
Deadlock Avoidance in a Distributed Simulation System

by

Li-Fang L. Hsieh

B.A., National Taiwan University, 1977

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1989

Approved by: ->

Dr. VirgilX Wallentine

Major fyofesssr

i0 .

ci*sc

(475"

III

Table of Contents

Table of Contents i

Chapter 1: Introduction 1

1.1. Purposes of the Project 1

1.2. Contents of the Paper 3

Chapter 2: Background 4

2.1. Distributed Simulation 4

2.1.1. Physical System 5

2.1. 1.1. Modelling 5

2.1.1.2. Basic Queueing Network Model 5

2.1.2. Logical System 6

2.1.3. Message System 7

2.2. Deadlock Problems 8

2.2.1. Causality Principle 8

2.2.2. Deadlock 9

2.2.3. Synchronization Algorithms 10

Chapter 3: Algorithm 1

1

3.1. An Overview 11

3.2. General Algorithm for Each LP 12

3.3. Walkthrough of Algorithm 14

3.4. Avoid Deadlock 16

3.5. Structure for Each Type of LP 16

3.5.1. Source 17

3.5.2. Branch 18

3.5.3. Queue 19

3.5.4. Server 21

3.5.5. Sink 22

Chapter 4: Implementation 24

4.1. Programming Language 24

4.2. Environment of Project 27

4.3. Supporting Processes 28

4.3.1. Creation of Processes 28

4.3.2. Collection of Reports 29

4.3.3. Termination of Processes 30

Chapter 5: Conclusion and Future Work 32

5.1. Problem 32

5.2. Conclusion 32

5.3. Future Work 33

Bibliography 36

Appendix A: Concurrent C Code for the Distributed Simulator 37

Appendix B: Input and Output Interface 130

Chapter 1

Introduction

1.1. Purposes of the Project

Conventional discrete-event simulation executes sequential computer programs to study the

behavior of a physical system. Most of these computer programs are written in special simulation

languages, such as Simscript, originally developed by the Rand Corp., or GPSS, IBM's mainframe

simulation language [GARZ86].

At the heart of the discrete-event simulation program is an event list, an ordered list containing

occurrence times and references to event routines. A control program will select the most

imminent event from the event list and pass control to the appropriate event routine. Eventually all

the events are scheduled for execution in order of their occurrence times.

The problem with the conventional approach is that it is time-consuming and can not efficiently

execute in a parallel processing system. For example, within the last ten years, several parallel pro-

cessing systems based on large networks of interconnected microcomputers have become commer-

cially available. Multicomputer networks usually consist of hundreds or thousands of nodes com-

municating with each other in parallel. Using the sequential discrete-event simulation to simulate

such large communication networks may require hours or even days of CPU time and not allow

multiple events to be scheduled at the same time. In order to achieve better performance, a distri-

buted simulation with no global event list was proposed by Chandy and Misra. Each processor,

simulating one node of networks, would execute asynchronously and operate its own simulation

clock. The occurrence time of each event would be transmitted to the next processor by a time-

stamped message. Theoretically, distribution of the software onto multiple processors, either on

loosely-coupled systems or tightly-coupled systems, could make the execution of simulation pro-

grams potentially faster and more capable of simulating complex systems.

Since each processor executes one of the distributed simulation programs separately and updates

-2-

iis simulation-time asynchronously, any distributed simulation will have to guarantee that its mul-

tiple processors cooperate with each other to ensure that events are eventually properly sequenced.

Due to this necessary cooperation restriction, a deadlock problem in which processes are blocked

on one another waiting to receive messages could potentially happen in a distributed simulation.

Several strategies have been proposed to deal with the problem. In this project, only the deadlock

avoidance algorithm proposed by Chandy and Misra [CHAN79] is implemented.

Selecting an appropriate programming language to implement the distributed simulation program,

distributed simulator, is very important. Sequential programming languages, either general pur-

pose languages or special simulation languages, are used for conventional single processor simula-

tion. Sequential languages do not provide language-level facilities to create processes on remote

processors or to send messages between different processors. In contrast, concurrent programming

languages are usually more difficult to debug and to prove correct, but they can express the rela-

tionships among parallel processors more naturally, and provide enough language-level facilities

needed for distributed simulator. Besides, the processes of a concurrent program can actually be

run in parallel if they are run on a multiprocessor system. Even on a single processor, by allowing

input/output operations to run in parallel with computation, a concurrent program can reduce pro-

gram execution time. Using concurrent programming languages to implement a distributed simula-

tor is more appropriate than using sequential programming languages.

In order to explore the performance of distributed simulation, to avoid the problem of deadlock,

and to experience the use of a concurrent language, a distributed simulator is implemented. This

simulator, written in Concurrent C, uses a deadlock avoidance algorithm, and adopts the basic

queueing network scheme which models computer and communication networks. This distributed

simulator might elegantly describe networks of multiprocessors in which events actually occur

concurrently.

-3-

1.2. Contents of the Paper

The rest of this paper is organized as follows. Chapter Two will give a brief overview of the back-

ground of the project. The concepts of simulation, physical system, basic queueing network model,

distributed simulator, message-passing, and deadlock problems are introduced.

Based on the background introduced in Chapter Two, Chapter Three will present the deadlock

avoidance algorithm. A walkthrough of the algorithm is demonstrated. The reason for avoidance

of deadlock is explained. The individual algorithm of each process simulating the basic queueing

network model is analyzed.

Chapter Four will deal with the implementation details of the project- The available facilities of

Concurrent C programming language and the environment of designing the project are introduced.

Finally, the whole structure of the distributed simulator is described.

The last chapter, Chapter Five, will give an overall conclusion and several suggestions for possible

future work.

-4-

Ctaapter 2

Background

Chapter One highlighted the importance of implementing a distributed simulator for multicom-

puter networks. This chapter continues a brief discussion of characteristics of distributed simula-

tion. First, the basic concepts of distributed simulation and its three major components: physical

system, logical system, and message system [MADI88] are introduced. The basic queueing net-

work model which represents a real system to be simulated in this project is included. Then, the

deadlock problem is addressed and a deadlock scenario is examined to illustrate the deadlock that

can occur in a distributed simulation.

2.1. Distributed Simulation

Measuring the performance of a system, either to build a new system or to modify an existing one,

is difficult. By using a computer simulation of the system, we can study its behavior over a long

period of time, get reproducible results quickly, and predict system performance without actually

establishing or physically modifying it.

The type of simulation used in computer and communication systems design is discrete-event,

system-level simulation. Discrete-event simulation changes the system states at finite points in

time, as opposed to continuous simulation which changes suites continuously over time. For exam-

ple, where the speed of a car is considered, it could be measured over time using a continuous-

event simulation, but to know the speed at specific times, discrete-event simulation would be

required.

System-level modelling analyzes the system behavior from a register-transfer-level modelling

which analyze system behavior from a 'functional' point of view [MACD87], For example, at the

register-transfer-level, the functions of static system components, such as registers, multiplexors,

and addresses are evaluated. But at the system-level, the dynamic execution times during which

jobs are accomplished are measured in order to study system performance.

A distributed simulation is the execution of discrete-event simulation programs on a parallel

processor[REED87]. The structure of the distributed simulation can be divided into three parts:

physical system, logical system, and message system. The physical system is the model of the real

system to be simulated; the logical system is derived from the physical system; and the message

system synchronizes the different clocks in the logical system. Each of them will be discussed

respectively in this chapter.

2.1.1 Physical System

2.1.1.1 Modelling

In order to measure the performance of a real system, it must be divided into several distinct

functional units. Activities, events, and processes are used in modelling the real system in a

discrete-event simulation. The activity is the smallest unit of job in a system. An activity can

be triggered and terminated by an event A group of logically related activities form a physi-

cal process. When an activity of a physical process is triggered by an event, the stale of the

physical process will be updated. The action is called a state transition. Each physical pro-

cess keeps advancing through states and interacting with others to finish jobs for the system.

The execution time for a physical process is the sum of execution times and delay times of

all its activities. A whole real system is described at a given level of abstraction by a set of

distinct, independent physical processes which group together as a physical system.

2.1.1.2. Basic Queueing Network Model

A basic queueing network model used for the RESQ Simulation Package is adopted as the

physical system for this project. In the model, a set of jobs wait in a queue until a server is

ready to service them. This model helps to understand the characteristics and effects of

congestion in computer and communication systems subjected to both probabilistic and

deterministic job flow.

A queue can have one or more servers. A server can have a fixed rate of service time or have

a function to calculate a service time based on the state of its queue, such as on the number

-6-

of jobs at the queue. Usually a service time for a server is given by a probability distribution.

There may be one or more sources to create arrival jobs. Each source generates one job at a

time. The time between two jobs is called 'inter-arrival* time. It can also be specified by a

probability distribution. Apart from the queue, server, and source notations in the network

model, there is a sink node which destroys departure jobs, a path arc which shows the flow

of jobs, a branch node which distributes jobs among several paths, and a merge node which

combines jobs at a certain point in the system. The focus of performance measurement for a

basic queueing network model is the amount of time in which jobs have waited in a queue

and the amount of time in which jobs are serviced. Figure 2.1 shows the symbols for a basic

queueing network model:

Source Branch Sink

Queue Sever Path

Figure 2. 1 Symbols for basic queueing networks

2.1.2. Logical System (Distributed Simulator)

Unlike the sequential, discrete-event simulator consisting of global event routines, the distri-

buted simulator consists of separated logical processes. Each one describes a scenario of

actions which represent the behavior of the corresponding physical process. The scenario

consists of transformational rules used by the physical process and a description of interac-

tions with other physical processes. The transformational rules of the physical process are

modeled by the logic of the logical process. The interactions between physical processes are

modeled by time-stamped message-passing between corresponding logical processes. These

logical processes of a distributed simulator are executed among parallel processors.

The steps to construct a distributed simulator are as follows:

1.) Program each logical process at a given level of abstraction based on the activi-

ties of the corresponding physical process.

2.) Create and execute these logical processes on a multiprocessor computer sys-

tem.

The principles of creating and executing processes in a distributed simulator

are:

a.) No central process routes the messages among processors.

b.) No control process schedules the order of all events of the simulated sys-

tem.

c.) No global simulation lime controls the speed of all logical processes.

d.) No global variables are shared among processes.

2.1J. Message System (Time-Stamped Message-Passing System)

In this project, the computer and communication networks are the real systems to be simu-

lated, the basic queueing network models are the physical systems to model the real sys-

tems, and the distributed simulator is the logical system to simulate the physical systems

representing the network models. It is assumed that the physical processes modelling multt-

computer networks communicate with each other exclusively through messages. To simu-

late physical processes, logical processes in the distributed simulator can not have shared

variables and must communicate exclusively by sending messages. Further, it is assumed

that whether each physical process sends out a data as well as the content of the data at an

arbitrary time T, depends exclusively on the external messages and internal transformational

rules before and at time T. So the logical process sending a message should also depend

only on the external messages and the internal logic up to T. The communication rule

-8-

between two logical processes is implemented as following: A message will be sent from ith

logical process to jth logical process, if and only if the ith physical process sends a message

to the jth physical process. Along with the message, a simulation time-stamp is sent to syn-

chronize logical processes since the speeds among them are asynchronous.

2.2 Deadlock Problems

In order to achieve a better performance, a distributed simulator will allow logical processes to

execute asynchronously (i.e., each logical process updates its local clock without being aware of

the speed of other processes). In fact, the actual physical system has to obey a causality principle

in order to accomplish jobs.

2.2.1. Casualty Principle

The causality principle states that if a state transition has some effect on another state transi-

tion, then the latter must always wait until the former has occurred. In other words, if an

event of a process has no direct or indirect cause/effect relationship on another event, either

on itself or other processes, then the process can have a stale transition. If an event A of a

process will cause an event B on itself or other process to be created, then event A has to be

processed before event B. This imposes a partial ordering of state transitions in the physical

system. To correctly simulate the corresponding physical process, each logical process in the

distributed simulator has to obey the local causality constraint, which requires that received

jobs are not processed in decreasing time-stamped order. If each logical process does not

violate its local causality constraint and the interactions between any pair of logical

processes are strictly by message-passing, then the logical processes of the distributed simu-

lator will not violate the causality principles of the physical processes[REED87].

2.2.2. Deadlock

The local causality constraint could cause a deadlock to occur in a distributed simulation.

Figure 2.2 illustrates one deadlock situation. In this model, there are one source(A), one

branch(B) with two pathsfli 1 & B2), two queue/servers (C & D), and one sink(E).

Source

Queue

•^ -

-—
•-. A E

D
Stok

Sever

Figure 2.2 Deadlock Scenario

Consider the following scenario:

1.) Source A generates a job (5 ,ml) and sends it to Branch B.

2.) Branch B selects path B 1 to distribute (5,m 1) to Queue C.

3.) (5,ml) is stored in Queue C and eventually is serviced by Server C.

4.) Server C sends (15,ml) to Sink E, after adding service-time(lO).

5.) Sink E is waiting for a job from Server D.

6.) Source A generates another job (10jn2). The new job is sent through the same path

and is stored in Queue C

.

7.) A keeps sending jobs to Queue C until C is full.

8.) A wants to send one more job to Queue C.

9.) Branch B gets the job and is waiting for Queue C. At this point, sink E is waiting for

server D, server C is waiting for sink E, queue C is waiting for server C, server D is

-10-

waiting for queue D, queue D is waiting for branch B, branch B is wailing for queue

C, and finally source A is wailing for branch B. Deadlock occurs.

2.2J. Synchronization Algorithms

Several synchronization algorithms, conservative and optimistic [COTA88], have been pro-

posed to address the deadlock problem. Two important conservative algorithms are the

deadlock avoidance algorithm and the deadlock detection and recovery algorithm

[CHANS 1 1. The avoidance algorithm avoids deadlock by sending 'NULL' messages to all

waiting processes, in order to let these processes extend their local time up to which the state

of the simulated physical process is known. The detection and recovery algorithm allows the

deadlock to occur, but once it is detected the algorithm generates 'NULL' messages to break

the deadlock chain. An optimistic algorithm, the Time Warp algorithm [JEFF85], allows

processes to run freely without any constraint. Eventually, some processes would violate

their local causalities, at which time a rollback mechanism would discard all erroneous

results and restart from the points that violate the constraints. The deadlock avoidance algo-

rithm is chosen for this project.

-n-

Chapter 3

Algorithm

Chapter One and Two contained the reasons for implementing a distributed simulator, key issues

in designing a distributed simulator, and different strategies to cope with the deadlock problem.

This chapter will focus on the deadlock avoidance algorithm, whereas Chapter Four will discuss

the implementation in detail. Before discussing the algorithm, a number of assumptions for each

logical process in the distributed simulator are made to St the algorithm and the "lookahead" time

used for avoiding deadlock in the algorithm is examined. Then, the algorithm is presented and a

walkthrough of the algorithm is given to demonstrate the flow of the algorithm. Finally, based on

the algorithm, each individual type of logical process(LP) which simulates the corresponding phy-

sical processfPP) of the queueing network model is discussed.

3,1 An Overview

In order to implement the deadlock avoidance algorithm, a number of assumptions are made con-

cerning the behavior of logical processes in the distributed simulation.

Al.) No process can send messages to itself.

A2.) The time-stamp of the first message sent should be greater than 0.

A3.) The last message received should be less than or equal to the prespecified termination time,

a simulation time to stop simulating.

A4.) The inter-arrival time should be greater than 0.

A5.) If local time of the process equals 0, then no message should be received; if local time

equals the termination time, then a whole stream of messages should be received.

A6.) All messages sent from LPi to LPj at time T are determined by all the messages received by

the LPi up to T.

A7.) The propagation delay is assumed to be 0.

-12-

A very imponant component of the algorithm is a function to calculate "lookahead" time for each

process at any time T. All output messages sent from LPi to LPj up to time T are dependent on all

the incoming messages received up to T by LPi. It is possible to predict all output messages sent

from LPi to LPj at time T based upon those messages sent from LPi to LPj at an earlier time T (T

< T). This implies that all the input messages received by LPi between T" and T will not influence

the output messages to LPj before T. (T - T) is the lookahead time for arc(ij) at time T. How can

we calculate the lookahead time for each process at any time on any arc (iJ)? In other words, how

can we compute all the output messages on the arc (ij) between the current time T and the time T

to which the process can lookahead? According to the deadlock avoidance algorithm, this depends

on the state of the physical process i at the current time T and all the messages received by pro-

cess i before time T".

For this project, since the basic queueing model is used to simulate the physical system, it is not

possible to run the physical system to get the lookahead time. Instead, a user-specified probability

distribution is used to get a service-lime for each incoming job, and the service-time is the

lookahead-time for the server process.

3.2 General Algorithm for Each LP

Figure 3.1: Logical Process i

k1

k2

k3

H

J2

LPi

Figure 3.1 shows LPi having three incoming links, kl, k2, and k3, and two outgoing links, j I, and

j2. The deadlock avoidance algorithm for each LPi is as follows:

1) {Initialization}:

For every k DO

-13-

I* the time-stamp of the last incoming message from k, the point that in physical

time up to which the arc(k,i) has been simulated */

Tki = 0;

I* the last incoming message to LPi, no message has been transmitted */

Mki = NULL;

For every j DO
/* the time-stamp of the last outgoing message to j the point that in physical time

up to which the arc(ijc) has been simulated */

Tij = 0;

I* the last outgoing message from LPi */

Mij = NULL;

I* the initial clock value for LPi, the time that LPi has simulated its corresponding

PPi*/

Ti = Min(Tki,Tij) = 0;

Z = Termination Time;

2.) (Body):

Where Ti<Z

A.) Selection: Select a set of NEXT input line(s) or/and output line(s) based on the

local simulation time.

/* the smallest time-stamp among all incoming links, the point that the LPi

knows a complete input history up to time TIN */

TINi = MIN(Tki);

I* the time for LPi to predict all output messages to LPj */

TOUTij =TTNi + LijCnNi);

/* select incoming lines with clock values equal Ti */

For every k Do
if(Tki = Ti)

NEXT = k;

I* select outgoing lines with clock values equal Ti and with their predictable

output times exceed their last output times */

For every j Do
if (Tij = Ti) and (TOUTij > Tij)

NEXT =j;

B.) Computation : determine the time-stamp and the message transmitted on each

output line in NEXT.

For every j in NEXT DO

I* the message history for PPi up to time TOUTij, no NULL message */

hijfTOUTij) = Fij(nNiJili(TINi)...hni(TINi));"

/* the message history for PPi, up to time Tij, no NULL message */

hij(Tij) = Fij(Tij,hli(Tij)...hni(Tij));

/* PPi sent message(s) on line (ij)*/

If hijfTij) <> hijfTOUTij) then

I* Tij<tl<= TOUTij, tl is the first clock value of message send out by PPi

*/

NewTij =tl;

NewMij = Message;

Else

NewTij =TOUTij;

NewMij =NULL;
Endlf

I* exceed the lenninaiion time */

If (NewTij >Z) then

NewTij =Z;

NewMij = NULL;
Endlf

EndFor

C.) I/O Operation: Cany out parallel I/O

operations(by a non deterministic order) for all lines in NEXT.

P Do 1 & 2 in parallel •/

1.) For every j in NEXT

/* Wait to send messages out */

Tij = NewTij

Mij = NewMij

2.) For each input k in NEXT

I* Wait for input */

Tki =NewTki
Mki =NewMki

D.) Compute Ti:

Ti = MIN(Tki,Tij);

3J Walkthrough or Algorithm

Assume for the Figure 3.1 above that the sequence of messages for each incoming link, kl, k2, and

k3 are as below. The format of each message is composed of time-stamp, message, and message

destination. The lookahead time(or service time) for LPi is fixed, equal 5 time units. Table I shows

the times when each message crosses the corresponding link of the physical system. TINi, TOUTi

and Next are defined in the algorithm. Qj 12 is the queue to store received messages which can not

be sent out at the moment. This is because up to that time the simulated PPi has not sent these

messages along its outgoing links yet.

-15-

kl: (1.M1J1) (4.M2J2) (10JH3J2)

k2: (3.M4J2) (8JH5J2) (18.M6J2)

k3: (5JM7J1) (6.M8J1) (15,M9jl)

TABLE I. Walkthrough of Algorithm

Step| TINi TOUTi NEXT kl k2 k3 jl J2 I QJ12

1 1

. 2 1 kl,k2,k3, 1 3 5

3 1 1 6 J1.J2, 1 3 5 6,R6,N 1

4 1 1 6 kl 4 3 5 6 6 3

5 1 3 8 k2 4 8 5 6 6 4 8

6 1 4 9 kl 10 8 5 6 6 5 8,9

7 1 5 10 k3 10 8 6 6 6 6 8,9,10

8 1 6 11 k3,jl,j2, 10 8 15 8,N8,R 8 9,10,11

9 1 8 13 k2.jl,j2, 10 18 15 9.N9.R 9 10,11,13

10 1 9 14 J1.J2 10 18 15 10.R 10JJ 10 11,13

Step 1:

Initially, both ks and js are set lo which indicates that the lines have been simulated up to

timeO.

Step 2:

TINi is 0. There is no lookahead time, kl, k2, and k3 are selected for accepting messages

with time-stamp 1, 3, and 5 respectively.

Step 3:

-16-

TINi is 1, which indicates that the message with time-stamp 1 is selected to be sent. After

adding the service-time 5, TOUTi becomes 6. Both jl and j2 are chosen to send out mes-

sages with the same time-stamp 6, but ji gets a Real message and j2 gets a Null one. Update

the local time for LPi to 1.

Step 4, 5, 6 and 7:

Messages with time-stamp 4, 8, 10, and 6 are received. Message with time-stamp 3, 4, and 5

are queued with their new output times 5, 8, and 10 respectively. The local time is advanced

each step.

Step 8, 9, 10.:

Several new messages are received. The message sent out each step is the first message

stored in the queue.

3.4 Avoid Deadlock

Let us consider the scenario of Section 2.2.2 in Chapter Two. Let us see how this algorithm avoids

deadlock in that scenario:

1.) Source A generates a job (5,ml) and sends it to Branch B.

2.) Branch B selects path Bl to send (5,ml) to Queue C. Meanwhile Branch will send

(5.NULL) to Queue D.

3.) (5jnl) is serviced by Server C. (5.NULL) is serviced by Server D.

4.) After adding service_time(10). Server C sends (15,ml) to Sink E. After adding

service_ume(5). Server D sends (10.NULL) to sink E.

5.) Sink E selects (10.NULL) and processes it. The deadlock situation showed in chapter 2 will

thus be avoided by sending a NULL message to the unselected path.

3.5 Structure for Each Type of LP

-17-

Fivc types of logical processes-source, branch, queue, server and sink- are implemented in this

distributed simulator. Each one corresponds to the physical process in the queueing network

model.

3.5.1. Source

A source process either generates a new job or sends it out into the system being modeled.

Figure 3.2 shows the algorithm of the source process. The inter-arrival time between two

jobs is determined by a user-specified probability distribution. According to the algorithm,

the source process will guarantee that the inter-arrival time is greater than 0. The time-stamp

for each new job will be its inter-arrival time plus the current local time. If the time-stamp of

this new job exceeds the specified termination time, then a NULL message with the termina-

tion time will be sent out. The source process keeps track of the specified interval time for

sending out a statistical report. The Concurrent C code for the source process (Source.cc) is

shown in the Appendix A.

18-

Figure3.2 Source algorithm:

Process Sourcc(

)

begin

Accept Setup();

Time = 0.0

Generate_time = 0.0

Out_time = 0.0

Loop

If (Generate_time = Time)

Msg_time = Time + Inter_arrival

Msg_id = Msg_id++

Msg_type = REAL
Generate_time = Msg_time

Elself (Out_time = Time &&
Generate_time > Out_time)

If (Msg_time > Term_time)

Msg_time = ierm_time

Meg_id = -1

Meg_type = NULL
Endlf

Send(Msg)

Out_time = Msg_time

Endlf

Time = MIN(Generate_time, Oul_time)

If (Statisticaljnterval)

Send(Stats)

End Loop

End Process Source

35.2. Branch

A branch process receives a job and selects one out of all its outgoing links to send the job.

Figure 3.3 is the algorithm of the branch process. The maximum incoming or outgoing

links are limited to 5. The selection of an outgoing link is based on the user's specified link

probability instead of the comparison of the time-stamps. According to the deadlock algo-

rithm, each time the branch process sends a real message out along one of its out links, it has

to send a NULL message with the same time-stamp among all the unchosen links. The

branch process does not collect any statistical report in the simulator. The Concurrent C

code for the branch process(Branch.cc) is shown in Appendix A.

19-

Figure 3.3 Branch algorithm:

Process Branch(

)

begin

Accept Setup();

Time = 0.0

In_time = 0.0 (for each IN link)

Out_time = 0.0 (for each OUT link)

Loop

Outmsg = Smallest incoming time-stamped Msg
For each IN link

If (In_time = Time)

Accepl(Msg)

In_time = Msg_time

For each OUT link

If (Out_time Time && Outmsg_time > Out_lime)

If (Selected)

Send(Outmsg_ume, Outmsg_id)

Else

Send(Outmsg_ume,NULL)

Out_time = Msg_time

Time = MIN(In_time, Out_time)

End of Loop

End of Branch Process

3.5..!. Queue

The queue process accepts a job and stores it into its queue until its associated server

requests the job. Figure 3.4 shows the algorithm of the queue process. In the distributed

simulator, only one server is associated with each queue and the queue size is not infinite.

Basically, the functions of each queue can be divided into three:

1.) As long as the queue is not full, the queue process can select the smallest time-

stamped job(s) and put it into its queue. If the numbers of the smallest time-stamped

jobs are greater than the available spaces in the queue, the extra jobs will be stored in

a temporary queue. Once a space is available in the queue, jobs stored in the tem-

porary queue will be moved immediately in a FIFO order.

2.) As long as the queue is not empty, the queue process is ready to accept a "job request"

from its server. Based on a user-specified method, such as FIFO, the queue process

sends out the desired job and adjusts its queue to be ready for accepting a next

-20-

request. The current local time will be the time-stamp of the job sent out.

3.) Whenever its server requests a statistical report, the queue process will calculate the

necessary information and give it to the server.

According to the deadlock algorithm, an assumption was made for the protocol between two logi-

cal processes: a message is sent from logical Process i to logical Process j if and only if Process i

is ready to send and Process j is ready to receive. In fact, the function of the queue process is quite

passive. It accepts and sends jobs with several conditions. For input, the queue must not be full.

For output, the queue must not be empty (Process i is ready), and a request is received from its

server(Process j is ready). If the queue is full, even though the incoming link equals its local time,

it cannot accept jobs. If the queue is empty, even if a request is received, the queue process has no

job to send. First, the queue process can not do I/O operations based only on the comparison of the

link times and its local time. Second, local time is not the minimum value between incoming links

and outgoing links. Instead, it is the minimum value between incoming link time and the time-

stamp of the last message stored in the queue. Third, local time will not be influenced by the time

at which a server sends a job request The Concurrent C code (Queue.cc) for the queue process is

shown in Appendix A.

-21-

Figure 3.4 Queue algorilhm:

Process Queue(

)

begin

Accept Sciup();

Time = 0.0

In_rime = 0.0 (for each IN link)

Sloredjime = 0.0

loop

SloredMsg = Smallest time-stamped incoming message

If (queue is not Full)

For each IN link

If (In_time = Time)

Accept(Msg)

InJime = Msg_time

If (Sloredjime = Time && In_time > Sloredjime)

Store(Msg)

Stored_time = Msg_lime

If (#Msg > #Available_Space)

Temporary(Msg)

Time = MIN(Injime,Storedjime)

EndFor

Endlf

If (queue is not empty)

AcceptfRequest a Msg)

Select(Msg)

Msg_time = Time;

Send(Msg)

If (Request a stats report)

Accept(request)

Send(Stats)

End of Loop

End of Queue Process

3.5.4. Server

The activities of a job are typically focused on servers. A server process requests a job from

its own queue, generates a service time based on a user specified probability distribution,

adds the service time onto the original time-stamp of the job and sends it out. Figure 3.5 is

the algorithm of the server process. In this distributed simulator, the service lime is the loo-

kahead time for the server process. Based on the assumption of the algorilhm, increasing

TINi will not decrease TOUTi. The source process in this simulator will guarantee a reason-

able service time to each job. The algorithm of the server process is implemented exactly

the same way as the deadlock avoidance algorithm described above.

-22-

When the interval time for a statistical report expires, the server process requests informa-

tion from its queue process, incorporates its own, and sends it out. The Concurrent C

code(Server.cc) for the server process is shown in Appendix A.

Figure 3.5 Server algorithm:

Process Server(

)

begin

Accept Setup();

Time = 0.0

ln_time = 0.0

Outjime = 0.0

loop

Tin = In_time;

Predict = Tin + Service_time

if (In_time = Time)

AcceptfMsg)

In_time = Msg_time

If (Out_time = Time && Predict > Out_time)

If (Queue_Msg)

Msg_time = Queue_Msg[l]_time

Else

Msg_lime = Predict

Send(Msg)

Out_time = Msg_ume
Else if (New_msg && Out_time != Time)

Queue(Msg)

Endlf

Time = MIN(In_time, Out_time)

If(StatsJnterval)

Send(Stats)

End of Loop

End of Server Process

3.5.5. Sink

The sink process destroys one job at a time from the modeled system. Figure 3.6 is the

algorithm for the sink process. If the job is not a NULL job then the numbers of sunk job

will be increased. Only one sink is necessary to provide departures of jobs in our simulator.

The Concurrent C code(Sink.cc) for the sink process is shown in Appendix A.

-23-

Figure 3.6 Sink Algorithm:

Process Sink(

)

begin

Accept Setup();

Time = 0.0

In_time = 0.0

Outcome = 0.0

loop

if (In_time = Time)

AcceptfMsg)

In_time = Msg_time

If (Out_time = Time && In_time > Out_time)

Sunk(Msg)

If(Msg_typeoNULL)
Num_sunk + 1

Out_time = Msg_time

Time = MIN(In_time, Out_time)

If (Statsjnterval)

Send(Stats)

End of Loop

End of Sink Process

-24-

Chapter 4

Implementation

The previous chapters discussed characteristics of the distributed simulator and the algorithm used

to solve the deadlock problem. The algorithm of logical processes simulating physical processes is

only the foundation of a distributed simulator; without a programming language to implement the

algorithm, it only represents a blueprint. Even after the logical processes are implemented by a

programming language, without several supplemental processes to support them, they can only

build an engine, not a complete simulator. For instance, to measure the performance of a physical

system, the distributed simulator must have information representing the characteristics of the phy-

sical system, and information representing the behavior of that system. This chapter first intro-

duces important language-level facilities provided by Concurrent C, then discusses the original

design environment. Finally, it introduces three different functions of the supporting processes of

the distributed simulator, creation of processes, collection of reports, and termination of processes.

4.1 Programming Language (Concurrent C)

Concurrent C was selected as the programming language to implement this project, because it has

more application-level facilities needed in a distributed simulator than other concurrent program-

ming languages and is compatible with the available multiprocessor system.

The fundamental building blocks of the Concurrent C language are processes. Each process con-

sists of two parts: a type (specification) and a body (implementation). The process type declares all

information necessary to create and interact with other process types. The process body is executed

by that process type. For example, a source process body is executed by each instance of the

source process type.

In this project, only the distributed aspect of the simulation is of interest The rest of the charac-

teristics of the simulaied physical system are encapsulated. Five types of logical processes-

Source, Branch, Queue, Server, and Sink-which simulate the physical processes in the queueing

network model are the major components of the distributed simulator. The remainder are

-25-

supporting processes used to create processes, collect statistical information, and terminate the

simulator.

Processes can be dynamically created in a distributed system. To create processes on remote pro-

cessors. Concurrent C uses a built-in function declared as:

processorjid = c_processor(char "machine, char "program);

This function creates a new logical processor and returns its processor id. The parameter 'machine'

is the processor name and the parameter 'program' is the path name of a load module on this

processor[GEHA88]. Placing the returned processorjd into the following expression would create

one instance of a source process on a particular remote processor

source_pid = create Source() processor(processor_pid)

The interactions between two processes are done totally by transaction calls in Concurrent C. A

process that initiates a call is called a caller. A process that receives the call is called a receiver.

There are two kinds of transaction calls, asynchronous and synchronous, demonstrated respec-

tively:

async trans setup();

trans struct Msg_Rec get_Msg();

For an asynchronous call, the caller can resume its execution immediately after submitting a tran-

saction call. For a synchronous call, after a caller submits a call, it must wait until the receiver

accepts the call, performs actions, and sends back data. Then the caller can continue to execute its

code.

The parallel I/O operations in the deadlock avoidance algorithm cannot be implemented using

Concurrent C transaction calls, because a process cannot be accepting a call while submitting or

accepting another call, or vice versa. A process can only accept or submit one call at a time. But an

asynchronous transaction call can be used to limit the message-passing delay, if a caller does not

need a return value from its receiver. For instance, 'setup' calls are used only to send original

-26-

paramcicrs to each logical process. No return value is needed. But *get_Msg' calls are used by a

server to get a job from its queue. Before getting a job, the server cannot resume it execution.

The statement for accepting a call at the receiver site has the form:

accept send_msg()suchthat()by()

The 'suchthat' and 'by' clauses are two alternatives for selecting a call among all pending transac-

tion calls. The 'suchthat' clause is a conditional expression to the first pending transaction call

which satisfies that condition. If none of the calls satisfies the condition, then all calls are held

until an appropriate call arrives. The 'by' clause is a priority expression. All pending transaction

calls will be evaluated by the expression to decide which one has the lowest value. The other calls

are held to be executed at some later time. Both expressions play very importment roles in imple-

menting the deadlock avoidance algorithm. The accept 'send_msg' statement in the following

example is used for each logical process to select a transaction call. In figure 4.1, by using

'suchthat', one can actually select the acceptance of the next message on a desired incoming link.

When the desired incoming link has not been assigned to any of its specified caller, one of first

messages sent from any caller will be accepted. Otherwise, the caller of the message must be the

same with the assigned caller of the desired link. After selecting the messages on a desired link,

'by' is used to select the lowest time-stamped message on that chosen link.

for(;0 {

select
(

(IDone):

accept send_msg(Job)

suchthat((In_Line[n].Caller= NONE &&
Job.id = 0) II

Job.from = In_I_ine[n].Caller)

by (Job.send_time)

or accept term()

terminate;

)

)

Figure 4.1 Code for Receiving Incoming Messages

The 'select' statement shown above can be used for logical processes to wait for the first arrival

-27-

call among several different types of transaction calls. The (!Done) guard must be true before a

send_msg call is accepted. Only one alternative will be chosen at a time. Processes can be dynami-

cally terminated in a distributed way loo. To terminate a process on a remote processor. Con-

current C uses a transaction call to tell the process to be ready to terminate. If a process completes

its code or the 'terminate' is one of the alternatives inside of the 'select' statement, then it can take

the termination transaction call and break the for-loop. Until all processes terminate, then the

whole simulator terminate collectively. The example above shows that if any process selects to

accept a transaction call from the Terminate process, then it is ready to terminate.

For this distributed simulator, all processes are implemented in Concurrent C processes. All logi-

cal processes representing physical processes in the basic queueing network model can be created

and terminated in a distributed way. All communications between processes are done by transac-

tion calls.

42 Environment of Project

I

GRAPHICS

FRONT-BMO Minicomputer Mlracom jisr

*z?
Q- ... "O- ™r-o

,'*

'XT'
Mlnicompuiai

Figure 4.2 Distributed Simulation Environment[VOPA89]

This distributed simulator is designed for an environment, shown in Figure 4.1, consisting of a

Xerox workstation, Sun workstations, Vax(DEX 11/780), Harris(HCX-9), and a set of minicom-

puters (3b2/3bl5's). Users can build up a visual basic queueing network model on the Xerox

graphical front-end by using a set of icons and specifying some desired information, such as the

probability distribution for Source or Server processes. After the job is done, an Internet socket is

connected from the Xerox to one of the minicomputers where the main program of the distributed

simulator is executing. Once the connection is established, the input information is sent from the

-28-

Xerox. This simulalion project begins from the reception of that input information. The simulator

creates logical processes and distributes them among several machines according to the user's

specification, and runs the simulator parallelly under the deadlock avoidance algorithm. When a

prespecified time for a statistical report comes, all the needed information will be collected and

sent back to the Xerox front-end.

The following. Figure 4.3, is the flow for this distributed simulator

Distributed Simulator

1 .) Create a socket and wait for input (Connecu)
2.) Read input (InOut.cc)

3.) Parse and store the initial information (Build.cc)

4.) Create all processes (Create.cc)

Loop

Parallel Operations(5 and 6)

5.) Run all processes parallelly (Source.cc,

Branch. cc, Queue.cc, Server.cc, Sink.cc,

Collector.cc, and Terminate.cc)

6.) Collect a statistical report and send

back to the user. (CoIlector.cc and

InOut.cc)

Wait for control message from user

(Collectxc)

If "terminate simulation" then

call termination (Terminate.cc)

else "continue simulation" then

keep looping

Until (termination lime) or

(Allowed jobs have been generated)

Figure 4.3 Flow of the Distributed Simulator

4J Supporting Processes

43.1 Creation of processes

The way of handling process creation in this simulator has been influenced by the work of

Edward Vopata's thesis, "Distributed Discrete-Event Simulation in Concurrent C"

[VOPA89].

The distributed simulator starts with opening a socket to accept an input file. If the input

comes from the Xerox front-end, an internet socket is connected. Otherwise, a standard

-29-

in/out socket is used. The input format is shown in Vopata's thesis[VOPA89]. Once the

connection is established, input information is read in, one line at a time. Each line is then

parsed one token at a time. Tokens parsed from the same line represent the characteristics of

one of the physical process. Therefore, the whole system is represented by the collection of

all tokens. According to the specification of a simulated physical system, the simulator

creates all necessary processes in a distributed or centralized manner.

4J.2. Collection of Reports

The Collector process collects a complete statistical report at each specified time interval

and sends it to the user. Each process, except the Branch process, sends a statistical report at

each specified time interval to the Colleclor process based on its local time. Because the

local time of each process is not updated by a fixed constant value, each report can not be

sent exactly at each time interval. Division is used to determine whether a logical process

should send a report at the current time. The initial iteration value for time interval equals 0.

Each time the value changes, a statistical report is sent For example, the time interval is

assumed 10 be 15. The local time of source process X is currently increased from 14 to 22.

Because 22 / 15 = 1, the first report is sent from X. Let us assume that the local time of

another source process Y is increased from 10 to 20. A report is also sent from Y. Two sta-

tistical reports are being sent at the same time interval, in fact, the two local times of two

sending processes might be slightly different. Sometimes, the time between two reports sent

from a logical process might not exactly equal the specified time interval. From previous

example, the last report was sent by source process X at its local time 22. Now at a local

time assumed to be updated to 32, a new report is sent. In this case, the time between two

reports is 10.

Suppose, the current local time of source process X is updated from 32 to 60, 60 / 15 = 4, a

report with iteration value 4 is sent The report with iteration value 3 would be skipped. In

this case, because the report with iteration value 3 has not been received completely, the

-30-

Collect process cannot send it to the user. In order not to skip too many reports, in this dis-

tributed simulator, once the Collector process recognizes that one or more reports are

skipped from a logical process, the previous report sent by that process would be used to fill

in the skipped iteration.

The Collector process receives each individual report from each logical process, checks the

iteration value of the time interval of the received report, and collects all the reports have the

same iteration value together. Once the report is completed, it is sent The format of the sta-

tistical report is shown in Vopata's thesis! VOPA881.

433.Termination of Processes

The Terminate process submits transaction calls to all processes to be ready to terminate.

The following two conditions would cause the Collector process to activate the Terminate

process.

1.) After sending a statistical report to the user, if a "termination simulation" con-

trol message results, the Collector process would initiate the Terminate process.

It would signal Source processes first. Source processes would then generate a

distinct type of messages, called "Term_Msg" with a negative time-stamp, and

send them to the rest of the logical processes. Once a process receives a

"Term_Msg", it is ready to accept a transaction call from the Terminate process.

Gradually, all processes would be terminated.

2.) If one of the processes passes the termination time and is ready to terminate, the

process uses a final statistical report to notify the Collector process. When the

Collector recognizes that final statistical reports have been sent by all the neces-

sary processes, it initiates the Terminate process. At the time, the local times of

all logical process should be the specified termination time and all processes

should be at a ready-to-be terminated stage. No "Term_Msg" would be sent by

-31-

the Source process in this case.

A source process has two different schemes to determine when to stop generating new jobs.

1.) The termination time is specified to 0, meaning that the simulation time is

infinite. (In this case, the number ofjobs allowed to be generated by each source

process must not be 0.) When the amount of allowed jobs have been generated

by the source process, the Source process stops generating new jobs.

2.) The number of jobs allowed to be generated is equal to 0, meaning that the

source can generate infinite jobs. (In this case, the termination time must not be

specified to 0) The source process stops generating new jobs only when its local

time equals the specified termination time.

-32-

Chapter 5

Conclusion and Future Work

The design and implementation of the distributed simulator have been discussed in the previous

chapters. This last chapter will conclude with several suggestions for future works. In addition, the

problem of the C compiler on the 3b2/3bl5's is explained.

5.1 Problem

In order to distribute processes of the Concurrent C distributed simulator, all machines must be

compatible. Therefore, the distribution of the simulator is designed on 3b2/3bl5's. The Concurrent

C compiler generates C code and then let the C compiler finish the final compilation. The C com-

piler on the 3b2/3bl5's, AT&T version 4.1, limits the sizes of parameters and messages to 4 K-

bytes. Any attempt to pass a parameter or message with size larger than 4 Kbytes will cause a

run-time error message 'core dump' to occur. The bug was reported and certified by AT&T

Software Support and should be corrected in version 4.3 of the C compiler [VOPA88]. Because

the C compiler on the 'ksuvaxl', DEC Vax 11/780, is version 4.3, the speed is faster than

3b2/3bl5's, and the debugger, DBX, is more efficient than the SDB debugger on the 3b2/3bl5's,

eventually the distributed simulator is run on the ksuvaxl. One example of an input model and its

final statistical result is shown in the Appendix B.

5.2 Conclusion

The simulator written in Concurrent C is a distributed version, in contrast to other sequential

language simulators. The speed of the Concurrent C simulator is supposed to be faster than the

sequential one, but so far, the Concurrent C distributed simulator does not dramatically improve its

speed.

The first key to improving speed is to minimize the amount of communication required among dis-

tributed processes. If the inter-machine communication is kept to a minimum, distributed process-

ing could be more efficient. But in the case of the distributed simulator, the main activity of the

-33-

processes is sending messages. This means there will be a large amount of inter-machine commun-

ication. Sending a message to another machine is very expensive in terms of time, but that is the

only way the simulator communicates. The best approach is to try to partition the simulation

model, such that inter-machine communication is kept to a minimum.

The second key to improving speed is to run the Concurrent C distributed simulator on proper

machines to reduce the amount of message passing. For example, the new version of 3b 15,

Apache, is a tightly coupled system and contains a hypercube structure which can hold many

processes. The 3b2 machine, a loosely coupled system, used for this project, cannot handle more

than one unix process. But if a heavily computational intensive program running on one machine,

would demonstrate the difference.

However, a distributed simulator is just one application of distributed programming. For this pro-

ject, we are interested in distributed Concurrent C in terms of writing distributed programs as

opposed to testing the efficiency of distributed programs.

S3 Future Work

A basic queueing network is not in itself sufficient to represent a complex system. Several

facilities[S AUE80] can be added on to the distributed simulator. For example,

A.) Add job variables used to store data associated with each individual job. Two types of job

variables, class and phase, can be lagged to each job. The class variable defines to which

class the job belongs. At branch nodes, the job's class variable can be used to determine the

routing, then a lot of redundant nodes in our graphics can be reduced. The phase variable

identifies a job's current position when the job flows between the servers within the model.

By the existing id variables and the new phase variables, more statistical output can be

obtained and more about the flow situation can be understood.

B.) Add Resource nodesfa pool of tokens) which represent a passive queue. There are several

related nodes that can be added to Resource nodes. An Allocate node allows jobs to request

-34-

possession of a number of the tokens from particular resources. A Release node allows jobs

to return all tokens which it holds back to particular resources. For example, a Resource

node can be added in the simulated system to hold a pool of buffer tokens, with an Allocate

node in front of the server and a Release node behind the server. Before requesting a service,

a job must request for buffer tokens. After leaving the server, that job will release the tokens

back to the Resource node.

C.) Add Set nodes defined to have one or more assignments for job variables in the program-

ming language sense. A job visiting this node causes the assignment statements associated

with that Set node to be performed. For example, a Set node can be added in front of a

Server to let jobs of one of the classes request a modification to its service time. After get-

ting the disired service, the job might pass through the Set node first, and request a new ser-

vice time by giving a new distribution function. Currently, the distribution function for the

service time in this queueing model is fixed.

D.) Add Decide nodes on Branch nodes which decide which route the job is going to send by

the job variable, not by probability.

E.) Add User Nodes(Code Segments) which can invoke a user-written C function. A heavily

computational function can be put in this node, making it easier to verify whether this Con-

current C distributed simulator is faster than simulators written in other languages.

F.) Add other features:

1 .) Ending simulation (or printout statistical information)

1 .) after X jobs are serviced by a server

2.) after Y jobs are sunk by a sink

2.) Printing statistical information only for specific nodes, not all notes.

3.) During a simulation run, it is possible to interact with the model by changing parame-

ters and then resuming the run.

•35-

G.) Compare the performance of distributed simulators implemented using three different syn-

chronization algorithms, two conservative algorithms (deadlock avoidance, and deadlock

detection and recovery) and one optimistic algorithm (Time Warp).

-36-

isibiography

[CHAN79] K. M. Chandy & J. Misra, "Distributed Simulation: A Case Study in

Design and Verification of Distributed Programs," IEEE Transactions

on Software Engineering, Vol. SE-5, No. 5, September 1979, pp. 440-

452.

[CHAN81] K. M. Chandy & J. Misra, "Asynchronous Distributed Simulation via a

Sequence of Parallel Compulations," Communications of the ACM, Vol

24, No. 11, April 1981, pp. 198-206.

[COTA88] B. A. Cota, & R. G. Sargent, "An Algorithm for Parallel Distributed

Event Simulation Using Common Memory," Annual Simulation Sym-
posium, pp. 23-31.

[GARZ86] R. F. Garzia, & M. R. Garzia, "Discrete-event Simulation," IEEE Spec-

trum .December 1986, pp. 32-36.

[GEHA88] N. H. Gehani, & W. D. Roome, Concurrent C, AT&T Bell Laboratories,

(Submiued for Publication).

[JEFF85] D. R. Jefferson, "Virtual Time," ACM Transactions on Programming
Languages and Systems, Vol. 7, No. 3, July 1986, pp. 404-425.

[MACD87] M. H. MacDougall, "Simulating Computer Systems: Techniques and

Tools" The MIT Press , 1987. pp. 1-28.

[MADI88] V. Madisetti, J. Walrand, & D. Messerschmitt, "Efficient Distributed

Simulation," Annual Simulation Symposium , pp. 5-21.

[REED87] D. A. Reed, & R. M. Fujimoto, " Multicomputer Networks: Message-
Based Parallel Processing," The MIT Press , 1987. pp. 239-267.

[SAUE80] C. H. Sauer, & E. A. MacNair, "Simulation of Computer Communica-
tion Systems," Prentice-Hall, INC. , pp. 9-14.

[VOPA89] E. Vopata, "Distributed Distributed-Event Simulation in Concurrent C"
Masters Thesis, Kansas State University , 1989.

-37-

Appendix A: Concurrent C Source Code for the Distributed Simulator

Makefile

CCC=/usrb/scott/ccc/bin/CCC

CCCLIB=/usrb/scott/cccAib/libmpcc50g^

add source rile names here

SRCS = Main.cc Inoutxc Build. cc Create.cc Distrib.cc Stat5.cc Source.cc

Branch.cc Queue.cc Server.cc Sink.cc Collector.cc

Terminate.cc

add same name but with ..o on the end here

OBJS = Main..o Inout..o Build..o Create..o Distrib..o Stats..o Source..o.br

Branch..o Queue..o Server..o Sink..o Collector..o

Terminate..o

HDRS = define. h distrib.h lp_info.h lp_param.h lp_stats.h

mach.h msg.h rand.h spec.h

flags for CCC here (-g does symbol generation for dbx)

CFLAGS = -g

#CFLAGS = -g-DSYS5

Libraries

LIBS = -lm

LIBS = -Inet -lm

a.out $(OBJS) S(HDRS)
CCCS(CFLAGS) $(OBJS] -o a.out $(LIBS)

${OBJS):

CCC$(CFLAGS)-c$*cc

say "make print" will create a file called "print" with files pr-ed together

print: $(HDRS) $(SRCS)
prS(HDRS) $(SRCS) > print

say "make depend" to automatically create dependencies at bottom of this file depend:

cat </dev/null >.x.c

foriin$(SRCS);do

(echo 'basename $Si .cc'..o: SSi »makedep:

•38-

/bin/grep '"#[]*include' .x.c $$i I sed

-e 's,<)>,7usr/include/r,'

-e •sj-.r]'""]'y.v: ir

-e 's/.cc/..o/' »makedep); done

echo '/•# DO NOT DELETE THIS LINE/+2,$$d' >eddep

echo 'SSr makedep' »eddep
echo 'w' »eddep
cp Makefile .Makefile.bak

ed - Makefile < eddep

mi eddep makedep .x.c

echo '# DEPENDENCIES MUST END AT END OF FILE'» Makefile

echo '# IF YOU PUT STUFF HERE IT WILL GO AWAY - » Makefile

echo '# see make depend above'» Makefile

DO NOT DELETE THIS LINE -- make depend uses it

Main..o: Main.cc

Main..o: define.

h

Inoui.-o: Inout.cc

Build. .o: Build.cc

Build..o: define.h

Create..o: Create.cc

Create. .o: /usr/include/neidb.h

Distrib..o: Distrib.cc

Distrib..o: /usr/include/math.h

Distrib..o: rand.h

Source..o: Source.cc

Branch. .0: Branch.cc

Queue.. 0: Queue.cc

Server..o: Server.cc

Sink.o: Sink.cc

Collector..o: Collector.cc

Collator.. 0: /usr/include/stdio.h

Terminate..o: Terminate.cc

DEPENDENCIES MUST END AT END OF FILE

IF YOU PUT STUFF HERE IT WILL GO AWAY
tt see make depend above

39-

/

I*

I

r
r
/*

/*

/*

/•

/*

/*

/

**

Include File define.

h

**

This include file declares constants for process types,

queue methods, user commands, message types, report

types, number of links and length per line, signals for

termination, and all other includes files needed for the

simulation.

This file is included in each file of the simulator.

**

#define TRUE 1

#dehne FALSE

#define SOURCE /* Source process type */

#define SINK i /* Sink process type *

;

#define QUE_SRV 2 r Q/Server process type */

#define BRANCH 3 /* Branch process type »/

#define FIFO /* First in first out
*/

#dclinc LIFO 1 r Last in first out */

#define SIRO 2 /* Service in random order */

#define PRIO 3 /* Highest priority */

#define PROB 4 /* Probability ml

Adeline TERM 96 /* Terminate simulation */

#define CONT 97 r Continue simulation *;

#define START 98 r Start of input file
«/

#define BEGIN 99 r Begin of LP's parameters */

Adeline END 99 r End of LP's parameters */

#define NULL.MSG r Null message */

#define REAL.MSG 1 r Real message */

#define TERM_MSG 2 r Termination message */

ttdefine STATS_NORMAL r Normal stats report «/

#deflne STATS.FINAL 1 /* Final stats report */

#define MAXLINK 5 /* Maximum I/O links
* /

#define MAXSIZE 100 /* Maximum queue size */

#define MAXLINE 70 r Maximum length per line
»/

#define MAXMACH 16 r Maximum number of machine */

Adeline MAXLP 110 /* Maximum number of LP • /

#define COLJD (MAXLP) r Collector process id •/

#define TERM_ID (MAXLP+1) r Terminate process id
*/

-40-

#define TERMJTIME
#define TERM_STAMP

"define MIN(a,b)

"define MAX(a.b)

#include <stdio.h>

#include <maih.h>

include "distrib.h"

#inc)ude "msg-h"

#include "lp_info.h"

"include "lp_param.h"

"include "lp_stats.h"

"include "spec.h"

"include "rand.h"

-0.1 /* Signal for termination

-0.2 /* Signal for terminalion

I* From Vopata's thesis[VOPA89] */

"ifdef SYS5 /* For 3b2's and 3b 15 Machines (System V systems)

char*strchrO; I* =BSD's index */

char *strrchr0; I* =BSD'srindex */

define index(a.b) strchr(a,b) /* Map index to strchr */

define rindex(a.b) strrchr(a,b) I* Map rindex to strrchr */

"else I* For BSD systems */

char

char

"endif

*index0;

•rindexQ;

/* BSD index : find char forward search */

I* BSD rindex : find char reverse search */

char *mallcc();

long timc();

-41-

/* **

/* Include File distrib.h

/*

I* This include file declares constants for each probability

/* distribution and its parameters.

r
/» **

#define FIXED
#define UNIFORM
((define POISSON
#define BINOMIAL
((define EXPNTL
((define NORMAL
((define GAMMA
((define BETA
((define ERLANG
((define LOGNORMAL
((define WEIBULL

2

3

4

5

6

7

8

9

10

struct Fixed_Rec (

double time;

);

struct Uniform_Rec (

long lower;

long upper;

);

struct Poisson_Rec {

double mean;

};

struct Binomal_Rec
{

long num;

double prob;

);

struct Expntl_Rec
{

double mean;

);

struct Normal_Rec
(

double mean;

double stdev;

-42-

struct GammaJRec {

double mean;

double k;

);

struct Beta_Rec {

double kl;

double k2;

};

struct Erlang_Rec {

double mean;

long k;

);

struct Lognormal_Rec
(

double mean;

double stdev;

};

struct Weibull_Rec
(

double shape;

double scale;

);

struct Dis_Rec (

int Dis_Type;

double Min;

double Max;

union Dis_Data
(

struct Fixed_Rec Fixed;

struct Uniform_Rec Uniform;

struct Poisson_Rcc Poisson;

struct Binomal_Rec Binomial;

struct Expntl_Rec Expntl;

struct Normal_Rec Normal;

struct Gamma_Rec Gamma;
struct Beta_Rec Beta;

struct Erlang_Rec Erlang;

struct Lognormal_Rec Lognormal;

struct Weibull_Rec Weibull;

) Data;

-43-

/*

f
r
/*

/*

i*

r
i*

r

**

Include File lp_info.h

**

This include file organizes a table for the input

parameters of each logical process, Source, Branch,

Queue, Server, and Sink.

**

/* Source date */

struct Src_Rec
(

long

int

struct

Num_Gen;

OutJD;

Dis_Rec Dis;

/* Number ofjobs allowed */

/* to be generated */

/* Output process id */

/* Probability distributions */

r Sink data */

struct Sink Rec
I

Num_In; /* Number of input links

1* Link data */

struct Link_Rec
(

int

double

);

ID;

Prob;

/*

r
Link id

Probability

*/

*/

/* Branch data */

struct Branch_Rec (

int

int

struct

Num_In;

Num_Out;

Link_Rec Link[MAXLINK];

r
/*

i*

Number of input links

Number of output links

Records for out links

*/

*/

*/

/* Queue_Server Data */

struct Q_Srv_Rec
(

int

int

int

int

struct

OutJD;

0_Size;

Q_Method;

Num_In;

Dis_Rec Dis;

/* Output process id

I* Queue size

I* Queue method
/* Number of incoming links

/* Probability distributions

-44-

union LP_Daia_Rec (

stract Src_Rec

struct Sink_Rec

struct Branch_Rec

struct Q_Srv_Rec

) LP_Data[MAXLP];

union LP_Pid_Rec
(

process Source

process Sink

process Branch

process Server

•Src;

•Sink;

•Branch;

*Q_Sr>;

Src_Pid;

Sink_Pid;

Branch_Pid;

Srv_Pid;

1* Source data */

r Sink data */

r Branch data */

r Q/Server data */

I* Source id

/* Sink id

I* Branch id

/* Server id

struct A)l_LP_Rec
(

int

int

int

union

process Queue

int

int

im

long

process Collector

process Terminate

double

double

TypefMAXLP];

Mach[MAXLP];

Virt[MAXLPl;

LP_Pid_Rec LP_Pid[MAXLP];

Q_Pid[MAXLP];

insock;

outsock;

Total_LP;

Tolal_Gen;

CoLPid;

Term_Pid;

Sim_Term_Time;

Statsjnterval;

I* Types of LPs

I* Types of Machines

r Ids of LPs

I* Ids of Queue processes

I* Input socket

I* Outpit socket

I* Number of LPs
/* Number of generated jobs

I* Collector process id

I* Terminate process id

I* Termination ume
/• Stats interval time

-45-

A***

Include File lp_param.h

I*

/*

/*

/*

/*

I*

/*

/*

I* SEND_MSG is a pointer lo a transation that takes */

/* a Msg_Rec and returns no value */

typedef trans void (*SEND_MSG) (struct Msg_Rec);

This include tile declares variables which are sent

by Create process to each type of logical processes.

**

struct Src_Param (

int id;

int out_id;

long num_gen;

double sim_term_time

double stats_interval;

struct Dis_Rec dis;

SEND_MSG send_msg;

trans void (*send_stals)

Source id

Output process id

Number of jobs allowed

to be generated

Termination time

Stats interval time

Probability distributions

a pointer to a transation

(struct Src_Stats_Rec);

struct Sink_Param
I

int id;

int numjn;
double sim_term_time;

double stats_interval;

trans void (*send_stats)

Branch process id

Number of input links

Termination time

Stats interval time

(struct Sink_Stats_Rec);

struct Queue_Param
{

int id;

inl q_size;

int q_method;

int num_in;

double

];

sim_term_time

struct SrvParam
(

int id;

int out_id;

double sim_term_time;

double statsjnterval;

/*

/*

f*

f*

i*

Queue process id

Queue size

Queue method

Number of input links

Termination time

/* Server process id

/* Output process id

/* Termination time

I* Stats interval lime

struct

SEND MSG

-46-

Queue que:

Dis_Rec dis;

send_msg;

trans void (*send_stats) (struct Q_Srv_Stats_Rec);

/* Probability distributions

struct Branch_Param {

int id;

int numjn;
int num_out;

double sim_term_lime:

double statsjnterval;

struct {

int id;

double prob;

SEND_MSG send_msg;

) IinkiMAXLINK]

/* Branch process id */

/* Number of input links /
r Number of output links */

r Termination time */

/* Stats interval time 7

r Link id */

/* Link probability 7

struct Col_Param (

int id;

struct All_LP_Rec A11_LP;
I* Colloctor process id

struct Term_Param
(

int id;

struct AlLLP_Rec AU_LP;

union LP_Param_Rec
(

struct Src_Param src;

struct Sink_Param sink;

struct Srv_Param srv;

struct Queue_Param queue;

struct Branch_Param branch;

struct Col_Param collect;

struct Term_Param term;

) LP_Param;

/* Terminate process id

-47-

I* Include File lp_stats.h

/»

/*

I* This include file declares variables for the statistical

/* report of each process type.

/*

I*

struct Src_Stats_Rec {

inl ID;

int Status;

int Num_Left;

double Sim_Time;

double Ave_Arrival;

double Std_Arrival;

double

];

Max_Arrival;

struct Q_Stats_Rec (

double Per_FulI;

long Num_In_Q;
long Num_Through_Q

I* Source process id

/* Status of stats report

/* Jods have been generated

f* Simulation time

I* Average arrival time

/* Standard arrival time

f Maximum arrival time

/* Percentage of full time */

/* Number of jobs in queue */

/* Number of jobs through q */

struct Q_Srv_Stats_Rec
|

int ID;

int Status;

double Sim_Time;

double Per_Busy;

double Ave_Service;

double Std_Service;

double Max_Service;

struct Q_Stats_Rec

);

CLStats;

struct Sink_Stats_Rec
{

int ID;

int Status;

long Num_Sunk;
double Sim_Time;

Q/server process id

Status of stats report

Simulation lime

Percentage of busy time

Average service time

Standard service time

Maximum service time

I* Sink process id */

I* Status of status report */

/* Number of sunk jobs */

/* Simulation time */

struct CoI_Stats_Rec
(

long

int

Inlerval_num;

Status;

/* Iteration of stats report

/* Status of stats report

-48-

t Update;

union
(

struct Src_Stats_Rec *Src_Stats;

struct Q_Srv_Stats_Rec *Q_Srv_Stats;

struct Sink_Slats_Rec *Sink_Stats;

) LP_Stats[MAXLP];

struct Col_Stats_Rec *Next;

I* True, update old report

I* From Vopata's thesis[VOPA89] */

struct stats_rec (/*** Stats Structure ***/

long num_val;

double max_val;

double sum_val;

double sum_sq;

/* number of values

/* max value

I* sum of all values

I* sum of squares

typedef struct siats_rec STATS;

void StatsJnitO;

void Stats_ValO;

double Stats_MeanO;

double Stats_STDQ;

I* Initalize a Stats Structure */

I* Add a value to a Stats Sructure */

I* Return the average of a Stats Structure */

I* Return the STD of a Stats Structure

-49-

mach.h - by Edward Vopata
********* *********************»»+***»***************************

List of Machines names for use with c_processor function.

These names will be used to distribute the logical processes.

This is very machine/network dependent.

MAX_MACH indicates the number of possible machines.

WARNING: In order to Distributed Concurrent C to operate properly

all distributed process must be on a compatible machine.

Therefore distribution will be made only on 3b2/3bl5's.

ksuvaxl and harris are included for completness.

#define MAX_MACH 19

#define MAXJVIRT 16

#deBne MAX PS 24

I* Number of machines */

/* Number of Virtual Processors per Machine */

I* Number of Processes per Virtual Processor */

char *Mach_NameQ =
{

/* Machine No. */ Machine Name */ Machine model */

/* * "foxtrot", 1* AT&T 3b2^00 */

/*
1

*/
"golf", r AT&T 3b2-400 */

1* 2 */ "hotel". r AT&T 3b2-400 */

," 3 *l "india", r AT&T 3b2-400 */

1* 4 *j "Juliet", r AT&T3b2^(00 */

/' 5 • t "kilo", r AT&T 3b2-400 • J

r 6 */ "lima". r AT&T 3b2-400 */

/* 7 •. "mike", i* AT&T 3b2400 */

/* 8 */ "november". r AT&T 3b2-400 */

i* 9 */ "hack", r AT&T 3b2-400 */

r 10 • , "alpha". 1* AT&T3b2-10 */

r 11
*/

"bravo", r AT&T3b2-10 */

/ 12 */
"Charlie", r AT&T3b2-10 */

r 13 »

/

"delta". r AT&T3b2-10 */

/* 14 */ "echo", f AT&T3b2-10 */

/* 15 */ "phobos", r AT&T 3bl5 */

i* 16 */ "deimos", r AT&T 3b 15 */

r 17 */ "ksuvaxl", r DEC Vax 1 1^780 */ 1* No D-CCC */

r 18 */ "harris", r Harris HCX 9 */ /» No D-CCC */

-50-

**********»***************»*.<»<********************..************,,*„*

ksuvaxl & harris were used as development machines. They are much
faster then the 3b2's. ksuvaxl & harris were not comparable enough

to do distributed process between the two, but they were able to

allow the simulator to be tested on a single processor.

Making debugging much faster, and easier (DBX is a very, very nice

symbolic debugger, while SDB has its drawbacks).
+********************»***.****************************»***»*******

-51-

I* ***

I* Include File msg.h

I*

r
I* This include file declares variables for a message,

I* an incoming link, and an outgoing link.

/•

I* ***

#defineNONE

struct Msg_Rec (

long id; r Message id */

int type; i* Message type */

inl from; r Message sender */

int prion r Message priority *
1

double receive _time; f Message receive time *y

double send_time; n Message send time *>

struct In_Line_Rec
I

double Time;

long Id;

int Type;

int Caller;

mt

!;

Selected;

struct Out_Line_Rec
(

double Time;

long Id;

int Type;

int Selected

r
r
r
r
r

Incoming link time

Accepted message id

Accepted message type

Message sender

True, accept message

/* Outgoing link time

I* Message id

I* Message type

I* True, send message

-52-

/I***

* rand.h ~ by Edward Vopata
**

* Handle standard C function for generating random numbers.

* For BSD, the random number generator is randomO which generates

* a long integer in the range of <= X < 2"31. The function

* srandomO is used to seed the random number generator.

* For SYS5, the random number generator that corresponds to randomO
* and randomi) is called lrand480 & srand480-

* Mapping the random number generator to rand and the seeding

* function to srand will allow different random number generators

* to be installed without too much pain.

* Generating random numbers in the Range of <= X < 1.0 (X is real)

* is handled by the function drandOlO- This function makes use of

* the mapped randO function. It may be possible to install a

* <= X < 1 random number generator to replace drandOlO.
* Comments:
* randomO & lrand480 generate fairly uniform psuedo random
* numbers.

* If the random number generators are not seeded then they will

* produce the same sequence of random numbers on every run.

* There are many possible method for generating the seed.

* 1
. (getpidO * getppidO) -- the produce of the process id

* and the parent process id is a fairly random number and
* makes a good seed value.

* 2. (time) -- Some function using the time and date will

* also produce a good seed value.

* drandOlO produces fairly uniform random numbers less

* then 1.00.

* 0.000 values are very, very rare. Disclaimer This function

* may produce values X= 1.00 <E.W.V>
•#*•**•**•*••»•*•••*»•**••******•*«***#*************************

*/

I* Define SYS5 in Makefile when compiling on SYS 5 systems */

I* Random number generation functions (standard C functions */

#ifdef SYS5

long lrand480; I* Generate a long X : 0<= X< 2*31 */

void srand480; I* Seed the random number generator */

define randO lrand480 I* Map lrand48 to rand */

define srand(a) srand48(a) [* Map srand48 to srand */

#else r BSD */

lw(O.li) lw(1.5i) lw(0.3i) lw(2.0i) 1.

long randomO; I* Generate a long X : <= X < 2"3 1 •/

void srandomO; I* Seed the random number generator */

define randO randomO I* Map random to rand */

define srand(a) srandom(a) /* Map srandom to srand */

-53-

#endif

/* provide a real (double) X : <= X < 1 random number •/

#define drandOlQ (((double)(randO & Oxfffffi) / Oxffffff))

I* spech */

process spec Source(

)

{

async trans setup(struct Src_Param);

trans void term();

];

process spec Branch(

)

{

async trans setup(struct Branch_Param);

trans void send_msg(struct Msg_Rec);

trans void term();

);

process spec Queue(

)

(

async trans setup(stnict Queue_Param);

trans void send_msg(struct Msg_Rec);

trans struct Msg_Rec get_msg();

trans struct Q_Stats_Rec get_stats(int);

trans void term();

process spec Server(

)

(

async trans setup* struct Srv_Param);

trans void term();

);

process spec Sink(

)

(

async trans setup(struct Sink_Param);

trans void send_msg(struct Msg_Rec);

trans void term();

process spec Terminate(

)

(

async trans setup(struct Term_Param);

trans void term();

process spec Collector;

)

(

async trans setup(struct Col_Param);

trans void src_stats(srrucl Src_Stats_Rec);

trans void sink_stats(struct Sink_Slats_Rec);

trans void srv_stats(struct Q_Srv_Stats_Rec);

trans void term();

-55-

/* Main.cc */

^include "define.h"

main(argc,argv)

ira argc

;

/* a count of the number of command line argument */

char **argv; /* an array of pointer to char */

{

register i;

struct All_LP_Rec *A11_LP;

union LP_Data_Rec "LPJData;

char filename[50]; I* the file name for a input data */

I* malice a space to hold a ALL_LP pointer •/

A11_LP = (struct All_LP_Rec *) malloc (sizeof(struct All_LP_Rec));

I* malloc MAXLP spaces, each one holds a LP_Data pointer */

LP.Dala = (union LP_Data_Rec *)

malloc (sizeof(union LP_Data_Rec) * MAXLP);

I* [(] indicates a socket stream is used,

[n) will be a socket descriptor */

if(argv[l][0]= r)
(

sscanf(argv[1] ,"%d" ,&All_LP->insock);

All_LP->outsock = All_LP->insock;

)

else

{

fprintf(stderr,"Oain, File is used");

/* prompt the user for a file name which

will be read as a input data */

printf("Onter Input FileO);

gets(filename);

fprintf(stderr,"55s", filename);

I* returns a file discriptor or -1 for fail,

access is for read */

if ((All_LP->insock = open(filename.O)) < 0) (

printffOpen a file descriptor error");

c_exit(0);

/* 1 stands for stdout, the terminal */

All_LP->outsock = 1;

);

Build_LP(All_LP,LP_Data);

Creaie_LP(AU_LP,LP_Data);

for (i= 0; i < All_LP->Total_LP; i++) (

switch(All_LP->Type[i])
(

-56-

case SOURCE:
free ((char *) LP_Daia[i].Src);

break;

case BRANCH:
free ((char ») LP_Data[i].Branch);

break;

caseQUE_SRV:
tree ((char *) LP_Daia[i].Q_Srv);

break;

case SINK:

free ((char •) LP_Datati].Sink);

break;

)

)

free ((char *)LP_Daia);

free ((char *)AU_LP);

)

-57-

#include "deflne.h"

void Read_Input(line,sock)

char *line;

int sock;

{

intrval;

bzerofline, sizeof(line));

r Read MAXLDME byles from sock into a line */

if ((rval = read(sock, line, MAXLINE))= -1) (

fprintf(stderr,"Oeading from a socket error");

exit(l);

}

else (

line[MAXLINE+l] = ' ';

fprintf(stderr,"Onput!ine:%s",line);

void Write_Output(line,sock)

char *line;

int sock;

(

int wval;

I* Write nbytes to sock into a line */

if (wval = write(sock, line, strlen(line))= -1) f 128 ??? */

{

fprintf(stderr,"Oriting to a socket error");

exil(l);

)

else

{

line[MAXLINE-l] = ' ';

fprintf(stderr,"Oulput line :%s",line);

-58-

I* Build.cc */

#include "definch"

/* Example of an Input Model

((990))
((00)(20050.0)801001)
((31)8012((20.60)(30.40))
((22)(40050.0)2041001)
((23)(40050.0)15041001)
((24)(40050.0)14051002)
((15)1401)
((991))
((980)0200) */

static void Buildup_Dis(dis,ptr)

struct Dis_Rec *dis;

char *ptr;

t

int dis_type;

sscanf(ptr,"%d %lf %lF,&dis_type,&dis->Min,&dis->Max);

switch(dis_type)
{

case FIXED : (

dis->Dis_Type = FIXED;
sscanf(ptr,"%»d %*lf %*lf %lf',&dis->Data.Fixed.ume);

break;

case UNIFORM : (

dis->Dis_Type = UNIFORM;
sscanf(ptr,"%*d %*lf %*lf %ld %Id",

&dis->Data.Uniform.Iower,

&dis->Data.Uniform. upper);

break;

)

case POISSON :
(

dis->Dis_Type = POISSON;
sscanf(ptr,"%*d %*lf %*lf %lf",&dis->Data.Poisson.mean);

break;

case BINOMIAL : (

dis->Dis_Type = BINOMIAL;
sscanf(ptr,"%*d %*lf %*lf %ld %lf',

&dis->Data.Binomial.num,

&dis->Data.Binomial.prob);

-59-

break;

}

case EXPNTL : (

dis->Dis_Type = EXPNTL;
sscanf(ptr,"%*d %*lf %»lf %IT,&dis->Data.Expntl.mean);

break;

)

case NORMAL:
{

dis->Dis_Type = NORMAL;
sscanf(ptr,"%*d %*lf %*lf %lf %lf,

&dis->Daia.NormaI.mean,

&dis->Data.Normal.stdev);

break;

case GAMMA: {

dis->Dis_Type = GAMMA;
sscanf(pir,"%*d %*lf %*lf %lf %lf',

&dis->Data.Gamma.mean,

&dis->Data.Gamma.k);

break;

case BETA : (

dis->Dis_Type = BETA;
sscanf(plr,"%«d %*If %*lf %lf %If,

&dis->Daia.Beta.kl,

&dis->Data.Bela.k 1);

break;

)

caseERLANG:
(

dis->Dis_Type = ERLANG;
sscanf(ptr,"%*d %*lf %*lf %lf %ld",

&dis->Data.Erlang.mean,

&dis->Data.Erlang.k);

break;

caseLOGNORMAL:{
dis->Dis_Type = LOGNORMAL;
sscanf(ptr,"%»d%»lf%»lf%lf %lf\

&dis->Data.Lognormal.mean,

&dis->Data.Lognormal.stdev);

break;

case WEIBULL

:

-60-

dis->Dis_Type = WEIBULL;
sscanf(ptr,"%*d %*if %*lf %lf %If"

,

&dis->Data.Weibull.shape,

&dis->Data.Weibull.scale);

break;

)

default

:

dis->Dis_Type = FTXED;
dis->Min = 0;

dis->Max = 0;

break;

) /* switch */

) I* Buildup_Dis */

I* parse the input data and store the data */

void Build_LP(All_LP,LP_Data)

struct All_LP_Rec *A11_LP;

union LP_Data_Rec *LP_Data;

(

register i;

int type, id;

int Done = FALSE;
char *ptr.

char line[MAXLINE + 1];

void Read_Input();

void Buildup_Dis();

void Setup_LP();

All_LP->Toiai_LP = 0;

All_LP->Total_Gen = 0;

whiIe(!Done)
(

I* Get a line from socket */

Read_Input(line,All_LP->insock);

fprintf(stderr,"58s",line);

ptr = index(Iine,'(') + 1;

ptr = index(ptr,'(') + 1;

sscanf(ptr,"%d %d",&type,&id);

ptr = index(ptr,')') + 1;

switch(type)
(

/*<Source> ::= ((ID) (<Stoch>) <Mach> <Virt> <Gen> <Out_ID>)

((00)(20050.0)801001) */

case SOURCE : {

All_LP->Toial_LP ++;

All_LP->Type[id] = SOURCE;

-61-

P Malloc a space lo hold a Src_Rec struct that the Src

pointer is point to */

LP_Data[id].Src = (struct Src_Rec *) malice (sizeof (struct

Src_Rec));

ptr = index(ptr,'(') + 1;

I* <Sloch>::= (<Type> <Min> <Max> <Argl> [<Arg2>]

)

(20050.0) */

I* pass the address of the field Dis of the struct Src_Rec

and a pointer points to a char in the input line */

Buildup_Dis(&LP_Data[id].Src->Dis,ptr);

ptr=index(ptr,')') + 1;

sscanf(ptr,"%d %d %ld %d",

&AlI_LP->Mach[id],

&All_LP->Virt[id],

&LP_Data[id].Src->NumJjen,

&LP_Data[id].Src->Out_ID);

All_LP->Total_Gen += LP_Data[id].Src->Num_Gen;

break;

}

P <Sink> ::= ((1 ID) <Mach> <Virt> <Num_In>) */

case SINK : (

All_LP->Total_LP ++;

AII_LP->Type[id] = SINK;

LP_Data[id].Sink = (struct Sink_Rec *) malice (sizeof

(struct Sink_Rec));

sscanf(ptr,"%d %d %d",

&All_LP->Mach[id],

&All_LP->Virt[id],

&LP_Data[id].Sink->Num_In);

break;

)

P <Branch> ::= ((3 ID) <Mach> <Virt> <Num_In> <Num_Out>
(<Out_list>)) */

case BRANCH : {

All_LP->Total_LP ++;

All_LP->Type[id] = BRANCH;
LP_Data[id] .Branch = (struct Branch_Rec *) malloc (sizeof

(struct Branch_Rec));

sscanf(ptr,"%d %d %d %d",

&All_LP->Machtid],

&AlLLP->Virt[id],

&LP_Data[id].Branch->Num_In,

&LP_Data[id].Branch->Num_Out);

ptr = index(ptr,'(') + 1;

ptr = index(ptr,'(') + 1;

for (i = 0; i < LP_Data[id].Branch->Num_Out; i ++) (

-62-

sscanf(ptr,"%d %1F,

&LP_Daa[idl.Branch->Link[i].ID,

&LP_Data[id] .Branch->Link[i] Jrob);

if (i < LP_Data[id].Branch->Num_Out - 1) (

ptr = index(ptr,')') + 1;

ptr = index(ptr,'(') + 1;

)

J

break;

)

/* <Q_Server> ::= ((2 ID) (<Stoch>) <Mach> <Virt> <Out_ID>
<Q_Size> <Q_Melhod> <Num_In>) */

case QUE_SRV : (

All_LP->Total_LP ++;

All_LP->Typetid] = QUE_SRV;
LP_Data[id].Q_Srv = (struct Q_Srv_Rec *) malice (sizeof

(struct Q_Srv_Rec));

ptr = index(ptr,'(') + 1;

/* <Stoch>::= (<Type> <Min> <Max> <Argl> [<Arg2>]

)

(20050.0) */

Buildup_Dis(&LP_Data[id].Q_Srv->Dis,ptr);

ptr = index(ptr,')') + 1;

sscanf(ptr,"%d %d %d %d %d %d",

&All_LP->Mach[id],

&All_LP->Virt[id],

&LP_Data[id].Q_Srv->Out_ID,

&LP_Data[id].Q_Srv->Q_Size,

&LP_Data[id].Q_Srv->Q_Method,

&LP_Data[id] .Q_Srv->Num_In);

break;

)

case BEGIN: {

if(id= 0){);
f (id == DO;
break;

)

case START:
{

if(id==0)(

Done = TRUE;
sscanf(ptr,"%If %lf",

&All_LP->Sim_Term_Time,

&All_LP->Stats_Interval);

}

break;

-63-

) I* switch */

) r while */

) r Build.LP •/

-64-

/* Crcate.cc */

siaUc SEND_MSG SendJtrfAlLLPJD)
struct All_LP_Rec *A11_LP;

int ID:

switch(All_LP->Type[ID])
(

case BRANCH:
I* called process. transation name */

return All_LP->LP_Pid[ID].Branch_Rd.send_msg;

case QUE_SRV:
return All_LP->Q_Pid[ID].send_msg;

case SINK:

return Ali_LP->LPJ>id[ID].Sink_Pid.send_msg;

default:

return NULL;

void Create_LP(All_LP,LP_Data)

struct All_LP_Rec *A11_LP;

union LP_Data_Rec *LP_Dala;

(

register i;

register n;

char hostname[IO];

int hostid;

char *program[20]; /• the path name of a load module on the

cjrocessor */

#ifdefSYS5

int machine[MAXMACH);
#endif

union LP_Param_Rec LP_Param;
SEND_MSG Send_Ptr();

gethosuiame(hosmame,10);

for (i = 0; i < MAXMACH; i++) (

if(strcmp(hostname,Mach_Name[i])==0)
I

hostid = i;

-65-

#ifdefSYS5

for (i = 0; i < All_LP->Total_LP; i++)
|

if (AU_LP->Mach[i] !=hostid) {

•program = "LF/a.out";

machine[AllJLP->Mach[i]] =

c_processor(Mach_Name[All_LP->Mach[i]] .program);

)

#endif

for(i = 0; i < All_LP->Total_LP; i++) (

switch(All_LP->Type[i])
{

case SOURCE:
fprimf(stderr, "Oreate, a source process");

All_LP->LP_Pid[i].Src_Pid = create Source(

)

#ifdefSYS5

processor(machine[All_LP->Mach[i]])

#endif

break;

case SINK:

fprintf(stderr,"Oreate, a sink process");

All_LP->LP_Pid[i].Sink_Pid = create Sink(

)

#ifdefSYS5

processor(machine[All_LP->Mach[i]])

#endif

break;

case BRANCH:
fprintf(stderr,"Oreate, a branch process");

All_LP->LP_Pid[i].Branch_Pid = create Branch(

)

#ifdefSYS5

processor(machinetAU_LP->Mach[i]])
#endif

break;

case QUE_SRV:
fprintf(stderr, "Oreate, a que process");

All_LP->LP_Pid[i].Srv_Pid create Server(

)

Mfdef SYS5

processor(machine[AU_LP->Mach[i]])
#endif

fprintffstderr, "Oreate, a sev process");

Ail_LP->Q_Pid[i] = create Queue(

)

#ifdefSYS5

processor(machine[All LP->Mach[i]l)
#endif

-66-

break;

AlI_LP->CoLPid = create Colleclor();

All_LP->Term_Pid = create Terminate();

for(i = 0; i < Ali_LP->Total_LP; i++)

(

switch(All_LP->Type[i])

{

case SOURCE:
LP_Param.src.id = i;

LP_Param.src.out_id = LP_Data[i].Src->Out_ID;

LP_Param.src.num_gen = LP_Data[i].Src->Num_Gen;

LP_Param.src.sim_tenn_time = All_LP->Sim_Term_Time;
LP_Param.src.stats_ihterval = AIl_LP->Siats_Interval;

LP_Param.src.dis = LP_Data[i].Src->Dis;

LP_Param.src.send_msg=Send_Ptr(All_LPi.P_Data[i].Src->Out_ID);

LP_Param.src.send_stats= All_LP->CoLPid.src_stats;

f a tranction call to set up the process */

All_LP->LP_Pid[i].Src_Pid.setup(LP_Param.src);

break;

case SINK:

LP_Param.sink.id = i;

LP_Param.sink.num_in = LP_Daia[il.Sink->Num_In;

LP_Param.sink.sim_term_dme = All_LP->Sim_Term_Time;
LP_Param.sink.stals_interval = All_LP->Stats_Interval;

LP_Param.sink.send_stats = AU_LP->Col_Pid.sink_stats;

AlLLP->LP_Pid[i].Sink_Pid.setup(LP_Param.sink);

break;

case BRANCH:
LP_Param.branch.id = i;

LP_Param.branch.numJn = LP_Data[i].Branch->Num_In;

LP_Param.branch.num_out = LP_Daia[i].Branch->Num_Ouq
LP_Param.branch.sim_term_time = AltJ.P->Sim_Term_Time;
LP_Param.branch.stats_interval = All_LP->StatsJnterval;

for (n = 0; n < LP_Data[i].Branch->Num_Out; n++) (

LP_Param.branch.link[n].id =

LP_Data[i].Branch->Link[n].ID;

LP_Param.branch.link[n].prob =

LP_Data[i].Branch->Unk[n].Prob;

LP_Param.branch.link[n].send_rasg = Send_Ptr(All_LP,

LP_Data[i].Branch->Link[n].ID);

AU_LP->LP_Pid[i].Branch_Pid.setup(LP_Param.branch);

break;

-67-

caseQUE_SRV:
LP_Param.queue.id = i;

LP_Param.queue.q_size = LP_Data(i].Q_Srv-><__Size;

LP_Param.queue.q_melhod = LP_Data[i].Q_Srv->Q_Method;

LP_Param.queue.num_in = LP_Data[i].Q_Srv->NumJn;

LP_Param.queue.sirn_term_time = All_LP->SuT_Term_Time;
All_LP->Q_Pid[i].setup(LP_Parani.queue);

LP_Param.srv.id = i;

LP_Param.srv.ouUd = LP_Data[i].Q_SrvoOut_ID;
LP_Param.srv.sim_ierm_ume = All_LP->Sim_Term_Time;
LP_Param.srv.stats_interval = All_LP->S(als_IntervaI;

LP_Param.srv.que = AH_LP->Q_Pid[i];

LP_Param.srv.dis = LP_Data[i].Q_Srv->Dis;

LP_Param.srv.send_msg = Send_Ptr(All_LPiP_Data(i].<__Srv->Out_ID);

LP_Param.srv.send_stats = AII_LP->Col_Pid.srv_stats;
All_LP->LP_Pid(i].Srv_Pid.setup(LP_Param.srv);

break;

default:

fprintf(stderr,"Create:Invalid type (%d)0,All_LP->Type[i]);
break;

LP_Param.collect.id = COLJD; /* november */

LP_Param.collect.AH_LP = •A11_LP;

All_LP->Col_Pid.setup(LP_Param.collect);

LP_Param.term.id = TERMJD; /* november */

LP_Param.term.AlI_LP = *A11_LP;

AJI_LP->Term_Pid.setup(LP_Param.term);

•68-

f Distrib.cc */

long binomial();

long poissonf);

long unifonn();

double beta();

double erlang();

double expntl();

double gamma();

double lognormal();

double normal();

double weibull();

double Get_Time(dis)

struct DisJRec dis;

(

double time;

do{

switch(dis.Dis_Type)
(

case FIXED:
(

time = dis.Data.Fixed.ume;

break;

case UNIFORM: (

time = (double)(uniform(dis.Data.Uniform.lower,

dis.Data.Uniform.upper));

break;

)

casePOISSON:
(

time = poissonCdis.DataJoisson.mean);

break;

)

case BINOMIAL:
(

time = (doubIe)(binomial(dis.Data.Binomial.num,

dis.Data.Binomial.prob));

break;

)

case EXPNTL:
{

time = expntl(dis.Data.Expnd.mean);

break;

)

case NORMAL:
(

time = normal(dis.DatajNormal.mean,

dis.DataNormal.stdev);

-69-

brcak;

case GAMMA: (

time gamma(dis. Daia.Gamma.mean,

dis.Data.Gamma.kl;

break;

)

case BETA: (

time beta(dis.Data.Beta.kl,

dis.Data.Beta.kl);

break;

)

caseERLANG: (

time = erlang(dis.Data.Erlang.mean,

dis.Data.Erlang.k);

break;

caseLOGNORMAL.f
time (double)(lognormal(dis.Data.Lognormal.mean,

dis.Daui.Lognormal.sLiev));

break;

case WEIBULL:
(

time weibull(dis.Data.Weibull.shape,

dis.Data.Weibull.scale);

break;

)

)

) while (time <= 0.0); /» it has to be greater than 0.0. Otherwise,

the source will produce two same time_stamp messages */

/* Truncate the functions if min or ma* rime > 0) */

if (dis.Min > 0.0 && time < dis.Min)

time = dis.Min;

if (dis.Max > 0.0 && time > dis.Max)

time = dis.Max;

return (time);

)

-70-

to**

Stochastic Distribution Functions

These function are from Monte Hall's Thesis [HALL88]
A***

/* Discrete Statistical Distributions */

/* ****»**********»*******•»*»*•**»•*»»»»•»**»*»»»*»*** */

/* —INTEGER UNIFORM [a,b] RANDOM VARIATE GENERATOR

—

*/

r */

I* This function requires two integer bounds as input */

I* parameters which represent the range in which the */

f integer random variates are generated. */

r */

/» ./

long uniform(lower,upper)

long lower.upper,

{

long c;

c = (long) (lower + (upper - lower) * drandOlO);

return (c);

/* POISSON RANDOM VARIATE GENERATOR */

I* 'I

I* This poisson distribution is usually used to model */

/* the number of arrivals in a given amount of dme. */

/* It is related to the exponential function. The mean */

I* is required as an input parameter, and an integer */

I* random variate is generated. */

/* */

r ./

-71-

long poisson(mean)

double mean;

{

long n;

double x,y;

n = 0;

if (mean > 6.0) return ((long)normal(mean,sqrt(mean)));

else {

y = exp(-l * mean);

x = drand010;

while (x >= y) (

n = n+ 1;

x = x * drandOlO;

)

return (n);

/• BINOMIAL RANDOM VARIATE GENERATOR

-

I*

I* According to the SIMSCRIPT book description from

I* which these functions were borrowed, the binomial

/* distribution represents the integer number of

/* successes in n independent trials, each having prob-

/* ability of success p.

I*

/.

long binomial(num,prob)

long num;

double prob;

{

register i;

long sum 0;

for (i = 0; i < num; i++)

if (drandOlO <= prob) sum += 1;

return (sum);

-72-

****»*»*»********»**«****»»***»**************»i»»*»**

/* Continuous Statistical Distributions

/* *•••••«»***•*••**»»»**«•******»•****••*******«***•**

I* BETA RANDOM VARIATE GENERATOR

-

/*

I* The input parameters to beta are two variables, which

I* when put together in the formulas below determine the

/* mean (mu) and standard deviation (sd) of the distri-

I* bution:

I*

/» mu = kl/(kl+k2)

f Sd = sqrt((kl*k2)/(sqr(kl+k2)*(kl+k2+l)

r

double beta(kljc2)

double kl.ki

{

double x;

x = gamma(kljcl);

return (x / (x + gamma(k2,k2)));

]

I* ERLANG RANDOM VARIATE GENERATOR -

r
I* An erlang function is a special case of a gamma
f* function when k is an integer. If k = 1 , then the

I* erlang function is the same as the exponential

I* function. The mean (x) and a constant (k) are the

I* input parameters to the function. An extra test was
/* added to this code to assure that the value of the

/* variable e was not equal to zero, primarily so the

I* logarithm function would not be passed a parameter

I* equal to zero.

I*

I*

-73-

double erlang(mean Jc)

double mean;

longk;

{

register i;

double e;

do(

e=1.0;

for (i=0; i < k; i++) e *= drandOlO;

) while (e= 0.0);

return (-(mean/k) * log(e));

/• EXPONENTIAL RANDOM VARIATE GENERATOR-
I*

f* The input parameter for an exponential distribution

/* is the mean (x). The variance for an exponential
/* distribution is simply tiis square of the mean
/*

I*

double expnd(mean)

double mean;

t

double y;

while ((y = drandOlO) == 0.0);

return ((-mean) * log(y));

)

/• GAMMA RANDOM VARIATE GENERATOR */
/*

/*

«/

/* The gamma function requires a mean (x) and a constant «/

I* (k) as input parameters. If k is an integer, then */
/* this function is the same as the erlang function. If */

I* k is equal to one, this function is the same as the »/
/* exponential function. If k is equal to one-half, »/

I* this function is the same as the chi-square distri- «/

I* bution. The density function for this distribution »/

I* is given below: »/

I* f(x) = ((I/(k-l)!*pow(b,k)) »
,f

r pow(x,(k-l))*exp(-x/b)) ./

I* V
/* where the following holds: »/
/* k > 0, b > 0, and x >= »/

/* and the mean is: x = k * b «y

-74-

I* and the variance is: var = sqr(b) * k */

f V
I* The gamma function has smaller variance and more */

/* control in parameter selection, and therefore more */

I* realistically represents observed data, such as */

/* service times. It is often used in preference to the */

/* exponential function, and is closely related to the */

/* beta and erlang functions, according to the SIMSCRIPT */

/* book from which these functions where borrowed. */

I* */

I*

double gamma(mean JO
double mean, k;

{

double z,a,b,d,e,x,y,w,v;

long kk;

register i;

z = 0.0;

kk = Oong) k; f truncation of k */

d = k-kk; /» fractional of k */

if(kk!=0)(

do(

e=1.0;

for (i=0; i < kk; i++) e *= drandOlO;

) while (e= 0.0);

z = -(log(e));

if (d= 0.0) return((mean / k) * z);

)

a=1.0/d;

b=1.0/(1.0-d);

y = 2.0;

whUe (y > 1.0) (

x = pow(drand010.a);

y = (pow(drand010,b)) + x;

w = x / y;

while ((v = drandOlO)= 0.0);

y = -0og(v));

return ((w * y + z) * (mean / k));

I* LOG NORMAL RANDOM VARIATE GENERATOR */

I* */

-75-

/* This function requires a mean and standard deviation */

I* (sigma) as input parameters. The log normal function */

I* is often used to characterize skewed data. The mean */

I* and variance of this distribution function are given */

/* below: •/

I* 7
I* mu = cxfKmcan + (sqr(sigma) / 2)) */

I* sig = exp((mean * 2) + (sqr(sigma)))
* */

I* ((exp (sqr(sigma))) - 1) •/

r v
r ./

double lognormal(mean,stdev)

double mean.stdev;

{

double s.u;

s = log((stdev * sidev) / (mean * mean) + 1);

u = log(mean) - (0.5 * s);

return (doubleXexp(normal(u,sqrt(s))));

I* NORMAL RANDOM VARIATE GENERATOR */

I* */

/* The normal distribution function provides a "bell- */

/* shaped curve". It requires the mean (mu) and stan- */

/* dard deviation (sigma) as input parameters. If in- */

/* appropriate relative values of mean and standard */

I* deviation are entered, it is possible that the "tail" */

/* of the function can extend into the negadve region */

I* of the graph (x-axis). This could cause some */

I* complications in regard to generating service times, */

/* which have no meaning if negative. An extra test was */

f added to this code to recalculate a new random */

I* variate if a variate of less than zero is generated. */

/* •/

/» ./

-76-

double normal(mean,suiev)

double mcan.stdev;

(

double q,r,s,x,xx,y,yy;

do(

s => 2.0;

while (s> 1.0) (

x = drandOlO;

y = (2.0 • drandOlO) - 1;

xx = x * x;

yy = y * y;

s = xx + yy;

)

while ((x = drandOlO)= 0.0);

r = sqn((-2.0)»log(x))/s;

q = r * stdev * (xx - yy) + mean;

) while (q <= 0.0);

return (q);

/* WEIBULLRANDOM VARIATE GENERATOR —
I*

I* This function can represent several families of

I* distribution functions depending on the values of the

I* input parameters. If the shape parameter is equal to
/* one, then this function is the same as the exponen-

I* tial function with a mean equal to the scale para-
/* meter. There is also a similarity between this

/* function and the gamma distribution when the shape
I* parameter is set equal to two.

I*

I*

double weibull(shape,scale)

double shape^cale;

(

double x;

while ((x = drandOlO) == 0.0);

return (scale * pow((-log(x)),(1.0 /shape)));

-77-

#include "definch"

suis.cc - by Edward Vopata
A**

Function for gather statistical information. These function use

the Stats structure defined in "stats.h".

Stats_Init - initialize a Stats struct

Stats_Val - add a value to a Stats struct

Stats_Mean - calculate the average of a Stats struct

Stats_STD - calculate the standard deviation of a Stats struct

These function kept track of the number of values added to the

Stats struct, the sum of the values, the sum of the values"2,

and the maximum entered value.

Function :

StatsJnitO

Parameter:

p - pointer to a STATS structure

Summary:

Initialize the values within the STATS structure.

number of value, sum of the value, and sum of the values square

are assigned 0, max value is assigned -1 (a very small value).

void Statsjnit(p) /* Initialize a "stats' structure */

STATS *p;

(

p->num_val =0; /* number of value <= */

p->max_val = - 1 .0; /* max. value <= - 1 (very small value)

*/

p->sum_val = 0.0; /* sum of the values <= */

p->sum_sq = 0.0; /* sum of the values"2 <= */

**

Function

:

Stats_Val0

Parameter:

p - pointer to a STATS structure

v - floating point value

Summary

:

Update a STATS structure with value v. First check to see if

v is a maxium value and if so, store v in max_val.

-78-

update num_val, sum_val, and sum_sq.

void Stals_Val(p,v)

STATS *p;

double v;

I* Add a value to a "stats" structure

if (v > p->max_vai) p->max_val = v;

p->num_val+= 1;

p->sum_val += v;

p->sum_sq += (v * v);

f Update the max. value if necessary */

I* we have another value, increment */

I* add the value to the sum */

/* add the value"2 to sum_sq */

I* print the values of the STATS structure */

I* Needs to have a Debug Flag */

printf("STATS=%X val = %ld, sum_val %lf, sum_sq %lf max %lfO,

p,p->num_val,p->sum_val,p->sum_sq,p->max_val);

Function

:

Stats_MeanO

Parameter:

p - pointer to a STATS structure

Summary

:

Calculate the mean (average) of all the values that have been
added to the STATS structure. If there has been no values added,
then return 0. (Prevents divide by zero errors).

Return:

mean = sum_val / num_val.

double Stats_Mean(p) /» Return the mean value from STATS struct */
STATS *p;

(

I* calculate and return the average of the Stats struct */

return (p->num_val != 0) ? p->sum_val/p->num_val : 0;

Function

:

Stats.STDQ

-79-

Parameter:

p - pointer to a STATS structure

Summary:

Calculate the Standard Deviation (STD) of a STATS structure.

(Beware of structures that have not had values added to them).

Return:

STD = square_root((sum_sq / num_val) - (mean * mean)

)

double Stats_STD(p)

STATS *p;

(

double avg; f Average of a STATS structure */

if (p->num_val= 0) return 0: /* Check for no values in STATS */

else

{

/* Calculate average of STATS, (could call Stats_MeanO) */

avg = p->sum_val / p->num_val;

/* Calculate and return the standard deviation of the

* Stats struct. May have problems with negative values.

*/

return sqrt(p->sum_sq / p->num_val - avg * avg);

80-

#include "definch"

/*

/*

f
I*

I*

I*

I*

/*

/*

I*

I*

/*

»»»»»»«*»»«*»»»»»»*****»**»»»*»»«,»*»»,,t*,,*,i,»»».»,»»,»»,,,.»„,,»

Process Body Source(

)

This Source process generates a new message based on
a user's specified stochastic distribution function and
sends the new message to the rest of the modelled system.

When the interval time for a statistical report expires,

the Source process will send a report to the Collector

process.

«iH«tMW««n«HtM«n«mM«m»utnnm««nauH«n<

process body Source(

)

int

int

int

long

long

double

double

double

double

STATS

struct

struct

struct

struct

struct

struct

process

infinite = FALSE; /»

Timeup = FALSE; /»

new_message = FALSE; f
num_msg = 0; /*

num_stats = 0; /»

inter_arrival; /*

Time = 0.O, /»

max_arrival = 0.0; /*

Get_Time(); /•

Arvl_Stats; f

Src_Param Param; /*

Msg_Rec Msg; /»

Src_Stats_Rec Src_Stats; /*

In_Line_Rec In_Line; /•

Out_Line_Rec Out_Line; /*

Out_Line_Rec New_Out_Line; /*

Source lam; /»

True, num_gen =

True, msg >= term_time

True, new message

Msg id

Interval number

Inter_arrival time

Local clock

Maximum inter_arrival

Distribution function

Inter_arrival stats

Source parameters

Message

Source statistics

Incoming fine

Outgoing line

Temporary out line

Source process id

I* accept the initial specified parameters from the Create.cc

accept setup(source_param) (Param = source_param;);

I* generates a random seed for a random generator

srand(getpid() * time((long *
) 0));

-81-

In_Line.Id = -1;

In_Line.Time = 0.0;

In_Line.Type = NULL_MSG;
In_Line.Caller = Param.id;

In_Line.Selected = FALSE;

Out_Line.Id= -1;

Out_Line.Time = 0.0;

OutJLine.Type = NULL_MSG;
Out_Line.SeIected = FALSE;

Stats_Init(&Arvl_Stats);

Msg.id = -1;

Msg.type = NULL_MSG;
Msg.from = NONE;
Msg.prior = 0;

Msgjeceive_time = Time;

Msg.send_time = Time;

if (Param.num_gen= 0) (infinite = TRUE;

/* get the process id for the Source */

lam = (process Source)c_mypid();

for(;;)

if (In_Line.Time= Time)

In_Line.SeIected = TRUE;

if (Out_Line.Time == Time &&
In_Line.Time > OutJjne.Time) {

Out_Line.Selected = TRUE;

if (new_message)
{

New_Out_Line.Id = Msg.id;

New_Out_Line.Time = In_Line.Time;

New_Out_Line.Type = Msg.type;

)

else {

New_Oul_Line.Id = -1;

New_Out_Line.Time = In_Line.Time;

New_Oul_Line.Type = NULL_MSG;

if ((Param.sim_term_time == &&
Param.num_gen= 0) II

(infinite &&
New_OutJ_ine.Time= Param.sim_term_time))

|

fprintf(stderr,

"0ource[%d], Pass term time",Param.id);

New_Out_Line.Id = Msg.id;

New_.0ut_Line.Time = Param.simJerm_time;
New_Oul_Line.Type = REAL_MSG;

-82-

Timeup = TRUE;

}

else if (infinite &&
New_Out_Line.Time > Param.simjermjime)

(

fprintf(stden,

"Oource[%d], Pass term time" .Param.id);

New_Out_Line.Id = -1;

New_Out_Line.Time = Param.sim_tenn_tinie;

New_Out_Line.Type = NULL_MSG;
Timeup = TRUE;

)

if(Out_Line.Selected= TRUE)
(

fprintf(stderr,

"Oource[%d], Out is selected"J,aram.id);

Msg.id = New_Out_Line.Id;

Msg.type = New_Out_Line.Type;

Msg.send_time = New_Oul_Line.Time;

fprintf(stdeir,"Oource[%d], Msg.sendjime = %lf\
Param.id,Msg.send_time);

fprintf(stderr,"Oource[%d], Msgjd = %d",

Param.id,New_Out_Line.Id);

fprintf(stderr,

"Oource[%d], Before sending out message",

Param.id);

(*Param.send_msg)(Msg);

fprintf(stderr,

"Oource[%d], After sending out message",

Param.id);

Out_Line.id = New_Out_Line.Id;

Out_Line.Time = New_Out_Line.Time;

Out_Line.Type = New_Out_Line.Type;

Out_Line.Selected = FALSE;

if (In_Line.Selected= TRUE)
(

fprintffstderr,

"Oource[%d], In is selected ".Param.id);

inter_arrival = Get_Time(Param.dis);

Stats_Val(&Arvl_Statsjnter_arrivaI);

max_arrival = MAX(max_arrival,inter_arrival);

fprintf(stderr,"Oource[%d], ArrivaLtime = %lf",

Param .id,inter_arrival);

Msg.id = num_msg++;

Msg.type = REAL_MSG;
Msg.from = Param.id;

Msg.receive_time = Time + inter_arrival;

fprintf(stderr,"Oource[%d], Msgjeceive_time = %lf

,

Param.id,Msg.receiveJime);

Param.num_gen--;

-83-

fprintfCstderr,"Oource[%d] , num_gen = %ld" .Param.id,

Param.num_gen);

In_Line.Id = Msg.id;

InJLine.Time = Msg.reccive_tiine;

In_Line.Type = Msg.type;

In_Line.Selected = FALSE;

I* phycial source generates a real message */

if (In_Line.Type= REALJUSG)
new_message = TRUE;

Time = MrN(In_Line.Time, Out_Line.Time);

fprintf(stderr,"Oource[%d], Time = %lf",Param.id,Time);

if (c_lranscount(Iam.term) > II

(Time= Param.sim_terni_time && Timeup= TRUE))
break;

I* Statisitcal Output */

I* <Source> ::= (<IDx Num_Left>) */

if (num_stats != (long)(Time/Param.stats_interval))
{

num_stats = (long)(Time / Param.statsjnterval);

Src_Stats.ID = Param.id;

Src_Stats.Status = STATS.NORMAL;
Src_Stats.Ave_Arrival = Stats_Mean(&Arvl_Stats);

Src_Stats.Std_ArrivaI = Stats_STD(&Arvl_Stats);

Src_Stats.Max_Arrival = max_arrival;

Src_Slats.Num_Left = Param.num_gen;

Src_Stats.Sim_Time = Time;

fprintf(stderr,

"Oource[%d], Before sending a stats report",

Param.id);

(*Param.send_stats)(Src_Stats);

)

)

if (Time= Param.sim_term_time && Timeup == TRUE)
(

Src_Stats.ID = Param.id;

Src_Stats.Status = STATSJTNAL;
Src_Stats.Num_Left = Param.num_gen;

Src_Stats.Ave_Arrival = Stats_Mean(&Arvl_Stats);

Src_Stats.Std_Arrival = Stats_STD(&Arvl_Stats);

Src_Stats.Max_Arrival = max_arrival;

Src_Slats.Sim_Time = Time;

fprintf(stderr,"Oource[%d], Before sending a final report",

Param.id);

(*Param.send_stats)(Src_Stats);

)

else if (c_transcount(lam.term) > 0) {

/* Sending out a negitive time_stamp message */

-84-

Msgjd = -1;

Msg.type = TERM_MSG;
Msg.from = Param.id;

Msgjeceive_time = TERM_TIME;
Msg.send_time = TERM_TIME;
fprintf(stderr,

"Oource[%d], Before sending out a term message",

Param.id);

(*Param.send_msg)(Msg);

)

rprintf(stden-,"Oource[%d], Ready to tenninate".Param.id);

accept term() ();

-85-

l» »*•»»•**•»•••»•*»*»•*»»»»•»»»»•»»****«*»»«•*»»»»«»»„»***»»»,»

/* Process Body Branch(

)

/* **

I*

I*

r
i*

/*

i*

i*

/*

/*

/*

/*

This Branch process receives a job and selects one out of

all its outgoing links to send the job. The maximum incoming

or outgoing links are limited to 5. The selection of an

outgoing link is based on the user's specified link proba-

bility instead of the comparison of the time-stamps.

Each time the Branch process sends a real message along one
of its out links, it has to send a NULL message with the same
time-stamp among all the unchosen links. The Branch process

does not collect any statistical report in the simulator.

process body Branch(

)

register n; /* Index */

int Out = FALSE; /* True, send message */

int Skip = FALSE; /* True, skip to select */

int Timeup = FALSE; /* True, msg >= term lime */

int Done = FALSE; /• True, Time >= term time */

int Stop = FALSE; /* True, stop by user */

inl Term = FALSE; r True, terminate */

int count = 1; r Number of msg */

long Outjd; /* The last sent out msg •/

double Time = 0.0; /* Local clock */

double lowest_prob; /* Value to choose a link */

double md; /* Random value */

struct Msg_Rec Msg; i* Message */

struct Msg_Rec Temp; /* Message */

struct In_Line_Rec ln_LinetMAXLINK]; 1* Incoming links *i

struct In_Line_Rec Smallest[MAXLINK]; r Smallest time msg */

struct In_Line_Rec Out_Msg; i* Outgoing message */

struct Out_Line_Rec Out_Line[MAXLINK]; i* Outgoing links */

struct Oul_Line_Rec New_Out_Line; r temporary links *i

struct Branch_Param Param; /* Branch parameters */

process Branch lam; r Branch process id */

/* accept the initial parameters form the Create Process
accept setup(branch_param) (Param = branch_param;

I* get a random seed for the random number generater

srand(getpid() » Ume((Iong *
) 0));

-86-

for (n = 0; n < Param.num_in; n ++)

(

In_Line[n].Id = -l;

In_Line[n].Caller= NONE;
In_Line[n].Selected = FALSE;

for (n = 0; n < Param.num out; n ++)

(

Out_Line[n].Id = -l;

Out__Line[n].Time = 0.0;

Out_Line[n].Type = NULL_MSG;
Out_Line[n!.Selected = FALSE;

Oul_Id = -l;

lam = (process Branch)c_mypid();

for(;;)

select
(

(IDone && IStop && ITerm):

I* Selection »/

I* Find out the smallest message */

Smallest[count] = In_Line[0];

fprintf(stderr,"Oranch, Smallest.type = %d",

Smallest[count].Type);

fprintf(stderT,"Oranch, Smallest.time = %IT,

Smallest[count].Time);

for (n = 0; n < Param.num_in - 1; n++) (

if (Smallest[count].Time= In_Line[n+l].Time)
(

if (SmalIest[count].Type == NULL_MSG)
Smallestfcount] = In_Line[n+l];

else if(In_Line[n+l].Type != NULL.MSG)
Smallest[count+l] = In_Line[n+l];

}

else if (Smallest[count].Time > In_Line[n+l].Time)

Smallesttcount) = In_Line[n+l];

if (Smallest[count].Type==TERM_MSG)
{

fprinif(stderr,"0ranch, received a TERM_MSG");

while (count < Param.num_in)
(

accept send_msg(Job)

suchthat(Job.from !=

Smallest[count].CalIer)
(

Temp = Job;

87-

if (Temp.type= TERM_MSG)
COUM++:

Stop = TRUE;
Time = TERM_STAMP;

)

I* Select the next input lines which have the

same time stamp with the current simulation time */

for (n = 0; n < Param.numjn; n++)

if (In_Line[n).Time= Time)

t

In_Line[n].Selected = TRUE;
fprintf(stderr,

"Oranch, ln_Line[%d] is selected»;

!:

for (n = 1; n <= count; n++)
|

Out_Msg = Smallesl[n];

if (!Skip)
(

md = drandOlO;

lowest_prob = 0.0;

for (n = 0; n < Param.num_ouq n++)
(

if (Out_Line[n].Time == Time &&
Out_Msg.Time > Out_Line[n].Time)

(

if (lowestjrob <= md &&
md < Param.link[n].prob + lowest_prob)

I

Out_Line[n].Selected = TRUE;
Out = TRUE;
Skip = FALSE;

break;

)

lowest_prob += Param.Iink[n].prob;

)

else

Skip = TRUE;

if (Out= TRUE)
(

if (Out_Msg.Id != Outjd) (

New_Out_Line.Id = Out_Msg.Id;

New_Out_Line.Time = Out_Msg.Time;

-88-

New_OutJ.ine.Type = REAL_MSG;

else (

New_Out_Line.Id = -1;

New_Out_Line.Time = Out_Msg.Time;

New_Out_Line.Type = NULL_MSG;

if (Param.sim_term_time != 0) {

if (Out_Msg.Time= Param.sim_term_time) {

New_Out_Line.Id = Out_Msg.Id;

New_Out_Line.Time = Param.sim_term_time;

New_Out_Line.Type = Out_Msg.Type;

Timeup = TRUE;

)

else if (Out_Msg.Time >

Param.sim_tenn__me)
(

New_Out_Line.Id = -1;

New_Out_Line.Time = Param.sim_tenn_tinie;

New_Out_Line.Type = NULL_MSG;
Timeup = TRUE;

)

)

for (n = 0; n< Param.num_out; n++) (

if (Out_Line[n).Selected==TRUE)
{

Msg.id = New_Out_Line.Id;

Msg.type = New_Out_Line.Type;

Msg.from = Param.id;

Msgjeceive_time = Out_Msg.Time;

Msg.send_time = New_Out_Line.Time;

)

else
(

Msg.id = -1

;

Msg.type = NULL_MSG;
Msg.from = Param.id;

Msgjeceive_time = Out_Msg.Time;

Msg.sendjime = New_Oul_Line.Time;

)

fprintf(stderr,

"Oranch, Msg.id = %d" .Msg.id);

fprintf(stden,

"Oranch, msg.send_time = %lf',

Msg.send_time);

fprintf(stderr,

"Oranch, Before sending a msg");

(*Param.link[n].send_msg)(Msg);

fprintf(siderr.

-89-

"Oranch, After sending a msg");

Outjd = New_Out_Line.U;

Out_Line[n].Id = Msg.id;

Out_Line[n].Time = Msg.send_time;

Out_Line[n].Type = Msg.type;

Out_Line[n] .Selected = FALSE;

)

)

);

Out = FALSE;

for (n = 0; n < Param.num_in; n++) {

if (In_Line[n].Selected == TRUE)
{

fprintf(slderr,

"Oranch, Before accepting a msg");

accept send_msg(Job)

suchthat((In_Line[n].Caller= NONE &&
(Job.id= OIIJob.id= -l))ll

Job.from = In_Line[n].Caller)

by (Job.send_time)
(

Msg = Job;

fprintf(stderr,

"Oranch, Accepted msg.id = %d",

Msg.id);

fprintf(stderr,

"Oranch, Msg.sendjime = %1F,

Msg.send_time);

In_Line[nl.Id = Msg.id;

In_Line[n].Time = Msg.send_time;

In_Line[n].Type = Msg.type;

if (In_Line[n].CalIer= NONE)
In_Line[n] .Caller = Msg.from;

In_Line[n].Selected = FALSE;

I* compute Time*/

Time = New_Out_Line.Time;

if (Time != Param.sim_term_time)

for (n = 0; n < Param.numjn; n ++)
if (In_Line[n].Time < Time)

Time = In_Line[n].Time;

fprintf(stderr, "Oranch, Time = %lf'.Time);

-90-

if (Time= Param.sim_term_B'me && Timeup= TRUE)
Done = TRUE;

(Done && ITerm):

while (c_transcount(Iam.send_msg) > 0)

accept send_msg(Job)
();

accept term() (

Term = TRUE;

or

(Stop && ITerm):

for (n = 0; n < Param.num_out; n++)
{

Msg.id = -1

;

Msg.type = TERM_MSG;
Msg.from = Param.id;

Msg.receive_time = TERM_TIME;
Msg.send_time = TERM_TIME;

fprintf(stden,

"Oranch, Before sending a term rnsg");

(*Param.link[n].send_msg)(Msg);

fprinlf(stderr,

"Oranch, After sending a term rnsg");

accept term() (

fprintf(stderr,"Oranch, accepted term call");

Term = TRUE;

(Term):

terminate;

)

)

-91-

#include "define.h"

/*

/*

/*

/*

r
i*

/*

/*

/*

/*

i*

i*

i*

/*

/*

i*

i*

i*

/*

/*

/*

/*

/*

/*

/*

*******************************•****************,,*************„

Process Body Queue (

)

A**

This Queue process accepts a job and stores it into its queue
until its associated server requests the job.

The functions of each queue can be divided into three:

1 .) As long as the queue is not full, the queue process can

select the smallest time-stamped job(s) and put it into

its queue. If the numbers of the smallest time-stamped

jobs are greater than the available spaces in the queue,

the extra jobs will be stored in a temporary queue. Once
a space is available in the queue, jobs stored in the

temporary queue will be moved immediately in a FIFO order.

2.) As long as the queue is not empty, the queue process is

ready to accept a "job request" from its server. Based on
a user-specified method, such as FIFO, the queue process

sends out the desired job and adjusts its queue to be
ready for accepting a next request. The current local time

will be the time-stamp of the job sent out.

3.) Whenever its server requests a statistical report, the

queue process will calculate the necessary information

and give it to the server.

ft** *********

process body Queue(

)

t

register n; r
int timeup = FALSE; r
int put_in_q = FALSE; r
int Stop = FALSE; I*

int Done = FALSE; r
int Term = FALSE; f
int through_q = 0; i*

int current_size = 0; /*

int temp size = 0; f
int fifo=l; r
int lifo=l; i*

int siro = 1; r
int prior m l; r
int count= 1; r
int num = 1; 1*

int status; r
double Time = 0.0; r

struct Msg_Rec Msg; r
struct Msg_Rec queue[MAXSIZE+l]; i*

struct Msg_Rec Temp[MAXSIZE+l]; r

Index

True, msg >= term_time

True, queue msg

True, stop by user

True, Time >= term_time

True, terminate

Number through Q
Current queue size

Temporary queue size

FIFO message

LIFO message

SIRO message

Prior message

Num of smallest_time msg
Num of smallest_time msg
Status of stats report

Local clock

Message

Message queue

Temporary msg queue

-92-

struct

struct

struct

struct

struct

struct

process

Msg_Rec New_Msg; /*

Msg_Rec Last_In_Q; /»

Queue_Param Param; /*

Q_Stats_Rec Q_Stats; /»

In_Line_Rec InJLine[MAXLINK]; /*

In_Line_Rec SmallestfMAXLINK]; /*

Queue lam; /»

Accepted message

Last message in queue

Queue parameter

Queue Statistics

Incoming links

Outgoing links

Queue process id

-93-

accept setup(queue_param) { Param = queue_param;);

fprintf(stderr,"Oueue[%d], Q_Size =%d",Param.id,Param.q_size);

fprintf(stden,"Oueue[%d], Q_method =%d",Param.id,Param.q_method);

for (n = 1; n <= Param.q_size + 1; n ++) (

queue[n] .id = - 1 ; p messages stored in the Queue */

queue[n].type = NULL_MSG;
queue[n].from = NONE;
queucf.il] .prior = 0;

queuetn]jeceive_time = Time;

queue[n].send_time = Time;

)

for (n = 0; n < Param.num_in; n ++) (

In_Line[n].Id = -l;

In_Line[n].Time = 0.0;

In_Line[n].Type = NULL_MSG;
In_Line[n].CalIer = NONE;
In_Line[n].Selected = FALSE;

]

Last_In_Q.id = -1; p messages stored in the Queue */

Last_In_Q.type = NULL_MSG;
Last_In_Q.from = NONE;
Last_In_Q.prior = 0;

LastJn_Q.receive_time = Time;

Last_In_Q.send_time = Time;

lam = (process Queue)c_mypid();

for(;;)

select
(

(IDone && !Slop && ITerm && current_size < Param.q_size && Itimeup):

P Selection */

Smallest[num] = In_Line[0];

fprintf(stderr,"0ueue[%d]. Smallest msg_type = %d",
Param.id,SmalIest[num].Type);

fprintf(stderr,"0ueue[%d], Smallest msg_time = %.4f",

Param.id,SmalIest[num].Time);

for (n = 0; n < Param.num_in - 1; n++)
(

if (Smallest(num].Time= In_Line[n+l].Time)
{

if (Smallest[num].Type= NULL_MSG)
Smallest[num] = In_Line[n+l];

else if(In_Line[n+l].Type != NULL_MSG)
Smallest[num+1] = In_Line[n+l];

)

else if (SmallestfnumJ.Time > In_Line[n+l].Time)

Smallestfnum] = In_Line[n+l];

if (Smallest[num].Type= TERM_MSG)
(

fprintf(stderr,"0ueue[%dl received TERM_MSG",Param.id);

-94-

while (c_transcount(Iam.send_msg) > 0)

accept send_msg(Job)

suchthat(Job.from != Smallest[coum].Caller)

Stop = TRUE;
Time = TERM_STAMP;

for (n = 0; n < Param.num_in; n++) {

if (In_Line[n].Time= Time) (

In_Line[n].Selected = TRUE;
fprintf(stderr,"Oueue[%d], In[%d] is selected",

Param.id,n);

)

)

if (num > Param.q_size - current_size)
(

temp_size = num - (Param.q_size - current_size);

for (n = 1; n <= temp_size; n++)
(

Temp[n].id = Smallest[n+temp_size].Id;

Temp[n].type = Smallest[n+temp_size].Type;

Temp[n].from = Smallest[n+temp_size].Caller,

queue[nj.prior = 0;

queue[n].receivejime = SmaIlest[n+temp_size].Time;

)

num = num - temp_size;

}

else
{

for(n = 1; n <= num; n++) (

if (Last_In_Q.receive_time= Time &&
SmalIest[n].Time > Last_In_Q.receive_time) (

fprintf(stderr,"Oueue[%d], current size < q_size\

Param.id);

put_in_q = TRUE;
if (Smallest[n].Id != Last_In_Q.id)

{

New_Msg.id = Smallest[n).Id;

New_Msg.type = REAL_MSG;
New_Msg.from = Param.id;

New_Msg.prior = Msg.prior;

New_Msg.receive_time = Smallest[n].Time;

else {

New_Msg.id = -1;

Newjdsg.type = NULL_MSG;
New_Msg.from = Param.id;

New_Msg.prior = 0;

New_Msg.receive_time = Smallest[n].Time;

if (Param.sim_lerm_time != 0) (

if (SmalIest[nJ.Time= Param.sim_term_time)
(

•95-

New_Msg.id = Smallest[n].Id;

New_Msg.type = Smallest[n].Type;

New_Msg.from = Param.id;

New_Msg.prior = 0;

New_Msgjeceive_time = Param.sim_term_rime;

timeup = TRUE;

]

else if(Smallest[n].Time > Param.simjermjxme) {

New_Msg.id = -1;

New_Msg.type = NULL_MSG;
New_Msg.from = Param.id;

New_Msg.prior = 0;

New_Msg.receive_time = Param.sim_temi_iime;

timeup = TRUE;

J

if (put_in_q= TRUE)
1

current_size++;

queue[current_size) = New_Msg;
Last_In_Q = queue[currem_size];

fprintf(stderr,"Oueue[%d],[%d].id = %d",

Param.id,current_size,queue[currentjize].id);

fprinif(stderr,"Oueue[%d], current_size = %d",
Param.id,current_size);

put_in_q = FALSE;

)

)

)

);

for (n = 0; n < Param.num_iii; n++) (

if(In_Line[n].Selected= TRUE)
(

fprinlf(stderr,"0ueue[%dj, before accepting a message",

Param.id);

accept send_msg(Job)

suchthat((In_Line[n].CalIer= NONE &&
(Job.id= II Job.id= -1)) II

Job.from= In_Line[n].Caller)

by (Job.send_rime)
(

Msg = Job;

fprintf(stderr,"Oueue[%d], Accepted msgjd =%ld",
Param.id, Msg. id);

fprintf(stderr,"Oueue[%d], Msg.send_time = %.4f,
Param.id, Msg.send_time);

In_Line[n].Id = Msg.id;

In_Line[n].Time = Msg.send_time;

In_Line[n].Type = Msg.type;

if (InJJne[n].Caller= NONE)
In_Line[n].Caller = Msg.from;

In_Line[n].Selected = FALSE;

-96-

I* compute Time*/

n = 0;

Time = Last_In_Qjeceive_time;

fprintf(stderr,"Oueiie[%d], Time = %.4f", Param.id,Time);

while (n < Param.num_in) (

if (In_Line[n].Time < Time)

Time = In_Line[n].Time;

n++;

or

(!Done && !Slop && ITerm && current_size > 0):

accept get_msg()

suchthat(c_cranscount(Iam.get_msg) > 0) (

switch(Param.q_method)
(

case FIFO:

Msg.id = queue[flfo].id;

Msg.type = queue[fifo].type:

Msg.from = Param.id;

Msg.receive_time = queue[fifo].receive_time;

Msg.send_time = Time;

queue[flfo].id = -5;

break;

caseLIFO:

for (n = 1; n < current_size; n++)

{

if (queue[lifo].receive_time=
queue[n+l].receive_time)

lifo = n+1

;

else

break;

)

Msg.id = queue[lifo].id;

Msg.type = queue[lifo].type;

Msg.from = Param.id;

Msg.receive_time = queue[lifo].receive_time;

Msg.send_time = Time;

queue[lifo].id = -5;

break;

case S1RO

:

for (n = 1; n < current_size; n++)

{

if (queue[n].receive_time »=

queue[n+l].receive_time)

count++;

else

break;

-97-

siro = randO % count;

Msg.id = qucue[siro].id;

Msg.type = queue[siro].type;

Msg.from = Paramjd;

Msg.receive_lime = queue[siro].receive_rime;

Msg.send_dme = Time;

queue[siro].id = -5;

break;

case PRIO

:

for (n = 1; n < current_size; n++)

{

if (queue[njjeceive_time=
queue(n+ 1] jeceive_time

II queue[n].prior < queue[n+l].prior)

prior = n+l;

)

Msg.id = queue[prior].id;

Msg.type = queue[prior].type;

Msg.from = Param.id;

Msg.receive_dme = queue[prior] jeceive_time;

Msg.sendJime = Time;

queue[prior].id=-5;

break;

)

fprintf(stderr,"Oueue[%d], Msg send time = %.4f,

Param.id,Msg.send_iime);

fprintf(stderr,"Oueue[%d], Msgjd = %d",

Param.id,Msg.id);

treturn(Msg);

);

for (n = 1; n <= current_size; n++) (

if (queue[n].id= -5) (

if (n= current_size)
{

queue[n].id = -l;

queue[n].type = NULL_MSG;
queue[n].from = NONE;
queue[n].prior = 0;

queue[n).receive_time = 0.0

;

queue[n].send_time = 0.0;

)

else
(

queuefn] = queue[n+l];

queue[n+l].id = -5;

}

]

);

through_q++;

current_size-;

if (temp_size > 0) (

current_size++;

):

98-

queue[cmrent_size] = Temp[l];

Last_In_Q = queue[current_size];

for(n = 1; n <= temp_size; n++)

Tempfn] = Temp[n++];

temp_size--;

if (timeup && current_size= && temp_size =

Msg.send_time= Param.sim_ienii_time)

Done = TRUE;

I* <ID><Per_Full><In_Q><Through_Q>) */

(!Done &.&. !Slop && !Term):

accepc get_stats(stat)

suchthat (c_transcount(Iam.get_stats) > 0) {

Q_StatsPer_Full = (double)((100 * current_size)

/Param.q_size);

Q_S(als.Num_In_Q = cunem_size;

Q_Stats.Niim_Through_Q = through_q;

iretuin(Q_Stats);

(Done && !Term):

accept get_stats(stat)
(

status a stat;

Q_Stats.Per_Full = (double)(100 * current_size)

/Param.q_size;

Q_Stats.Num_In_Q = current_size;

Q_Slats.Num_Through_Q = through_q;

tretum(Q_Stats);

]

if (status= STATSJTNAL) {

accept term(

)

(Term = TRUE;)

(Stop && ITerm):

for(;;)

select
(

accept get_msg() (

Msg.id = -1;

Msg.type = TERM_MSG;
Msg.from = Param.id;

Msgj-eceive_time = TERM_TIME;
Msg.send_time = TERM_TIME;
treuim(Msg);

)

-99-

accept get_stats(stat)
(

tretum(Q_Stats);

)

or

accept term() (

fprintf(stderr,"Queue[%d], accepted term call"

Param.id);

if (c_transcount(Iam.get_stats) > 0)

accept get_stais(stat) {

tretum(Q_Stats);

Term = TRUE;
break;

I

or (Term):

terminate;

)

)

•100-

#include "definch"

/* »***«****t****M*t»M»MtM,MM„,MI„,t„twt
/* Process Body Servcr(

)

I*

I*

I*

I*

/*

r
r
/*

/*

/*

/*

/*

/*

This Server process gels a job from its queue, generates a
service time based on a user specified probability

distribution, adds the service time onto the original time-

stamp of the job and sends it out.

The service time is the lookahead time for the server process.

Based on the assumption of the algorithm, increasing accepted
message time will not decrease senting message time. The
Source will guarantee a reasonable service time to each job.

When the interval time for a statistical report expires, the

server process requests information from its queue process,

incorporates its own, and sends it out.

**

process body Server(

)

(

register

int

1111

int

int

int

long

double

double

double

double

double

STATS

struct

struct

struct

struct

struct

*/

struct

struct

struct

process

Timeup = FALSE;
Done = FALSE;
Stop = FALSE;
Term = FALSE;
size = 0;

num_stats = 0;

service_time = 0.0;

sum_service_time = 0.0;

Predict = 0.0;

Time = 0.0;

Get_Time();

Service_Stats;

SrvParam Param;

Msg_Rec Msg;

Msg_Rec Stored_Msg[3];

Q_Stats_RecQ_Stats;

Q_Srv_Stats_Rec Q_Srv_Stats;

In_Line_Rec In_Line;

Out_Line_Rec Out_Line;

Out_Line_Rec New_Out_Line;
Server lam;

/* Index

/* True, msg >= term_time
/* True, Time >= term_time
1* True, stop by user

/* True, terminate

r Size of stored message
/* Interval number
/* Service time

/• Sum service time

/* Predict time

/* Local clock

/* Distribution function

/* Server time stats

i* Server parameters

i* Message

i* Queued message
/• Queue statistics

/* Q/Server statistics

/* Incoming link

/* Outgoing link

/* Temporary outgoing link

/* Server process id

-101-

accept setup(server_param) { Param = serverjjaram;

srand(getpid() * time((long *
) 0));

In_Line.Id = -l;

In_Line.Time = 0.0;

In_Line.Type = NULLJUSG;
In_Line.Caller = NONE;
In_Line.Selected = FALSE;

Out_Line.Id = -l;

Out_Line.Time = 0.0;

OutJJne.Type = NULL_MSG;
Out_Line.Selected = FALSE;

Msg.id = -1;

Msg.type = NULL;
Msg.from = Param.id;

Msgjeceive_time = Time;

Msg.send_time = Time;

for (i = 0; i < 3; i ++) (

Slored_Msg[i].id = -1;

Stored_Msg[i].type = NULL;
Siored_Msg[i].from = Param.id;

Stored_Msg[i]jeceive_time = Time;

Stored_Msg[i].send_time = Time;

)

StatsJtait(&Service_Stats);

lam = (process Server)c_mypid();

for(;;)

select {

(!Done&& !Stop && !Term):

if (In_Line.Time != 0.0) (

service_time = Get_Time(Param.dis);

Siats_Val(&Service_SlaIs,service_time);

fprintf(stderr,"Oerver[%d], server time = %lf',

Param .id,service_time);

Predict = In_Line.Time + service_time;

while (Predict < Oul_Line.Time)
(

service.time = Get_Time(Param.dis);

Predict = In_Line.Time + service_time;

)

sum_service_time += service_time;

fprintf(stderr,"Oerver[%d], predict = %lf',

Param.id.Predict);

102-

if (In_Line.Time= Time)

InJJne.Selected = TRUE;

if (Out_Line.Time= Time && Predict > Out_Line.Time)
(

Out_Line.Selected = TRUE;
rprintf(stderr,"Oerver[%d], Out is selected"J'aram.id);

if (size > 0) (

New_Out_Line.Id = Stored_Msg[0].id;

New_Out_Line.Time = Stored_Msg[0].send_time;

New_Out_Line.Type = Stored_Msg[0].type;

size-;

Stored_Msg[0] = Stored_Msg[l];

Stored_Msg[l] = Stored_Msg[2];

Stored_Msg[3].id = -l;

Stored_Msg[3].type = NULL;
Stored_Msg[3].from = Param.id;

Stored_Msg[3] jeceive_time = 0.0;

Stored_Msg[3].send_time = 0.0;

)

else if (In_Line.Id != Out_Line.Id) {

New_Out_Line.Id = In_Line.Id;

New_Out_Line.Time = Predict;

New_Out_Line.Type = In_Line.Type;

]

else {

New_Out_Line.Id = -1;

New_Out_Line.Time = Predict;

New_.0ut_Line.Type = NULL_MSG;

if (Param.sim_temi_time != 0) {

if (New_Out_Line.Time= Param.sim_term_dme)
(

New_Out_Line.Id= In_Line.Id;

New_Out_Line.Time = Param.sim_term_nme;

New_Out_Line.Type = REAL_MSG;
Timeup = TRUE;

)

else if (New_Out_Line.Time > Param.sim_term_time)
(

New_Out_Line.Id = -1;

New_Out_Line.Time = Param.sim_term_time;

New_Out_Line.Type = NULL_MSG;
Timeup = TRUE;

)

)

)

if (OutJ-ine.Selecled= FALSE && InJ.ine.Id != Out_Line.Id)
(

size++;

Stored_Msg[size] = Msg;

if(Out_Line.Selected= TRUE) {

103 -

Msg.id = New_Out_Line.Id;

Msg.type = New_Out_Line.Type;

Msg.from = Param.id;

Msg.receive_time = Msg.send_time;

Msg.send_time = New_Out_Line.Time;

fprmtf(stderr,"Oerver[%d],Msg.send_time =%1T,
Param.id,Msg.send_time);

fprintf(stderr,"Oerver[%d], Msg id = %d",Param.id,Msg.id);

fprintf(stderr,"Oerver[%d], Before sending msg" JParam.id);

(*Param.send_msg)(Msg);

fprintf(stderr,"Oerver[%d], After sending msg" .Paramjd);

Out_Line.Id = New_Out_Line.Id;

Out_Line.Time = New_Out_Line.Time;

Out_Line.Type = New_Out_Line.Type;

Out_Line.Selected = FALSE;

if (In_Line.Selected= TRUE)
{

fprintf(stderr,"Oerver[%d], Before gelling msg" .Param.id);

Msg = Param ,que.get_msg();

fprimf(stderr,"Oerver[%d], Msg.receive_time = %lf",

Param.id,Msg.send_time);

fprintf(stderr,"Oerver[%d], Msg id = %d",Param.id,Msg.id);

if (Msg.type == TERM_MSG)
(

Stop = TRUE;
In_Line.Selected = FALSE;

]

else (

In_Line.Id = Msg.id;

In_Line.Time = Msg.send_time;

In_Line.Type = Msg.type;

In_Line.Caller = Msg.from;

In_Line.Selected = FALSE;

)

)

Time = MIN(In_Line.Time. Out_Line.Time);

fprintf(stderr,"Oerver[%d], Time = %1F J'aram.id, Time);

if (Time= Param.sim_term_time && Timeup= TRUE)
Done = TRUE;

I* Statisitcal Output */

/* 0_Server> ::= <ID> <Per_Busy> */

if (.'Done)
(

if (num_stats !=(long)(Time/Param.stats_intervai))
(

num_stats = Oong)(Time / Param.statsjnterval);

Q_Slats = Param.que.get_stats(STATS_NORMAL);
Q_Srv_Stats.ID = Param.id;

-104-

Q_Srv_Sta_i.Status = STATS_NORMAL;
Q_Srv_Stats.Sim_Time = Time;

Q_Srv_Stats.Per_Busy = (Q_Srv_Stats.Sim_Time) ?

(double) (100 * sum_service_time) / Time :0;

Q_Srv_Stats.Ave_Service = Stats_Mean(&Service_Stats);

Q_Srv_St_ts.Std_Service = Stats_STD(&Service_Stats);

Q_Srv_Stats.Max_Service = Service_Stats.max_val;

Q_Srv_Stats.Q_Stats.Per_Full = Q_Stats_-r_Full;

Q_Srv_S__s.(__St__.Num_In_Q = Q_Stats.Num_In_Q;

Q_Srv_Stats.Q_Slats.Num_Through_Q = <__Sta_.Num_Through_Q;

fprintf(stderr,"0erver[%d], before sending a slats",

Paramjd);

(*Param.send_stats)(Q_Srv_Stats);

(Done && !Teim):

fprintf(stderr,"Oerver[%d], ready to send a final stats",

Param.id);

Q_Slats Param.que.get_stats(STATS_FINAL);

Q_Srv_Stats.ID = Param.id;

Q_Srv_Stats.Slatus = STATS_FINAL;
Q_Srv_Stats.Sim_Time = Time;

Q_Srv_Slat-Per_Busy = (Q_Srv_Stats.Sim_Time) ?

(double) (100 * sum_service_time) / Time :0;

Q_Srv_Stats.Ave_Service = Stats_Mean((_Service_St-ts);

Q_Srv_Stats.Std_Service = Stats_STD(&Service_S(a_);

Q_Srv_Slats.Max_Service = Service_Stats.max_val;

Q_Srv_Stats.Q_StatsJer_Full = Q_Stats.Per_Full;

Q_Srv_Stats.Q_Sta_JMum_In_Q = Q_Stats.Num_In_Q;

Q_Siv_Stats.Q_Sta_.Num_Thro_gh_Q = Q_Stats.Num_Through_Q;

fprintf(stderr,"Oerver[%d], Before send a final stats",

Param.id);

(*Param.send_sta_)(Q_Srv_Stals);

fprimf(stderr,"Oerver[%d], After send a final stats",

Param.id);

accept lerm() (

fprintf(stderr,"Oerver[%d], accepted term call",

Param.id);

Term = TRUE;

(Stop && ITerm):

Msg.id = -1;

Msg.type = TERM_MSG;
Msg.from = Param.id;

Msg.receive_time = TERM_TIME;
Msg.send_time = TERM_TIME;

105-

fprintf(stderr,"Oerver[%d], Before send Teim_Msg".Param.id);

(*Param.send_msg)(Msg);

accept term(

)

(Tenn = TRUE;

)

or (Term):

terminate;

• 106-

#include "define.h"

I*

I*

/*

I*

I*

/*

/*

/*

/*

I*

I*

a***.

Process Body Sink(

)

***%+ ,„

This Sink process selectes a job with the smallest

time-stamp among all incoming links and destroys it.

When the interval time for a statistical report expires,

the sink process will send a report to the Collector

process.

**

process body Sink(

)

register n = 0;

int count =1;
int Timeup = FALSE;
int Done = FALSE;
int Stop = FALSE;
int Term = FALSE;
long num_statis = 0;

long num_sunk = 0;

double Time = 0.0;

struct Msg_Rec Msg;
struct Msg_Rec Temp;
struct Out_Line_Rec Sunk;

struct Out_Line_Rec New_Sunk;
struct Sink_Param Param;

struct Sink_Stats_Rec Sink_S»ts;

process Sink lam;

struct In_Line_Rec In_Line[MAXLINK];
struct In_Line_Rec SmallesttMAXLINK];

r Index */

r Index •/

i* True, msg >= term-time */

r True, Time >= term-term »/

i* True, stop by user */

i* Ture, terminate */

i* Interval number */

r Sunkjob number */

i* Local clock */

f Message */

r Message + i

/* Sunk record */

r Temporary Sunk record *y

/* Sink parameters * i

r Sink statistical report */

r Sink process id */

/* Incoming link */

r Smallest time- * i

r stampted message *l

107-

accept setup(sink_parani) { Param = sink_param;

for (n = 0; n < Param.num_in; n ++) {

In_Line[n].Id = -1;

In_Line[n].Time = 0.0;

In_Line[n].Type = NULL_MSG;
In_Line[n].CaIIer= NONE;
In_Line[n].Selected = FALSE;

Sunk.Id = -l;

SunkTime = 0.0;

Sunk.Type = NULL_MSG;
Sunk.Selected = FALSE;

lam = (process Sink)c_mypid();

for(;;)

select {

(IDone && !Stop):

count = 1;

Smallest[count] = In_Line[0];

fprintf(stderr, "Oink, Smallest.msg_type =%d",

SmallestfcountJ.Type);

fprintf(stderr, "Oink, Smallest.Time =%lf',

Smallest[count].Time);

I* Select the smallest time-stamped

incoming message(s) */

for (n = 0; n < Param.num_in - 1; n++) (

if (SmaIIest[count].Time= In_Line[n+l].Time)
(

if (Smallest[count].Type= NULL_MSG)
Smallest[count] = In_Line[n+l];

else if(In_Line[n+l].Type != NULL_MSG)
Smallest[count+l] = In_Line[n+l];

)

else if (Smallest[coum].Time > In_Line[n+l].Time)

Smallest[countJ = In_Line[n+l];

/* Accept a TERM_MSG */

if (Smallest[count].Type == TERM_MSG)
(

fprintf(stderr,"Oink,Accepted TERM_MSG");

while (count < Param.numjn)
{

accept send_msg(Job)

suchthat(Job.from != Smallest[count].Caller)
(

Temp = Job;

if (Temp.type == TERM_MSG)
count++;

108-

Stop = TRUE;
Time = TERM_STAMP;

)

for (n = 0; n < Param.num_in; n++)

if (In_Line[n].Time= Time)
{

In_Line[n].Selected = TRUE;
fprinif(stden,

"Oink, In_Line[%d] is selected" ji);

);

for(n = 1; n <= count; n++) (

if (SunkTime= Time &&
Smallest[n].Time > Sunk.Time)

(

Sunk.Selected = TRUE;
fprintf(stderr,"Oink, Sunk is selected");

if(Smallest[n].Type= REAL_MSG)
(

New_Sunk.Id = Smallest[n].Id;

New_Sunk.Time = Smallest[n].Time;

New_Sunk.Type = Smallest[n].Type;

)

else
(

New_Sunk.Id = -l;

New_Sunk.Time = Smallest[n].Time;

New_Sunk.Type = NUIX_MSG;

if (Param.sim_term_time != 0) (

if (Smallest[n].Time=
Param.sim_term_time)

(

New_Sunk.Id = Smallest[n].Id;

New_Sunk.Time = Param.sim_term_time;

New_Sunk.Type = Smallest[n].Type;

Timeup = TRUE;

)

else if (Smallest[n].Time >
Param.sim_term_nme)

(

New_Sunk.Id = -l;

New_Sunk.Time =Param.sim_term_time;

New_Sunk.Type = NULL_MSG;
Timeup = TRUE;

)

)

)

I

if (Sunk.Selected == TRUE)
(

if (New_Sunk.Type= REAL_MSG) (

num_sunk++;

fprintf(stderr,

"Oink, Num_sunk = %ld"j)um_sunk);

109 -

Sunk.Id = New_Sunk.Id;

SunkTime = New_Sunk.Time;

Sunk.Type = New_Sunk.Type;

Sunk.Selected = FALSE;

for (n = 0; n < Param.num_in; n++)
(

if (In_Line[n].Selected= TRUE) {

accept send_msg(Job)

suchthat((In_Line'n] .Caller= NONE &A
(Job.id= II Job.id= -1)) II

Job.from= In_Line[n].Caller)

by (Job.send_time)
(

Msg = Job;

fprintf(stden,

"Oink, Accepted Msg id = %ld",Msg.id);

In_Line[n].Time = Msg.send_time;

In_Line[n].Id = Msg.id;

In_Line[n].Type = Msg.type;

In_Line[n].SeIected = FALSE;

if (In_Line[n].Caller= NONE)
In_Linetn] .Caller = Msg.from;

);

I* Compute local time*/

Time = Sunk.Time;

for (n = 0; n < Param.numjii; n ++) {

if (Time > In_Line[n].Time)

Time = In_Line[n].Time;

);

fprintf(stderr,"Oink, Time = %lf",Time);

if (Time= Param.sim_term_time && Timeup)
Done = TRUE;

if(!Done)(

I* Statisitcal Output */

if (num_statis !=

(Iong)(Time / Param.statsjnterval))
(

num_statis =

(long)(Time /Param.statsjnterval);

SinkJStats.ID = Param.id;

Sink_Slats.Status = STATSJMORMAL;
Sink_Stats.Num_Sunk = num_sunk;

Sink_Stats.Sim_Time = Time;

(*Param.send_stats)(Sink_Stats);

};

or

(Done && !Term):

- 110-

Sink_Stats.ID = Param.id;

Sink_Stats.Status = STATS_FINAL;
Sink_Stats.Num_Sunk = num_sunk;

Sink_Stats.Sim_Time = Time;

fprintf(stderr, "Oink, before send a final report");

(*Param.send_statsXSink_Stats);

accept term() (

fprintf(stderr,"Oink, accepted lerm call");

Term = TRUE;

(Stop && !Term):

accept term();

Term = TRUE;
or

(Term):

terminate;

- Ill -

I* ****»**»•«»«••»»*»•»*»*»»»»»»»»».»»»**»*«*«»*»»*„.»»,»,»»,„ »,

/* Process Body Collector

)

*/

I* »*•*»«***»«•*•»**«»»**«»»**»*«»»»*****»*»«»»»»»»»»»»»»»»»»„» „,

7
'/

/*

I* This Collector process collects a complete statistical report

I* at each specified time interval and sends it to the user. The */

I* format of the statistical report is shown in Vopata's thesis */

f [VOPA88]. ./

t* Each process, except Branch processes, sends a statistical */

I* report at each specified time interval to the Collector */

I* process based on its local time. Because the local time of */

I* each process is not updated by a fixed constant value, »/
/* sometimes, report(s) might be skipped. In order not to skip »/

I* too many reports, once the Collector process recognizes that */
/* one or more reports are skipped from a process, the previous */
/* report sent by that process would be used to fill in the */

/* skipped iteration.

/* The following two conditions would cause the Collector process

I* to activate the Terminate process.

1 .) After sending a statistical report to the user, if a

I* "termination simulation" control message results, the

I* Collector process would initiate the Terminate process.

I* 2.) If one of the processes passes the termination time and
I* is ready to terminate, the process uses a final statistical

/* report to notify the Collector process. When the Collector
/* recognizes that final statistical reports have been sent by »/

I* all the necessary processes, it initiates the Terminate »/

/* process. »/

I* V
/* *»**»****»*»•»«»«»»«*»*••»•»»»«»»»»»*««»»»».»**»*„»»***,»»»»»» ,,

r 7
P Mallocate a new statistical report »/

r .;

static struct Col_Stats_Rec * Init_Record(Param4ium)

struct Col_Param *Param;

long num;

t

register i;

struct Col_Stats_Rec *ptr;

ptr = (struct Col_Stats_Rec *) malloc

(sizeof (struct Col_Stats_Rec));

ptr->Interval_num = num;

ptr->Update = FALSE;

112-

for (i = 0; i < Param->All_LP.Total_LP; i++)
(

if (Param->All_LP.Type[i] != BRANCH)
switch(Param->All_LP.Type[i])

(

case SOURCE:
ptr->LP_Stats[i].Src_Stals = NULL;
break;

case QUE_SRV:
ptr->LP_Stats[i].Q_Srv_Stats = NULL;
break;

case SINK:

ptr->LP_Stats[i].Sink_Stats = NULL;
break;

default:

break;

ptr->Next = NULL;
return (ptr);

/*
7

I* Get a pointer which points to a desired report */
/*

static struct Col_Stals_Rec * Get_Ptr(ParamJieadjium)
struct Col_Param *Param;

struct Col_Stats_Rec *head;

long num;

(

register i;

struct Col_Stals_Rec *ptr;

ptr = head;

while (ptr->Next != NULL && num >= ptr->Next->Interval_num)

ptr = ptr->Nexq

if (num > ptr->Interval_num)

for (i = pu»Interval_num + 1; i <= num ; i ++) (

ptr->Next = Init_Record(Param ,i);

ptr = ptr->Next;

)

retum(ptr);

*/

]

113 -

/. ,,

I* Return 'true' if a complete statistical report is received */

/. v

static int Is_Complete(Param,head)

struct Col_Param *Param;

struct Col_Stats_Rec *head;

t

register i;

struct Col_Stats_Rec *ptr;

int Finished = TRUE;

ptr = head;

for (i= 0; i < Param->All_LP.Total_LP; i++) (

if (Param->All_LP.Type[i] != BRANCH)
switch(Param->AU_LP.Type[i])

{

case SOURCE:
if (ptr->LP_Stats[i].Src_Stats = NULL)
Finished = FALSE;

break;

case QUE_SRV:
if (ptr->LP_Stats[i].Q_Srv_Stats == NULL)

Finished = FALSE;
break;

case SINK:

if (ptr->LP_Stats[i].Sink_Slats == NULL)
Finished = FALSE;

break;

}

if ((Finished)

break;

)

returnfFinished);

I*
*l

f Return 'true' if a complete final report is received */

I* 7

114-

static int Is_Done(Parani, head)

struct CoLParara *Param;

struct Coi_Stats_Rec *head;

{

register i;

struct Col_Stats_Rec *ptr,

int All_Done = TRUE;
ptr = head;

for (i = 0; i < Param->All_LP.Total_LP; i++)
(

if (Param->All_LP.Type[i] != BRANCH)
switch(Param->All_LP.Type[i])

(

case SOURCE:
if (ptr->LP_Stats[i].Src_Slats->Status != STATS FINAL)

All_Done = FALSE;
break;

case QUE_SRV:
if (ptr->LP_Stats[i].Q_Srv_Stats->Status != STATS_FTNAL)

All_Done = FALSE;
break;

case SINK:

if (ptr->LP_Slats[i].Sink_Stats->Status != STATSJTNAL)
All_Done = FALSE;
break;

if(!All_Done)

break;

)

return(All_Done);

/» y
I* Send a complete statistical report to the Front-End »/

/.
.,

-115-

static void Send_Slats(Param, head)

struct Col_Param *Param;

struct Col_Stats_Rec "head;

(

register i;

int sock;

char line[MAXLINE+l];

sock = Param->All_LP.ou(sock;

sprintf(line,"(%.41f)",

Param->All_LP.Stats_Interval * head->Interval_num);

Wrile_Output(line,sock);

for(i = 0; i < Param->AlLLP.Total_LP: i++) (

if (Param->All_LP.Type[i] != BRANCH)
{

switch(Param->All_LP.Tvpe[i])
{

case SOURCE:
sprintf(line,"(%d %d)", i,

head->LP_Slats[i].Src_Stats->Num_Left);

break;

case QUE_SRV:
sprintf(line,"(%d %.4lf %.41f %.4ld %.41d)", i,

head->LP_Stats[i].Q_Srv_S(ats->Per_Busy,

head->LP_Stats[i].Q_Srv_Slats->Q_Stats.Per_Full,

head->LP_Stats[i].0_Srv_Stats->Q_StalsJMum_In_Q,

head->LP_Stats(il.Q_Srv_Stats->Q_Stats.Num_Through_Q);

break;

case SINK:

sprinlf(Iine,"(%d %d)", i,

head->LP_Stats(i].Sink_Stats->Num_Sunk);

break;

default

break;

)

Write_Output(line,sock);

sprintf(Iine,"$$");

Write_Output(line,sock);

-116-

/* Use a standard I/O to send a statistical report */

/* ,
f

static void Send_File(Param, head, final_num)

struct CoLParam *Param;

struct Col_Stats_Rec *head;

long final_num;

(

register i;

printfC ");

printf("n

printff Interval Number : (%ld)",head->Interval_num);

printf(" Interval Time : (%.41ff

,

Param->All_LP.Stats_Interval * head->Interval_num);

if (head->Interval_num= final_num)

printf(" Final Report");

printf("0================:

117-

for(i = 0; i < Param->AU_LP.Total_LP, i++) (

if (Param->All_LP.Type[i] != BRANCH) {

switch(Param->All_LP.Type[i])
(

case SOURCE:
printf("0Source]: %d Sim-Time: %lf,

i,

head->LP_Stats[i].Src_Slats->Simjrime);

prinlf(" { Inter Arrival Time } ");

prinlf(" Ave:%.41f",

head->LP_Stats[i].Src_Stats->Ave_Arrival);

printf(" STD:%.4lf",

head->LP_Stats[i].Src_Stats->Std_Arrival);

printff Max : %.41f ",

head->LP_Stats[i].Src_Stats->Max_Arrival);

printff {NumLeft):%ld",

head->LP_Slals[i].Src_Stats->Niim_Left);

printf("0 ");

break;

case QUE.SRV:
printf("OQ/Server]: %d Simulation: %.41T,

i,

head->LP_Stats[i].Q_Srv_Stats->Sim_Time);

printf("0ueue: { Full): %.41f\

head->LP_Slats[i].Q_Srv_Slals->Q_Stats.Per_FuU);

printf(" (Num through Q): %ld",

head->LP_Slals[i].Q_Srv_Siats->0_StatsJMum_Through_Q);

printff (Num In Q) : %ld",

bead->LP_Stats[i].Q_Srv_Stats->0_StatsJMum_In_Q);

printf("0erven (Busy): %.4ir,

head->LP_Stats[i].CLSrv_Stats->Per_Busy);

printf(" { Service Time)
:

");

printf(" Ave : %.41f ",

head->LP_Stais[i].Q_Srv_Stats->Ave_Service);

printf(" STD : %.41f ",

head->LP_Stats[i].Q_Srv_Stats->Std_Service);

printff Max:%.41f",

head->LP_Stats[i].Q_Srv_Stats->Ma)t_Service);

printf("0 ");

break;

case SINK:

printffOSink]: %d Simulation: %.4If\

i,

head->LP_Stats[i].Sink_Stats->Sim_Time);

printf(" (Number Sunk): ");

printff 116d",

-118-

head->LP_Stats[i].Sink_Stats->Num_Sunk);

printf("0 ");

break;

default

break;

)

)

/. ,,

I* Frees a pointer pointing to a report which has been sent out */

/» ,/

•119-

static void Free_Record(Param,head)

struct Col_Param *Param;

struct Col_Stats_Rec **head;

(

register i;

long num;

struct Col_Stats_Rec *ptr,

ptr = "head;

num = (*head)->Interval_num;

if ((*head)->Next != NULL)
•head = (*head)->Next;

else
(

num++;

*head = Init_Record(Paramjium);

ptr->Next = NULL;

for (i= 0; i < Param->All_LP.Total_LP; i++)
(

if (Param->AU_LP.Tvpe[i] != BRANCH)
switch(Param->All_LP.Type(i])

{

case SOURCE:
if (ptr->LP_Stals[i].Src_Stats != NULL)
free ((char *) ptr->LP_Stats[i].Src_Stats);

break;

case QUE_SRV:
if (ptr->LP_Stats[i].Q_Srv_Stats != NULL)
free ((char *) ptr->LP_Stats[i].Q_Srv_Stats);

break;

case SINK:

if (ptr->LP_Stats[i].Sink_Stats != NULL)
free ((char *) ptr->LP_Stats[i].Sink_Stats);

break;

free((char *)ptr);

/*
./

/* Waits a result from a user after sending out a report */

/ _ v

120-

static int Wait_Response(Param)

struct CoLParam *Param;

{

int sock;

char *ptr,

int signal 1, signal2;

char line[MAXLINE+l];

char filename[50];

sock = Param->All_LP.insock;

Read_Input(line,sock);

fprintf(stderr,"Oollector, command: %s"Jine);

ptr = index(line,'(') + 1;

ptr = index(ptr,'(') + 1;

sscanf(ptr,"%d %d",&signall,&signal2);

switch(signall)

{

case CONT:
rprintf(stderr,"0ollector, sig = continue");

retum(TRUE);

case TERM:
fprintf(stderr,"OoUector, sig = term");

Param->All_LP.Term_Pid.ierm();

return(FALSE);

default:

fprintf(stderr,"Oollector, Invalid Command ");

retum(TRUE);

)

!

process body Collector() (

register i; /» Index »/

int ID; /* Index »/

int Done = FALSE; /» True, complete final */

int Continue = TRUE; /• True, continue */

int Term = FALSE; /» True, terminate */

int Complete = FALSE; /» True, a complete report */

char linefMAXLINE); /* The output line */

long final_num = 0; /* A final report index »/

long src_num[MAXLINE]; I* Source interval num */

long sink_num = 0; /» Sink interval num */

long srv_num[MAXLINE]; /• Server interval num */

121-

long src_oldnum[MAXLINE]; /* Source previous num */

long sink_oldnum =); 1* Source previous num */

long srv_oldnum[MAXLINE]; r Server previous num •/

long oId_num_sunk == 0; r Sink data */

long old_num_left r Sink data */

long num 1; r Initial interval num 7
long old_in_q = 0; /* Que uedata */

long old_through_q = 0; r Queue data */

double old_per_busy = 0.0; i* Server data */

double old_per_full = 0.0; i* Queue data V

struct ColJParam *Param; /* Collector paramter *

struct Src_Stats_Rec pre_src; /* Previous Source report *

struct Q_Srv_Slats_Rec pre_q_srv; 1* Previous Q/Server report *

struct Sink_Stats_Rec pre_sink /* Previous Sink report *

struct Src_Stats_Rec src; /* Source report *

struct Q_Srv_Stats_Rec q_srv; /* Q/Server report *

struct Sink_Stats_Rec sink; /* Sink report *

struct Col_Stats_Rec •head,*)tr; f pointer */

122-

Param = (struct ColJParam *) malice (sizeof(struct Col_Param));

accept setup(col_param)
((*Param) = col_param;);

old_num_left = Param->All_LP.Total_Gen;

head = Init_Record(Param,num);

for (i = 0; i < MAXLINE; i++)
{

src_num[i] = 0;

srv_num[i] = 0;

src_oldnum[i] = 0;

srv_oldiuim[i] = 0;

for(;;)

select {

(Continue && [Complete && IDone && ITerm):

/* <Source> ::= (<ID>< Num_Left>) */

accept src_stats (src_rec)
{

sre = src_rec;

ID = src.ID;

fprintf(stderr,"0ollector, accept source[%d] stats",

src.ID);

src_num[ID] = (long)(src.Sim_Time /

Param->AU_LP.StatsJntervai);

fprintf(stderr,"0ollector, source interval = %ld",

src_num[ID]);

if (final_num = && src.Status= STATSJTNAL)
final_num = src_num[ID];

if (src.Status= STATSJTNAL)
(

ptr = Get_Ptr(Param Jiead,final_num);

fprintf(stden,"0ollector, source final");

)

else

ptr = Get_Ptr(ParamJiead,src_num[ID]);

if (ptr->LP_Stats[src.ID].Src_Stats= NULL) (

ptr->LP_Stats[src.ID].Src_Stats =

(struct Src_Slats_Rec *)

malloc (sizeof(struct Src_Stats_Rec));

}

123 -

else

ptr->Update = TRUE;

•(ptr->LP_Stats[src.ID].Src_Stats) = src;

if (src_num[ID] - src_oIdnum[ID] >= 2) (

src_oldnum[ID]++;

for (i = src_oldnum[ID]; i < src_num[ID]; i++)
|

ptr Get_Ptr(ParamJieadj);

if (plr->LP_Stals[src.ID].Src_Stats= NULL)
(

ptr->LP_Stats[src.ID].Src_Stats =

(struct Src_Stats_Rec *)

malice (sizeof(struct Src_Stals_Rec));

)

else

ptr->Update = TRUE;

pre_src.ID = src.ID;

pre_src.Num_Left = old_num_left;

*(ptr->LP_StaU5[src.fD].Src_Stats) = pre_src;

src_oIdnum[ID] = src_num[ID];

pre_src.Num_Left = src.Num_Left;

Complete = Is_Complete(ParamJiead);

fprintf(stderr,"OoIIector, complete = %d" .Complete);

if (Complete && head->Interval_num == final_num)
(

Done = Is_Done(ParamJiead);

if(!Done)

Complete = FALSE;

or

/*<Sink> ::= (<IDxNum_Sunk>) */

accept sink_stats (sink_rec)
{

fprintf(stderr,"Oollector, accept sink stats");

sink = sink_rec;

sink_num = (long)(sink.Sim_Time/

Param->AllJj>.StatsJmerval);

if (final_num = && sink.Status= STATS_FINAL)
final_num = sink_num;

if (sink.Status= STATS_FTNAL)
ptr = Get_Ptr(Param JieadJ5nal_num);

124-

else

ptr = Get_Ptr(Param,head,sink_num);

if (ptr->LP_Stats[sink.ID].Sink_Stats= NULL) {

pir->LP_Stals[sink.ID].Sink_Slats =

(struct Sink_Stats_Rec *) malloc

(sizeof(struct Sink_Stats_Rec));

)

else

ptr->Update = TRUE;

*(ptr->LP_Stats[sink.ID].Sink_Stats) = sink;

if (sink_num - sink_oldnum >= 2) (

sink__oldnum++;

for (i = sink_oldnum; i < sink_num; i++)

(

ptr = Get_Prr(Param JieadJ);

if (ptr->LP_Stats[sink.ID].Sink_Slats = NULL)
(

ptr->LP_Stats[sink.ID].Sink_Stats =

(struct Sink_Stats_Rec *)

malice (sizeof(struct Sink_Stats_Rec));

]

else

ptr->Update = TRUE;

pre_sink.ID = sinklD;

pre_sink.Num_Sunk = old_num_sunk;

*(ptr->LP_Stats[sink.ID].Sink_Stats) = pre_sink;

)

)

sink_oldnum = sink_num;

old_num_sunk = sink.Num_Sunk;

Complete = Is_Complete(Param,head);

fprintf(stderr,"Oollector, complete = %d",Complete);

if (Complete && head->Interval_num= final_num)
|

Done = Is_Done(Param,head);

if(!Done)

Complete FALSE;

)

)

or

I* <Q_Server> ::= (<ID> <Per_Busy> <Per_Full> <In_Q>
<Through_Q>

)

*/

accept srv_stats (q_srv_rec)
(

q_srv = q_srv_rec;

ID = q_srv.ID;

125-

fprimf(stden,

,"Oollecior, accept q_server[%d] stats",

q_srv.ID);

srv_num[ID] = (long)(q_srv.Sim_Time/

Param->All_LP.StatsJnterval);

fprintf(stden,"Oollector, num = %ld" jrv_num[ID]);

if (finaLnum = && q_srv.Status= STATS_FINAL)
final num = srv_num[TD];

if (q_srv.Status= STATSJTNAL) (

fpriiitf(stdeir,"Oollector, q_srv STATS_FTNAL");
pti = Get_Ptr(Param,head,flnal_num);

}

else

ptr = Get_Ptr(Param,head,srv_num[ID]);

if (ptr->LP_Stats[q_srv.ID].Q_Srv_Stats == NULL)
ptr->LP_Stats[q_srv.ID].Q_Srv_Stats =

(struct Q_Srv_Stats_Rec *) malice

(sizeof(stnict Q_Srv_Stats_Rec));

else

ptr->Update = TRUE;

*(ptr->LP_Stats[q_srv.ID].Q_Srv_Stats) = q_srv;

if (srv_num[ID] - srv_oIdnum[TD] >= 2) (

srv_oldnum[ID]++;

for(i = srv_oldnum[ID]; i < srv_num[ID); i++)
(

ptr = Get_Pu(Param,head4);

if (ptr->LP_Slats[q_srv.ID].Q_Srv_Stats= NULL)
(

ptr->LP_Stats(q_srv.ID].Q_Srv_Stats =

(struct Q_Srv_Stats_Rec *) malloc

(sizeof(struct Q_Srv_Stats_Rec));

)

else

ptr->Update = TRUE;

pre_q_srv.ID = q_srv.ID;

pre_q_srv.Per_Busy = old_per_busy;

pre_q_srv.Q_StatsPer_Fiill = old_per_full;

pre_q_srv.Q_Slats.NumJn_Q = old_in_q;

pre_q_srv.O_StalsJMum_Through_Q = old_lhrough_q;

)

*(ptr->LP_Stats[q_srv.ID).Q_Srv_Stats) • pre_q_srv;

srv_oldnum[ID] = srv_num(ID];

old_per_busy = q_srv.Per_Busy;

old_per_full = q_srv.Q_Stats.Per_Full;

)

or

126-

old_in_q = q_srv.Q_StatsJ4um_In_Q;

old_lhrough_q = q_srv.CLStatsJMum_Through_Q;

Complete = Is_Complete(ParamJiead);

fprintf(stderr,"Oollector, complete = %d".Complete);

if (Complete && head->Interval_num= final_num)
|

Done = Is_Done(ParamJiead);

if(!Done){

Complete = FALSE;

)

}

(Complete && !Done && !Term):

fprinif(stden,"0ollector, complete");

Complete = FALSE;

Send_Slats(Param,head);

if(final_num!=0)
(

plr = Get_Ftr(Param,head,final_niim);

Complete = Is_Complete(Param,ptr);

if (Complete)

Done = Is_Done(Param Jiead->Next);

)

Send_File(ParamJieadJinal_num);

num = num++;

Free_Record(Param,&head);

if(!Done)

Continue = Wait_Response(Param);

printf(stderr,"OoIIector, continue = %d",Continue);

(Complete && Done && !Term):

fprintf(stderr,"Oollector, Done");

Send_Stats(Param,head);

Send_File(Param,head,final_num);

Param->All_LP.Term_Pid.tenn();

accept term(

)

(Term = TRUE;
)

or

(IContinue && !Done &&. ITerm):

fprintf(stderr,"Oollector, Ready to term");

for(;;)

select
(

accept src_stats(src_rec)
();

or accept sink_stats(sink_rec)
();

or accept srv_stats(q_srv_rec)
()

;

•127-

or accept temi() (

Term = TRUE;
break;

}

or

(Term):

terminate;

)

)

-128-

#include "define.h"

I* ** *,

I* Process Body Terminate(

)

*/

I* ***************************••********»************+***«,***#*** »,

I* ./

/* Once this Terminate process accepts a signal from the */

/* Collector process, it submits transaction calls to all */

I* processes of the simulator to be ready to terminate. */

/» ./

I* ** *,

process body Terminate(

)

{

register

struct Term_Param Param;
I* Index

/* Initial paramter table

accept setup(term_param) (Param = term_param;

I* Accept initial paramters

forfc;) {

select
(

accept term() ()

;

fprintf(stderr,"Oerm, accept term");

for (i = 0; i < Param.All_LP.Total_LP; i++) {

switch(Param.All_LP.Type[i])

{

case SOURCE:
fprintf(stderr,"Oerm, call source");

Param.AlI_LP.LP_Pid[i].Src_Pid.term();

break;

case BRANCH:
fprintf(stderr,"Oerm, call branch");

Param.AU_LP.LP_Pid[i].Branch_Pid.term(
);

break;

case QUE.SRV:
fprintf(stderr,"Oerm, call queue[%d]",i);

Param.All_LP.Q_Pid[i].term(
);

fprintf(stderr,"On Term, call server[%d]",i);

Param.AU_LP.LP_Pid[i].Srv_Pid.term(
);

break;

)

- 129-

case SINK:

rprintf(stderr,"Oerm, call sink");

Param.AU_LP.LP_Pid[i].Sink_Pid.temi();

break;

rprintf(stderr,''Oerm, call collector");

Param.All_LP.Col_Pid.lemi();

or terminate;

)

)

•130-

Appendix B : One Example of an Input Model and Its Final Statistical Report

B.l: Format of the Input Model

In order to show an example of the input model and its statistical result, their formats have
to be discussed first. The formats are reprinted from Vopata's thesis(VOPA89] under his

permission. Figure B.l shows the BNF notation for the input model and Figure B.2 gives a

description of the BNF nonterminals.

<Start>

<Begs>

<Ends>

<SoS>

<Node>

<Source>

<Sink>

<Q_Server>

<Branch>

<Out_list>

<Stoch>

<Out ID>

:= <Begs> [<Node>]* <Ends> <SoS>
= ((990))
= ((991))
= ((98) <Term_Time> <Imerval>

)

= <Source> I <Sink> I <Q_Server> I <Branch>

= ((ID) (<Stoch>) <Mach> <Virr> <Gen> <Out_ID>

)

= ((1 ID) <Mach> <Virt> <Num_In>

)

= ((2 ID) (<Stoch>) <Mach> <Vin> <Out_ID>
<Q_Size> <Q_Method> <Num_In>

)

::= ((3 ID) <Mach> <Virt> <Num_In> <Num_Our>
(<Out_list>)

)

::=[(OutJDProb)]l-5
::= (<Type> <Min> <Max> <Argl> [<Arg2>]

)

::= <ID>

Figure B.l: BNF Notation for the Input Model

<ID> :: an unique number for each logical process

<Mach> :: an unique number for each minicomputer

(a list of these values is given in Figure B.3)

<Virt> :: a Virtual Processor number (not used)

<Gen> :: the number of message a source logical process is

allowed to generate. If <Gen> = then the source is

allowed to generate an infinite number of messages.

<NumJn> :: the number of incoming lines to a logical process

<Num_Out> :: the process id of the destination logical process

<Q_Size> :: the size of the queue buffer, must be greater than zero

<Q_Method> :: the method for dequeueing message from the queue buffer

<Q_Method> = is FIFO
<0_Method> = 1 is UFO
<Q_Method> = 2 is SIRO
<Q_Method> = 3 isPRIO

<Prob> :: the probability of selecting the outgoing line

The sum of all the probabilities of an "Out_Line"

must total one (1).

- 131 -

<Type> :: the type of stochastic distribution function

<Min> :: Minimum cutoff for the distribution function

If <Min> = then Min is ignored

<Max> :: Maximum cutoff for the distribution function

If <Max> = then Max is ignored

<Argl> :: First argument for the distribution function

<Arg2> :: Second argument for the distribution function

<Term_Time> :: Termination Time specified by the graphics front-end

<Interval> :: Time Intervals (of simulated time) for sending

collective status reports

Figure B.2: Description of the BNF Non-Terminals in Figure B. 1

In the BNF notation, the "[<X>]" indicates that <X> is optional, the "[<X>]*" indicates that

zero or more occurrences of <X>, and the "[<X>]l-5" indicates that there may be one to five

occurrences of <X>.

Machine Number Machine Host Name Model

foxtrot 3B2/400

1 golf 3B2/400

2 hotel 3B2/400

3 mdia 3B2/400

4 Juliet 3B2/400

5 kilo 3B2/400

6 lima 3B2/400

7 mike 3B2/400

8 november 3B2/400

9 hack 3B2/400

10 alpha 3B2/310

11 bravo 3B2/310

-132-

12 Charlie 3B2/310

13 delta 3B2/310

14 echo 3B2/310

15 phobos 3B15

16 deimos 3B15

Figure B.3: List of Machines used in Figure B.2

Figure B.4 shows an example of the input model of the queueing network model.

((990))
((00)(2000.2)8001)
((31)8012((20.60)(30.40))
((22)(2000.1)8041001)
((23)(2000.1)8041001)
((14)802)
((991))
((980)102)

Figure B.4: Example of an Input Model

B.2: Format of the Statistical Report

Figure B.5 shows the BNF of the statistics report and Figure B.6 gives a description of the

BNF nonterminals[VOPA89].

<Start> ::= [<Message>] <Intervat> [<Node>]* "(SS)"

<Message> ::= "(end)" I "(abort)" I "(deadlock)"

<Node> ::= <Source> I <Q_Server> I <Sink>

<Source> ::= (<ID>< Num_Left>)

<Q_Server> ::= (<ID> <Per_Busy> <Per_Full> <In_Q> <Through_Q>

)

<Sink> ::= (<ID> <Num_Sunk>)

Figure B.5: BNF Notation for the Collective Report

(end) :: indicates that the following report is the last report

133-

(abort) :: indicates that an error occmred and the simulator is

aborting the simulation

(deadlock) :: indicates that model deadlock has occurred (not used)

($$) :: indicates the end of the current statistics report

<Interval> :: simulation time of the current statistics report

<H>> :: the unique identifier of each logical process

<Num_Left> :: the number of remaining messages that a source process

has left. If the source was to generate an infinite

number of messages, the value will be negative and

will represent the number of message that the source

has generated.

<Per_Busy> :: the percent utilization of a server process

<Per_Full> :: the percent capacity of a queue process

<In_Q> :: the number of messages currently in a queue process

<Through_Q> :: the number of messages that have passed through a

queue process

<Num_Sunk> :: the number of messages discarded by a sink process

Figure B.6: Description of the BNF Non-Terminals in Figure B.5

Figure B.7 shows the final slaiistics report of the queueing network model described in Fig-

ure B.4.

(10.0000)

(0-10)

(2 50.0000 70.0000 7 3)

(3 40.0000 70.0000 7 3)

(4 2)

(SS)

Figure B.7: Example of a Statistics Report

Deadlock Avoidance in a Distributed Simulation System

by

Li-Fang L. Hsieh

B.A. National Taiwan University, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

Abstract

This project uses a concurrent language. Concurrent C [GEHA88], to implement a distributed discrete-

event simulator. It runs under a deadlock avoidance algorithm proposed by Chandy and Misra [CHAN79]

and it adopts a basic queueing network scheme [SAUE80] from an RESQ simulation package. A user can

send input data either from a file or from a stream socket to initiate the distributed simulator. Based on the

user's specification, the simulator will execute the model either in a centralized or distributed mode.

When the interval time for a statistical report expires, the simulator will collect all the necessary

information and send it back to the user. The project thus explores the interesting area of using a concurrent

language to implement a distributed simulator in a parallel execution environment.

