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Abstract

Fractional Leibniz rules have been extensively studied due to their connections to par-

tial differential equations that model many real-world situations such as shallow water waves

and fluid flow. Broadly speaking, fractional Leibniz rules provide estimates of the size and

smoothness of a product of functions in terms of the size and smoothness of the functions

involved. In this dissertation, we obtain new Leibniz-type rules associated to bilinear pseu-

dodifferential operators in a variety of function spaces that quantify smoothness and size in

appropriate ways. Bilinear pseudodifferential operators combine functions through a symbol

and the Fourier transform. When the symbol is identically equal to one, such operators give

the product of two functions, and therefore, fractional Leibniz rules are particular cases of

the Leibniz-type rules discussed.

The main results of this dissertation concern Leibniz-type rules for operators associated

to two classes of symbols: Coifman-Meyer multipliers and symbols in the bilinear Hörmander

classes. Leibniz-type rules for Coifman-Meyer multiplier operators are presented in the set-

ting of Triebel-Lizorkin and Besov spaces based on various quasi-Banach spaces that include

weighted Lebesgue, weighted Lorentz, weighted Morrey, and variable-exponent Lebesgue

spaces. Such results extend and improve previously known fractional Leibniz rules. As

applications, we obtain scattering properties of solutions to certain systems of partial dif-

ferential equations involving fractional powers of the Laplacian. For operators with symbols

in the bilinear Hörmander classes, we obtain Leibniz-type rules in the context of Besov and

local Hardy spaces. The tools used in the proofs of the main results include Nikol’skĭı repre-

sentations of function spaces, pointwise inequalities for maximal functions, and appropriate

spectral decompositions of the symbols of the operators.
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classes. Leibniz-type rules for Coifman-Meyer multiplier operators are presented in the set-

ting of Triebel-Lizorkin and Besov spaces based on various quasi-Banach spaces that include

weighted Lebesgue, weighted Lorentz, weighted Morrey, and variable-exponent Lebesgue

spaces. Such results extend and improve previously known fractional Leibniz rules. As

applications, we obtain scattering properties of solutions to certain systems of partial dif-

ferential equations involving fractional powers of the Laplacian. For operators with symbols
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Chapter 1

Introduction to Leibniz-type rules

Fractional Leibniz rules have been extensively studied due to their connections to partial

differential equations that model many real world situations such as shallow water waves

and fluid flow. In this chapter, we introduce the subject of Leibniz-type rules and describe

the main results to be discussed in Chapters 2 and 3 of this dissertation.

First consider the Leibniz rule taught in Calculus courses, which expresses the derivatives

of a product of functions as a linear combination of derivatives of the functions involved;

more specifically, for functions f and g sufficiently smooth, it holds that

B
α
pfgqpxq “

ÿ

βďα

ˆ

α

β

˙

B
α´βfpxqBβgpxq “ Bαfpxqgpxq ` fpxqBαgpxq ` ¨ ¨ ¨ ,

for α, β P Nn
0 . In an analogous way, fractional Leibniz rules give estimates of the smoothness

and size of a product of functions in terms of the smoothness and size of the factors. For

instance, for f and g in the Schwartz class SpRnq, it holds that

}Ds
pfgq}Lp À }D

sf}Lp1 }g}Lp2 ` }f}Lp̃1 }D
sg}Lp̃2 , (1.0.1)

where 1{p “ 1{p1 ` 1{p2 “ 1{p̃1 ` 1{p̃2, 1 ď p1, p2, p̃1, p̃2 ď 8, 1{2 ď p ď 8, s ą

np1{minpp, 1q ´ 1q or s is an even whole number, and Lr denotes a Lebesgue space for
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0 ă r ď 8. The homogeneous fractional differentiation operator of order s, Ds, is defined as

Dsfpxq “

ż

Rn
|ξ|s pfpξqe2πix¨ξdξ,

where pf is the Fourier transform of f . For s ą 0, the operator Ds is naturally understood

as taking s derivatives of its argument. Indeed, in the case s “ 2, D2f “ ´1
4π2 ∆f , where

∆ “
řn
j“1 B

2
xj

is the Laplacian operator. Furthermore, if s is a positive integer and 1 ă p ă 8,

}Dsf}Lp „
ÿ

|α|“s

}B
αf}Lp ,

where |α| “ α1 ` α2 ` ...` αn for α “ pα1, α2, ..., αnq P Nn
0 .

Another version of (1.0.1) is obtained by using the inhomogeneous sth order fractional

differentiation operator Js:

}Jspfgq}Lp À }J
sf}Lp1 }g}Lp2 ` }f}Lp̃1 }J

sg}Lp̃2 , (1.0.2)

where p1, p2, p̃1, p̃2, and s satisfy the same conditions as for (1.0.1). Similarly to its home-

ogenous counterpart, the operator Js is defined through the Fourier transform as

Jsfpxq “

ż

Rn
p1` |ξ|2q

s
2 pfpξqe2πix¨ξdξ

and can be interpreted as taking derivatives up to order s of f when s ą 0.

The estimates (1.0.1) and (1.0.2) are also known as Kato-Ponce inequalities due to the

foundational work of Kato-Ponce [38], where the estimate (1.0.2) was proved in the case

1 ă p “ p1 “ p̃2 ă 8 and p2 “ p̃1 “ 8, with applications to the Cauchy problem for

Euler and Navier-Stokes equations. This result was extended by Gulisashvili-Kon [30], who

showed (1.0.1) and (1.0.2) for the cases s ą 0, 1 ă p ă 8, and 1 ă p1, p2, p̃1, p̃2 ď 8

in connection to smoothing properties of Schrödinger semigroups. Grafakos-Oh [27] and

Muscalu-Schlag [52] established the cases for 1{2 ă p ď 1; the case p “ 8 was completed in

the work of Bourgain-Li [11] and Grafakos-Maldonado-Naibo [25]; finally, the case p1 “ 1,
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1 ď p2 ď 8 and 1
2
ď p ď 1 was established by Oh-Wu [58]. Applications of the estimates

(1.0.1) and (1.0.2) to Korteweg-de Vries equations were studied by Christ-Weinstein [14] and

Kenig-Ponce-Vega [39].

We now consider an example of an application of the estimates (1.0.1) and (1.0.2) to

partial differential equations. Using a variety of tools that include the fractional Leibniz rule

(1.0.1), Christ-Weinstein [14] obtained dispersive estimates for solutions to the Korteweg-de

Vries equation
$

’

’

&

’

’

%

Btu` B
3
xu` BxF puq “ 0

up0, xq “ gpxq,

where F is some nonlinear function such as F puq “ |u|s. Such equations can be used to model

shallow water waves. In particular, the following result holds: Consider the Korteweg-de

Vries equation with F puq “ |u|s, s ą 4. Then there exists ε ą 0 such that if g satisfies

||g||L1 ` ||g||W 2,p ă ε,

then the solution u satisfies

sup
tPR
p1` |t|2q2{3||upt, ¨q||L8 ă 8. (1.0.3)

In particular, (1.0.3) implies that solutions to the Korteweg-de Vries equation above disperse

to 0 as tÑ 8. The fractional Leibniz rules (1.0.1) and (1.0.2) can also be used to determine

well posedness of various other partial differential equations.

In the estimates (1.0.1) and (1.0.2), the two functions f and g are related through

pointwise multiplication. In this dissertation, we will consider bilinear estimates in the spirit

of (1.0.1) and (1.0.2) where the two functions are related through a bilinear pseudodifferential

operator. Let σpx, ξ, ηq be a smooth, complex-valued function defined for x, ξ, η P Rn. We
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define the bilinear pseudodifferential operator associated to σ, Tσ, by

Tσpf, gqpxq “

ż

R2n

σpx, ξ, ηq pfpξqpgpηqe2πix¨pξ`ηqdξdη. (1.0.4)

We call σ the symbol of the operator Tσ; when σ is independent of x, σ is also referred to as

the multiplier of the bilinear multiplier operator Tσ. We note that σ ” 1 gives Tσpf, gq “ fg.

In Chapters 2 and 3 we will present new results on Leibniz-type rules associated to

bilinear pseudodifferential operators that are of the form

}DsTσpf, gq}Z À }D
sf}X1

}g}Y1
` }f}X2

}Dsg}Y2
, (1.0.5)

}JsTσpf, gq}Z À }J
sf}X1

}g}Y1
` }f}X2

}Jsg}Y2
, (1.0.6)

for a variety of function spaces X1, X2, Y1, Y2, and Z. In the particular case that σ ” 1 and

X1, X2, Y1, Y2, and Z are appropriate Lebesgue spaces, (1.0.5) and (1.0.6) recover (1.0.1) and

(1.0.2) respectively. The main results presented in Chapter 2 will appear in Naibo-Thomson

[56], while those discussed in Chapter 3 were published in Naibo-Thomson [55].

In Chapter 2, we will discuss Leibniz-type rules (1.0.5) and (1.0.6) in the setting of

Besov and Triebel-Lizorkin spaces based on certain quasi-Banach spaces. Such bilinear

estimates will be proved for bilinear Coifman-Meyer multiplier operators. A particular case

of the results in Chapter 2 is the following fractional Leibniz rule, and its inhomogeneous

counterpart, in the context of Hardy spaces:

}Ds
pfgq}Hp À }D

sf}Hp1 }g}Hp2 ` }f}H p̃1 }D
sg}H p̃2 , (1.0.7)

where 0 ă p, p1, p2, p̃1, p̃2 ă 8 and 1{p “ 1{p1 ` 1{p2 “ 1{p̃1 ` 1{p̃2. Recalling that Hp “ Lp

for 1 ă p ă 8, (1.0.7) extends and improves (1.0.1). Indeed, the inequality (1.0.7) extends

the range of p, p1, p2, p̃1, p̃2 by allowing 0 ă p, p1, p2, p̃1, p̃2 ă 8, while (1.0.1) requires

1 ă p1, p2, p̃1, p̃2 ď 8. Additionally, (1.0.7) allows for the Hp norm on the left-hand side,

which is larger than the Lp norm.
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The techniques used in the proofs of the results in Chapter 2 are quite flexible and allow

us to obtain (1.0.5) and (1.0.6) in Triebel-Lizorkin and Besov spaces based on weighted

Lebesque spaces, weighted Lorrentz spaces, weighted Morrey spaces, and variable-exponent

Lebesgue spaces. In particular, the proofs make use of Nikol’skĭı representations of such

function spaces. These representations have been used in unweighted settings in the work of

Nikol’skĭı [57], Meyer [46], Bourdad [10], Triebel [65], and Yamazaki [68].

As an application of the results in Chapter 2 we obtain scattering properties for solu-

tions to certain systems of partial differential equations that involve fractional powers of the

Laplacian. Solutions of these systems scatter to functions that can be realized in terms of a

Coifman-Meyer multiplier operator acting on appropriate arguments. As a consequence, the

main results of Chapter 2 can be applied and lead to estimates associated to the long term

behavior of the solutions.

In Chapter 3, we present Leibniz-type rules in Besov and local Hardy spaces for bilinear

pseudodifferential operators associated to symbols in bilinear Hörmander classes of critical

order. For such symbols we prove bilinear estimates of the form

}JsTσpf, gq}B0
p,q
À }Jsf}B0

p1,q
}g}hp2 ` }f}hp1 }J

sg}B0
p2,q

, (1.0.8)

where B0
p,q and hp denote Besov and local Hardy spaces respectively, 0 ă p ă 8 and

0 ă p1, p2 ď 8 are such that 1{p “ 1{p1 ` 1{p2, 0 ă q ď 8 and s ą np1{minpp, 1q ´ 1q.

The proofs of the results in Chapter 3 utilize appropriate spectral decompositions of the

symbols, pointwise inequalities in terms of maximal functions, and Nikol’skĭı representations

for Besov spaces. The techniques used are inspired by bilinear techniques used in Naibo [53]

and techniques for linear operators in Johnsen [37], Marschall [44], and Park [59].

We close this chapter by referencing serveral works in connection with the study of the

bilinear estimates (1.0.5) and (1.0.6). In [12], Brummer-Naibo studied Leibniz-type rules for

bilinear pseudodifferential operators with homogeneous symbols and in function spaces that

admit a molecular decomposition and a ϕ-transform characterization in the sense of Frazier-

Jawerth [22; 23]. In the context of Lebesgue spaces and mixed Lebesgue spaces, estimates
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of the type (1.0.5) were studied in Hart-Torres-Wu [32] for bilinear multiplier operators with

minimal smoothness assumptions on the multipliers. Related mapping properties for bilinear

pseudodifferential operators with symbols in the bilinear Hörmander classes were studied by

Bényi-Torres [7] and Bényi-Nahmod-Torres [6] in the setting of Sobolev spaces, by Bényi [2]

in the setting of Besov spaces, and by Naibo [53] and Koezuka-Tomita [41] in the context of

Triebel-Lizorkin spaces. Additionally, versions of (1.0.1) and (1.0.2) in weighted Lebesgue

spaces were proved in Cruz-Uribe-Naibo [18], while Brummer-Naibo [13] proved (1.0.5) and

(1.0.6) in weighted Lebesgue spaces for Coifman-Meyer multiplier operators.
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Chapter 2

Weighted Leibniz-type rules and

applications to scattering properties

of PDEs

In this chapter, we obtain new Leibniz-type rules of the type (1.0.5) and (1.0.6) for bilin-

ear multiplier operators associated to Coifman-Meyer multipliers in the settings of Triebel-

Lizorkin and Besov spaces based on quasi-Banach spaces. These results extend and improve

the fractional Leibniz rules (1.0.1) and (1.0.2). Additionally, we apply these results to ob-

tain scattering properties of solutions to systems of partial differential equations involving

fractional powers of the Laplacian.

We start with some preliminaries in Section 2.1, where we discuss Coifman-Meyer mul-

tipliers and Besov and Triebel-Lizorkin spaces based on weighted Lebesgue spaces.

In Section 2.2, we state and prove two of the main results of this chapter on Leibniz-type

rules associated to Coifman-Meyer multiplier operators in the setting of Besov and Triebel-

Lizorkin spaces based on weighted Lebesgue spaces. These results are stated as Theorem

2.2.1 and Theorem 2.2.7. We also present several corollaries and connections with related

results in the literature and estimates (1.0.1) and (1.0.2). The method of proof used for

Theorem 2.2.1 and Theorem 2.2.7 can be adapted to obtain (1.0.5) and (1.0.6) for Coifman-

7



Meyer multiplier operators in the context of Triebel-Lizorkin and Besov spaces based on

other quasi-Banach spaces such as weighted Lorentz, weighted Morrey, and variable-Lebesgue

spaces. These results are discussed in Section 2.3.

Finally, in Section 2.4 we present applications of the results in this chapter to scattering

properties of solutions to partial differential equations.

2.1 Preliminaries

In this section, we set some notation and present definitions and results about weights, the

scales of weighted Triebel–Lizorkin, Besov and Hardy spaces, and Coifman–Meyer multiplier

operators.

The notations SpRnq and S 1pRnq are used for the Schwartz class of smooth rapidly

decreasing functions defined on Rn and its dual, the class of tempered distributions on Rn,

respectively. S0pRnq refers to the closed subspace of functions in SpRnq that have vanishing

moments of all orders; that is, f P S0pRnq if and only if f P SpRnq and
ş

Rn x
αfpxq dx “ 0

for all α P Nn
0 . Its dual is S 10pRnq, which coincides with the class of tempered distributions

modulo polynomials denoted by S 1pRnq{PpRnq. Throughout, all functions are defined on Rn

and therefore we omit Rn in the notation of the function spaces defined below.

The Fourier transform of a tempered distribution f P S 1pRnq is denoted by pf ; in partic-

ular, for f P L1, we use the formula

pfpξq “

ż

Rn
fpxqe´2πiξ¨x dx @ξ P Rn.

If j P Z and h P SpRnq, the operator P h
j is defined so that yP h

j fpξq “
php2´jξq pfpξq for

f P SpRnq and ξ P Rn. If ph is supported in an annulus centered at the origin we will use the

notation ∆h
j rather than P h

j ; if ph is supported in a ball centered at the origin and php0q ‰ 0,

Shj will be used instead of P h
j . For y P Rn the translation operator, denoted by τy, is given

by τyhpxq “ hpx` yq for x P Rn.

The notation A À B means that A ď cB, where c is a constant that may depend on

8



some of the parameters used but not on the functions appearing in the expressions for A

and B.

2.1.1 Coifman-Meyer Multipliers

The symbols used in the main results of this chapter are Coifman-Meyer multipliers. Such

multipliers are defined as follows.

Definition 2.1.1. Given m P R, a smooth, complex-valued function σ “ σpξ, ηq, ξ, η P Rn,

is a Coifman-Meyer multiplier of order m if for all multi-indices α, β P Nn
0 there exists a

positive constant Cα,β such that

|B
α
ξ B

β
ησpξ, ηq| ď Cα,βp|ξ| ` |η|q

m´p|α|`|β|q
@pξ, ηq P R2n

ztp0, 0qu. (2.1.1)

We say σ “ σpξ, ηq, ξ, η P Rn, is an inhomogeneous Coifman-Meyer multiplier of order m if

for all multi-indices α, β P Nn
0 there exists a positive constant Cα,β such that

|B
α
ξ B

β
ησpξ, ηq| ď Cα,βp1` |ξ| ` |η|q

m´p|α|`|β|q
@pξ, ηq P R2n. (2.1.2)

Bilinear multiplier operators associated to Coifman-Meyer multipliers of order 0 have

been well studied. Such operators are examples of bilinear Calderón-Zygmund operators. As

a consequence they are bounded in a variety of function spaces; in particular, they satisfy

}Tσpf, gq}Lp À }f}Lp1 }g}Lp2 ,

where σ is a Coifman-Meyer multiplier of order 0, 1{p “ 1{p1`1{p2, and 1 ă p1, p2 ă 8. The

reader is referred to Coifman-Meyer [15] for various estimates and background information

for Coifman-Meyer multiplier operators, and to David-Journé [19], Grafakos-Torres [29],

and Kenig-Stein [40] for the development of the Calderón-Zygmund theory. Estimates in

weighted Lebesgue spaces for bilinear Calderón-Zygmund operators, and in particular for

Coifman-Meyer multiplier operators of order 0, have been obtained in Grafakos-Torres [28],

9



Grafakos-Martell [26], and Lerner et al. [43].

We next describe a decomposition of Coifman-Meyer multiplier operators that will be

useful in the proofs of the main results of this chapter. Fix Ψ P SpRnq such that

suppppΨq Ď tξ P Rn : 1
2
ă |ξ| ă 2u and

ÿ

jPZ

pΨp2´jξq “ 1 @ξ P Rn
zt0u;

define Φ P SpRnq so that

pΦp0q :“ 1, pΦpξq :“
ÿ

jď0

pΨp2´jξq @ξ P Rn
zt0u.

By the notation previously introduced, if a, b P Rn, ∆τaΨ
j f and SτaΦ

j f satisfy {∆τaΨ
j fpξq “

yτaΨp2
´jξq pfpξq “ e2πi2´jξ¨a

pΨp2´jξq pfpξq and {SτbΦj fpξq “yτbΦp2
´jξq pfpξq “ e2πi2´jξ¨b

pΦp2´jξq pfpξq.

By the work of Coifman and Meyer in [15], given N P N such that N ą n, it follows that

Tσ “ T 1
σ ` T

2
σ , where, for f P S0pRnq (f P SpRnq if m ě 0) and g P SpRnq,

T 1
σ pf, gqpxq “

ÿ

a,bPZn

1

p1` |a|2 ` |b|2qN

ÿ

jPZ

Cjpa, bq p∆τaΨ
j fqpxq pSτbΦj gqpxq @x P Rn, (2.1.3)

the coefficients Cjpa, bq satisfy

|Cjpa, bq| À 2jm @a, b P Zn, j P Z, (2.1.4)

with the implicit constant depending on σ, and an analogous expression holds for T 2
σ with

the roles of f and g interchanged.

If σ is an inhomogeneous Coifman–Meyer multiplier of order m, a similar decomposition

to (2.1.3) follows with the summation in j P N0 rather than j P Z, with ∆τaΨ
0 replaced by

SτaΦ
0 and for f, g P SpRnq.

Remark 2.1.2. For the formula (2.1.3) and its corresponding counterpart for T 2
σ to hold, the

condition (2.1.1) on the derivatives of σ is only needed for multi-indices α and β such that

|α ` β| ď 2N

10



2.1.2 The scale of weighted Triebel-Lizorkin and Besov spaces

The Leibniz-type rules obtained in two of the main results of this chapter, Theorem 2.2.1 and

Theorem 2.2.7, hold in the settings of weighted Triebel-Lizorkin and Besov spaces. In this

section, we define these scales of spaces and present some of their properties. In particular,

we state and prove Nikol’skĭı representations of the spaces, which constitute important tools

for the proofs of Theorems 2.2.1 and 2.2.7.

We start by defining the classes of weights we will be using and present maximal oper-

ators and inequalities.

A weight w defined on Rn is a locally integrable function such that 0 ă wpxq ă 8 for

almost every x P Rn. Given a weight w and 0 ă p ă 8 we define the weighted Lebesgue

space Lppwq as the space of all measurable functions f satisfying

}f}Lppwq :“

ˆ
ż

Rn
|fpxq|pwpxqdx

˙
1
p

ă 8.

In the case that p “ 8 we define L8pwq :“ L8.

The specific classes of weights in the hypotheses of the results of this chapter are Muck-

enhoupt weights, which we next define.

Definition 2.1.3. For 1 ă p ă 8, the Muckenhoupt class Ap consists of all weights w on Rn

satisfying

sup
B

ˆ

1

|B|

ż

B

wpxq dx

˙ˆ

1

|B|

ż

B

wpxq´
1
p´1 dx

˙p´1

ă 8,

where the supremum is taken over all Euclidean balls B Ă Rn and |B| is the Lebesgue

measure of B. For p “ 8 we define A8 :“
Ť

1ăp

Ap.

From this definition, it follows that Ap Ă Aq when p ď q. Moreover, it can be proved

that if w P Ap, p ą 1, then w P Ap´ε for some ε ą 0. For w P A8 we set

τw :“ inftp P p1,8q : w P Apu.

The Muckenhoupt classes arise in the study of boundedness properties of the Hardy-

11



Littlewood maximal operator in the setting of weighted Lebesgue spaces, as we next explain.

The Hardy-Littlewood maximal operator M is defined as

Mpfqpxq “ sup
BQx

1

|B|

ż

B

|fpyq|dy @x P Rn, f P L1
loc,

where the supremum is taken over all Euclidean balls B Ă Rn. It turns out that M is

bounded on Lppwq if and only if w P Ap. That is, for 1 ă p ă 8, w P Ap if and only if

}Mpfq}Lppwq À }f}Lppwq @f P Lppwq.

Given 0 ă r ă 8 and f P L1
loc, we set Mrpfq :“ pMp|f |rqq

1
r . By the boundedness

properties for the Hardy-Littlewood maximal operator stated above, it holds that Mr is

bounded on Lppwq for 0 ă r ă p and w P Ap{r (i.e. 0 ă r ă p
τw

). This fact is a particular

case of the following estimate known as the Fefferman-Stein inequality:

If 0 ă p ă 8, 0 ă q ď 8, 0 ă r ă minpp, qq and w P Ap{r (i.e. 0 ă r ă minpp{τw, qq), then

for all sequences tfjujPZ of locally integrable functions defined on Rn, we have

›

›

›

›

›

›

˜

ÿ

jPZ

|Mrpfjq|
q

¸
1
q

›

›

›

›

›

›

Lppwq

À

›

›

›

›

›

›

˜

ÿ

jPZ

|fj|
q

¸
1
q

›

›

›

›

›

›

Lppwq

, (2.1.5)

where the implicit constant depends on r, p, q, and w and the summation in j should be

replaced by the supremum in j if q “ 8.

For more details on the Muckenhoupt classes see Muckenhoupt [51] and Grafakos [24].

Weighted Triebel-Lizorkin and Besov spaces

Let ψ and ϕ be functions in SpRnq satisfying the following conditions:

suppp pψq Ă tξ P Rn :
1

2
ă |ξ| ă 2u, (2.1.6)

| pψpξq| ą c for
3

5
ă |ξ| ă

5

3
and some c ą 0, (2.1.7)

12



suppppϕq Ă tξ P Rn : |ξ| ă 2u, (2.1.8)

|pϕpξq| ą c for |ξ| ă
5

3
and some c ą 0. (2.1.9)

Definition 2.1.4. (Weighted homogeneous Triebel-Lizorkin and Besov spaces) Let s P R and

0 ă q ď 8.

• For 0 ă p ă 8, the weighted homogeneous Triebel-Lizorkin space 9F s
p,qpwq consists of

all f P S 1pRnq{PpRnq such that

}f} 9F sp,qpwq
“

›

›

›

›

›

›

˜

ÿ

jPZ

p2sj|∆ψ
j f |q

q

¸
1
q

›

›

›

›

›

›

Lppwq

ă 8,

with appropriate changes if q “ 8.

• For 0 ă p ď 8, the weighted homogeneous Besov space 9Bs
p,qpwq consists of all f P

S 1pRnq{PpRnq such that

}f} 9Bsp,qpwq
:“

˜

ÿ

jPZ

p2js
›

›

›
∆ψ
j f

›

›

›

Lppwq
q
q

¸
1
q

ă 8,

with appropriate changes if q “ 8.

Definition 2.1.5. (Weighted inhomogeneous Triebel-Lizorkin and Besov spaces) Let s P R

and 0 ă q ď 8.

• For 0 ă p ă 8, the weighted inhomogeneous Triebel-Lizorkin space F s
p,qpwq consists of

all f P S 1pRnq such that

}f}F sp,qpwq :“ }Sϕ0 f}Lppwq `

›

›

›

›

›

›

˜

ÿ

jPN

p2sj|∆ψ
j f |q

q

¸
1
q

›

›

›

›

›

›

Lppwq

ă 8,

with appropriate changes if q “ 8.

• For 0 ă p ď 8, the weighted inhomogeneous Besov space Bs
p,qpwq consists of all f P

13



S 1pRnq such that

}f}Bsp,qpwq :“ }Sϕ0 f}Lppwq `

˜

ÿ

jPN

p2js
›

›

›
∆ψ
j f

›

›

›

Lppwq
q
q

¸
1
q

ă 8,

with appropriate changes if q “ 8.

The definitions above are independent of the choice of ϕ and ψ. Triebel-Lizorkin and

Besov spaces are quasi-Banach spaces and, if p, q ě 1, they are Banach spaces. In part,

when w ” 1, these spaces were developed to answer the question of how to fill the gaps

between the Sobolev spaces W k,p and W k`1,p, for k P N and 1 ă p ă 8, with W s,p for

k ă s ă k` 1. For the case p “ 2, it was found that the spaces Bs
2,2 naturally filled this gap

to define the Sobolev spaces W s,2. Later, Littlewood-Paley characterizations using a dyadic

decomposition were proven for function spaces such as Lebesgue, Hardy, and Sobolev spaces.

This motivated the creation of a scale of spaces to unify these characterizations and provided

a way to systematically study function spaces. Out of this came the Triebel-Lizorkin spaces

F s
p,q and Besov spaces Bs

p,q, which correspond to other function spaces for certain values of s,

p, and q. For instance, weighted Triebel-Lizorkin satisfy the following equalities which hold

with equivalent norms:

9F 0
p,2pwq “ Hp

pwq for 0 ă p ă 8, w P A8, (2.1.10)

F 0
p,2pwq “ hppwq for 0 ă p ă 8, w P A8, (2.1.11)

9F 0
p,2pwq “ F 0

p,2pwq “ Lppwq “ Hp
pwq “ hppwq for 1 ă p ă 8, w P Ap, (2.1.12)

9F s
p,2pwq “

9W s,p
pwq for 1 ă p ă 8, w P Ap, (2.1.13)

where Hppwq, hppwq, and 9W s,ppwq are, respectively, a weighted Hardy space, a weighted local

Hardy space, and a weighted Sobolev space. Additionally, it holds that F s
p,ppwq “ Bs

p,ppwq

for 0 ă p ă 8. We next recall the definitions of the previously mentioned function spaces.

Let φ P SpRnq be such that
ş

Rn φpxq dx ‰ 0. Given 0 ă p ă 8 and w P A8, the weighted

14



Hardy space Hppwq is defined as

Hp
pwq :“ tf P S 1pRn

q : }f}Hppwq ă 8u,

where

}f}Hppwq :“

›

›

›

›

sup
tą0

ˇ

ˇt´nφpt´1
¨q ˚ f

ˇ

ˇ

›

›

›

›

Lppwq

;

the weighted local Hardy spaces hppwq is defined as

hppwq :“ tf P S 1pRn
q : }f}hppwq ă 8u,

where

}f}hppwq :“

›

›

›

›

sup
0ătă1

ˇ

ˇt´nφpt´1
¨q ˚ f

ˇ

ˇ

›

›

›

›

Lppwq

.

For 1 ă p ă 8 and w P A8 the weighted Sobolev space 9W s,ppwq is the space of all tempered

distributions modulo polynomials such that

}f} 9W s,ppwq :“ }Dsf}Lppwq ă 8.

For a detailed overview of the development of Besov and Triebel-Lizorkin spaces see

Triebel [65] and Qui [61] for the unweighted and weighted settings respectively. We recall

that these spaces satisfy the following lifting property: for s, p, and q as in Definitions 2.1.4

and 2.1.5 and w P A8 we have that

}f} 9F sp,qpwq
» }Dsf} 9F 0

p,qpwq
and }f}F sp,qpwq » }J

sf}F 0
p,qpwq

, (2.1.14)

}f} 9Bsp,qpwq
» }Dsf} 9B0

p,qpwq
and }f}Bsp,qpwq » }J

sf}B0
p,qpwq

. (2.1.15)

We end this section by introducing notation used in the statements of the main results
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in this chapter. For w P A8 and 0 ă p, q ď 8 denote

τp,qpwq :“ n

ˆ

1

minpp{τw, q, 1q
´ 1

˙

and τppwq :“ n

ˆ

1

minpp{τw, 1q
´ 1

˙

. (2.1.16)

If w ” 1, in which case τw “ 1, we just write τp,q and τp, respectively. Note that τp,2pwq “

τppwq, τp,qpwq ě τp,q, and τppwq ě τp for any w P A8.

Nikol’skĭı representations for weighted Triebel-Lizorkin and Besov spaces

An important tool for the proofs of Theorem 2.2.1 and Theorem 2.2.7 is the Nikol’skĭı

representation for weighted Triebel-Lizorkin and Besov spaces, stated below as Theorem

2.1.6. Such result is a weighted version of [68, Theorem 3.7].

Given 0 ă p, q ď 8, and a sequence of functions tfjujPZ defined on Rn, the following

notation will be used in this section:

}tfjujPZ}Lppwqp`qq :“

›

›

›

›

›

›

˜

ÿ

jPZ

|fj|
q

¸1{q
›

›

›

›

›

›

Lppwq

, }tfjujPZ}`qpLppwqq :“

˜

ÿ

jPZ

}fj}
q
Lppwq

¸1{q

.

Theorem 2.1.6 (Nikol’skĭı representation). For D ą 0, let tujujPZ Ă S 1pRnq be a sequence

of tempered distributions such that

suppp pujq Ă Bp0, D 2jq @j P Z.

If w P A8, then the following holds:

(i) Let 0 ă p ă 8, 0 ă q ď 8 and s ą τp,qpwq. If }t2jsujujPZ}Lppwqp`qq ă 8, then the series
ř

jPZ uj converges in 9F s
p,qpwq (in S 10pRnq if q “ 8) and

›

›

›

›

›

ÿ

jPZ

uj

›

›

›

›

›

9F sp,qpwq

À
›

›t2jsujujPZ
›

›

Lppwqp`qq
,

where the implicit constant depends only on n, D, s, p and q. An analogous statement,
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with j P N0, holds true for F s
p,qpwq (when q “ 8, the convergence is in S 1pRnq).

(ii) Let 0 ă p, q ď 8 and s ą τppwq. If }t2jsujujPZ}`qpLppwqq ă 8, then the series
ř

jPZ uj

converges in 9Bs
p,qpwq (in S 10pRnq if q “ 8) and

›

›

›

›

›

ÿ

jPZ

uj

›

›

›

›

›

9Bsp,qpwq

À
›

›t2jsujujPZ
›

›

`qpLppwqq
,

where the implicit constant depends only on n, D, s, p and q. An analogous statement,

with j P N0, holds true for Bs
p,qpwq (when q “ 8, the convergence is in S 1pRnq).

Before proving Theorem 2.1.6 we state several lemmas that are used in its proof.

Lemma 2.1.7 (Particular case of Corollary 2.11 in [68]). Suppose 0 ă r ď 1, A ą 0, R ě 1

and d ą n{r. If φ P SpRnq and f is such that suppp pfq Ă tξ P Rn : |ξ| ď ARu, it holds that

|φ ˚ fpxq| À Rnp 1
r
´1qA´n

›

›p1` |A ¨ |qdφ
›

›

L8
Mrfpxq @x P Rn,

where the implicit constant is independent of A,R, φ, and f.

Remark 2.1.8. [68, Corollary 2.11] incorrectly states A´n{r instead of A´n. Also, it states

A ě 1, but the result is true for A ą 0 as stated in Lemma 2.1.7.

The following lemma is a weighted version of [68, Corollary 2.12 (1)]. We include its

brief proof for completeness.

Lemma 2.1.9. Suppose w P A8, 0 ă p ď 8, A ą 0, R ě 1, and d ą b ą n{minp1, p{τwq. If

φ P SpRnq and f is such that suppp pfq Ă tξ P Rn : |ξ| ď ARu, it holds that

}φ ˚ f}Lppwq À Rb´nA´n
›

›p1` |A ¨ |dqφ
›

›

L8
}f}Lppwq ,

where the implicit constant is independent of A, R, φ and f.

Proof. Set r :“ n{b ă minp1, p{τwq. The hypothesis d ą b means d ą n{r and Lemma 2.1.7

yields

|φ ˚ fpxq| À Rnp 1
r
´1qA´n

›

›p1` |A ¨ |qdφ
›

›

L8
Mrfpxq @x P Rn.
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Since r ă p{τw, we have }Mrf}Lppwq À }f}Lppwq and therefore

}φ ˚ f}Lppwq À Rnp 1
r
´1qA´n

›

›p1` |A ¨ |qdφ
›

›

L8
}f}Lppwq ;

observing that 1{r ´ 1 “ pb´ nq{n, the desired estimate follows.

The following lemma is a modified version of [68, Lemma 3.8].

Lemma 2.1.10. Let τ ă 0, λ P R, 0 ă q ď 8, and k0 P Z. Then, for any sequence

tdjujPZ Ă r0,8q it holds that

›

›

›

›

›

›

#

8
ÿ

k“k0

2τk2λpj`kqdj`k

+

jPZ

›

›

›

›

›

›

`q

À
›

›t2jλdjujPZ
›

›

`q
,

where the implicit constant depends only on k0, τ, λ and q.

Proof. Suppose first that 0 ă q ď 1. Then,

›

›

›

›

›

›

#

8
ÿ

k“k0

2τk2λpj`kqdj`k

+

jPZ

›

›

›

›

›

›

`q

“

«

ÿ

jPZ

˜

8
ÿ

k“k0

2τk2λpj`kqdj`k

¸qff 1
q

ď

«

ÿ

jPZ

8
ÿ

k“k0

2τqk2λqpj`kqdqj`k

ff
1
q

“

«

8
ÿ

k“k0

2τqk
ÿ

jPZ

2λqpj`kqdqj`k

ff
1
q

“

˜

8
ÿ

k“k0

2τqk

¸
1
q
›

›t2jλdjujPZ
›

›

`q
“ Ck0,τ,q

›

›t2jλdjujPZ
›

›

`q
,

where in the last equality we have used that τ ă 0. If 1 ă q ă 8 we use Hölder’s inequality

with q and q1 to write

›

›

›

›

›

›

#

8
ÿ

k“k0

2τk2λpj`kqdj`k

+

jPZ

›

›

›

›

›

›

`q

ď

»

–

ÿ

jPZ

˜

8
ÿ

k“k0

2τkq{22λqpj`kqdqj`k

¸˜

8
ÿ

k“k0

2τkq
1{2

¸q{q1
fi

fl

1
q

“ Ck0,τ,q

›

›t2jλdjujPZ
›

›

`q
.

The case q “ 8 is straightforward.
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We now prove Theorem 2.1.6.

Proof of Theorem 2.1.6. We first prove Theorem 2.1.6 for finite families. We will do this

in the homogeneous settings, with the proof in the inhomogeneous settings being similar.

Suppose tujujPZ is such that uj “ 0 for all j except those belonging to some finite subset of

Z; this assumption allows us to avoid convergence issues since all the sums considered will

be finite.

For Part (i), let D, w, p, q and s be as in the hypotheses. Fix 0 ă r ă minp1, p{τw, qq

such that s ą np1{r ´ 1q; note that the latter is possible since s ą τp,qpwq.

Let k0 P Z be such that 2k0´1 ă D ď 2k0 , then

suppppu`q Ă Bp0, 2`Dq Ă Bp0, 2``k0q @` P Z.

Define u “
ř

`PZ u` and let ψ be as in the definition of 9F s
p,qpwq in Section 2.1.2. We have

∆ψ
j u “

ÿ

`PZ

∆ψ
j u` “

8
ÿ

`“j´k0

∆ψ
j u` “

8
ÿ

k“´k0

∆ψ
j uj`k. (2.1.17)

We will use Lemma 2.1.7 with φpxq “ 2jnψp2jxq, f “ uj`k, A “ 2j ą 0, and R “ 2k`k0 .

(Notice that supppyuj`kq Ă Bp0, 2j2k`k0q and, since k ě ´k0, we get R ě 1.) Fixing d ą n{r

and applying Lemma 2.1.7, we get

|∆ψ
j uj`kpxq| À 2k0np

1
r
´1q2knp

1
r
´1q2´jn

›

›p1` |2j ¨ |qd2jnψp2j¨q
›

›

L8
Mrpuj`kqpxq

„ 2knp
1
r
´1q

ˆ

sup
yPRn

p1` |2jy|qd|ψp2jyq|

˙

Mrpuj`kqpxq.

Hence,

2js|∆ψ
j uj`kpxq| À 2knp

1
r
´1´ s

n
q2spj`kqMrpuj`kqpxq,

19



and then, recalling (2.1.17),

2js|∆ψ
j upxq| À

8
ÿ

k“´k0

2knp
1
r
´1´ s

n
q2spj`kqMrpuj`kqpxq.

Since 1{r ´ 1´ s{n ă 0, Lemma 2.1.10 yields

›

›

›
t2js|∆ψ

j u|ujPZ

›

›

›

Lppwqp`qq
À
›

›t2jsMrujujPZ
›

›

Lppwqp`qq

with an implicit constant independent of tujujPZ. Applying the weighted Fefferman-Stein

inequality to the right-hand side of the last inequality leads to the desired estimate

}u} 9F sp,qpwq
À
›

›t2jsujujPZ
›

›

Lpp`qq
.

For Part (ii), let D, w, p, q and s be as in the hypotheses and k0 be as above. Consider

∆ψ
j uj`k in (2.1.17) and apply Lemma 2.1.9 with φpxq “ 2jnψp2´jxq, f “ uj`k, A “ 2j,

R “ 2k`k0 , d ą b and n{minp1, p{τwq ă b ă n ` s; note that such b exists since s ą τppwq.

We get

›

›

›
∆ψ
j uj`k

›

›

›

Lppwq
À 2pk`k0qpb´nq2´jn

›

›p1` |2j ¨ |qd2jnψp2´j¨q
›

›

L8
}uj`k}Lppwq „ 2kpb´nq }uj`k}Lppwq ,

and setting p˚ :“ minpp, 1q we obtain

2jsp
˚
›

›

›
∆ψ
j u

›

›

›

p˚

Lppwq
À 2jsp

˚

8
ÿ

k“´k0

›

›

›
∆ψ
j uj`k

›

›

›

p˚

Lppwq
“

8
ÿ

k“´k0

2kpb´n´sqp
˚

2sp
˚pj`kq

}uj`k}
p˚

Lppwq .

Hence, applying Lemma 2.1.10, it follows that

}u} 9Bsp,qpwq
À

›

›

›

›

›

›

#

8
ÿ

k“´k0

2kpb´n´sqp
˚

2sp
˚pj`kq

}uj`k}
p˚

Lppwq

+

jPZ

›

›

›

›

›

›

1
p˚

`q{p˚

À
›

›t2jsujujPZ
›

›

`qpLppwqq
,

as desired.
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We next show the theorem for families that are not necessarily finite. We work in the

setting of homogeneous Triebel-Lizorkin spaces; an analogous reasoning applies to the other

contexts. Let tujujPZ, w, p, q, and s be as in the hypotheses. Define UN :“
řN
k“´N uj; since

the theorem is true for finite families and, for M ă N, tujuM`1ď|j|ďN satisfies the hypotheses

of the theorem, we have

}UN ´ UM} 9F sp,qpwq
À
›

›t2jsujuM`1ď|j|ďN

›

›

Lppwqp`qq
, (2.1.18)

where the implicit constant is independent of M, N and the family tujujPZ.

If 0 ă q ă 8, as M,N Ñ 8, the right-hand side of (2.1.18) tends to zero by the

assumption }t2jsujujPZ}Lppwqp`qq ă 8 and the dominated convergence theorem; therefore,

since 9F s
p,qpwq is complete,

ř

jPZ uj converges in 9F s
p,qpwq. The same reasoning used to obtain

(2.1.18) gives that

}UN} 9F sp,qpwq
À
›

›t2jsuju´NďjďN
›

›

Lppwqp`qq
,

where the implicit constant is independent of N and the family tujujPZ. It then follows that

›

›

›

›

›

ÿ

jPZ

uj

›

›

›

›

›

9F sp,qpwq

À
›

›t2jsujujPZ
›

›

Lppwqp`qq
,

with the implicit constant independent of the family tujujPZ.

If q “ 8, we use that t2ps´εqjujujě0 and t2ps`εqjujujă0 belong to `1pLppwqq for any ε ą 0

and apply Theorem 2.1.6 under the case of finite q to conclude that
řN
j“0 uj and

ř´1
j“´N uj

converge in 9Bs´ε
p,1 pwq and 9Bs`ε

p,1 pwq, respectively (choosing ε ą 0 so that s ´ ε ą τp,qpwq ě

τppwq). Therefore, UN convergence in S 10pRnq. Moreover, by Theorem 2.1.6 applied to the

finite sequence tuju´NďjďN , we have that UN P 9F s
p,8pwq and

}UN} 9F sp,8pwq
À
›

›t2jsuju´NďjďN
›

›

Lppwqp`8q
ď
›

›t2jsujujPZ
›

›

Lppwqp`8q
,

with the implicit constant independent of N and tujujPZ. Since 9F s
p,8pwq has the Fatou prop-
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erty (see Section 2.3.4), we conclude that limNÑ8 UN “
ř

jPZ uj belongs to 9F s
p,8pwq and

›

›

›

›

›

ÿ

jPZ

uj

›

›

›

›

›

9F sp,8pwq

À
›

›t2jsujujPZ
›

›

Lppwqp`8q
.

2.2 Leibniz-type rules in weighted Triebel-Lizorkin and

Besov spaces

2.2.1 Homogeneous Leibniz-type rules

In this section, we present one of the main results in this chapter (Theorem 2.2.1) about

Leibniz-type rules associated to Coifman-Meyer multipliers in the setting of weighted homo-

geneous Besov and Triebel Lizorkin spaces. We infer corollaries that include extensions and

improvements of the fractional Leibniz rules (1.0.1) and we compare the new results to those

in the literature.

We remind the reader that the notation τp,qpwq and τppwq for w P A8 is defined in

Section 2.1.2 (see 2.1.16); we recall that τp,2pwq “ τppwq and we write τp,q and τp if w ” 1.

Theorem 2.2.1. For m P R, let σpξ, ηq, ξ, η P Rn, be a Coifman-Meyer multiplier of order

m. Consider 0 ă p, p1, p2 ď 8 such that 1{p “ 1{p1 ` 1{p2 and 0 ă q ď 8; let w1, w2 P A8

and set w “ w
p{p1

1 w
p{p2

2 . If 0 ă p, p1, p2 ă 8 and s ą τp,qpwq, it holds that

}Tσpf, gq} 9F sp,qpwq
À }f} 9F s`mp1,q

pw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}g} 9F s`mp2,q

pw2q
@f, g P S0pRn

q. (2.2.19)

If 0 ă p, p1, p2 ď 8 and s ą τppwq, it holds that

}Tσpf, gq} 9Bsp,qpwq
À }f} 9Bs`mp1,q

pw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}g} 9Bs`mp2,q

pw2q
@f, g P S0pRn

q, (2.2.20)

where the Hardy spaces Hp1pw1q and Hp2pw2q must be replaced by L8 if p1 “ 8 or p2 “ 8,
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respectively.

If w1 “ w2 then different pairs of p1, p2 can be used on the right-hand sides of (2.2.19)

and (2.2.20); moreover, if w P A8, then

}Tσpf, gq} 9F sp,qpwq
À }f} 9F s`mp,q pwq }g}L8 ` }f}L8 }g} 9F s`mp,q pwq @f, g P S0pRn

q, (2.2.21)

where 0 ă p ă 8, 0 ă q ď 8 and s ą τp,qpwq.

We note that if m ě 0 then the above estimates hold for any f, g P SpRnq when

SpRnq is a subspace of the function spaces on the right-hand side. This is the case when

1 ă p1, p2 ă 8, w1 P Ap1 , and w2 P Ap2 in (2.2.19) and (2.2.20) and w P Ap for (2.2.21).

By the lifting properties for weighted homogeneous Besov and Triebel-Lizorkin spaces

(2.1.14) and (2.1.15), the estimates (2.2.19), (2.2.20), and (2.2.21) can be respectively written

as

}DsTσpf, gq} 9F 0
p,qpwq

À }Dsf} 9Fmp1,qpw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}Dsg} 9Fmp2,qpw2q

, (2.2.22)

}DsTσpf, gq} 9B0
p,qpwq

À }Dsf} 9Bmp1,qpw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}Dsg} 9Bmp2,qpw2q

, (2.2.23)

}DsTσpf, gq} 9F 0
p,qpwq

À }Dsf} 9Fmp,qpwq
}g}L8 ` }f}L8 }D

sg} 9Fmp,qpwq
. (2.2.24)

We next give particular cases of (2.2.22), (2.2.23), and (2.2.24) including extensions and

improvements of the fractional Leibniz rules (1.0.1).

The relation (2.1.10) between weighted Triebel-Lizorkin spaces and weighted Hardy

spaces imply the following result for Coifman-Meyer multipliers of order 0.

Corollary 2.2.2. Let σpξ, ηq, ξ, η P Rn, be a Coifman-Meyer multiplier of order 0. Consider

0 ă p, p1, p2 ă 8 such that 1{p “ 1{p1 ` 1{p2; let w1, w2 P A8 and set w “ w
p{p1

1 w
p{p2

2 . If

s ą τppwq, it holds that

}Ds
pTσpf, gqq}Hppwq À }D

sf}Hp1 pw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}Dsg}Hp2 pw2q

@f, g P S0pRn
q.

(2.2.25)
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If w1 “ w2 then different pairs of p1, p2 can be used on the right-hand side of (2.2.25);

moreover, if w P A8, then

}Ds
pTσpf, gqq}Hppwq À }D

sf}Hppwq }g}L8 ` }f}L8 }D
sg}Hppwq @f, g P S0pRn

q, (2.2.26)

where 0 ă p ă 8 and s ą τppwq.

Taking σ ” 1 in Corollary 2.2.2, we obtain weighted fractional Leibniz rules for the

product of two functions:

Corollary 2.2.3. Consider 0 ă p, p1, p2 ă 8 such that 1{p “ 1{p1 ` 1{p2; let w1, w2 P A8

and set w “ w
p{p1

1 w
p{p2

2 . If s ą τppwq, it holds that

}Ds
pfgq}Hppwq À }D

sf}Hp1 pw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}Dsg}Hp2 pw2q

@f, g P S0pRn
q.

(2.2.27)

If w1 “ w2 then different pairs of p1, p2 can be used on the right-hand side of (2.2.27);

moreover, if w P A8, then

}Ds
pfgq}Hppwq À }D

sf}Hppwq }g}L8 ` }f}L8 }D
sg}Hppwq @f, g P S0pRn

q,

where 0 ă p ă 8 and s ą τppwq.

In particular, the case w1 “ w2 “ 1 in Corollary 2.2.3 leads to the estimates

}Ds
pfgq}Hp À }D

sf}Hp1 }g}Hp2 ` }f}Hp1 }D
sg}Hp2 (2.2.28)

for 0 ă p, p1, p2, p̃1, p̃2 ă 8, 1{p “ 1{p1 ` 1{p2 “ 1{p̃1 ` 1{p̃2, and s ą np1{minpp, 1q ´ 1q.

The estimates (2.2.28) improve and extend (1.0.1). Indeed, the inequality (2.2.28) extends

the range of p, p1, p̃1, p2, and p̃2 by allowing 0 ă p, p1, p̃1, p2, p̃2 ă 8 while (1.0.1) requires

1 ă p1, p2, p̃1, p̃2 ď 8. Additionally, (2.2.28) allows for the Hp norm on the left-hand side,

which is larger than the Lp norm.

More generally, Theorem 2.2.1 implies the following weighted fractional Leibniz rules
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for the product of two functions.

Corollary 2.2.4. Consider 0 ă p, p1, p2 ď 8 such that 1{p “ 1{p1 ` 1{p2 and 0 ă q ď 8;

let w1, w2 P A8 and set w “ w
p{p1

1 w
p{p2

2 . If 0 ă p, p1, p2 ă 8 and s ą τp,qpwq, it holds that

}Ds
pfgq} 9F 0

p,qpwq
À }Dsf} 9F 0

p1,q
pw1q

}g}Hp2 pw2q
` }f}Hp1 pw1q

}Dsg} 9F 0
p2,q

pw2q
@f, g P S0pRn

q.

(2.2.29)

If 0 ă p, p1, p2 ď 8 and s ą τppwq, it holds that

}Ds
pfgq} 9B0

p,qpwq
À }Dsf} 9B0

p1,q
pw1q

}g}Hp2 pw2q
` }f}Hp1 pw1q

}Dsg} 9B0
p2,q

pw2q
@f, g P S0pRn

q,

(2.2.30)

where the Hardy spaces Hp1pw1q and Hp2pw2q must be replaced by L8 if p1 “ 8 or p2 “ 8,

respectively.

If w1 “ w2 then different pairs of p1, p2 can be used on the right-hand sides of (2.2.29)

and (2.2.30); moreover, if w P A8, then

}Ds
pfgq} 9F 0

p,qpwq
À }Dsf} 9F 0

p,qpwq
}g}L8 ` }f}L8 }D

sg} 9F 0
p,qpwq

@f, g P S0pRn
q, (2.2.31)

where 0 ă p ă 8, 0 ă q ď 8 and s ą τp,qpwq.

We close this section by comparing Corollaries 2.2.2 and 2.2.3 with other related results

in the literature.

Using different methods, the following result was proven in Brummer-Naibo [13, Theo-

rem 1.1]:

If σ is a Coifman-Meyer multiplier of order 0, 1 ă p1, p2 ď 8, 1
2
ă p ă 8, 1{p “

1{p1` 1{p2, w1 P Ap1 , w2 P Ap2 , w “ w
p{p1

1 w
p{p2

2 and s ą τp, then for all f, g P SpRnq it holds

that

}Ds
pTσpf, gqq}Lppwq À }D

sf}Lp1 pw1q
}g}Lp2 pw2q

` }f}Lp1 pw1q
}Dsg}Lp2 pw2q

. (2.2.32)

Moreover, if w1 “ w2 then different pairs of p1, p2 can be used on the right-hand side of
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(2.2.32).

Corollary 2.2.2 and this result compare as follows:

• The estimate (2.2.25) allows for 0 ă p, p1, p2 ă 8, w1, w2 P A8, and Hppwq on the

left-hand side if s ą τppwq. On the other hand, (2.2.32) requires 1 ă p1, p2 ď 8,

w1 P Ap1 , w2 P Ap2 , and the smaller Lppwq norm on the left-hand side when s ą τp.

Therefore, (2.2.25) is less restrictive than (2.2.32) in terms of the indices p, p1, and

p2 and the classes that the weights w1 and w2 belong to. However, since τp ď τppwq,

(2.2.25) is more restrictive than (2.2.32) in terms of the range of the regularity s.

• Let 1{2 ă p ă 8, 1 ă p1, p2 ă 8 such that 1{p “ 1{p1 ` 1{p2, w1 P Ap1 and w2 P Ap2 .

If s ą τppwq then (2.2.25) holds and implies (2.2.32); however, if τp ă τppwq then

(2.2.32) holds also for τp ă s ď τppwq while (2.2.25) may not be true for such range

of s. We next give examples of w1 and w2 such that the corresponding weight w

satisfies τp ă τppwq. Let 1 ă p1 ď p2 ă 8 and w1pxq “ w2pxq “ wpxq “ |x|a with

npr ´ 1q ă a ă npp1 ´ 1q for some 1 ă r ă p1. Then w P Ap1 Ă Ap2 , and w R Ar. This

implies that 1 ă τw, which leads to τp ă τppwq if p ă τw.

• The estimate (2.2.32) implies (2.2.26) for 1 ă p ă 8, w P Ap, and s ą τp and gives the

endpoint estimate

}Ds
pTσpf, gqq}Lppwq À }D

sf}L8 }g}Lppwq ` }f}Lppwq }D
sg}L8 .

However, (2.2.26) allows 0 ă p ă 8 and w P A8 if s ą τppwq.

Corollary 2.2.3 complements some of the estimates obtained through different methods

in [18, Theorem 1.1] in the same manner Corollary 2.2.2 complements [13, Theorem 1.1] as

explained above; as in that case, Corollary 2.2.3 and [18, Theorem 1.1] have some estimates

in common but each of them gives a different set of results.
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2.2.2 Proofs of the homogeneous Leibniz-type rules

In this section we prove Theorem 2.2.1. The following lemma will be useful in its proof.

Lemma 2.2.5. Let φ1, φ2 P SpRnq be such that pφ1 and pφ2 have compact supports and pφ1
pφ2 “

pφ1. If 0 ă r ď 1 and ε ą 0, it holds that

ˇ

ˇ

ˇ
P τaφ1

j fpxq
ˇ

ˇ

ˇ
À p1` |a|qε`

n
rMrpP

φ2

j fqpxq @x, a P Rn, j P Z, f P SpRn
q.

Proof. This estimate is a consequence of Lemma 2.1.7. In view of the supports of pφ1 and

pφ2 we have P τaφ1

j f “ P τaφ1

j P φ2

j f for j P Z and f P SpRnq. Applying Lemma 2.1.7 with

φpxq “ 2njτaφ1p2
jxq, A “ 2j, R ě 1 such that suppp pφ2q Ă tξ P Rn : |ξ| ď Ru and d “ ε`n{r,

we get

ˇ

ˇ

ˇ
P τaφ1

j fpxq
ˇ

ˇ

ˇ
À Rnp 1

r
´1q2´jn

›

›p1`
ˇ

ˇ2j¨
ˇ

ˇq
ε`n

r 2njτaφ1p2
j
¨q
›

›

L8
MrpP

φ2

j fqpxq

„
›

›p1`
ˇ

ˇ2j¨
ˇ

ˇq
ε`n

r τaφ1p2
j
¨q
›

›

L8
MrpP

φ2

j fqpxq @x, a P Rn, j P Z, f P SpRn
q.

Since φ1 P SpRnq,

ˇ

ˇτaφ1p2
jxq

ˇ

ˇ “
ˇ

ˇφ1p2
jx` aq

ˇ

ˇ À
p1` |a|qε`

n
r

p1` |2jx|qε`
n
r

@x, a P R, j P Z.

Combining these two estimates completes the proof.

We now prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Consider Φ, Ψ, T 1
σ , T

2
σ , tCjpa, bqujPZ,a,bPZn as in Section 2.1.1. Let

m, σ, p, p1, p2, q, s, w1, w2 and w be as in the hypotheses. For ease of notation, p1 and p2

will be assumed to be finite; the same proof applies for (2.2.20) if that is not the case, and

for (2.2.21).

We next prove (2.2.19) and (2.2.20). Here we will only work with T 1
σ as the estimate
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for T 2
σ is shown through symmetry. Hence we will prove that

›

›T 1
σ pf, gq

›

›

9F sp,qpwq
À }f} 9F s`mp1,q

pw1q
}g}Hp2 pw2q

and
›

›T 1
σ pf, gq

›

›

9Bsp,qpwq
À }f} 9Bs`mp1,q

pw1q
}g}Hp2 pw2q

.

Moreover, since }
ř

fj}
minpp,q,1q
9F sp,qpwq

À
ř

}fj}
minpp,q,1q
9F sp,qpwq

and similarly for 9Bs
p,qpwq, it suffices to prove

that, given ε ą 0 there exist 0 ă r1, r2 ď 1 such that for all g P SpRnq and f P S0pRnq

(f P SpRnq X 9F s
p,qpwq or f P SpRnq X 9Bs

p,qpwq if m ě 0), it holds that

›

›T a,bpf, gq
›

›

9F sp,qpwq
À p1` |a|q

ε` n
r1 p1` |b|q

ε` n
r2 }f} 9F s`mp1,q

pw1q
}g}Hp2 pw2q

, (2.2.33)

›

›T a,bpf, gq
›

›

9Bsp,qpwq
À p1` |a|q

ε` n
r1 p1` |b|q

ε` n
r2 }f} 9Bs`mp1,q

pw1q
}g}Hp2 pw2q

, (2.2.34)

where

T a,bpf, gq :“
ÿ

jPZ

Cjpa, bq p∆τaΨ
j fq pSτbΦj gq

and the implicit constants are independent of a and b. We will assume q finite; obvious

changes apply if that is not the case.

In view of the supports of Ψ and Φ we have that

supppFrCjpa, bq p∆τaΨ
j fq pSτbΦj gqsq Ă tξ P Rn : |ξ| À 2ju @j P Z, a, b P Zn.

For (2.2.33), Theorem 2.1.6 (i), the bound (2.1.4) for Cjpa, bq, and Hölder’s inequality
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imply

›

›T a,bpf, gq
›

›

9F sp,qpwq
À

›

›

›
t2sjCjpa, bq p∆τaΨ

j fq pSτbΦj gqujPZ

›

›

›

Lppwqp`qq

À

›

›

›

›

›

›

˜

ÿ

jPZ

2ps`mqqj|p∆τaΨ
j fqpxq pSτbΦj gq|q

¸
1
q

›

›

›

›

›

›

Lppwq

ď

›

›

›

›

›

›

sup
jPZ
|pSτbΦj gq|

˜

ÿ

jPZ

2ps`mqqj|p∆τaΨ
j fq|q

¸
1
q

›

›

›

›

›

›

Lppwq

ď

›

›

›

›

›

›

˜

ÿ

jPZ

2ps`mqqj|∆τaΨ
j f |q

¸
1
q

›

›

›

›

›

›

Lp1 pw1q

›

›

›

›

sup
jPZ
|SτbΦj g|

›

›

›

›

Lp2 pw2q

.

Consider ϕ, ψ P SpRnq as in Section 2.1.2 such that pϕ ” 1 on suppppΦq and pψ ” 1 on suppppΨq.

Let 0 ă r1 ă minp1, p1{τw1 , qq; by Lemma 2.2.5 and the weighted Fefferman-Stein inequality

(2.1.5) we have that

›

›

›

›

›

›

˜

ÿ

jPZ

2ps`mqqj|p∆τaΨ
j fq|q

¸
1
q

›

›

›

›

›

›

Lp1 pw1q

À p1` |a|q
ε` n

r1

›

›

›

›

›

›

˜

ÿ

jPZ

2ps`mqqj|Mr1p∆
ψ
j fq|

q

¸
1
q

›

›

›

›

›

›

Lp1 pw1q

À p1` |a|q
ε` n

r1

›

›

›

›

›

›

˜

ÿ

jPZ

2ps`mqqj|∆ψ
j f |

q

¸
1
q

›

›

›

›

›

›

Lp1 pw1q

„ p1` |a|q
ε` n

r1 }f} 9F s`mp,q pw1q
,

where the implicit constants are independent of a and f. Next, let 0 ă r2 ă minp1, p2{τw2q;

by Lemma 2.2.5 and the boundedness properties of the Hardy-Littlewood maximal operator

on weighted Lebesgue spaces we have that

›

›

›

›

sup
jPZ
|SτbΦj g|

›

›

›

›

Lp2 pw2q

À p1` |b|q
ε` n

r2

›

›

›

›

Mr2psup
jPZ
|Sϕj g|q

›

›

›

›

Lp2 pw2q

À p1` |b|q
ε` n

r2

›

›

›

›

sup
jPZ
|Sϕj g|

›

›

›

›

Lp2 pw2q

„ p1` |b|q
ε` n

r2 }g}Hp2 pw2q
,
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where the implicit constants are independent of b and g. Putting all together we obtain

(2.2.33).

For (2.2.34), Theorem 2.1.6 (ii), the bound (2.1.4) for Cjpa, bq, and Hölder’s inequality

give

›

›T a,bpf, gq
›

›

9Bsp,qpwq
À

›

›

›
t2sjCjpa, bq p∆τaΨ

j fq pSτbΦj gqujPZ

›

›

›

`qpLppwqq

À

˜

ÿ

jPZ

2ps`mqqj
›

›

›
p∆τaΨ

j fq pSτbΦj gq
›

›

›

q

Lppwq

¸
1
q

ď

˜

ÿ

jPZ

2ps`mqqj
›

›p∆τaΨ
j fq

›

›

q

Lp1 pw1q

¸
1
q ›
›

›

›

sup
kPZ
|SτbΦk g|

›

›

›

›

Lp2 pw2q

À p1` |a|q
ε` n

r1 p1` |b|q
ε` n

r2 }f} 9Bs`mp1,q
pw1q

}g}Hp2 pw2q
,

where in the last inequality we have used Lemma 2.2.5 and the boundedness properties of

M with 0 ă rj ă minp1, pj{τwjq for j “ 1, 2 .

It is clear from the proof above that if w1 “ w2, then different pairs of p1, p2 related to

p through the Hölder condition can be used on the right-hand sides of (2.2.19) and (2.2.20);

in such case w “ w1 “ w2.

Remark 2.2.6. For convergence purposes, the relations between N in (2.1.3) and the powers

ε` n{r1 and ε` n{r2 in (2.2.33) and (2.2.34) must be such that pN ´ ε´ n{r1q r
˚ ą n and

pN ´ ε´n{r2q r
˚ ą n, where r˚ “ minpp, q, 1q. Moreover, r1 and r2 were selected so that 0 ă

rj ă minp1, pj{τwj , qq in the context of Triebel–Lizorkin spaces and 0 ă rj ă minp1, pj{τwjq

in the context of Besov spaces. Therefore, if N ą np1{r˚ ` 1{minp1, p1{τw1 , p2{τw2 , qqq

in the Triebel–Lizorkin setting and N ą np1{r˚ ` 1{minp1, p1{τw1 , p2{τw2qq in the Besov

setting, ε, r1 and r2 can be chosen so that all the conditions above are satisfied. In view

of this and Remark 2.1.2, the multiplier σ in Theorem 2.2.1 needs only satisfy (2.1.1) for

|α ` β| ď 2prnp1{r˚ ` 1{minp1, p1{τw1 , p2{τw2 , qqqs ` 1q in the Triebel–Lizorkin case and

|α ` β| ď 2prnp1{r˚ ` 1{minp1, p1{τw1 , p2{τw2qqs ` 1q in the Besov case.
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2.2.3 Inhomogeneous Leibniz-type rules

In this section, we obtain Leibniz-type rules for Coifman-Meyer multiplier operators associ-

ated to inhomogeneous symbols, which lead to extensions and improvements of the fractional

Leibniz rule (1.0.2). Our main result is a counterpart in the inhomogeneous setting to The-

orem 2.2.1, which we next state.

Theorem 2.2.7. For m P R, let σpξ, ηq, ξ, η P Rn, be an inhomogeneous Coifman-Meyer

multiplier of order m. Consider 0 ă p, p1, p2 ď 8 such that 1{p “ 1{p1`1{p2 and 0 ă q ď 8;

let w1, w2 P A8 and set w “ w
p{p1

1 w
p{p2

2 . If 0 ă p, p1, p2 ă 8 and s ą τp,qpwq, it holds that

}Tσpf, gq}F sp,qpwq À }f}F s`mp1,q
pw1q

}g}hp2 pw2q
` }f}hp1 pw1q

}g}F s`mp2,q
pw2q

@f, g P SpRn
q. (2.2.35)

If 0 ă p, p1, p2 ď 8 and s ą τppwq, it holds that

}Tσpf, gq}Bsp,qpwq À }f}Bs`mp1,q
pw1q

}g}hp2 pw2q
` }f}hp1 pw1q

}g}Bs`mp2,q
pw2q

@f, g P SpRn
q, (2.2.36)

where the local Hardy spaces hp1pw1q and hp2pw2q must be replaced by L8 if p1 “ 8 or

p2 “ 8, respectively.

If w1 “ w2 then different pairs of p1, p2 can be used on the right-hand sides of (2.2.35)

and (2.2.36); moreover, if w P A8, then

}Tσpf, gq}F sp,qpwq À }f}F s`mp,q pwq }g}L8 ` }f}L8 }g}F s`mp,q pwq @f, g P SpRn
q, (2.2.37)

where 0 ă p ă 8, 0 ă q ď 8 and s ą τp,qpwq.

By the lifting properties for weighted inhomogeneous Besov and Triebel-Lizorkin spaces

(2.1.14) and (2.1.15), the estimates (2.2.35), (2.2.36), and (2.2.37) can be written respectively

as

}JsTσpf, gq}F 0
p,qpwq

À }Jsf}Fmp1,qpw1q
}g}hp2 pw2q

` }f}hp1 pw1q
}Jsg}Fmp2,qpw2q

, (2.2.38)

}JsTσpf, gq}B0
p,qpwq

À }Jsf}Bmp1,qpw1q
}g}hp2 pw2q

` }f}hp1 pw1q
}Jsg}Bmp2,qpw2q

, (2.2.39)
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}JsTσpf, gq}F 0
p,qpwq

À }Jsf}Fmp,qpwq }g}L8 ` }f}L8 }J
sg}Fmp,qpwq . (2.2.40)

The proof of Theorem 2.2.7 follows along the same lines as the proof of Theorem 2.2.1.

Theorem 2.2.7 implies versions in the inhomogeneous settings of the corollaries presented in

Section 2.2.1. As an example we state the inhomogeneous counterpart to Corolarry 2.2.2

and obtain an improvement of the fractional Leibniz rule (1.0.2).

Corollary 2.2.8. Let σpξ, ηq, ξ, η P Rn, be an inhomogeneous Coifman-Meyer multiplier of

order 0. Consider 0 ă p, p1, p2 ă 8 such that 1{p “ 1{p1 ` 1{p2; let w1, w2 P A8 and set

w “ w
p{p1

1 w
p{p2

2 . If s ą τppwq, it holds that

}JspTσpf, gqq}hppwq À }J
sf}hp1 pw1q

}g}hp2 pw2q
` }f}hp1 pw1q

}Jsg}hp2 pw2q
@f, g P SpRn

q.

(2.2.41)

If w1 “ w2 then different pairs of p1, p2 can be used on the right-hand side of (2.2.41);

moreover, if w P A8, then

}JspTσpf, gqq}hppwq À }J
sf}hppwq }g}L8 ` }f}L8 }J

sg}hppwq @f, g P SpRn
q, (2.2.42)

where 0 ă p ă 8 and s ą τppwq.

Corollary 2.2.8 applied to the case σ ” 1 gives in particular

}Jspfgq}hppwq À }J
sf}hp1 pw1q

}g}hp2 pw2q
` }f}hp1 pw1q

}Jsg}hp2 pw2q
@f, g P SpRn

q, (2.2.43)

which supplements some of the estimates obtained in [18, Theorem 1.1] for Js. The case

w1 “ w2 ” 1 of (2.2.43) was obtained in [41] and is an extension and an improvement of

(1.0.2); indeed, (2.2.43) allows for 0 ă p, p1, p2 ă 8 and, when 1 ă p1, p2 ă 8, it improves

(1.0.2) by allowing the larger quantity }Jspfgq}hp on the left-hand side.

Remark 2.2.9. An analogous observation to Remark 2.2.6 follows for the multiplier σ in

Theorem 2.2.7 in relation to the condition (2.1.2).
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2.3 Leibniz-type rules in other functions spaces

The method used to prove Theorems 2.2.1 and 2.2.7 is quite versatile and can be applied to

Triebel-Lizorkin and Besov spaces that are based in other quasi-Banach spaces.

The main features of weighted Triebel-Lizorkin and Besov spaces used in the proofs of

Theorems 2.2.1 and 2.2.7 are the following:

(i) there exists r ą 0 such that }f ` g}rF sp,qpwq ď }f}rF sp,qpwq ` }g}
r
F sp,qpwq

; similarly for the

weighted inhomogeneous Besov spaces and the weighted homogeneous Triebel–Lizorkin

and Besov spaces;

(ii) Hölder’s inequality in weighted Lebesgue spaces;

(iii) the boundedness properties in weighted Lebesgue spaces of the Hardy–Littlewood max-

imal operator (for the Besov space setting) and the weighted Fefferman–Stein inequality

(for the Triebel–Lizorkin space setting);

(iv) Nikol’skĭı representations for weighted Triebel–Lizorkin and Besov spaces (Theorem 2.1.6).

In the following subsections we consider quasi-Banach spaces X such that properties

(i)–(iv) hold for the homogeneous and inhomogeneous X -based Triebel-Lizorkin and Besov

spaces. We show that corresponding versions of Theorems 2.2.1 and 2.2.7 hold in Triebel-

Lizorkin and Besov spaces based on these spaces. The homogeneous χ-based Triebel-Lizorkin

and Besov spaces, denoted by 9F s
X ,q and 9Bs

X ,q respectively, are defined analogously to the

weighted homogeneous Triebel-Lizorkin and Besov spaces with the quasi-norm || ¨ ||Lppwq

replaced with the quasi-norm || ¨ ||X . The inhomogeneous spaces are defined similarly.

2.3.1 Leibniz-type rules in the settings of Lorentz-based Triebel–

Lizorkin and Besov spaces.

Given 0 ă p ă 8 and 0 ă t ď 8 or p “ t “ 8, and an A8 weight w defined on Rn,

we denote by Lp,tpwq the weighted Lorentz space consisting of complex-valued, measurable
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functions f defined on Rn such that

}f}Lp,tpwq “

ˆ
ż 8

0

´

τ
1
pf˚wpτq

¯t dτ

τ

˙
1
t

ă 8,

where f˚wpτq “ inftλ ě 0 : wf pλq ď τu with wf pλq “ wptx P Rn : |fpxq| ą λuq; the obvious

changes apply if t “ 8. It follows that Lp,ppwq “ Lppwq for 0 ă p ď 8. We refer the reader

to Hunt [35] for more details about Lorentz spaces.

The corresponding weighted inhomogeneous Triebel–Lizorkin and Besov spaces are de-

noted by F s
pp,tq,qpwq and Bs

pp,tq,qpwq, respectively. These spaces contain SpRnq, are independent

of the choice of ϕ and ψ from Section 2.1.2, are quasi-Banach spaces and have appeared in

a variety of settings (see Seeger–Trebels [64] and references therein). The space hp,tpwq is

defined in the same way as hppwq with the quasi-norm in Lppwq replaced by the quasi-norm

in Lp,tpwq.

We next consider the corresponding properties (i)-(iv) in this context. Regarding prop-

erty (i), given 0 ă p ă 8, 0 ă t, q ď 8 and s P R, it follows that there exist r ą 0 and a

quasi-norm ||| ¨ |||Lp,tpwqp`qq comparable to } ¨ }Lp,tpwqp`qq such that ||| ¨ |||rLp,tpwqp`qq is subadditive;

this is an adequate substitute for property (i). The quasi-norm ||| ¨ |||Lp,tpwqp`qq is defined

analogously to } ¨ }Lp,tpwqp`qq by replacing } ¨ }Lp,tpwq with a comparable quasi-norm ||| ¨ |||Lp,tpwq

for which ||| ¨ |||rLp,tpwq is subadditive (see [35, p. 258, (2.2)]). As for property (ii), weighted

Lorentz spaces satisfy a Hölder-type inequality (see [35, Thm 4.5]): Given a weight w in

Rn and indices 0 ă p, p1, p2 ă 8 and 0 ă t, t1, t2 ď 8 such that 1{p “ 1{p1 ` 1{p2 and

1{t “ 1{t1 ` 1{t2, it holds that

}fg}Lp,tpwq À }f}Lp1,t1 pwq }g}Lp2,t2 pwq ,

where the implicit constant is independent of f and g (p1 “ t1 “ 8, which gives p “ p2

and t2 “ t, is also allowed). The following boundedness properties of the Hardy–Littlewood

maximal operator in weighted Lorentz spaces (property (iii)) hold true: If 0 ă p ă 8,
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0 ă t, q ď 8, 0 ă r ă minpp{τw, qq and 0 ă r ď t, it holds that

›

›

›

›

›

›

˜

ÿ

jPZ

|Mrpfjq|
q

¸
1
q

›

›

›

›

›

›

Lp,tpwq

À

›

›

›

›

›

›

˜

ÿ

jPN0

|fj|
q

¸
1
q

›

›

›

›

›

›

Lp,tpwq

@tfjujPN0 P L
p,t
pwqp`qq; (2.3.44)

in particular, if 0 ă r ă p{τw and 0 ă r ď t, it holds that

}Mrpfq}Lp,tpwq À }f}Lp,tpwq @f P Lp,tpwq.

When r “ 1, 1 ă p ă 8, 1 ď t ď 8 and 1 ă q ď 8, the vector-valued inequality above

follows from extrapolation and the weighted Fefferman–Stein inequality in weighted Lebesgue

spaces (see [17, Theorem 4.10 and comments on p. 70] for the extrapolation theorem).

The rest of the cases follow from the latter and the fact that }|f |s}Lp,tpwq “ }f}
s
Lsp,stpwq for

any 0 ă s ă 8. Regarding property (iv), the Nikol’skĭı representation for F s
pp,tq,qpwq and

Bs
pp,tq,qpwq with w P A8 can be stated as in Theorem 2.1.6 with 0 ă p ă 8, 0 ă t, q ď 8;

s ą p1{minpp{τw, t, q, 1q ´ 1q and F s
p,qpwq replaced with F s

pp,tq,qpwq in the Triebel–Lizorkin

setting; s ą τp,tpwq and Bs
p,qpwq replaced with Bs

pp,tq,qpwq in the Besov setting. In the context

of F s
pp,tq,qpwq, the convergence of the series holds in S 1pRnq if t “ 8 or q “ 8 and in

F s
pp,tq,qpwq otherwise; in the setting of Bs

pp,tq,qpwq, the convergence of the series holds in S 1pRnq

if q “ 8 and in Bs
pp,tq,qpwq otherwise. The proofs follow parallel steps to those in the proof

of Theorem 2.1.6 (see also Section 2.3.4).

As an exemplary result, we next present an analogue to Theorem 2.2.7 in the context

of the spaces F s
pp,tq,qpwq. For w P A8, set τp,t,qpwq :“ np1{minpp{τw, t, q, 1q ´ 1q.

Theorem 2.3.1. For m P R, let σpξ, ηq, ξ, η P Rn, be an inhomogeneous Coifman-Meyer

multiplier of order m. If w P A8, 0 ă p, p1, p2 ă 8 and 0 ă t, t1, t2 ď 8 are such that

1{p “ 1{p1 ` 1{p2 and 1{t “ 1{t1 ` 1{t2, 0 ă q ď 8 and s ą τp,t,qpwq, it holds that

}Tσpf, gq}F s
pp,tq,q

pwq À }f}F s`m
pp1,t1q,q

pwq }g}hp2,t2 pwq ` }f}hp1,t1 pwq }g}F s`m
pp2,t2q,q

pwq @f, g P SpRn
q.
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Different pairs of p1, p2 and t1, t2 can be used on the right-hand side of the inequality above.

Moreover, if w P A8, 0 ă p ă 8, 0 ă t, q ď 8 and s ą τp,t,qpwq, it holds that

}Tσpf, gq}F s
pp,tq,q

pwq À }f}F s`m
pp,tq,q

pwq }g}L8 ` }f}L8 }g}F s`m
pp,tq,q

pwq @f, g P SpRn
q.

The lifting property }f}F s
pp,tq,q

pwq » }J
sf}F 0

pp,tq,q
pwq holds true for s P R, 0 ă p ă 8 and

0 ă t, q ď 8; this is implied by the Fefferman–Stein inequality (2.3.44) through a proof

analogous to that of the lifting property of the standard Triebel–Lizorkin spaces F s
p,q. Then,

under the assumptions of Theorem 2.3.1 we obtain, in particular,

}Jspfgq}F 0
pp,tq,q

pwq À }J
sf}F 0

pp1,t1q,q
pwq }g}hp2,t2 pwq ` }f}hp1,t1 pwq }J

sg}F 0
pp2,t2q,q

pwq ;

}Jspfgq}F 0
pp,tq,q

pwq À }J
sf}F 0

pp,tq,q
pwq }g}L8 ` }f}L8 }J

sg}F 0
pp,tq,q

pwq .

These last two estimates supplement the results in [18, Theorem 6.1], where related Leibniz-

type rules in Lorentz spaces were obtained.

2.3.2 Leibniz-type rules in the settings of Morrey-based Triebel–

Lizorkin and Besov spaces.

Given 0 ă p ď t ă 8 and w P A8, we denote by M t
ppwq the weighted Morrey space consisting

of functions f P LplocpRnq such that

}f}Mt
ppwq “ sup

BĂRn
wpBq

1
t
´ 1
p

ˆ
ż

B

|fpxq|pwpxq dx

˙
1
p

ă 8,

where the supremum is taken over all Euclidean balls B contained in Rn; it easily follows

that Mp
p pwq “ Lppwq. We refer the reader to the work Rosenthal–Schmeisser [63] and the

references it contains for more details about weighted Morrey spaces. The corresponding

weighted inhomogeneous Triebel–Lizorkin spaces and inhomogeneous Besov spaces are de-

noted by F s
rp,ts,qpwq and Bs

rp,ts,qpwq, respectively. These Morrey-based Triebel–Lizorkin and
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Besov spaces are independent of the choice of ϕ and ψ given in Section 2.1.2 and are quasi-

Banach spaces that contain SpRnq (see the works Kozono–Yamazaki [42], Mazzucato [45],

Izuki et al. [36] and the references they cotain). The corresponding local Hardy spaces are

denoted by htppwq.

Property (i) for F s
rp,ts,qpwq and Bs

rp,ts,qpwq is easily verified with r “ minpp, q, 1q using

that }|f |s}Mt
ppwq

“ }f}sMst
sppwq

for 0 ă s ă 8. Regarding property (ii), we have that if 0 ă

p ď t ă 8, 0 ă p1 ď t1 ă 8 and 0 ă p2 ď t2 ă 8 are such that 1{p “ 1{p1 ` 1{p2 and

1{t “ 1{t1 ` 1{t2, then

}fg}Mt
ppwq

ď }f}
M
t1
p1
pwq
}g}

M
t2
p2
pwq

;

also, if 0 ă p ď t ă 8, 0 ă p1, p2 ă 8 are such that 1{p “ 1{p1 ` 1{p2 and w “ w
p{p1

1 w
p{p2

2

for weights w1 and w2, then

}fg}Mt
ppwq

ď }f}
M

p1t
p

p1
pw1q

}g}
M

p2t
p

p2
pw2q

.

Both inequalities are straightforward consequences of Hölder’s inequality for weighted Lebesgue

spaces. As for property (iii), it holds that if 0 ă p ď t ă 8, 0 ă q ď 8 and 0 ă r ă

minpp{τw, qq, then

›

›

›

›

›

›

˜

ÿ

jPZ

|Mrpfjq|
q

¸
1
q

›

›

›

›

›

›

Mt
ppwq

À

›

›

›

›

›

›

˜

ÿ

jPN0

|fj|
q

¸
1
q

›

›

›

›

›

›

Mt
ppwq

@tfjujPN0 PM
t
ppwqp`

q
q; (2.3.45)

in particular, if 0 ă p ď t ă 8 and 0 ă r ă p{τw, it holds that

}Mrpfq}Mt
ppwq

À }f}Mt
ppwq

@f PM t
ppwq.

When r “ 1, 1 ă p ď t ă 8 and 1 ă q ď 8, the vector-valued inequality follows from

extrapolation and the weighted Fefferman–Stein inequality for weighted Lebesgue spaces

(see [63, Theorem 5.3] for the corresponding extrapolation theorem). The rest of the cases

follow from the latter and the fact that }|f |s}Mt
ppwq

“ }f}sMst
sppwq

for any 0 ă s ă 8. The
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Nikol’skĭı representation for F s
rp,ts,qpwq and Bs

rp,ts,qpwq with w P A8 (property (iv)) has an

analogous statement to that of Theorem 2.1.6 with parameters 0 ă p ď t ă 8, 0 ă q ď 8

and Lppwq replaced by M t
ppwq. In the setting of F s

rp,ts,qpwq, the convergence of the series is in

S 1pRnq for any choice of parameters; in the case of Bs
rp,ts,qpwq, the convergence of the series

holds in S 1pRnq if q “ 8 and in Bs
rp,ts,qpwq otherwise. A similar proof to that of Theorem 2.1.6

applies (see also Section 2.3.4).

Finally, we next present a counterpart of Theorem 2.2.7 in the context of F s
rp,ts,qpwq.

Theorem 2.3.2. For m P R, let σpξ, ηq, ξ, η P Rn, be an inhomogeneous Coifman-Meyer

multiplier of order m.

(i) If w P A8, 0 ă p ď t ă 8, 0 ă p1 ď t1 ă 8 and 0 ă p2 ď t2 ă 8 are such that

1{p “ 1{p1 ` 1{p2 and 1{t “ 1{t1 ` 1{t2, 0 ă q ď 8 and s ą τp,qpwq, it holds that

}Tσpf, gq}F s
rp,ts,q

pwq À }f}F s`m
rp1,t1s,q

pwq }g}ht2p2 pwq
` }f}

h
t1
p1
pwq
}g}F s`m

rp2,t2s,q
pwq @f, g P SpRn

q.

Different pairs of p1, p2 and t1, t2 can be used on the right-hand side of the inequality

above. Moreover, if w P A8, 0 ă p ď t ă 8, 0 ă q ď 8 and s ą τp,qpwq, it holds that

}Tσpf, gq}F s
rp,ts,q

pwq À }f}F s`m
rp,ts,q

pwq }g}L8 ` }f}L8 }g}F s`m
rp,ts,q

pwq @f, g P SpRn
q.

(ii) If w1, w2 P A8, w :“ w
p{p1

1 w
p{p2

2 , 0 ă p ď t ă 8, 0 ă p1, p2 ă 8 are such that

1{p “ 1{p1 ` 1{p2 and s ą τp,qpwq, it holds that

}Tσpf, gq}F s
rp,ts,q

pwq À }f}F s`m
rp1,p1t{ps,q

pw1q
}g}

h
p2t{p
p2

pw2q
`}f}

h
p1t{p
p1

pw1q
}g}F s`m

rp2,p2t{ps,q
pw2q

@f, g P SpRn
q.

Applying the lifting property }f}F s
rp,ts,q

pwq » }J
sf}F 0

rp,ts,q
pwq , valid for s P R, 0 ă p ď t ă

8 and 0 ă q ď 8, and under the assumptions of Theorem 2.3.2 we obtain, in particular,

}Jspfgq}F 0
rp,ts,q

pwq À }J
sf}F 0

rp1,t1s,q
pwq }g}ht2p2 pwq

` }f}
h
t1
p1
pwq
}Jsg}F 0

rp2,t2s,q
pwq ; (2.3.46)
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}Jspfgq}F 0
rp,ts,q

pwq À }J
sf}F 0

rp,ts,q
pwq }g}L8 ` }f}L8 }J

sg}F 0
rp,ts,q

pwq ;

}Jspfgq}F 0
rp,ts,q

pwq À }J
sf}F 0

rp1,p1t{ps,q
pw1q

}g}
h
p2t{p
p2

pw2q
` }f}

h
p1t{p
p1

pw1q
}Jsg}F 0

rp2,p2t{ps,q
pw2q

.

We refer the reader to [18, Theorem 6.3] for unweighted estimates in Morrey spaces in the

spirit of (2.3.46).

2.3.3 Leibniz-type rules in the settings of variable-exponent Triebel–

Lizorkin and Besov spaces.

Let P0 be the collection of measurable functions pp¨q : Rn Ñ p0,8q such that

p´ :“ ess inf
xPRn

ppxq ą 0 and p` :“ ess sup
xPRn

ppxq ă 8.

For pp¨q P P0, the variable-exponent Lebesgue space Lpp¨q consists of all measurable functions

f such that

}f}Lpp¨q :“ inf

#

λ ą 0 :

ż

Rn

ˇ

ˇ

ˇ

ˇ

fpxq

λ

ˇ

ˇ

ˇ

ˇ

ppxq

dx ď 1

+

ă 8;

such quasi-norm turns Lpp¨q into a quasi-Banach space (Banach space if p´ ě 1). We note

that if pp¨q “ p is constant then Lpp¨q » Lp with equality of norms and that

›

›|f |t
›

›

Lpp¨q
“ }f}tLtpp¨q @ t ą 0. (2.3.47)

We refer the reader to the books Cruz-Uribe–Fiorenza [16] and Diening et al. [20] for more

information about variable-exponent Lebesgue spaces.

Let B be the family of all pp¨q P P0 such that M, the Hardy–Littlewood maximal

operator, is bounded from Lpp¨q to Lpp¨q. A necessary condition for pp¨q P B is p´ ą 1; sufficient

conditions for pp¨q P B include log-Hölder continuity assumptions. Property (2.3.47) and

Jensen’s inequality imply that if pp¨q P P0 and 0 ă τ0 ă 8 is such that pp¨q{τ0 P B then
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pp¨q{τ P B for 0 ă τ ă τ0. We then define

τpp¨q “ suptτ ą 0 : pp¨q
τ
P Bu, pp¨q P P˚0 ,

where P˚0 denotes the class of variable exponents in P0 such that pp¨q{τ0 P B for some τ0 ą 0.

Note that τpp¨q ď p´.

Given s P R, 0 ă q ď 8 and pp¨q P P0, the corresponding inhomogeneous Triebel-

Lizorkin and Besov spaces are denoted by F s
pp¨q,q and Bs

pp¨q,q, respectively. If pp¨q P P˚0 , these

spaces are independent of the functions ψ and ϕ given in Section 2.1.2 (see Xu [67]), contain

SpRnq and are quasi-Banach spaces. If pp¨q P B and s ą 0, F s
pp¨q,2 coincides with the variable-

exponent Sobolev space W s,pp¨q (see Gurka et al. [31] and Xu [66]). More general versions of

variable-exponent Triebel–Lizorkin and Besov spaces, where s and q are also allowed to be

functions, were introduced in Diening at al. [21] and Almeida–Hästö [1], respectively. The

local Hardy space with variable exponent pp¨q P P0, denoted hpp¨q, is defined analogously to

hppwq with the quasi-norm in Lppwq replaced by the quasi-norm in Lpp¨q.

We next consider properties (i)-(iv) in the variable-exponent setting. Given pp¨q P P0,

0 ă q ď 8 and s P R, property (i) for F s
pp¨q,q and Bs

pp¨q,q with r “ minpp´, q, 1q follows right

away using (2.3.47). Property (ii) is given by the following version of Hölder’s inequality

in the context of variable-exponent Lebesgue spaces: If p1p¨q, p2p¨q, pp¨q P P0 are such that

1{pp¨q “ 1{p1p¨q ` 1{p2p¨q then

}fg}Lpp¨q À }f}Lp1p¨q}g}Lp2p¨q @f P Lp1p¨q, g P Lp2p¨q.

For a proof with exponents in P0 such that p´ ě 1 see, for instance, [16, Corollary 2.28]; the

general case with exponents in P0 follows from the latter and (2.3.47). Regarding property

(iii) for variable-exponent Lebesgue spaces, the following version of the Fefferman-Stein

inequality follows from [16, Section 5.6.8] and (2.3.47): If pp¨q P P˚0 , 0 ă q ď 8 and
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0 ă r ă minpτpp¨q, qq then

›

›

›

›

›

›

˜

ÿ

jPZ

|Mrpfjq|
q

¸
1
q

›

›

›

›

›

›

Lpp¨q

À

›

›

›

›

›

›

˜

ÿ

jPN0

|fj|
q

¸
1
q

›

›

›

›

›

›

Lpp¨q

@tfjujPN0 P L
pp¨q
p`qq;

in particular, if 0 ă r ă τpp¨q it holds that

}Mrpfq}Lpp¨q À }f}Lpp¨q @f P Lpp¨q.

Finally, the following version of the Nikol’skĭı representation for F s
pp¨q,q and Bs

pp¨q,q (property

(iv)), can be proved along the lines of the proof of Theorem 2.1.6 (see also Section 2.3.4):

Theorem 2.3.3. For D ą 0, let tujujPZ Ă S 1pRnq be a sequence of tempered distribu-

tions such that suppp pujq Ă Bp0, D 2jq for all j P Z. Let pp¨q P P˚0 , 0 ă q ď 8 and

s ą np1{minpτpp¨q, q, 1q ´ 1q. If }t2jsujujPZ}Lpp¨qp`qq ă 8, then the series
ř

jPZ uj converges in

F s
pp¨q,q (in S 1pRnq if q “ 8) and

›

›

›

›

›

ÿ

jPN0

uj

›

›

›

›

›

F s
pp¨q,q

À
›

›t2jsujujPN0

›

›

Lpp¨qp`qq
,

where the implicit constant depends only on n, D, s, pp¨q and q. An analogous statement

holds true for Bs
pp¨q,q with s ą np1{minpτpp¨q, 1q ´ 1q

We next state a version of Theorem 2.2.7 for variable-exponent Triebel-Lizorkin spaces

as a model result.

Theorem 2.3.4. For m P R, let σpξ, ηq, ξ, η P Rn, be an inhomogeneous Coifman-Meyer

multiplier of order m. If pp¨q, p1p¨q, p2p¨q P P˚0 are such that 1{pp¨q “ 1{p1p¨q ` 1{p2p¨q, 0 ă

q ď 8 and s ą np1{minpτpp¨q, q, 1q ´ 1q, it holds that

}Tσpf, gq}F s
pp¨q,q

À }f}F s`m
p1p¨q,q

}g}hp2p¨q ` }f}hp1p¨q }g}F s`m
p2p¨q,q

@f, g P SpRn
q.

41



Moreover, if pp¨q P P˚0 , 0 ă q ď 8 and s ą np1{minpτpp¨q, q, 1q ´ 1q, it holds that

}Tσpf, gq}F s
pp¨q,q

À }f}F s`m
pp¨q,q

}g}L8 ` }f}L8 }g}F s`m
pp¨q,q

@f, g P SpRn
q.

The lifting property }f}F s
pp¨q,q

» }Jsf}F 0
pp¨q,q

holds true for s P R, pp¨q P P˚0 and 0 ă q ď 8;

then, under the assumptions of Theorem 2.3.4 we obtain, in particular,

}Jspfgq}F 0
pp¨q,q

À }Jsf}F 0
p1p¨q,q

}g}hp2p¨q ` }f}hp1p¨q }J
sg}F 0

p2p¨q,q
;

}Jspfgq}F 0
pp¨q,q

À }Jsf}F 0
pp¨q,q

}g}L8 ` }f}L8 }J
sg}F 0

pp¨q,q
.

These last two estimates extend some of the inequalities in [18, Theorem 1.2], where Leibniz-

type rules for the product of two functions were proved in variable-exponent Lebesgue spaces

through the use of extrapolation techniques.

2.3.4 Nikol’skĭı representations of Triebel-Lizorkin and Besov spaces

In this section, we remark on the proofs of Theorem 2.1.6 and the corresponding versions

in the settings of weighted Lorentz spaces, weighted Morrey spaces, and variable-exponent

Lebesgue spaces.

Regarding the proof of Part (i) of Theorem 2.1.6 (for instance, in the inhomogeneous

case) the fact that
›

›t2jsujuM`1ď|j|ďN

›

›

Lppwqp`qq
converges to zero, as M,N Ñ 8, when q is

finite, allows to conclude that
ř

jPN0
uj converges in F s

p,qpwq through the use of (2.1.18).

Under the hypothesis of Part (i) for X “ Lp,tpwq with 0 ă p, t ă 8 or X “ Lpp¨q with

pp¨q P P0 and q finite, it holds that

›

›t2jsujuM`1ď|j|ďN

›

›

X p`qq Ñ 0 as M,N Ñ 8; (2.3.48)

therefore,
ř

jPN0
uj converges in F s

pp,tq,qpwq and F s
pp¨q,q, respectively.

In the case of Lorentz spaces, the fact (2.3.48) is a consequence of the following domi-
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nated convergence type theorem:

Suppose fn Ñ f in measure with respect to a weight w and |fnpxq| ď |gpxq| a.e. for some

g P Lp,tpwq, 0 ă p, t ă 8. Then lim
nÑ8

}fn ´ f}Lp,tpwq “ 0.

In the setting of variable-exponent Lebesgue spaces, (2.3.48) is a consequence of the

following dominated convergence type theorem:

Suppose fn Ñ f pointwise a.e. and |fnpxq| ď |gpxq| a.e. for some g P Lpp¨q, pp¨q P P0. Then

fn Ñ f in Lpp¨q.

For the indices for which (2.3.48) does not necessarily hold under the corresponding

assumptions in Part (i) (t “ 8 or q “ 8 when X “ Lp,tpwq, 0 ă p ď t ă 8 and 0 ă q ď 8

when X “M t
ppwq, q “ 8 when X “ Lpp¨q), the convergence of

ř

jPN0
uj holds in S 1pRnq rather

than in F s
pp,tq,qpwq, F

s
rp,ts,qpwq or F s

pp¨q,q, respectively. Regarding Part (ii), the counterpart of

(2.3.48) is
›

›t2jsujuM`1ď|j|ďN

›

›

`qpX q Ñ 0 as M,N Ñ 8,

which is always true under the corresponding assumptions of Part (ii) as long as q is finite,

in which case the convergence of
ř

jPN0
uj holds in the corresponding X -based Besov space.

If q “ 8, the convergence is in S 1pRnq rather than in the X -based Besov space.

The last part of the proof of Theorem 2.1.6 uses the Fatou property of Triebel–Lizorkin

and Besov spaces. Let A be a quasi-Banach space such that SpRnq ãÑ A ãÑ S 1pRnq (or

S0pRnq ãÑ A ãÑ S 10pRnq). The spaceA is said to have the Fatou property if for every sequence

tfjujPN Ă A that converges in S 1pRnq (S 10pRnq, respectively), as j Ñ 8, and that satisfies

lim infjÑ8 }fj}A ă 8, it follows that limjÑ8 fj P A and }limjÑ8 fj}A À lim infjÑ8 }fj}A ,

where the implicit constant is independent of tfjujPN.

It can be shown, using standard proofs, that Triebel–Lizorkin and Besov spaces based

on a quasi-Banach space X of measurable functions (i.e. F s
X ,q, B

s
X ,q and their homogeneous

counterparts) posses the Fatou property for any s P R and 0 ă q ď 8 if X satisfies the

following properties: (1) if f, g P X and |f | ď |g| pointwise a.e., then }f}X À }g}X ; (2)

if tfjujPN Ă X and fj ě 0 poinwise a.e., then }lim infjÑ8 fj}X À lim infjÑ8 }fj}X . Given

a weight w, properties (1) and (2) are easily verified for Lppwq if 0 ă p ď 8, Lp,tpwq if

43



0 ă p ă 8, 0 ă t ď 8, M t
ppwq if 0 ă p ď t ă 8; they also hold for Lpp¨q if pp¨q P P0, as

shown in [16, Theorem 2.61]. As a consequence, all the Triebel–Lizorkin and Besov spaces

considered in the statements of the theorems in Sections 2.2 and 2.3 have the Fatou–Property.

2.4 Applications to scattering properties of PDEs

In this section, we discuss applications of Theorem 2.2.1, Theorem 2.2.7, and their coun-

terparts in Section 2.3 to systems of partial differential equations involving powers of the

Laplacian. The systems of partial differential equations that we study are of the form

$

’

&

’

%

Btu “ vw, Btv ` apDqv “ 0, Btw ` bpDqw “ 0,

up0, xq “ 0, vp0, xq “ fpxq, wp0, xq “ gpxq,
(2.4.49)

where u “ upt, xq, v “ vpt, xq, and w “ wpt, xq, t ě 0 and x P Rn. Here the operators

apDq and bpDq are linear Fourier multiplier operators associated to the symbols apξq and

bpξq respectively; that is, {apDqfpξq “ apξq pfpξq and {bpDqfpξq “ bpξq pfpξq.

Without taking issues of convergence into account, we get that

vpt, xq “

ż

Rn
e´tapξq pfpξqe2πix¨ξdξ. (2.4.50)

Indeed, using the system (2.4.49) we obtain

Btvpxq ` apDqvpxq “

ż

Rn
p {Btvpt, ¨qpξq ` apξq{vpt, ¨qpξqqe

2πiξ¨xdξ

“ 0,

where the Fourier transforms {Btvpt, ¨q and {vpt, ¨q are taken with respect to the variable x; so

we must have {Btvpt, ¨qpξq ` apξq{vpt, ¨qpξq “ 0. By interchanging the Fourier transform with

the derivative with respect to t we get {vpt, ¨qpξq “ e´tapξqF pξq for some function F . Setting

t “ 0 and using the system (2.4.49) it follows that F pξq “ pfpξq; by inverting the Fourier
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transform we obtain (2.4.50). A similar calculation shows that

wpt, xq “

ż

Rn
e´tbpηqpgpηqe2πix¨ηdη.

These expressions for v and w yield that

upt, xq “

ż t

0

vps, xqwps, xq ds “

ż

R2n

ˆ
ż t

0

e´spapξq`bpηqq ds

˙

pfpξqpgpηq e2πix¨pξ`ηq dξ dη.

Setting λpξ, ηq “ apξq ` bpηq and assuming that λ never vanishes, the solution upt, xq can

then be written as the action on f and g of the bilinear multiplier with symbol 1´e´tλpξ,ηq

λpξ,ηq
,

that is,

upt, xq “ T 1´e´tλ

λ

pf, gqpxq. (2.4.51)

Following Bernicot–Germain [9, Section 9.4], suppose there exists u8 P S 1pRnq such that

lim
tÑ8

upt, ¨q “ u8 in S 1pRn
q; (2.4.52)

then, given a function space X, we say that the solution u of (2.4.49) scatters in the function

space X if u8 P X.

As an application of Theorems 2.2.1 and 2.2.7 we obtain the following scattering prop-

erties for solutions to systems of the type (2.4.49) involving powers of the Laplacian.

For 0 ă p1, p2, p, q ď 8 and w1, w2 P A8, set

γw1,w2,tl
p1,p2,p,q

“ 2prnp1{minpp, q, 1q ` 1{minp1, p1{τw1 , p2{τw2 , qqqs ` 1q,

γw1,w2,b
p1,p2,p,q

“ 2prnp1{minpp, q, 1q ` 1{minp1, p1{τw1 , p2{τw2qqs ` 1q.

For δ ą 0 define Sδ “ tpξ, ηq P R2n : |η| ď δ´1 |ξ| and |ξ| ď δ´1 |η|u.

Theorem 2.4.1. Consider 0 ă p, p1, p2 ď 8 such that 1{p “ 1{p1 ` 1{p2 and 0 ă q ď 8;

let w1, w2 P A8 and set w “ w
p{p1

1 w
p{p2

2 . Fix γ ą 0; if γ is even, or γ ě γw1,w2,tl
p1,p2,p,q

in the

setting of Triebel–Lizorkin spaces, or γ ě γw1,w2,b
p1,p2,p,q

in the setting of Besov spaces, assume
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f, g P S0pRnq; otherwise, assume that f, g P S0pRnq are such that pfpξqpgpηq is supported in Sδ

for some 0 ă δ ! 1. Consider the system

$

’

&

’

%

Btu “ vw, Btv `D
γv “ 0, Btw `D

γw “ 0,

up0, xq “ 0, vp0, xq “ fpxq, wp0, xq “ gpxq.
(2.4.53)

If 0 ă p, p1, p2 ă 8 and s ą τp,qpwq, the solution u of (2.4.53) scatters in 9F s
p,qpwq to a

function u8 that satisfies the following estimates:

}u8} 9F sp,qpwq
À }f} 9F s´γp1,q

pw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}g} 9F s´γp2,q

pw2q
, (2.4.54)

where the implicit constant is independent of f and g. If 0 ă p, p1, p2 ď 8 and s ą τppwq,

the solution u of (2.4.53) scatters in 9Bs
p,qpwq to a function u8 that satisfies the following

estimates

}u8} 9Bsp,qpwq
À }f} 9Bs´γp1,q

pw1q
}g}Hp2 pw2q

` }f}Hp1 pw1q
}g} 9Bs´γp2,q

pw2q
, (2.4.55)

where the Hardy spaces Hp1pw1q and Hp2pw2q must be replaced by L8 if p1 “ 8 or p2 “ 8,

respectively, and the implicit constant is independent of f and g. If w1 “ w2 then different

pairs of p1, p2 can be used on the right-hand sides of (2.4.54) and (2.4.55); moreover, if

w P A8, then

}u8} 9F sp,qpwq
À }f} 9F s´γp,q pwq

}g}L8 ` }f}L8 }g} 9F s´γp,q pwq
,

where 0 ă p ă 8, 0 ă q ď 8, s ą τp,qpwq, and the implicit constant is independent of f and

g.

For δ ą 0 define S̃δ “ tpξ, ηq P R2n : |η| ď δ´1p1` |ξ|2q
1
2 and |ξ| ď δ´1p1` |η|2q

1
2 u.

Theorem 2.4.2. Consider 0 ă p, p1, p2 ď 8 such that 1{p “ 1{p1 ` 1{p2 and 0 ă q ď 8;

let w1, w2 P A8 and set w “ w
p{p1

1 w
p{p2

2 . Fix γ ą 0; if γ is even, or γ ě γw1,w2,tl
p1,p2,p,q

in the

setting of Triebel–Lizorkin spaces, or γ ě γw1,w2,b
p1,p2,p,q

in the setting of Besov spaces, assume

f, g P SpRnq; otherwise, assume that f, g P SpRnq are such that pfpξqpgpηq is supported in rSδ
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for some 0 ă δ ! 1. Consider the system

$

’

&

’

%

Btu “ vw, Btv ` J
γv “ 0, Btw ` J

γw “ 0,

up0, xq “ 0, vp0, xq “ fpxq, wp0, xq “ gpxq.
(2.4.56)

If 0 ă p, p1, p2 ă 8 and s ą τp,qpwq, the solution u of (2.4.56) scatters in F s
p,qpwq to a

function u8 that satisfies the following estimates:

}u8}F sp,qpwq À }f}F s´γp1,q
pw1q

}g}hp2 pw2q
` }f}hp1 pw1q

}g}F s´γp2,q
pw2q

, (2.4.57)

where the implicit constant is independent of f and g. If 0 ă p, p1, p2 ď 8 and s ą τppwq,

the solution u of (2.4.56) scatters in Bs
p,qpwq to a function u8 that satisfies the following

estimates

}u8}Bsp,qpwq À }f}Bs´γp1,q
pw1q

}g}hp2 pw2q
` }f}hp1 pw1q

}g}Bs´γp2,q
pw2q

, (2.4.58)

where the Hardy spaces hp1pw1q and hp2pw2q must be replaced by L8 if p1 “ 8 or p2 “ 8,

respectively, and the implicit constant is independent of f and g. If w1 “ w2 then different

pairs of p1, p2 can be used on the right-hand sides of (2.4.57) and (2.4.58); moreover, if

w P A8, then

}u8}F sp,qpwq À }f}F s´γp,q pwq
}g}L8 ` }f}L8 }g}F s´γp,q pwq

,

where 0 ă p ă 8, 0 ă q ď 8, s ą τp,qpwq, and the implicit constant is independent of f and

g.

Proof of Theorem 2.4.1. We have apξq “ |ξ|γ and bpηq “ |η|γ ; therefore, λpξ, ηq “ |ξ|γ`|η|γ .

Note that all corresponding integrals for vpt, xq, wpt, xq and upt, xq are absolutely convergent

for t ą 0, x P Rn and f, g P SpRnq. If we further assume that f, g P S0pRnq, the Dominated

Convergence Theorem implies that upt, ¨q Ñ u8 both pointwise and in S 1pRnq, where

u8pxq “

ż

R2n

papξq ` bpηqq´1
pfpξqpgpηqe2πix¨pξ`ηq dξ dη “ Tλ´1pf, gqpxq.
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If γ is an even positive integer then λ´1 satisfies the estimates (2.1.1) with m “ ´γ for

all α, β P Nn
0 . Then, all estimates from Theorem 2.2.1 hold for Tλ´1 and therefore the desired

estimates follow for u8 with constants independent of f, g P S0pRnq.

Let p1, p2, p, q, w1, w2 be as in the hypotheses. If γ ą 0 and γ is not an even integer, then

λ´1 satisfies the estimates (2.1.1) with m “ ´γ as long as α, β P Nn
0 are such that |α| ă γ and

|β| ă γ; in particular, λ´1 satisfies (2.1.1) with m “ ´γ for α, β P Nn
0 such that |α ` β| ă γ.

In view of the Remark 2.2.6, all estimates from Theorem 2.2.1 hold for Tλ´1 if γ ě γw1,w2,tl
p1,p2,p,q

in

the context of Triebel–Lizorkin spaces and if γ ě γw1,w2,b
p1,p2,p,q

in the context of Besov spaces; as a

consequence, the desired estimates follow for u8 with constants independent of f, g P S0pRnq

for such values of γ.

On the other hand, if 0 ă γ ă γw1,w2,tl
p1,p2,p,q

in the Triebel-Lizorkin space setting or 0 ă γ ă

γw1,w2,b
p1,p2,p,q

in the Besov space setting, and γ is not an even positive integer, consider h P SpR2nq

such that suppphq Ă Sδ{2 and h ” 1 on Sδ. Then, for f, g P S0pRnq such that pfpξqpgpηq is

supported in Sδ we have hpξ, ηq pfpξqpgpηq “ pfpξqpgpηq; therefore, Tλ´1pf, gq “ TΛpf, gq, where

Λpξ, ηq “ hpξ, ηq{p|ξ|γ `|η|γq. The multiplier Λ verifies (2.1.1) with m “ ´γ for all α, β P Nn
0

(with constants that depend on δ). Then all estimates from Theorem 2.2.1 hold for TΛ and

therefore the desired estimates follow for u8 with constants dependent on δ and independent

of f, g P S0pRnq such that pfpξqpgpηq is supported in Sδ.

Proof of Theorem 2.4.2. We proceed as in the proof of Theorem 2.4.1 with λpξ, ηq “ p1 `

|ξ|2qγ{2 ` p1` |η|2qγ{2 and an application of Theorem 2.2.7.
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Chapter 3

Bilinear Hörmander Classes and

Leibniz-type rules

3.1 Introduction and main results

In this chapter, we obtain Leibniz-type rules for bilinear pseudodifferential operators asso-

ciated to symbols in the bilinear Hörmander classes of critical order in the setting of Besov

and local Hardy spaces.

In this section, we present the bilinear Hörmander classes and state the main results

of this chapter. The notation used corresponds with that introduced in Chapter 2. In

particular, Lp, Bs
p,q and hp denote the unweighted Lebesgue, Besov and local Hardy spaces

on Rn, respectively. We recall that τp “ np1{minpp, 1q ´ 1q for 0 ă p ă 8.

Given 0 ď δ ď ρ ď 1 and m P R, a complex-valued function σ “ σpx, ξ, ηq, x, ξ, η P Rn,

belongs to the bilinear Hörmander class BSmρ,δ if for any multiindices α, β, γ P Nn
0 there exists

a positive constant Cα,β,γ such that

|B
α
xB

β
ξ B

γ
ησpx, ξ, ηq| ď Cα,β,γp1` |ξ| ` |η|q

m`δ|α|´ρp|β`γ|q
@x, ξ, η P Rn. (3.1.1)

Then for σ P BSmρ,δ, the bilinear pseudodifferential operator Tσ associated to σ is defined as
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in (1.0.4).

Bilinear pseudodifferential operators with symbols in the bilinear Hörmander classes

have been extensively studied; see Bényi-Bernicot-Maldonado-Naibo-Torres [3], Bényi-Chaffee-

Naibo [4], Bényi-Maldonado-Naibo-Torres [5], Bényi–Torres [7; 8], Brummer-Naibo [12],

Herbert-Naibo [33; 34], Koezuka-Tomita [41], Michalowski-Rule-Staubach [47], Miyachi-

Tomita [48–50], Naibo [53; 54], Rodŕıguez-López-Staubach [62], and the references therein.

One fundamental aspect of the study of symbols in the bilinear Hörmander classes is the

symbolic calculus for the transposes of operators associated to them. This was established

in the works Bényi-Torres [7] and Bényi-Maldonado-Naibo-Torres [5]. Another important

aspect of the study of these symbols is the boundedness properties of the corresponding

pseudodifferential operators in a variety of function spaces. Operators associated to symbols

in BS0
1,δ, 0 ď δ ă 1, can be realized as Calderón-Zygmund operators. As a consequence,

such operators are bounded from Lp1 ˆ Lp2 to Lp for 1 ă p1, p2 ă 8 and 1{2 ă p ă 8

related through 1{p “ 1{p1 ` 1{p2. These operators also satisfy the endpoint mappings

L8 ˆ L8 Ñ BMO and L1 ˆ L1 Ñ L1{2,8, where BMO is the space of functions with

bounded mean oscilation. Operators with symbols in the class BS0
1,1 may fail to be bounded

in Lebesgue spaces and are better understood in other settings. In Bényi et al. [6; 7],

estimates in Sobolev spaces were obtained for such operators; for results in the settings of

Besov and Triebel-Lizorkin spaces see Bényi [2], Brummer–Naibo [12], Koezuka–Tomita [41]

and Naibo [53]. For 0 ă ρ ă 1, unless m is sufficiently negative, the class BSmρ,δ falls outside

the bilinear Calderón-Zygmund theory.

Given 0 ď δ ď ρ ă 1 and 0 ă p1, p2, p ď 8 related by 1{p “ 1{p1 ` 1{p2, define

mpρ, p1, p2q :“ ´np1´ ρqmaxp1{2, 1{p1, 1{p2, 1´ 1{p, 1{p´ 1{2q.

Bényi et al. [3] proved that if 1 ď p1, p2, p ď 8, m ă mpρ, p1, p2q and σ P BSmρ,δ then Tσ

is bounded from Lp1 ˆ Lp2 to Lp. On the other hand, Miyachi–Tomita [48] proved that if

m ą mpρ, p1, p2q, with 0 ă p1, p2, p ď 8, there are symbols in BSmρ,ρ for which the associated

bilinear pseudodifferential operators are not bounded from Hp1 ˆ Hp2 to Lp (recall that
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Hr “ Lr if 1 ă r ă 8); in the case that p “ 8, Lp should be replaced by BMO. As

a consequence of these results, the class BS
mpρ,p1,p2q

ρ,δ is referred to as a critical class and

mpρ, p1, p2q is called a critical order.

We now turn our attention to the critical classes. Miyachi–Tomita [48] showed that the

symbols in BS
mp0,p1,p2q

0,0 with 0 ă p1, p2, p ď 8 give rise to operators that are bounded from

hp1 ˆ hp2 to hp (recall that hr “ Lr if 1 ă r ă 8), where hr should be replaced with bmo

if r “ 8. In the case that p1 “ p2 “ 8, Naibo [54] proved that if σ is in the critical class

BS
mpρ,8,8q
ρ,δ with 0 ď δ ď ρ ă 1{2, then Tσ is bounded from L8 ˆ L8 to BMO. The theory

of boundedness properties in the setting of Lebesgue and Hardy spaces for operators with

symbols in the critical classes was completed in Miyachi–Tomita [49; 50]: operators with

symbols of critical order mpρ, p1, p2q, with 0 ď δ ď ρ ă 1 and 0 ă p1, p2, p ď 8, are bounded

from Hp1 ˆHp2 to Lp, where Lp should be replaced by BMO if p “ 8.

In this chapter, we prove Leibniz-type rules in the setting of Besov and local Hardy

spaces for bilinear pseudodifferential operators associated to symbols in the critical classes

BS
mpρ,p1,p2q

ρ,δ . The main result of this chapter is the following theorem.

Theorem 3.1.1. Let 0 ă p ă 8 and 0 ă p1, p2 ď 8 be such that 1{p “ 1{p1 ` 1{p2,

0 ă q ď 8, 0 ď δ ď ρ ă 1 and σ P BS
mpρ,p1,p2q

ρ,δ . If s ą τp, then it holds that

}Tσpf, gq}Bsp,q À }f}Bsp1,q
}g}hp2 ` }f}hp1 }g}Bsp2,q

@f, g P SpRn
q, (3.1.2)

where hp1 and hp2 must be replaced by L8 if p1 “ 8 or p2 “ 8, respectively. Moreover,

if there exits ε ą 0 such that the Fourier transform of σp¨, ξ, ηq is supported outside the set

tζ P Rn : |ζ| ă εp|ξ| ` |η|qu for all ξ, η P Rn such that 1{32 |ξ| ď |η| ď 32 |ξ| , then (3.1.2)

holds for any s P R.

Results related to estimate (3.1.2) were proved for the class BS0
1,1 in Bényi [2], Koezuka-

Tomita [41], and Naibo [53]. Concerning bilinear pseudodifferential operators with symbols

belonging to the subcritical classes BSmρ,δ with m ă mpρ, p1, p2q and 1 ď p1, p2, p ď 8 and to

the critical classes BS
mp0,p1,p2q

0,0 with 1 ă p1, p2, p ă 8, estimate (3.1.2) was shown in Naibo
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[53, Theorem 1.3] for s ą τp. Theorem 3.1.1 extends this result to the critical classes and

allows for the regularity s to be in the wider range p0,8q under certain assumptions on σ.

The proof of Theorem 3.1.1 uses the fact that operators with symbols in BS
mp0,p1,p2q

0,0

that are localized at certain dyadic frequencies are bounded in the setting of local Hardy

spaces; no other boundedness properties of operators with symbols in the bilinear Hörmander

classes are required in the proof. The tools employed are inspired by bilinear techniques in

Naibo [53] and linear ones in Johnsen [37], Marschall [44], and Park [59].

As a consequence of Theorem 3.1.1, we obtain Leibniz-type rules for bilinear pseudod-

ifferential operators associated to symbols in a general class BSmρ,δ :

Corollary 3.1.2. Let 0 ă p ă 8 and 0 ă p1, p2 ď 8 be such that 1{p “ 1{p1 ` 1{p2,

0 ă q ď 8, 0 ď δ ď ρ ă 1, m P R and σ P BSmρ,δ; set m̄ “ m´mpρ, p1, p2q. If s ą τp then it

holds that

}Tσpf, gq}Bsp,q À }f}Bs`m̄p1,q
}g}hp2 ` }f}hp1 }g}Bs`m̄p2,q

@f, g P SpRn
q, (3.1.3)

where hp1 and hp2 must be replaced by L8 if p1 “ 8 or p2 “ 8, respectively. Moreover,

if there exits ε ą 0 such that the Fourier transform of σp¨, ξ, ηq is supported outside the set

tζ P Rn : |ζ| ă εp|ξ| ` |η|qu for all ξ, η P Rn such that 1{32 |ξ| ď |η| ď 32 |ξ| , then (3.1.3)

holds for any s P R.

Remark 3.1.3. If 0 ď δ ď ρ ă 1, m ă mpρ, p1, p2q and σ P BSmρ,δ then Tσ is a smoothing

operator since, in such case, s` m̄ ă s for s, m̄ as in the statement of Corollary 3.1.2.

Remark 3.1.4. It will be clear from the proofs that different pairs of p1, p2, related to p

through the Hölder condition, can be used in each of the terms on the right-hand sides of

the estimates in Theorem 3.1.1 and Corollary 3.1.2.

Remark 3.1.5. By the lifting propterty of Besov spaces (2.1.15), the estimates (3.1.2) and

(3.1.3) can be written as

}JsTσpf, gq}B0
p,q
À }Jsf}Bm̄p1,q

}g}hp2 ` }f}hp1 }J
sg}Bm̄p2,q

.
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The organization of the rest of this chapter is as follows. In Section 3.2, we prove a

maximal inequality for bilinear pseudodifferential operators that will be useful in the proof of

Theorem 3.1.1. In Section 3.3, we introduce a decomposition for Tσ with σ P BSmρ,δ and prove

boundedness properties for the corresponding pieces. Finally, in Section 3.4, we combine the

results from Sections 3.2 and 3.3 to conclude the proofs of Theorem 3.1.1 and Corollary

3.1.2.

3.2 A maximal inequality for bilinear pseudodifferne-

tial operators

In this section, we prove the following maximal inequality for bilinear pseudodifferential

operators, which will be usefull in the proof of Theorem 3.1.1. We recall that Mrf “

pMp|f |rqq1{r, whereM is the Hardy-Littlewood maximal operator; for functions f and g we

set f b gpx, yq “ fpxqgpyq.

Lemma 3.2.1. Consider f, g P SpRnq and let σ “ σpx, ξ, ηq be a symbol in C8pR3nq such

that for some polynomial P pξ, ηq,

|σpx, ξ, ηq| À P pξ, ηq @x, ξ, η P Rn.

Suppose there exists k0 P Z such that

supppσpx, ¨, ¨qq Ă tpξ, ηq P R2n : |ξ| ` |η| ď 2k0u @x P Rn

and

suppp pfq, suppppgq Ă tξ P Rn : |ξ| ď 2k0u.

If 0 ă r ď 1 and
›

›σpx, 2k0`1¨, 2k0`1¨q
›

›

W t2n{ru`1,1pR2nq
Mrpf b gqpx, yq is locally integrable in
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R2n, it holds that

|Tσpf, gqpxq| À
›

›σpx, 2k0`1
¨, 2k0`1

¨q
›

›

W t2n{ru`1,1pR2nq
MrpfqpxqMrpgqpxq @x P Rn, (3.2.4)

where the implicit constant is independent of σ, f, g and k0.

Lemma 3.2.1 will be a consequence of the following result from Marschall [44, p.118,

Proposition 5(a)] and Johnsen [37, p.275, Proposition 4.1]:

Lemma 3.2.A. Consider F P SpRNq and let Σ “ ΣpX, ζq be a symbol in C8pRN ˆ RNq

such that for some polynomial P pζq,

|ΣpX, ζq| À P pζq @X, ζ P RN .

Suppose there exists k0 P Z such that

supppΣpX, ¨qq Ă tζ P RN : |ζ| ď 2k0u @X P RN and suppp pF q Ă tζ P RN : |ζ| ď 2k0u.

If 0 ă r ď 1 and
›

›ΣpX, 2k0 ¨q
›

›

W tN{ru`1,1pRN qMrpF qpXq is locally integrable in RN , it holds that

|TΣpF qpXq| À
›

›ΣpX, 2k0 ¨q
›

›

W tN{ru`1,1pRN qMrpF qpXq @X P RN , (3.2.5)

where the implicit constant is independent of Σ, F and k0.

Proof of Lemma 3.2.1. We have that

Tσpf, gqpxq “

ż

R2n

σpx, ξ, ηq pfpξqpgpηqe2πix¨pξ`ηq dξ dη

can be regarded as the restriction to the diagonal in R2n of the linear pseudodifferential

operator

TΣpF qpXq “

ż

R2n

ΣpX, ζq pF pζqe2πiX¨ζ dζ
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after setting ζ “ pξ, ηq and defining, for X “ px, yq P R2n,

ΣpX, ζq :“ σpx, ξ, ηq and F pXq :“ pf b gqpXq “ fpxqgpyq.

Note that ΣpX, ζq is in C8pR2n ˆ R2nq, has polynomial growth in ζ uniformly in X, and is

supported in tζ P R2n : |ζ| ď 2k0u for each X P R2n; moreover pF pζq “ pfpξqpgpηq is supported

in tζ P R2n : |ζ| ď 2k0`1u. Then, (3.2.4) follows after applying Lemma 3.2.A and (3.2.5) to

TΣpF q and noticing that

MrpF qpx, xq ÀMrpfqpxqMrpgqpxq @x P Rn.

Remark 3.2.2. We note that
›

›σpx, 2k0`1¨, 2k0`1¨q
›

›

W t2n{ru`1,1pR2nq
Mrpf b gqpx, yq is locally in-

tegrable in R2n when
›

›σpx, 2k0`1¨, 2k0`1¨q
›

›

W t2n{ru`1,1pR2nq
is a bounded function of x since

Mrpf b gqpx, yq is locally integrable in R2n.

3.3 Decomposition of the operator Tσ and main esti-

mates

In the proofs that follow in this chapter we implicitly assume that the symbol σ in the

statements of Theorem 3.1.1 and Corollary 3.1.2 has compact support in R3n and prove

estimates for such symbols with constants independent of its support. The following limiting

argument then allows us to prove these results for symbols in the bilinear Hörmander classes

without compact support. For 0 ď δ, ρ ď 1, m P R, σ P BSmρ,δ and 0 ď ε ă 1 let σεpx, ξ, ηq “

Ψpεx, εξ, εηqσpx, ξ, ηq for a smooth function Ψ of compact support such that Ψp0, 0, 0q “ 1.

It follows that σε P BS
m
ρ,δ with constants independent of ε and that, as ε Ñ 0, Tσεpf, gq

converges to Tσpf, gq in S 1pRnq for f, g P SpRnq. Indeed, by the product rule, the facts that
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σ P BSmρ,δ, and 0 ă ε ă 1, and the properties of Ψ, we have

|B
α
ξ B

β
ησεpx, ξ, ηq| À

ÿ

α0ďα,β0ďβ

ε|α0|`|β0||B
α0
ξ B

β0
η Ψpεx, εξ, εηqBα´α0

ξ B
β´β0
η σpx, ξ, ηq|

À
ÿ

α0ďα,β0ďβ

p1` |ξ| ` |η|qm`δ|α´α0|´ρ|β´β0|

“ p1` |ξ| ` |η|qm`δ|α|´ρ|β|
ÿ

α0ďα,β0ďβ

p1` |ξ| ` |η|q´δ|α0|`ρ|β0|

À p1` |ξ| ` |η|qm`δ|α|´ρ|β|,

for px, ξ, ηq P supppΨq and with the implicit constants depending only on α, β, and Ψ.

Additionally, by the dominated convergence theorem and using that Ψp0, 0, 0q “ 1 we get

that Tσεpf, gq Ñ Tσpf, gq in S 1pRnq as εÑ 0. Finally by the Fatou property of Besov spaces

the estimates for Tσ follow from the estimates for Tσε which are uniform in ε.

We now present the decomposition of Tσ that will be used in the proof of Theorem

3.1.1. Let ϕ, ϕ0 P SpRnq be such that qϕ and |ϕ0 satisfy (2.1.6)-(2.1.7) and (2.1.8)-(2.1.9)

respectively, and assume
ř

kPN0
ϕk ” 1, where ϕkpξq “ ϕp2´kξq for ξ P Rn and k P N.

Let m P R, 0 ď δ ď ρ ă 1 and σ P BSmρ,δ. Denote by pσ1 the Fourier transform of σpx, ξ, ηq

with respect to x, that is, pσ1pζ, ξ, ηq “ {σp¨, ξ, ηqpζq. We perform a spectral decomposition of

Tσpf, gq with f, g P SpRnq :

Tσpf, gqpxq “

ż

R2n

σpx, ξ, ηq pfpξqpgpηqe2πix¨pξ`ηq dξ dη

“
ÿ

j,kPN0

ż

R2n

ˆ
ż

Rn
pσ1
pζ, ξ, ηqe2πix¨ζdζ

˙

ϕkpξqϕjpηq pfpξqpgpηqe
2πix¨pξ`ηq dξ dη

“
ÿ

j,k,`PN0

ż

R2n

ˆ
ż

Rn
ϕ`pζqpσ

1
pζ, ξ, ηqe2πix¨ζdζ

˙

ϕkpξqϕjpηq pfpξqpgpηqe
2πix¨pξ`ηq dξ dη

“
ÿ

j,k,`PN0

Tσj,k,`pf, gqpxq,

56



where for j, k, ` P N0 we define

σj,k,`px, ξ, ηq :“ ϕkpξqϕjpηq

ż

Rn
ϕ`pζqpσ

1
pζ, ξ, ηqe2πix¨ζ dζ.

Using this decomposition we define the following symbols:

σ1 :“
8
ÿ

`“4

`´4
ÿ

k“0

k
ÿ

j“0

σj,k,`, σ2 :“
8
ÿ

k“0

k
ÿ

j“0

k`3
ÿ

`“maxp0,k´3q

σj,k,`, σ3 :“
8
ÿ

k“4

k
ÿ

j“0

k´4
ÿ

`“0

σj,k,`,

σ4 :“
8
ÿ

`“5

`´4
ÿ

j“1

j´1
ÿ

k“0

σj,k,`, σ5 :“
8
ÿ

j“1

j´1
ÿ

k“0

j`3
ÿ

`“maxp0,j´4q

σj,k,`, σ6 :“
8
ÿ

j“5

j´1
ÿ

k“0

j´5
ÿ

`“0

σj,k,`,

so that σ “ σ1 ` σ2 ` σ3 ` σ4 ` σ5 ` σ6. Notice that since j ď k in σ1, σ2, and σ3, they

are supported on the set tpx, ξ, ηq P R3n : |η| ď 4|ξ|u. On the other hand σ4, σ5, and σ6

are supported on tpx, ξ, ηq P R3n : |ξ| ď 2|η|u. By taking the Fourier transform with respect

to x we have that {σ1p¨, ξ, ηq is supported on tζ P Rn : |ξ| À |ζ|u, {σ2p¨, ξ, ηq is supported

on tζ P Rn : |ξ| „ |ζ|u, and {σ3p¨, ξ, ηq is supported on tζ P Rn : |ζ| À |ξ|u. The supports

of {σ4p¨, ξ, ηq, {σ5p¨, ξ, ηq, and {σ6p¨, ξ, ηq are contained in similar sets with |ξ| replaced by |η|.

The proof of Theorem 3.1.1 will follow from obtaining bounds for Tσj , j “ 1, 2, 3, 4, 5, 6. We

will show boundedness properties for Tσ1 , Tσ2 , and Tσ3 ; by symmetry, analogous results are

obtained for Tσ4 , Tσ5 , and Tσ6 .

We note that BSmρ,δ Ă BSmρ,ρ for m P R and 0 ď δ ď ρ ď 1. With this in mind we will

assume that ρ “ δ in the proofs.

3.3.1 Estimates for Tσ1

In this section, we prove the estimates for the operator Tσ1 . For tϕkukPN0 as in Section 3.3,

we set

Φkpξq :“
k
ÿ

j“0

ϕjpξq “ ϕ0p2
´kξq @ξ P Rn, k P N0,

and consider rϕ, rϕ0 P SpRnq with q

rϕ and q

rϕ0 satisfying conditions (2.1.6) - (2.1.7) and (2.1.8) -

(2.1.9), respectively, and such that rϕ0ϕ0 “ ϕ0 and rϕϕ “ ϕ. We then define rϕkpξq “ rϕp2´kξq
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for ξ P Rn and k P N and rΦkpξq “ rϕ0p2
´kξq for ξ P Rn and k P N0. It holds that rϕkϕk “ ϕk

and rΦkΦk “ Φk for all k P N0.

The precise bounds for Tσ1 are stated in the following lemma.

Lemma 3.3.1. Let m P R, 0 ď δ ď ρ ă 1 and σ P BSmρ,δ. If 0 ă p, p1, p2 ď 8 are such that

1{p “ 1{p1 ` 1{p2, 0 ă q, q̄ ď 8, s1, s2 P R, it holds that

}Tσ1pf, gq}Bs1p,q À }f}Bs2p1,q̄
}g}hp2 @f, g P SpRn

q, (3.3.6)

where σ1 is as in Section 3.3 and hp2 must be replaced by L8 if p2 “ 8.

We note that in Lemma 3.3.1 there is no restriction on the order m of the symbol and

the regularity indices, s1 and s2, can be different. In the case that s “ s1 “ s2 Lemma 3.3.1

implies the following estimate that is needed for the proof of Theorem 3.1.1:

}Tσ1pf, gq}Bsp,q À }f}Bsp1,q
}g}hp2 @f, g P SpRn

q,

for s P R and σ P BS
mpρ,p1,p2q

ρ,δ .

Proof. Let m, ρ, p, p1, p2, q, q̄, s1, s2, σ, σ
1, f , and g be as in the statement of the lemma.

For ` P N0 set

σ1
` :“

`´4
ÿ

k“0

k
ÿ

j“0

σj,k,`,

so that Tσ1pf, gq “
8
ř

`“4

Tσ1
`
pf, gq. Recalling the definition of Φk and σj,k,`, we have

Tσ1
`
pf, gqpxq “

ż

R3n

`´4
ÿ

k“0

ϕkpξqΦkpηqϕ`pζqpσ
1
pζ, ξ, ηq pfpξqpgpηqe2πix¨pξ`η`ζq dζ dξ dη,

and changing variables, we get

Tσ1
`
pf, gqpxq “

ż

Rn

˜

ż

R2n

`´4
ÿ

k“0

ϕkpξqΦkpηqϕ`pω ´ ξ ´ ηqpσ
1
pω ´ ξ ´ η, ξ, ηq pfpξqpgpηq dξ dη

¸

e2πix¨ω dω.
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This yields

{Tσ1
`
pf, gqpωq “

ż

R2n

`´4
ÿ

k“0

ϕkpξqΦkpηqϕ`pω ´ ξ ´ ηqpσ
1
pω ´ ξ ´ η, ξ, ηq pfpξqpgpηq dξ dη,

where the integral effectively takes place when 2`´1 ď |ω ´ ξ ´ η| ď 2``1 (keep in mind

that ` ě 4) as well as |ξ| ď 2`´3 and |η| ď 2`´3. Consequently, {Tσ1
`
pf, gq is supported in

tω P Rn : 2`´2 ď |ω| ď 2``2u. Then, the fact that Tσ1pf, gq “
8
ř

`“4

Tσ1
`
pf, gq and Theorem 2.1.6

with w ” 1 give

}Tσ1pf, gq}Bs1p,q À

˜

8
ÿ

`“4

2`s1q
›

›

›
Tσ1

`
pf, gq

›

›

›

q

Lp

¸
1
q

. (3.3.7)

Recalling the definitions of rϕk and rΦk, we have

Tσ1
`
pf, gqpxq “

`´4
ÿ

k“0

Tσ1
`,k
p∆

q

rϕ
kf, S

q

rΦ
k gqpxq,

where, to simplify notation, we set ∆
q

rϕ
0 :“ S

q

rϕ0

0 and for each k between 0 and `´ 4, we set

σ1
`,kpx, ξ, ηq :“

ˆ
ż

Rn
ϕ`pζqpσ

1
pζ, ξ, ηqe2πix¨ζ dζ

˙

ϕkpξqΦkpηq.

Since σ1
`,k satisfies

ˇ

ˇσ1
`,kpx, ξ, ηq

ˇ

ˇ À p1` |ξ| ` |η|qm @x, ξ, η P Rn,

σ1
`,kpx, ¨, ¨q is supported on tpξ, ηq P R2n : |ξ| ` |η| ď 2k`2u for all x P Rn and ∆

q

rϕ
kf and S

q

rΦ
k g

are Schwartz functions with Fourier transforms supported in tξ P Rn : |ξ| ď 2k`1u, we can

apply the bilinear inequality (3.2.4) with 0 ă r ď 1 to get

|Tσ1
`,k
p∆

q

rϕ
kf, S

q

rΦ
k gqpxq| (3.3.8)

À
›

›σ1
`,kpx, 2

k`3
¨, 2k`3

¨q
›

›

W t2n{ru`1,1pR2nq
Mrp∆

q

rϕ
kfqpxqMrpS

q

rΦ
k gqpxq @x P Rn.

(See Remark 3.2.2 along with (3.3.9) below.)
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We next estimate
›

›σ1
`,kpx, 2

k`3¨, 2k`3¨q
›

›

W t2n{ru`1,1pR2nq
. For ease of notation we just work

with 2k instead of 2k`3. Notice that

σ1
`,kpx, 2

kξ, 2kηq “ ϕpξqϕ0pηq

ż

Rn
qϕ`pyqσpx´ y, 2

kξ, 2kηq dy @k P N,

with a similar expression for σ1
`,0 obtained by replacing ϕ with ϕ0 in the formula above. For

` ě 4 the function qϕ` has vanishing moments of every order; if N P N, we can then write

I`,kpξ, ηq :“

ż

Rn
qϕ`pyqσpx´ y, 2

kξ, 2kηq dy “ 2n`
ż

Rn
qϕp2`yqσpx´ y, 2kξ, 2kηq dy

“ 2n`
ż

Rn
qϕp2`yq

¨

˝σpx´ y, 2kξ, 2kηq ´
ÿ

|α|ăN

1

α!
p´yqαBαxσpx, 2

kξ, 2kηq

˛

‚dy

“ 2n`
ż

Rn
qϕp2`yq

ÿ

|α|“N

N

α!
p´yqα

ż 1

0

p1´ tqN´1
B
α
xσpx´ ty, 2

kξ, 2kηq dy.

Given multiindices β, γ P Nn
0 and using that σ P BSmρ,ρ, it follows that

|B
β
ξ B

γ
ηI`,kpξ, ηq|

“ 2n`2kp|β`γ|q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rn
qϕp2`yq

ÿ

|α|“N

N

α!
p´yqα

ż 1

0

p1´ tqN´1
B
α
xB

β
ξ B

γ
ησpx´ ty, 2

kξ, 2kηq dt dy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À 2kp|β`γ|qp1` |2kξ| ` |2kη|qm`ρN´ρ|β`γ|
ż

Rn
2n`|qϕp2`yq||y|N dy

À 2´N`2kp|β`γ|qp1` |2kξ| ` |2kη|qm`ρN´ρ|β`γ|.

Then, for pξ, ηq in the support of σ1
`,kpx, 2

k¨, 2k¨q we get

|B
β
ξ B

γ
ηI`,kpξ, ηq| À 2´N`2kp1´ρq|β`γ|2kpm`ρNq.

Given 0 ă r ď 1, taking derivatives up to order t2n{ru ` 1 in pξ, ηq of σ1
`,kpx, 2

kξ, 2kηq “
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ϕpξqϕ0pηqI`,kpξ, ηq, we obtain

›

›σ1
`,kpx, 2

k
¨, 2k¨q

›

›

W t2n{ru`1,1pR2nq
À 2´N`2kp1´ρqpt2n{ru`1q2kpm`ρNq. (3.3.9)

From (3.3.8), it then follows that for all x P Rn, we have

|Tσ1
`,k
p∆

q

rϕ
kf, S

q

rΦ
k gqpxq| À 2´N`2krp1´ρqpt2n{ru`1q`m`ρNsMrp∆

q

rϕ
kfqpxqMrpS

q

rΦ
k gqpxq.

Define p̃ :“ minp1, pq. For the sake of notation, we will next work with q finite; the case

q “ 8 can be treated analogously. Recalling that Tσ1
`
pf, gq “

`´4
ř

k“0

Tσ1
`,k
p∆

q

rϕ
kf, S

q

rΦ
k gq, (3.3.7)

and the last estimate give

}Tσ1pf, gq}Bs1p,q À

˜

8
ÿ

`“4

2`s1q
›

›

›
Tσ1

`
pf, gq

›

›

›

q

Lp

¸
1
q

(3.3.10)

À

»

–

8
ÿ

`“4

2`s1q

˜

`´4
ÿ

k“0

2´Np̃`2kp̃rp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

p̃

Lp

¸

q
p̃

fi

fl

1
q

.

Next, let us see that, for N ą s1 and 0 ă ε ă N ´ s1, it holds that

8
ÿ

`“4

2`s1q

˜

`´4
ÿ

k“0

2´Np̃`2kp̃rp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

p̃

Lp

¸

q
p̃

(3.3.11)

À

8
ÿ

k“0

2kqrp1´ρqpt2n{ru`1´Nq`m`s1`εs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

q

Lp
.
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Indeed, if 0 ă q ď p̃, we have

8
ÿ

`“4

2`s1q

˜

`´4
ÿ

k“0

2´Np̃`2kp̃rp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

p̃

Lp

¸

q
p̃

ď

8
ÿ

`“4

2´pN´s1qq`
`´4
ÿ

k“0

2kqrp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrS

q

rΦ
k gq

›

›

›

›

q

Lp

“

8
ÿ

k“0

˜

8
ÿ

`“k`4

2´pN´s1qq`

¸

2kqrp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

q

Lp

À

8
ÿ

k“0

2kqrp1´ρqpt2n{ru`1q`m`ρNs2´kqpN´s1q
›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

q

Lp
,

and (3.3.11) follows for any ε ą 0. Now, if p̃ ă q ă 8 and 0 ă ε ă N ´ s1, we have

8
ÿ

`“4

2`s1q

˜

`´4
ÿ

k“0

2´Np̃`2kp̃rp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

p̃

Lp

¸

q
p̃

À

8
ÿ

`“4

2´pN´s1´εqq`

˜

`´4
ÿ

k“0

2´εp̃k2kp̃rp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

p̃

Lp

¸

q
p̃

À

8
ÿ

`“4

2´pN´s1´εqq`
`´4
ÿ

k“0

2kqrp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

q

Lp

“

8
ÿ

k“0

˜

8
ÿ

`“k`4

2´pN´s1´εqq`

¸

2kqrp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

q

Lp

À

8
ÿ

k“0

2´pN´s1´εqkq2kqrp1´ρqpt2n{ru`1q`m`ρNs

›

›

›

›

Mrp∆
q

rϕ
kfqMrpS

q

rΦ
k gq

›

›

›

›

q

Lp

and (3.3.11) follows.

Using (3.3.11), the fact that

|S
q

rΦ
k gpxq| ď sup

0ătď1
|t´nF´1

prϕ0qpt
´1
¨q ˚ gpxq| “: g˚pxq @k P N0, x P Rn, (3.3.12)
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and using the fact that Mr is bounded from Lp to Lp for 0 ă r ă minp1, pq, we can now

continue with the inequality (3.3.10) to get

}Tσ1pf, gq}Bs1p,q

À

«

8
ÿ

k“0

2kqrp1´ρqpt2n{ru`1´Nq`m`s1`εs
›

›

›
Mrp∆

q

rϕ
kfq

›

›

›

q

Lp1

ff
1
q

}Mrpg
˚
q}Lp2

À

«

8
ÿ

k“0

2kqrp1´ρqpt2n{ru`1´Nq`m`s1`εs
›

›

›
∆

q

rϕ
kf

›

›

›

q

Lp1

ff
1
q

}g˚}Lp2

À }f}
B
p1´ρqpt2n{ru`1´Nq`m`s1`ε
p1,q

}g}hp2 ,

where, if p2 “ 8, }g}hp2 should be replaced with }g}L8 . Since ρ ă 1, we can choose N large

enough so that

p1´ ρqpt2n{ru` 1´Nq `m` s1 ` ε ă s2,

and obtain }f}
B
p1´ρqpt2n{ru`1´Nq`m`s1`ε
p1,q

ď }f}Bs2p1,q̄
(by the embedding properties of Besov

spaces). The proof of Lemma 3.3.1 is then complete.

3.3.2 Estimates for Tσ2

In this section, we prove the bounds for Tσ2 , which are stated in the following lemma.

Lemma 3.3.2. Let m P R, 0 ď δ ď ρ ă 1, and σ P BSmρ,δ. If 0 ă p ă 8 and 0 ă p1, p2 ď 8

are such that 1{p “ 1{p1 ` 1{p2, 0 ă q, q̄ ď 8, and s1, s2 P R, it holds that

}Tσ2pf, gq}Bs1p,q À }f}Bs2p1,q̄
}g}hp2 @f, g P SpRn

q, (3.3.13)

where σ2 is as in Section 3.3 and hp2 must be replaced by L8 if p2 “ 8.

Like with Lemma 3.3.1, there is no restriction on the order m of the symbol and the

regularity indices can be different on the left and right hand side of (3.3.13). In particular,
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Lemma 3.3.2 implies the estimate

}Tσ2pf, gq}Bsp,q À }f}Bsp1,q̄
}g}hp2 @f, g P SpRn

q,

with all parameters as in Lemma 3.3.2 and s P R.

The following two lemmas, whose proofs are presented at the end of this section, will

be useful in the proof of Lemma 3.3.2.

Lemma 3.3.3. Let Kk, k P N0, be as in the proof of Lemma 3.3.2. If J,N P N, it holds that

|Kkpx, y, zq| À
2´Jk

p1` |x´ y| ` |x´ z|qN
@x, y, z P Rn, k ě 4. (3.3.14)

Lemma 3.3.4. Given M ą 0 and N ąM ` n it holds that

ż

Rn

p1` 2k|x´ y|qM

p1` |w ´ y|qN
dy À 2kMp1` |x´ w|qM @x,w P Rn, k P N0.

Proof of Lemma 3.3.2. Let p1, p2, p, q, q̄, s1, s2, m, ρ and σ be as in the hypotheses of the

lemma and consider ϕk, Φk, rϕk and rΦk as in Section 3.3.1. We assume q ă 8; the proof for

the case q “ 8 is analogous.

Recall that

σ2
“

8
ÿ

k“0

k`3
ÿ

`“maxp0,k´3q

k
ÿ

j“0

σj,k,`

and write σ2 “ σ2,1 ` σ2,2, where

σ2,1
“

3
ÿ

k“0

k`3
ÿ

`“0

k
ÿ

j“0

σj,k,` and σ2,2
“

8
ÿ

k“4

k`3
ÿ

`“k´3

k
ÿ

j“0

σj,k,`.

Notice that the symbol σ2,1 is supported on tpx, ξ, ηq P R3n : |ξ| ď 24 and |η| ď 24u and

belongs to any Hörmander class; in particular σ2,1 P BS
mp0,p1,p2q

0,0 and by Miyachi–Tomita [48,

Theorem 1.1], Tσ2,1 is bounded from hp1ˆhp2 to hp (with hp1 and hp2 replaced by L8 if p1 “ 8

or p2 “ 8). Moreover, the Fourier transform of Tσ2,1pf, gq is supported on tζ P Rn : |ζ| ď 28u.
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Let h P SpRnq be compactly supported and identically one on tξ P Rn : |ξ| ď 24u. We then

obtain

}Tσ2,1pf, gq}Bs1p,q “

˜

8
ÿ

k“0

2s1kq
›

›

›
∆qϕ
kTσ2,1pf, gq

›

›

›

q

Lp

¸
1
q

À }Tσ2,1pf, gq}hp “
›

›

›
Tσ2,1pS

qh
0 f, gq

›

›

›

hp

À

›

›

›
S
qh
0 f

›

›

›

hp1
}g}hp2 À }f}Bs2p1,q

}g}hp2 ,

with hp1 or hp2 replaced by L8 if p1 “ 8 or p2 “ 8, respectively.

We next analyze the operator with symbol σ2,2; for k ě 4 set

σ2,2,k :“
k`3
ÿ

`“k´3

k
ÿ

j“0

σj,k,`,

so that σ2,2 “
8
ř

k“4

σ2,2,k. Let Kk denote the bilinear kernel of Tσ2,2,k , that is,

Kkpx, y, zq :“

ż

R2n

σ2,2,k
px, ξ, ηqe2πiξ¨px´yqe2πi¨ηpx´zq dξ dη.

Note that

|∆qϕ
νTσ2,2,kpf, gqpxq| ď

ż

R3n

||ϕνpx´ wq||Kkpw, y, zq||∆
q

rϕ
kfpyq||S

q

rΦ
k gpzq| dw dy dz.

Given 0 ă r ă 1, let M P N be such that M ě n{r, then

|∆
q

rϕ
kfpyq| “

|∆
q

rϕ
kfpyq|

p1` 2k|x´ y|qM
p1` 2k|x´ y|qM

ď p1` 2k|x´ y|qM sup
yPRn

|∆
q

rϕ
kfpyq|

p1` 2k|x´ y|qM

À p1` 2k|x´ y|qMMrp∆
q

rϕ
kfqpxq @x, y P Rn, k P N0,

where for the last inequality we used Peetre’s maximal inequality (see Peetre [60] or Triebel [65,
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p.16, Theorem 1.3.1]). Similarly, and recalling (3.3.12),

|S
q

rΦ
k gpzq| À p1` 2k|x´ z|qMMrpS

q

rΦ
k gqpxq ď p1` 2k|x´ z|qMMrpg

˚
qpxq

for all x, z P Rn, k P N0. Given J,N P N with N ą 2pM ` nq, we use the estimates above,

the fact that ϕ P SpRnq and Lemmas 3.3.3 and 3.3.4 to obtain

|∆qϕ
νTσ2,2,kpf, gqpxq| À 2´JkMrp∆

q

rϕ
kfqpxqMrpg

˚
qpxq

ˆ

ż

R3n

2νn

p1` 2ν |x´ w|qN
p1` 2k|x´ y|qMp1` 2k|x´ z|qM

p1` |w ´ y|qN{2p1` |w ´ z|qN{2
dw dy dz

À 2´JkMrp∆
q

rϕ
kfqpxqMrpg

˚
qpxq

ˆ

ż

Rn

2νn22kM

p1` 2ν |x´ w|qN
p1` |x´ w|q2M dw @x P Rn, k, ν P N0, k ě 4.

Since

ż

Rn

2νn22kM

p1` 2ν |x´ w|qN
p1` |x´ w|q2M dw À 22kM

@x P Rn, k, ν P N0,

we then get

|∆qϕ
νTσ2,2,kpf, gqpxq| À 2´kpJ´2MqMrp∆

q

rϕ
kfqpxqMrpg

˚
qpxq @x P Rn, k, ν P N0, k ě 4.

(3.3.15)

Using that the Fourier transform of Tσ2,2,kpf, gq is supported in tζ P Rn : |ζ| ď 2k`5u, choosing
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ε ą maxp0, s1q and applying (3.3.15), we have

}Tσ2,2pf, gq}Bs1p,q “

˜

8
ÿ

ν“0

2νs1q

›

›

›

›

›

∆qϕ
ν

˜

8
ÿ

k“4

Tσ2,2,kpf, gq

¸
›

›

›

›

›

q

Lp

¸
1
q

ď

¨

˝

8
ÿ

ν“0

2νs1q

›

›

›

›

›

›

8
ÿ

k“maxp4,ν´5q

ˇ

ˇ∆qϕ
νTσ2,2,kpf, gq

ˇ

ˇ

›

›

›

›

›

›

q

Lp

˛

‚

1
q

À

¨

˝

8
ÿ

ν“0

2νs1q

›

›

›

›

›

›

8
ÿ

k“maxp4,ν´5q

2´kpJ´2MqMrp∆
q

rϕ
kfqMrpg

˚
q

›

›

›

›

›

›

q

Lp

˛

‚

1
q

À

¨

˝

8
ÿ

ν“0

2νps1´εqq

›

›

›

›

›

›

8
ÿ

k“maxp4,ν´5q

2´kpJ´2M´εqMrp∆
q

rϕ
kfqMrpg

˚
q

›

›

›

›

›

›

q

Lp

˛

‚

1
q

À

›

›

›

›

›

Mrpg
˚
q

8
ÿ

k“0

2´kpJ´2M´εqMrp∆
q

rϕ
kfq

›

›

›

›

›

Lp

À

˜

8
ÿ

k“0

2´kpJ´2M´εqrp1

›

›

›
Mrp∆

q

rϕ
kfq

›

›

›

rp1

Lp1

¸
1
rp1

}Mrpg
˚
q}Lp2 ,

where rp1 “ minp1, p1q. Using that

˜

8
ÿ

k“0

2´kpJ´2M´εqrp1

›

›

›
Mrp∆

q

rϕ
kfq

›

›

›

rp1

Lp1

¸
1
rp1

À

˜

8
ÿ

k“0

2´kpJ´2M´2εqq
›

›

›
Mrp∆

q

rϕ
kfq

›

›

›

q

Lp1

¸
1
q

,

along with the boundedness properties of Mr with 0 ă r ă minp1, p1, p2q, we obtain

}Tσ2,2pf, gq}Bs1p,q À

˜

8
ÿ

k“0

2´kpJ´2M´2εqq
›

›

›
Mrp∆

q

rϕ
kfq

›

›

›

q

Lp1

¸
1
q

}Mrpg
˚
q}Lp2

À

˜

8
ÿ

k“0

2´kpJ´2M´2εqq
›

›

›
∆

q

rϕ
kfq

›

›

›

q

Lp1

¸
1
q

}g˚}Lp2

À }f}B2M´J`2ε
p1,q

}g}hp2 À }f}Bs2p1,q̄
}g}hp2 ,

provided that we take J large enough so that ´J ` 2M ` 2ε ă s2 and where hp2 should be

replaced by L8 if p2 “ 8.
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Proof of Lemma 3.3.3. Let k P N such that k ě 4 and consider J and N as in the hypotheses.

Notice that

Kkpx, y, zq “
ż

R4n

ϕkpξqΦkpηqΨkpζqσpw, ξ, ηqe
2πipx´wq¨ζe2πiξ¨px´yqe2πiη¨px´zq dw dξ dη dζ,

where Φk “
k
ř

j“0

ϕj is as in Section 3.3.1, Ψk is defined as Ψk “
k`3
ř

`“k´3

ϕ` and the integral

effectively takes place where 2k´1 ď |ξ| ď 2k`1, |η| ď 2k`1 and 2k´4 ď |ζ| ď 2k`4. Given

M P N, 2M ą n, integration by parts in the w-variable gives

ż

Rn
σpw, ξ, ηqe´2πiw¨ζ dw “

1

p2πi|ζ|q2M

ż

Rn
∆M
w σpw, ξ, ηqe

´2πiw¨ζ dw. (3.3.16)

Integration by parts in the ζ-variable yields

ż

Rn

Ψkpζq

|ζ|2M
e2πipx´wq¨ζ dζ “ 2´2Mk

ż

Rn
pI´∆ζq

M

˜

Ψkpζq

|2´kζ|2M

¸

e2πipx´wq¨ζ

p1` 4π2|x´ w|2qM
dζ. (3.3.17)

Assume first that |x ´ y|, |x ´ z| ď 1. Then, using that 1 ` |ξ| ` |η| „ |ξ| „ |ζ| „ 2k,

that σ P BSmρ,ρ, (3.3.16) and (3.3.17) we obtain

|Kkpx, y, zq| À 2´2Mk2pm`2ρMqk23kn
“ 2kr3n`m´2p1´ρqMs.

Then (3.3.14) follows by taking M large enough so that

3n`m´ 2p1´ ρqM ă ´J, (3.3.18)

which can be done because ρ ă 1.

Next, assume that |x ´ y| ą 1 and |x ´ y| ě |x ´ z|. Let j0 P t1, . . . , nu be such that

|xj0 ´ yj0 | „ |x ´ y|. After performing (3.3.16) and (3.3.17), integration by parts in the
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ξj0-variable implies

ż

Rn
ϕkpξq∆

M
w σpw, ξ, ηqe

2πiξ¨px´yq dξ “
p2πiq´N

pxj0 ´ yj0q
N

ż

Rn
B
N
ξj0
pϕkpξq∆

M
w σpw, ξ, ηqqe

2πiξ¨px´yq dξ,

and since 1` |ξ| ` |η| „ |ξ| „ 2k and σ P BSmρ,ρ,

|B
N
ξj0
pϕkpξq∆

M
w σpw, ξ, ηqq| À 2kpm`2ρM´ρNq.

Consequently, it holds that

|Kkpx, y, zq| À
2kpm´2p1´ρqM´ρNq23kn

|x´ y|N
„

2kp3n`m´2p1´ρqM´ρNq

p1` |x´ y| ` |x´ z|qN
.

The case |x´ z| ą 1 and |x´ z| ě |x´ y| follows similarly integrating by parts with respect

to η and using that 1 ` |ξ| ` |η| „ |ξ| „ 2k again. The proof of the lemma is complete by

taking M such that 3n `m ´ 2p1 ´ ρqM ´ ρN ă ´J which is already guaranteed by the

choice (3.3.18).

Proof of Lemma 3.3.4. Fix w, x P Rn, k P N0, M ą 0 and N ąM ` n. We split Rn into the

regions R1 :“ ty P Rn : |x ´ y| ď 2´ku and R2 :“ ty P Rn : |x ´ y| ą 2´ku. Notice that we

have 1` 2k|x´ y| „ 1 on R1 and 1` 2k|x´ y| „ 2k|x´ y| on R2. Then we divide R2 into

R2,1 :“ ty P R2 : |w ´ y| ď 1u and R2,2 :“ ty P R2 : |w ´ y| ą 1u,

so that we have 1` |w ´ y| „ 1 on R2,1 and 1` |w ´ y| „ |w ´ y| on R2,2. In turn, we split

R2,2 into the regions

R2,2,1 :“ ty P R2,2 : |x´ y| ě 2|x´ w|u and R2,2,2 :“ ty P R2,2 : |x´ y| ă 2|x´ w|u.

We then have Rn “ R1 YR2,1 YR2,2,1 YR2,2,2.
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Using that N ą n, it follows that

ż

R1

p1` 2k|x´ y|qM

p1` |w ´ y|qN
dy „

ż

R1

dy

p1` |w ´ y|qN
À 1.

If |x´ w| ą 2, on R2,1 we have |x´w| ą 2 ě 2|w´y|, which makes for |x´y| „ |x´w|,

and then

ż

R2,1

p1` 2k|x´ y|qM

p1` |w ´ y|qN
dy „

ż

R2,1

2kM |x´y|M dy „

ż

R2,1

2kM |x´w|M dy À 2kMp1`|x´w|qM ,

where for the last inequality we used that R2,1 Ă Bpw, 1q and that 1 ` |x ´ w| „ |x ´ w|

because |x´ w| ą 2. If |x´ w| ď 2, on R2,1 we have |x´ y| ď |x´ w| ` |w ´ y| ď 2` 1 “ 3

and then (since k ě 0)

ż

R2,1

p1` 2k|x´ y|qM

p1` |w ´ y|qN
dy À 2kM

ż

R2,1

dy

p1` |w ´ y|qN
„ 2kM |R2,1| À 2kM .

On R2,2,1 we have |x´ y| ě 2|x´ w|, which implies |x´ y| „ |w ´ y|, and then

ż

R2,2,1

p1` 2k|x´ y|qM

p1` |w ´ y|qN
dy „ 2kM

ż

R2,2,1

|w ´ y|M

|w ´ y|N
dy À 2kM ,

since N ąM ` n.

Finally, on R2,2,2 we have |x´ y| ă 2|x´ w| and then

ż

R2,2,2

p1` 2k|x´ y|qM

p1` |w ´ y|qN
dy „

ż

R2,2,2

2kM |x´ y|M

|w ´ y|N
dy

À 2kM |x´ w|M
ż

R2,2,2

dy

|w ´ y|N
À 2kM |x´ w|M .
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3.3.3 Estimates for Tσ3

In this section, we prove the bounds for Tσ3 . Let m, p1, p2, p, q, ρ and δ be as in the

hypotheses of Theorem 3.1.1 and σ P BS
mpρ,p1,p2q

ρ,δ . We decompose σ3, defined in Section 3.3,

as σ3 “ σ3,1 ` σ3,2 where

σ3,1 :“
8
ÿ

k“4

k´4
ÿ

j“0

k´4
ÿ

`“0

σj,k,` and σ3,2 :“
8
ÿ

k“4

k
ÿ

j“k´3

k´4
ÿ

`“0

σj,k,`.

It can be shown that σ3,1, σ3,2 P BS
mpρ,p1,p2q

ρ,δ and satisfy

supppσ3,j
q Ă tpx, ξ, ηq P R3n : |η| ď A|ξ|u,

suppp {σ3,jp¨, ξ, ηqq Ă tζ P Rn : |ζ| ď
1

4
|ξ|u @ξ, η P Rn.

In the case j “ 1 we have that A “ 1{4 and if j “ 2 then A “ 4. The following lemma

implies that for s P R,

}Tσ3,1pf, gq}Bsp,q À }f}Bsp1,q
}g}hp2 @f, g P SpRn

q, (3.3.19)

and that for s ą τp,

}Tσ3,2pf, gq}Bsp,q À }f}Bsp1,q
}g}hp2 @f, g P SpRn

q. (3.3.20)

Lemma 3.3.5. Let 0 ă p ă 8 and 0 ă p1, p2 ď 8 be such that 1{p “ 1{p1 ` 1{p2,

0 ă q ď 8 and 0 ď δ ď ρ ă 1. Consider σ P BS
mpρ,p1,p2q

ρ,δ such that for some positive constant

A it satisfies

supppσq Ă tpx, ξ, ηq P R3n : |η| ď A |ξ|u, (3.3.21)

suppp {σp¨, ξ, ηqq Ă tζ P Rn : |ζ| ď A |ξ|u @ξ, η P Rn. (3.3.22)
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If 0 ă A ă 1{2 and s P R it holds that

}Tσpf, gq}Bsp,q À }f}Bsp1,q
}g}hp2 @f, g P SpRn

q,

where hp2 must be replaced by L8 if p2 “ 8; if A ě 1
2
, the inequality above holds for s ą τp.

Before proving Lemma 3.3.5 we state and prove the following lemma which is useful in

its proof.

Lemma 3.3.6. Let 0 ă p ă 8 and 0 ă p1, p2 ď 8 be such that 1{p “ 1{p1 ` 1{p2 and

0 ď δ ď ρ ă 1; assume tσkukPN0 is a sequence in BS
mpρ,p1,p2q

ρ,δ with constants uniform in k

and satisfies

supppσkq Ă tpx, ξ, ηq P R3n : |ξ| ` |η| „ 2ku,

with constants uniform in k, where |ξ| ` |η| „ 2k must be replaced by |ξ| ` |η| À 1 if k “ 0.

Then

}Tσkpf, gq}Lp À }f}hp1 }g}hp2 @f, g P SpRn
q, k P N0,

where the local Hardy spaces hp1 and hp2 must be replaced by L8 if p1 “ 8 or p2 “ 8.

Proof. Let p, p1, p2, ρ, σk, f and g be as in the hypotheses of the lemma.

Define

Σkpx, ξ, ηq “ σkp2
´ρkx, 2ρkξ, 2ρkηq;

it easily follows that

Tσkpf, gqpxq “ TΣkpfk, gkqp2
ρkxq, (3.3.23)

where fkpxq “ fp2´ρkxq and gkpxq “ gp2´ρkxq.

We next check that Σk P BS
mp0,p1,p2q

0,0 with constants uniform in k. Note that |ξ| ` |η| „

2p1´ρqk for px, ξ, ηq P supppΣkq and k P N, and |ξ|`|η| À 1 for px, ξ, ηq P supppΣ0q. Using that
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σk P BS
mpρ,p1,p2q
ρ,ρ with constants uniform in k and assuming px, ξ, ηq P supppΣkq, we have

|B
α
xB

β
ξ B

γ
ηΣkpx, ξ, ηq| À p1`

ˇ

ˇ2ρkξ
ˇ

ˇ`
ˇ

ˇ2ρkη
ˇ

ˇq
mpρ,p1,p2q`ρ|α|´ρ|β`γ|2´ρkp|α|´|β`γ|q

À 2kpmpρ,p1,p2q`ρ|α|´ρ|β`γ|q2´ρkp|α|´|β`γ|q “ 2kp1´ρqmp0,p1,p2q

„ p1` |ξ| ` |η|qmp0,p1,p2q.

For the sake of notation assume p1 and p2 are finite; the argument below works as well

replacing hp1 or hp2 with L8 if p1 “ 8 or p2 “ 8, respectively. By Miyachi–Tomita [48,

Theorem 1.1], we have

}TΣkpf, gq}hp À }f}hp1 }g}hp2 @k P N0.

Since TΣkpf, gq P SpRnq for f, g P SpRnq, then }TΣkpf, gq}Lp À }TΣkpf, gq}hp ; therefore

}TΣkpf, gq}Lp À }f}hp1 }g}hp2 @k P N0.

Recalling (3.3.23), applying the estimate above and the fact that }F pλ¨q}hp ď λ´
n
p }F }hp for

0 ă λ ď 1, we then obtain

}Tσkpf, gq}Lp “ 2´ρk
n
p }TΣkpfk, gkq}Lp À 2´ρk

n
p }fk}hp1 }gk}hp2

ď 2´ρk
n
p 2

ρk n
p1 }f}hp1 2

ρk n
p2 }g}hp2 “ }f}hp1 }g}hp2 @k P N0.

Proof of Lemma 3.3.5. Let p, p1, p2, q, s, ρ, σ, f and g be as in the hypotheses of the lemma.

For the sake of notation, assume p1 and p2 are finite; the argument given below works as

well with hp1 or hp2 replaced with L8 if p1 “ 8 or p2 “ 8, respectively.

For k P N0, define σkpx, ξ, ηq “ σpx, ξ, ηqϕkpξq, where ϕk is as in Section 3.3; then
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Tσ “
ř8

k“0 Tσk . Since tσkukPN0 satisfies the hypotheses of Lemma 3.3.6, we have

}Tσkpf, gq}Lp À }f}hp1 }g}hp2 @k P N0. (3.3.24)

The conditions on the supports of σ and pσ1 imply that

suppp {Tσkpf, gqq Ă tζ P R
n : |ζ| À 2ku if A ě 1

2
,

suppp {Tσkpf, gqq Ă tζ P R
n : |ζ| „ 2ku if 0 ă A ă 1

2
,

with constants independent of k, f and g (in the second inclusion |ζ| „ 2k must be replaced

with |ζ| À 1 if k “ 0). Indeed,

{Tσkpf, gqpζq “

ż

Rn

ˆ
ż

R2n

σkpx, ξ, ηq pfpξqpgpηqe
2πix¨pξ`ηq dξ dη

˙

e´2πix¨ζ dx

“

ż

R2n

pfpξqpgpηq pσk
1
pζ ´ ξ ´ η, ξ, ηq dξ dη.

If ζ P suppp {Tσkpf, gqq, in view of (3.3.21), (3.3.22) and the definition of σk, there exist

ξ, η P Rn such that 2k´1 ď |ξ| ď 2k`1 (|ξ| ď 2 if k “ 0), |η| ď A |ξ| and |ζ ´ ξ ´ η| ď A |ξ| .

This leads to

|ζ| ď |ζ ´ ξ ´ η| ` |ξ| ` |η| ď p2A` 1q |ξ| À 2k @k P N0.

and

|ζ| ě |ξ| ´ |η| ´ |ζ ´ ξ ´ η| ě p1´ 2Aq |ξ| ě p1´ 2Aq2k´1
@k P N, 0 ă A ă 1

2
.

Applying Theorem 2.1.6 with w ” 1, recalling the definition of rϕk given at the beginning of
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Section 3.3.1 and using (3.3.24), we obtain

}Tσpf, gq}Bsp,q À

˜

8
ÿ

k“0

2ksq }Tσkpf, gq}
q
Lp

¸
1
q

“

˜

8
ÿ

k“0

2ksq
›

›

›
Tσkp∆

q

rϕ
kf, gq

›

›

›

q

Lp

¸
1
q

À

˜

8
ÿ

k“0

2ksq
›

›

›
∆

q

rϕ
kf

›

›

›

q

hp1

¸
1
q

}g}hp2 „ }f}Bsp1,q
}g}hp2 ,

where in the last equivalence we have used that the Besov norm can be defined using the

corresponding local Hardy space rather than the corresponding Lebesgue space.

3.4 Conclusion of the proofs of the main results

In this section, we use Lemmas 3.3.1, 3.3.2, and 3.3.5 to prove Theorem 3.1.1. We then prove

Corollary 3.1.2.

Proof of Theorem 3.1.1. If s ą τs, then (3.1.2) is a direct consequence of Lemma 3.3.1,

Lemma 3.3.2, the estimates (3.3.19) and (3.3.20) that follow from Lemma 3.3.5 and corre-

sponding versions of those results for σ4, σ5 and σ6.

We next check that (3.1.2) holds for any s P R if the support of the Fourier transform

of σp¨, ξ, ηq is contained outside the set tζ P Rn : |ζ| ă εp|ξ| ` |η|qu for all ξ, η P Rn such

that 1{32 |ξ| ď |η| ď 32 |ξ| and for some fixed ε ą 0 independent of ξ and η. We first recall

that the boundedness properties of the operators Tσ1 , Tσ2 and Tσ3,1 (and the corresponding

operators Tσ4 , Tσ5 and Tσ6,1) proved in Sections 3.3.1, 3.3.2 and 3.3.3 hold for any s P R; on

the other hand, the boundedness properties for the operator Tσ3,2 (and the corresponding

operator Tσ6,2) proved in Section 3.3.3 hold under the condition s ą τp. Therefore, the desired

result will follow from further analyzing σ3,2 and σ6,2.

Let M P N be such that M ą 4 and 22´M ă ε; consider the following decomposition of
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σ3,2 :

σ3,2
“

M´1
ÿ

k“4

k
ÿ

j“k´3

k´4
ÿ

`“0

σj,k,l `
8
ÿ

k“M

k
ÿ

j“k´3

k´4
ÿ

`“k´M`1

σj,k,l `
8
ÿ

k“M

k
ÿ

j“k´3

k´M
ÿ

`“0

σj,k,l

“: σ3,2,1
` σ3,2,2

` σ3,2,3.

The operator Tσ3,2,1 can be treated as Tσ2,1 and the operator Tσ3,2,2 can be treated in the same

way as Tσ2,2 . Therefore Tσ3,2,1 and Tσ3,2,2 satisfy the same estimates as Tσ2 . The support of

{σ3,2,3p¨, ξ, ηq is contained in tζ P Rn : |ζ| ď 22´M |ξ|u Ă tζ P Rn : |ζ| ď ε|ξ|u and the support

of σ3,2,3 is contained in tpx, ξ, ηq P R3n : 1
32
|ξ| ď |η| ď 4|ξ|u. Therefore, Tσ3,2,3 satisfies the

same estimates as Tσ3,2 for s ą τp.

A similar reasoning applies to σ6,2 “
ř8

j“5

řj´1
k“j´3

řj´5
`“0 σj,k,`. In this case, the corre-

sponding operators with symbols σ6,2,1 and σ6,2,2 satisfy the estimates for any s P R while

the operator with symbol σ6,2,3 satisfies the estimates for s ą τp. The support of the Fourier

transform of σ6,2,3p¨, ξ, ηq is contained in tζ P Rn : |ζ| ă ε |η|u and the support of σ6,2,3 is

contained in tpx, ξ, ηq P R3n : 1{2 |ξ| ď |η| ď 32 |ξ|u.

With the work above and the formulas for the symbols σ3,2,3 and σ6,2,3 in terms of σ

we have that σ3,2,3 and σ6,2,3 are zero if the support of the Fourier transform of σp¨, ξ, ηq is

contained outside the set tζ P Rn : |ζ| ă εp|ξ| ` |η|qu for all ξ, η P Rn such that 1{32 |ξ| ď

|η| ď 32 |ξ| . Therefore the desired result follows.

Before proving Corollary 3.1.2, we set some notation. Let Θ P SpRnq be such that

Θpξq “ 1 for |ξ| ď 8 and Θpξq “ 0 for |ξ| ě 16; define χpξ, ηq “ Θ
´

η

p1`|ξ|2q1{2

¯

. It follows

that χpξ, ηq “ 1 for |η| ď 4 or |η| ď 4 |ξ| and that the support of χ is contained in the set

where |η| ď 16
?

2 or |η| ď 32 |ξ| . By recalling the supports of σj, j “ 1, 2, . . . , 6 from Section

3.3 this implies that

σjpx, ξ, ηqχpξ, ηq “ σjpx, ξ, ηq for j “ 1, 2, 3,

σjpx, ξ, ηqχpη, ξq “ σjpx, ξ, ηq for j “ 4, 5, 6.
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Furthermore, it can be shown that given any pair of multiindices β, γ P N0, there exists Cβ,γ

such that
ˇ

ˇ

ˇ
B
β
ξ B

γ
ηχpξ, ηq

ˇ

ˇ

ˇ
ď Cβ,γp1` |ξ| ` |η|q

´|β`γ|
@ξ, η P Rn.

Therefore σpx, ξ, ηqχpξ, ηq and σpx, ξ, ηqχpη, ξq belong to the same Hörmander class as σ.

Proof of Corollary 3.1.2. Let p, p1, p2, q, s, ρ, m and m̄ be as in the hypotheses and consider

σ P BSmρ,ρ. Let σj, j “ 1, ¨ ¨ ¨ , 6, be as in Section 3.3 and χ as described above.

It easily follows that

Tσpf, gqpxq “TΣ1pJm̄f, gqpxq ` TΣ2pJm̄f, gqpxq ` TΣ3pf, Jm̄gqpxq

` TΣ4pf, Jm̄gqpxq ` TΣ5pf, Jm̄gqpxq ` TΣ6pf, Jm̄gqpxq,

where Σjpx, ξ, ηq :“ σjpx, ξ, ηqp1 ` |ξ|2q´m̄{2 for j “ 1, 2, 3 and Σjpx, ξ, ηq :“ σjpx, ξ, ηqp1 `

|η|2q´m̄{2 for j “ 4, 5, 6.

Note that Σ1, Σ2 and Σ3 are precisely the first three symbols that are obtained through

the decomposition described in Section 3.3 corresponding to the symbol Σ1,2,3px, ξ, ηq :“

σpx, ξ, ηqχpξ, ηqp1`|ξ|2q´m̄{2; likewise, Σ4, Σ5 and Σ6 are exactly the last three symbols that

are obtained through the decomposition described in Section 3.3 corresponding to the symbol

Σ4,5,6px, ξ, ηq :“ σpx, ξ, ηqχpη, ξqp1 ` |η|2q´m̄{2. Since m̄ “ m ´ mpρ, p1, p2q and σ P BSmρ,ρ,

it follows that Σ1,2,3 and Σ4,5,6 belong to BS
mpρ,p1,p2q
ρ,ρ . Then Lemma 3.3.1, Lemma 3.3.2 and

the results from Section 3.3.3, along with their corresponding symmetric versions, can be

applied to Σ1, Σ2, Σ3 and Σ4, Σ5, Σ6, respectively, to obtain that

}Tσpf, gq}Bsp,q À }J
m̄f}Bsp1,q

}g}hp2 ` }f}hp1 }J
m̄g}Bsp2,q

@f, g P SpRn
q,

where hp1 and hp2 should be replaced with L8 if p1 “ 8 or p2 “ 8, respectively. The

corollary then follows from the above estimate and the lifting property for Besov spaces.
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