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Abstract 

The prevalence of fatty liver in transition dairy cattle has been reported to be as high as 

50%. There are a few reliable on-farm diagnostic tools and even fewer methods to effectively 

prevent fatty liver. Non-alcoholic steatohepatitis, an advanced form of non-alcoholic fatty liver 

in humans, is accurately diagnosed with a commercial blood test that detects plasma cytokeratin-

18 (CK18) fragments released during hepatocyte apoptosis. A study was performed using 89 

Holstein cows in early lactation to determine if CK18 could serve as a novel indicator of liver 

triglyceride (TG) content. Although no previous work has been done with CK18 in bovine 

plasma, our results indicated that CK18 fragments were present in plasma. However, CK18 

concentrations did not correlate with liver TG content or other measures of liver function, 

suggesting it is not a reliable diagnostic tool. Nevertheless, based on liver TG, plasma non-

esterified fatty acid (NEFA), and plasma β-hydroxybutyric acid (BHBA) concentrations, this 

sample population as a whole was not suffering from severe metabolic problems or fatty liver, 

making it possible that plasma CK18 fragments are elevated only in the most extreme cases. 

Currently, there is no widely-adopted preventative strategy for fatty liver. A second study was 

performed to evaluate if encapsulated niacin (EN) could prevent liver TG accumulation during 

the transition period. Twenty-four primiparous (n=9) and multiparous (n=13) cows were 

randomly assigned to receive 0 or 24 g of dietary EN, beginning 3 weeks prior to expected 

calving until 21 days postpartum. Feeding EN did not influence liver TG content, but decreased 

plasma NEFA concentrations, suggesting inhibition of lipolysis. Multiparous EN cows also 

experienced depressed dry matter intake (DMI) in the 4 days prior to calving. However, even 

when EN reduced DMI, plasma NEFA was still suppressed. A novel finding was the prolonged 

clearance of caffeine in plasma on day 7 postpartum in EN-treated animals. In contrast to other 

studies, this dose and delivery method of EN did not result in an increase in plasma NEFA after 

EN treatment ended.  These research projects determined that plasma CK18 is likely not a useful 

diagnostic tool for mild to moderate bovine fatty liver and that feeding EN can inhibit lipolysis 

but may influence DMI as well. This is one of the first studies into the metabolic effects of 

feeding EN, and further research is needed in this field. 
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Fatty Liver:  Etiology and Current Therapies 

 

The transition into lactation, defined as the last few weeks of gestation and the first few 

weeks of lactation, bring about numerous challenges and disorders to the dairy cow. One of the 

most prevalent, yet overlooked of these transition disorders is hepatic lipidosis, or fatty liver. 

Genetic selection of dairy cattle based almost solely on milk production has created an animal 

that cannot consume enough energy to support its requirements in the early lactation phase after 

parturition. The deficit between energy consumed and energy expended through maintenance 

and milk production is referred to as negative energy balance (NEB). The NEB results in the 

mobilization of stored body (lipolysis) fat at a rate higher than the liver can oxidize, resulting in 

the storage of triglycerides (TG) within the liver cells. Fatty liver can only be diagnosed by 

microscopic examination of the liver, which is rarely performed, making this a poorly recognized 

disease. The prevalence of fatty liver has been estimated at over 50% and costs associated with it 

at greater than $60 million per year in the U.S. (Bobe et al., 2004). These costs are due to 

decreased milk production, reproductive inefficiency, treatment and veterinary costs, and 

mortality. This literature review will focus on the etiology and diagnosis of fatty liver along with 

the use of niacin as a preventative strategy. 

Etiology 

Risk factors for fatty liver have been grouped several different ways, however, most 

focus around nutrition (Bobe et al., 2004). The primary risk factors are obesity, decreased 

peripartum feed intake, high energy prepartum diets and low energy postpartum diets. Secondary 
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risk factors are prolonged calving interval, increased dry period and concurrent diseases. One of 

the newer etiological theories of fatty liver involves an inflammatory process within the liver. 

Experimentally, fatty liver can be induced by periods of fasting or feed restriction over the period 

of several days (Drackley et al., 1991) or by overfeeding during the dry period (Osman et al., 

2008). Regardless of the inciting cause, fatty liver is associated with negative energy balance and 

can be exacerbated by a higher prepartum body condition score.  

Controlling body condition score of cows in late lactation has become a challenge for 

most dairy producers. During late lactation and the dry period, most cows return to a positive 

energy balance and begin to deposit body fat. Since fertility and reproductive efficiency in dairy 

cattle have declined (Pryce et al., 2004), average lactation length has increased. As a result, cows 

become overfed in both the late lactation and dry periods due to declining milk production and a 

subsequent lower energy requirement (Grummer, 1995). This leads to increased weight gains and 

BCS scores prior to the next parturition. Over-conditioned cows have a more severe decrease in 

prepartum feed intake compared to cows in normal body condition, resulting in a more severe 

NEB (van den Top, 1996; Stockdale, 2001). The combination of increased body fat and severe 

NEB leads to increased lipolysis in obese cows compared to cows with a normal BCS 

(Rukkwamsuk et al., 1998). This may explain why fatty liver is seen more commonly and more 

severely in cows with BCS > 4.0 (Rukkwamsuk et al., 1998).  

The increased demand for energy in late gestation due to fetal growth has been estimated 

at 30% of total maternal energy requirement (Bell, 1995). This increase in energy requirement is 

paralleled by a declining dry matter intake (DMI), with DMI at parturition being approximately 

50% lower than during the early dry period (Bertics et al., 1992). As DMI is decreasing, the body 

compensates by mobilization of fatty acids from stored TG in adipose tissue. Numerous studies 
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have found a significant correlation between decreasing DMI and increased nonesterified fatty 

acids (NEFA) in plasma (Bertics et al., 1992; Grummer, 1995). Although DMI will steadily 

increase following parturition, the demand for energy increases by 300%, creating a more severe 

postpartum NEB (Bell, 1995). Bertics and others (1992) demonstrated a correlation between 

decreased prepartum DMI and increased hepatic TG and plasma NEFA concentrations which 

suggests that cows with depressed DMI are in a more severe NEB at calving. In contrast, 

Holcomb and others (2001) showed that restricting intake prepartum resulted in increased DMI 

and milk production immediately postpartum until almost 30 days in milk. Despite many 

attempts to improve energy intake prepartum, the relationship between DMI, plasma NEFA and 

liver TG has not been determined. It is likely that measuring energy intake may be more 

important than using dry matter as a reference.  

One of the more extensively studied areas of the transition dairy cow is the composition 

of prepartum diets. One common method of increasing energy in prepartum diets is to include 

additional forms of non-fermentable carbohydrates (NFC), which will also adapt the ruminal 

microbes to a high-NFC lactation diet and enhance papillae development (Dirksen et al., 1985). 

However, Holtenius et al. (2003) suggested that high-energy diets prepartum may lead to insulin 

resistance. This may occur as a result of prolonged periods of increased blood glucose and 

subsequent elevated insulin concentrations. As a result, postpartum insulin resistance may 

increase lipolysis and the severity of fatty liver. However, little research currently exists on the 

effect of diet on insulin resistance in prepartum dairy cattle (Grummer, 2008). The exact 

correlation between prepartum DMI, lipolysis and liver TG is not fully understood despite 

extensive research on prepartum diets. Doepel et al. (2002) found that increasing NFC 

concentration from 24% to 30% of dry matter resulted in a significant decrease in postpartum 
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hepatic TG. In contrast, Rukkwamsuk et al. (1999) induced fatty liver by offering ad libitum 

intake of a high energy ration during the dry period. These cows had increased levels of liver TG 

and NEFA compared to controls which were fed according to their NRC requirements. The 

dietary treatments were fed for 7 weeks, which resulted in a greater weight gain in the high 

energy ration cows. Although overfeeding can result in fatty liver, the obesity of the cows may 

have had more of an influence in inducing fatty liver than the prepartum diet composition itself. 

It is possible that increasing NFC in prepartum diets may decrease plasma NEFA and hepatic 

TG, but other non-dietary factors are likely involved in postpartum lipid metabolism.  

Another seemingly simple way to increase the energy density of a diet is by adding fat 

into the ration. In a review by Grummer and Carroll (1991), the majority of studies showed 

increases in plasma NEFA in fat-supplemented groups compared to controls. In a study by 

Bertics and Grummer (1999), fatty liver was induced by feeding supplemental fat during a period 

of feed restriction. They found that supplemental fat resulted in not only higher levels of NEFA, 

but also increased liver TG (% DM basis). In contrast, Grum et al. (1996) found that cows fed 

high fat diets throughout the dry period had lower concentrations of liver TG and total hepatic 

lipid compared to control and high grain treatment groups. This contrast between trials further 

supports that fat mobilization and liver TG are not solely controlled by diet alone and that there 

may be several factors that play a role in the development of fatty liver.  

Lipid Metabolism 

It is widely accepted that elimination of a negative energy balance is not feasible during 

early lactation given the high milk production expectation of modern dairy cows. Therefore, a 

certain level of subclinical ketosis and mild fatty liver may be unavoidable. Ketosis occurs when 

the demand for glucose is greater than the capacity of the liver for gluconeogenesis, which is 
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common in early lactation (Herdt, 2000). Rukkwamsuk et al. (1999) experimentally induced 

fatty liver by overfeeding cows during the dry period. Liver biopsies and serum samples were 

collected throughout the transition period. Compared to controls, the overfed group had 

increased serum NEFA from weeks 1 to 12 postpartum and higher liver TG content from weeks 

1 to 6 postpartum. Also, overfed cows had decreased concentrations of phosphoenolpyruvate 

carboxykinase (PEPCK), a hepatic gluconeogenic enzyme. At 1 week prior to parturition, the 

overfed cows already had decreased PEPCK levels compared to controls, which continued at 0.5 

week and 2 weeks postpartum as well. These data suggest that hepatic gluconeogenesis is also 

impaired in cows with fatty liver. 

Milk production requires synthesis of large amounts of lactose, which is produced from 

glucose primarily supplied by the liver (Herdt, 2000). Adipose tissue, a potent energy source, is 

mobilized and concentrations of NEFA begin to rise (Zurek et al., 1995). Milk production also 

requires fatty acids, which are supplied by dietary fatty acids or NEFA during times of NEB 

(Pullen et al., 1989).  Many peripheral tissues are capable of using NEFA for energy during 

times of NEB (Boden, 1998). However, up to 25% of NEFA are removed from plasma by the 

liver (Bergman, 1971; Reid et al., 1979). Bell (1979) showed that hepatic uptake of NEFA is 

concentration dependent, meaning that increased serum concentrations will result in greater 

hepatic uptake. The liver is responsible for converting NEFA into TG for packaging and export 

as VLDL (very low density lipoprotein) (Katoh, 2002). Ruminants have a poor ability to secrete 

TG as VLDL compared to non-ruminants (Pullen et al., 1990). Previously, Pullen and others 

(1988) used sheep to show that TG within the hepatocyte that is not immediately exported as 

VLDL will remain in an intracellular storage pool. The poor ability of the liver to increase 



 7 

VLDL export coupled with increased transport of NEFA into the hepatocyte results in 

accumulation of intracellular TG and subsequent fatty liver.   

The production and export of VLDL from the liver seems to be the limiting factor in 

prevention of fatty liver, as hepatocellular VLDL export does not increase at the same rate as 

import of NEFA. Therefore, it is of great importance to understand the mechanisms involved 

with VLDL export to determine why VLDL production does not increase during times of NEB. 

The purpose of VLDL secretion by the liver is for transport of TG to peripheral tissues like 

muscle, which use the TG for energy during times of NEB.   

A great deal of interest has been given to apolipoprotein B-100, a protein required for 

stabilizing VLDL particles (Gibbons, 1990). Herdt and others (1983) determined that cows with 

fatty liver have a reduction in serum VLDL concentrations, suggesting that fatty liver may occur 

as a result of reduced ability to export VLDL. During early lactation the concentration of apoB-

100 is low (Marcos et al., 1990) relative to other stages of lactation. This is surprising, as early 

lactation is a time when apoB-100 concentrations are expected to be high due to the increased 

need for VLDL secretion. Interestingly, Gruffat and others (1997) determined that apoB-100 

mRNA is not significantly lower during early lactation indicating that there may be a post-

transcriptional alteration in apoB-100 concentration. However, in studies by Bernabucci and 

others (2004 & 2009) both the mRNA abundance and protein concentrations of apoB-100 were 

decreased in early lactation. Recently, Bernabucci and others (2009) showed that plasma levels 

of apoB-100 begin decreasing two weeks prior to calving, reached a nadir at 3 days postpartum 

before beginning to rise. The pattern of decreasing plasma apoB-100 throughout the transition 

period inversely relates to the accumulation of TG in hepatocytes (Bertics et al., 1992). This 

finding suggests that apoB-100 may be partially responsible for decreased VLDL export and 
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subsequent TG accumulation and fatty liver. Recently, there has been some investigation into 

supplemental choline as a method to reduce liver TG by increasing VLDL export. Yao and 

Vance (1990) found that choline deficiency in rats caused a six-fold increase in liver TG. This 

may be due to the fact that choline is a substrate for phosphatidylcholine, which is a component 

of VLDL (Grummer, 2008). Therefore, if peripartum cows have a choline deficiency, there 

would be a potential for decreased export of VLDL from hepatocytes. The decreased apoB-100 

concentration that occurs around parturition is still unexplained, but current research is pursuing 

the theory that oxidative damage may cause destruction of newly synthesized apoB-100 

(Bernabucci et al., 2009).    

Ketosis 

One of the most commonly recognized diseases associated with fatty liver is ketosis, 

likely because their etiologies are related. The incidence of ketosis has been reported as 30% in 

cows with fatty liver, while only 10% in those without fatty liver (Grohn et al., 1987).  Ketosis is 

defined as increased levels of circulating ketone bodies, which are acetone, acetoacetate and 

beta-hydroxybutyrate (BHBA) (Duffield, 2000). The prevalence of clinical and subclinical 

ketosis ranges from 2 to 15% and 8.9 to 34%, respectively (Duffield, 2000). Ketone bodies 

provide an essential source of energy during times of NEB (Herdt, 2000).  

There are three main metabolic fates of NEFA entering the hepatocyte; conversion to TG 

and export as VLDL, conversion to TG without export (resulting in fatty liver), and 

mitochondrial metabolism by beta-oxidation (Van den Top et al., 2005). During times of positive 

energy balance, the mitochondrial pathway is minimal. However, during times of NEB, beta-

oxidation is essential in utilizing the energy of stored adipose tissue (Webber et al., 1994). 

Besides its use as a fuel to other body tissues, BHBA are used in small amounts for milk fat 
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synthesis (Palmquist et al., 1969). Within the mitochondria of the hepatocyte, NEFA undergo β-

oxidation into acetyl-CoA and reducing equivalents used in energy metabolism. Acetyl-CoA can 

enter the TCA (tricarboxylic acid) cycle and be used for energy production (Katoh, 2002). 

However, during early lactation when gluconeogenesis is increased, other components of the 

TCA cycle are depleted and acetyl-CoA cannot enter the TCA cycle and are diverted to 

ketogenesis (Krebs, 1966).  

The underlying causes of ketosis are generally the same as that for fatty liver. Dry period 

overfeeding coupled with negative energy balance overwhelms the liver with NEFA. Excessive 

delivery of NEFA to the liver at a time when hepatic gluconeogenesis is limited results in both 

TG storage in the cytoplasm and increased mitochondrial production of ketone bodies. 

Veenhuizen et al. (1991) induced fatty liver and ketosis by feed restriction and administration of 

1, 3-butanediol. They found that fatty liver occurred following a rise in serum ketones, indicating 

that fatty liver follows ketosis. However, other reports indicate that fatty infiltration of the liver 

results in decreased gluconeogenesis (Cadorniga-Valine et al., 1997), which could cause 

increased lipolysis and subsequent ketosis. This would suggest that ketosis occurs as a result of 

fatty liver. Although the exact number of mechanisms connecting fatty liver and ketosis is 

unknown, it is clear that their etiologies are inter-related and should be further explored. 

Other Associated Diseases 

Fatty liver is frequently associated with left displacement of the abomasum (LDA) 

(Rehage et al., 1996). One of the early signs of LDA is decreased feed intake, which results in 

greater mobilization of lipid and subsequent fatty liver (Herdt et al., 1983). A study by Rehage et 

al. (1996) looked at liver TG, BCS, DMI and serum BHBA and NEFA in 53 cows with LDA on 

both the day of surgery and 4 days later. They found that 32% and 40% of cows had severe and 
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moderate fatty liver at presentation, respectively. Cows with moderate and severe fatty liver had 

higher BCS compared to those with mild or no fatty liver. They also found that cows with severe 

fatty liver had lower intakes on the day of surgery and remained low 4 days later as well. This 

resulted in significantly lower milk production during the post-surgical period. The serum 

concentrations of NEFA and BHBA in cows with severe fatty liver were significantly increased 

on both the day of surgery and 4 days later compared to cows mildly or moderately affected. 

These results indicate that fatty liver is associated with LDA during early lactation, and post-

surgical prognosis is related to the severity of fatty liver upon presentation.  

Postparturient hypocalcemia (milk fever) has been associated with fatty liver and 

increased NEFA (Katoh, 2002). Oikawa and Katoh (2002) surveyed cows with milk fever and 

downer-cow syndrome to determine their association with fatty liver. Downer cows were defined 

as recumbent cows with normal serum calcium concentrations and no other identifiable 

disorders. He determined that cows with milk fever had decreased concentrations of serum apoB-

100 and increased NEFA, and downer cows had decreased serum apoB-100 as well. In 

unpublished data from Oikawa, 60-70% of downer cows had fatty liver when investigated 

postmortem. Fatty liver was defined as greater than 30mg TG/g of liver tissue (wet weight). 

These data suggest that fatty liver may play a role in the etiology of milk fever and downer cow 

syndrome.   

Inflammation 

Fatty liver is associated with many infectious diseases during the postpartum period as 

well. Hill et al. (1985) investigated the effect of liver TG concentration on elimination of 

experimentally induced E. coli mastitis. They found that 80% of cows with liver TG less than 

20.2% eliminated the E. coli from their udder within 12 hours after inoculation. However, all 
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cows with liver TG greater than 28.3% had quantitative bacteria for longer than those less than 

28.3%. These findings suggest that fatty liver may be associated with immunological depression. 

Wentink et al. (1997) found that cows with fatty liver had decreased cell-mediated (lymphocytic) 

and humoral (antibody) responses following vaccination with tetanus toxoid. In a follow-up 

study by Wentink and others (1999), the lymphocytic response to skin transplantation was 

compared between feed-restricted and control animals. The feed-restricted animals had 

significantly higher liver TG levels and lower lymphocyte accumulation around the skin graft. 

This may establish a cause-effect relationship between hepatic lipidosis and impaired immune 

responses.  

Surprisingly, inflammation itself has been implicated in the etiology of fatty liver. During 

the postpartum period, additional energy is supplied by lipolysis. In an article by Hotamisligil 

(2006), a connection between metabolic dysfunction and inflammation was established based on 

the key role of inflammation in human diabetes. There is evidence that obese animals exhibit 

what he refers to as “metaflammation”, which is metabolically induced inflammation. There is 

also strong evidence that tumor necrosis factor-alpha (TNF), an acute inflammatory cytokine, 

plays a role in fatty liver in rodent models (Li et al., 2003). Administration of antibodies against 

TNF prevents or resolves fatty liver in genetically obese mice (Li et al., 2003). TNF is produced 

in adipose tissue and is increased in cows with fatty liver (Ohtsuka et al., 2002). Additionally, 

TNF deficient mice have decreased levels of circulating free fatty acids and do not exhibit 

obesity or insulin resistance as compared to controls (Uysal et al., 1997). This may provide an 

additional link between obesity and fatty liver in dairy cows, explaining why obese cows are 

more likely to have fatty liver.  
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Bradford et al. (2009) administered recombinant bovine TNF-alpha to late-lactation cows 

and measured liver lipid accumulation along with abundance of 3 enzymes involved with 

gluconeogenesis. Treatment with TNF-alpha resulted in accumulation of liver TG along with 

decreased mRNA abundance of 2 gluconeogenic enzymes, glucose-6-phosphatase and 

phosphoenolpyruvate carboxykinase. This is consistent with results by Ohtsuka and others 

(2002) in that TNF is increased in cows with fatty liver, likely causing activation of adipose 

tissue lipolysis. These results further support inflammation as a component in the etiology of 

fatty liver.    

Treatment 

The treatment of fatty liver is similar to the treatment of ketosis. The goals in treating 

fatty liver are to increase serum glucose concentrations, decrease lipolysis and increase hepatic 

TG output. As previously discussed, increasing hepatic output is difficult due to the poor ability 

of ruminants to secrete TG as VLDL (Pullen et al., 1990). Since hypoglycemia is a major drive 

for lipolysis, increasing glucose concentrations should also decrease lipolysis. There are few 

studies that have found successful treatments of fatty liver, but many studies focusing on 

treatment of ketosis have also been found to reduce liver TG accumulation.  

Increasing glucose concentration can be accomplished in several ways. Intravenous 

infusion glucose in cattle has been studied (Gruchy et al., 1963). Although infusion is successful 

at increasing glucose concentrations, its effects are short-lived, as glucose returns to baseline 80-

100 minutes after infusion is stopped (Shaw, 1956). Another method of increasing glucose 

concentrations is through the use of glucocorticoids such as prednisone and dexamethasone. 

Shaw (1956) showed that glucocorticoids cause hyperglycemia in non-postparturient cows, but 

the increase was not as great in ketotic cows. However, the positive effects of glucocorticoids are 
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increased when glucose is concurrently administered. Shpigel et al. (1996) performed a clinical 

trial in 127 ketotic cows with urine acetoacetate concentrations greater than 60mg/dl. Treatments 

consisted of 40 mg of dexamethasone with or without 500ml of 50% glucose intravenously or 

5mg flumethasone with or without 500ml of 50% glucose intravenously. Those cows who 

concurrently received IV glucose had increased plasma glucose concentrations and decreased 

serum BHBA and urine acetoacetate concentrations following treatments. Although treatment 

with glucose and gluconeogenic compounds is effective in individual cows, the benefits are 

usually short-lived and cannot currently be administered easily on a herd basis. 

Glucagon may be a more effective treatment for fatty liver. Glucagon improves 

carbohydrate status by increasing hepatic gluconeogenesis and glycogenolysis (Bobe et al., 

2003). Hippen et al. (1999) attempted the first use of glucagon for the alleviation of fatty liver. 

During days 14 to 42 postpartum, cows were subjected to a protocol to induce fatty liver. 

Intravenous continuous infusions of glucagon were given from days 21 to 35 postpartum. 

Immediately following initiation of treatment with glucagon, serum glucose concentration was 

increased and liver TG concentration was decreased. Even 3 days after treatment ended, liver TG 

was 4.6% for glucagon treatment compared with 15.7% in control cows. Since intravenous 

infusions of glucagon are not practical, Bobe and others (2003) tested the hypothesis that 

subcutaneous glucagon injections would also treat fatty liver based on improved carbohydrate 

status. Saline, 2.5 mg or 5 mg of glucagon were injected subcutaneously every 8 hours beginning 

at 8 days postpartum. Glucagon injections increased plasma glucose concentration and decreased 

plasma NEFA concentration, however only the 5 mg treatment decreased concentrations of 

hepatic TG. Interestingly, this effect was only seen in cows over 3.5 years of age. The authors 
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speculated that this may have been due to differences in how gluconeogenic precursors are 

partitioned in young animals that are still growing. 

Oral supplements of glycerol, propylene glycol and sodium propionate have been used to 

increase glucose concentrations and treat ketosis. Osman et al. (2008) compared treatments of 

subcutaneous glucagon, oral glycerol or both on altering plasma glucose, insulin, NEFA, BHBA 

and TG. When used in combination, glucagon and glycerol treatment increased plasma glucose 

and insulin along with decreasing NEFA and BHBA. Although liver biopsies were not collected 

during this experiment, combination treatment increased plasma TG concentrations. This 

suggests that treatment may have caused increased disposal of liver TG through improved export 

of hepatic VLDL.  

Prevention 

The practices for preventing fatty liver are similar to those used for treatment (Bobe et 

al., 2004). Use of glucagon (Nafikov et al., 2006) at 15 mg/day and prednisone (Fürll et al., 

1993) at 200 mg/day have been successful at preventing accumulation of liver TG when 

administered in the early postpartum period. Propylene glycol, a glucogenic precursor, has been 

successful at preventing ketosis (Emery et al., 1964) and decreasing plasma NEFA (Sauer et al., 

1973) in postpartum cows. Studer and others (1993) tested the hypothesis that prepartum 

administration of propylene glycol could prevent postpartum accumulation of liver TG by 

increasing plasma glucose. They administered 1 liter of either propylene glycol or water once 

daily for the last 7 days prior to calving. They found that liver TG accumulation was reduced by 

32 and 42% at 1 and 21 days postpartum respectively. It is likely that postpartum liver TG was 

decreased due to the reduction in prepartum NEFA concentrations in treated animals. The author 

speculated that the effects of propylene glycol are indirect on decreasing plasma NEFA, and that 
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likely the stimulation of insulin secretion led to decreased lipolysis and subsequent reduction in 

hepatic TG. Christensen and others (1997) showed that oral drenching of propylene glycol is 

more effective at reducing plasma NEFA than when administered as part of the TMR. Pickett 

and others (2003) found that oral drenching of propylene glycol once daily for 3 days postpartum 

reduced plasma NEFA and BHBA during the first 21 and 7 days postpartum, respectively.  

Undoubtedly, one of the easier methods of preventing fatty liver would be from a dietary 

additive. Feeding supplemental fat or B-vitamins such as niacin and choline has been extensively 

studied. Grum et al. (1996) found that feeding supplemental fat from dry-off until 7 days 

prepartum resulted in decreased liver TG compared to high grain and control diets. The reduction 

in liver TG continued through 3 weeks postpartum. Although high-fat diet cows had decreased 

liver TG, prepartum plasma NEFA tended (P < 0.08) to be higher compared to high-grain and 

controls diets. However, the spike of NEFA at parturition was not seen with the high-fat diet, 

whereas the high-grain and control diets saw the typical increase in NEFA following parturition. 

The rate of peroxisomal β-oxidation tended (P < 0.09) to be higher in high-fat cows, indicating 

that prepartum increases of β-oxidation may have prevented the increase in liver TG 

accumulation. However, feeding prepartum fat has not consistently prevented fatty liver (Duske 

et al., 2009). Further research is needed to understand the role of prepartum dietary fat on 

postpartum lipid metabolism.  

Feeding supplemental niacin has been extensively researched and will be discussed in 

greater detail later in this review. Supplemental choline has also been examined, as choline is a 

precursor for VLDL assembly in the liver (Guretzky et al., 2006). In rats, choline deficiency 

resulted in a six fold increase in hepatic TG accumulation (Yao and Vance, 1990). Ruminants 

rapidly degrade dietary choline, so a rumen-protected form must be used (Atkins et al., 1988). 
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Cooke et al. (2007) conducted a series of experiments feeding rumen-protected choline (RPC) 

and measuring both hepatic TG accumulation during fatty liver induction and hepatic TG 

clearance following induction of fatty liver. They found that not only does RPC decrease hepatic 

TG accumulation, it also promotes TG clearance. Previously, Piepenbrink et al. (2003) found no 

difference in liver TG between cows fed RPC and controls, but hepatic glycogen content 

increased as the intake of RPC increased. This study fed varying amounts of choline from day 21 

prepartum until day 63 postpartum, whereas Cooke et al. fed choline during experimental 

induction of fatty liver. Guretzky et al., (2006) also fed RPC from days 21 prepartum until day 

21 postpartum. They only measured blood metabolites (NEFA, BHBA TG, cholesterol and 

phospholipids) and found that RPC had no effect on any of the measured parameters. Zahra and 

others (2006) fed RPC to transition cows from 3 weeks prior to 28 days after parturition. They 

found that cows with BCS > 4 produced 4.4 kg/day more milk during the first 60 DIM and ate 

1.2 kg/day more dry matter from 3 weeks prior to 4 weeks after parturition. The results of these 

studies may imply that there may be numerous variables during the transition period that play a 

role in the efficacy of RPC. Despite much research into preventatives for fatty liver, a reliable 

single preventative has not been identified. Elimination of risk factors is the most reliable 

strategy for prevention of fatty liver. 

 

Diagnosis 

The diagnosis of fatty liver presents a challenge to both producers and veterinarians. 

Accurate clinical diagnosis is often difficult because signs are both vague and nonspecific and 

may be masked by concurrent diseases (Herdt et al., 1983). As cows develop moderate fatty liver 

they often lose a significant amount of body weight (Jorritsma et al., 2001) and have depressed 
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DMI (Veenhuizen et al, 1991). Currently, the only reliable method of diagnosing fatty liver is by 

histological or biochemical analysis of liver tissue (Bobe et al., 2004). This method is impractical 

for on-farm diagnosis because it requires minor surgery, poses a risk of infection and can be 

lethal if a major blood vessel is punctured (Bobe et al., 2008). Several attempts at non-invasive 

diagnostics for bovine fatty liver have been investigated. Ideally, diagnosis of fatty liver would 

be done with a rapid cow-side test that is both sensitive and specific along with being cost-

effective to the producer.  

In order to diagnose fatty liver histologically or biochemically, a liver biopsy must be 

taken (Bobe et al., 2008). Grohn and Lindberg (1982) showed the reliability of antemortem 

percutaneous needle biopsies for microscopic examination of liver tissue. Gaal and Husveth 

(1983) then determined that both histological liver fat estimation and biochemical analysis of 

liver TG content are equivocal methods of assessing liver fat infiltration. There are several 

methods described for processing and analyzing liver biopsies. Typically, the tissue is frozen 

using liquid nitrogen and stored at -80 degrees Celsius until analysis (Duske et al., 2009). Some 

methods have utilized a pre-freeze rinse with saline (Cooke et al., 2007) or phosphate buffered 

saline (Grum et al., 2002). For histological analysis, the tissue can also be placed in 10% 

formalin for several hours prior to fixing in paraffin wax (Basoglu et al., 2002; Kalaitzakis et al., 

2006). The sample can then be sliced and analyzed histologically for degree of fatty infiltration. 

Histological grading of fatty liver is ultimately subjective, however several grading 

classifications have been developed (Bernabucci et al., 2009; Kalaitzakis et al., 2007). 

Bernabucci et al. (2009) described a system based on both micro and macro-vesicular 

characteristics that depending on both cellular lipid accumulation and location within the hepatic 

lobule. Kalaitzakis and others (2007) described a scale ranging from 0 = normal to 5= pan-
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lobular infiltration of lipid. In this method several locations were graded within the lobule based 

on individual cell swelling and amount of vacuolization. Biochemically, liver tissue is measured 

for total lipids or TG content (Kalaitzakis et al., 2007). In a review by Bobe and others (2004), a 

system was modeled for classifying severities of fatty liver into normal, mild, moderate and 

severe based on liver TG content. On a wet weight basis, normal liver is <1% TG, mild fatty 

liver is 1-5%, moderate fatty liver is 5-10% and >10% is severe fatty liver. However, other 

studies have varied in their exact system for classifying severities of fatty liver. This is likely 

because changes associated with increasing liver TG are not consistent between cows because 

liver TG is only an indirect measure of decreasing hepatocyte function (Johannsen et al., 1993). 

Although there is variability between certain classification systems, histological and biochemical 

analysis of liver remain the current gold standard and are used to measure the reliability of other 

diagnostic techniques.    

Numerous investigators have studied whether serum biochemical variables can aid in the 

diagnosis of fatty liver. Several clinical tests performed on serum can aid in the diagnosis of fatty 

liver, however a reliable combination of tests have not been determined (Kalaitzakis et al., 2007). 

There are several parameters that can be done on serum to directly or indirectly measure hepatic 

function, such as total bilirubin (tBIL), NEFA, glucose, cholesterol, albumin, bile acids and 

ketones. Hepatocyte enzymes that are released into the bloodstream during periods of cellular 

stress include aspartate aminotransferase (AST), glutamate dehydrogenase (GDH), sorbitol 

dehydrogenase (SDH), gamma glutamyltransferase (GGT), ornithine carbamoyl transferase 

(OCT), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) (Kalaitzakis et al., 

2007). Tsuchiya et al. (1994) determined that plasma ornithine carbamoyl transferase (OCT) is a 

reliable indicator of liver necrosis in ruminants. Recently, OCT has been investigated as a 
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diagnostic tool for the severity of fatty liver. Severity of fatty liver and postsurgical 

convalescence following LDA surgery can be predicted using plasma OCT activity (Kalaitzakis 

et al., 2006). In that study, OCT, AST, GDH and tBIL were found to be helpful in diagnosis of 

fatty liver in cows with LDA, however OCT had higher sensitivity and specificity for 

differentiating the severity of fatty liver. In a later study by Kalaitzakis et al. (2007), they further 

agreed that AST, tBIL and OCT have the diagnostic ability to differentiate between mild and 

severe fatty liver. Since increased liver TG results in varying effects on hepatocytes resulting in 

varying cellular function and stress, serum parameters alone are not a reliable method of 

diagnosing fatty liver. 

Reid et al. (1984) investigated the relationship between liver fat content and a complete 

blood count in 369 dairy cows during the 2
nd

 week of lactation. The complete blood count 

consisted of an erythrocyte count, packed cell volume, hemoglobin concentration and a white 

blood cell count (WBC). They found that there was a significant (P < 0.01) reduction in WBC 

count in cows with greater than 20% liver fat. However, the increased incidence and severity of 

low WBC associated with fatty liver may be due to the increased incidence of infectious diseases 

seen in cows with fatty liver (Fronk et al., 1980; Hill et al,. 1985).    

Ultrasonography has been investigated as a means for estimating liver triglyceride 

content. The use of ultrasound has been effective in diagnosing liver abscesses in cattle 

(Lechtenberg & Nagaraja, 1991). However, the challenging aspect of ultrasonic diagnosis of 

fatty liver is that the changes seen in hepatic echogenicity are much less distinct than in a focal 

hepatic abscesses (Nyland et al., 2002). In cows, fat deposition during fatty liver is generally a 

diffuse process occurring in all lobes of the liver (Mohamed et al., 2004). The echogenicity of 

tissue is a result of the number of solid-liquid interfaces. Since fatty liver is a result of increased 
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TG molecules within the parenchyma of the liver, the resulting image is more echogenic 

compared to normal (Thijssen et al., 2008). Although severe cases of fatty liver are relatively 

easy to diagnose using an ultrasonic image (Mohamed et al., 2004), the increasing echogenicity 

can be difficult to detect in less severe cases. This makes subjective interpretation an unreliable 

method for determining the severity of fatty liver.  

A complicating aspect of ultrasound diagnosis is that the result is ultimately subjective to 

the experience of the user and the variability between users (Nyland et al., 2002). In a study by 

Acorda et al. (1995) they found that ultrasonic classification of fatty liver was only 49% accurate 

when analyzed visually by the user. Bobe et al. (2008) investigated if analysis of ultrasonograms 

could accurately detect the degree of hepatic TG infiltration. They used 49 liver biopsies and 

ultrasounds taken during the first two weeks postpartum. A digital analysis was performed using 

a computer program that calculated several first and second-order parameters on the image. The 

first order parameters measured the distribution of gray scale levels in the area of interest, while 

the second-order parameters were based on the difference of gray scale levels between adjacent 

pixels. Results showed that combining 17 of the parameters correctly classified 82% of the liver 

samples into normal, mild, moderate and severe. This indicates that there is potential to utilize 

ultrasound with digital analysis as a reliable estimator of liver TG content. These results are 

significant because this could provide a rapid, non-invasive on-farm diagnosis and allow for 

more specific treatment protocols.   

Nonalcoholic steatohepatitis (NASH) is a form of nonalcoholic fatty liver disease 

affecting about 80 million Americans (Feldstein et al., 2009). The first step in the pathogenesis 

of NASH is the accumulation of lipids in the liver and recent evidence has shown that apoptosis 

plays a significant role in the progression of NASH (Feldstein and Gores, 2005). During the 
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apoptotic process, several caspases are activated that aid in the breakdown of several cellular 

substrates. Caspases-3, 6 and 7 are responsible for cleaving the major intermediate filament 

protein, cytokeratin-18 (CK18) (Hetz et al., 2007). The fragments of CK18 can be found in the 

blood of patients with progressing NASH, which is useful for differentiating patients with NASH 

from simple fatty liver (Wieckowska et al., 2006). A monoclonal antibody test has been 

developed that recognizes a neoepitope on CK18 (Leers et al., 1999). The exact role of apoptosis 

in bovine fatty liver has not been investigated to the same degree as in human medicine. 

Currently, no studies have been published on the role of CK18 in bovine fatty liver. This leaves 

the possibility for CK18 to be a novel indicator and provide another minimally invasive 

diagnostic for fatty liver in dairy cattle. Although diagnosis of fatty liver remains a challenge in 

the field, there are some promising potential alternatives. Further research is needed in the areas 

of an ultrasound or blood-based diagnosis.  

 

Niacin 

One of the more recently studied treatments for fatty liver in dairy cattle is niacin. Niacin 

has been used in human medicine for over fifty years since it was discovered to have a potent 

lipid modifying effect (Carlson, 2005). It wasn‟t until the last thirty years that niacin has been 

viewed as a potential treatment for fatty liver in transition dairy cows. Research has shown that 

ruminal microbes have the ability to synthesize niacin, which is positively related to microbial 

protein synthesis (Shields et al., 1983). This has led nutritionists to believe that dietary intake 

along with ruminal synthesis is adequate for the needs of a dairy cow. However, deficiencies of 

B-vitamins may occur in mature dairy cattle when requirements are high, like in high producing 
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dairy cows (Harmeyer and Kollenkirchen, 1989). This deficiency theory has also been supported 

by the positive effects of supplementing dairy cows with niacin during the transition period.  

Niacin is the general term for vitamin B3, which consists of two vitamers, nicotinic acid 

(NA) and nicotinamide (NAM) (Bender, 1992) that differ by the exchange of a hydroxide ion 

(NA) for an amine (NAM). Carlson (2005) described niacin as having two faces: one is a vitamin 

potent in milligram doses; the other is a lipid drug potent in gram doses. Niacin as a vitamin is 

required in milligram doses in both humans (Carlson, 2005) and cattle (NRC, 2001) for 

maintenance of cellular metabolism. Niacin is required as a precursor for the coenzymes NAD 

and NADP (DiPalma and Thayer, 1991), which act as reducing equivalents in cellular 

metabolism. Most species, including cattle, are able to synthesize niacin from the amino acid 

tryptophan (Foster and Moat, 1980) and quinolinate (Gholson et al., 1963) to support their 

requirement. However, microorganisms are able to synthesize quinolinate from aspartate and 

dihydroxyacetate thus providing ruminants with an additional source of niacin.    

The use of niacin as a lipid modifying drug has been extensively studied for over 50 

years. In 1955, Rudolf Altshul discovered that gram-sized doses of NA substantially lowered 

plasma cholesterol in humans (Altshul et al., 1955). It was later discovered that cholesterol was 

lowered primarily by decreasing LDL cholesterol (Parsons and Flinn, 1959). Nicotinic acid was 

later shown to prevent a rise in free fatty acids (FFA) following treatment with norepinephrine 

(Carlson and Oro, 1962). The decrease in FFA was shown to be due to the rapid accumulation of 

NA on adipose tissue (Carlson and Hanngren, 1964). This was the first sign showing that NA 

directly acts on adipose tissue to prevent lipolysis. Carlson theorized that reduction in FFA 

release from adipose tissue would prevent FFA delivery to the liver and subsequent VLDL 

production. A reduction in plasma triglycerides (VLDL) and decreased LDL concentrations 
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would therefore result in decreased cholesterol concentration. Although the exact mechanism is 

not known, NA is also the most potent HDL-raising drug known (Carlson, 2005). This is an 

important finding in human medicine, as low LDL and high HDL concentrations likely reduce 

the risk of coronary heart disease.   

 Interestingly, the lipid modifying effects of NA are not seen with NAM treatment. 

Several studies have shown that NAM does not prevent FFA release (Altshul et al., 1955; 

Parsons and Flinn, 1959; Carlson and Oro, 1962). Lorenzen et al. (2001) discovered a G-protein 

coupled receptor on adipose tissue with a high-affinity for NA. This receptor was later identified 

as HM74A (Wise et al., 2003) and has high affinity for NA with only low affinity for NAM. This 

was the first evidence as to why NAM does not share the same lipid modifying effects as NA. 

Niacin binds with HM74A causing inhibition of adenyl cyclase activity and a subsequent 

reduction of intracellular cAMP, leading to suppression of lipolysis. This receptor has been 

identified in other species as well (Gille et al., 2009) and is referred to as GPR109A. Another 

ligand for GPR109A is BHBA (Gille et al., 2009), which is of considerable interest, especially in 

postpartum dairy cows. If BHBA acts on GPR109A to inhibit lipolysis, this may identify a 

negative feedback loop for lipolysis in cattle during ketosis. Recent work by Bradford and others 

(2009a) has identified the GPR109A receptor in adipose, liver, muscle and brain of steers. This 

novel distribution of the niacin receptor may prove to be important in determining the response 

of niacin in dairy cattle.   

There are several reasons why niacin is of interest in dairy cattle. One of the major side 

effects of NA is humans is the “flush”, or reddening of the skin following NA treatment. This is 

caused by cutaneous vasodilation mediated by prostaglandin release (Kaijser et al., 1979) and is 

the most common cause for human patients to stop taking NA (Carlson, 2005). Di Costanzo et al. 
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(1997) investigated whether the vasodilator effects of NA could decrease heat stress in lactating 

dairy cows. They found that there was decreased cutaneous temperature with NA treatment, but 

no difference in rectal temperature. They theorized that cows experienced cutaneous vasodilation 

and therefore had increased evaporative heat loss. Similar results were found by Zimbelman and 

others (2010) as well. Another interest in niacin for dairy cows is from work done by Carlson et 

al. (1967) where a 90% reduction of hepatic ketone production was seen in diabetic humans 

immediately following NA treatment. This suggested that niacin had the potential to decrease the 

incidence of ketosis in postpartum dairy cows. Finally, the reduction in lipolysis seen with NA 

treatment could be of tremendous benefit to postpartum dairy cows in preventing the 

development of fatty liver.  

Although oral treatment of NA in humans is beneficial, the data cannot be directly 

extrapolated to cattle. The rumen is able to synthesize large amounts of both NA and NAM 

(Huntgate, 1966; Santschi et al., 2005). However, NAM is absorbed from the rumen in higher 

amounts than NA, but only in small quantities (Erickson et al., 1991). This is because most 

ruminal niacin is within the microbes and only 3-7% is in the free fluid (Erickson et al., 1991). 

Most of the absorption occurs in the small intestine (Rerat et al., 1959), making it a challenging 

task to supplement cattle. The amount of niacin synthesized in the rumen is related to the amount 

supplemented. Riddell and others (1983) measured total niacin concentration in rumen fluid in 

vitro 6 hours after incubation. When no niacin was added, there was a 79% increase in total 

niacin concentration, however, as niacin supplementation increased, the amount of total niacin 

decreased. If niacin was supplemented at 2ppm and 8ppm, the total niacin concentration 

decreased by 13% and 20%, respectively. This indicated that synthesis of niacin not only 

decreases as supplementation increases, but may actually result in increased degradation as well. 
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Although niacin is delivered to the duodenum, over 90% of is contained in the microbial 

population and 50% is incorporated into the coenzymes NAD and NADP (Harmeyer and 

Kollenkirchen, 1989). This means that very little niacin reaches the small intestines in the form 

of NA or NAM.    

The ruminal environment also plays a role in conversion of NA and NAM, as most NAM 

is converted rapidly to NA (Campbell et al., 1994). Differences between NA and NAM within 

the rumen are still not fully understood. NAM has been found to increase fiber digestibility in 

vitro, whereas NA had no effect (Hannah and Stern, 1985). In that study, neither supplement had 

any effect on microbial protein production. Jaster and Ward (1990) investigated the effects of 6g 

of either NA or NAM from 2 weeks prior to 12 weeks following parturition in 30 Holstein cows. 

They found that both NA and NAM decreased BHBA in week 4, while only NAM increased 

glucose and reduced FFA during week 4. This is in contrast to human medicine, where NAM is 

ineffective at reducing FFA and therefore may be the result of ruminal conversion of 

supplemented NAM to NA. In 1994, Campbell and others supplemented 4 cows in a 4X4 Latin 

square with either 12 g/d NA, 12 g/d NAM, 6 g/d NA and 6g/d NAM, or neither NA or NAM. 

Although they tested for both NA and NAM in rumen and duodenal fluid, only NA was detected 

in samples. As expected, all supplemented cows had higher NA concentrations in both ruminal 

and duodenal fluid than control cows. Interestingly, NAM cows had significantly higher NA in 

the duodenum than NA supplemented cows, further supporting that additional NAM is converted 

to NA.  

A substantial amount of supplemented niacin is destroyed or used before it reaches the 

duodenum. Santschi and others (2005) found that 98% of supplemented niacin was unaccounted 

for in the duodenum. This indicated that niacin was either degraded in the rumen or absorbed in 



 26 

one or more of the forestomachs or duodenum prior to reaching the duodenal cannula. In that 

same study they found that 84% of niacin that reached the duodenum was absorbed in the small 

intestines. The amount of niacin that reaches the duodenum has also been found to vary with the 

forage to concentrate ratio. In a study by Schwab and others (2006), they found that higher F:C 

ratio diets resulted in a significant decrease in NAM flow, and tended to reduce NA flow as well. 

They also found a positive effect of increasing NFC content and apparent ruminal synthesis of 

niacin. This may be due to altering the microbial population with differing feeds, since most 

niacin reaching the duodenum is contained within ruminal microbes (Harmeyer and 

Kollenkirchen, 1989). The lower pH in the abomasum also affects the conversion of NAM to 

NA, as abomasal supplementation of NAM does not increase duodenal NAM, but instead 

increases NA (Santschi et al., 2005). Riddell and others (1985) also observed higher niacin flows 

to the duodenum when supplemented, but fecal excretion was equal indicating that intestinal 

absorption of NA was likely higher in the supplemented group. 

There has been a great deal of research done on the effects of niacin in postpartum dairy 

cows. Since NA has the ability to suppress lipolysis (Carlson, 2005), it has the potential to 

decrease NEFA delivery to the liver and possibly reduce or prevent fatty liver. Dufva and others 

(1983) supplemented cows with 6g of NA daily beginning two weeks before calving and then 

increased the dose to 12g per day for 4 weeks following parturition. Plasma glucose was higher 

in the treated group during the week prior to parturition and treated cows had decreased NEFA in 

the week following parturition. Fronk and Schultz (1979) gave 12 g of NA daily to cows 

suffering from ketosis, as defined by low blood glucose and high BHBA and NEFA 

concentrations. They showed that NA increased glucose while reducing BHBA and NEFA 

concentrations. This same finding was seen by Ghorbani and others (2008) when cows were 



 27 

given 0, 6, or 12g of niacin per day. Although some studies have shown positive effects, there 

has been poor consistency on NA reducing NEFA in peripartum cows. Many studies have seen 

no changes in BHBA or NEFA following supplementation (Jaster and Ward, 1990; Minor et al., 

1998; Christensen et al., 1996; Drackley et al., 1998). Pires and Grummer (2007) investigated if 

NA could suppress NEFA in feed-restricted cows. NA was given abomasally through a rumen 

cannula to avoid ruminal degradation as a single dose of 0, 6, 30, or 60 mg/kg after 48 hours of 

feed-restriction. All treatments resulted in significant reduction of NEFA within the first hour. 

However, by 2 hours after treatment with 6 mg/kg, NEFA increased to twice that of the control, 

and by 6 hours NEFA was increased about three times control for the 30 and 60 mg/kg doses. In 

the same experiment they gave feed restricted cows abomasal infusions of 0, 6, or 10 mg/kg NA 

hourly for 8 hours. The same rebound in plasma NEFA was seen within 4 hours after treatments 

ended, and NEFA peaked at four times the control level. Results from these experiments show 

that the rebound is affected by both dose and duration of NA treatment, with high-dose, longer 

treatments resulting in a more severe increase in NEFA. Compared to a transition cow study, this 

was a relatively controlled experiment and gives evidence that although not seen in every 

transition cow NA study, NA can significantly reduce plasma NEFA.  

The recent finding by Taggart and others (2005) found BHBA as a ligand for GPR109A, 

making BHBA concentration a considerable interest during NA supplementation. Nicotinic acid 

has been shown to reduce BHBA in postpartum cows fed 6g of top-dressed NA at each feeding 

(twice daily) (Erickson et al., 1992). As with plasma NEFA concentrations, this reduction is not 

seen in all studies (Christensen et al., 1996; Drackley et al., 1998; Jaster and Ward, 1990). 

Although unknown, it is likely that the reduction in BHBA is due to reduction of lipolysis and 

rate of NEFA delivery to the liver (Erickson et al., 1990). Since NEFA are not consistently 
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lowered in many studies, it would be unlikely for BHBA to be decreased. Plasma BHBA 

increases when the rate of hepatic oxidation of fatty acids is decreased or when delivery of 

NEFA increases (Van den Top et al., 2005). If BHBA concentrations were to be decreased by 

NA supplementation, it is likely that there would be less accumulation of TG in the liver as well. 

Until this finding, it was assumed that the rate of ketone body production was determined by the 

rate of lipolysis and hepatic oxidation. This finding indicates that BHBA may play a vital role in 

a negative feedback loop for lipolysis. Taggart and others (2005) speculated that this may be a 

homeostatic mechanism for preservation during starvation and for prevention of ketoacidosis. 

This agrees with the speculation by Erickson and others (1990) that NA would decrease BHBA 

production through a mechanism inhibiting lipolysis and NEFA delivery to the liver.  

One of the ways to prevent fatty liver and ketosis is to maintain blood glucose 

concentrations (Studer et al., 1993). Fürll (1989) found that in postpartum dairy cows producing 

25kg of fat-corrected milk had 28% higher blood glucose concentrations on days 7 and 14 

postpartum when given 5 g NA or NAM daily. Dufva and others (1983) also found increased 

blood glucose concentrations of cows supplemented with 6 g NA daily beginning 2 weeks before 

calving. Although blood glucose was numerically higher at each sampling, it was only 

significant in the final week prepartum. As with BHBA and NEFA, increased blood glucose is 

neither a common, nor consistent finding. The mechanism by which niacin increased blood 

glucose is unclear. It is possible that niacin may have reduced the rate of glucose removal from 

the blood, increased glucose synthesis by the liver, or both (Flachowsky, 1993). Flachowsky and 

others (1988) found that 0.5g and 1g of NA per day fed to sheep resulted in no increase in 

ruminal volatile fatty acids (VFA). However, the percentage of propionate increased at the 

expense of decreased butyrate. Since propionate is the most gluconeogenic VFA, this may be a 
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possible mechanism for increased blood glucose. However, in many studies that found increased 

glucose they did not measure VFA production.  

Nicotinic acid may also play a role in altering insulin response following parturition. 

Elevated NEFA is associated with decreased response to insulin (Pires et al., 2007). This occurs 

in order to prioritize glucose reserves for more vital functions and milk production while 

increasing the mobilization of NEFA from adipose (Bell and Bauman, 1997). Oikawa and Oetzel 

(2006) found that insulin resistance in fasted cows was associated with increased plasma NEFA 

and liver TG. A decreased response to insulin could potentially exacerbate lipolysis, resulting in 

an increase in metabolic disturbances like ketosis and fatty liver (Pires et al., 2007). Pires and 

others (2007) found that hourly abomasal infusions of 6mg/kg NA decreased plasma NEFA and 

insulin while not having an effect on plasma glucose. This implies that there was an increased 

responsiveness to insulin following treatment with NA. In that same study, the authors 

performed intravenous glucose tolerance tests following 8 hours of infusions. The NA treated 

cows had significantly increased glucose clearance along with a more rapid decline in insulin 

concentration. This implies that high plasma NEFA concentrations are associated with insulin 

resistance, and reducing NEFA with NA can prevent this. However, due to a lack in current 

research, the exact mechanism between glucose and insulin resistance in the dairy cow is not 

fully understood (Grummer, 2008).  

Conclusion 

The transition period is a challenging time in a dairy cow‟s production cycle. An 

unavoidable negative energy balance from an increased demand for milk production coupled 

with decreased DMI results in lipolysis and NEFA delivery to the liver (Grummer, 2008). 

Typically this rate of NEFA delivery is less than the liver‟s capability for oxidation of fatty 
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acids, resulting in accumulation of TG within hepatocytes. Fatty liver occurs in over 50% of 

dairy cattle, costing the industry $60 million annually (Bobe et al., 2004). Diagnosis of fatty liver 

is challenging, as a liver biopsy is the only reliable method and is both invasive and rarely 

performed (Bobe et al., 2008). Prevention of fatty liver presents another challenging aspect of 

fatty liver, as there is no single reliable method. Niacin has proven to be a potent inhibitor of 

lipolysis resulting in decreased plasma NEFA (Pires et al., 2007); however results are 

inconsistent in transition dairy cattle. These inconsistencies may be due to metabolism of niacin 

in the rumen resulting in variations in absorption along with having inconsistent dosages 

administered. Future research should aim to find the proper dosage and delivery method of 

niacin in order to investigate the ability to prevent or reduce fatty liver in postpartum dairy cows. 
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ABSTRACT 

Diagnosis of fatty liver is difficult and can only be accurately performed by microscopic 

examination which is done in live cattle via an invasive liver biopsy. In humans, non-alcoholic 

steatohepatitis (NASH) can be diagnosed with an enzyme-linked immunosorbent assay (ELISA) 

to detect plasma cytokeratin-18 (CK18) fragments. Our aim was to determine if CK18 fragments 

can be detected in bovine plasma, and if they can predict liver triglyceride (TG) content. A 

preliminary study determined that the M6/M30 antibody pair in the CK18 ELISA had higher 

sensitivity for bovine liver homogenate than the M5/M30 antibody pair (P < 0.01). Eighty-nine 

primiparous and multiparous cows between 7 and 18 d in milk were used in a cross-sectional 

study. Liver biopsies were taken to determine the TG content, and plasma was analyzed for 

CK18, nonesterified fatty acid (NEFA), β-hydroxybutyrate (BHBA), TG, insulin, glucose, 

haptoglobin, albumin, bilirubin, lactate dehydrogenase (LDH), aspartate aminotransferase 

(AST), and gamma glutamyl transferase (GGT) concentrations. Data were analyzed using 

Pearson‟s correlations and ANOVA. The mean CK18 concentration was 82.2 U/L with a 

maximum of 440.7 U/L. Plasma CK18 did not correlate with liver TG; however AST was 

positively related to CK18 concentrations (P < 0.02). Liver TG tended to negatively correlate 

with LDH (P < 0.08) and GGT (P < 0.07) and was highly positively correlated with AST (P < 

0.001). No other significant correlations with liver TG or plasma CK18 were found for other 

plasma parameters. Based on these results, it appears that plasma CK18 may be associated with 

hepatocellular damage, but is not a reliable indicator of liver TG content in dairy cows. However, 

the mean concentrations of NEFA (456 µM) and BHBA (624  mol/L) indicate that the majority 

of the cows included in this study were not suffering from severe metabolic problems.  

Key Words: fatty liver, cytokeratin-18, liver triglyceride  
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INTRODUCTION 

 The diagnosis of fatty liver presents a challenge to both producers and 

veterinarians. Accurate clinical diagnosis is often difficult because signs are vague, nonspecific 

and may be masked by concurrent diseases (Herdt et al., 1983). As cows develop moderate fatty 

liver, they often lose a significant amount of body weight (Jorritsma et al., 2001) and have 

depressed DMI (Veenhuizen et al, 1991). Currently, the only reliable method of diagnosing fatty 

liver is by histological or biochemical analysis of liver tissue (Bobe, 2004). This method is 

impractical for on-farm diagnosis because it requires minor surgery, poses a risk of infection and 

can be lethal if a major blood vessel is punctured (Bobe et al., 2008).  

Nonalcoholic steatohepatitis (NASH) is an advanced form of nonalcoholic fatty liver 

disease affecting about 80 million Americans (Feldstein et al., 2009). The first step in the 

pathogenesis of NASH is the accumulation of lipids in the liver, and recent evidence has shown 

that apoptosis plays a significant role in the progression of NASH (Feldstein et al., 2005). During 

the apoptotic process, several caspases are activated that aid in the breakdown of cellular 

substrates. Caspases-3, 6 and 7 are responsible for cleaving the major intermediate filament 

protein, cytokeratin-18 (CK18; Hetz et al., 2007), which then diffuses into serum (Hetz et al., 

2007). Fragments of CK18 can be found in the blood of patients with progressing NASH, which 

is useful in differentiating patients with NASH from simple fatty liver (Wieckowska et al., 

2006). A monoclonal antibody test has been developed that recognizes a neoepitope on CK18 

that is exposed only after caspase cleavage (Leers et al., 1999). The exact role of apoptosis in 

bovine fatty liver has not been investigated to the same degree as in human medicine. Currently, 

no studies have been published on the role of CK18 in bovine fatty liver. It is possible that CK18 
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could serve as a novel, minimally-invasive diagnostic tool for fatty liver in dairy cattle. The 

objective of this study was to determine if plasma CK18 concentration is a specific and sensitive 

predictor of liver triglyceride (TG) content in peripartum dairy cows.  

 

 

MATERIALS AND METHODS 

All experimental procedures were approved by the Kansas State University Animal Care 

and Use Committee.  

 

Assay Validation 

Two sandwich ELISA kits are available for measuring CK18 levels in plasma; one relies 

on an M5/M30 antibody pair and the other an M6/M30 pair. A preliminary study was performed 

in order to assess the reactivity of the CK18 ELISA in bovine liver. Liver samples were taken 

from four steers immediately post-mortem. Approximately 12 g of tissue was collected from 

each animal and split into 2 samples. A 6-g sample was incubated for 2-3 h at 37
o
C in a mixture 

of 15 mL Hepatozyme-SFM (Invitrogen, Carlsbad, CA, USA) and 3 µL of 1 mM staurosporine 

(200 nM final concentration). Staurosporine inhibits intracellular kinase proteins, thereby 

inducing apoptosis in hepatocytes in vitro (Kihlmark et al., 2001). A 6-g control sample was 

immediately frozen in liquid nitrogen and stored at -80
o
C. After 2-3 h, the control sample was 

then added to Hepatozyme-SFM and all samples were homogenized, vortexed, and a 1 mL 

volume was centrifuged at 12,000 × g for 10 min. Approximately 0.7 mL of the supernatant was 

removed and re-centrifuged at 12,000 × g for an additional 10 min. Finally, 0.5 mL of the 

supernatant was removed and stored at -20
o
 C until analysis. Quantification of CK18 fragments 
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was carried out using the M5/M30 and M6/M30-Apoptosense® ELISA kits (Peviva AB, 

Bromma, Sweden). These ELISAs use monoclonal antibodies recognizing an epitope on the 

238–396 fragment of CK18 as a catcher and horseradish peroxidase-conjugated M30 antibody as 

a detector. 

 

Study Design 

The main experiment was an observational cross-sectional study of commercial dairy 

cows between 7 and 18 days in milk. Eighty cows (reference) were randomly selected between 7 

and 18 days in milk from two commercial dairy farms in north-central Kansas over 4 days during 

the period from August 1, 2007 to October 30, 2007. An additional 9 cows (clinical) were 

voluntarily enrolled by their owners at the Kansas State University Veterinary Medical Teaching 

Hospital (KSU-VMTH) after presentation for left displaced abomasum (LDA) from August 2007 

to November 2007. Liver biopsies and blood samples were collected from all cows. Liver 

samples from reference cows were measured for TG content and blood was analyzed for CK18 

concentration along with other plasma parameters. 

 

Data and Sample Collection 

During the main experiment, reference cows were individually removed from their pens 

to a portable chute for liver and blood collection. Approximately 14 mL of blood was collected 

from the coccygeal vein, centrifuged, and plasma was stored at -20
o
C. Liver samples were 

collected using a 14-gauge × 15cm biopsy needle (SABD-1415-15-T, US Biopsy, Franklin, IN). 

Liver was collected between the 10
th

 and 11
th

 ribs, 5 cm dorsal to a line between the olecranon 

and tuber coxae. The area was shaved, aseptically prepared and anesthetized with 2 mL of 
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subcutaneous lidocaine hydrochloride. Anesthesia was assessed by cutaneous response after 5 

min and a #11 Bard Parker blade was used to make a stab incision into the body wall. The biopsy 

needle was inserted cranioventrally towards the liver and approximately 100 mg of tissue was 

collected (total of 5 biopsies), snap-frozen in liquid nitrogen and stored at -80
o
 C until analysis. 

Body condition score (BCS) was recorded by a trained investigator at the time of biopsy 

collection on a 1 to 5 scale according to Wildman et al. (1982). All reference animals were 

immediately given 4.4 mg/kg Ceftiofur crystalline free acid (Excede, Pfizer Animal Health, 

USA). Animals were evaluated 24 and 48 h following sampling for signs of infection and illness.  

Clinical cows had blood collected from the coccygeal vein prior to LDA surgery. Blood 

samples were processed as described above. Post-operative care for clinical cows was 

determined by the attending veterinarian at KSU-VMTH.  

 

Liver and Plasma Analyses 

Approximately 20 mg of liver was placed into 0.3 mL of phosphate-buffered saline (pH 

7.4) and homogenized. The homogenate was centrifuged at 2000 × g for 10 min at 4
o
 C. The 

supernatant was then removed for TG and total protein content. Triglyceride concentration was 

determined by an enzymatic method (TR0100, Sigma-Aldrich, St. Louis, MO, USA) and total 

protein by a coomassie-binding, colorimetric method (kit #23236, Thermo Scientific, Rockford, 

IL, USA). 

Plasma was analyzed for CK18 using M6/M30-Apoptosense® ELISA (Peviva AB: 

Bromma, Sweden), NEFA using an enzymatic colorimetric procedure (NEFA-HR, Wako 

Chemicals USA, Richmond, VA, USA), glucose by colorimetric procedure (kit #439-90901, 

Wako Chemicals USA, Richmond, VA, USA), insulin by radioimmunoassay (DSL-1600, 
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Diagnostic Systems Laboratories, Inc., Webster, TX, USA), haptoglobin by bovine-specific 

ELISA (#2410-7, Life Diagnostics, West Chester, PA, USA), BHBA by enzymatic reaction 

(Pointe Scientific, Inc., Canton, MI, USA), albumin by a dye-binding method (Pointe Scientific, 

Inc., Canton, MI, USA), direct bilirubin by colorimetric reaction (Pointe Scientific, Inc., Canton, 

MI, USA), and plasma TG by enzymatic method (TR0100, Sigma-Aldrich, St. Louis, MO, 

USA). Plasma concentrations of hepatobiliary enzymes were also measured. Lactate 

dehydrogenase, aspartate aminotransferase, and gamma glutamyl transferase were determined by 

individual kinetic methods (Pointe Scientific, Inc., Canton, MI, USA). 

 

Statistical Analysis 

Data were analyzed using the ANOVA procedure of JMP (version 8.0, SAS Institute, 

Cary, NC). Pearson correlations among variables were performed on the entire dataset. 

Correlations were declared significant at P < 0.05; comparisons with P < 0.10 are discussed as 

trends. 

 

 

RESULTS AND DISCUSSION 

Assay Validation 

Concentrations of CK18 in these tissue lysates are shown in Figure 3.1. Results indicate 

that control samples had higher levels of CK18 than apoptotic samples (P < 0.01); this may be 

due to the protocol used to induce apoptosis. Control samples were frozen prior to 

homogenizing, whereas the apoptotic samples were incubated at room temperature in the 

staurosporine mixture. It is possible that the freezing and thawing process itself induced 
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apoptosis, perhaps even more dramatically than the staurosporine did. Use of the M6 antibody 

resulted in significantly higher CK18 values in the tissue lysates (P < 0.01). The range of values 

for the M6 kit was 252 - 1394 U/L, whereas use of the M5 antibody resulted in values ranging 

from 34 - 291 U/L. Based on the concentrations from the liver tissue samples, it was concluded 

that the M6 antibody likely binds bovine CK18 more effectively than the M5 antibody. However, 

the higher concentrations of CK18 measured in control samples after freezing compared to 

staurosporine incubation was an unexpected finding which we are unable to explain. Based on 

these preliminary findings, the M6/M30 antibody pair was used for analysis of CK18 in the main 

experiment. 

Liver Triglyceride 

At the time of biopsy collection, the BCS of the 80 commercial cows was 2.93 ± 0.27. 

The range of liver TG content ranged from 0.007 to 3.63 mg/mg protein. We cannot directly 

compare our results to previous studies due to our methods of quantifying TG. We determined 

liver TG concentration by correcting mg of TG by mg of protein, which has not been published 

by other authors. Fronk and others (1980) found that hepatic protein content is consistent at 

approximately 3.6 % ± 1.2 % (wet weight). The mean TG content in our study was 0.55 mg/mg 

protein with a standard deviation of 0.77. Assuming hepatic protein is constant, our mean TG 

concentration was 2.09% (wet weight) with a standard deviation of 2.7% and the maximum TG 

concentration correlates with 12.96% TG (wet weight). Commonly, fatty liver is classified based 

on liver TG concentration (wet weight) with mild (1-5%), moderate (5-10%) and severe (>10%) 

(Bobe, 2004). Most cows in this study suffered from mild fatty liver, with only a few cows 

experiencing severe fatty liver. Since the purpose of this study was to determine if CK18 can 
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predict liver TG content, this group of transition cows may not have been a good population to 

use.  

The relationship between hepatic TG content and plasma parameters is shown in Table 

3.1. NEFA tended to positively correlate with liver TG content (P < 0.09), which has been 

demonstrated by other authors (Bertics et al., 1992; Rukkwamsuk et al., 1999). This is expected, 

as increased delivery of NEFA to the liver is part of the etiology of fatty liver (Bobe, 2004). 

Concentrations of plasma NEFA in cows without fatty liver has ranged from 270-540 µM 

(Kalaitzakis et al., 2007; Ohtsuka et al., 2002; Veenhuizen et al., 1991; Rukkwamsuk et al., 

1998), and can exceed 1,000 µM in moderate to severe fatty liver. Seifi and others (2010) found 

that cows with NEFA greater than 1,000 µM are 4.6 times more likely to be culled. It has also 

been shown that NEFA greater than 720 µM will result in decreased conception within 70 days 

postpartum (Ospina et al., 2010). Cows in our study had a mean NEFA concentration of 456 µM, 

with only 4 out of 80 cows having NEFA concentrations greater than 1,000 µM. This suggests 

that the prevalence of metabolic problems was low in this cross section of cows. This may have 

been due in part to the fact that these cows were greater than 7 days in milk. Therefore, they may 

not have been in a severe negative energy balance as seen in cows during the first week of 

lactation. During liver collection, we also found that one of the producers gave oral drenches of 

propylene glycol to all cows for several days after parturition. Propylene glycol suppresses 

plasma NEFA in postpartum cows (Osman et al., 2008), which could potentially reduce liver TG. 

Serum BHBA concentration is a useful predictor of subclinical ketosis (Duffield et al., 

1998) and ketosis has a close association with fatty liver (Grohn et al., 1987). Plasma 

concentrations of BHBA that have been used to define subclinical ketosis have ranged from 1000 

to 1400  mol/L (Duffield et al., 2000), and the mean concentration in our study was 624  mol/L, 
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with a 75
th

 percentile of 720  mol/L and maximum of 1,927  mol/L. These results indicate that 

most of the cows in this study were not suffering from ketosis, even at a subclinical level. 

Several authors have shown significant relationships between liver TG and NEFA (Rehage et al., 

1996), BHBA (Mills et al., 1986; Rehage et al., 1996), and AST (Kalaitzakis et al., 2007). The 

fact that liver TG does not correlate with many of the parameters in this study is not surprising 

since the range of liver TG concentrations measured in this study was relatively narrow.  

An unexpected negative relationship between liver TG and all three hepatic enzymes was 

found. Liver TG was negatively related with LDH (P < 0.08) and GGT (P < 0.07) and was 

highly correlated with AST (P < 0.001). This is interesting because these enzymes are expected 

to increase with hepatobiliary disease in cattle (Stockham & Scott, 2002). Kalaitzakis and others 

(2007) found that AST is increased with moderate to severe fatty liver compared control cows (P 

< 0.05). The AST of healthy cows in that study averaged 42.5 U/L and ranged from 29.6–71.9 

U/L (2.5 to 97.5 percentiles). Values in our study were similar, averaging 42.0 U/L with a range 

of 10.7 - 85.2 U/L (2.5 to 97.5 percentiles). In the same study by Kalaitzakis and others, GGT 

did not increase as liver TG increased, and their mean GGT was similar to ours, 17 and 18.9 U/L, 

respectively. This is an expected finding, as GGT primarily originates from biliary epithelial 

cells (Stockham & Scott, 2002), and bovine fatty liver has not been shown to involve the biliary 

system. However, Ohtsuka and others (2002) found increased GGT concentrations in cows with 

mild, moderate and severe fatty liver. Based on our data, AST, GGT and LDH are not accurate 

predictors of fatty liver; however, our sample population included only a small proportion of 

cows with severe fatty liver. 
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CK18 

The correlation between CK18 and plasma parameters is shown in Table 3.1. The only 

significant correlation with CK18 was with plasma AST (P < 0.02). Contrary to the negative 

correlation with liver TG concentration, the relationship of AST with CK18 is positive. No other 

significant relationship between any of the remaining parameters and CK18 was found. The 

scatter plot illustrating the relationship between liver TG and CK18 is shown in Figure 3.2. No 

correlation between liver TG and CK18 was found in this study (P =0.19).  

The statistics for plasma CK18 from the two groups of cows can be seen in the box and 

whisker plot in Figure 3.3. In the reference cows, CK18 values ranged from 13.4 to 440.7 U/L 

with a mean of 81.9 U/L. This was not significantly different from the clinical group, which 

ranged from 15.9 to 291.3 U/L with a mean of 85.7 U/L. Based on the previous discussion, most 

of the reference cows did not have moderate to severe fatty liver, indicating that this was a group 

of healthy transition cows. The relationship between fatty liver and displaced abomasum has 

been established (Wada et al., 1995; Rehage et al., 1996). Rehage and others (1996) found that at 

the time of displaced abomasum, 40% and 32% of cows had moderate or severe fatty liver, 

respectively. It was hypothesized that cows in our study with LDA would have increased liver 

TG and plasma CK18; however, our results do not support this hypothesis. Although we did not 

measure liver TG content in clinical cows, the relationship shown by Rehage and others (1996) 

would indicate that they had a 72% chance of having at least moderate fatty liver.   

The M30 ELISA used in this experiment has been used in humans to successfully 

differentiate healthy patients from those with liver disease (Hetz et al., 2007). The mean CK18 

concentration for healthy controls in that experiment was 66.8 ± 29.1 U/L, while means for 

patients with acute liver failure patients and cirrhosis were 1,993.6 ± 247.7 U/L, and 673.6 ± 
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86.5 U/L, respectively. Mean CK18 in this experiment was 82.2 U/L with a maximum 440.7 

U/L, which is not consistent with concentrations seen in humans with liver dysfunction. 

Wieckowska and others (2006) determined that a cutoff value of 395 U/L accurately 

differentiated normal patients from those with nonalcoholic steatohepatitis with 99.9% 

specificity and 85.7% sensitivity. It appears unlikely that the M6/M30 ELISA can accurately 

predict liver TG content in cattle. However, this ELISA is not bovine-specific, and no other 

research has been done to assess cross-species reactivity. It is possible that similar fragments are 

released during bovine hepatocyte apoptosis, but the M6 antibody is not specific enough to 

differentiate between diseased and healthy liver. It is also possible that only the most severe 

forms of bovine fatty liver induce apoptosis of hepatocytes, and our population included very 

few of these cases. 

 

 

CONCLUSIONS 

Prior to this work, no research had been conducted to investigate the role of apoptosis in 

bovine fatty liver. We determined that the M6/M30 Apoptosense ELISA is more sensitive to 

bovine liver than the M5/M30. Plasma CK18 concentration was not an accurate predictor of liver 

TG in this study. However, few cows in this cross-section of fresh cows were suffering from 

severe fatty liver or ketosis; the possibility remains that plasma CK18 could be elevated in the 

most severe cases. 
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Figure 2.1 Comparison of the M5 and M6 ELISA on liver homogenate from slaughterhouse 

samples. Samples were frozen, thawed and homogenized (cont), or were incubated in a 

staurosporine mixture (200 nM) to induce apoptosis and homogenized (Apop). Control samples 

had higher levels of CK18 than the apoptotic samples (P < 0.01). The M6 antibody resulted in 

significantly higher CK18 values in the tissue lysates (P < 0.01). 
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Table 2.1 Comparisons of liver TG and plasma CK18 with other plasma parameters. 

 

 Liver TG  CK18  

 r P-value         r P-value 

CK18 -0.148 0.19  -      - 

NEFA 0.189 0.09**  0.130 0.24 

Glucose -0.086 0.44  -0.008 0.94 

Insulin -0.084 0.46  0.012 0.91 

Haptoglobin 0.126 0.26  -0.066 0.56 

BHBA -0.031 0.74  0.011 0.92 

LDH -0.195 0.08**  0.046 0.69 

AST -0.401 < 0.001*  0.252 0.02* 

GGT -0.200 0.07**  -0.001 0.99 

Albumin -0.186 0.10  -0.085 0.45 

Bilirubin -0.071 0.52  -0.048 0.67 

Plasma TG 0.045 0.69  -0.004 0.97 

Liver TG -      -  -0.148 0.19 

 

*Indicates a significant relationship (P < 0.05) 

**Indicates a trend (P < 0.10) 
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Figure 2.2 Scatterplot illustrating the relationship between liver TG and plasma CK18. No 

significant relationship exists (P < 0.19). 
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Figure 2.3 Box and whisker plot of the distribution of plasma CK18 concentrations of 

cross-sectional study cows (reference) and cows presenting with LDA (clinical). Mean values 

are represented with an X. 
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ABSTRACT 

Nicotinic acid (niacin) can suppress lipolysis, but responses to dietary niacin have been 

inconsistent in cattle. Our aim was to determine if a relatively high dose (24 g/d) of encapsulated 

niacin (EN) alters lipid metabolism and productivity of transition cows. Primiparous (n=9) and 

multiparous (n=13) cows (BCS 3.63 ± 0.08) were included in the study beginning 21 d prior to 

expected calving and were sequentially assigned within parity to EN (12 g provided with ration 

twice daily) or control treatments through 21 d postpartum. Liver biopsies were collected on 

days -21, -4, 1, 7, and 21 relative to parturition for analysis of triglyceride (TG) content and 

mRNA abundance of the niacin receptor GPR109A. Blood samples were collected on days -21, -

14, -7, -4, 1, 4, 7, 14 and 21 relative to parturition for nonesterified fatty acid (NEFA), β-

hydroxybutyrate (BHBA), glucose, insulin, haptoglobin, nicotinic acid, and nicotinamide 

analyses. On d 7 postpartum, a caffeine clearance test was performed to assess liver function, and 

on d 21-23 postpartum, blood samples were collected every 8 h to monitor post-treatment NEFA 

responses. Data were analyzed using mixed models with repeated measures over time. There was 

a treatment × time × parity effect on prepartum dry matter intake (DMI, P < 0.07) caused by a 4 

kg/d decrease in DMI of EN-treated cows compared to control cows during the final 4 d 

prepartum. There was a significant increase in nicotinamide (NAM) concentration at d 7 prior to 

parturition. There was a decrease in prepartum glucose concentration in treated animals (P < 

0.04), with no difference in plasma insulin concentration. Treatment × time × parity effects were 

detected for NEFA (P = 0.09) and BHBA concentrations (P < 0.02) during the postpartum 

period. Plasma NEFA peaked at 1467 ± 160 µM for control animals, compared with 835 ± 154 

µM for EN-treated animals (P < 0.01). The EN treated cows tended to have prolonged half-life 

of caffeine on d 7 postpartum compared to controls (P = 0.06; 130.7 vs. 97.6 ± 12.1 min, 
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respectively). After treatments ended on d 21, there was a treatment × time × parity interaction 

(P < 0.09) on plasma NEFA; however, treatment means showed a continued suppression of 

plasma NEFA by EN in cows, with no evidence of a rebound in either parity group. No treatment 

effects were observed for liver TG concentration, BCS, BW, or milk or milk component 

production. These results indicate that a high dose of EN can decrease postpartum plasma NEFA, 

but may also decrease prepartum DMI and postpartum caffeine clearance. 

Key Words: niacin, transition, ketosis 
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INTRODUCTION 

Fatty liver affects up to 50% of postpartum dairy cattle, which is costly due to milk 

production losses and secondary diseases, such as ketosis (Bobe et al., 2004). Fatty liver occurs 

when cattle enter a negative energy balance (NEB), usually during the first 2 wk of lactation 

(Grummer, 1993). Lipolysis occurs as a response to the NEB and results in the liver being 

overwhelmed by high concentrations of plasma nonesterified fatty acids (NEFA; Ingvartsen and 

Andersen, 2000). The high influx of NEFA to the liver is usually greater than the oxidative 

capacity, resulting in storage of NEFA as triglyceride (TG) within the hepatocytes (Drackley, 

2001).  

Use of niacin in dairy cattle is widely studied; however, results have been inconclusive or 

contradictory. Niacin is a B vitamin which is required in very small amounts to maintain cellular 

metabolism (NRC, 2001). At much higher inclusion rates, niacin (NA) also has the ability to 

suppress the release of fat stores (Pires et al., 2007). As a widely used commercial feed additive, 

NA is claimed to reduce heat stress (DiCostanzo et al., 1997) and decrease postpartum plasma 

NEFA concentration (Pires and Grummer, 2007).  Experimentally, NA has been shown to have 

anti-lipolytic effects, causing an immediate reduction in plasma NEFA when given post-

ruminally (Pires and Grummer, 2007). 

Supplemented niacin has poor stability in the rumen and it is estimated that only 5% is 

bioavailable, making supplementation inefficient (Santschi et al., 2005). A rumen-protected form 

of NA (encapsulated niacin: EN) is now commercially available, providing a more effective 

option for dietary supplementation of niacin. This product (Niashure, Balchem Corp., New 

Hampton, NY) is in the form of small pellets which include a core of NA surrounded by several 
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layers of lipids.  Since these lipids are relatively insoluble in the rumen, the majority of the 

pellets exit the rumen intact, largely preventing microbial degradation of the encapsulated niacin. 

The EN product has an estimated 40% bioavailable NA by weight. 

Recently, the G-protein coupled receptor GPR109A was identified as having high affinity 

for NA (Wise et al., 2003). Niacin binds to GPR109A, causing inhibition of adenyl cyclase 

activity and a subsequent reduction of intracellular cAMP, leading to suppression of lipolysis. 

This receptor also has a high affinity for β-hydroxybutyric acid (BHBA), a ketone which is of 

considerable interest in postpartum dairy cows due to the high prevalence of ketosis. Recent 

work by Bradford and others (2009) has identified the GPR109A receptor in adipose, liver, 

muscle and brain of steers. 

Until this experiment, no known studies have been conducted to explore the metabolic 

and production responses to EN in peripartum dairy cows. The purpose of this study was to 

determine if 24 g/d of dietary EN could suppress lipolysis enough to control plasma NEFA in 

postpartum dairy cattle, thereby preventing or reducing the severity of fatty liver. 

 

 

MATERIALS AND METHODS 

All experimental procedures were approved by the Kansas State University Animal Care 

and Use Committee.  

 

Design and Treatments 

Primiparous (n = 9) and multiparous (n = 13) Holstein cows from the Kansas State 

University Dairy Teaching and Research Facility were randomly assigned within parity to 
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receive either 24 grams/d EN or none (control) beginning 21 d before expected calving date and 

continuing until 21 d postpartum. This dose was based on a typical human dose of 1-4 g per day 

(Carlson, 2005), which can be extrapolated to a dose of approximately 10-40 g for an average 

Holstein cow. The EN product used has an estimated 40% bioavailable NA by weight, which 

would result in supplementation of 9.6 g/d. Cows entered the study from June 2008 to August 

2008. Dry matter intake and milk production were measured daily until d 21 postpartum. Cattle 

were housed in a tie-stall facility in randomly assigned stalls, milked 3 times daily (0400, 1100, 

and 2100 h), and fed twice daily (0700 and 1500 h) according to the previous day‟s intake.  

Prepartum and postpartum diets were formulated to meet requirements (NRC, 2001), as shown in 

Table 3.1. All cows were fed similarly, except treated cows received 12 g EN (Niashure, 

Balchem Corp., New Hampton, NY, USA) mixed by hand into the top 10% of the ration. Cows 

were fed twice daily at 110% of expected intake.                  

 

Data and Sample Collection 

 Feed ingredient and TMR samples were taken every 2 wk and corn silage DM was 

determined twice weekly and adjusted in ration formulation. Milk yields were recorded at each 

milking and milk was sampled at every milking beginning at 4 DIM until cows exited the study.  

Liver biopsies were taken on d -21, -4, 1, 7, and 21 relative to parturition. Blood was 

collected on days -21, -14, -7, -4, 1, 4, 7, 14, and 21. On each collection day, liver biopsies and 

blood samples were taken at 1300 h. Approximately 14 mL of blood was collected from the 

coccygeal vein and immediately emptied into 2 tubes, one containing potassium EDTA and the 

other containing potassium oxalate with sodium fluoride as a glycolytic inhibitor (Vacutainer, 

Becton Dickinson, Franklin Lakes, NJ, USA). Both were centrifuged at 2000 x g for 15 min 
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immediately after sample collection, and plasma was harvested and frozen at -20°C until 

analysis. Liver samples were collected using a 14-gauge x 15cm biopsy needle (SABD-1415-15-

T, US Biopsy, Franklin, IN, USA). Liver was collected between the 10
th

 and 11
th

 ribs, 5 cm 

dorsal to a line between the olecranon and tuber coxae. The area was shaved, aseptically 

prepared and anesthetized with 2 mL of subcutaneous lidocaine hydrochloride. Anesthesia was 

assessed by cutaneous response after 5 min and a #11 Bard Parker blade was used to make a stab 

incision into the body wall. The biopsy needle was inserted cranioventrally towards the liver and 

approximately 100 mg of tissue was collected (total of 5 biopsies), snap-frozen in liquid nitrogen 

and stored at -80
o
C until analysis. Body condition score (BCS) was recorded by 3 trained 

investigators on d -21, -4, 1, 7, and 21 on a 1 to 5 scale according to Wildman et al. (1982). Body 

weight (BW) was measured on d 1, 7, 14, and 21 at 1300 h.  

On d 7 postpartum, a caffeine clearance test was performed to assess liver function, 

following the protocol of Lakritz and others (2006). Jugular catheters (#1411, Mila International, 

Erlanger, KY, USA) were placed and caffeine was administered intravenously (2 mg/kg BW) as 

caffeine and sodium benzoate (C4144, Sigma-Aldrich Co., St. Louis, MO) in a sterile pyrogen-

free normal saline solution (50 mg of caffeine/mL of solution). Blood was collected into K3 

EDTA-containing tubes (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) every 30 min 

for 180 min, centrifuged, and the plasma was removed and stored at -20
o
C until analysis. 

Catheters were maintained by flushing with 6 mL of sterile 3.5% sodium citrate solution 

following each collection. On d 21 postpartum, jugular catheters were placed for 48 h. Blood was 

collected as above every 8 h to assess if a post-treatment increase in plasma NEFA occurred.   
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Liver and Plasma Analysis 

Approximately 20 mg of liver was placed into 0.3 mL of phosphate-buffered saline (pH 

7.4) and homogenized. The homogenate was centrifuged at 2000 x g for 10 min at 4
o
 C. The 

supernatant was then removed for triglyceride and total protein analysis. Triglyceride 

concentration was determined by an enzymatic glycerol phosphate oxidase method (# T7532-

120, Pointe Scientific Inc., Canton, MI, USA) and total protein by a coomassie-binding, 

colorimetric method (kit #23236, Thermo Fisher Scientific, Rockford, IL, USA).  

The mRNA abundance of GPR109A in liver tissue was determined by real-time PCR as 

described by Bradford and others (2009). Briefly, RNA was extracted from tissue homogenate 

using QIAGEN Rneasy Lipid Tissue Mini Kit (QIAGEN Inc., Valencia, CA). Coding DNA was 

then synthesized from 2 µg total RNA using the High Capacity cDNA Reverse Transcription kit 

(Applied Biosystems, Foster City, CA). Quantitative real-time PCR was performed in triplicate 

with 1/20 of the cDNA product in the presence of 200 nmol/L gene-specific forward and reverse 

primers with real-time SYBR green fluorescent detection (7500 Fast Real-Time PCR System, 

Applied Biosystems). Abundance of β-actin mRNA was also determined, and GPR109A 

abundance expressed relative to this internal control gene. Primers for β-actin were designed 

from sequence NM_173979.3 (National Center for Biotechnology Information); forward = 

ACGACATGGAGAAGATCTGG, reverse = ATCTGGGTCATCTTCTCACG. 

Plasma was analyzed for NEFA using an enzymatic colorimetric procedure (NEFA-HR, 

Wako Chemicals USA, Richmond, VA), glucose by a colorimetric kit (Autokit Glucose; Wako 

Chemicals USA), insulin by a bovine-specific sandwich ELISA (#10-1201-01, Mercodia AB, 

Uppsala, Sweden), haptoglobin by a bovine-specific ELISA (kit # 2410-7, Life Diagnostics, 
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West Chester, PA, USA), and BHBA using an enzymatic reaction (kit #H7587-58, Pointe 

Scientific, Inc.).  

Plasma concentrations of nicotinic acid and nicotinamide were determined by high 

performance liquid chromatography (HPLC) with a method adapted from Lahély and others 

(1999). A Discovery BIO Wide Pore C18 column (25 cm x 4.6 mm, 5 µm particle size; Supelco 

# 568222-U, Sigma-Aldrich, St. Louis, MO, USA) and Discovery BIO Wide Pore C18 guard 

column (2 cm x 4 mm, 5 µm particle size; Supelco #568272-U, Sigma-Aldrich, St. Louis, MO, 

USA) were used for all analyses. The photochemical reaction was carried out in a mobile phase 

consisting of 0.07 M KH2PO4, 0.075 M H2O2 and 5.1 µM CuSO4 at a pH of 4.25 in a PTFE tube 

(10 m x 0.5 mm) wound around a black light (300-400 nm). Detection was carried out with a 

scanning fluorescence detector (HP 1046A, Hewlett-Packard) that operated at excitation and 

emission wavelengths of 322 nm and 380 nm, respectively. The injection volume was 20 µL and 

the flow rate was 0.8 mL/min.  

Caffeine was analyzed using HPLC as described by Lakritz and others (2006). Briefly, 

250 µL of plasma was added to 250 µL of 0.8 M perchloric acid and centrifuged at 14,000 x g 

for 20 min at 21
o
C. A 200-µL aliquot of clarified supernatant was transferred into an 

autosampler vial containing 10 µL of 4 M NaOH. Vials were capped and 50 µL was injected. 

The column and guard column were the same as described above, and results were read at 273 

nM using an Acutect 500 UV/Vis detector (#06-653-5, Thermo Fisher Scientific) at flow rate of 

1 mL/min. 

 

 

 



 78 

Feed and Milk Analysis 

Diet ingredients and TMR samples were dried in a 55°C forced-air oven for 72 h. Feed 

ingredients were analyzed for DM concentration, ground to pass through a 1-mm screen using a 

Wiley mill (Arthur H. Thomas, Philadelphia, PA), and composited by feed type on an equal mass 

basis. Ash concentration was determined after 5 h of oxidation at 500°C in a muffle furnace. 

Concentration of NDF was determined (Van Soest et al., 1991) using an Ankom Fiber Analyzer 

(ANKOM Technology, Fairport, NY). Crude protein was determined by oxidation and detection 

of N2 (Leco Analyzer, Leco Corp, St. Joseph, MI). Crude fat was determined by ether extraction 

(AOAC, 2000: method 920.9). Starch was determined by α-amylase and glucoamylase digestion, 

followed by colorimetric glucose quantification using a commercial kit (Autokit Glucose; Wako 

Chemicals USA). Concentrations of all nutrients except for DM were expressed as percentages 

of DM determined by drying at 105°C in a forced-air oven for 16 h. All analyses were performed 

in duplicate. 

Milk samples were analyzed by Heart of America DHIA (Manhattan, KS) to determine 

concentrations of fat, true protein, lactose (B-2000 Infrared Analyzer; Bentley Instruments, 

Chaska, MN), urea nitrogen (MUN spectrophotometer, Bentley Instruments), and somatic cells 

(SCC 500, Bentley Instruments). Energy-corrected milk (ECM; 0.327 x milk yield + 12.86 x fat 

yield + 7.65 x protein yield; DHI glossary, Dairy Record Management Systems, 2009) and 

solids-corrected milk (SCM) yield were calculated (Tyrrell and Reid, 1965). 
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Disease Incidence 

Cows were assessed daily for health by rectal thermometer, stethoscope and physical 

examination. Diseases recorded included displaced abomasum, ketosis, metritis, lameness, and 

“other digestive disorder”.  

 

Statistical Analysis 

Data were analyzed using mixed models with repeated measures over time (SAS 9.1, 

SAS Institute, Cary, NC). Spatial power covariance structures were used to model repeated 

measures over time within cow. Fixed effects were treatment, parity, day, treatment × parity, 

treatment × day, and treatment × parity × day. Individual cows were treated as a random effect. 

Plasma insulin and haptoglobin data also included d -21 values as a covariate because of group 

differences prior to treatment initiation; outliers were removed when studentized residuals were 

> |3.0|. Liver GPR109A mRNA and plasma NA and nicotinamide data were log-transformed 

prior to analysis to achieve normal residual distributions. Prepartum and postpartum measures 

were analyzed separately for DMI as well as plasma glucose, NEFA and BHBA concentrations 

because of relatively discontinuous data at calving and an adequate number of data points pre- 

and post-partum. Treatment and two-way interactions were declared significant at P < 0.05 and 

trends are discussed at P < 0.10. Three-way interactions were considered significant at P < 0.10.  

Caffeine elimination half-lives were determined by using the slope of the regression line 

for post-infusion concentrations for each animal and the equation: half-life = ln 2/slope (Lakritz 

et al., 2006). One outlier from each treatment group was removed based on studentized residuals 

> |2.5|. Half-life and distribution volume (VD) data were analyzed using fixed effects of 

treatment, parity, and their interaction, and the random effect of cow. Disease incidence was 
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analyzed using Fishers exact test, including 2 additional categories: having at least one disorder 

and having at least 2 disorders.  

 

 

RESULTS  

 

Diet Analysis and Dry Matter Intake 

Composition and nutrient analysis of prepartum and postpartum diets are shown in Table 

3.1. Daily DMI is shown in Figure 3.1. Cows had higher intakes than heifers (P < 0.01) and there 

was a time effect (P < 0.01) with all groups experiencing an increase in DMI from d 1 to d 21. 

There was also a treatment × parity × time interaction (P < 0.07) during the prepartum period. 

This was due to a decreased DMI of EN-treated cows compared to control cows (P < 0.02) by 

4.1 kg/d during the final 4 d before calving. There were no treatment effects on postpartum DMI. 

 

Body Weight, Body Condition and Milk Production  

Body condition and BW throughout the study are shown in Figures 3.2 and 3.3, 

respectively. On average, all animals lost one BCS (3.63 to 2.64) during the experiment; 

however, no differences were observed between treatments. Milk production and components are 

shown in Table 3.2. As expected, multiparous cows produced higher yields of milk (P < 0.01), 

fat (P < 0.01), protein (P < 0.001), and lactose (P < 0.01) than primiparous cows. Treatment had 

no effect on milk production or milk components. 
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Liver Tissue 

Liver TG content throughout the experiment is shown in Figure 3.4; there were no 

treatment or parity differences. All cows experienced an increase in liver TG following 

parturition (P < 0.001). Abundance of GPR109A mRNA is shown in Figure 3.5. There were no 

treatment, parity or time effects on mRNA abundance of GPR109A in liver tissue.  

 

Plasma Parameters 

Plasma concentrations of BHBA and NEFA are displayed in Figure 3.6. There was a 

prepartum parity effect (P < 0.02) due to heifers having increased NEFA compared to cows. 

During the postpartum period, a treatment × time × parity interaction (P < 0.09) for plasma 

NEFA was detected. NEFA peaked at 1467 ± 160 µM for control cows compared with 835 ± 154 

µM for EN-treated cows (P < 0.01). There was a treatment × time × parity interaction (P < 0.03) 

detected for plasma BHBA during the postpartum period. Although treatment did not 

significantly alter peak postpartum BHBA, EN-treated primiparous cows had lower BHBA 

concentrations than controls on d 7 postpartum (937 vs. 1793 ± 261 µM; P < 0.02). 

Concentrations of glucose and insulin are shown in Figure 3.7. There were no treatment 

effects on plasma glucose postpartum; however, EN treatment resulted in lower prepartum 

glucose (P < 0.04) compared to control. There was both a parity effect prepartum (P < 0.01) and 

a trend postpartum (P < 0.07) for cows to have lower glucose than heifers. There was a treatment 

× parity × time interaction (P < 0.001) for plasma insulin. On day -7 prepartum, EN-treated 

multiparous cows had higher plasma insulin than control multiparous cows (P < 0.02), and on 

day -4 prepartum, EN-treated primiparous cows were higher than control primiparous cows (P < 
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0.02). There was also a time effect (P < 0.001) for plasma insulin caused by a decreasing 

concentration during the prepartum period that reached a nadir at day 4 postpartum.  

Plasma NA and NAM concentrations throughout the study are shown in Figure 3.8. 

Plasma NA was unaffected by treatment, but heifers had higher plasma NA than cows (P < 

0.02), and NA increased for all animals over the course of the study (P < 0.001), most obviously 

after calving. Treatment significantly increased plasma NAM (P < 0.001), and when individual 

days were tested, EN-treated cows were higher on days -7 and 21 relative to parturition (P < 

0.001). Plasma NAM tended to remain elevated for EN on d 23 (P < 0.07), 50 h after the final 

EN treatment. 

Plasma NEFA concentrations were measured every 8 h for 50 h following the first 

feeding without EN added. Treatment cows received EN at the morning feeding, and blood was 

first drawn at 1400 h that day, which was just prior to the next feeding. Results for post-

treatment NEFA concentrations are shown in Figure 3.9. There was a time effect (P < 0.01) but 

no treatment or parity effects.  

 

Liver Indices and Disease Incidence 

Results of the caffeine challenge test are shown in Table 3.3. Encapsulated niacin tended 

to increase the half-life of caffeine (P = 0.06). The volume of distribution (VD) of caffeine was 

also calculated to ensure that there were no errors in administering the caffeine dose. This was 

confirmed, as d 7 BW was well correlated with VD (r = 0.72, P < 0.001). The VD of multiparous 

cows was higher than that of primiparous cows (P < 0.001), which is expected due to their larger 

BW.  
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Haptoglobin results are shown in Figure 3.10; a parity effect (P < 0.01) was detected with 

primiparous cows having higher haptoglobin than multiparous cows (308 vs. 179 ± 35 µg/mL). 

A time effect (P < 0.01) was also detected for haptoglobin as a result of an increase in the early 

postpartum period. Caffeine half-lives were tested against other liver indices to determine if any 

relationships existed. The relationships between liver indices and caffeine half-lives are shown in 

Table 3.4. No significant correlations were found. Incidence of disease is displayed in Table 3.5, 

and no differences were found between treatment or parity groups.   

 

 

DISCUSSION 

As expected, both groups began the study with similar NAM concentrations. The increase 

in NA and NAM following parturition may have been from increased dietary niacin in the 

postpartum diet or increased production by ruminal microbes as intake of fermentable organic 

matter increased. As expected, within 50 h following the end of treatment, NAM concentrations 

in treated cows decreased, although they remained slightly higher than in control cows (P < 

0.07). Plasma NAM concentrations were about 100 times higher than NA concentrations 

throughout the experiment. Several authors have reported that the acidic environment in the 

abomasum favors NA (Santschi et al., 2005; Campbell et al., 1994). However, most NA is 

absorbed from the duodenum and is rapidly converted to NAD and then hydrolyzed to NAM, 

which is the main transport form of niacin in the blood (Henderson, 1983). Therefore, we would 

expect that most of the NA we supplemented should have been converted to NAM after 

absorption. The difference in NA and NAM concentrations in this study can also be explained by 

the affinity for the GPR109A receptor. Nicotinic acid has a very high affinity for the GPR109A 
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receptor, and is bound in adipose tissue within 5 min after intravenous injection in mice (Carlson 

and Hanngren, 1964). Nicotinamide, on the other hand, has a very low affinity for the GPR109A 

receptor (Gille et al., 2009). Therefore, since plasma NA is short-lived, finding increased plasma 

concentrations of NA would be unlikely. It may also be possible that some of the NAM produced 

(Huntgate, 1966) and absorbed from the rumen (Erickson et al., 1991) resulted in increased 

NAM concentrations as well, especially for differences between parities and over time. 

Recent work by Bradford and others (2009) found GPR109A in brain and liver of steers. 

Prior to this, it was believed that GPR109A was only in adipose tissue and immune cells. This 

novel finding allows us to examine the effects of niacin from a different perspective. Activation 

of GPR109A receptors in the brain may have resulted in the decreased DMI in treated cows. 

However, it is unknown if the GPR109A receptor is involved with the satiety center of the brain. 

Allen et al. (2009) discussed the hepatic oxidation theory for hypophagia in transition cows 

caused by increased fatty acid (FA) oxidation. It is believed that increased hepatic FA oxidation 

results in hepatic signaling to the brain causing hypophagia. The EN-treated cows may have had 

depressed DMI as a result of increasing FA oxidation because NEFA and BHBA were rising 

prepartum. If this was the case, however, we would have expected control cows to have reduced 

DMI as well. However, the role of GPR109A in the liver-brain-hunger axis is unknown.  

Peak plasma NEFA concentrations were lower with EN-treated cows compared to 

controls. Increased NEFA occurs from increased lipolysis (Zurek et al., 1995), and extent of 

lipolysis depends on the severity of NEB (Jorritsma et al., 2001; Drackley et al., 1992) and BCS 

of the animal at parturition (Rukkwamsuk et al., 1998). Since there were no treatment differences 

in BCS during this study, it is likely that niacin inhibited lipolysis. Niacin has been shown to 

reduce NEFA in cattle (Pires and Grummer, 2007), while also reducing plasma very-low density 
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lipoprotein (VLDL) in humans (Carlson, 2005). The lowering of VLDL in humans with niacin is 

believed to be a result of decreased FA delivery to the liver (Carlson, 2005). In postpartum dairy 

cows, both increased plasma NEFA and decreased VLDL synthesis play a role in the 

development of fatty liver. Ruminants have a poor ability to secrete TG as VLDL compared to 

non-ruminants (Pullen et al., 1990), which is believed to be a result of decreased synthesis of 

apolipoprotein B-100, a major constituent of VLDL particles (Bertics et al., 1992). Plasma 

VLDL was not measured in this study, and because cattle differ from humans both in their 

propensity to secrete VLDL and in the presence of the GPR109A receptor in liver, it is unclear 

what effect EN may have had on VLDL concentrations.  

Although EN treatment decreased postpartum plasma NEFA, it did not suppress peak 

BHBA concentrations in either heifers or cows, and it only had a significant effect on plasma 

BHBA concentrations of primiparous cows on d 7 postpartum. Non-esterified fatty acids are 

passively taken up by the liver, and uptake is concentration dependent (Bell, 1979). Excessive 

delivery of NEFA to the liver results in both TG storage in the cytoplasm and increased 

mitochondrial production of ketone bodies (Veenhuizen et al., 1991). It is unclear why the 

significant decrease in NEFA caused by EN did not have more dramatic effects on plasma 

BHBA concentration, but it is possible that hepatic metabolism of NEFA was also influenced by 

EN, potentially by shifting a greater proportion of NEFA to the ketogenic pathway. 

There were no treatment differences in liver TG content throughout the study. This was 

unexpected since we hypothesized that niacin would reduce liver TG due to its ability to inhibit 

lipolysis (Carlson, 1963).  However, even with a reduced prepartum DMI, the EN-treated cows 

did not have increased liver TG compared to controls. Depressed prepartum intake increases the 
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risk of fatty liver postpartum (Bobe et al., 2004), so the EN-treated cows were at a somewhat 

greater risk for elevated liver TG content.  

The tendency for increased elimination half-life of caffeine in treated cows was 

unexpected. This was the opposite of our hypothesis, which was that niacin would reduce liver 

TG, and therefore improve liver function. Caffeine elimination half-life is highly correlated with 

liver function (Lakritz et al., 2006), as it is metabolized through the P-450 cytochrome oxidase 

system (CYP-450; DeGraves et al., 1995). There have been reports of half-life elimination in 

lactating dairy cattle ranging from 2.6 to 6.9 hours (DeGraves et al., 1995). Half-lives in this 

study were less than that reported by DeGraves and others (1995); however, no work has been 

reported on transition cows, which may differ metabolically from cows later in lactation. 

Although the GPR109A receptor has been found in liver tissue (Bradford et al., 2009), its 

pathways are not fully understood. Therefore, treatment with EN may have affected the CYP-

450 pathway or may have reduced the liver‟s ability to function properly via GPR109A 

signaling. Although not reported in cattle, there have been reports of hepatotoxicity following 

sustained-release niacin treatment in humans (Dalton and Barry, 1992; Lawrence, 1993). 

Caffeine half-lives were not correlated with concentrations of liver TG, plasma BHBA or 

haptoglobin. This indicates that liver function may not be influenced by these parameters or the 

CYP-450 pathway was unaffected by the severity of metabolic disorders in this study. 

The decreased prepartum glucose in treated animals with only occasional increases in 

plasma insulin was another unexpected finding. Niacin treatment has been shown to reduce 

plasma insulin without affecting glucose concentrations (Pires et al., 2007). Increased plasma 

NEFA is associated with increased insulin concentration and insulin resistance (Pires et al., 

2007). It may be possible that the lower prepartum glucose in treated cows was due to an 
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increased sensitivity to insulin. Also, insulin resistance in adipose tissue results in enhanced 

lipolysis and NEFA release (Pires et al., 2007). This is also supported by the fact that control 

animals had increased NEFA postpartum, which may have been caused in part by greater insulin 

resistance at parturition. 

An interesting finding in this study was the 68% incidence of ketosis during the 

postpartum period. The incidence of ketosis has been reported as 30% in cows with fatty liver, 

and only 10% in those without fatty liver (Grohn et al., 1987). Ketone bodies provide an 

essential source of energy during times of NEB (Herdt, 2000), and are produced when NEFA 

delivery to the liver is high (Drackley et al., 2001). A total of 7 cows (32%) in this experiment 

experienced LDA, which is relatively high compared to normal incidence rates of 1% to 5% 

(Shaver, 1997). This may have been a result of the high ketosis rate and depressed intake, which 

reduces rumen fill and forestomach motility, predisposing to LDA (Cameron et al., 1998). 

However, due to the number of cows in our study, we had little statistical power to assess 

differences in LDA incidence between treatments. 

It was surprising to find that EN-treated cows did not have increased NEFA following 

treatment removal. This differs from work by Pires and Grummer (2007), which found a post-

treatment rebound in plasma NEFA as high as 4 times the control NEFA concentration. This 

occurred within 6 h following a single 6 mg/kg post-ruminal dose in feed-restricted cows, 

whereas our dose should have been absorbed more slowly since it has to move through the 

rumen. We conclude that including EN in feed, administering it for 42 d, and/or removing it 

from animals in positive energy balance may have eliminated the post-treatment rebound in 

lipolysis. We expected that by 21 d postpartum, lipolysis would not be severe enough to 

significantly change plasma NEFA concentrations, and our data supports this. The time effect for 
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plasma NEFA following treatment removal is likely due to pre-prandial increases in lipolysis 

during the 48 h period (Bradford and Allen, 2008). The feedings occurred at 2, 18, 26, and 42 h 

following treatment removal. 

Haptoglobin is an acute phase protein which is released by the liver during periods of 

inflammation (Hachenberg et al., 2007) and has been found to be increased in cows with fatty 

liver (Bobe et al., 2004). The increased haptoglobin in primiparous cows indicates that they were 

suffering from a higher degree of hepatic inflammation than multiparous cows. Baseline values 

of plasma haptoglobin in transition cows have been established (Hachenberg et al., 2007; Uchida 

et al., 1993) and are consistent with cows in our study. In those studies, haptoglobin increased in 

the first few days postpartum, a finding seen in this experiment as well. However, the other 

studies saw peak means of 1500 µg/mL during the peripartum period, whereas means in our 

experiment did not exceed 517 µg/mL. Therefore, it is unlikely that either parity group 

experienced excessive inflammation during our experiment, despite the high incidence of 

transition disorders in this study. 

 

 

 

CONCLUSIONS 

In this study, we found that 24 g/d of dietary EN inhibited lipolysis in postpartum cows, 

which was demonstrated by a decrease in postpartum plasma NEFA concentrations. Depression 

of prepartum DMI in multiparous cows is a novel finding and is difficult to explain. We found 

that depressed DMI in EN-treated multiparous cows followed a significantly increased plasma 

NAM concentration compared to controls. We cannot explain why treated heifers did not 
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experience the same depression in DMI as treated cows. There is still much to learn about the 

GPR109A distribution within the body and how it affects feed intake. However, we found that 

even when EN reduced DMI in multiparous cows, it still suppressed plasma NEFA after calving. 

Although significant alterations in plasma lipid metabolism were detected after EN treatment, 

this did not result in decreased liver TG content. In fact, EN treatment resulted in prolonged 

caffeine half-life clearance, another finding that is difficult to interpret. In contrast to other 

studies, we found that our NA dose and delivery method did not result in a post-treatment 

rebound of NEFA. In summary, 24 g/d of EN can decrease postpartum plasma NEFA. Further 

research is needed to understand the effects of niacin on prepartum DMI and mechanisms 

involving postpartum liver metabolism. 
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Figure 3.1 Dry matter intakes during the experimental period. Multiparous cows had higher 

DMI than primiparous cows (P < 0.01). There was a treatment × parity × time interaction (P < 

0.07) caused by a decreased DMI for EN-treated multiparous cows by 4.1 kg/d during the final 4 

d prepartum (P< 0.02). SEM = 1.4 kg. EN animals received 24 g/d of dietary encapsulated 

niacin.  
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Figure 3.2 Body condition score during the experimental period. There were no significant 

differences between treatment or parity groups, and all groups had a decrease in body condition 

score during the experimental period (P < 0.001). SEM = 0.17. EN animals received 24 g/d of 

dietary encapsulated niacin.  
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Figure 3.3 Body weight during the postpartum experimental period. Multiparous cows were 

heavier than primiparous cows at all time points (P < 0.001), and all groups lost weight during 

the experimental period (P < 0.001). SEM = 26.1 kg. EN animals received 24 g/d of dietary 

encapsulated niacin.  
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Figure 3.4 Liver triglyceride concentrations during the experimental period. No significant 

differences were found between treatment or parity groups; however there was a time effect (P < 

0.001). SEM = 22.8 mg/g. EN animals received 24 g/d of dietary encapsulated niacin.  
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Figure 3.5 Abundance of the niacin receptor GPR109A mRNA in liver tissue during the 

experimental period. No treatment, parity or time differences were detected. SEM = 0.13. EN 

animals received 24 g/d of dietary encapsulated niacin.  
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Figure 3.6 Plasma concentrations of nonesterified fatty acids (A) and beta-hydroxybutyrate 

(B) during the experimental period. A. A treatment × time × parity interaction was detected (P 

= 0.09) after calving. SEM = 82 µM-Pre, 216 µM-Post.  B. A treatment × time × parity 

interaction was detected (P < 0.02) after calving. SEM = 97 µM -Pre, 234 µM -Post. *Indicates a 

treatment effect for primiparous cows (P < 0.05). **Indicates a treatment effect for multiparous 

cows (P < 0.06). EN animals received 24 g/d of dietary encapsulated niacin.  
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Figure 3.7 Plasma concentrations of glucose (A) and insulin (B) during the experimental 

period.  A. There were treatment (P < 0.04) and parity (P < 0.009) effects prepartum and a 

parity trend postpartum (P < 0.07). SEM = 3.73 mg/dl-Pre, 2.70 mg/dl-Post. B. A treatment × 

parity × time effect was detected (P < 0.001) along with a time effect (P < 0.001). SEM = 0.61 

ng/mL. *Indicates a treatment effect for primiparous cows, **Indicates a treatment effect for 

multiparous cows. EN animals received 24 g/d of dietary encapsulated niacin.   
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Figure 3.8 Plasma concentrations of NA (A) and NAM (B) during the experimental period. 
A. NA was unaffected by treatment, however there was a parity effect (P < 0.02) from heifers 

having higher NA concentrations than cows and a time effect (P < 0.001). SEM = 0.01 µg/mL. 

B. Treatment with NA raised plasma NAM (P < 0.001) compared to control. This was caused by 

significant (P < 0.001) differences on days -7 and 21. **Indicates significant (P < 0.001) 

differences between treatments. † Tendency for a treatment effect (P < 0.07). The last time point 

is 50 h following treatment removal. SEM = 0.093 µg/mL. EN animals received 24 g/d of dietary 

encapsulated niacin.  
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Figure 3.9 Plasma concentrations of non-esterified fatty acids during the post-treatment 

period. There was a time effect (P < 0.01) but no treatment or parity effects. SEM = 73 µM. EN 

animals received 24 g/d of dietary encapsulated niacin.  
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Figure 3.10 Plasma concentrations of haptoglobin during the experimental period. A parity 

effect (P < 0.02) was detected with primiparous cows having higher haptoglobin than 

multiparous cows (308 vs. 179 ± 35 µg/mL). A time effect was detected as well (P < 0.01). SEM 

=102 µg/mL. EN animals received 24 g/d of dietary encapsulated niacin.  
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Table 3.1 Composition and nutrient analysis of dietary treatments during the experimental 

period. 

  Ration 

  Prepartum  Postpartum 

% DM Corn silage 24.2  26.7 

 Prairie hay 27.7  - 

 Alfalfa hay -  14.5 

 WCGF
1
 34.6  35.3 

 Cracked corn 0.0  14.5 

 Ground corn 9.99  - 

 SoyBest
2
 0.0  6.4 

 Soybean meal 48% 3.24  - 

 Salt-white 0.08  - 

 Limestone -  1.7 

 Trace mineral salt -  0.14 

 Sodium bicarbonate -  0.41 

 MFP-Mintrex
3
 -  0.08 

 Magnesium oxide -  0.08 

 Vitamin/mineral pre-mix
4
 0.07  0.16 

Nutrients
5
     

 DM, % as-fed 63.8  60.9 

 CP 13.8  18.9 

 NDF 41.3  27.9 

 Starch 17.9  22.7 

 NFC
6
 35.5  42.0 

 Ether extract 2.4  2.9 

 Ash 7.0  8.2 
1
Wet corn gluten feed; Sweet Bran, Cargill, Inc. 

2
SoyBest, Grain States Soya, West Point, NE. 

3
MFP-Mintrex, Novus International. 

4
Composed of Vitamins A, D, E, Selenium, 4-Plex (Zinpro Corp.), and organic iodine salt. 

5
Nutrients other than DM expressed as a percentage of diet DM. 

6
Calculated as DM – (CP + NDF + EE + ash). 
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Table 3.2 Milk production and composition during the experimental period. 
 EN

1
 Control  P value 

 Cows Heifers Cows Heifers SEM Treatment Parity 

Milk yield k/d 31.2 21.8 33.9 25.1 2.8 0.29    0.003 

Milk fat, %* 4.68 5.43 4.89 5.11 0.14 0.72    0.001 

Milk protein, % 3.29 3.14 3.17 2.91 0.10 0.13    0.09 

SCC, 10
3
 cells/mL** 115 365 623 190 285 0.59    0.77 

MUN, mg/dL 12.56 10.77 12.31 9.92 1.53 0.72    0.19 

ECM, kg/d 29.2 21.7 31.4 23.1 2.0 0.38    0.001 

SCM, kg/d 35.5 26.0 38.3 28.0 3.1 0.44    0.004 

Yield, kg/d        

     Milk fat 1.53 1.21 1.73 1.29 0.56 0.34    0.01 

     Milk protein 1.09 0.71 1.10 0.74 0.09 0.81    0.001 

     Milk lactose 1.59 1.08 1.66 1.22 0.15 0.49    0.003 
1
Animals received 24 g/d of dietary encapsulated niacin. Bolded P values are considered 

significant.   

*Indicates a treatment by parity trend (P = 0.06) 

**Indicates a treatment by parity by DIM interaction (P = 0.06) 
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Table 3.3 Results of day 7 caffeine clearance test
1
  

 Treatment    Parity   

 EN
2
 Control SEM P-value  Cows Heifers SEM P-value 

3
Half-life (min) 130.7   97.6 12.1 0.06  109.9 118.3 12.2 0.63 

VD (L) 414.7 418.3 31.7 0.93  469.8 330.1 23.2   0.001 

1
 Treatment × parity interactions were not significant.  

2
 Animals received 24 g/d of dietary encapsulated niacin.  

3 
Two outliers removed 
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Table 3.4. Correlations between day 7 caffeine clearance half-life and liver indices. 

 Half-life 

 r
2
 P-value 

Haptoglobin <0.01 0.95 

BHBA   0.04 0.40 

Liver TG <0.01 0.92 
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Table 3.5 Incidence of diseases during the experimental period.  

  EN
1
  Control 

 

Disorder 

 Multiparous 

(n=6) 

Primiparous 

(n=5) 

 Multiparous 

(n=7) 

Primiparous 

(n=4) 

Ketosis  4 3  5 3 

Metritis  0 1  0 1 

Lameness  2 0  2 2 

Displaced abomasum  2 2  1 2 

Other digestive 

disorder 

 2 0  1 1 

At least 1disorder  4 3  6 3 

At least 2 disorders  3 2  3 3 

1
 Animals received 24 g/d of dietary encapsulated niacin. No differences exist between treatment 

or parity groups.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


