained when precracked beams were used and crack extension was considered. The conclusions and recommendations are found in Chapter 5.

#### CHAPTER 2

### LITERATURE REVIEW

Many methods have been proposed for the determination of fracture parameters of concrete using bending specimen in the recent years. A number of these proposed methods are presented in this chapter.

2.1 Proposed Methods

The methods described here use a beam bending specimen of the type shown in Fig. 2.1.

2.1.1 Proposed Methods for Beams Tested in Three-Point Bending

(a) RILEM Method (10)

Use of this method determines the fracture energy per unit surface area of real crack -  $G_{F}$ .

 $G_{F} = (W_{O} \pm mg S_{O}) / (B (W - a_{O}))$ (1)

The energy consumption,  $W_0$ , of the fracture specimen is represented by the total area (A1 + A2) under the full load-point-displacement (P-LPD) curve (Fig. 2.2). The weight of those portions of the bending specimen between the supports must be added or subtracted as in equation (1) depending on the load direction. The maximum vertical displacement at failure load  $\delta_0$  is obtained from the P-LPD curve. Initial notched length,  $a_0/W$ , or initial precracked length,  $a_i/W$ , should be applied for the fracture energy calculation. (b) Modified RILEM Method (14)

As proposed by Swartz (14), the energy consumption U, of the bending specimen should be measured up to the point of instability from the P-LPD curve (Fig. 2.2), e.g. A1.

$$G_{F} = (U \pm m_{0} \delta_{0}) / (B (W - a_{0}))$$
(2)

Therefore, the vertical displacement should be taken at the point of instability. The point of instability is defined as the point where the maximum load begins to drop off on the P-LPD curve.

(c) Direct Energy Method (4)

Go (4) proposed that the fracture energy can also be calculated from the area under the P-LPD curve (area from point of origin up to the point of instability, Fig. 2.2) divided by the remaining uncracked area of the beam.

$$\overline{B_{IC}} = (U \pm mg \delta_0) / (1.15 B (W - a))$$
 (3)  
This method considered the effect of surface roughness on the crack  
front which is equal to 1.15 (4). In this approach, a/W can be

determined from the initial crack length a; or the extended crack length a.

(d) KIC Methods

(i) Jeng/Shah Method (9)

In order to obtain the critical stress intensity factor,  $K_{IC}$ , a/W must be known. In this method, a/W can be estimated using CMOD<sub>e</sub> (Fig. 2.3) and LEFM, developed by Jeng and Shah.

 $CMOD_e = CMOD_{e1} + CMOD_{e2}$ (4)

 $CMOD_e = (24 P A) / (B E_c) Z$ 

 $Z = 0.76 - 2.28 A + 3.87 A^2 - 2.04 A^3 + 0.66 / (1 - A)^2$ 

4

(5)

#### $A = a/W = a_0/W$

 $GMOD_{e}$  is the equivalent elastic value of the crack-mouth-opening displacement (GMOD) associated with instability. However, in the determination of  $CMOD_{e}$ , in this report  $CMOD_{e2}$  is neglected due to insufficient data. After a/W or  $a_{e}/W$  is obtained,  $K_{IC} = K^{S}_{IC}$  and  $G_{IC}$ can be calculated using Go's (4) equations, see equations 6 and 7.

(ii) Go Method (4)

Using LEFM. KIC is determined based on an extended crack length which is obtained by the compliance calibration technique.  $KG_{IC} = M / (B W^{1.5}) A$  (6)

For S/W = 3.75,

 $A = -.065 Z^2 - 3.483 Z - .120 + 5.706 Z^{-1} + .166 Z^{-2}$ Z = (1 - a/W)

Other expressions for different S/W are given in Reference 4. GIC =  $K_{\rm IC}^2$  /  $E_{\rm C}$ 

The moment is associated with the critical load ,  $P_m$ , e.g.  $M = (P_m L) / 4$ . The Poisson ratio is omitted from equation 7, to simolify the calulation.

(e) JIC Method (4)

The J-integral concept was proposed by Go (4) for the calculation of JIC for concrete.

```
J_{IC} = -(dU / d(a/W)) / (1.15 B W)
```

The slope, dU / d(a/W), is obtained by plotting U versus a/W for initial  $(a_0/W$  for notched beam and  $a_i/W$  for precracked beam) or extended crack length (a/W). According to this approach, the slope of each data set plotted should be equal, see Appendix II, Figs. 3. 4 and 5.

(3)

(f) Bazant Size Effect Method (1, 3)

This method determines the fracture energy of beams with various deoths.

 $SF = g(\alpha_0) / (E_0 d(B W / P_0)^2 / d(W))$   $P_0 = P \pm 1/2 mg$   $g(\alpha_0) = (S / W)^2 \pi \alpha_0 (1.5 F(\alpha_0))^2$ For S/W = 3.75,  $F(\alpha_0) = 1.089 = 1.746 \alpha_0 \pm 8.231 \alpha_0^2 = 14.22 \alpha_0^2$ 

 $F(\mathbf{a}_0) = 1.089 - 1.746 \mathbf{a}_0 + 8.231 \mathbf{a}_0^2 - 14.22 \mathbf{a}_0^3 + 14.59 \mathbf{a}_0^4$  $\mathbf{a}_0 = \mathbf{a}/W$ 

Other functions  $F(d_0)$  are given in Reference 3.

For this approach, the only required data for the fracture energy calculation is the maximum load  $P_m$ . The beam self weight must also be taken into consideration. Notice that the negative sign is introduced into the calculation of the total load,  $P_o$ , if the specimen is set up in a reverse configuration during testing. The slope is obtained from the best straight line fit through the three points from the plot of  $(B \text{ W} / P_o)^2$  versus W. In order to use this method effectively, it is nessessary to test at least three beams, or three groups of beams, with various spans and depths, and the S/W ratio and the beam width B must be kept constant. The fracture energy obtained for each different set of sizes of beams should be equal.

2.1.2 Proposed Method for Beams Tested in Four-Point Bending

This method uses a combination of approaches by Huang (8) and Go (4), KIC Method. The procedure is as follows:

 The compliance value must be determined first by taking the extended inverse slope of the straight line portion of the P-CMOD curve

6

(9)

(Fig. 2.3).

2. The extended a/W ratio of the cracked beam can be then determined from compliance versus a/W curves. If the compliance curve is obtained from sawcut beams, the a/W estimated is greater than the average interior a/W revealed by dye. Therefore, the a/W obtained by the sawcut beams needs to be modified by a correlation between a/W from the dye technique and a/W from compliance developed by Go (4) - equation (10), Fig. 2.4. In this report, only Huang's (8) and Fartash's (11) a/W were calculated using equation (10) because both of their compliance curves were obtained from sawcut beams.

(a/W)dye = (a/W) compliance - 0.14

(10)

3. The KIC value for each a/W ratio and load  $P_{ff}$  can be determined by the finite element computer program developed by Huang (8).

4. The value of GIC can be calculated using equation (7).

2.2 Test Specimens Used at Kansas State University and Their Material Properties

Two sizes of beams were used for the determination of the fracture parameters by the investigators at Kansas State University, Huang (8), Fartash (11), Go (4) and Rood (12). These two sizes of beams were constructed to the following dimensions (Fig. 2.1):

Group 1A: L = 16 in (406 mm) S = 15 in (381 mm) W = 4 in (102 mm) B = 3 in (76 mm) S/W = 3.75

Group 2A: L = 25 in (635 mm) S = 24 in (610 mm) W = 8 in (203 mm) B = 4 in (102 mm) S/W = 3.125

Fig. 2.3 shows typical beam dimensions.

### 2.2.1 Huang's Beams (8)

Huang (8) had two sizes of beams with two mix designs (Table 2.1). These two sizes of beams fall in the categories of group 1A and group 2A. Huang (8) called beams from group 1A as small beams and beams from group 2A as large beams. They were divided into two series of testing; beams with numbers S1S3, S2F3, L1S3 and L2F3 were tested in three-point bending (Fig. 2.1); beams with numbers S1S4, S2F4, L1S4 and L2S4 were tested in four-point bending (Fig. 2.1).

The primary difference between Huang's (8) two mix designs was the W/C ratio. Mix design number one (Table 2.1) had W/C of 0.78, average concrete strength of 3400 psi (23.1 MPa) and modulus of elasticity of 3.30 x  $10^6$  osi (22.7 GPa). The mix design number two had W/C of 0.50, average concrete strength of 7800 psi (53.8 MPa) and modulus of elasticity of 5.04 x  $10^6$  psi (34.7 GPa).

#### 2.2.2 Fartash's Beams (11)

Fartash (11) had only one group of beams, group 1A, with two mix designs (Table 2.2). The two mix designs of Fartash (11) followed Huang's (8) mix designs very closely. The mix design A (Table 2.2) with W/C of 0.78 had an average concrete strength of 3200 psi (22.0 MPa) and modulus of elasticity of  $3.23 \times 10^6$  psi (22.2 MPa). The mix design B (Table 2.2) with W/C of 0.5 had a higher concrete strength as expected. The average strength was 6430 psi (44.3 MPa) and modulus of elasticity was 4.57 x 10<sup>6</sup> psi (31.5 GPa). Beams with mix design A were tested in three-point bending and beams with mix design B were tested in four-point bending.

#### 2.2.3 Go's Beams (4)

Go (4) had only one mix design (Table 2.3) with W/C of 0.5 and one size of beams, group 1A. All these beams were tested in three-point bending. The average concrete strength was 5170 psi (35.6 MPa) and modulus of elasticity was  $4.10 \times 10^6$  psi (28.2 GPa).

#### 2.2.4 Rood's Beams (12)

Rood had only one size of beams, group 1A and one mix design (Table 2.4) with W/C of 0.5. The mix design followed Go's (4) mix design very closely. The average concrete strength was 8100 psi (55.8 MPa) and modulus of elasticity was  $5.34 \times 10^6$  psi (35.8 GPa).

#### 2.3 Set Up and Testing Procedures

All the testing that was performed by Huang (8), Fartash (11), Go (4) and Rood (12) at Kansas State University, was done using one set up (Fig. 2.1). For this set up the initial notch of the beam was on the bottom side of the specimen with one (three-point bending) or two (four-point bending) concentrated load(s) applied to the top of the specimen by an electro-hydraulic materials testing machine (MTS). During loading of the specimen, simultaneous traces of P-LPD ard P-CMCD

were obtained. However, only Rood (12) collected all the P-LPD and P-CMOD traces of each beam. For Huang (8), Fartash (11) and Go (4), only P-CMOD or P-LPD was recorded. Huang (8) and Fartash (11) did not obtain P-LPD curves because of inadequate facilities available during testing.

Complete details of the various test setups and testing procedures used are contained in References 4, 8, 11, 12. In the following, this information is summarized briefly.

#### 2.3.1 Compliance Measurement (B, 11)

Huang (B) and Fartash (11) did the compliance measurement in the following way:

Each beam was initialy notched at mid-span with a sawcut to a desired crack length. No precracking of the notched beams was performed. The load was maintained low enough to ascertain that the crack did not begin at the end of the notch. The load was then applied (three-point bending or four-point beanding) and a P-CMOD slope was obtained for each notch length. In order to obtain an average value of the compliance of each corresponding a<sub>0</sub>/W, three consecutive plots were obtained. Then a curve of compliance versus a<sub>0</sub>/W was plotted. The 'compliance value is the inverse slope of the straight portion of the P-CMOD curve. The compliance curves of Huang's (8) and Fartash (11) beams tested in four and three-point bending are shown in Figs. 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17 and 2.18. Later, Go (4) discovered that using sawcut beams for compliance measurement somehow produced greater crack lengths than crack lengths revealed by dye. As a result, a modification of compliance measurement

2.3.2 Modified Compliance Measurement (4. 12)

Bo (4) and Rood (12) both did their compliance measurements using the following method. The procedure for determining the modified compliance value is almost the same as the compliance measurement mentioned in section 2.3.1, except that a dye penetration technique and precracking were applied. The dye was inserted into the crack after the last precracking load was applied. In order to assure the dye would penetrate to the tip of the crack, load recycling was used. Then the specimen was loaded to failure. The actual average crack depth was determined by finding the cracked surface area of the beam penetrated by the dye and dividing it by the width of the beam. The crack depth found by this method corresponds to the compliance measured from the initial slope of the P-CMOD or P-LPD curve. This data provides one point on the compliance curve. The compliance curves for Go's (4) and Rood's (12) beams are presented in Figs. 2.19, 2.20, 2.21 and 2.22.

#### 2.3.3 Precracked Beams (4, 8, 11, 12)

Each precracked beam was initially notched at mid-span similarly to the specimens prepared for compliance measurement. The starter notch was around 0.4 in. (10.2 mm) or smaller. The desired crack length of the specimen was obtained by loading the beam in the MTS machine until a compliance value corresponding to that of the compliance curve was found. Following precracking the specimen was then loaded to failure and P-LPD, P-CMDD traces obtained.

2.3.4 Notched Beams with Teflon Insert or Sawcut (4, 11, 12)

Each specimen was previously notched to a desired crack depth by sawcut or insert and then loaded to failure under load control. These beams were tested without any precracking and dye insertion.

During the precracking and load to failure pocesses, P-LPD and P-CMOD traces were obtained, Figs. 2.2 and 2.3 are typical.

### Table 2.1 Huang's Mix Designs

|                                  | Mix No. 1                                 | Mix No. 2                     |
|----------------------------------|-------------------------------------------|-------------------------------|
| Water/Cement                     | 0.78                                      | 0.50                          |
| Cement Type                      | I                                         | I                             |
| ≭ Sand (Wt.)                     | 31                                        | 31                            |
| Sand Dry Rodded Unit Wt.         | 109 pcf (1750 kg/m <sup>3</sup> ) 106     | pcf (1700 kg/m <sup>3</sup> ) |
| S. G. Sand                       | 2.49                                      | 2.49                          |
| Sand Moisture Content            | 0.5%                                      | 0.5%                          |
| Sand Finess Modulus              | 3.35                                      | 3. 35                         |
| * Coarse Aggregate (Wt.)         | 45                                        | 45                            |
| Aggregate Dry Rodded<br>Unit Wt. | 94.5 pcf (1510 kg/m <sup>3</sup> ) 94.5   | pcf (1510 kg/m <sup>3</sup> ) |
| S. G. Aggregate                  | 2.50                                      | 2.50                          |
| Max. Size Aggregat               | 0.5 in (12.7 mm) 0.5                      | in (12.7 mm)                  |
| Aggregate Moisture Content       | 0. 3%                                     | 0.3%                          |
| Aggregate Fineness Modulus       | 6.41                                      | 6.41                          |
| Sand/Aggregate                   | 0.69                                      | 0.69                          |
| Air Content                      | 2.8×                                      | 3.2%                          |
| Slump                            | 7 in (178 mm) 1/8                         | in (3.18 mm)                  |
| Unit Wt. of Concrete             | 141.8 pcf (2270 kg/m <sup>3</sup> ) 148.4 | pcf (2380 kg/m <sup>3</sup> ) |
| Water Cure                       | 7 days                                    | 7 days                        |
| Air Cure Start                   | 8 days (a)<br>23 days (b)                 | 22 days (a)<br>51 days (b)    |
| Air Cure Finish                  | 16 days (a)<br>31 days (b)                | 50 days (a)<br>70 days (b)    |

Notes: (a) Three-point bending specimen (b) Four-point bending specimen

## Table 2.2 Fartash's Mix Designs

|                                         | Mix A                                    | Mix B                                 |
|-----------------------------------------|------------------------------------------|---------------------------------------|
| Water/Cement                            | <b>0.</b> 78                             | 0, 50                                 |
| Cement Type                             | I                                        | I                                     |
| 🛪 Sand (Wt.)                            | 31                                       | 31                                    |
| Sand Dry Rodded Unit Wt.                | 106 pcf (1700 kg/m <sup>3</sup> ) 109    | pef (1750 kg/m <sup>3</sup> )         |
| S. G. Sand                              | 2.62                                     | 2.62                                  |
| Sand Moisture Content                   | 0.50%                                    | 0.50%                                 |
| Sand finess Modulus                     | 3. 35                                    | 3. 35                                 |
| % Coarse Aggregate (Wt.)                | 45                                       | 45                                    |
| Aggregate Dry Rodded<br>Rodded Unit Wt. | 94.5 pcf (1510 kg/m <sup>3</sup> ) 94.   | 5 pcf (1510 kg/m <sup>3</sup> )       |
| S. G. Aggregate                         | 2.59                                     | 2.59                                  |
| Max. Size Aggregate                     | 0.5 in (12.7 mm) 0.                      | 5 in (12.7 mm)                        |
| Aggregate Moisture Content              | 0.3%                                     | 0.3%                                  |
| Aggregate Fineness Modulus              | 6.41                                     | 6.41                                  |
| Sand/Aggregate                          | 0.69                                     | 0.69                                  |
| Air Content                             | 2.8×                                     | 3. 2%                                 |
| Slump                                   | 7 in (178 mm) 1/                         | 8 in (1.18 mm)                        |
| Unit Wt. of Concrete                    | 141.8 ocf (2270 kp/m <sup>3</sup> ) 148. | $4 \text{ pcf} (2380 \text{ km/m}^3)$ |

| Water/Cement              | 0.50                             |
|---------------------------|----------------------------------|
| Cement Type               | I                                |
| % Sand (Wt.)              | 31                               |
| X Aggregate by weight     | 45                               |
| S. G. Sand                | 2.49                             |
| S. G. Aggregate           | 2.50                             |
| Weight of Water*          | 9.31 lb (149 kg)                 |
| Weight of Cement*         | 18.6 lb (298 kg)                 |
| Weight of Sand*           | 46.0 (727 kg)                    |
| Weight of Aggregate*      | 66.8 (1070 kg)                   |
| Max. Size Aggregate       | 0.5 in (12.7 mm)                 |
| Unit Weight of Concrete.* | 144 lb (2305 kg/m <sup>3</sup> ) |
| Curing Time               | 20 Days                          |
| Ultimate Strength         | 5200 psi (35.9 Mpa)              |

Note: \* Proportions are for 1 ft<sup>3</sup> (m<sup>3</sup>) of mix volume.

|                         | Batch 1                                | Batch 2                           |
|-------------------------|----------------------------------------|-----------------------------------|
| Water/Cement            | 0.50                                   | 0.50                              |
| Cemnet Type             | I                                      | I                                 |
| S. G. Sand              | 2,65                                   | 2.65                              |
| S. G. Aggregate         | 2.56                                   | 2.56                              |
| % Sand by Weight        | 32.7%                                  | 32.7%                             |
| % Aggregate by Weight   | 47. 5%                                 | 47.5%                             |
| % Cement by Weight      | 13.2%                                  | 13.2%                             |
| × Water by Weight       | 6.62%                                  | 6.62%                             |
| Unit Weight of Concrete | 149.7 pcf (2396 kg/m <sup>3</sup> ) 14 | 9.7 pcf (2396 kg/m <sup>3</sup> ) |
| Curing Time             | 145 days                               | 138 days                          |
| Compressive strength    | 7950 psi (54.8 MPa)                    | 8130 psi (56.0 MPa)               |
| Tensile Strength        | 601 psi (4.14 MPa)                     | 665 psi (4.58 MPa)                |
| Superplasticizer        | 400 ml                                 | 300 ml                            |
| Slump                   | 7.25 in (184 mm)                       | 7.00 in (178 mm)                  |
| Sand Fineness Modulus   | 2.91                                   | 2.91                              |
| Maximum Aggregate Size  | 0.75 in (19.1 mm)                      | 0.75 in (19.1 mm)                 |

| Water/Cement                  | 0.50                                  |  |  |
|-------------------------------|---------------------------------------|--|--|
| Cemnet Type                   | I                                     |  |  |
| S. G. Sand                    | 2.65                                  |  |  |
| S. G. Aggregate               | 2.56                                  |  |  |
| S. G. Cement                  | 3.15                                  |  |  |
| % Sand by Weight              | 32.64%<br>(47.94 lb/ft <sup>3</sup> ) |  |  |
| X Aggregate by Weight         | 47.42%<br>(69.65 lb/ft <sup>3</sup> ) |  |  |
| X Cement by Weight            | 13.22%<br>(19.42 lb/ft <sup>3</sup> ) |  |  |
| % Water by Weight             | 6.03%<br>(8.85 lb/ft <sup>3</sup> )   |  |  |
| % Super Plasticizer by Weight | 0.70%<br>(1.03 lb/ft <sup>3</sup> )   |  |  |
| Unit Weight of Concrete       | 146.89 pcf (2351 kg/m <sup>3</sup> )  |  |  |
| Curing Time                   | 118 days                              |  |  |
| Slump                         | 4.00 in (102 mm)                      |  |  |
| Sand Fineness Modulus         | 2.91                                  |  |  |
| Maximum Aggregate Size        | 0.75 in (19.1 mm)                     |  |  |



Fig. 2.1 Beam Dimensions, Three-Point Bending and Four-Point Bending



Load Control, C-15, Tested by Rood (12)



Fig. 2.4 Compliance Variation for Notched Beams and Presumed Compliance Variation for Precracked Beams, Go (4)



Fig. 2.5 Compliance vs a/W, Large Beams, Mix No. 1, Four-Point Bending, Huang (8)


































### CHAPTER 3

## EXPERIMENTAL PROGRAM

# 3.1 Test Specimens

For beams tested in July 1985 and January 1986, three sizes of beams were constructed with the following dimensions:

Group 1A: L = 16 in (406 mm) S = 15 in (381 mm) W = 4 in (102 mm) B = 3 in (76 mm) S/W = 3.75 Group 2B: L = 32 in (813 mm) S = 30 in (762 mm) W = 8 in (203 mm) B = 3 in (76 mm) S/W = 3.75 Group 3A: L = 48 in (1220 mm) S = 45 in (1140 mm) W = 12 in (305 mm) B = 3 in (76 mm) S/W = 3.75

(For the beam dimensions of Group 2A, refer to chapter 2.) For the schematic diagram of the beam dimensions, see Fig. 2.1. The mix design used was presented in Table 2.5. A total of sixteen beams of W = 4 in. (102 mm), two beams of W = 8 in. (203 mm) and three beams

of W = 12 (305 mm) in. were constructed. Beams of W = 4 in. (102 mm) were tested in July 1985 and beams with W = 8 in. (203 mm) and W = 12 in. (305 mm) were both tested in January 1986. Figures 3.1 and 3.2 show stress versus strain graphs of these beams. The average concrete strength of the beams with W = 4 in. (102 mm) was 6170 psi (42.5 MPa) and modulus of elasticity was  $5.02 \times 10^6$  psi (34.6 GPa). The average concrete strength of beams with W = 8 in. (203 mm) and W = 12 in. (305 mm) was 8700 psi (59.9 MPa) and modulus of elasticity of 6.60  $\times 10^6$  psi (45.5 GPa).

## 3.2 Set Up and Testing Procedure

The sixteen beams of W = 4 in. (102 mm) were all tested with the notches on the bottom sides of the specimens (Fig. 2.1). However, beams with W = 8 in. (203 mm) and W = 12 in. (305 mm) were all tested in the reverse configuration with the set up showed in Fig 3.3. The notch of the specimen was on the top side of the beam. The advantage of this reverse setup is that premature failure or cracking can be prevented during the process of transportation and setting up of the specimen on the MTS machine. Furthermore, the reverse set up eliminated the difficulties of turning the beams over for dye penetration.

All these beams were notched to a desired crack length at the midspan. Of the sixteen beams with W = 4 in. (102 mm), six had nominal  $a_0/W$  of 0.3, six of the beams had nominal  $a_0/W$  of 0.5 and the remaining four beams had  $a_0/W$  of 0.7. The two W = 8 in. (203 mm) beams and W = 12 in. (305 mm) beams had  $a_0/W$  of 0.5.

The MTS machine was used throughout the testing. All these specimens were loaded to failure without precracking. Three of the six

beams with  $a_0/W$  of 0.3 were tested in strain control and the remaining three were tested in load control. Of the six beams with  $a_0/W$  of 0.5, three were tested in strain control and three were tested in load control. Of the last four of the beams with  $a_0/W$  of 0.7, half were tested in strain control and the other half were tested in load control. The P-LPD and P-CMOD traces were obtained simultaneously during testing.



Fig. 3.1  $f_c$  versus  $\xi_c$ , Tested July 1985





Fig. 3.3 Reverse Testing Configuration for Three-Point Bending

#### CHAPTER 4

## EVALUATION OF METHODS

4.1 Notched Beams

4.1.1 Notched Beams Tested in Three-Point Bending

All the notched beams had B = 3 in. (76 mm) and S/W ratio of 3.75. (a) RILEM Method (10)

Results of tests using the RILEM Method (10) on six beams tested by Rood (12) with W = 4 in. (102 mm), sixteen beams tested in July 1985 with W = 4 in. (102 mm), two beams with W = 8 in. (203 mm) and three beams with W = 12 in. (305 mm) which were both tested in January 1986 are presented in Appendix II, Tables 1A, 1B, 1C.

The results obtained using this method showed variation with  $a_0$  and beam size. Swartz (14) and the writer had a fundamental disagreement in the use of the full P-LPD curve to determine the energy consumed by the crack propagation because the crack length changes rapidly after the point of instability. This also shows clearly that there should not be any correlation between the initial notch length  $a_0$  and the full P-LPD curve. Furthermore, ambiguity arises in the determination of  $S_0$ . According to this method  $S_0$  is determined at the point of maximum vertical displacement on the P-LPD curve. However, the point of the maximum vertical displacement could be at the point where the trace of P-LPD ends or at the point of extension of the full P-LPD curve.

As a result of the above problems, an alternative to the RILEM

method is suggested the Modified RILEM Method (14).

(b) Modified RILEM Method (14)

Results of tests using Modified RILEM Method, equation 2, on the same beams mentioned in the above section (A) are presented in Appendix II. Tables 2A. 2B. 2C.

Notice that the results obtained in this method using A<sub>1</sub> (Fig.2.2), or U for the calculation of GF exhibits scatter when W = 4 in. (102 mm) beams were used. However, with W = 8 in. (203 mm) and W = 12 in. (305 mm), the results obtained are consistent but smaller than the RILEM Method (10). For W = 8 in. (203 mm) and W = 12 in. (305 mm), GF values obtained are smaller by approximately 38 percent and 40 percent respectively.

(c) Direct Energy Method (4)

The results of tests using the Direct Energy Method, equation 3, is presented in Appendix II, Table 3A. No measurement of the extended a/W were taken on the sixteen beams with W = 4 in. (102 mm) tested in July 1985 and the two beams with W = 8 in. (203 mm) and the three beams with W = 12 in. (305 mm), tested in January 1986. Therefore, only Rood's (12) six beams were used for the calculation of G<sub>IC</sub> using this method, Appendix II, Table 3A.

The results obtained in this method showed consistency but were higher than the results of the Modified RILEM Method (14). For a/W approximately 0.5 and 0.65, the GIC values are higher by 43 percent and 48 percent respectively. This is because cracked surface roughness was taken into consideration. Furthermore, the determination of the crack length is more reliable.

### (d) KIC Methods

(i) Jeng/Shah Method (9)

The results of tests using the Jenq/Shah Method (9) on six beams with W = 4 in. (102 mm) tested by Rood (12), sixteen beams with W = 4 in. (102 mm) tested in July 1985, two beams with W = 8 in. (203 mm) and three beams with W = 12 in. (305 mm) which were both tested in January 1986, twelve teflon insert beams with W = 4 in. (102 mm) tested by Go (4), and the twenty-one teflon beams with W = 4 in. (102 mm) tested by Fartash (11) are presented in Appendix II, Tables 4A, 4B, 4C, 4D, 4E, 4F.

The results obtained showed scatter and inconsistency and  $G_{IC}$  values are all much smaller than the corresponding values given in Tables 1A, 1B, 1C. However, it should be remembered that the CMOD<sub>e</sub> was determined based on ignoring the effect of  $CMOD_{e2}$ .

(ii) Go Method (4)

The results of tests using the Go Method (4) with estimated extended crack length, on the six beams with W = 4 in. (102 mm) tested by Rood (12), twelve beams with W = 4 in. (102 mm) tested by Go (4) and twelve other beams with the same W = 4 in. (102 mm) tested by Fartash (11) are presented in Appendix II, Tables SA, 5B, 5C, 5D.

Rood's (12) results, G<sub>IC</sub> were all at least twice greater than the results obtained by Jenq/Shah Method (9) with corresponding a/W. However, Fartash (11) results are compatiple with the results obtained by the Jenq/Shah Method (9).

(e) JIC Method (4)

The clots of U versus a<sub>o</sub>/W and (or) U versus extended a/W for Rood's (12) notched beams and the notched beams tested in July 1965 are presented in Appendix II, Figs.1 and 2.

The JIC values obtained for Rood's (12) beams was  $0.472 \text{ lb-in/in}^2$ (82.7 N-m/m<sup>2</sup>) when a<sub>0</sub>/W is used and  $0.436 \text{ lb-in/in}^2$  (76.4 N-m/m<sup>2</sup>) when extended a/W is used. For the beams tested in July 1985, the JIC value is 0.418 lb-in/in<sup>2</sup> (73.3 N-m/m<sup>2</sup>). All these values showed agreement.

(f) Bazant Size Effect Method (1, 3)

Data obtained from Rood's W = 4 in. (102 mm) beams, the two W = 8 in. (203 mm) beams and the three W = 12 in. (305 mm) beams which were both tested in January 1986 were used for Bazant Three Beam Method (1, 3). The plot is shown in Appendix II Fig. 3. Notice that all the points fall on a straight line. The GF values obtained by this method are lower than the results in Tables 1A and 1B. However, GF values do agree fairly well with the Jeng/Shah (9) results in Appendix II, Tables 4B and 4E, despite ignoring the effect of CMCD<sub>E</sub>2.

## 4.1.2 Notched Beams Tested in Four-Point Bending

The only method suitable for the determination of GLC is the  $K_{\rm IC}$ Method developed by Huang (8) and Go (4) (this is not the  $K_{\rm IC}$  Method used in the three-point bending beams).

The results of tests using this method on the fourteen beams with W = 4 in. (102 mm) tested by Fartash (11) are presented in Appendix II, Tables 6A and 6B.

The results of GIC values obtained were smaller for Fartash's (11) beams, group 1-B; the average GIC value for this group of beams was 0.0552 lb-in/in<sup>2</sup> (9.67 N-m/m<sup>2</sup>) for average extended a/W of 0.335 and the average GIC value for beams from group 2-B was 0.118 lb-in/in<sup>2</sup> (20.7 N-m/m<sup>2</sup>) for average extended a/W of 0.575.

### 4.2 Precracked Beams

4.2.1 Precracked Beams Tested in Three-Point Beanding

(a) RILEM Method (10)

The only data that was used for the determination of the GF value with this method was the twenty-six beams from Rood (12) with W = 4 in. (102 mm), B = 3 in. (76 mm) and S/W = 3.75, Appendix II, Table 7A. The variation with  $a_i/W$  still exists.

(b) Modified RILEM Method (14)

The results of tests using this method on the same twenty-six beams and the sixteen beams tested by Go (4) are oresented in Appendix II, Tables 8A and 8B. The results obtained are consistent.

(c) Direct Energy Method (4)

Two sets of data with W = 4 in. (102 mm), B = 3 in. (76 mm) and S/W = 3.75 were used in the determination of GIC values. They are the thirteen beams tested by Rood (12) and the eleven beams tested by Go (4), Appendix II Tables 9A and 9B. The results not only show good consistency, but also agree very well with the results obtained by the Modified RILEM Method (14).

(d) Kic Methods

(i) Jeng/Shah Method (9)

The results obtained using this method for the twenty beams tested by Rood (12), the nine beams tested by Go (4), the twenty-one beams tested by Fartash (11), and the ten beams tested by Huang (8) - all beams had W = 4 in. (102 mm), B = 3 in. (76 mm) and S/W = 3.75. In addition, eleven beams tested by Huang (8) with W = 8 in. (203 mm), B = 4 in. (102 mm) and S/W = 3.125 are also used for the calculations. The results are presented in Appendix 11, Tables 10A, 10B, 10C, 10D, 10E and  $10\overline{F}$ .

All these beams exhibit good consistency, even though the results are generally lower than the corresponding values on Tables 9A and 9B by at least 50 percent.

(ii) Go Method (4)

The results obtained using this method on the fourteen beams tested by Rood (12) with W = 4 in. (102 mm), the nine beams tested by Go (4) with W = 4 in. (102 mm), the fourteen beams tested by Fartash (11) with W = 4 in (102 mm), and the nine beams tested by Huang (8) with W = 4 in. (102 mm) and another ten beams tested by Huang (8) with W = 8 in. (203 mm), B = 4 in. (102 mm) and S/W = 3.125 (all these beams had B = 3 in. (75 mm) and S/W = 3.75 except Huang's (8) ten beams) are presented in Appendix II, Tables 11A, 11B, 11C, 11D, 11E, 11F.

The results of GIC values obtained by using Huang's (8) beams showed inconsistency and scatter. However, the results using Fartash's (11), Go's (4) and Rood's (12) beams come very close to the results obtained by Jeng/Shah Method (9).

(e) Jic Method (4)

The only data that were used with this method were Rood's (12) beams and Go's (4) sixteen beams. The plots of U versus  $a_i/W$  and U versus extended a/W are shown in Appendix 1I Figs. 4, 5. The J<sub>1C</sub> value obtained for Rood's (12) beams is 0.270 lb-in/in<sup>2</sup> (47.3 N-m/m<sup>2</sup>) when  $a_i/W$  is considered and 0.239 lb-in/in<sup>2</sup> (41.9 N-m/m<sup>2</sup>) when extended a/W is considered. The average J<sub>1C</sub> value is 0.255 lb-in/in<sup>2</sup> (44.7 N-m/m<sup>2</sup>). This value agrees very well with the results obtained by Modified R1LEM Method (14) and Direct Energy Method (4). The J<sub>1C</sub> values obtained for

Go's (4) beams is 0.299 lb-in/in<sup>2</sup> (52.4 N-m/m<sup>2</sup>) when  $a_i/W$  is used and 0.346 lb-in/in<sup>2</sup> (60.6 N-m/m<sup>2</sup>) when extended a/W is used. The average JIC value for Go's (4) beams is 0.323 lb-in/in<sup>2</sup> (56.6 N-m/m<sup>2</sup>). Once again, JIC obtained agrees well with Modified RILEM (14) and Direct Energy methods (4).

(f) Bazant Size Effect Method (1, 3)

There is no adequate data to be used with this method.

4.2.2 Precracked Beams Tested in Four-Point Bending

The only method there is suitable for the determination of  $G_{\rm IC}$  is the KIC Method developed by Huang (8) and Go (4).

The results of G<sub>IC</sub> calculated based on modified extended a/W tested by Fartash (11) and Huang (8) are presented in Appendix II Tables 12A, 12B, 12C, 12D, 12E. (All the results of Fartash (11) and Huang (8) were separated in different tables based on the modulus of elasticity values and the mix designs.)

The results obtained using Fartash's (11) beams showed considerable scatter and inconsistency even though all these beams had similar mix design and concrete strength. The results obtained using Huang's (8) beams showed consistent results, however, the results are very low.

#### CHAPTER 5

### CONCLUSIONS AND RECOMMENDATIONS

Conclusions are summarized in the following paragraphs based on the experimental results obtained in this thesis.

- In all cases except one where notched beams were used for the evaluation of the fracture parameters scatter and inconsistency of results were obtained when compared to the results obtained by precracked beams. The only method that seemed to work well with notched beams is Bazant's Method (1, 3). Therefore, precracked beams tested in three-point bending are recommended in the experimental fracture testing of concrete in the future.
- 2. The Modified RILEM Method (14), Direct Energy Method (4) and JIC Method using precracked beams in three-point bending and initial a/W and extended a/W exhibit equivalent results. The GIC value appears to be a constant for different a/W values and concrete strengths. Swartz (14) and the writer prefer the latter two methods for the determination of fracture parameters where a/W values can be determined reliably.
- 3. Precracked beams using the KIC methods may provide satisfatory and consistent results if strain control (13) is applied during testing especially when the Jenq/Shah Method (9) is used. In addition, results obtained by beams tested in four-point bending using the KIC Method (some scatter and inconsistency still exist) appeared to be similar to the Jeng/Shah Method (9).

 Swartz (14) and the writer recommend the use of beam size with at least W = 4 in. (102 mm) for experimental fracture testing in the future.



#### REFERENCES

- Bazant, Zdenek P., "Fracture Energy of Concrete from Maximum Loads of Specimens of Various Sizes," Proposal for RILEM Recommendation, Northwestern University, Evanston, IL 1985.
- Bazant, Zdenek P., and Cedolin, Luigi, "Approximate Linear Analysis of Concrete Fracture by R-Curves," <u>Journal of Structural</u> <u>Engineering</u>, ASCE, Vol. 110, No. 6, June 1984.
- Bazant, Zdenek P., Kim, Jin-Keun and Pfeiffer, Phillip, "Nonlinear Fracture Properties from Size Effect Tests," <u>Journal</u> of Structural Engineering, ASCE, Vol. 112, No. 2, Feb. 1986.
- Go, Cheer-Germ and Swartz, Stuart E., "Fracture Toughness Techniques to Predict Crack Growth and Tensile Failure in Concrete," report 154, Engineering Experiment Station, Kansas State University, Manhattan, KS, July 1983.
- Hillerborg, Arne, "Concrete Energy Testes performed by Laboratories According to RILEM Recommendation," Report TVBM-3015, Lund Institute of Technology, Division of Building Materials, Lund, Sweden, 1983
- Hillerborg, Arne, "Additional Concrete Fracture Energy Tests Performed by 6 Laboratories According to a draft RILEM Recommendation, " Report TVBM-3021, Lund Institute of Technology, Division of Building Materials, Lund, Sweden, 1984
- Hillerborg, Arne, "Influence of Beams Size on Concrete Fracture Energy Determined According to a Draft RILEM Recommendation," Report TVBM-3021 Lund Institute of Technology, Division of Building Materials, Lund, Sweden, 1985.
- Huang, C. M., "Finite Element and Experimental Studies of Stress-Intensity Factors for Concrete Beams," Doctor's Dissertation, Kansas State University, 1981.
- Jeng, Y.S. and Shah, S. P., "Two Parameter Fracture Model for concrete," <u>Journal of Engineering Mechanics</u>, ASCE, Vol. 111, No. 10, Oct. 1985.
- RILEM Technical Committee 50-FMC, "Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams," proposed RILEM recommendation, Jannuary 1982, revised June 1982. Lund Institute of Technology of Building Materials, Lund, Sweden.

# REFERENCES (Continued)

- Fartash, M., "Stress Intensity Values for Prenotched and Precracked, Plain Concrete Beams," Master's Thesis, Kansas State University.
- 12. Rood, S., "Fracture Toughness Testing of Small Concrete Beams," Master's Thesis, Kansas State University, 1984.
- Swartz, S. E. and Siew, H. C., "Time Effects in the Static Testing of Concrete to Determine Fracture Energy," Report 182, Engineering Experiment Station, Kansas State University, Manhattan, KS, June 1986.
- Swartz, S. E., and Yap, S. T., "Evaluation of Recently Procosed Recommendations for the determination of Fracture Parameters for Concrete in Bending, " Proceedings, VIIIth International Conference on Experimental Stress Analysis, Amsterdam, May 12-16, 1986









Fig. II.2 J-Integral Method (4), Notched Beams, Tested July 1985, W = 4 in

. 58



Fig. II.3 Bazant Size Effect Method (1, 3), Notched Beams





Fig. II.5 J-Integral Method (4), Precracked Beams, Go (4), W = 4 in

Table II.1A Notched Beams, Tested by Rood (12), RILEM Method (10), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C = 5.34 \times 10^5$  psi (36.8 GPa)

| Fig. | Original | a <sub>o</sub> | Avg. ag | So             | ₩o     | GF                    | Avg. GF               |
|------|----------|----------------|---------|----------------|--------|-----------------------|-----------------------|
| No.  | No.      | in             | in      | in x $10^{-3}$ | Ib-in  | Ib-in/in <sup>2</sup> | 15-in/in <sup>2</sup> |
|      |          | 1010           | mm      | mm             | N-m    | N-m/m2                | N-m/m <sup>2</sup>    |
| 222  | C15      | 1.17           | 1.24    | 13.3           | 3.96   | 0.491                 | 0.590                 |
|      |          | 29.7           | 31.4    | 0.340          | 0.450  | 86.0                  | 103                   |
| 224  | C16      | 1.30           |         | 18.0           | 5.20   | 0.688                 |                       |
|      |          | 33. 0          |         | 0.460          | 0.600  | 121                   |                       |
| 226  | C17      | 1.82           | 1.94    | 13.5           | 2.54   | 0.421                 | 0.387                 |
|      |          | 46.2           | 49.3    | 0.340          | 0.290  | 74.0                  | 67.8                  |
| 228  | C18      | 2.06           |         | 13.0           | 1.85   | 0.353                 |                       |
|      |          | 52.3           |         | 0.330          | 0.200  | 62.0                  |                       |
| 230  | C19      | 2.50           | 2.59    | 13.0           | 1.11   | 0.292                 | 0.248                 |
|      |          | 63.5           | 65.8    | 0.330          | 0.130  | 51.0                  | 43.4                  |
| 232  | C20      | 2.68           |         | 11.3           | 0.630  | 0.204                 |                       |
|      |          | 68.1           |         | 0.290          | 0.0700 | 36.0                  |                       |

Notes: 1. W/C = 0.50, For complete mix design see Table 2.4.

2. S = 15 in (381 mm), L = 16 in (406 mm), mg = 15.6 Ib (7.08 Kg), f'c = 8100 psi (55.8 MPa) Table II.18 Notched Beams, Tested July 1985, RILEM Method (10), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>C</sub> = 5.02  $\times$  10<sup>6</sup> psi (34.6 GPa)

| Fig. | Original | ao   | Avg. a <sub>o</sub> | δο                    | Wo     | GF                 | Avg. GF   |
|------|----------|------|---------------------|-----------------------|--------|--------------------|-----------|
| No.  | No.      | in   | in                  | in x 10 <sup>-3</sup> | 1b-in  | 1b-in/in2          | 1b-in/in2 |
|      |          | ៣៣   | mm                  | លល                    | N-m    | N-m/m <sup>2</sup> | $N-m/m^2$ |
|      |          |      |                     |                       |        |                    |           |
| 236  | 25.3     | 1.12 |                     | 8.90                  | 2.43   | 0.297              |           |
|      |          | 28.4 |                     | 0.226                 | 0.276  | 52.1               |           |
| 238  | 35.3     | 1.12 |                     | 10.1                  | 3.11   | 0.378              |           |
|      |          | 28.4 |                     | 0.257                 | 0.352  | 66.3               |           |
| 234  | 15.3     | 1.16 | 1.18                | 10.2                  | 2.27   | 0.285              | 0.348     |
|      |          | 29.5 | 30.0                | 0.259                 | 0.257  | 50.0               | 61.0      |
| 244  | 3L.3     | 1.16 |                     | 14.3                  | 3.33   | 0.417              |           |
|      |          | 29.5 |                     | 0.363                 | 0.376  | 73.1               |           |
| 242  | 2L.3     | 1.20 |                     | 13.9                  | 2.30   | 0.300              |           |
|      |          | 30.5 |                     | 0.353                 | 0.260  | 52.5               |           |
| 240  | 1L.3     | 1.32 |                     | 13.9                  | 3.10   | 0.413              |           |
|      |          | 33.5 |                     | 0.353                 | 0.350  | 72.4               |           |
| 246  | 15.5     | 2.00 |                     | 9.30                  | 1.10   | 0.208              |           |
|      |          | 50.8 |                     | 0.236                 | 0.124  | 36.4               |           |
| 248  | 25.5     | 2.00 |                     | 7.70                  | 0.960  | 0.180              |           |
|      |          | 50.8 |                     | 0.196                 | 0.108  | 31.5               |           |
| 254  | 2L.5     | 2.00 | 2.02                | 15.1                  | 2.25   | 0.414              | 0.278     |
|      |          | 50.8 | 51.3                | 0.384                 | 0.254  | 72.6               | 48.7      |
| 250  | 35.5     | 2.04 | '                   | 8.50                  | 1.20   | 0.227              |           |
|      |          | 51.8 |                     | 0.216                 | 0.136  | 39.7               |           |
| 252  | 11.5     | 2.04 |                     | 14.2                  | 1.68   | 0.323              |           |
|      |          | 51.8 |                     | 0.361                 | 0.189  | 56.6               |           |
| 256  | 3L.5     | 2.04 |                     | 12.9                  | 1.66   | 0.317              |           |
|      |          | 51.8 |                     | 0.328                 | 0.187  | 55.5               |           |
| 262  | 2L.7     | 2.68 |                     | 8.20                  | 0.621  | 0.189              |           |
|      |          | 68.1 |                     | 0.208                 | 0.0701 | 33.1               |           |
| 260  | 35.7     | 2.76 | 2.76                | 8.10                  | 0.620  | 0.200              | 0.205     |
|      |          | 70.1 | 70.1                | 0.206                 | 0.0701 | 35.2               | 35.9      |
| 258  | 15.7     | 2.80 |                     | 8.60                  | 0.547  | 0.189              |           |
|      |          | 71.1 |                     | 0.218                 | 0.0618 | 33.1               |           |
| 264  | 3L.7     | 2.80 |                     | 11.1                  | 0.700  | 0.243              |           |
|      |          | 71.1 |                     | 0.282                 | 0.0791 | 42.6               |           |

Notes 1. W/C= 0.50, for complete mix design see Table 2.5.

2. S=15 in (381 mm), L = 16 in (406 mm), mg = 15.6 lb (7.08 Kg),  $f_{C}^{*} = 6170$  psi (42.5MPa)
Table II.1C Notched Beams, Tested January 1986, RILEM Method (10), B = 3.00 in (76 mm),  $E_{\rm C}$  = 6.60  $\times$  106 psi (45.5 GPa)

| Fig.<br>No. | Original<br>No. | W<br>in<br>mm | a <sub>0</sub><br>in in<br>mm | δ <sub>0</sub><br>× 10-3<br>mm | W <sub>O</sub><br>15-in<br>N-m | GF<br>lb−in/in <sup>2</sup><br>N−m/m <sup>2</sup> | Avg. Gr<br>16-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------------------------|--------------------------------------------------------|
| 266         | N-2-8           | 8             | 4.00                          | 31.6                           | 7.95                           | 0.498                                             |                                                        |
|             |                 | 203           | 102.0                         | 0.803                          | 0.898                          | 87.2                                              | 0.506                                                  |
| 268         | W-1-8           | 8             | 4.00                          | 27.0                           | 7.86                           | 0.514                                             | 88.6                                                   |
|             |                 | 203           | 102.0                         | 0.685                          | 0.888                          | 90.1                                              |                                                        |
| 272         | PW12            | 12            | 6.00                          | 25.8                           | 10.3                           | 0.372                                             |                                                        |
|             |                 | 305           | 152.0                         | 0.655                          | 1.16                           | 65.2                                              |                                                        |
| 270         | CB12            | 12            | 6.00                          | 35.6                           | 12.7                           | 0.429                                             | 0. 388                                                 |
|             |                 | 305           | 152.0                         | 0.904                          | 1.47                           | 78.0                                              | 68.0                                                   |
| 274         | W12             | 12            | 6.00                          | 28.8                           | 10.6                           | 0.364                                             |                                                        |
|             |                 | 305           | 152.0                         | 0.732                          | 1.30                           | 73.0                                              |                                                        |

Notes: 1. W/C = 0.50, for complete mix design see Table 2.5.

- 2. For W = 8 in (203 mm), S = 30 in (762 mm), L = 32 in (813 mm), mg = 62.5 lb (28.4 Kg)
- 3. For W = 12 in (305 mm), S = 45 in (143 mm), L = 48 in (1219 mm), mg = 140.6 lb (63.8 Kg)

4. Average f'c = 8700 psi

Table II.2A Notched Beams, Tested by Rood (12), Modified RILEM Method (14), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>C</sub> = 5.34  $\times$  10<sup>6</sup> psi (36.8 GPa)

| Fig.<br>No. | Original<br>No. | a <sub>o</sub><br>in<br>mm | Avg. a <sub>o</sub><br>in<br>mm | $in \times 10^{-3}$ mm | U<br>1b-in<br>N-m | GF<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GF<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|----------------------------|---------------------------------|------------------------|-------------------|---------------------------------------------------|--------------------------------------------------------|
| 222         | C15             | 1.17                       | 1.24                            | 7.90                   | 2.40              | 0,297                                             | 0.366                                                  |
|             |                 | 29.7                       | 31.4                            | 0.201                  | 0.271             | 52.0                                              | 63.6                                                   |
| 224         | C16             | 1.30                       |                                 | 13.8                   | 3.30              | 0.434                                             |                                                        |
|             |                 | 33.0                       |                                 | 0.351                  | 0.373             | 76.0                                              |                                                        |
| 226         | C17             | 1.82                       | 1.82                            | 8.10                   | 1.75              | 0.287                                             | 0.256                                                  |
|             |                 | 46.2                       | 46.2                            | 0.206                  | 0.198             | 50.3                                              | 44.8                                                   |
| 558         | C18             | 2.06                       | 2.06                            | 8.10                   | 1.18              | 0.224                                             |                                                        |
|             |                 | 52.3                       | 52.3                            | 0.206                  | 0.133             | 39.2                                              |                                                        |
| 230         | C19             | 2.50                       | 2.59                            | 7.70                   | 0.860             | 0.218                                             | 0.170                                                  |
|             |                 | 63.5                       | 65.8                            | 0.196                  | 0,0972            | 38.2                                              | 29. A                                                  |
| 232         | C20             | 2.68                       |                                 | 5.70                   | 0.390             | 0.121                                             | 2310                                                   |
|             |                 | 68.1                       |                                 | 0.145                  | 0.0441            | 21.2                                              |                                                        |

Notes: 1. For dimensions and material properties see Table II.1A.

2. JIC = 0.472 lb-in/in<sup>2</sup> (82.7 N-m/m<sup>2</sup>) - based on  $a_0$  (4).

Table II.2B Notched Beams, Tested July 1985, Modified RILEM Method (14) , W = 4.00 in (102mm), B = 3.00 in (76 mm), E<sub>C</sub> = 5.02  $\times$  10<sup>6</sup> psi (34.6 GPa)

| Fig. | Original | 30   | Ave. an | 50        | Ц      | GE                    | Ave. GE            |
|------|----------|------|---------|-----------|--------|-----------------------|--------------------|
| No.  | No.      | in   | in      | in x 10-3 | lb-in  | lb-in/in <sup>2</sup> | lb-in/in           |
|      |          | mm   | 51957   | mm        | N-m    | N-m/m <sup>2</sup>    | N-m/m <sup>2</sup> |
| 236  | 25.3     | 1.12 |         | 3.67      | 1.46   | 0.176                 |                    |
|      |          | 28.4 |         | 0.0932    | 0.166  | 30.8                  |                    |
| 238  | 35.3     | 1.12 |         | 5.00      | 1.75   | 0.212                 |                    |
|      |          | 28.4 |         | 0.127     | 0.197  | 37.1                  |                    |
| 234  | 1S.3     | 1.16 | 1.18    | 4.82      | 1.78   | 0,218                 | 0.179              |
|      |          | 26.5 | 30.0    | 0.122     | 0.200  | 38.1                  | 31.4               |
| 244  | 3L.3     | 1.16 |         | 2.65      | 1.47   | 0.177                 |                    |
|      |          | 26.5 |         | 0.0673    | 0.166  | 31.1                  |                    |
| 242  | 2L. 3    | 1.20 |         | 3. 38     | 1.06   | 0.133                 |                    |
|      |          | 30.5 |         | 0.0859    | 0.119  | 23.2                  |                    |
| 240  | 1L.3     | 1.32 |         | 2.77      | 1.20   | 0.155                 |                    |
|      |          | 33.5 |         | 0.0704    | 0.136  | 27.2                  |                    |
| 246  | 1S.5     | 2.00 |         | 4.33      | 0.650  | 0.120                 |                    |
|      |          | 50.8 |         | 0.110     | 0.0735 | 21.0                  |                    |
| 248  | 25.5     | 2.00 |         | 2.10      | 0.490  | 0.0870                |                    |
|      |          | 50.8 |         | 0.0533    | 0.0553 | 15.3                  |                    |
| 254  | 2L.5     | 2.00 | 2.02    | 3.19      | 0.752  | 0.134                 | 0.106              |
|      |          | 50.8 | 51.3    | 0.0810    | 0.0849 | 23.4                  | 18.6               |
| 250  | 35.5     | 2.04 |         | 3.31      | 0.640  | 0.118                 |                    |
|      |          | 51.8 |         | 0.0841    | 0.0723 | 20.7                  |                    |
| 252  | 1L.5     | 2.04 |         | 2.46      | 0.443  | 0.0820                |                    |
|      |          | 51.8 |         | 0.0625    | 0.0502 | 14.3                  |                    |
| 256  | 3L.5     | 2.04 |         | 2.55      | 0.527  | 0.0960                |                    |
|      |          | 51.8 |         | 0.0648    | 0.0595 | 16.9                  |                    |
| 262  | 2L.7     | 2.68 |         | 2.10      | 0.272  | 0.0770                |                    |
|      |          | 68.1 |         | 0.0533    | 0.0306 | 13.5                  |                    |
| 260  | 35.7     | 2.76 | 2.76    | 2.48      | 0.200  | 0.0640                | 0.0685             |
|      |          | 70.1 | 70.1    | 0.0630    | 0.0226 | 11.2                  | 12.0               |
| 258  | 1S.7     | 2.80 |         | 2.67      | 0.179  | 0.0610                |                    |
|      |          | 71.1 |         | 0.0678    | 0.0203 | 10.7                  |                    |
| 264  | 3L.7     | 2.80 |         | 2.41      | 0.220  | 0.0720                |                    |
|      |          | 71.1 |         | 0.0612    | 0.0249 | 12.6                  |                    |

Notes: 1. For dimensions and material properties see Table II.1B. 2.  $J_{IC} = 0.418$  lb-in/in<sup>2</sup> (73.2 N-m/m<sup>2</sup>) - based on  $a_0$  (4).

Table II.2C Notched Beams, Tested January 1986, Modified RILEM Method (14), B = 3.00 in (76 mm),  $E_{\rm C}$  = 6.60 x 106 psi (45.5 GPa)

| Fig.<br>No. | Original<br>No. | W<br>in<br>mm | a <sub>o</sub><br>in<br>mm | in x 10-3 | U<br>lb-in<br>N-m | GF<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GF<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|----------------------------|-----------|-------------------|---------------------------------------------------|--------------------------------------------------------|
| 266         | N-2-8           | 8             | 4.00                       | 13.0      | 4.46              | 0.304                                             |                                                        |
|             |                 | 203           | 102                        | 0.330     | 0.504             | 53.6                                              | 0.314                                                  |
| 268         | ₩-1-8           | 8             | 4.00                       | 11.8      | 4.61              | 0.323                                             | 55.0                                                   |
|             |                 | 203           | 102                        | 0.300     | 0.521             | 56.6                                              |                                                        |
| 272         | PW12            | 12            | 6.00                       | 9.8       | 5.17              | 0.211                                             |                                                        |
|             |                 | 305           | 152                        | 0.249     | 0.584             | 37.0                                              |                                                        |
| 270         | CB12            | 12            | 6.00                       | 13.0      | 6.20              | 0.243                                             | 0.233                                                  |
|             |                 | 305           | 152                        | 0.330     | 0.750             | 46.8                                              | 40.8                                                   |
| 274         | W12             | 12            | 6.00                       | 13.4      | 6.27              | 0.244                                             |                                                        |
|             |                 | 305           | 152                        | 0.340     | 0.770             | 48.0                                              |                                                        |

Note: For dimensions and material properties see Table II.1C.

Table II.3A Notched Beams, Tested by Rood (12), Direct Energy Method (4), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>c</sub> = 5.34 x  $10^6$  psi (36.8 GPa)

| Fig. | Original | Ext.  | Avo.  | 80             | U       | GIC                    | Ave. Grc           |
|------|----------|-------|-------|----------------|---------|------------------------|--------------------|
| No.  | No.      | a/W   | a/W   | in x $10^{-3}$ | 1b-in   | 1b-in/i <sup>2</sup> n | lb-in/in2          |
|      |          |       |       | mm             | N-m     | N-m/m <sup>2</sup>     | N-m/m <sup>2</sup> |
| 222  | C15      | 0.510 | 0.510 | 7.90           | 2.40    | 0.373                  |                    |
|      |          |       |       | 0.201          | 0.271   | 65.3                   | 0.447              |
| 224  | C16      | 0.510 |       | 13.8           | 3.30    | 0.520                  | 78.2               |
|      |          |       |       | 0.351          | 0.373   | 91.1                   |                    |
| 226  | C17      | 0.620 | 0.645 | 8.10           | 1.75    | 0.358                  |                    |
|      |          |       |       | 0.206          | 0.198   | 62.7                   | 0.325              |
| 228  | C18      | 0.670 |       | 8.10           | 1.18 .  | 0.287                  | 56.5               |
|      |          |       |       | 0.206          | 0.133   | 50.2                   |                    |
| 230  | C19      | 0.820 | 0.820 | 7.70           | 0.860   | 0.395                  | 0.395              |
|      |          |       |       | 0.196          | 0.0972  | 69.2                   | 69.2               |
| 232  | C20      | 0.910 | 0.910 | 5.70           | 0.390   | 0.386                  | 0.386              |
|      |          |       |       | 0,145          | 0. 0441 | 67.6                   | 67.6               |
|      |          |       |       |                |         |                        |                    |

Notes: 1. For dimensions and material properties see Table II.1A.

2. Ext. a/W = Extended a/W; measured by compliance technique.

3.  $JIC = 0.436 \text{ lb-in/in}^2 (76.4 \text{ N-m/m}^2) - \text{based on extended a}$ (4).

| Table II.4A | Notched Beams, | Tested | by Rood   | (12), | Jeng/Shah      | Method | (9), 1 | W |
|-------------|----------------|--------|-----------|-------|----------------|--------|--------|---|
|             | = 4.00 in (102 | mm), B | = 3.00 in | n (76 | mm), $E_{-} =$ | 5.34 x | 106    |   |
|             | psi (36.8 GPa) |        |           |       | -              |        |        |   |

| Fig.<br>No. | Original<br>No. | Pm<br>15 i<br>N | CMODe<br>n x 10 <sup>-4</sup><br>mm | ae/W  | K <sup>S</sup> IC<br>1b-in <sup>-</sup> 3/2<br>kN-m <sup>-</sup> 3/2 | GIC<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|-----------------|-------------------------------------|-------|----------------------------------------------------------------------|----------------------------------------------------|
| 221         | C15             | 570<br>2540     | 4.60<br>0.0117                      | 0.308 | 536<br>590                                                           | 0.0540<br>9.46                                     |
| 223         | C16             | 570<br>2540     | 6.00<br>0.0152                      | 0.360 | 619<br>681                                                           | 0.0720<br>12.6                                     |
| 229         | C19             | 165<br>734      | 3.60<br>0.00914                     | 0.698 | 261<br>287                                                           | 0.0130<br>2.28                                     |
| 227         | C18             | 290<br>1290     | 8.20<br>0.0208                      | 0.542 | 523<br>575                                                           | 0.0510<br>8.94                                     |
| 225         | C17             | 370<br>1650     | 12.2<br>0.0310                      | 0.568 | 719<br>791                                                           | 0.097<br>17.0                                      |
| 231         | C20             | 95<br>423       | 9.00<br>0.0229                      | 0.720 | 318<br>350                                                           | 0.0190<br>3.33                                     |

Note: For dimensions and material properties see Table II.1A.

Table II.48 Notched Beams, Tested July 1985, Jenc/Shah Method (9), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E\_c = 5.02 X 10<sup>6</sup> csi (34.6 GPa)

| Fig. | Original      | Pm   | CMODe               | ae/w  | Avg.   | KSIC                  | GIC                   | Avp. Gir           |
|------|---------------|------|---------------------|-------|--------|-----------------------|-----------------------|--------------------|
| No.  | No.           | 16   | in x 10 <sup></sup> | 3     | ag/W 1 | lb-in <sup>-3/2</sup> | lb-in/in <sup>2</sup> | 1b-in/in2          |
|      |               | N    | mm                  |       |        | kN-m <sup>-3/2</sup>  | N-m/m <sup>2</sup>    | N-m/m <sup>2</sup> |
|      |               |      |                     | -     |        |                       |                       |                    |
| 243  | 3L.3          | 692  | 0.602               | 0.311 |        | 657                   | 0.0861                |                    |
|      | _             | 3080 | 0.0153              |       |        | 723                   | 15.1                  |                    |
| 241  | 2L.3          | 712  | 0.650               | 0.320 |        | 693                   | 0.0957                |                    |
|      |               | 3170 | 0.0165              |       |        | 762                   | 16.8                  |                    |
| 239  | 1L.3          | 634  | 0.630               | 0.337 | 0.343  | 647                   | 0.0833                |                    |
|      |               | 2820 | 0.0160              |       |        | 712                   | 14.6                  | 0.104              |
| 237  | 3 <b>5.</b> 3 | 685  | 0.740               | 0.353 |        | 729                   | 0.106                 | 18.2               |
|      |               | 3050 | 0.0188              |       |        | 802                   | 18.6                  |                    |
| 233  | 1S. 3         | 704  | 0.770               | 0.355 |        | 754                   | 0.113                 |                    |
|      |               | 3130 | 0.0196              |       |        | 829                   | 19.8                  |                    |
| 235  | 2S.3          | 738  | 0.920               | 0.380 |        | 845                   | 0.142                 |                    |
|      |               | 3280 | 0.0234              |       |        | 930                   | 24.9                  |                    |
| 255  | 3L.5          | 400  | 1.23                | 0.546 |        | 729                   | 0.106                 |                    |
|      |               | 1780 | 0.0321              |       |        | 802                   | 18.6                  |                    |
| 247  | 25.5          | 354  | 1.12                | 0.551 |        | 655                   | 0.0854                |                    |
|      |               | 1580 | 0.0284              |       |        | 721                   | 15.0                  |                    |
| 251  | 1L.5          | 335  | 1.08                | 0.554 | 0.560  | 625                   | 0.0778                | 0.0980             |
|      |               | 1490 | 0.0274              |       |        | 688                   | 13.6                  | 17.2               |
| 253  | 2L.5          | 408  | 1.28                | 0.554 |        | 761                   | 0.115                 |                    |
|      |               | 1820 | 0.0325              |       |        | 837                   | 20.1                  |                    |
| 249  | 35.5          | 358  | 1.32                | 0.576 |        | 714                   | 0.102                 |                    |
|      |               | 1590 | 0.0335              |       |        | 785                   | 17.9                  |                    |
| 245  | 1S.5          | 358  | 1.17                | 0.576 |        | 714                   | 0 102                 |                    |
|      |               | 1590 | 0.0297              |       |        | 785                   | 17.9                  |                    |
| 250  | 20 2          |      |                     |       |        |                       |                       |                    |
| 209  | 33. /         | 15/  | 1.18                | 0.683 |        | 452                   | 0.0452                |                    |
| ~~~  |               | 100  | 0.0300              |       |        | 497                   | 7.92                  |                    |
| 257  | 15.7          | 173  | 1.68                | 0.716 | 0.714  | 569                   | 0.0644                | 0.0496             |
|      |               | 770  | 0.0427              |       |        | 626                   | 11.3                  | 8.69               |
| 263  | 7. اک         | 145  | 1.55                | 0.727 |        | 500                   | 0.0497                |                    |
|      | _             | 650  | 0.0394              |       |        | 550                   | 8.71                  |                    |
| 261  | 2L.7          | 127  | 1.39                | 0.730 |        | 443                   | 0.0392                |                    |
|      |               | 570  | 0.0353              |       |        | 487                   | 6.87                  |                    |

Note: For dimensions and material properties see Table II.1B.

| Table       | II.4C Not<br>W =<br>psi | ched Bea<br>8.00 ir<br>(45.5 G | ums, Teste<br>(203 mm)<br>Pa) | ed January<br>, B = 3.00     | 1986, Jena<br>0 in (76 mm                  | /Shan Meth<br>), $E_{c} = 6$ .                     | od (9).<br>60 x 106                                     |
|-------------|-------------------------|--------------------------------|-------------------------------|------------------------------|--------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| Fig.<br>No. | Original<br>No.         | Pm CM<br>15 in<br>N M          | IODe ae<br>× 10 <sup>-4</sup> | /w Avg.<br>a <sub>e</sub> /W | K <sup>S</sup> IC<br>1b-in-3/2<br>kN-m-3/2 | GIC<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>15-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
| 265         | N-2-8                   | 640 10<br>2850 0.              | .6 0.4<br>0269                | 75 0.475                     | 672<br>739                                 | 0.0680<br>11.9                                     | 0.0680<br>11.9                                          |
| 267         | W-1-8                   | 660 20<br>2940 0.              | .6 0.5<br>0523                | 95 0.595                     | 989<br>1090                                | Ø.147<br>25.8                                      | 0.147<br>25.8                                           |
|             | W = 12.                 | 00 in (                        | 305 mm)                       |                              |                                            |                                                    |                                                         |
| 269         | CB12                    | 900 21<br>4010 0.              | .0 0.5<br>0533                | 47 0.547                     | 948<br>1040                                | 0.135<br>23.7                                      | 0.135<br>23.7                                           |
| 271         | PW12                    | 810 24<br>3600 0.              | .4 0.5                        | 89 0.591                     | 973<br>1070                                | 0.143                                              | <b>0.151</b>                                            |
| 273         | W12                     | 850 26<br>3780 0.              | .1 0.5<br>0663                | 92                           | 1029<br>1130                               | 0.159                                              |                                                         |

Note: For dimensions and material properties see Table II.1C.

| Table II.4D | Notched Beams, Tested                | by Go (4), Jeng/Sha | ah Method (9),           | W = |
|-------------|--------------------------------------|---------------------|--------------------------|-----|
|             | 4.00  in  (102  mm), B = (28.2  GPa) | 3.00 in (76 mm), E  | = 4.10 × 10 <sup>6</sup> | psi |

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N       | CMOD <sub>e</sub><br>in x 10 <sup>-</sup><br>mm | ae/W<br>3 | Avg.<br>a <sub>e</sub> /W | K <sup>S</sup> IC<br>1b-in <sup>-3/2</sup><br>kN-m <sup>-3/2</sup> | GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------------|-------------------------------------------------|-----------|---------------------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 128         | <b>T1</b>       | 450<br>2000         | 0. 458                                          | 0.310     | 0.310                     | 426<br>469                                                         | 0.0443<br>7.76                                     | <b>0.</b> 0443<br>7. 76                                 |
| 134         | тв              | 4 <b>50</b><br>2000 | 0.615                                           | 0.360     | 0.360                     | 488<br>537                                                         | 0.0582<br>10.2                                     | 0.0582<br>10.2                                          |
| 133         | 77              | 348<br>1550         | 1.06                                            | 0.510     | 0.510                     | 571<br>628                                                         | 0.0794<br>13.9                                     | 0.0794<br>13.9                                          |
| 136         | T10             | 300<br>1340         | 1.08                                            | 0.540     |                           | 537<br>591                                                         | 0.0703                                             |                                                         |
| 137         | Tİİ             | 300<br>1340         | 1.22                                            | 0.560     | 0.560                     | 570<br>627                                                         | 0.0793                                             | 0.0600                                                  |
| 130         | <b>T</b> 4      | 240<br>1070         | 0.965                                           | 0.560     |                           | 456                                                                | 0.0507                                             |                                                         |
| 135         | T9              | 180<br>801          | 0.940                                           | 0.580     |                           | 404<br>444                                                         | 0.0398                                             |                                                         |
| 129         | тз              | 250<br>1110         | 1.97                                            | 0. 680    | 0.680                     | 711<br>782                                                         | 0.123<br>21.5                                      | Ø.123<br>21.5                                           |
| 131         | T5              | 94<br>418           | 1.28                                            | 0.720     | 0.720                     | 314                                                                | 0.0241                                             | 0.0241                                                  |
| 132         | T6              | 99                  | 1.99                                            | 0.774     | 0.774                     | 427                                                                | 0. 0444                                            | 0.0444                                                  |
|             |                 | 735                 |                                                 |           |                           | 470                                                                | 7.78                                               | 7.78                                                    |
| 139         | T13             | 95<br>423           | 1.63                                            | 0.790     | 0.795                     | 447<br>492                                                         | 0.0486<br>8.51                                     | 0.0400                                                  |
| 138         | T12             | 72<br>320           | 2.08                                            | 0.800     |                           | 358<br>394                                                         | 0.0313                                             |                                                         |

Notes: 1. W/C = 0.50, for complete mix design see Table 2.3.

2. S = 15 in (762 mm), L = 16 in (406 mm), mg = 15.0 lb (7.08 Kg), f'c = 5200 psi (35.6 MPa)

Table II.4E Notched Beams, Tested by Fartash (11), Jenq/Shah Method (9) , W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C$  = 3.08 x  $10^6$  psi (21.1 GPa)

| Fig.<br>No. | Original<br>No. | Р <sub>т</sub><br>15 | CMOD <sub>e</sub><br>in x 10 <sup>3</sup> | ae/W  | K <sup>5</sup> IC<br>1b-in <sup>-3/2</sup> | GIC<br>1b-in/in <sup>6</sup> |
|-------------|-----------------|----------------------|-------------------------------------------|-------|--------------------------------------------|------------------------------|
|             |                 | N                    | MM                                        |       | KN-m-07C                                   | N-m/m-                       |
| 50          | 1-A5            | 670                  | 0.560                                     | 0.150 | 399                                        | 0.0518                       |
|             |                 | 2980                 | 0.0152                                    |       | 439                                        | 9.08                         |
| 51          | 1-A6            | 674                  | 0.630                                     | 0.230 | 511                                        | 0.0847                       |
|             |                 | 3000                 | 0.0150                                    |       | 562                                        | 14.8                         |
| 46          | 1-A1            | 685                  | 0.670                                     | 0.240 | 536                                        | 0.0932                       |
|             |                 | 3050                 | 0.0170                                    |       | 590                                        | 16.3                         |
| 48          | 1-A3            | 635                  | 0.650                                     | 0.250 | 509                                        | 0.0843                       |
|             |                 | 2830                 | 0.0165                                    |       | 560                                        | 14.8                         |
| 49          | 1-A4            | 698                  | 0.750                                     | 0.260 | 576                                        | 0.108                        |
|             |                 | 3100                 | 0.0191                                    |       | 634                                        | 18.9                         |
| 52          | 1-A7            | 603                  | 0.670                                     | 0.270 | 512                                        | 0.0850                       |
|             |                 | 2680                 | 0.0170                                    |       | 563                                        | 14.9                         |
| 47          | 1-A2            | 648                  | 0.820                                     | 0.290 | 581                                        | 0.110                        |
|             |                 | 2880                 | 0.0208                                    |       | 639                                        | 19.3                         |

Notes: 1. W/C = 0.78, for complete mix design see Table 2.2.

2. S = 15 in (381 mm), L = 16 in (406 mm), f'<sub>c</sub> = 2920 psi (20.1 MPa)

| Table II.4F | Notched Beams, Tested by Fartash (11), Jeng/Shah Method (9)       |
|-------------|-------------------------------------------------------------------|
|             | , $W = 4.00$ in (102 mm), $B = 3.00$ in (76 mm), $E_{C} = 3.30$ x |
|             | 10 <sup>b</sup> psi (22.7 GPa)                                    |

| Fig.<br>No. | Original<br>No. | Pm<br>1b<br>N | CMOD <sub>e</sub><br>in x 10-3<br>mm | a <sub>e</sub> /W | Avg.<br>a <sub>e</sub> /W | K <sup>S</sup> IC<br>1b-in <sup>-</sup> 3/2<br>kN-m <sup>-</sup> 3/2 | GIC<br>15-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|--------------------------------------|-------------------|---------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 61          | 2-A2            | 300           | 0.630                                | 0.400             |                           | 363<br>399                                                           | 0.0399                                             |                                                         |
| 60          | 2-A1            | 330           | 0.730                                | 0.410             |                           | 410                                                                  | 0.0509                                             |                                                         |
| 64          | 2-A5            | 294           | 0.690                                | 0.420             |                           | 45<br>375                                                            | 8.92<br>0.0427                                     |                                                         |
| 63          | 2-A4            | 1310<br>368   | 0.910                                | 0.430             | 0.426                     | 413<br>483                                                           | 7.48<br>0.0706                                     | 0.0526                                                  |
| 65          | 2-46            | 1640<br>300   | 0.740                                | 0.430             |                           | 531<br>394                                                           | 12.4<br>0.0469                                     | 9.21                                                    |
| 66          | 2-A7            | 1340<br>265   | 0.690                                | 0.440             |                           | 433<br>357                                                           | 8.22<br>0.0387                                     |                                                         |
| 62          | 2-A3            | 1180<br>368   | 1.00                                 | 0.450             |                           | 393<br>510                                                           | 6.78<br>0.0788                                     |                                                         |
|             |                 | 1640          |                                      |                   |                           | 561                                                                  | 12.8                                               |                                                         |
| 76          | 3-A3            | 105<br>467    | 0.950                                | 0.650             | 0.650                     | 268                                                                  | 0.0217                                             | 0.0203                                                  |
| 79          | 3-86            | 98<br>436     | 0.890                                | 0.650             |                           | 250<br>275                                                           | 0.0189<br>3.31                                     | 0.00                                                    |
| 74          | 3-A1            | 85            | 1.00                                 | 0.690             |                           | 251                                                                  | 0.0195                                             |                                                         |
| 75          | 7-02            | 378           | 1 00                                 | 0 600             |                           | 276                                                                  | 3.42                                               |                                                         |
| ,5          | 3-HL .          | 378           | 1.00                                 | 0.690             |                           | 276                                                                  | 0.0195<br>3.42                                     |                                                         |
| 77          | 3-84            | 83<br>369     | 1.00                                 | 0.690             | 0.690                     | 245<br>270                                                           | 0.0183<br>3.21                                     | 0.0197<br>3.45                                          |
| 78          | 3-A5            | 100           | 1.20                                 | 0.690             |                           | 296                                                                  | 0.0265                                             |                                                         |
| 80          | 3-A7            | 74            | 0.890                                | 0.690             |                           | 219                                                                  | 0.0145                                             |                                                         |
|             |                 | 35.7          |                                      |                   |                           | <b>C41</b>                                                           | 6. 34                                              |                                                         |

Notes: 1. W/C = 0.78, for complete mix design see Table 2.2, for dimensions see Table II.4E.

2. f'c = 3340 psi (23.0 MPa)

|             | in<br>GPa       | (102<br>a)    | mm), B =    | 3.00                | in (76 mm),                                | E <sub>C</sub> = 5.34      | 4 x 10 <sup>6</sup> psi                                 | (36.8 |
|-------------|-----------------|---------------|-------------|---------------------|--------------------------------------------|----------------------------|---------------------------------------------------------|-------|
| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg.<br>Ext.<br>a/W | K <sup>G</sup> IC<br>lb-in-3/2<br>kN-m-3/2 | GIC<br>lb−in/in²<br>N-m/m² | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |       |
| 221         | C15             | 570<br>2540   | 0.510       | 0.510               | 935<br>1030                                | Ø. 157<br>27.5             | 0.159<br>27.9                                           |       |
| 223         | C16             | 570<br>2540   | 0.510       |                     | 943<br>1040                                | 0.160<br>28.0              |                                                         |       |
| 225         | C17             | 370<br>1650   | 0.620       | 0.620               | 876<br>964                                 | 0.138<br>24.2              | 0.138<br>24.2                                           |       |
| 227         | C18             | 290<br>1290   | 0.670       | 0.670               | 795<br>875                                 | 0.114<br>20.0              | 0.114<br>20.0                                           |       |
| 229         | C19             | 165<br>730    | 0.820       | 0.820               | 932<br>1030                                | 0.157<br>27.5              | 0.157<br>27.5                                           |       |
| 231         | C20             | 95<br>420     | 0.910       | 0.910               | 1239<br>1360                               | Ø.276<br>48.4              | 0.276<br>48.4                                           |       |

Table II.5A Notched Beams, Tested by Rood (12). Go Method (4), W = 4.00

Notes: 1. For dimensions and material properties see Table II.1A.

2. Ext. a/W = Extended a/W; measured by compliance technique.

| Table II.5B | Notched Beams, | Tested  | by Go (4), Go          | Method | (4), $W = 4.00$ in |
|-------------|----------------|---------|------------------------|--------|--------------------|
|             | (102 mm), B =  | 3.00 in | $(76 mm), E_{\rm C} =$ | 4.10 x | 106 psi (28.2      |
|             | GPa)           |         |                        |        |                    |

| Fig. | Original | Pra  | ai/W  | Avg.  | KGIC      | GIC                   | Avg. GIC           |
|------|----------|------|-------|-------|-----------|-----------------------|--------------------|
| No.  | No.      | 16   |       | ai/W  | 1b-in-3/2 | lb-in/in <sup>2</sup> | 1b-in/in2          |
|      |          | N    |       |       | kN-m-3/2  | N-m/m <sup>2</sup>    | N-m/m <sup>2</sup> |
|      |          |      |       |       |           |                       |                    |
| 133  | T7       | 348  | 0.320 | 0.335 | 339       | 0.0280                | 0.0421             |
|      |          | 1550 |       |       | 373       | 4.91                  | 7.29               |
| 128  | T1       | 450  | 0.350 |       | 475       | 0.0551                |                    |
|      |          | 2000 |       |       | 523       | 9.65                  |                    |
| 174  | та       | 450  | 0 410 | 0 410 | 550       | 0.0750                | 0.0750             |
| 104  | 10       | 2000 | 0.410 | 0.410 | 333       | 0.0/02                | 0.0752             |
|      |          | 2000 |       |       | 612       | 13.4                  | 13.4               |
| 130  | T4       | 240  | 0.490 |       | 372       | 0.0337                |                    |
|      |          | 1070 |       |       | 409       | 5.90                  |                    |
| 129  | TЗ       | 250  | 0.510 | 0.507 | 410       | 0.0410                | 0.0324             |
|      |          | 1110 |       |       | 397       | 7.18                  | 5.67               |
| 135  | Т9       | 180  | 0.520 |       | 304       | 0.0225                |                    |
|      |          | 801  |       |       | 334       | 4.47                  |                    |
|      |          |      |       |       |           |                       |                    |
| 137  | T11      | 300  | 0.540 |       | 537       | 0.0703                | 0.0829             |
|      |          | 1340 |       | 0.565 | 591       | 12.3                  | 14.5               |
| 136  | T10      | 300  | 0.590 |       | 626       | 0.0955                |                    |
|      |          | 1340 |       |       | 689       | 16.7                  |                    |
|      |          |      |       |       |           |                       |                    |
| 131  | T5       | 94   | 0.650 | 0.665 | 240       | 0.0140                | 0.0167             |
|      |          | 418  |       |       | 264       | 2.45                  | 2.93               |
| 132  | Тб       | 99   | 0.680 |       | 282       | 0.0194                |                    |
|      |          | 440  |       |       | 310       | 3.40                  |                    |
| 179  | T17      | 95   | 0 700 | 0 710 | 000       | 0.0000                | 0.0175             |
| 133  | 113      | 427  | 0.700 | 0.710 | 272       | 0.0208                | 0.01/5             |
| 170  | T12      | 723  | 0 700 |       | 23/       | 3.64                  | 3.01               |
| 130  | 112      | 720  | 0.720 |       | 241       | 0.0141                |                    |
|      |          | പലംഗ |       |       | 264       | 2.4/                  |                    |

Note: For dimensions and material properties see Table II.4D.

Table II.5C Notched Beams, Tested by Fartash (11), Go Method (4), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C = 3.08 \times 10^6$  psi (21.1 GPa)

| Fig.<br>No. | Original<br>No. | Рт<br>15<br>N | Ext.<br>a/W | Avg.<br>Ext.<br>a/W | K <sup>G</sup> IC<br>1b-in <sup>-3/2</sup><br>kN-m <sup>-3/2</sup> | GIC<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in²<br>N-m/m² |
|-------------|-----------------|---------------|-------------|---------------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------|
| 51          | 1-46            | 674<br>3000   | 0. 191      | 0.191               | 456<br>502                                                         | 0.0674<br>11.8                                     | 0.0674<br>11.8                  |
| 49          | 1-A4            | 698<br>3100   | 0.234       | 0.234               | 535<br>589                                                         | 0.0925<br>16.2                                     | 0.0925<br>16.2                  |
| 50          | 1-A5            | 670<br>2980   | 0.334       | 0.336               | 678                                                                | 0.149                                              | 0.154                           |
| 46          | 1-A1            | 685<br>2050   | 0.338       |                     | 700<br>770                                                         | 0.159<br>27.9                                      | 27.0                            |
| 48          | 1-A3            | 635<br>2830   | 0.353       | 0.353               | 676<br>744                                                         | 0.148<br>25.9                                      | 0.148<br>25.9                   |
| 47          | 1-82            | 648<br>2880   | 0.366       | 0.366               | 759<br>835                                                         | 0.187<br>32.8                                      | 0.187<br>32.8                   |
| 52          | 1-A7            | 603<br>3100   | 0.373       | 0.373               | 678<br>746                                                         | 0.149                                              | Ø.149<br>26.1                   |

Notes: 1. For dimensions and material properties see Table II.4E.

2. Ext. a/W = (a/W) compliance - 0.14

Table II.5D Notched Beams, Tested by Fartash (11), Go Method (4), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>c</sub> = 3.30 x  $10^6$  psi (22.7 GPa)

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg.<br>Ext. 15<br>a/W k | K <sup>G</sup> IC<br>-in <sup>-3</sup> /2<br>N-m <sup>-3</sup> /2 | GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|-------------|--------------------------|-------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 60          | 2-A1            | 330<br>1470   | 0.488       | 0.488                    | 508<br>559                                                        | 0.0783<br>13.7                                     | 0.0783<br>13.7                                          |
| 63          | 2-84            | 363<br>1640   | 0.521       | 0.524                    | 629<br>692                                                        | 0.118<br>20.7                                      | 0.0979<br>17.2                                          |
| 64          | 2-45            | 294<br>1310   | 0.527       |                          | 506<br>557                                                        | 0.0777<br>13.6                                     |                                                         |
| 65          | 2-96            | 300<br>1340   | 0.534       | 0.534                    | 527<br>580                                                        | 0.0843<br>14.8                                     | 0.0843<br>14.8                                          |
| 61          | 2-A2            | 300<br>1340   | 0.541       | 0.543                    | 538<br>592                                                        | 0.0879<br>15.4                                     | Ø. 111<br>19.4                                          |
| 62          | 2-43            | 368<br>1640   | 0.545       |                          | 668<br>735                                                        | 0.135<br>237                                       |                                                         |
| 66          | 2-97            | 265<br>1180   | 0.564       | 0.564                    | 510<br>561                                                        | 0.0787<br>13.8                                     | 0.0787<br>13.8                                          |

Notes: 1. For dimensions and material properties see Tables II.4E, II.4F.

2. Ext. a/W = (a/W) compliance - 0.14

| Table II.6A | Notched Beams Tested by Fartash (11), KIC Method (4, 8), W        |
|-------------|-------------------------------------------------------------------|
|             | = 4.00 in (102 mm), B = 3.00 in (76 mm), $E_c = 4.63 \times 10^6$ |
|             | psi (31.9 GPa)                                                    |

| Fig. | Original | Pm   | Ext.  | Avg.  | KIC       | GIC       | Avg. Gtc  |
|------|----------|------|-------|-------|-----------|-----------|-----------|
| No.  | No.      | 16   | a/W   | Ext.  | 1b-in-3/2 | 1b-in/in2 | 1b-in/in2 |
|      |          | N    |       | a/W   | kN-m-3/2  | N-m/m2    | N-m/m2    |
| -    | 4-87     | 1040 | 0 70F | 0.705 |           |           |           |
| 30   | 1-03     | 1240 | 0.303 | 0.306 | 448       | 0.0433    | 0.0467    |
|      |          | 3320 |       |       | 493       | 7.59      | 8.18      |
| 94   | 1-87     | 1300 | 0.306 |       | 481       | 0.0500    |           |
|      |          | 5790 |       |       | 529       | 8.76      |           |
| 88   | 1-B1     | 1150 | 0.317 |       | 426       | 0.0392    |           |
|      |          | 5120 |       |       | 469       | 6.87      |           |
| 92   | 1-B5     | 1230 | 0.332 | 0.333 | 501       | 0.0542    | 0.0505    |
|      |          | 5470 |       |       | 551       | 9.50      | 8.85      |
| 93   | 1-B6     | 1120 | 0.340 |       | 477       | 0.0491    |           |
|      |          | 4980 |       |       | 524       | 8.60      |           |
| 91   | 1-84     | 1230 | 0.341 |       | 524       | 0.0593    |           |
|      |          | 5470 |       |       | 576       | 10.4      |           |
| 89   | 1-B2     | 1170 | 0.367 | 0.367 | 563       | 0,0685    | 0.0685    |
|      |          | 5210 |       |       | 619       | 12.0      | 12.0      |

Notes: 1. W/C = 0.50, for complete mix design see Table 2.2.

2. S = 15 in (381 mm), L = 16 in (406 mm), f'<sub>C</sub> = 6610 psi (45.5 MPa)

3. Ext. a/W = (a/W) compliance - 0.14

| Table II.6B | Notched Beams, Tested by Fart  | tash (11), Kic Method (4, 8), 1            | W |
|-------------|--------------------------------|--------------------------------------------|---|
|             | = 4.00 in (102 mm), $B = 3.00$ | in (76 mm), $E_{\rm C} = 4.65 \times 10^6$ |   |
|             | psi (32.0 GPa)                 |                                            |   |

| Fig. | Original | ۴m   | Ext.  | Avg.  | KIC       | GIC                | Avg. Gic  |
|------|----------|------|-------|-------|-----------|--------------------|-----------|
| No.  | No.      | 15   | a/W   | Ext.  | 1b-in-3/2 | 1b-in/in2          | 1b-in/in2 |
|      |          | N    |       | a/W   | kN-m-3/2  | N-m/m <sup>2</sup> | N-m/m2    |
| 102  | 2-B1     | 515  | 0.480 |       | 679       | 0.0991             |           |
|      |          | 5530 |       |       | 747       | 17.4               |           |
| 104  | 2-83     | 470  | 0.510 |       | 669       | 0.0962             |           |
|      |          | 2090 |       |       | 736       | 16.9               |           |
| 106  | 2-85     | 580  | 0.510 | 0.510 | 806       | 0.140              | 0.116     |
|      |          | 2580 |       |       | 887       | 24.5               | 20.3      |
| 108  | 2-87     | 595  | 0.514 |       | 832       | 0.149              |           |
|      |          | 2650 |       |       | 915       | 26.1               |           |
| 103  | 2-B2     | 480  | 0.518 |       | 683       | 0.100              |           |
|      |          | 2140 |       |       | 751       | 17.5               |           |
| 107  | 2-B6     | 498  | 0.527 |       | 719       | 0.111              |           |
|      |          | 2220 |       |       | 791       | 19.4               |           |
| 105  | 2-B4     | 550  | 0.640 | 0.640 | 743       | 0.119              | 0.119     |
|      |          | 2450 |       |       | 817       | 20.8               | 20.8      |
|      |          |      |       |       |           |                    |           |

Notes: 1. For dimensions and material properties see Table II.6A.

2. f'c = 6650 psi (45.8 MPa)

| Table II.7A | Precracked Beams, Tested by Rood (12), RILEM Method (10), W       |
|-------------|-------------------------------------------------------------------|
|             | = 4.00 in (102 mm), B = 3.00 in (76 mm), $E_{\rm c}$ = 5.34 x 106 |
|             | psi (36.8 GPa)                                                    |

| Fig. | Origin | al a₁/W | Avg.  | S <sub>O</sub>        | Wo    | GF                    | Avg. G⊨   |
|------|--------|---------|-------|-----------------------|-------|-----------------------|-----------|
| No.  | No.    |         | ai/W  | in x 10 <sup>-3</sup> | lb-in | lb-in/in <sup>2</sup> | lb-in/in2 |
|      |        |         |       | mm                    | N-m   | N-m/m2                | N−m/m²    |
| 180  | в9     | 0.276   |       | 14.2                  | 5.89  | 0.703                 |           |
|      |        |         |       | 0.361                 | 0.666 | 123                   |           |
| 166  | B1     | 0.301   |       | 12.0                  | 4.72  | 0.585                 |           |
|      |        |         |       | 0.305                 | 0.533 | 102                   |           |
| 210  | C7     | 0.296   |       | 14.0                  | 6.00  | 0.736                 |           |
|      |        |         |       | 0.356                 | 0.678 | 129                   |           |
| 184  | B11    | 0.307   |       | 16.2                  | 7.76  | 0.964                 |           |
|      |        |         |       | 0.411                 | 0.877 | 169                   |           |
| 198  | C1     | 0.314   | 0.336 | 15.8                  | 6.56  | 0.827                 | 0.714     |
|      |        |         |       | 0.401                 | 0.741 | 145                   | 125       |
| 182  | B10    | 0.330   |       | 13.3                  | 5.86  | 0.755                 |           |
|      |        |         |       | 0.338                 | 0.662 | 132                   |           |
| 200  | CS     | 0.326   |       | 14.0                  | 4.69  | 0.607                 |           |
|      |        |         |       | 0.356                 | 0.530 | 105                   |           |
| 168  | B2     | 0.362   |       | 12.0                  | 4.85  | 0.658                 |           |
|      |        |         |       | 0.305                 | 0.548 | 115                   |           |
| 212  | C8     | 0.398   |       | 12.2                  | 4.13  | 0.598                 |           |
|      |        |         |       | 0.310                 | 0.467 | 105                   |           |
| 170  | B3     | 0.448   |       | 11.9                  | 4.47  | 0.703                 |           |
|      |        |         | ,     | 0.302                 | 0.505 | 123                   |           |
| 186  | B14    | 0.506   |       | 10.2                  | 2.47  | 0.444                 |           |
|      |        |         |       | 0.259                 | 0.279 | 77.A                  |           |
| 188  | B16    | 0.514   |       | 15.3                  | 3.37  | 0.619                 |           |
|      |        |         |       | 0.389                 | 0.381 | 108                   |           |
| 190  | B17    | 0.521   |       | 11.6                  | 2.27  | 0.425                 |           |
|      |        |         |       | 0.295                 | 0.257 | 74.6                  |           |
| 204  | C4     | 0.525   | 0.549 | 11.8                  | 2.43  | 0.459                 | 0.497     |
|      |        |         |       | 0.300                 | 0.275 | 80.4                  | A7 1      |
| 214  | C9     | 0.593   |       | 11.6                  | 2.60  | 0.569                 | 0,111     |
|      |        |         |       | 0.295                 | 0.294 | 99.7                  |           |
| 216  | C10    | 0.587   |       | 14.3                  | 2.07  | 0.463                 |           |
|      |        |         |       | 0.363                 | 0.234 | 81.1                  |           |
| 172  | B4     | 0.597   |       | 10.5                  | 2.26  | 0.501                 |           |
|      |        |         |       | 0.26                  | 0.250 | 87.8                  |           |
| 196  | B20    | 0.671   |       | 13.3                  | 1.49  | 0.430                 |           |
|      |        |         |       | 0.338                 | 0.168 | 75.3                  |           |
| 208  | C6     | 0.673   | 0.705 | 13.7                  | 1.41  | 0.414                 | 0.502     |
|      |        |         |       | 0.348                 | 0.159 | 72.5                  | 87.9      |
| 192  | B18    | 0.790   |       | 13.8                  | 1.48  | 0.673                 |           |
|      |        |         |       | 0.351                 | 0.167 | 118                   |           |
| 194  | B19    | 0.685   |       | 11.8                  | 1.23  | 0.490                 |           |
|      |        |         |       | 0.300                 | 0.139 | 85.8                  |           |

## Table II.7A (Continued)

| Fig.<br>No. | Original<br>No. | ai∕W  | Av⊡.<br>ai∕W | $\frac{\delta_0}{10^{-3}}$ | W <sub>o</sub><br>lb-in | G≓<br>lb-in/in <sup>2</sup> | Avg. G≓<br>lb−in/in <sup>2</sup> |
|-------------|-----------------|-------|--------------|----------------------------|-------------------------|-----------------------------|----------------------------------|
| 218         | C11             | 0.746 |              | 13.6                       | 0.940                   | 0.378                       |                                  |
|             |                 |       |              | 0.345                      | 0.106                   | 66.2                        |                                  |
| 178         | BS              | 0.790 |              | 15.3                       | 0.730                   | 0.384                       |                                  |
|             |                 |       |              | 0.390                      | 0.0825                  | 67.3                        |                                  |
| 176         | B7              | 0.808 | 0.794        | 11.0                       | 0.590                   | 0.331                       | 0.386                            |
|             |                 |       |              | 0.279                      | 0.0677                  | 58.0                        | 67.6                             |
| 220         | C12             | 0.812 |              | 19.7                       | 0.560                   | 0.384                       |                                  |
|             |                 |       |              | 0.500                      | 0.0633                  | 67.3                        |                                  |
| 174         | B6              | 0.816 |              | 14.4                       | 0.780                   | 0.455                       |                                  |
|             |                 |       |              | 0.366                      | 0.0881                  | 79.7                        |                                  |
|             |                 |       |              |                            |                         |                             |                                  |

Note : For dimension and material properties see Table II.1A.

Table II.8A Precracked Beams, Tested by Rood (12), Modified RILEM Method (14), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>c</sub> = 5.34 x 10<sup>6</sup> psi (38.6 GPa)

| Fig. | Original | a <sub>i</sub> /W | Avg.  | δo        | U      | GF                 | Ave. GF   |
|------|----------|-------------------|-------|-----------|--------|--------------------|-----------|
| No.  | No.      |                   | ai/W  | in x 10-3 | lb-in  | 15-in/in2          | 15-in/in2 |
|      |          |                   |       | mm        | N-m    | N-m/m <sup>2</sup> | N-m/m²    |
| 180  | B9       | 0.28              |       | 5.50      | 2.18   | 0.260              |           |
|      |          |                   |       | 0.140     | 0.246  | 45.6               |           |
| 166  | B1 =     | 0.30              |       | 4.30      | 1.52   | 0.189              |           |
|      |          | 13                |       | 0.109     | 0.172  | 33.1               |           |
| 210  | C7       | 0.30              |       | 6.30      | 2.86   | 0.350              |           |
|      |          |                   |       | 0.160     | 0.323  | 61.3               |           |
| 184  | B11      | 0.31              |       | 7.20      | 3.12   | 0.389              |           |
|      |          |                   |       | 0.183     | 0.353  | 68.2               |           |
| 198  | C1       | 0.32              | 0.368 | 7.80      | 2.77   | 0.350              | 0.296     |
|      |          |                   |       | 0.198     | 0.313  | 61.7               | 51.9      |
| 182  | B1Ø      | 0.33              |       | 5.10      | 1.96   | 0.255              |           |
|      |          |                   |       | 0.130     | 0.221  | 44.7               |           |
| 200  | C2       | 0.33              |       | 6.90      | 1.76   | 0.231              |           |
|      |          |                   |       | 0.175     | 0.200  | 40.5               |           |
| 168  | B2       | 0.36              |       | 4.40      | 2.16   | 0.291              |           |
|      |          |                   |       | 0.112     | 0.240  | 51.0               |           |
| 212  | CB       | 0.40              |       | 7.10      | 2.19   | 0.318              |           |
|      |          |                   |       | 0.180     | 0.247  | 55.7               |           |
| 170  | 83       | 0.45              |       | 5.40      | 2.09   | 0.328              |           |
|      |          |                   |       | 0.137     | 0.236  | 57.5               |           |
| 186  | B14      | 0.50              |       | 5.80      | 1.51   | 0.269              |           |
|      |          |                   |       | 0.147     | 0.171  | 47.1               |           |
| 188  | B16      | 0.52              |       | 8.40      | 1.44   | 0.270              |           |
|      |          |                   |       | 0.213     | 0.163  | 47.3               |           |
| 190  | B17      | 0.52              |       | 6.20      | 1.51   | 0.279              |           |
|      |          |                   |       | 0.157     | 0.171  | 48.9               |           |
| 204  | C4       | 0.52              | 0.55  | 6.20      | 1.25   | 0.236              | 0.296     |
|      |          |                   |       | 0.157     | 0.141  | 41.3               | 51.9      |
| 214  | C9       | 0.59              |       | 8.00      | 1.73   | 0.379              |           |
|      | _        |                   |       | 0.203     | 0.195  | 66.4               |           |
| 216  | C10      | 0.59              |       | 6.00      | 1.11   | 0.243              |           |
|      |          |                   |       | 0.152     | 0.125  | 42.6               |           |
| 172  | B4       | 0.60              |       | 4.00      | 1.86   | 0.393              |           |
|      |          |                   |       | 0.102     | 0.210  | 69.7               |           |
| 196  | B20      | 0.67              |       | 5.70      | 0.730  | 0.207              |           |
|      |          |                   |       | 0.145     | 0.0825 | 36.3               |           |
| 208  | C6       | 0.67              | 0.68  | 0.690     | 0.720  | 0.211              | 0.217     |
|      |          |                   |       | 0.0184    | 0.0814 | 37.0               | 38.0      |
| 195  | 818      | 0.68              |       | 7.30      | 0.890  | 0.261              |           |
|      |          |                   |       | 0.185     | 0.101  | 45.7               |           |

Table II.8A (Continued)

| Fig. | Original | ai/W | Avg. | δ <sub>Ω</sub> | U      | GE        | Ave. Gr   |
|------|----------|------|------|----------------|--------|-----------|-----------|
| No.  | No.      |      | aj/W | in x 10-3      | 15-in  | 1b-in/in2 | 1b-in/in2 |
|      |          |      |      | 11113          | IN THI | N-117 10- | N-m7 m-   |
| 194  | B19      | 0.69 |      | 6.00           | 0.610  | 0.189     |           |
|      |          |      |      | 0.152          | 0.0690 | 33.1      |           |
| 218  | C11      | 0.75 |      | 5.00           | 0.520  | 0.203     |           |
|      |          |      |      | 0.152          | 0.0588 | 35.6      |           |
| 178  | BB       | 0.79 |      | 4.80           | 0.390  | 0.184     |           |
|      |          |      |      | 0.122          | 0.0441 | 32.2      |           |
| 176  | B7       | 0.81 | 0.80 | 3.50           | 0.210  | 0.115     | 0.185     |
|      |          |      |      | 0.0889         | 0.0237 | 20.1      | 32.4      |
| 220  | C12      | 0.81 |      | 6.80           | 0.32   | 0.189     |           |
|      |          |      |      | 0.173          | 0.0362 | 33.1      |           |
| 174  | B6       | 0.82 |      | 6.10           | 0.420  | 0.232     |           |
|      |          |      |      | 0.155          | 0.0475 | 40.6      |           |

Notes: 1. For dimensions and material properties see Table II.1A.

2.  $a_i/W$  = initial  $a_i/W$ ; measured by dye.

3.  $J_{IC} = 0.270 \ lb-in/in^2 \ (47.3 \ N-m/m^2) - based on initial a (4).$ 

Table II.88 Precracked Beams, Tested by Go (4), Modified RILEM Method (14), W = 4.00 in (102 mm), B = 3.00 in (75 mm),  $E_C = 4.10$  x 10<sup>6</sup> psi (28.2 GPa)

| Fig. | Original | a <sub>i</sub> /W | Avg.  | δο        | U      | Ge        | Avn. Ge   |
|------|----------|-------------------|-------|-----------|--------|-----------|-----------|
| No.  | No.      |                   | ai/W  | in x 10-3 | 1b-in  | 1b-in/in2 | lb-in/in2 |
|      |          |                   | -     | mm        | N-m    | N-m/m2    | N-m/m2    |
| 157  | N9       | 0.276             | 0.275 | 5.00      | 3.13   | 0.371     | 0.232     |
|      |          |                   |       | 0.152     | 0.354  | 65.0      | 65.0      |
| 158  | N10      | 0.374             |       | 6.15      | 2.17   | 0.301     |           |
|      |          |                   |       | 0.156     | 0.245  | 52.7      |           |
| 149  | N1       | 0.412             | 0.400 | 5.50      | 2.06   | 0.304     | 0.324     |
|      |          |                   |       | 0.140     | 0.233  | 53.3      | 56.8      |
| 159  | N11      | 0.413             |       | 6.70      | 2.48   | 0.366     |           |
|      |          |                   |       | 0.170     | 0.280  | 64.1      |           |
| 150  | N2       | 0.490             |       | 5.30      | 1.78   | 0.304     |           |
|      |          |                   |       | 0.135     | 0.201  | 53.3      |           |
| 160  | N12      | 0.490             | 0.497 | 4.73      | 1.48   | 0.254     | 0.290     |
|      |          |                   |       | 0.157     | 44.5   | 44.5      | 50.8      |
| 151  | N3       | 0.512             | •     | 6.60      | 1.72   | 0.311     |           |
| 161  | N1 3     | 0.561             | 0.561 | 4.45      | 1.17   | 0.235     | 0.235     |
|      |          |                   |       | 0.113     | 0.132  | 41.1      | 41.1      |
| 162  | N14      | 0.575             | 0.575 | 6.65      | 1.65   | 0.343     | 0.343     |
|      |          |                   |       | 0.169     | 0.186  | 60.1      | 60.1      |
| 153  | N5       | 0.510             | 0.510 | 5.26      | 1 16   | 0 255     | 0.005     |
|      |          |                   |       | 0.134     | 0.131  | 46.4      | 45.4      |
|      |          |                   |       |           |        |           | 10.1      |
| 152  | N4       | 0.620             | 0.620 | 6.65      | 1.45   | 0.340     | 0.340     |
|      |          |                   |       | 0.169     | 0.154  | 59.6      | 59.6      |
| 163  | N15      | 0.633             | 0.633 | 3.65      | 0.74   | 0.180     | 0.180     |
|      |          |                   |       | 0.0927    | 0.0835 | 31.5      | 31.5      |
| 164  | N16      | 0.640             | 0.540 | 3.90      | 0.880  | 0 217     | 0 217     |
|      |          |                   |       | 0.0991    | 0.0994 | 38.0      | 38.0      |
| 154  | N6       | 0.719             |       | 4, 91     | 0.740  | 0 241     |           |
|      |          |                   |       | 0.125     | 0.0835 | 38.0      |           |
| 155  | N7       | 0.725             | 0.724 | 2.30      | 0.400  | 0 132     | 0 175     |
|      |          |                   |       | 2,0580    | 0.0452 | 27.1      | 20.7      |
| 156  | NB       | 0.728             |       | 2.83      | 0.450  | 0.154     | JU:1      |
|      |          |                   |       | 0.0719    | 0.0520 | 27.0      |           |
|      |          |                   |       |           |        |           |           |

Notes: 1. For dimensions and material properties see Table II.4D. 2.  $J_{IC} = 0.299$  lb-in/in<sup>2</sup> (52.4 N-m/m<sup>2</sup>) - based on initial a (4).

| Table II.9A | Precracked Beams, Tested by Rood (12), Direct Energy Method                      |
|-------------|----------------------------------------------------------------------------------|
|             | (4), $W = 4.00$ in (102 mm), $B = 3.00$ in (76 mm), $E_c = 5.34 \times 10^{-10}$ |
|             | 10° psi (36.8 GPa)                                                               |

| Fin. | Original | Ev+   | 0vp    | 5         | 11      |           | A         |
|------|----------|-------|--------|-----------|---------|-----------|-----------|
| No.  | No       | = /14 | Evt    | in v 10-3 | 16-10   | JIP III   | HAG- PIC  |
|      | NO.      | a/w   | = /L   | 10 × 10 - | 10-1n   | 10~1n/1n= | 10-1n/1n- |
|      |          |       | et / W | ហាព       | N-m     | N-m/m=    | N−m∕m⊂    |
| 182  | B10      | 0.400 |        | 5.10      | 1.96    | 0.246     |           |
|      |          |       |        | 0.133     | 0.221   | 43.1      |           |
| 184  | B11      | 0.430 |        | 7.20      | 3.12    | 0.411     |           |
|      |          |       |        | 0.183     | 0.353   | 72.0      |           |
| 180  | B9       | 0.450 | 0.442  | 5.50      | 2.18    | 0.299     | 0.311     |
|      |          |       |        | 0.140     | 0.246   | 52.4      | 54.5      |
| 200  | C2       | 0.450 |        | 6.90      | 1.76    | 0.246     |           |
|      |          |       |        | 0.175     | 0.200   | 43.1      |           |
| 198  | C1       | 0.480 |        | 7.80      | 2.77    | 0.352     |           |
|      |          |       |        | 0.198     | 0.313   | 61.7      |           |
| 186  | B14      | 0.580 |        | 5.80      | 1.51    | 0,269     |           |
|      |          |       |        | 0.147     | 0.171   | 47.1      |           |
| 204  | C4       | 0.580 | 0.593  | 6.20      | 1.25    | 0.232     | 0.217     |
|      |          |       |        | 0.157     | 0.141   | 40.5      | 47.5      |
| 188  | B16      | 0.590 |        | 8.40      | 1.44    | 0.278     |           |
|      |          |       |        | 0.213     | 0.163   | 48.7      |           |
| 190  | B17      | 0.620 |        | 6.20      | 1.51    | 0.306     |           |
|      |          |       |        | 0.157     | 0.171   | 53.6      |           |
| 192  | B18      | 0.770 |        | 7 30      | 0 890   | 0 716     |           |
|      |          |       |        | 0.185     | 0 101   | 55 4      |           |
| 208  | C6       | 0.780 | 0.790  | 6.90      | 0.720   | 0 273     | A 201     |
|      |          |       |        | 0.175     | 0 0814  | 47 8      | 51 0      |
| 194  | B19      | 0.790 |        | 6.00      | 0.610   | 0 247     | 51.0      |
|      |          |       |        | 0.152     | 0.0689  | 42 5      |           |
| 196  | 820      | 0.820 |        | 5.70      | 0.730   | 0 370     |           |
|      |          |       |        | 0.145     | 0. 0825 | 57 4      |           |
|      |          |       |        |           |         | 0/10      |           |

Notes: 1. For dimensions and material properties see Table II.1A. 2. Ext. a/W = Extended a/W; measured by compliance technique.

• 3.  $JIC = 0.239 \text{ lb-in/in}^2 (41.9 \text{ N-m/m}^2) - \text{based on extended a} (4).$ 

| Table II.9B | Precracked Beams, Tested       | by Go (4),  | Direct | Energy Method             |
|-------------|--------------------------------|-------------|--------|---------------------------|
|             | (4), W = 4.00 in $(102  mm)$   | ), B = 3.00 | in (76 | mm), $E_{\rm C} = 4.10$ x |
|             | 10 <sup>6</sup> psi (28.2 GPa) |             |        |                           |

| Fig. | Original | Ext.  | Avg.        | 50        | U            | GIC                   | Ave. GIC   |
|------|----------|-------|-------------|-----------|--------------|-----------------------|------------|
| No.  | No.      | a/W   | Ext.<br>a/W | in x 10-3 | lb-in<br>N-m | lb-in/in <sup>2</sup> | 1b-in/in2  |
| •    |          |       |             |           |              | 14 107 00-            | 14 117 11- |
| 157  | N9       | 0.490 | 0.490       | 6.00      | 3.13         | 0.458                 | 0.450      |
|      |          |       |             | 0.152     | 0.354        | 80.2                  | 80.2       |
| 158  | N1Ø      | 0.571 | 0.571       | 6.15      | 2.17         | 0.383                 | 0.383      |
|      |          |       |             | 0.156     | 0.245        | 67.1                  | 67.1       |
| 149  | N1       | 0.574 | 0.577       | 5.50      | 2.06         | 0.365                 | 0.318      |
|      |          |       |             | 0.140     | 0.233        | 63.9                  | 55.7       |
| 160  | N12      | 0.585 |             | 4.73      | 1.48         | 0.271                 |            |
|      |          |       |             | 0.120     | 0.167        | 47.5                  |            |
| 159  | N11      | 0.605 | 0.609       | 6.70      | 2.48         | 0.474                 | 0.411      |
|      |          |       |             | 0.170     | 0.280        | 83.0                  | 72.0       |
| 150  | N2       | 0.612 |             | 5.30      | 1.78         | 0.348                 |            |
|      |          |       |             | 0.135     | 0.201        | 61.0                  |            |
| 161  | N13      | 0.640 | 0.652       | 4.50      | 1.18         | 0.252                 | 0.323      |
|      |          |       |             | 0.114     | 0.133        | 44.1                  | 56.6       |
| 151  | N3       | 0.663 |             | 6.60      | 1.72         | 0.392                 |            |
|      |          |       |             | 0.168     | 0.194        | 68.7                  |            |
| 162  | N14      | 0.716 |             | 6.70      | 1.65         | 0.448                 |            |
|      |          |       |             | 0.170     | 0.186        | 78.5                  |            |
| 153  | N5       | 0.731 | 0.729       | 5.28      | 1.16         | 0.335                 | 0.405      |
|      |          |       |             | 0.134     | 0.131        | 58.7                  | 71.0       |
| 152  | N4       | 0.740 |             | 6.65      | 1.45         | 0.433                 |            |
|      |          |       |             | 0.169     | 0.164        | 75.9                  |            |

Notes: 1. For dimensions and material properties see Table II.4D. 2. Ext. a/W = Extended a/W; measured by compliance technique.

3.  $J_{IC} = 0.346 \text{ lb-in/in}^2 (60.6 \text{ N-m/m}^2) - \text{based on extended a}$ (4).

Table II.10A Precracked Beams, Tested by Rood (12), Jeng/Shah Method (9), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>C</sub> = 5.34 x 10<sup>6</sup> psi (36.8 6Pa)

| Fig. | Original | Pm   | CMODe               | ae/W  | Avg.  | KSIC      | GTC       | AVD. GTO           |
|------|----------|------|---------------------|-------|-------|-----------|-----------|--------------------|
| No.  | No.      | 16 : | $in \times 10^{-4}$ | •     | ae/W  | 1b-in-3/2 | 1b-in/in2 | 1b-in/in2          |
|      |          | N    | mm                  |       |       | kN-m-3/2  | N-m/m2    | N-m/m <sup>2</sup> |
| 179  | B9       | 905  | 6.55                | 0.290 |       | 812       | 0.123     |                    |
|      |          | 4030 | 0.0166              |       |       | 893       | 21.5      |                    |
| 209  | C7       | 865  | 6.25                | 0.290 |       | 776       | 0.113     |                    |
|      |          | 3850 | 0.0159              |       |       | 854       | 19.8      |                    |
| 165  | B1       | 870  | 6.25                | 0.290 |       | 780       | 0.114     |                    |
|      |          | 3870 | 0.0159              |       |       | 858       | 20.0      |                    |
| 183  | B11      | 960  | 8.20                | 0.320 | 0.321 | 935       | 0.164     | 0.137              |
|      |          | 4270 | 0.0208              |       |       | 1030      | 28.7      | 24.0               |
| 167  | B2       | 780  | 7.55                | 0.340 |       | 802       | 0.120     | - // 0             |
|      |          | 3470 | 0.0192              |       |       | 882       | 21.0      |                    |
| 199  | C2       | 780  | 7.50                | 0.340 |       | 802       | 0.120     |                    |
|      |          | 3470 | 0.0191              |       |       | 882       | 21.0      |                    |
| 181  | B10      | 910  | 9.00                | 0.350 |       | 961       | 0.173     |                    |
|      |          | 4050 | 0.0229              |       |       | 1060      | 30.3      |                    |
| 197  | C1       | 890  | 8.80                | 0.350 |       | 940       | 0.165     |                    |
|      |          | 3960 | 0.0224              |       |       | 1030      | 28.9      |                    |
| 201  | C3       | 460  | 12.6                | 0.540 |       | 823       | 0.127     |                    |
|      |          | 2050 | 0.0320              |       |       | 905       | 22.3      |                    |
| 203  | C4       | 425  | 12.2                | 0.540 |       | 761       | 0.108     |                    |
|      |          | 1890 | 0.0310              |       |       | 837       | 18.9      |                    |
| 185  | B14      | 480  | 15.5                | 0.560 | 0.560 | 912       | 0.156     | 0.145              |
|      |          | 2140 | 0.0394              |       |       | 1000      | 27.3      | 25.4               |
| 187  | B16      | 520  | 16.2                | 0.560 |       | 988       | 0.183     |                    |
|      |          | 2310 | 0.0411              |       |       | 1090      | 32.1      |                    |
| 171  | B4       | 490  | 17.8                | 0.580 |       | 990       | 0.184     |                    |
|      |          | 2180 | 0.0452              |       |       | 1090      | 32.2      |                    |
| 189  | B17      | 380  | 13.8                | 0.580 |       | 768       | 0.110     |                    |
|      |          | 1690 | 0.0351              |       |       | 845       | 19.3      |                    |
| 193  | B19      | 220  | 23.6                | 0.730 |       | 768       | 0.110     |                    |
|      |          | 979  | 0.0599              |       |       | 845       | 19.3      |                    |
| 191  | B18      | 190  | 21.9                | 0.740 |       | 694       | 0.0902    |                    |
| -    |          | 846  | 0.0556              |       |       | 763       | 15.8      |                    |
| 195  | B20      | 250  | 23.8                | 0.740 | 0.757 | 803       | 0.121     | 0.106              |
|      |          | 980  | 0.0605              |       |       | 883       | 21.2      | 18.6               |
| 205  | C5       | 165  | 24.1                | 0.770 |       | 697       | 0.0909    |                    |
|      |          | 735  | 0.0612              |       |       | 767       | 15.9      |                    |
| 207  | C6       | 190  | 27.2                | 0.770 |       | 802       | 0.120     |                    |
| ~ ~  |          | 846  | 0.0691              |       |       | 882       | 21.0      |                    |
| 217  | C11      | 160  | 28.4                | 0.790 |       | 752       | 0.106     |                    |
|      |          | 712  | 0.0721              |       |       | 827       | 18.6      |                    |

Note: For dimensions and material properties see Table II.1A.

| aure        | (<br>x          | 9), W<br>106 p      | = 4.00<br>si (21.                                     | in (102<br>2 GPa) | mm), 1                    | 3 = 3.00 in                                | n (76 mm),                                         | $E_c = 3.08$                                            |
|-------------|-----------------|---------------------|-------------------------------------------------------|-------------------|---------------------------|--------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| Fig.<br>No. | Original<br>No. | Pm<br>15 i<br>N n   | CMODe<br>in x 10 <sup>-</sup><br>nm x 10 <sup>-</sup> | ae/W<br>-4<br>-2  | Avg.<br>a <sub>e</sub> /W | K <sup>S</sup> IC<br>1b-in-3/2<br>kN-m-3/2 | GIC<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
| 59          | 1-A16           | 928                 | 6.30                                                  | 0.180             |                           | 607                                        | 0.120                                              |                                                         |
| 58          | 1-A15           | 4130<br>890         | 1.60                                                  | 0.190             | 0.187                     | 668<br>600                                 | 21.0<br>0.117                                      | 0. 187                                                  |
| 57          | 1-A14           | 3960<br>862<br>3840 | 1.63<br>6.20<br>1.57                                  | 0.190             |                           | 660<br>581<br>639                          | 20.5<br>0.110<br>19.3                              | 32.8                                                    |
| 55          | 1-A12           | 895                 | 6.90                                                  | 0.200             |                           | 621                                        | 0.125                                              |                                                         |
| 54          | 1-A11           | 3980<br>848<br>3770 | 1.75                                                  | 0.200             | 0.203                     | 683<br>589<br>648                          | 21.9<br>0.113                                      | 0.126                                                   |
| 53          | 1-A10           | 918<br>4090         | 7.50                                                  | 0.210             |                           | 656<br>722                                 | 0.140                                              |                                                         |
| 56          | 1-A13           | 752                 | 8.60                                                  | Ø. 270            | 0.270                     | 638                                        | 0.132                                              | 0.132                                                   |
|             |                 | 3350                | 2.18                                                  |                   |                           | 702                                        | 23.1                                               | 23.1                                                    |

Notes: 1. C/W = 0.78, for complete mix design see Table 2.2.

2. S = 15 in (381 mm), L = 16 in (406 mm), mg = 15.6 lb (7.08 Kg), f'\_C = 2920 psi (20.1 MPa)

|      | (<br>×   | 9), W<br>106 | = 4.00<br>psi (22.   | in (102<br>7 GPa) | 2 mm), 1 | B = 3.00 in | n (76 mm),         | E <sub>c</sub> = 3.30 |
|------|----------|--------------|----------------------|-------------------|----------|-------------|--------------------|-----------------------|
| Fig. | Original | Pm           | CMODe                | a <sub>e</sub> /W | Avg.     | KSIC        | GIC                | Ave. Str              |
| No.  | No.      | 16           | in x 10 <sup>-</sup> | -4                | ap/W     | 1b-in-3/2   | 1b-in/in2          | 1b-in/in2             |
|      |          | N            | nm x 10 <sup>-</sup> | -2                |          | kN-m-3/2    | N-m/m <sup>2</sup> | N-m/m <sup>2</sup>    |
| 70   | 2-A13    | 675          | 1.00                 | 0.340             | 0.340    | 694         | 0.146              | 0.146                 |
|      |          | 3000         | 0.254                |                   |          | 763         | 25.6               | 25.6                  |
| 68   | 2-A11    | 585          | 1.10                 | 0.380             |          | 670         | 0.136              |                       |
| _    |          | 2600         | 0.279                |                   |          | 737         | 23.8               |                       |
| 72   | 2-A15    | 548          | 1.10                 | 0.390             | 0.393    | 645         | 0.126              | 0.139                 |
| _    |          | 2440         | 0.279                |                   |          | 710         | 22.1               | 24.4                  |
| 71   | 2-A14    | 575          | 1.20                 | 0.400             |          | 695         | 0.147              |                       |
|      |          | 2560         | 0.305                |                   |          | 765         | 25.8               |                       |
| 69   | 2-A12    | 572          | 1.20                 | 0.400             |          | 692         | 0.145              |                       |
|      |          | 2550         | 0.305                |                   |          | 761         | 25.4               |                       |
| 73   | 2-A16    | 445          | 1.00                 | 0.420             | 0.420    | 568         | 0.0978             | 0.0978                |
|      |          | 1980         | 0.254                |                   |          | 625         | 17.1               | 17.1                  |
| 67   | 2-010    | 4912         | 1.40                 | 0 450             | 0 450    | 600         | 0.140              |                       |
|      |          | 2180         | 0.356                | 0.400             | 0.400    | 760         | 0.148              | 0.148                 |
|      |          |              | 0.000                |                   |          | /60         | 23.9               | 25.9                  |
| 84   | 3-813    | 338          | 16.0                 | 0.550             | 0 550    | 627         | 0 110              | 0.110                 |
|      |          | 1500         | 0.406                |                   | 01000    | 685         | 20 7               | 0.118                 |
|      |          |              |                      |                   |          | 000         | 20.7               | 10.9                  |
| 85   | 3-A14    | 270          | 16.0                 | 0.590             | 0.590    | 563         | 0.0961             | 0.0961                |
|      |          | 1200         | 0.406                |                   |          | 619         | 16.8               | 16.8                  |
|      |          |              |                      |                   |          |             |                    | -0.0                  |
| 87   | 3-A16    | 180          | 17.0                 | 0.660             | 0.660    | 475         | 0. 2685            | 0.0685                |
|      |          | 801          | 0.432                |                   |          | 523         | 12.0               | 12.0                  |
|      |          |              |                      |                   |          |             |                    |                       |
| 82   | 3-A11    | 155          | 24.0                 | 0.720             | 0.720    | 518         | 0.0814             | 0. 0814               |
|      |          | 690          | 0.610                |                   |          | 570         | 14.3               | 14.3                  |
| 81   | 3-A10    | 150          | 27.0                 | 0. 740            |          | 548         | 0 0000             |                       |
|      |          | 668          | 0.686                |                   |          | 603         | 15 9               |                       |
| 86   | 3-A15    | 157          | 31.0                 | 0.750             | 0.750    | 601         | 0 109              | 0 100                 |
|      |          | 699          | 0.788                |                   |          | 661         | 19 1               | 10.00                 |
| 83   | 3-A12    | 155          | 34.0                 | 0.760             |          | 622         | 0 117              | 19.0                  |
|      |          | 690          | 0.864                |                   |          | 684         | 20 5               |                       |
|      |          |              |                      |                   |          | 004         |                    |                       |

Table II.10C Precracked Beams, Tested by Fartash (11), Jeng/Shah Method

Notes: 1. C/W = 0.78, for complete mix design see Table 2.2.

2. S = 15 in (381 mm), L = 16 in (406 mm), mg = 15.6 1b (7.08 Kg)

## Table II.10C (Continued)

| з. | For | beams | no. | 2-A10 | to | 2-416, | f'c | = | 3340 | psi | (23.0 | MPa) |
|----|-----|-------|-----|-------|----|--------|-----|---|------|-----|-------|------|
| 4. | for | beams | no. | 3-A10 | to | 3-A16, | f'c | = | 3330 | psi | (23.0 | MPa) |

| Table II.10D | Precracked Beams, 1 | ested by Go   | (4), Jeng/Shah | Method (9),              |
|--------------|---------------------|---------------|----------------|--------------------------|
|              | W = 4.00 in (102 mm | ), $B = 3.00$ | in (76 mm), Ec | = 4.10 × 10 <sup>6</sup> |
|              | psi (28.2 GPa)      |               |                |                          |

|   | Fig. | Original | Pm   | CMODe    | ae/W  | Avg.  | KSIC      | GIC                   | Avg. Gic           |
|---|------|----------|------|----------|-------|-------|-----------|-----------------------|--------------------|
|   | No.  | No.      | 16   | in x 10- | 3     | ae/W  | 1b-in-3/2 | lb-in/in <sup>2</sup> | lb-in/in2          |
|   |      |          | N    | mm       |       |       | kN-m-3/2  | N-m/m <sup>2</sup>    | N-m/m <sup>2</sup> |
|   | 144  | P7       | 1095 | 0.710    | 0.220 |       | 806       | 0.159                 |                    |
| • |      |          | 4870 | 0.0180   |       |       | 887       | 27.9                  |                    |
|   | 145  | P8       | 1090 | 0.725    | 0.220 | 0.223 | 803       | 0.157                 | 0.178              |
|   |      |          | 4850 | 0.0184   |       |       | 883       | 27.5                  | 31.2               |
|   | 140  | P2       | 1250 | 0.855    | 0.230 |       | 947       | 0.219                 |                    |
|   |      |          | 5560 | 0.0217   |       |       | 1040      | 38.4                  |                    |
|   | 141  | P3       | 765  | 1.19     | 0.380 |       | 876       | 0.187                 |                    |
|   |      |          | 3400 | 0.0302   |       |       | 964       | 32.8                  |                    |
|   | 147  | P10      | 795  | 1.35     | 0.400 | 0.393 | 961       | 0.225                 | 0.223              |
|   |      |          | 3540 | 0.0343   |       |       | 1060      | 39.4                  | 39.1               |
|   | 142  | P4       | 800  | 1.34     | 0.400 |       | 967       | 0.228                 |                    |
|   |      |          | 3560 | 0.0340   |       |       | 1060      | 39.9                  |                    |
|   | 146  | P9       | 800  | 2,71     | 0.530 | 0.530 | 1390      | 0.471                 | 0 471              |
|   |      |          | 3560 | 0.0688   |       |       | 1530      | 82.5                  | 82.5               |
|   | 143  | P5       | 505  | 1.96     | 0.550 | 0.560 | 931       | 0 211                 | 0 194              |
|   |      |          | 2250 | 0.0498   |       |       | 1020      | 37 0                  | 34 0               |
|   | 148  | P11      | 435  | 1.91     | 0.570 |       | 852       | 0.177                 | 54.0               |
|   |      |          | 1940 | 0.0485   |       |       | 937       | 31.0                  |                    |
|   |      |          |      |          |       |       | ~ ~ ~ /   |                       |                    |

Note: For dimensions and material properties see Table II.4D.

Table II.10E Precracked Beams, Tested by Huang (8), Jenq/Shah Method (9), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C = 3.21$  x 10<sup>6</sup> psi (22.1 GPa) and  $E_C = 4.93$  x 10<sup>6</sup> psi (34.0 GPa)

## $E_{c} = 3.21 \times 10^{6} \text{ psi} (22.1 \text{ GPa})$

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | CMOD <sub>e</sub><br>in x 10 <sup>-</sup> | a <sub>e</sub> /W<br>3 | A∨g.<br>ae/W  | K <sup>S</sup> IC<br>1b-in <sup>-3/2</sup><br>kN-m <sup>-3/2</sup> | GIC<br>1b-in/in <sup>2</sup> | Avg. GIC<br>15-in/in <sup>2</sup> |
|-------------|-----------------|---------------|-------------------------------------------|------------------------|---------------|--------------------------------------------------------------------|------------------------------|-----------------------------------|
|             |                 |               |                                           |                        |               |                                                                    | 14 107 10-                   |                                   |
| 1           | S1S3-1          | 820           | 0.475                                     | 0.160                  | 0.160         | 504                                                                | 0.0793                       | 0.0793                            |
|             |                 | 3650          | 0.0121                                    |                        |               | 554                                                                | 13.8                         | 13.8                              |
| 2           | S1S3-2          | 565           | 1.23                                      | 0.330                  | 0.330         | 565                                                                | 0.100                        | 0.100                             |
|             |                 | 2510          | 0.0312                                    |                        |               | 662                                                                | 17.5                         | 17.5                              |
| 4           | 5153-4          | 1.80          | R. 650                                    | 0.500                  | 0 500         | 207                                                                | 0.0050                       | 0.0055                            |
|             |                 | 801           | 0.0165                                    | 0.000                  | 0.000         | 316                                                                | 4.56                         | 4.56                              |
| 3           | S1S3-3          | 248           | 2 25                                      | 0 650                  | 0 650         | 679                                                                | 0.105                        | 0.407                             |
| -           |                 | 1100          | 0.0577                                    | 0.000                  | 0.030         | 695                                                                | 21.9                         | 21.9                              |
|             |                 |               |                                           |                        |               |                                                                    |                              |                                   |
|             | Éc = 4          | 4.93 x        | 10 <sup>6</sup> psi                       | (34.0                  | GPa)          |                                                                    |                              |                                   |
| 26          | S2F3-1          | 1020          | 0.490                                     | 0.200                  | 0.210         | 708                                                                | 0.102                        | 0 119                             |
|             |                 | 4540          | 0.0124                                    |                        |               | 779                                                                | 17.9                         | 20. 8                             |
| 23          | S2S3-1          | 1110          | 0.610                                     | 0.220                  |               | 817                                                                | Ø. 136                       |                                   |
|             |                 | 4940          | 0.0155                                    |                        |               | 899                                                                | 23.8                         |                                   |
| 27          | 52F3-2          | 432           | 0.84                                      | 0.460                  | <b>A.</b> 465 | 615                                                                | 0 0768                       | 0 0071                            |
|             |                 | 1920          | 0.0213                                    |                        |               | 677                                                                | 13.5                         | 14 6                              |
| 24          | 5253-2          | 453           | 0.95                                      | 0.470                  |               | 663                                                                | 0.0893                       | 14.0                              |
|             |                 | 2020          | 0.0241                                    |                        |               | 729                                                                | 15.6                         |                                   |
| 25          | 5253-3          | 520           | 1.61                                      | 0.540                  | 0.550         | 931                                                                | 0 175                        | 0 167                             |
|             |                 | 2310          | 0.0409                                    |                        |               | 1020                                                               | 30 4                         | 29 7                              |
| 28          | 52F3-3          | 464           | 1.59                                      | 0.560                  |               | AA2                                                                | 0 159                        | 27.3                              |
|             |                 | 2060          | 0.0404                                    |                        |               | 970                                                                | 27 7                         |                                   |

- Notes: 1. For beams no. S1S3, W/C = 0.78, for complete mix design see Table 2.1,  $f'_{C} = 3170$  psi (21.8 MPa)
  - 2. For beams no. S2S3 and S2F3, W/C = 0.50, for complete mix design see Table 2.1, f'c = 7480 psi (21.8 MPa)
  - 3. For all beams, S = 15 in (381 mm), L = 16.3 in (413 mm)

Table II.10F Precracked Beams, Tested by Huang (8), Jenq/Shah Method (9), W = 8.00 in (203 mm), B = 4 in (102 mm), E<sub>C</sub> = 3.41 x  $10^6$  psi (23.5 GPa) and E<sub>C</sub> = 5.05 x  $10^6$  psi (34.8 GPa)

## $E_{\rm C} = 3.41 \times 10^6 \text{ psi} (23.5 \text{ GPa})$

| Fig.<br>No. | Original<br>No.  | Pm<br>15 in<br>N | CMODe<br>n x 10-3<br>mm | a <sub>e</sub> ∕₩ | Avg.<br>a <sub>e</sub> /W | K <sup>S</sup> IC<br>1b-in-3/2<br>N-m-3/2 | GIC<br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. G <sub>IC</sub><br>1b-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|------------------|------------------|-------------------------|-------------------|---------------------------|-------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
| 10          | L1S3-1           | 3080             | 0.650                   | 0.0650            | 0.068                     | 5 584                                     | 0.0999                                             | 0.0928                                                              |
|             |                  | 13/10            | 0.0165                  |                   |                           | 642                                       | 17.5                                               | 16.3                                                                |
| 13          | L1F3-1           | 2780             | 0.650                   | 0.0720            |                           | 541                                       | 0.0857                                             |                                                                     |
|             |                  | 12370            | 0.0165                  |                   |                           | 595                                       | 15.0                                               |                                                                     |
| 11          | L1S3-2           | 1310             | 2.05                    | 0.350             | 0.350                     | 587                                       | 0.101                                              | 0.0988                                                              |
|             |                  | 5830             | 0.0521                  |                   |                           | 646                                       | 17.7                                               | 17.3                                                                |
| 14          | L1F3-2           | 1280             | 1.86                    | 0.350             |                           | 574                                       | 0.0965                                             |                                                                     |
|             |                  | 5700             | 0.0472                  |                   |                           | 631                                       | 16.9                                               |                                                                     |
| 15          | L1F3-3           | 1100             | 1.98                    | 0.380             | 0. 380                    | 536                                       | 0 0844                                             | 0 0844                                                              |
|             |                  | 4910             | 0.0503                  |                   |                           | 590                                       | 14.8                                               | 14.8                                                                |
| 12          | L193-3           | 460              | 4.52                    | 0.670             | 0.670                     | 535                                       | 0. 0839                                            | 0.0839                                                              |
|             |                  | 2050             | 0.115                   |                   |                           | 589                                       | 14.7                                               | 14.7                                                                |
|             | E <sub>c</sub> = | 5.05 x           | 106 psi                 | (34.8 6           | SPa)                      |                                           |                                                    |                                                                     |
| 37          | L2E3-1           | 2550             | 1.45                    | 0 230             | 0 970                     | 000                                       | 0 1 7 7                                            |                                                                     |
|             |                  | 11350            | 0.0368                  | 01200             | 0.230                     | 902                                       | 23.3                                               | 23.3                                                                |
| 35          | L2S3-1           | 2300             | 1.75                    | 0.290             | 0 290                     | 975                                       | A 150                                              | 0.450                                                               |
|             |                  | 10240            | 0.0445                  |                   | 01230                     | 963                                       | 26.6                                               | 26.6                                                                |
| 38          | L2F3-2           | 880              | 3.44                    | 0.590             | 0.590                     | 779                                       | 0 120                                              | a 19a                                                               |
|             |                  | 3900             | 0.0874                  |                   |                           | 857                                       | 21.0                                               | 21.0                                                                |
| 36          | L253-2           | 900              | 3.39                    | 0.760             | 0.760                     | 1533                                      | 0 465                                              | 0 465                                                               |
|             |                  | 4010             | 0.0861                  |                   |                           | 1710                                      | 81.5                                               | 81.5                                                                |
| 39          | L2F3-3           | 240              | 3.90                    | 0.770             | 0.770                     | 1010                                      | 0 203                                              | 0 907                                                               |
|             |                  | 1070             | 0.0991                  |                   |                           | 1110                                      | 35.6                                               | 35 6                                                                |
|             |                  |                  |                         |                   |                           |                                           | 00.0                                               |                                                                     |

Notes: 1. For beams no. L1S3 and L1F3, W/C = 0.78, for complete mix design see Table 2.1,  $f^{*}c$  = 3570 psi (24.6 MPa)

2. For beams no. L2S3 and L2F3, W/C = 0.50, for complete mix design see Table 2.1, f'\_c = 7980 psi (52.9 MPa)

3. For all beams, S = 24 (610 mm), L = 25 in (635 mm)

Table II.11A Precracked Beams, Tested by Rood (12), Go Method (4), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C = 5.34 \times 10^{6}$  csi (36.8 GPa)

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg.<br>Ext.<br>a/W | K <sup>G</sup> IC<br>1b-in <sup>-</sup> 3/2<br>kN-m <sup>-</sup> 3/2 | GIC<br>15-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|-------------|---------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 181         | B10             | 905           | 0. 400      |                     | 1109                                                                 | 0 230                                              |                                                         |
|             |                 | 40.30         |             |                     | 1220                                                                 | 40 7                                               |                                                         |
| 183         | B11             | 955           | 0.430       |                     | 1253                                                                 | 0 294                                              |                                                         |
|             |                 | 4250          |             |                     | 1390                                                                 | 51.5                                               |                                                         |
| 179         | B9              | 915           | 0.450       | 0.442               | 1268                                                                 | 0 201                                              | 0 277                                                   |
|             |                 | 4070          |             |                     | 1400                                                                 | 52 7                                               | 47 0                                                    |
| 199         | C2              | 770           | 0.450       |                     | 1967                                                                 | 0.213                                              | 47.0                                                    |
|             |                 | 3430          |             |                     | 1170                                                                 | 37.3                                               |                                                         |
| 197         | C1              | 890           | 0.480       |                     | 1325                                                                 | 0.329                                              |                                                         |
|             |                 | 3960          |             |                     | 1460                                                                 | 57.6                                               |                                                         |
| 201         | 63              | 470           | 0 550       |                     | 007                                                                  |                                                    |                                                         |
|             | 00              | 2000          | Ø. 36Ø      |                     | 893                                                                  | 0.149                                              |                                                         |
| 185         | B14             | 100           | 0 500       |                     | 983                                                                  | cb.1                                               |                                                         |
| 100         | 514             | 2140          | w. Jow      |                     | 1000                                                                 | 0.182                                              |                                                         |
| 203         | C4              | 445           | a 50a       | 0 506               | 1080                                                                 | 31.9                                               |                                                         |
| 200         | 01              | 1900          | 8.308       | 0.000               | 003                                                                  | 0.147                                              | 0.168                                                   |
| 187         | B16             | 525           | 0 500       |                     | 3/4                                                                  | 20.8                                               | 29.4                                                    |
|             | 210             | 2740          | 0. 330      |                     | 1088                                                                 | 0.222                                              |                                                         |
| 189         | B17             | 200           | 0 620       |                     | 1190                                                                 | 38.9                                               |                                                         |
| 105         | 211             | 1740          | 0.020       |                     | OFF                                                                  | 2.141                                              |                                                         |
|             |                 | 1/40          |             |                     | 500                                                                  | 24.7                                               |                                                         |
| 191         | B18             | 225           | 0.770       |                     | 965                                                                  | 0.174                                              |                                                         |
|             |                 | 1000          |             |                     | 1060                                                                 | 30.5                                               |                                                         |
| 207         | C6              | 190           | 0.780       | 0.790               | 845                                                                  | 0.134                                              | 0.186                                                   |
|             |                 | 846           |             |                     | 930                                                                  | 23.5                                               | 32.6                                                    |
| 193         | B19             | 190           | 0.790       |                     | 893                                                                  | 0.149                                              |                                                         |
|             |                 | 846           |             |                     | 982                                                                  | 26.1                                               |                                                         |
| 195         | B2Ø             | 550           | 0.820       |                     | 1240                                                                 | 0.288                                              |                                                         |
|             |                 | 979           |             |                     | 1360                                                                 | 50.5                                               |                                                         |

Notes: 1. For dimensions and material properties see Table II.1A.

2. Ext.  $a/W \approx$  Extended a/W; measured by compliance technique.

| Table II.11B | Precracked Beams, Tested by Fartash (11), Go Method (4),           | 4), W |
|--------------|--------------------------------------------------------------------|-------|
|              | = 4.00 in (102 mm), $B = 3.00$ in (76 mm), $E_C = 3.08 \times 106$ |       |
|              | psi (21.2 GPa)                                                     |       |

| Fig. | Original | Pm      | Ext.  | A∨g.  | KGIC                  | GIC                 | Avg. GIC                                    |
|------|----------|---------|-------|-------|-----------------------|---------------------|---------------------------------------------|
| No.  | No.      | 1Б<br>N | a/W   | a/W   | 16-in-3/2<br>kN-m-3/2 | lb-in/in²<br>N-m/m² | lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
| 57   | 1-014    | 85.2    | 0 270 |       | 550                   | 0 145               |                                             |
|      | 1-414    | 3840    | 0.230 |       | 735                   | 25 4                |                                             |
| 53   | 1-A10    | 918     | 0.245 | 0.243 | 726                   | 0.171               | 0.164                                       |
|      |          | 4090    |       |       | 799                   | 30.0                | 28.7                                        |
| 59   | 1-A16    | 928     | 0.245 |       | 734                   | 0.175               |                                             |
|      |          | 4130    |       |       | 807                   | 30.7                |                                             |
| 55   | 1-A12    | 895     | 0.256 |       | 794                   | 0.205               |                                             |
|      |          | 3980    |       |       | 873                   | 35.9                |                                             |
| 58   | 1-A15    | 890     | 0.264 | 0.263 | 743                   | 0.179               | 0.184                                       |
|      |          | 3960    |       |       | 817                   | 31.4                | 32.2                                        |
| 54   | 1-A11    | 848     | 0.269 |       | 718                   | 0.167               |                                             |
|      |          | 3770    |       |       | 873                   | 35.9                |                                             |
| 56   | 1-A13    | 752     | 0.325 | 0.325 | 742                   | 0.179               | 0.179                                       |
|      |          | 3350    |       |       | 816                   | 31.4                | 31.4                                        |

Notes: 1. For dimensions and material properties see Table II.10B.

2. Ext. a/W = (a/W) compliance - 0.14

Table II.11C Precracked Beams, Tested by Fartash (11), Go Method (4), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C$  = 3.08 x 106 psi (21.2 GPa)

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg.<br>a/W   | $K^{G}IC$<br>1b-in-3/2 | GIC<br>1b-in/in <sup>2</sup> | Avg. GIC<br>15-in/in <sup>2</sup> |
|-------------|-----------------|---------------|-------------|---------------|------------------------|------------------------------|-----------------------------------|
| 70          | 2-017           | 675           | 0.305       | 0.405         |                        |                              |                                   |
| ~~          | E-HTO           | 3000          | 0.393       | 0.403         | 805                    | 36.8                         | v. 193<br>33.8                    |
| 68          | 2-A11           | 585<br>2600   | 0.414       |               | 735<br>809             | 0.175<br>30.7                |                                   |
| 71          | 2-A14           | 575<br>2560   | 0.423       | 0.423         | 740<br>814             | 0.178<br>31.2                | 0.170                             |
| 72          | 2-A15           | 548<br>2440   | 0.423       |               | 705<br>776             | 0.161<br>28.2                | 25.0                              |
| 69          | 2-A12           | 572<br>2550   | 0.434       | <b>0.</b> 434 | 759<br>835             | 0.187<br>32.8                | 0.187<br>32.8                     |
| 73          | 2-A16           | 445<br>980    | 0.453       | 0.453         | 766<br>843             | 0.190<br>33.3                | 0.190<br>33.3                     |
| 67          | 2-A10           | 490<br>2180   | 0.471       | 0.471         | 720<br>792             | Ø. 168<br>29. 4              | Ø.168<br>29.4                     |

Notes: 1. For dimensions and material properties see Table II.10C.

2. Ext. a/W = (a/W) compliance - 0.14

| Table II.11D | Precracked Beams, | Tested by Go (4), Go | Method (4),                  | W =     |
|--------------|-------------------|----------------------|------------------------------|---------|
|              | 4.00 in (102 mm), | B = 3.00 in (76 mm), | $E_{\rm C} = 4.10 \ {\rm x}$ | 106 psi |
|              | (28.2 GPa)        |                      |                              |         |

| Fig. | Original | Pm   | Ext.  | Avg.  | KGIC      | GIC                   | Avg. GIC              |
|------|----------|------|-------|-------|-----------|-----------------------|-----------------------|
| No.  | No.      | 15   | a/W   | Ext.  | 1b-in-3/2 | 1b-in/in <sup>2</sup> | lb-in/in <sup>2</sup> |
|      |          | N    |       | a/W   | kN-m-3/2  | N-m/m <sup>2</sup>    | N-m/m <sup>2</sup>    |
| 145  | 28       | 1080 | 0.140 |       | 624       | 0.0949                |                       |
|      |          | 4810 |       |       | 686       | 16.6                  |                       |
| 140  | P2       | 1250 | 0.160 | 0.153 | 769       | 0.144                 | 0.116                 |
|      |          | 5560 |       |       | 846       | 25.2                  | 20.3                  |
| 144  | P7       | 1080 | 0.160 |       | 664       | 0.108                 |                       |
|      |          | 4810 |       |       | 730       | 18.9                  |                       |
| 141  | P3       | 768  | 0.320 |       | 748       | 0.136                 |                       |
|      |          | 3420 |       |       | 823       | 23.8                  |                       |
| 146  | P9       | 810  | 0.320 | 0.335 | 789       | 0.152                 | 0.158                 |
|      |          | 3600 |       |       | 867       | 26.6                  | 27.7                  |
| 142  | P4       | 800  | 0.350 |       | 845       | 0.174                 |                       |
|      |          | 3560 |       |       | 930       | 30.5                  |                       |
| 147  | P10      | 790  | 0.350 |       | 834       | 0.170                 |                       |
|      |          | 3520 |       |       | 917       | 29.8                  |                       |
| 143  | P5       | 490  | 0.510 | 0.510 | 803       | 0.157                 | 0.121                 |
|      |          | 2180 |       |       | 883       | 27.5                  | 21.2                  |
| 148  | P11      | 360  | 0.510 |       | 590       | 0.0850                |                       |
|      |          | 1600 |       | ,     | 649       | 14.9                  |                       |

Notes. 1. For dimensions and material properties see Table II.4D.

2. Ext. a/W = (a/W) compliance - 0.14
Table II.11E Precracked Beams, Tested by Huang (8), Go Method (4), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C = 3.21 \times 10^6$  psi (22.1 GPa) and  $E_C = 4.93 \times 10^6$  psi (34.0 GPa)

## $E_c = 4.93 \times 10^6$ psi (34.0 GPa)

| Fig.<br>No. | Original<br>No.  | Pm<br>15<br>N        | Ext.<br>a/W         | Avg.<br>a/W | K <sup>G</sup> IC<br>1b-in <sup>-3/2</sup><br>kN-m <sup>-3/2</sup> | GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in2<br>N-m/m2 |
|-------------|------------------|----------------------|---------------------|-------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------|
| 1           | 5153-1           | 820<br>3650          | 0. 135              | 0.135       | 466<br>513                                                         | 0.0676<br>11.8                                     | 0.0676<br>11.8                  |
| 2           | S1S3-2           | 565<br>2510          | 0.360               | 0.360       | 613<br>674                                                         | 0.117<br>20.5                                      | 0.117<br>20.5                   |
| 3           | 5153-3           | 248<br>1100          | 0.597               | 0.597       | 530<br>583                                                         | 0.0874<br>15.3                                     | 0.0874<br>15.3                  |
|             | E <sub>C</sub> = | 4.93 x               | 10 <sup>6</sup> psi | (34.0 0     | iPa)                                                               |                                                    |                                 |
| 23          | 5253-1           | 1110<br>4940         | 0.123               | 0. 123      | 606<br>667                                                         | 0.0744<br>13.0                                     | 0.0744<br>13.0                  |
| 26          | 52F3-1           | 1 <i>020</i><br>4540 | 0.166               | 0.166       | 639<br>703                                                         | 0.0829<br>14.5                                     | 0.0829                          |
| 27          | 52F3-2           | 432<br>1920          | 0.329               | 0.342       | 431<br>474                                                         | 0.0377                                             | 0.0426                          |
| 24          | \$2\$3-2         | 453<br>2020          | 0.354               |             | 484<br>532                                                         | 0.0475<br>8.32                                     | /. 40                           |
| 28          | 52F3-3           | 464<br>2060          | <b>0.</b> 429       | 0.435       | 607<br>668                                                         | 0.0747                                             | 0.0874                          |
| 25          | 5253-3           | 520<br>2310          | 0.441               |             | 703<br>773                                                         | 0.100                                              | 13.3                            |

Notes: 1. For beams no. S1S3, W/C = 0.78, for complete mix design see Table 2.1,  $f'_{\rm C}$  = 3170 psi (21.8 MPa)

2. For beams no. S2F3 and S2S3, W/C = 0.50, for complete mix design see Table 2.1, f'c = 7480 psi (51.5 MPa)

3. For all beams, S = 15 in (381 mm), L = 16.3 in (413 mm)

Table II.11F. Precracked Beams, Tested by Huang (8), Go Method (4), W = 8.00 in (203 mm), B = 4.00 in (102 mm),  $E_c$  = 3.41 x 10<sup>5</sup> psi (23.5 GPa) and  $E_c$  = 5.05 x 10<sup>5</sup> psi (22.1 GPa)

 $E_c = 3.41 \times 10^6 \text{ psi} (23.5 \text{ GPa})$ 

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg.<br>a/W | K <sup>G</sup> IC<br>1b-in <sup>-3/2</sup><br>kN-m <sup>-3/2</sup> | GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|-------------|-------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 13          | L1F3-1          | 2780<br>12400 | 0.085       | 0.085       | 755<br>831                                                         | 0.167<br>29.3                                      | 0.167<br>29.3                                           |
| 10          | L153-1          | 3080<br>1370  | 0.123       | 0.123       | 951<br>1050                                                        | 0.265<br>46.4                                      | 0.265<br>46.4                                           |
| 14          | L1F3-2          | 1280<br>5700  | 0.394       |             | 861<br>947                                                         | 0.218<br>38.2                                      |                                                         |
| 11          | L153-2          | 1310<br>5830  | 0.401       | 0.404       | 898<br>988                                                         | 0.237                                              | 0.212<br>37.1                                           |
| 15          | L1F3-3          | 1104<br>4910  | 0.416       |             | 789<br>867                                                         | 0.182<br>31.9                                      |                                                         |
| 12          | L153-3          | 460<br>2050   | 0.641       | 0.641       | 643<br>707                                                         | 0.121<br>21.2                                      | 0.121<br>21.2                                           |

 $E_{\rm C} = 5.05 \times 10^6 \text{ psi} (22.1 \text{ GPa})$ 

| 37 | L2F3-1 | 2550<br>11340 | 0.298 | 0.292 | 1321<br>1450 | 0.345<br>60.4 | 0.345<br>60.4 |
|----|--------|---------------|-------|-------|--------------|---------------|---------------|
| 35 | L253-1 | 2300<br>10200 | 0.391 | 0,391 | 1535<br>1690 | 0.467<br>81.8 | 0.467<br>81.8 |
| 36 | L253-2 | 910<br>4050   | 0.601 | 0.601 | 1112<br>1220 | 0.245<br>42.9 | 0.237<br>41.5 |
| 38 | L2F3-2 | 880<br>3920   | 0.601 |       | 1075<br>1183 | Ø.229<br>40.1 |               |

Notes. 1. For beams no. L1F3 and L1S3, W/C = 0.78, for complete mix design see Table 2.1, f'c = 3570 psi (24.6 MPa)

2. For beams no. L2F3 and L2S3, W/C = 0.50, for complete mix design see Table 2.1, f'c = 7680 psi (52.9 MPa)

3. For all beams, S = 24 in (610 mm), L = 25 in (635 mm)

Table II.12A Precracked Beams, Tested by Fartash (11), K<sub>IC</sub> Method (4, 8), W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C$  = 4.63 x 10<sup>6</sup> psi (31.9 GPa)

| Fig. | Original | Pm   | Ext.  | Avg. Ext. | KIC       | GIC                | Avg. Grc           |
|------|----------|------|-------|-----------|-----------|--------------------|--------------------|
| No.  | No.      | 16   | a/W   | a/W       | 1b-in-3/2 | lb-in/in2          | lb-in/in2          |
|      |          | N    |       |           | kN-m-3/2  | N-m/m <sup>2</sup> | N-m/m <sup>2</sup> |
| 97   | 1-B12    | 1520 | 0.234 | 0,234     | 253       | 0.0138             | 0.0144             |
|      |          | 6740 |       |           | 278       | 2.42               | 2.52               |
| 98   | 1-B13    | 1580 | 0.234 |           | 263       | 0.0149             |                    |
|      |          | 7030 |       |           | 289       | 2.61               |                    |
| 95   | 1-B1Ø    | 1710 | 0.241 | 0,241     | 459       | 0.0455             | 0.0403             |
|      |          | 7610 |       |           | 505       | 7.97               | 7.05               |
| 100  | 1-B15    | 1470 | 0.241 |           | 403       | 0.0351             |                    |
|      |          | 6680 |       |           | 443       | 6.15               |                    |
| 96   | 1-B11    | 1565 | 0.242 |           | 420       | 0.0381             |                    |
|      |          | 6960 |       |           | 462       | 6.68               |                    |
| 99   | 1-B14    | 1610 | 0.242 | 0.242     | 447       | 0.0432             | 0.0402             |
|      |          | 7160 |       |           | 492       | 7.57               | 7.04               |
| 101  | 1-B16    | 1540 | 0.242 |           | 426       | 0.0392             |                    |
|      |          | 6830 |       |           | 469       | 6.87               |                    |

Notes: 1. W/C = 0.50, for complete mix design see Table 2.2.

2. S = 15 in (381 mm), L = 16 in (406 mm),  $f'_{C} = 6605$  psi (45.5 MPa)

3. Ext. a/W = (a/W) compliance - 0.14

| Table II.12B | 3 Precracked Beams, Tested by Fartash (11), KIC Me | thod (4,   |
|--------------|----------------------------------------------------|------------|
|              | 8), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E   | c = 4.65 x |
|              | 10 <sup>6</sup> psi (32.0 GPa)                     |            |

| Fig. | Original<br>No. | Pm<br>լի     | Ext.  | Avg. Ext. | KIC          | GIC                | Avg. GIC           |
|------|-----------------|--------------|-------|-----------|--------------|--------------------|--------------------|
|      | 1101            | N            | u, w  |           | kN-m-3/2     | N-m/m <sup>2</sup> | N-m/m <sup>2</sup> |
| 111  | 2-B12           | 1090<br>4850 | 0.412 | 0.412     | 1190<br>1310 | 0.305<br>53.4      | 0.305<br>54.3      |
| 114  | 2-B15           | 820          | 0.430 | 0.401     | 957          | 0.197              | 0.202              |
|      |                 | 3650         |       |           | 1050         | 34.5               | 35.4               |
| 115  | 2-B16           | 840          | 0.431 |           | 980          | 0.207              |                    |
|      |                 | 3740         |       |           | 1080         | 36.3               |                    |
| 112  | 2-B13           | 940          | 0.437 | 0.438     | 1100         | 0.259              | 0.256              |
|      |                 | 4180         |       |           | 1210         | 45.4               | 44.9               |
| 109  | 2-B10           | 930          | 0.438 |           | 1090         | 0.253              |                    |
|      |                 | 4140         |       |           | 1190         | 44.3               |                    |
| 113  | 2-B14           | 920          | 0.453 | 0.453     | 1120         | 0.272              | 0.272              |
|      |                 | 4090         |       |           | 1240         | 47.7               | 47.7               |
| 110  | 2-B11           | 860          | 0.464 | 0.464     | 1070         | 0.245              | 0.245              |
|      |                 | 3830         |       |           | 1170         | 42.9               | 42.9               |

Note: For dimensions and material properties see Table II.6B.

Table II.12C Precracked Beams, Tested by Fartash (9), KIC Method (4, 8) , W = 4.00 in (102 mm), B = 3.00 in (76 mm),  $E_C$  = 4.42 x 10<sup>6</sup> psi (30.5 MPa)

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg. Ext.<br>a/W | KIC<br>1b-in <sup>-</sup> 3/2<br>kN-m <sup>-</sup> 3/2 | GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|-------------|------------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 127         | 3-B16           | 450           | 0.601       | 0.501            | 792                                                    | 9-142                                              | 0, 118                                                  |
|             |                 | 2050          |             |                  | 871                                                    | 24.9                                               | 20.7                                                    |
| 125         | 3-B14           | 420           | 0.619       |                  | 647                                                    | 0.0947                                             |                                                         |
|             |                 | 1870          |             |                  | 712                                                    | 16.6                                               |                                                         |
| 126         | 3-B15           | 380           | 0.627       | 0.628            | 697                                                    | 0.110                                              | 0.104                                                   |
|             |                 | 1700          |             |                  | 767                                                    | 19.3                                               | 18.2                                                    |
| 123         | 3-B12           | 360           | 0.628       |                  | 660                                                    | 0.0986                                             |                                                         |
|             |                 | 1500          |             |                  | 726                                                    | 17.3                                               |                                                         |

Notes: 1.  $f_{c}^{*} = 5020 \text{ psi} (41.5 \text{ MPa})$ 

2. For dimensions and material properties see Table II.12A.

Table II.12D Precracked Beams, Tested by Huang (8), K<sub>IC</sub> Method (4, 8), W = 4.00 in (102 mm), B = 3.00 in (76 mm), E<sub>c</sub> = 3.39 x 10<sup>6</sup> psi (23.4 GPa) and E<sub>c</sub> = 5.14 x 10<sup>6</sup> psi (35.4 GPa)

 $E_c = 3.39 \times 10^6 \text{ psi}$  (23.4 GPa)

| Fig.<br>No. | Original<br>No. | Pm<br>15<br>N | Ext.<br>a/W | Avg.<br>Ext.<br>a/W | KIC<br>1b-in <sup>-3/2</sup><br>kN-m <sup>-3/2</sup> | GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> | Avg. GIC<br>lb-in/in <sup>2</sup><br>N-m/m <sup>2</sup> |
|-------------|-----------------|---------------|-------------|---------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 5           | S1S4-1          | 1210<br>5380  | 0.173       | 0.173               | 174<br>192                                           | 0.0895<br>1.57                                     | 0.0895<br>1.57                                          |
| 6           | S1S4-2          | 1000<br>4450  | 0.298       | 0.298               | 200<br>220                                           | 0.0118<br>2.07                                     | 0.0118<br>2.07                                          |
| 7           | S1S4-3          | 880<br>3920   | 0.339       | 0.339               | 197<br>217                                           | 0.0114<br>2.00                                     | 0.0114<br>2.00                                          |
| 8           | S1S4-5          | 255<br>1140   | 0.654       | 0.0654              | 180<br>198                                           | 0.00956<br>1.67                                    | 0.00956<br>1.67                                         |

 $E_{\rm C} = 5.14 \times 10^6 \text{ psi} (35.4 \text{ GPa})$ 

| 29 | S2S4-1 | 1740 | 0.110 | 0.123 | 223 | 0.00965 | 0.00965 |
|----|--------|------|-------|-------|-----|---------|---------|
|    |        | 7740 |       |       | 245 | 1.69    | 1.69    |
| 32 | S2F4-1 | 1740 | 0.135 |       | 223 | 0.00965 |         |
|    |        | 7740 |       |       | 245 | 1.69    |         |
|    |        |      |       |       |     |         |         |
| 30 | 5254-2 | 1190 | 0.329 | 0.339 | 266 | 0.0137  | 0.0130  |
|    |        | 5280 |       |       | 292 | 2.40    | 2.28    |
| 33 | S2F4-2 | 1040 | 0.348 |       | 251 | 0,0122  |         |
|    |        | 4630 |       |       | 276 | 2.14    |         |
|    |        |      |       |       |     |         |         |
| 31 | S2S4-3 | 1020 | 0.381 | 0.383 | 261 | 0.0133  | 0.0108  |
|    |        | 4540 |       |       | 287 | 2.33    | 1.89    |
| 34 | S2F4-3 | 778  | 0.385 |       | 205 | 0.00821 |         |
|    |        | 3460 |       |       | 226 | 1.44    |         |

Notes: 1. For beams no. S1S4, W/C = 0.78, for complete mix design see Table 2.1,  $f_{C}^{*} = 3540$  psi (24.4 MPa)

 For beams no. S2S4 and S2F4, W/C = 0.50, for complete mix design see Table 2.1, f'c = 8130 psi (56.0 MPa)

3. For all beams, S = 15 in (381 mm), L = 16.3 in (413 mm)

4. Ext. a/W = (a/W)compliance - 0.14

Table II.12E Precracked Beams, Tested by Huang (8), KIC Method (4, 8), W = 8.00 in (102 mm), B = 3.00 in (76 mm), E<sub>C</sub> =  $3.63 \times 10^6$  psi (25.0 GPa) and E<sub>C</sub> =  $5.12 \times 10^6$  psi (35.3 GPa)

 $E_{\rm C} = 3.63 \times 10^6 \text{ psi} (25.0 \text{ GPa})$ 

| Fig. | Original         | Pm          | Ext.                | Avg.     | KIC_      | GIC                   | Avg. GIC           |
|------|------------------|-------------|---------------------|----------|-----------|-----------------------|--------------------|
| No.  | No.              | 1ь          | a/W                 | Ext.     | 1b-in-3/2 | lb-in/in <sup>2</sup> | 1b-in/in2          |
|      |                  | N           |                     | a/W      | kN-m-3/2  | N-m/m2                | N-m/m <sup>2</sup> |
| 16   | L154-1           | 2730        | 0.191               | 0.204    | 441       | 0. 0536               | 0.0561             |
|      |                  | 12130       |                     |          | 485       | 9.39                  | 9.83               |
| 20   | L1F4-1           | 2550        | 0.216               |          | 461       | 0.0586                |                    |
|      |                  | 11350       |                     |          | 508       | 10.3                  |                    |
| 21   | L1F4-2           | 1460        | 0.438               | 0.456    | 528       | 0.0769                | 0.0985             |
|      |                  | 6500        |                     |          | 581       | 13.5                  | 17.3               |
| 17   | L154-2           | 1540        | 0.473               |          | 660       | 0,120                 |                    |
|      |                  | 6850        |                     |          | 726       | 20.0                  |                    |
| 22   | L1F4-3           | 1290        | 0.529               | 0.539    | 688       | 0.130                 | 0.107              |
|      |                  | 5740        |                     |          | 757       | 22.8                  | 18.7               |
| 19   | L154-4           | 984         | 0. 548              |          | 553       | 0.0842                |                    |
|      |                  | 4380        |                     |          | 608       | 14.8                  |                    |
| 18   | L154-3           | 736         | 0.604               | 0.604    | 726       | 0.0741                | 0.0741             |
|      |                  | 3280        |                     |          | 571       | 13.0                  | 13.0               |
|      | E <sub>c</sub> = | ,<br>5.12 × | 10 <sup>6</sup> psi | (35.3 GP | a)        |                       |                    |
| 43   | L2F4-1           | 5180        | 0.129               | 0.151    | 691       | 0.0932                | 0.112              |
|      |                  | 23100       |                     |          | 760       | 16.3                  | 19.6               |
| 40   | L254-1           | 5050        | 0.173               |          | 818       | 0.131                 |                    |
|      |                  | 22500       |                     |          | 899       | 23.0                  |                    |
| 44   | L2F4-2           | 2625        | 0.382               | 0.382    | 750       | 0.110                 | 0.110              |
|      |                  | 11700       |                     |          | 825       | 19.3                  | 19.3               |
| 41   | L254-2           | 2510        | 0.441               | 0.441    | 908       | 0.161                 | 0.161              |
|      |                  | 11170       |                     |          | 999       | 28.2                  | 28.2               |
| 45   | L2F4-3           | 1680        | 0.523               | 0.523    | 848       | 0.140                 | 0.140              |
|      |                  | 7480        |                     |          | 933       | 24.5                  | 24.5               |
| 42   | L254-3           | 1260        | 0.601               | 0.601    | 864       | 0.146                 | 0.146              |
|      |                  | 5610        |                     |          | 950       | 25.6                  | 25.6               |

Notes: 1. For beams no. L1S4 and L1F4, W/c = 0.78, for complete mix design see Table 2.1,  $f_c = 4060$  psi (28.0 MPa)

- 2. For beams no. L254 and L2F4, W/C = 0.50, for complete mix design see Table 2.1, f'  $_{\rm C}$  = 8070 psi (55.6 MPa)
- 3. For all beams, S = 24 in (610 mm), L = 25 in (25 mm)































Fig. 3 P vs CNOD, 4 in Deep Deam (S1S4-5), Loed Control, Hueng (8)











Fig. 12 P vs CHOD, 8 in Daep Beam (LIS3-3), Load Control, Huang (8)













Fig. 16 P va CMOD, 8 in Deep Baam (L1S4-1), Load Control, Huang (8)







Fig. 18 P vs CHOD, 8 in Deep Beam (L1S4-3), Loed Control, Huang (8)





Fig. 20 P vs CHOD, 8 in Deep Beam (L1F4-1), Load Control, Huang (8)







Fig. 23 P vs CMOD, 4 in Deep Beam (S2S3-1), Load Control, Huang (8)







Fig. 26 P vs CMOO, 4 in Deep Beam (S2F3-1), Load Control, Huang (8)







Fig. 28 P vs CHOD, 4 in Deep Baam (S2F3-3), Load Control, Buang (8)







Fig. 30 P ys CHOO, 4 in Geep Beam (5254-2), Load Control, Haung (8)







Fig. 32 P vs CMOO, 4 in Deep Basm (S2F4-1), Losd Control, Huang (8)







Fig. 34 P vs CMOO, 4 in Deep Baam (S2F4-3), Load Control, Huang (8)







Fig. 36 P vs CMOD, 8 in Deep Beam (1283-2), Loed Control, Huang (8)



Fig. 37 P vs CHOD, 8 in Deep Seem (L2F3-1), Loed Control, Huang (8)



Fig. 38 P ve CHOD, 8 in Deep Beam (L2F3-2), Losd Control, Huang (8)







Fig. 40 P vs CHOD, 8 in Deep Besm (L2S4-1), Load Control. Huang (8)











Fig. 44 F ve CHOO, 8 in Deep Beem (L2F4-2), Loed Control, Huang (8)















Fig. 48 P ve CMOO, 4 in Deep Beam (1-A3), Load Control, Fartaah (11)








































Fig. 60 P vs CMOO, 4 in Deep Beam (2-A1), Load Control, Fortash (11)

















Fig. 66 P ve CMOD, 4 in Omep Beam (2-A7), Load Control, Fartash (11)





Fig. 68 P va CMOD, 4 in Ocep Beam (2-All), Load Control, Fartash (11)







Fig. 70 P vs CMOO, 4 in Deep Beam (2-A13), Load Control, Fartash (11)





.



Fig. 72 P vs CHOD, 4 in Deep Beam (2-A15), Loed Control, Fartash (11)













Fig. 76 P vs CHOO, 4 in Deep Beam (3-A3), Load Control, Fartash (11)





























Fig. 84 P vs CMOD, 4 in Deep Besm (3-A13), Load Control, Fartash (11)

















Fig. 90 P vs CMOO, 4 in Ocep Beam (1-B3), Loed Control, Fartash (11)







Fig. 92 P vs CMOO, 4 in Deap Basm (1-B5), Loed Control, Fartash (11)



Fig. 93 F va CMOD, 4 in Deep Beam (1-86), Load Control, Fartash (11)



Fig. 94 F va CMOO, 4 in Osep Beam (1-87). Load Control, Fartash (11)









Fig. 98 P vs CMDD, 4 in Deep Beam (1-B13), Loed Control, Fartash (11)













Fig. 102 P vs CMOO, 4 in Deep Beam (2-B1), Load Control, Fartash (11)













Fig. 106 P vs CMOD, 4 in Deep Seam (2-85), Load Control, Fartash (11)















Fig. 112 P vm CMOO, 4 in Deep Beem (2-B13), Loed Control, Fartash (11)

CMOD, 1n' x 10<sup>-3</sup>



Fig. 113 F vs CMDO, 4 in Desp Beam (2-B14), Load Control, Fartash (11)



Fig. 114 F vs CMOO, 4 in Deep Beam (2-B15), Load Control, Fartash (11)



Fig. 115 F vs CMOO, 4 in Deep Beam (2-816), Loed Control, Fertash (11)














































Fig. 130 P ve CMOD, 4 in Deep Beam (T4), Load Control, Go (4)



Fig. 131 P vs CMOO, 4 in Deep Beam (T5), Load Control, Go (4)



= x 10<sup>-5</sup>







Fig. 134 F vs CHOO, 4 in Deep Beam (T8), Load Control, Go (4)





Fig. 136 P vs CMOD, 4 in Deep Beam (T10), Load Control, Go (4)







Fig. 138 F vs CHDD, 4 in Deep Beam (T12), Load Control, Go (4)



Fig. 139 P ve CHOD, 4 in Deep Beam (T13), Load Control, Go (4)



Fig. 140 P vs CMOD, 4 in Deep Beam (P2), Load Control, Go (4)















Fig. 144 P vs CMOD, 4 in Deep Beam (P7), Loed Control, Go (4)



Fig. 145 P vs CMDD, 4 in Deep Seam (PS), Load Control, Go (4).



Fig. 146 P vs CMOD, 4 in Deep Beam (P9) , Load Control, GO (4)

. 180







Fig. 148 P vs CMOO, 4 in Ocep Beam (Pll), Load Control, Go (4)





Fig. 150 P vs LFD, 4 in Daep Besm (N2), Loed Control, Go (4)







Fig. 152 F vs LFD; 4 in Deap Beam (N4), Load Control, Go (4)



Fig. 153 P vs LPD, 4 in Deep Beam (N5), Load Control, Go (4)

















Fig. 158 P vs LPO, 4 in Deep Beam (N10), Load Control, Go (4)







Fig. 161 F vs LPD, 4 in Deep Beam (N13), Loed Control, Go (4)



Fig. 162 P ve LFD, 4 in Ocep Beam (N14), Load Control, Go (4)







Fig. 164 P vs LPO, 4 in Ocep Beam (N16), Loed Control, Go (4)































Fig. 172 P vs LPD, 4 in deep Baam (84), Load Control, Rood (12)







F1g. 175 F va CMD0, 4 in Desp Bsam (87), Load Coatrol, Rood (12)









Fig. 178 P vs LPO, 4 in Desp Beam (B8), Lond Control, Rood (12)











Fig. 181 F vs CHOD, 4 in Deep Deam (B10), Losd Control, Rood (12)



Fig. 182 P vs LPD, 4 in Deep Besm (B10), Load Control, Rood (12)



Fig. 183 P vs CHOD, 4 in Geep Beam (B11), Load Control, Rood (12)



Fig. 184 P vs LPO, 4 in Desp Besm (B11), Lond Control, Rood (12)

.199



Fig. 185 P vs CMOD; 4 in Deep Bewe (B14), Load Control, Rood (12)









Fig. 188 P vs LPO, 4 in Deep Baam (B16). Load Control, Rood (12)



Fig. 189 P vs CHOO, 4 in Deap Base (B17), Load Control, Rood (12)



Fig. 190 F va LPD, 4 in Deep Beam (B17), Load Control, Rood (12)







Fig. 192 P vs LPO, 4 in Deep Beam (B18), Loed Control, Rood (12)



Fig. 193 P vs CHD0, 4 in Deep Beam (B19), Load Control, Rood (12)



'Fig. 194 P vs LPO, 4 in Deep Beam (B19), Load Control. Rood (12)











Fig. 198 F va LPO, 4 in Deep Beam (C1), Load Control, Rood (12)

-206












m x 10<sup>-4</sup>



Fig. 203 F ve CHOD, 4 in Deep Beam (C4), Load Control, Rood (12)







Fig. 206 P vs LPD, 4 in Deep Beam (C5), Load Control, Rood (12)



Fig. 207 F va CHOO, 4in Leap Beam (C5), Load Control, Rood (12)









Fig. 210 P va LPO, 4 in Deep Beem (C7), Load Control, Rood (12)



Fig. 211 P ve CHOO, 4 in Deep Beam (CS), Load Control, Rood (12)







control and the proposed (o)), none control, and (12)











































Fig. 229 F vs CHOD, 4 in Deep Beam (G19), Loud Control, Rood (12)





. .222















m x 10<sup>-4</sup>





Fig. 236 P ve LPD, 4 in Dump Beam (25.3), Strain Control, Tested July 1985

























,





Fig. 248 P ve iFD, 4 in Deep Beem (25.5), Strain Control, Tested July 1985



















Fig. 256 P vs LPO, 4 in Deep Beam (3L.5), Load Control, Tested July 1985







Fig. 258 P vs LPO, 4 in Deep Beam (15.7), Srein Cootrol, Tested July 1985





Fig. 260 P ve LPD, 4 in Deep Seem (35.7), strain Control, Teeted July 1985





Fig. 262 P vs LPO, 4 in Desp Beam (2L.7), Losd Control, Testad July 1985



Fig. 263 P vs CHOD, 4 in Deep Beam (3L.7), Load Control, Tested July 1985













Fig. 268 P vs LPD, 8 in Desp Beam (W-1-8), Load Control, Tested January 1986

24ľ





m x 10<sup>-4</sup>

Fig. 270 P vs LPD, 12 in Deep Beam (C812), Load Control, Tested January 1986
















EVALUATION OF PROPOSED METHODS TO DETERMINE FRACTURE PARAMETERS FOR CONCRETE IN BENDING

by

Sze-Ting Yap

B.S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

Department of Civil Engineering

Kansas State University

Manhattan, Kansas

1986

## ABSTRACT

Many methods attempting to determine the fracture parameters KIC, GIC, GF and JIC of concrete using bending specimens have been proposed over the years. Results obtained by some of the earlier researchers indicated that concrete is a notch sensitive material, that is, it pehaves differently when notched with teflon or sawcut, then it does when it is precracked. This study attempts to evaluate these proposed methods for the determination of fracture parameters for concrete in bending and also to provide recommendations.

The program presented here utilized the data obtained in the past seven years at Kansas State University. These beam sizes used include 3 in. (76 mm) wide, 4 in. (102 mm) deep with a 15 in. (381 mm) soan, 4 in. (76 mm) wide, 8 in. (203 mm) deep with a 24 in. (610 mm) span, 3 in. (76 mm) wide, 8 in. (203 mm) deep with a 30 in. (762 mm) span and 3 in. (76 mm) wide, 12 in. (305 mm) with a 45 in. (1140 mm) span. Some of these beams were tested in three-point bending and others were tested in fourpoint bending. Beams used in this thesis were precracked beams and notched beams.

Results presented in include KIC, GIC, GF and JIC based on the methods that had been proposed. In addition, the results are calculated based on extended crack lengths and unextended crack lengths.