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CHAPTER I

INTRODUCTION

In any type of a communication link the major role of the
receiver is to precisely recover the signal being transmitted.
The received input usually consists of the desired signal plus
noise added in transmission. It is also possible to have
intentional interference, i.e., the possibility of a jammer
exists with the objective of disrupting the link. To achieve
its objective the jammer can introduce a signal, add more noise
to that already added by the channel, or introduce a combination
of these.

Little or nothing at all it is known of the jammer. The
presence of the jammer and the noise introduced by the channel
are responsible for the random nature of certain parameters in
the received signal. Under such adverse circumstances a
reference signal for detection frequently cannot be derived.
Therefore, a non-coherent detection scheme is best recommended.
The detection system of interest here consists of a bandpass
pre-filter followed by a square-law envelope detector and a
zonal low-pass filter. A block diagram of the system is shown
in Figure 1.

This work is concerned with the derivation of a probability
distribution function (pdf) of the receiver output. The pdf
derived is very general. Few restrictions have keen set in the
characteristics of either the signal or Jjammer. This noise

added by the channel or the jammer is assumed to be additive,
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Gaussian, and zero-mean. This kind of channel will be referred
as the Additive White Gaussian Noise (AWGN) channel.

The importance of the pdf derived herein resides in the
following fact. With the development of appropriate numerical
methods, the probability of detection for a very general square-
law detection system can be found for a variety of jamming
environments. This is the main goal of this report. Aprro-
priate mathematical models for the receiver are developed in the
next chapter. The derivation of the resulting pdf for the
receiver output is presented in Chapter III. Some examples are

given in Chapter IV.



CHAPTER II

MATHEMATICAL MODELS

Representation of a Bandpass Signal

Signals and channels or systems which satisfy the condition
that their bandwidth is much smaller than the carrier frequency
are called bandpass signals and channels, or simply bandpass
systems. One representation of a bandpass signal is obtained by
using the properties of complex envelcpes [1,2,4]. Some
important properties of bandpass systems are summarized in the
following paragraphs.

A bandpass signal, x(t), can be represented by its complex

envelope, ﬁ(t), defined as
X(£) = V(t) exp [J¥(8)] , (1)

where V(t) denotes the slowly varying amplitude (envelope) of
x(t), and Y(t) denotes the phase angle. The complex-valued
waveform, k(t), is basically a low-pass signal waveform. Hence,
it is called the equivalent, low-pass signal. The real-valued

bandpass signal, x(t), can be expressed in the form
x(t) = Real [%(t)exp(j2mfct)] , (2)

with fc being the carrier frequency. WNote that the complex
envelope is independent of fc.
Equation (2) can be further arranged leading to a second

representation

X(t) = V(t) cos [wect + Y(t)]. (3)



With the aid of trigonometric identities, one may write
x(t) = Xe(t)cos(wect) - Xs(t)sin(wct) , (4)

where the signals Xc(t) and Xs(t), termed the quadrature

components of x(t), are defined as

Xc(t) V(t)cos yY(t) = Xc,

Xs(t)

V(t)sin y(t)

Xs. {5)

The frequency content of Xc(t) and Xs(t) is concentrated at low
frequencies. Hence, these components are called low-pass
signals. Therefore, by either representation (1) or (5) we have

obtained a low-pass model for the signal.

Representation of a Bandpass Random Process

Suppose now that n(t) is a sample function from a wide-
sense stationary (WSS) random process with zero mean and power
spectral density, Snn(f). The power spectral density is assumed
to be zero outside of an interval of frequencies centered about
fe. The process n(t) is said to be a narrowband, bandpass
process if the width of the spectral density is much smaller
than fc. Under such conditions, the random process can also be

represented by any of the two representations (1) or (5) already
.mentioned (1,2,4]1.
Let us consider the representation of n(t) by its quad-

rature components in more detail. 1If

n(t) = nc(t)cos(wect) - ns(t)sin(wct), (6)



and n(t) is a stationary process with zero-mean, then nc(t) and
ns(t) are zero-mean, low-pass processes. Alsco, the autocorrela-

tion functions of nc(t) and ns(t) are equal, i.e.,
Rnc(z) = Rns(z) . (7)

In the special case where n(t) is a Gaussian process, the
quadrature components are jointly Gaussian. For this case,

their joint probably density function is

’ (8)

where nc and ns are samples of nc(t) and ns(t) respectively and

2

the variance ¢ is given by

Rnc(0) = Rns{0) = Rnn(0). (9)

Comparing Equations (4) and (6) a correspondence between
nc(t) and Xc(t), and between ns(t) and ¥s(t) can be established,
where for this particular case nc(t) and ns(t) are Gaussian low-
pass processes. Thus, the processes nc(t) and ns(t) form the
basis for a low-pass model for both the charnel noise and the

jammer noise.

Representation of a Bandpass Linear System

A bandpass, linear system can be modeled as an ecguivalent
low-pass system in the same way as a bandpass signal by using
complex envelcopes [1,2,4]. A system with impulse response,
h(t), has an equivalent, low-pass, impulse response, ﬁ(t),

defined by the relationship



h(t) = 2 Real [H(t)exp(j2rfct)] , (10)

where fc is the center frequency. Taking the Fourier transform

of (10) yields,
*
H(f) = N(f+fc) + H(-f-fc) , (11)

where H(f) and ﬁ(f) are the Fourier transforms of h(t) and ﬁ(t)
respectively. ﬁ(f) is the equivalent low-pass transfer function
of the system.

Inverting the relationship of Equation (10) the equivalent,
low-pass transfer function in terms of the bandpass transfer

function is found to be

B(f) = (12)

[H(f+fc)]low—pass term °

It is evident from (12) that a low-pass equivalent model will
have a bandwidth equal to one half the bandwidth of the bandpass

system.

Response of a Bandpass System to a Bandpass Signal

All transform relations for 1linear systems hold for
low-pass complex envelope models [1,2]. In the frequency

domain, the input-output relation of a bandpass system is

Y(£) = H(£)X(f) (13)

where Y(f), H(f), and X(f) are the transform representations of
the output, the impulse response of the system, and the input

respectively.
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When using the low-pass, equivalent models, the input-

output relation is given by
X(£) = H(H)X(f), (14)

where ?(f), ﬁ(f), and &(f) are the low-pass transforms of the
output, transfer function of the system, and the input respec-
tively. The overall equivalent, low-pass model for the system

is shown in Figure 2.

Square~-law Device

Detection is accomplished through the use of sguare-law
device. The square-law device is responsible for producing a
voltage y(t) proportional to the square of the input signal,

x(t), i.e.,
, .
y(t) = x"(t) . (15)

With the aid of Equations (1) and (2), the input signal, x(t),

can be written as
x(t) = V{t)coswect + Y(t)] . (16)
The output, y(t), is then given by
2 2
y(t) = Vo (t)cos [wct + Y(t)] . (17)

Replacing the squared cosine function with its trigonometric

identity yields

_ v (e

.2
y(t) = 5 + ¥ ét)

cos[2wet + 2y (t)] . (18)




Since the square-law device is followed by a zonal low=-pass
filter, the second term of the right-hand side of Equation (18)
will be eliminated. -Thus, the low-pass model for the square-law

device is defined by
2
z(t) = LS8, (19)

or; in terms of the input complex envelope, &(t),
Y 2
z(t) = JX_“Q‘-’J— . (20)

That is, z(t) is proportional to the magnitude squared of the

input complex envelope.

10



CHAPTER III

DERIVATION OF THE PROBABILITY DENSITY FUNCTION OF THE OUTPUT

Characteristics of the Input Signal to the Envelope Detector

Prior to deriving the pdf of the ocutput, we need first to
lay out in some detail the signal of interest, as well as the-
channel noise and the jammer.

For the sake of simplicity we will assume the pre-filter to
be ideal. Thus, the input signal to the square-law detector,

x(t), is given by

x(t) = s{t) + n(t) + j(t) + jn(t) , (21)

where s(t), n(t), j(t), and Jn(t) represent the signal of
interest, channel noise, jammer as a signal and Jjammer noise,
respectively.

First, let us represent the signal of interest, s(t), by

expanding s(t) into its quadrature components:

s(t) P(tlcos[(wc + Awc)t + €]

(22)
P(t)cos[(wctdiwc)tlcosd - P(t)sin[(wc+Awc)t]sing ,

with P(t) being the slowly varying envelope, Awc the frequency
shift with respect to wc, and 8 the random phase angle cf the
signal.

Second, let us represent the noise added by the channel,

n{t), in terms of its quadrature components, i.e., let

n(t) = nc(t)cos(wct) - ns(t)sin(wect) , (23)

11



where nc(t) and ns(t) are jointly Gaussian, zero-mean, low-pass,
independent processes with variance ci [2,3,4].
Third, let us also represent the jammer signal, j(t), by

its quadrature components:

j(t) = J(t)cos[(wc + Awl)t + 61] (24)

Il

J(t)cos[(wc+Awl)t]lcosbl - J(t)sin[(we+Awl)t]sinsl ,

where J(t) is the slowly varying envelope, Awl is the frequency
shift with respect to wc, and 61 the random phase angle of the
jammer signal.

Finally, the noise introduced by the jammer, jn(t), may

alsc be represented in quadrature form:
jn(t) = njc(t)cos(wct) - njs(t)sin(wct), (25)

with njc(t) and njs(t) being jointly Gaussian, =zero-mean,
low-pass, independent processes with variance cjnz.
Now substituting these representations for the appropriate

terms in Equation (21) and grouping common terms we find

x(t) = [P(t)cos[Awct+6] + JT(t)cos[Awlt+61] + nc(t) +
nc(t) + njc(t)]cos(wct) - [P(t)sin[Awct+6] +

J({t)sin[Awlt+61l] + ns{t) + njis(t)] sin(wct) . (26)

Comparing Equations (4) and (26) the following relationships can

Ee established:

X¥c = P(t)cos[Awct+8] + JT(t)cos[Awlt+81l] + nc(t) + njc(t),
Xs = P(t)sin{Awct+8] + J(t)sin[Awlt+61l] + ns(t) + njs(t), (27)
or;

12



Xc = P(t)cos[Awct+8] + J(t)cos[Awlt+81l] + nc',
Xs = P(t)sin[Awct+6] + J(t)sin[Awlt+681l] + ns', (28)
where,

nc' nc(t) + njc(t),

ns' ns(t) + njs(t). (29)

Note that nc'(t) and ns'(t) are jointly Gaussian, =zero-mean,

: . 2 .
low~-pacss, independent processes where the variance, ot°, is

given by

gt® = on® + ojn® . (30)

Determination of the Pdf

In order to determine the pdf of the output signal, several
changes of variables and transformations of random variables are
necessary. The general form for a transformation of random
variables is obtained from [3]. That is, given n functions
gi(xl,x2,...,xn), 1 < 1 < n, of the random variakles

xl,x2,...,%xn, we can form a new set of random variakbles

z, = gi(xl,x2,...,xn); 1 <i<n,
To determine the joint distribution of f£(zl, z2, ..., zn) of the
z,, we solve the latter equations for x1, %2, ..., %n in terms

l!

of z1, =22, ..., zn. 1If all sets of solutions for these egua-~
tions are real, then the distribution for f(zl, z2, ..., zn) is

given by

13



o Elxll x12,;s .5 %1ln) T2l w22, . o ;XEN0)
£(z1,22,...2n) = 130IT,512,. o oxIn | T T9(x2L,%x22, .. x2n) ]

+ Flenl, 202 ;. v« pX00)
e [J(xnl,xn2,,...,xnn} |

where J(xil,xi2,...,Xin) is the Jacobian of the transformation.

If any set of solutions is not real in some region, then

£f(zl,z2,...,2n) =0
over that region.

Suppose that px(xl,x2,...,xn) is a pdf of interest and a

new set of random variables, yl through yn, is defined according
to the rules

Xi=fi(Yl,Y2,...,YIl); liif_n .

The probability that x is within some N-dimensional volume,

A,
is given by

J i f px(xl,xZ,...,xn) dxl dx2...dxn.
A

Making the change of variables, this intergal becomes

J... J px[fl(yl,yz,...,yn),...,fn(yl,y2,...,yn)]|J|dyldy2...dyn,
B

where J is the Jacobian of the transformation, given by

of1 ofl

oyI °°*  3yn

Jacobian = " .
ofn afn

TYI e m’

14



and B is the volume in the Y-space corresponding to the volume A
in the X-space. Understanding the principles of a general
transformation and change of variables allows us to proceed with
the derivation of the desired pdf. |

With the aid of Equation (8), the pdf of the jointly

Gaussian random processes nc' and ns' is

s e B i 2
f(nc',ns') = z 5 exp[ {ne 23 gs )] ' (31)
2not 20t
with the variance, otz, being defined by Equation (30). From

(28) we find

Xc - P(t)cos[Awct+6] - JT(t)cos[Awlt+61l] ,

nc'

Xs - P(t)sin[Awct+6] - JT(t)sin[Awlt+81l] . (32)

ns'

Substituting the latter relations into Equation (31), and
also considering the distributions of 6 and €1, we may make a
change of random variables to determine the joint pdf of Xc, Xs,
8 and 61, The pdf is then

1 1 L *
T

f(Xc,Xs,6,61) = = ;;;:§

r-'-(Xc-P(t)cc:s;(&wct+9)—J(t)cos(zﬂ&wlt+el))2} "

* exp
- 20t2

(33)

(- (Xs=P (t) sin(Awct+6) =J (t) sin (Awlt+61) %]
i

* exp
- 2ct2

or,

15



*

1 1l
f(¥Xc,Xs,0,01l) = —= —
4w2 2mot

=t 8 2 2 2
* exp -(Xc“ + Xs“ + P 2(1:) + J (t)]] "
= 20t -
* exp +2P (t) [Xc cos(Awct+6) ; Xs 51n(cht+6)]] "
o 20t
" (427 (t) [Xc cos(Awlt+61) + Xs sin(Awlt+el)]J .
2
- 2ot

¢ axp [-ZP(t)J(t)COSI(ch—Awl)t+e—61]J . (34)

20t2

We know that the input signal to the square-law device,
x(t), can be represented by Equation (3). With the aid of a

trigonometric identity, x(t) can be written as follows

)

x(t) V(t)cos[wect + ¢ (t)] (3)

Vit)cosy(t)cos(wct) ~ V(t)siny(t)sin(wct), {35)

where V(t) denotes the envelope and, y(t) denotes the phase
angle.

Recall from Equation (5) that

Xc (t)

V(t)cosy(t) = Xc,

Xs(t)

V(t)siny(t) = Xs, (5)

Inverting the relationships for V(t) and y(t) yvields

2 1/2

V(t) = [Xc? + Xs?] , (36)

and,

p(t) = tan"T [Xs/Xcl . (37)

16



Now, the joint pdf in terms of the envelope, V(t), and the
phase, {(t), random processes, can be determined.
Making the change of variables defined by Equation (5) and

taking into account the Jacobian, we obtain

vt 1
£(Vt,y,6,61) = — ——% *
T 47" 2mwot

9= B 2
F— l:—(v*c + P(t) 2+ 3 (t))} N
20t

— [+2P(t)Vtcos[¢;cht+e]1 .
20t

% pxp [+2J(t)Vtcos[¢-Awlt—el]] i

2ct2
* exp I:-ZP(t)J(t) cos| (Awg--Awl)t+e—Bl]J (38)
20t
and,
cosy(t) -V (t)siny (t)
Jaccbian = = Vt. (39)
siny(t) V(t)cosy(t)

Determination of the final pdf requires the further change
of variables

a =9y - 8 - Awct,

™
I

Yy - 61 - Awlt,

V=, (40)

The Jaccbian for this change of variables is found to be

1 -1 0
Jacobian = |1 0 -1 = 1. (41)
1 0 C



Observe that the cosine function in the last exponential term

can be written as

cos|[ (Awc-Awl) t+6-61] cos|[6+Awct~+P=Awlt-61]

cos[(YP-01l-Awlt) - (Y-6-Awct)]

cos[B-al . (42)

Completing the transformation yields the joint pdf as

vVt 1,

f(Vt;w,a;B) = i
4ﬂ2 2mot
App— 'F[ytz + p2(t£ 4 JZ(t)]] s [+2P(t)Vtcgs(a?J &
o 20t 2ot
g— +2VtJ(t)cgs(B):l — [:—2P(t)J(t)cgs[B—a] (43)
- 20t 20t

To eliminate dependence on § we need to evaluate the following

integral

2T
f(Vt,a,B) = J f(Vt,ﬂJ,GrB) dlp
0

Z;f 2ﬂ0t2
—(ve? + B2 (¢) + J2(t)] [+2P (t) Vtcos (¢)
* exp 5 ] exp L 5 ] *
— 20t 20t
— ’+2J(t)v1-.cgs(s):| &xp [—EP(t)J(t)cos[S—a] L (44)
= 20t 201:2

The resulting pdf is then given by the following expression

18



2T (27
£(Vt) j J £(vt,a,B) dodB
0 0

2 2 2

- + P + J

-V L exp [ (vt () ctu] *
AT° ot 20t

2T 2T
" J J _— +2P(t)Vt§os(a?] o +2J(tJVtcgs(B)] x
0 0 20t 20t

— Ezp(t)J(t)cos[B'M] dodB , s
20t2

which has no closed-form sclution. However, it is interesting
to observe in the last exponential term of the above expression,
the interaction between the signal and the CW (continuous wave)

jammer. This is given by the expression
P(t)J(t)cos[B-a] , (46)

where from Equations (40), it is evident that o is the phase
angle of the signal and B is the phase angle of the jammer.

Three particular cases of importance arise from this
observation:

1) If [B-a] is a multiple of +nm/2 the scalar product is
null, implying that no interaction exists between the two
signals. The exponential term under consideration Lecomes unity
and a closed-form sclution can be found for the marginal pdf.

2) If [B-a] is a multiple of +nm with n even, a rein-
forcement from the part of the jammer is made on the desired
signal. The last exponential term of (45) becomes

exp [%2P(t)Jét) . (47)
20t

19



3) If [B-co] is a multiple of +nm with n odd, the jammer
signal tends to cancel out the desired signal. The exponential

term considered becomes

exp [;EiElﬂéEl] . (48)
20t

Analyzing the three cases, the worst situation is presented
by case three. That is, when the jammer opposes the signal in
strength and thus, makes the detection of the signal less
likely. This is true because a great reduction of the desired
signal strength may cause it to become embedded in the existing
noise.

A common engineering practice, when designing or analyzing
a system, is to establish as a reference the worst conditions of
operation under which the system may operate. For the detection
system of interest the most adverse conditions of operation is
case three. Having adopted the above assumption, the double
integral expression in Equation (45) can now be solved. The

resulting marginal pdf is then

£(VE) = % exp I:‘
ot

(ve? + p2(t) + 3%(x) - 2P(t)J(t)):[ .
20t2

[P (t)Vtcos(B) ]

dg ™
- 20t2 -

1 27
* VT3 J exp
0

2T - -
I _— J(t) Vtcos (B) ag

- 20t2 -

2

I
o
»

o]

vt [« (ve© + p(t) + J°(t) - 2P(t)J(t)]] "
ot = th2

x Io P(t)vf} io [?(t)Vt] ' (49)

L ot? ot 2

20



where Io is the modified Bessel function of order zero.

As a last step, the transformation of random wvariables
defined by Equation (19) allows us to obtain the distribution of
interest. This pdf corresponds to ﬁhe ocutput of the zénal,

low-pass filter, i.e.,
2
z(t) = LB (19)
Solving the above relation for V(t) in terms of z(t) vields

V(t) = [2z(t)]1/2. (50)

The Jacobian can be found to be

Jacobian = V(t), {51)
or, in terms of z(t)
Jacobian = [2z(t)]1/2, (52)

Therefore, the probability distribution function of the output

envelcpe is

2 2
£(2t) = — exp 2 J
ot ot
1/2 1/2
' Io [P(t)(ZZS) ‘} ‘o [;(t)tzzg) J . (53)
gt Gt

In fact, we have determined a distribution function that
takes into account, first, the presence of an intentional jammer
which introduces more noise to that already existing in the

channel, and secondly, a CW jamming signal that opposes the

21



desired signal in strength. Also, for the derivation of the
pdf, both the CW jammer signal and the desired signal have been
considered to have random phase angles. This condition makes
~ the proposed detection scheme the most‘practical for implementa-

tion.

22



CHAPTER IV

RESULTS OF INTEREST

Depending on the combination of signals present at the
input of the receiver, the distribution for the output envelope
will wvary. The pdf derived, Eguation (53), can be used as
multiple-purpose equation to individually find the pdfs for the
four cases where the input is 1) channel noise, 2) signal and
channel noise, 3) signal, channel noise, and jammer noise, or 4)
signal, channel noise, and jammer signal simply by eliminating
the signal or signals not present for the particular case. In
addition to these four cases cf-particular interest for the
study of jamming environments, other eliminations will further
multiply the use of this main result equation.

Some resulting pdfs of interest are:

1) Channel noise only (AWGN channel)
The input signal to the envelope detector, x(t), is given
by
x(t) = n(t).

The distribution of the output will be given by

f{zt) = —lf exp [iggl ;
aon on
where 0n2 is the channel noise variance.
2) Signal and channel noise

The input signal to the square-law device is

x(t} = s(t) + n(t),

23



where the signal, s(t), is
s{t) = P(t) cos[(we+Awc)t+e] .

For this case the pdf is found to be

~(ze + 248 »
£(z2t) = - exp [ : } oo [P(t)(2212;) ] '
an on an

where cn2 is the channel noise variance.
3) Signal, channel noise, and jammer ncise

The input signal to the envelope detector is
x(t) = s(t) + n(t) + jn(t) '
where the signal, s(t), is
s(t) = P(t)cos[(wc+Awc) t+€] ,

and the channel noise, n(t), Jjammer noise, jn(t),
independent, additive, white Gaussian, random processes
variances cn2 and cjnz, respectively.

The pdf can be found to be

f(zZt) = —%E-exp [EE%J ’
o o

where the variance ot2 is

0t2 = 0n2 + cjnz.

4) Signal, channel noise and jammer signal
The input signal is now given by

x(t) = s(t) + n{t) + j(t),

24

are

with



where the signal, s{t), and jammer signal, j(t), are

s(t) P(t)cos|[ (wec+Awc) t+6],

J(t)cos[wl+Awl) t+61], -

j(t)

The marginal pdf can be found to be

2 2
[-[Zt + 28 20 2P(t)J(t)]J

2

f(zZt) = ~l§ exp
an

on

1/2 1/
* To [P(t)(zgt) ] s [b(t)(zzg) ] ’
on gn

2 A Y o 2
where on™ 1is the channel noise variance. Similar to Equation

(53) except for the noise variance.
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CHAFTER V

CONCLUSION AND FUTURE APPLICATIONS

In this report a probability distribution functicon of the
output signal for a square-law receiver has been successfully
derived. The pdf is general in the sense that no restrictions
have been set apriori on the characteristics of the signal or
the jammer as a signal. This means both can be continuocus wave
signals, any pulse type signal, or any combinaticon of these.
Furthermore, this distribution provides a general model from
which the probability density functions of various special cases
can be derived. These pdfs will depend on the combination of
signals present at the receiver input.

As a suggestion for future work, the application of
numerical methods will enable interested researchers to evaluate
the probability of detection for the various jamming environ-
ments. The proposed method would be sufficiently general to
allow consideration_of a wide range of signal formats and filter
characteristics. The resulting procedure should be validated by

comparisons with known results for a non-jamming environment.
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ABSTRACT

This document involves the derivation of the output
distribution function for a square-law detector system under an
international jamming environment. The pdf derived is general
in the sense that few restrictions have been set on the charac-
teristics of the signal or the intentional jammer. Also, it
provides a general model from which the probability density

functions of wvarious special cases can be derived.



