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Abstract [310 words] 19 

 We consider the effect that commercial gas production has had on microbiology and 20 

water and gas geochemistry in the northern producing trend of the Antrim Shale, an 21 

unconventional gas reservoir in the Michigan Basin, USA. We analyzed gas, water, and 22 

microbial biomass samples collected from seven wells in 2009 and compared our findings to the 23 

result of analyses performed as early as 1991 on samples collected from the same wells. We also 24 

examined production records associated with six wells. Water production has decreased sharply 25 

over time and is currently at 0.2 to 14.6% of peak levels. While this has happened, the chemical 26 

and isotopic composition of gas and water produced from the wells has shifted. The proportion 27 

of CO2 has increased by as much as 15 mole% while CH4 content has correspondingly 28 

decreased. Isotopically, the δ13C and δD values of CH4 decreased for most wells by averages of 29 

1.3‰ and 9‰, respectively, while δ13C values of CO2 increased for most wells by an average of 30 

1.7‰. Alkalinity in the water from each well decreased by 10 mM on average and SO4
2- content 31 

increased from below 50 µM to over 200 µM on average in water from each well with initial 32 

values. Microorganisms most closely related to CO2-reducing methanogens were the most 33 

abundant group in archaeal clone libraries and SO4
2- reducers were the most abundant group in 34 

bacterial libraries. In contrast, no SO4
2- reducers were identified in a nucleic acid-based analysis 35 

of a sample collected in 2002 from one of the wells we sampled. Our results show that 36 

commercial gas production has not only caused chemical and isotopic changes in water and gas 37 

in the Antrim Shale but also an increase in the abundance of SO4
2--reducing microorganisms, a 38 

change that can ultimately have a negative impact on biogenic CH4 formation. Processes that can 39 

explain these changes include ongoing biogeochemical reactions, groundwater flow, gas 40 

desorption, and open-system degassing. 41 
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 45 

1. Introduction 46 

Unconventional natural gas reservoirs such as fractured organic-rich shale are becoming 47 

increasingly important energy resources. Natural gas provides a major source of energy for the 48 

U.S., accounting for more than 20% of the energy supply (NETL, 2009). The rate of gas 49 

consumption, however, increasingly exceeds the rate of domestic production. Greater production 50 

from fractured organic-rich shale can help make up some of this imbalance (NETL, 2009). 51 

Moreover, although carbon dioxide (CO2) is emitted during gas combustion, natural gas is the 52 

cleanest fossil fuel. Compared to coal, for example, natural gas combustion emits about half as 53 

much CO2 per joule of energy produced, as well as far lower NOx, SOx, heavy metals and 54 

particulate matter. Producing a greater percentage of our energy from natural gas at the expense 55 

of oil and coal, therefore, would be environmentally advantageous (White et al., 2003). 56 

In many unconventional natural gas reservoirs, a significant portion of the gas formed 57 

biologically as microbial communities degraded sedimentary organic matter (e.g., Bates et al., 58 

2011; Flores et al., 2008; Formolo et al., 2008; Martini et al., 1996; McIntosh et al., 2008; 59 

McIntosh et al., 2002; Schlegel et al., 2011; Scott et al., 1994; Strąpoć et al., 2008; Su et al., 60 

2005; Waldron et al., 2007; Warwick et al., 2008). Biological formation of methane (CH4), the 61 

primary component of natural gas, requires a consortium of microorganisms. Fermentative and 62 

syntrophic Bacteria degrade complex organic matter and ultimately produce substrates that can 63 

be used by methanogenic Archaea as energy sources (Conrad, 1999). Methanogens primarily use 64 
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acetate (CH3COO-) or dihydrogen (H2) as their substrate (Conrad, 1999), producing CH4 by 65 

acetate fermentation or CO2 reduction, respectively: 66 

CH3COO- + H+  CH4 + CO2     (1) 67 

CO2 + 4 H2  2 H2O + CH4      (2) 68 

How these microbial processes are affected by commercial production of natural gas is 69 

unclear. Gas is stored in shale reservoirs primarily by adsorption to the solid matrix (Scott et al., 70 

1994). To harvest the gas, water is pumped out of the formation, which lowers pressure adjacent 71 

to the borehole and allows the gas to desorb (Martini et al., 2003). We hypothesize this process 72 

could impact microbial activity by drawing water into the shale that has a different composition 73 

than the water present before development. Such changes may affect subsurface microbes 74 

because, while microbes affect the composition of their environment by driving reactions 75 

forward, the environment also influences microbial activity by providing electron donors and 76 

acceptors and other nutrients (Jin and Bethke, 2007). Potential shifts in water composition driven 77 

by pumping, therefore, may impact microbial activity and ultimately CH4 formation. 78 

This study examines how commercial production of natural gas has affected 79 

geochemistry and microbiology in the Devonian Antrim Shale along the northern margin of the 80 

Michigan Basin. Waldron et al. (2007) found evidence that commercial gas production there is 81 

causing SO4
2- concentration to increase, a change that could negatively impact methanogenesis. 82 

This finding warrants further study to fully evaluate how geochemistry has changed and identify 83 

consequences for microbial activity, information that has implications for the sustainability of 84 

gas production in unconventional gas reservoirs. The Antrim Shale provides an ideal field site to 85 

examine this question; the formation was one of the earliest shale-gas reservoirs to be developed 86 

(Curtis, 2002) and conditions soon after widespread development are well documented (see data 87 
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available in Martini et al., 1998). Furthermore, most of the gas produced commercially along the 88 

northern edge of the basin (i.e., the northern producing trend) is biogenic (Martini et al., 1996; 89 

Martini et al., 1998). Our analysis is constrained by data gathered soon after widespread 90 

development of the northern producing trend in the early 1990s, data collected from one well in 91 

2002, and data we collected in 2009. 92 

 93 

2. Materials and methods 94 

2.1. Commercial gas wells 95 

 We selected seven wells along the northern producing trend that had originally been 96 

sampled in the early 1990s and re-sampled them during January, 2009. One well, ID# 150, was 97 

also sampled again in 2002. Data collected from the initial set of samples were published in 98 

Martini et al. (1996; 1998) and Walter et al. (1996). Data from 2002 samples were published in 99 

Martini et al. (2005) and Formolo et al. (2008). Site numbers used in this study are consistent 100 

with those used in Martini et al. (1998), with the exception of two wells, B and M, which were 101 

not included in that publication. 102 

Information about each well is summarized in the Supplemental Content (Table SC1). An 103 

annotated map showing the location of each well accompanies the online version of this article. 104 

Additional maps showing regional variation in pore water composition are available in Martini et 105 

al. (1998) and Waldron et al. (2007). 106 

 107 

2.2. Sample collection 108 

Temperature and pH measurements were made in the field for a subset of wells. Gas 109 

samples were collected for compositional and isotopic analyses in Isotubes® (Isotech 110 
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Laboratories, Inc.). Water samples were collected for chemical and isotopic analyses and 111 

microbial analyses in acid-washed and sterile bottles, respectively. Chemical and isotopic 112 

samples were filtered using 0.22 µm nylon syringe filters. Cation samples were preserved at pH 113 

< 2 with trace-metal grade HNO3. Microbial biomass samples were collected by filtering water 114 

through sterile 25 mm 0.22 µm mixed cellulose-ester filter membranes. The samples were stored 115 

in sterile 2 mL microcentrifuge tubes and preserved with 0.2 mL of sucrose lysis buffer 116 

(Giovannoni et al., 1990). All sample filtration and preservation was performed within 12 hours 117 

of sample collection rather than immediately in the field due to adverse weather conditions. 118 

Samples were stored on ice in the field. In the lab, water samples were stored at 4°C and 119 

microbial samples at –20°C. 120 

 121 

2.3. Microbial analysis 122 

 Microbial biomass samples collected from wells 22, 147, and 150 were selected for 123 

nucleic acid-based analysis. These wells were selected because they produce water with high, 124 

intermediate, and low salinity. Previous research has shown that salinity is an important 125 

constraint on microbial community composition in the northern producing trend (Waldron et al., 126 

2007). These wells, therefore, allow us to examine microbial communities across the range of 127 

geochemical conditions present. Microbial biomass was also previously sampled from well 150 128 

in 2002 and analyzed using methods similar to those we employed, which are described in 129 

Formolo et al. (2008). 130 

DNA was extracted from the filters using a MoBio ultra-clean soil DNA kit. The 131 

alternative protocol described by the manufacturer was used to limit DNA shearing during the 132 

extraction. 16S rRNA genes were amplified from the environmental DNA using universal 133 
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primers 8F (5’-AGA GTT TGA TCM TGG CTC AG-3’) and 1492R (5’-GGT TAC CTT GTT 134 

ACG ACT T-3’) and archaeal primers 109F (5’-ACK GCT CAG TAA CAC GT-3’) and 915R 135 

(5’-GTG CTC CCC CGC CAA TTC CT-3’) (Grosskopf et al., 1998). PCR products were 136 

purified using a Wizard DNA gel purification kit and ligated into a TOPO TA vector. Cloning 137 

and sequencing was performed at the Washington University Genome Center. For each 138 

sample/primer pair, partial sequences were collected from 96 clones. Low quality sequence reads 139 

were excluded from subsequent analyses, leaving 213 bacterial sequences and 239 archaeal 140 

sequences, which all exceeded 300 bp in length. 141 

Sequences were aligned using the Greengenes NAST aligner (DeSantis et al., 2006a) and 142 

checked for chimeras using Bellerophon (DeSantis et al., 2006b). Operational taxonomic units 143 

(OTUs) were defined at ≥97% sequence identity using mothur (Schloss et al., 2009). Mothur was 144 

also used to identify representative sequences for each OTU and calculate rarefaction curves and 145 

Chao1 values for each clone library, which provide a measure of richness defined at the OTU 146 

level (Hughes et al., 2001). To evaluate which bacterial and achaeal groups were present in the 147 

samples, the taxonomy of representative sequences for each OTU was assessed using a naïve 148 

Bayesian rRNA classifier and an 80% confidence threshold (Wang et al., 2007). We also 149 

employed this same procedure to classify sequences obtained from well 150 in 2002. 150 

Sequences obtained from well 150 samples collected in 2002 were deposited in the 151 

GenBank database under accession numbers EF117331-EF117417 and EF117512-EF117553. 152 

Sequences obtained from the samples collected in 2009 were deposited under accession numbers 153 

JX472462-JX472913. 154 

 155 

2.4. Chemical and isotopic analysis 156 
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Alkalinity was determined using Gran alkalinity titrations. Cl- and SO4
2- concentrations 157 

were measured at a precision of 2% using a Dionex AS50 ion chromatograph equipped with a 158 

CD20 conductivity detector, an ASRS 300 suppressor, and an IonPac AS14 column and AG14 159 

guard column. Cl- was measured directly from diluted samples and SO4
2- was measured in 160 

samples that were treated with Dionex OnGuard II Ag cartridges to remove Cl-. Na+, Ca2+, Mg2+, 161 

and Sr2+ were measured at 3% precision and K+ at 5% precision using a Leeman Labs ICP-AES. 162 

A suite of trace elements in each sample was measured using an Agilent 7500ce ICPMS. The 163 

instrument operated in reaction gas mode for select elements to eliminate mass interference. 164 

Samples and standards were acidified with Optima high-purity nitric acid to 3% by volume prior 165 

to analysis. Results were adjusted based upon recovery of a multi-element internal standard 166 

(SPEX CertiPrep). 167 

Gas compositional and isotopic analyses and water isotopic analyses were performed at 168 

Isotech Laboratories, Inc. Gas composition was measured using gas chromatography. Hydrogen 169 

isotopic compositions of CH4 and water were measured using dual-inlet isotope ratio mass 170 

spectrometry (DI-IRMS) at 2‰ precision. Oxygen isotopic compositions of water and carbon 171 

isotopic compositions of CH4, CO2, dissolved inorganic carbon (DIC), and ethane were analyzed 172 

with DI-IRMS at 0.1‰ precision, with the exception of ethane sampled from wells 147, 150, and 173 

M. In those samples, ethane carbon isotope compositions were measured using gas 174 

chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) at a precision of 175 

0.3‰. Water samples were prepared for isotopic analysis using the Indiana zinc method for 176 

hydrogen, CO2 equilibration for oxygen, and acid digestion for DIC. All isotopic compositions 177 

are reported in standard δ notation. Carbon isotopic compositions are reported relative to Vienna 178 

Pee Dee Belemnite (VPDB) and hydrogen and oxygen isotope compositions are reported relative 179 
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to Vienna Standard Mean Ocean Water (VSMOW). The precision of CH4 and water isotope 180 

values reported by Martini et al. (1996; 1998), are identical to the errors in our analysis.  181 

For this study, we did not consider differences between values we measured and the 182 

initial values to be important unless they differ by more than the potential analytical error of the 183 

initial and recent value combined. The limited amount of data available precluded a rigorous 184 

statistical analysis of each parameter. 185 

 186 

2.5. Field station records 187 

To evaluate gas and water production over time at the field site, we obtained field station 188 

records from the Michigan Public Services commission for six of the wells we sampled. The 189 

records start when the field stations first came online and extend through 2007. A complete 190 

record was not available for the well field containing well 73.  191 

Water and gas produced from multiple wells are delivered to each field station. The field stations 192 

in our dataset were fed by 22 wells on average. Withdrawals from the individual wells sampled 193 

for this study were estimated by dividing the total monthly gas and water production by the 194 

number of online wells in each field. It should be noted, however, that production levels can vary 195 

significantly among the wells in an individual field and our data do not constrain this variation. 196 

We could not evaluate, therefore, the extent to which the values we calculated accurately depict 197 

production levels for the wells we sampled. Nonetheless, the values we calculated still provide a 198 

useful measure of the average trends in water and gas production over time for the wells 199 

associated with each field station. 200 
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3. Results 201 

3.1. Microbial community composition 202 

Chao1 values based on OTUs defined at ≥97% sequence identity were greater for 203 

Bacteria than Archaea in all samples, indicating greater richness for Bacteria than Archaea at 204 

that similarity level (Fig. 1). Richness was greatest for Archaea in the 2009 sample with 205 

intermediate salinity and greatest for Bacteria in the 2009 sample with the lowest salinity. 206 

Strongly asymptotic rarefaction curves for each Archaea clone library (Supplementary Content 207 

Fig. 1) indicate that the archaeal community was adequately sampled. Similarly, rarefaction 208 

curves for bacterial clone libraries from well 22 and the 2002 sample from well 150 were also 209 

asymptotic. Curvilinear rarefaction curves for bacterial clone libraries from well 147 and the 210 

2009 sample from well 150, however, indicate that additional sequencing would be needed to 211 

fully characterize the bacterial community in the water produced from those wells. 212 

 Taxonomic classification places all Archaea clones in the Euryarchaeota (Fig. 1A), 213 

which contains the methanogens and extreme thermophiles and halophiles (Takacs-Vesbach et 214 

al., 2001). Within this phylum, the majority of the archaeal clones obtained from 2009 samples 215 

grouped within two orders of methanogenic microorganisms: Methanomicrobiales (59%) and 216 

Methanobacteriales (33%). Methanobacteriales clones were most abundant in the lowest salinity 217 

sample and Methanomicrobiales clones were most abundant in the highest salinity sample (Fig. 218 

1A). Cultured members of these orders reduce CO2 typically with H2 as their electron donor, 219 

although some can use formate or secondary alcohols (Bonin and Boone, 2006; Garcia et al., 220 

2006). Methanosarcinales, the only order of methanogens that contains species capable of using 221 

acetate, contributed little to the total Archaea clone library (3%) obtained from 2009 samples. 222 
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This result differed considerably from the results obtained from the 2002 sample from well 150, 223 

in which most clones (69%) grouped within Methanosarcinales (Fig. 1A). 224 

 Taxonomic classification of Bacteria shows that most of the clones obtained from 2009 225 

samples are contributed from the phyla Proteobacteria (60%), Firmicutes (22%), and 226 

Bacteroidetes (7%), but that numerous other groups are also represented (Fig. 1B). Within the 227 

Proteobacteria, most of the clones grouped within the orders Desulfovibrionales (48%) and 228 

Pseudomonadales (24%) (Fig. 1C). Members of the Desulfovibrionales are primarily SO4
2- 229 

reducers (Garrity et al., 2005). Clones grouping within Desulfovibrionales were particularly 230 

abundant in the sample collected from well 22, in which they accounted for 78% of the total 231 

bacterial clones. Pseudomonadales includes the genus Pseudomonas, which comprises a group 232 

of species that are ubiquitous in soil and water ecosystems and capable of using a wide variety of 233 

organic and inorganic compounds (Moore et al., 2006). Results obtained from the sample 234 

collected in 2002 from well 150 contain similar groups of Bacteria as observed in 2009 samples. 235 

Unlike the 2009 sample from well 150, however, no sequences grouping with Desulfovibrionales 236 

were present in the 2002 clone library.  237 

 238 

3.2. Chemical and isotopic composition of water 239 

Field station records demonstrate that water production has decreased sharply over time 240 

since the wells were developed. Water production peaked within the first five years of 241 

production for all of the wells and both peak and cumulative levels were highest in the wells 242 

furthest north (Fig. 2). Current levels of water production range from 0.2 to 14.6% of peak 243 

levels. 244 
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Although water production has declined, pH, salinity, and bulk chemical composition has 245 

changed relatively little (Fig. 3; Supplemental Content Table SC2). As with the original samples, 246 

the samples we analyzed were Na-Cl type water with near-neutral to mildly acidic pH and 247 

salinity generally increasing southward (i.e., basinward). Some aspects of the groundwater 248 

composition were different, however. Alkalinity decreased in all of the wells by an amount 249 

ranging from 3.1 to 22.3 mM. Ca2+ concentration decreased in five of seven wells by 1.5 to 8.9 250 

mM. Mg2+ content decreased in all of the wells by 2.1 to 33.7 mM. SO4
2- concentrations were 251 

higher, averaging 290 µM compared to 48 µM in the three samples that had reported SO4
2- 252 

concentration initially. The groundwater we sampled also generally had a higher concentration of 253 

K+ and dissolved Mn and Fe and a lower concentration of Sr2+, B3+, and Ba2+. 254 

Concurrent with these compositional changes and the decline of water production, the 255 

isotopic composition of the water and DIC also changed. Compared to initial samples, water δD 256 

values we measured differed by more than combined analytical error (>4‰) in samples from five 257 

of the seven wells. In those samples, δD values were 11‰ lower on average than the values 258 

measured initially (Fig. 4). In contrast to δD, δ18O values were higher than initial values in nearly 259 

half of the samples. Three samples had δ18O values that were not different from the initial values 260 

by more than the combined analytical error (>0.2‰), one sample had a δ18O that was 0.8‰ 261 

lower, and three samples had δ18O values that were 0.6‰ higher on average (Fig. 4). DIC δ13C 262 

values differed by more than combined analytical error (>0.2‰) in all four samples that had 263 

initial values. On average, the δ13C value of DIC decreased 2.7‰ in two wells and increased 1‰ 264 

in the other two (Supplemental Content Table SC2). 265 

 266 

3.3. Chemical and isotopic composition of gas 267 
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Similar to the observed changes in water production and composition, the amount of gas 268 

being produced and its chemical and isotopic composition has shifted since the wells were 269 

developed. Field station records show that gas production has decreased and that the proportion 270 

of CO2 in produced gas has increased by an average of 13 mol% while overall natural gas 271 

production has steadily declined (Fig. 2). 272 

Analysis of gas samples collected for this study show a similar result to the field station 273 

records. Compared to samples collected initially, the CH4 content of the gas samples we 274 

collected decreased by 11 mol% on average in five wells while CO2 content increased by an 275 

equivalent amount (Supplemental Content Table SC3). Gas wetness [C1/(C2+C3)] values in the 276 

samples were generally lower than initial values. Wetness averaged 1001 compared to 1432 277 

initially. Although the composition of gas shifted as gas production declined, CH4 is still by far 278 

the largest component. The mean CH4 content of the samples we collected was 82 mol% 279 

compared to 86 mol% initially. 280 

Shifts in the δD value of CH4 correspond to those observed in water. As the δD value of 281 

water decreased, the δD value of CH4 also largely decreased (Fig. 5A). With the exception of one 282 

sample with values that were not considerably different from those measured initially (>4‰), the 283 

δD vales of CH4 were lower in all of the samples by 9‰ on average. The average difference 284 

between the δD of CH4 and water in the samples we collected was 172‰, which is not 285 

significantly different from the value measured initially, 171‰, based on a Student’s T test (P 286 

0.735). 287 

Similarly, the δ13C value of CH4 also decreased for most wells (Fig. 5B). One sample had 288 

CH4 δ
13C values that did not differ from initial values by more than combined analytical error 289 

(>0.2‰). The remaining six samples had δ13C values that were 1.3‰ lower on average. The δ13C 290 
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values of CO2 measured in gas samples increased for most wells (Fig. 5B). Four samples had a 291 

CO2 δ
13C value 1.7‰ higher on average. Of the remaining three samples, one did not differ from 292 

initial values by more than combined analytical error (>0.2‰) and two decreased by 0.3 and 293 

2.5‰. The fractionation factor (αc) between δ13C values of CO2 and CH4 calculated for each 294 

sample we collected was 1.076 on average, where αc is expressed as: 295 

 296 

   (3) 297 

This value is very similar to that observed in the samples collected from the wells initially, 298 

1.074. Nonetheless, these averages are statistically different based on a Student’s T test (P = 299 

0.045). 300 

 301 

4. Discussion 302 

 Our results demonstrate that considerable changes in the geochemistry and microbiology 303 

of co-produced water and gas have occurred since widespread development of the Antrim 304 

northern producing trend. In the sections that follow, we discuss how ongoing biogeochemical 305 

reactions within the shale coupled with processes driven by commercial gas production could 306 

have contributed to these changes. These findings have implications for the sustainability of 307 

commercial gas production in unconventional gas reservoirs. 308 

 309 

4.1. Pathway of CH4 formation 310 

Using isotopic evidence, Martini and others (1996; 1998) interpreted that CH4 over much 311 

of the northern producing trend in the Antrim Shale was generated by CO2-reducing 312 

ܿߙ ൌ
ሺ2ܱܥܥ13ߜ ൅ 1000ሻ

ሺ4ܪܥܥ13ߜ ൅ 1000ሻ
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methanogens. The results of our isotopic analyses are consistent with those findings. Where CH4 313 

is produced by CO2 reduction, the δD value of CH4 is typically about 160‰ +/-10% lower than 314 

the surrounding water (Nakai et al., 1974; Schoell, 1980), which is comparable to the value we 315 

observed (Fig. 5A). In comparison, differences between the δD values of CH4 and water are 316 

approximately twice as large where CH4 is produced by acetate fermentation (Schoell, 1980; 317 

Whiticar et al., 1986; Woltemate et al., 1984). Similarly, CH4 produced by CO2 reduction is 318 

generally associated with relatively high fractionation factors (αc > 1.06), comparable to those 319 

we observed (Fig. 5B), whereas lower values (αc < 1.06) are typical of acetate fermentation 320 

(Whiticar et al., 1986). 321 

The results of our nucleic acid-based analysis are consistent with our interpretation based 322 

on isotopic results. The dominance of phylotypes with cultured relatives that produce CH4 by 323 

CO2 reduction in the archaeal clone libraries we generated suggests that CO2-reducing 324 

methanogens are the most abundant Archaea in the shale. This result also compares favorably 325 

with the results of previous studies that analyzed Archaea in the Antrim Shale using molecular 326 

techniques. Although the clone libraries published in Formolo et al. (2008), Waldron et al. 327 

(2007), and Martini et al. (2005) contained a higher percentage of clones grouping with 328 

Methanosarcinales than our libraries, clones grouping in Methanomicrobiales and 329 

Methanobacteriales were found to be more abundant overall than those grouping in 330 

Methanosarcinales in those studies.  331 

The relative abundance of sequences in a clone library does not necessary accurately 332 

represent the abundance of the species corresponding to those sequences in the environment due 333 

to both PCR (Suzuki and Giovannoni, 1996) and sampling bias (Flynn et al., 2008). Similarly, 334 

interpreting pathways of microbial methanogenesis based on isotopic analysis may be less 335 
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definitive than originally thought (e.g., Bates et al., 2011; deGraaf et al., 1996; Waldron et al., 336 

1998). Nonetheless, both of these lines of independent evidence are in agreement, providing 337 

compelling support of our interpretation. 338 

These findings highlight a gap in our understanding of electron flow in the Antrim Shale; 339 

the fate of acetate remains unresolved. The ultimate products of organic matter degradation 340 

generally include both acetate and H2 (Madigan et al., 2003), implying that acetate is being 341 

generated within the shale. During organic matter degradation, production of acetate relative to 342 

H2 increases as a result of the activity of acetogenic microorganisms, Bacteria that consume H2 343 

and produce acetate. Most of the clones that grouped within the phylum Firmicutes (31 of 42; 344 

Fig. 1B) also grouped within the genus Acetobacterium based on our taxonomic analysis and 345 

indeed, a more rigorous analysis than we performed concluded that acetogens were in fact 346 

present in the northern producing trend (Formolo et al., 2008). Not only is acetate likely being 347 

generated in the shale, therefore, but its relative importance as a substrate for microbial activity 348 

may be even greater as a result of acetogenesis. Despite this, acetate has not accumulated where 349 

microbial CH4 is present (Martini et al., 2003) and H2 oxidation appears to have largely fueled 350 

formation of CH4. 351 

This apparent lack of acetate consumption by methanogens can be explained if some 352 

group of microorganisms other than methanogens is consuming acetate. Possibilities include 353 

SO4
2- reducers and syntrophic acetate oxidizers. The limited availability of SO4

2- until recently 354 

has likely restricted the activity of SO4
2- reducers (see Section 4.3). Syntrophic acetate oxidizers, 355 

however, could be active within the shale where the reaction is energetically favorable. 356 

Consistent with this possibility, clones in the library from well 150 that grouped within the Order 357 

Syntrophobacterales (Fig. 1C) also grouped within the genus Smithella based on our taxonomic 358 
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analysis. Gray et al. (2011) found evidence that Smithella species were responsible for 359 

syntrophic acetate oxidation in methanogenic oil-degrading microcosms. 360 

In addition to these possibilities, the apparent lack of acetate consumption by 361 

methanogens could also be explained if our isotopic and nucleic acid-based analyses 362 

underestimate CH4 contributions from acetate-fermenting methanogens or if some unknown sink 363 

for acetate exists within the shale. Uncertainty regarding the fate of acetate has also been 364 

observed in many other anoxic environments (Conrad, 1999), including unconventional gas 365 

reservoirs (e.g., Strąpoć et al., 2008). Additional research is needed to fully elucidate the 366 

pathways of electron flow through these systems. 367 

 368 

4.2. Shifts in archaeal community composition 369 

 Differences in the composition of the archaeal clone libraries collected from well 150 in 370 

2002 and 2009 suggest that the abundance of Methanosarcinales species adjacent to that well has 371 

decreased over time while the abundance of Methanobacteriales species has increased. This shift 372 

may have occurred because methanogens adjacent to the well continue to generate CH4 and 373 

changes in the environment as a result of commercial gas production favor Methanobacteriales 374 

species over Methanosarcinales species. It is also possible, however, that cells are simply being 375 

transported to the well by groundwater movement from a different zone within the subsurface 376 

than they were in 2002 (Fig. 6). In other words, a different population of planktonic cells was 377 

sampled in 2009 than 2002 because the source(s) of groundwater flowing to the well as a result 378 

of gas production has changed over time. 379 

In addition to both of these possibilities, differences in the molecular techniques used to 380 

analyze Archaea could have also contributed to the differences in community composition. 381 
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Archaeal 16S rRNA genes in the 2002 sample were amplified using a different primer set than 382 

the primer set that we used, potentially leading to differences in amplification efficiency between 383 

studies that may have favored Methanosarcinales species in the 2002 sample. Moreover, unlike 384 

our own PCR reactions, they used nested reactions to amplify archaeal DNA, which can 385 

introduce bias if too many cycles are used in the first round of amplification (Park and Crowley, 386 

2010). 387 

We examined the potential impact of differences in primer choice using the Ribosomal 388 

Database Project Probe Match tool (Cole et al., 2009). The probes were tested in pairs, as they 389 

were used, and the database search was restricted to sequences with data that span the 390 

Escherichia coli region targeted by both sets of primers (8 to 1000). Compared to the primers we 391 

used, the primers used to amplify archaeal DNA from the 2002 sample matched a much smaller 392 

portion of the Methanobacteriales, Methanomicrobiales, and Methanosarcinales sequences 393 

tested (Table 1). Of the three groups, furthermore, the primer set used for the 2002 sample 394 

matched considerably more Methanosarcinales sequences than Methanobacteriales and 395 

Methanomicrobiales sequences. These findings strongly suggest that differences in primer 396 

efficiency contributed to the differences in archaeal community composition observed between 397 

the 2002 and 2009 samples. 398 

  399 

4.3. Shifts in bacterial community composition 400 

Our molecular results indicate that SO4
2--reducing species are increasing in abundance in 401 

the northern producing trend. SO4
2--reducing species were undetected in the analysis of the 402 

sample collected from well 150 in 2002 by Martini et al. (2005) but accounted for a considerable 403 

portion of our clone library for that well (Fig. 1C). Amplification conditions used in that study 404 
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for Bacteria were nearly identical to those we used, implying that differences in the methods are 405 

less likely to contribute to the differences observed in the bacterial clone libraries than the 406 

archaeal libraries. In addition to well 150, furthermore, analysis of samples from other wells in 407 

the northern producing trend also did not detect SO4
2- reducers using molecular techniques 408 

(Formolo et al., 2008). 409 

This shift in the composition of the bacterial community is consistent with the increase in 410 

SO4
2- levels we observed. Where SO4

2- concentration exceeds as little as 30 µM in freshwater 411 

sediments, SO4
2- reducers can hold acetate and H2 concentrations below levels necessary for 412 

methanogen populations to grow (Lovley and Klug, 1986; Ward and Winfrey, 1985). In saline 413 

environments, this threshold may be as high as 2 mM (Megonigal et al., 2005). Threshold 414 

concentrations ranging between both extremes are likely important in the northern producing 415 

trend, where the gradient in groundwater salinity is very steep (Martini et al., 1998; McIntosh et 416 

al., 2002). SO4
2- reducers may be increasing in abundance in the shale, therefore, because SO4

2- 417 

reducers have begun to actively grow and compete with methanogens for substrates as SO4
2- 418 

concentration has increased. Similar to Archaea now present, however, groundwater movement 419 

may also be transporting these cells into the shale along with SO4
2- from zones within the 420 

subsurface that differ from those supplying water when the wells were previously sampled. Both 421 

of these possibilities may contribute to the observed changes in bacterial community 422 

composition. 423 

 424 

4.4. Shifts in groundwater geochemistry 425 

Our results demonstrate that the chemical and isotopic composition of water in the shale 426 

has shifted considerably in most of the wells since they were initially sampled. Relatively dilute 427 
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(Cl- < 1 M) and low-D, low-18O water recharged the Antrim Shale during melting of 428 

Pleistocene glaciers (McIntosh et al., 2002). Modern groundwater flow in the Great Lakes 429 

region, however, is largely restricted to shallow glacial drift aquifers near the surface (McIntosh 430 

et al., 2011; McIntosh and Walter, 2006). These changes within the past two decades, therefore, 431 

were likely caused by groundwater inflow in response to pumping to extract natural gas rather 432 

than the natural movement of groundwater in the basin. 433 

Groundwater seeping into the Antrim likely originates from multiple sources. We 434 

hypothesize that most of this inflow, however, originates from the underlying Traverse 435 

Formation (Fig. 6). The distribution of aquifers and aquitards is a major control on fluid 436 

migration along the Michigan Basin margin (McIntosh et al., 2002). The Antrim Shale is capped 437 

by brown Mississippian shales and the Ellsworth shale, which has a much lower intrinsic 438 

permeability than the Antrim (Ryder, 1996),  The Antrim is underlain by Devonian carbonate 439 

aquifer systems. Silurian-Devonian aquifers such as the Traverse Formation were the primary 440 

path of freshwater recharge into the overlying Antrim Shale during melting of Pleistocene 441 

glaciers (Eberts and George, 2000; McIntosh et al., 2002). This relatively high permeability 442 

formation may also serve as the primary route of groundwater flow into the Antrim as a result of 443 

commercial gas production. 444 

Shifts in SO4
2- and alkalinity levels we observed support this hypothesis. The increase in 445 

SO4
2- concentration we observed may reflect the presence of anhydrite in the Traverse Formation 446 

immediately beneath the Antrim Shale. Wilson and Long (1993) measured groundwater SO4
2- 447 

levels ranging as high as 6.3 mM with an average at 1.2 mM in the Traverse Formation. The 448 

decrease in alkalinity levels we observed is consistent with the low alkalinity content of the 449 

Traverse Formation. The highest alkalinity reported by Wilson and Long (1993) was 2.6 mM as 450 
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HCO3
-. Alkalinity levels from zones of microbial methanogensis in the Antrim Formation along 451 

the northern margin of the Michigan Basin generally exceed 10 mM (McIntosh et al., 2004). 452 

The extent to which changes in the isotopic composition of formation water support this 453 

hypothesis is less clear. The isotopic composition of water in the Michigan Basin varies widely 454 

(Martini et al., 1998; McIntosh et al., 2002). This variation reflects mixing between a 18O-455 

enriched basin brine end-member and recharge from low-D, low-18O Pleistocene glacial 456 

meltwater and modern precipitation. The decrease in δD values we observed, therefore, is 457 

consistent with inflow of water that has a greater proportion of meltwater and/or modern 458 

precipitation than the water present when the initial samples were collected. Because the 459 

Traverse Formation was a source of low D recharge to the Antrim Shale during the Pleistocene, 460 

further inflow from the Traverse would likely continue to lower D values. Indeed isotopic 461 

values reported by McIntosh et al. (2006) for the Traverse Formation along the northern edge of 462 

the Michigan basin range to lower values than those we observed in the Antrim Shale (Fig. 4). 463 

Such a shift in δD values would likely also be accompanied by a decrease in δ18O values. 464 

This change, however, is largely inconsistent with our results. Instead, δ18O values were slightly 465 

heavier in most cases, consistent with inflow that has a greater component of basin brine (δ18O-466 

enriched), such as that sampled by Wilson and Long (1993) from the Traverse Formation further 467 

south within the basin (Fig. 4). These inconsistencies imply that groundwater mixing as a result 468 

of pumping is not the only control on the isotopic composition of water in the shale. 469 

Coupled with changes caused by groundwater inflow, open-system groundwater 470 

degassing may have also contributed to the changes we observed. Zhou et al. (2005) showed that 471 

open-system groundwater degassing as a result of commercial gas production is fractionating 472 

noble gases in coal in the San Juan Basin, USA. We hypothesize that this process could also 473 
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affect the isotopic composition of groundwater by extracting water vapor through unsaturated 474 

pore space adjacent to the wells. Similar to evaporation, this process would enrich the isotopic 475 

composition of the residual water and may have a greater impact on δ18O than δD. Similarly, 476 

open-system degassing of CO2 could also affect the composition of water by causing the pH of 477 

aqueous solutions to increase and thereby driving precipitation of carbonate minerals and a 478 

decrease in alkalinity (Dreybrodt et al., 1992). This impact would be consistent with the 479 

observed decreases in alkalinity, Ca2+, and Mg2+ levels. More research is needed to fully evaluate 480 

the impact that pumping has on the chemical and isotopic composition of groundwater in 481 

unconventional reservoirs. 482 

 483 

4.5. Shift in gas geochemistry 484 

Both field station records and compositional analysis of the samples we collected 485 

demonstrate that CO2 has increased relative to CH4 in the gas produced in the field area. This 486 

finding is consistent with those of Martini et al. (2003), who concluded that CO2 increases over 487 

time due to differences in the ability of each gas to adsorb. CH4 and CO2 compete for the same 488 

adsorption sites, with CO2 being more strongly adsorbed than CH4 (Arri et al., 1992; Weniger et 489 

al., 2010). As a result, the proportion of adsorption sites filled with CO2 increases as formation 490 

pressure decreases during commercial gas production, ultimately causing CO2 to account for an 491 

increasing proportion of the produced gas. 492 

As the proportion of CO2 has increased, our results show that the isotopic composition of 493 

CO2 and CH4 has shifted. Similar to the observed shifts in water geochemistry and microbiology, 494 

these shifts may have occurred because gas is being drawn into each well from a different 495 

location than it was when the initial samples were collected. Like water, the isotopic composition 496 
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of gas varies sharply in the Antrim Shale along the northern edge of the basin (McIntosh et al., 497 

2004). Drawing gas from different zones over time, therefore, would cause the isotopic 498 

composition of produced gas to shift. Parallel shifts in the δD values of water and CH4 that we 499 

observed are consistent with this interpretation. The fractionation factor between water and CH4 500 

remained constant as the δD of water changed, providing evidence that the co-produced water 501 

was present when the CH4 formed. The water and gas, therefore, may have been drawn toward 502 

the well simultaneously from the same location. 503 

In addition to changes in gas source, many other processes may have also contributed to 504 

changes in the isotopic composition of CO2 and CH4 including fractionation associated with 505 

desorption and continued microbial activity. Light isotopologues generally desorb more easily 506 

and have higher diffusion coefficients than heavy isotopologues (Xia and Tang, 2012; Zhang and 507 

Krooss, 2001). These processes would cause the gas to get heavier over time during commercial 508 

production as light isotopologues would be withdrawn preferentially following initial 509 

development of a reservoir. This process may indeed explain the observed shift in the 13C of 510 

CO2 but not CH4, possibly reflecting differences in the extent to which those gases adsorb to 511 

organic matter. A recent study concluded that CH4 fractionation in response to adsorption and 512 

diffusion is limited under geological conditions (Xia and Tang, 2012). If this is true for CH4 but 513 

not CO2, then it could at least partially explain the changes in α between the recent and initial 514 

samples. 515 

 Continued microbial activity could have contributed to changes in the isotopic 516 

composition of CO2 and CH4 by generating both CO2 and CH4 under conditions that are more 517 

consistent with an open system than they were before development. The decrease in the 13C of 518 

CO2 produced from wells 73 and B is consistent with CO2 generation within the last 20 years. 519 
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Unless CO2 is simply being drawn into those wells from a zone with CO2 that has a lower 13C 520 

than the CO2 that was initially present, additional CO2 must have been generated that has a 13C 521 

more consistent with organic matter (i.e., lower). Parallel shifts in the 13C of CO2 and CH4 and 522 

the D of water and CH4 are consistent with continued CH4 formation in wells 147 and B. If 523 

methanogenesis continues to occur at a significant rate in the volume sampled by those wells, 524 

changes in the isotopic composition of CH4 there would be consistent with changes in the 525 

isotopic composition of both CO2 and water. 526 

Unlike the possibilities outline above, CH4 oxidation does not appear to be a primary 527 

control on the isotopic composition of either CH4 or CO2. During CH4 oxidation, isotopically 528 

depleted CH4 is preferentially oxidized (Barker and Fritz, 1981; Holler et al., 2009). This effect 529 

would increase the 13C value of residual CH4 and decrease the 13C value of CO2, the opposite 530 

of what we observed in most wells. 531 

 532 

4.6. Potential impact of hydraulic fracturing 533 

Hydraulic fracturing within the wells we sampled does not appear to have caused the 534 

changes in geochemistry and microbiology that we observed. Each of the wells included in this 535 

study were stimulated soon after the wells were drilled (Supplemental Content Table SC1). 536 

Stimulation was accomplished using nitrogen foam, acid solutions, and sand; an approach used 537 

in many other wells in the northern producing trend of the Antrim Shale (Milici, 1993). All of 538 

the samples collected initially from the wells included in this study were collected at least 3 539 

months after stimulation. Moreover, there is no record of well re-working for any of the wells 540 

between the initial sampling dates and the final sampling dates based on personal communication 541 
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with well operators and well records obtained from the Michigan Department of Environmental 542 

Quality. 543 

If wells were completed near those we sampled during the period of time between 544 

collection of our initial and final samples, however, it is possible that hydraulic fracturing could 545 

have caused some of the changes we observed. The water, chemicals, and dissolved gases 546 

injected into the shale for hydraulic fracturing could have ultimately mixed with pore water 547 

flowing to the wells we sampled via natural and induced fractures. Considering the potential that 548 

this process has to impact biological processes within shale-gas reservoirs, future research is 549 

warranted to examine the biological implications of hydraulic fracturing in more detail. 550 

 551 

 552 

5. Conclusions 553 

 Our results show that (1) gas being commercially produced in the field area today was 554 

still primarily produced by CO2 reduction, (2) SO4
2- concentration and the abundance of SO4

2--555 

reducing microorganisms have increased, changes that may ultimately allow SO4
2- reducers to 556 

displace methanogens, and (3) in addition to SO4
2-, other changes in the chemical and isotopic 557 

composition of water and gas in the shale have also occurred. These changes in microbiology 558 

and geochemistry can be explained by ongoing biogeochemical reactions and processes driven 559 

by commercial gas production, including groundwater flow, gas desorption, and open-system 560 

degassing. 561 

 These findings highlight the complex array of processes that can influence geochemistry 562 

and microbiology during commercial gas production and multiple areas where additional 563 

research is needed. These findings also have important implications for commercial gas 564 
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production. They imply that the practices used currently for commercial gas production from 565 

fractured shale can ultimately shorten the lifespan of an unconventional natural gas play by 566 

creating conditions that favor growth of microorganisms that can compete with methanogens for 567 

substrates. Future development in unconventional gas reservoirs should consider the chemical 568 

composition of water in adjacent formations and the potential of those formations to serve as a 569 

source of water inflow in response to pumping. 570 
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Figures 754 

Figure 1 755 

 756 

Figure 1. Taxonomic distribution of clones detected in samples from well 150, 147, and 22. 757 

Chart (A) shows the distribution of archaeal clones at the order level, (B) shows bacterial clones 758 

at the phylum level, and (C) shows proteobacterial clones at the order level. Chao1 richness 759 

estimates based on OTUs defined at ≥97% sequence identity are listed for each library under the 760 

charts for Archaea and Bacteria. Cl- concentration is plotted on the chart showing Archaea. 761 
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Figure 2 762 

 763 

Figure 2. Variation in water and gas production and gas CO2 content over time at field stations 764 

supplied by wells 150, M, B, 147, 16, and 22. Data are plotted relative to the date each field 765 

station came online (t = 0) and normalized to the number of wells in the field. The graphs are 766 

ordered from north to south as indicated on the figure. Cumulative water (w) and gas (g) 767 

volumes produced at each field station are provided in the upper right corner of each figure. 768 

These values are also normalized to the number of wells in the field. 769 
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Figure 3 770 

 771 

Figure 3. Variation in aqueous chemistry with distance north to south.  772 

  773 
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Figure 4 774 

 775 

Figure 4. Variation in the isotopic composition of water relative to the global meteoric water line 776 

(GMWL; Craig, 1961). Also plotted are data collected from the Traverse Formation along the 777 

northern margin of the basin by McIntosh and Walter (2006) and further south by Wilson and 778 

Long (1993). 779 

  780 
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Figure 5 781 

 782 

Figure 5. Variation in (A) the hydrogen isotope composition of CH4 relative to co-produced 783 

water and (B) the carbon isotope composition of CH4 relative to CO2. The D value of CH4 was 784 

lower than the D value of water by 172‰ (samples collected in 2009) and 171‰ (samples collected 785 

initially), on average. The average fractionation factor (αc) between CO2 and CH4 carbon 786 

isotopes was 1.076 in 2009 samples and 1.074 in the samples collected initially. 787 
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Figure 6 788 

 789 

Figure 6. Schematic showing possible sources of groundwater inflow into the Antrim Shale as a 790 

result of pumping. The stratigraphy shown was interpreted from electric well logs for well 16 791 

(Walter et al., 1996) and is similar to the stratigraphy observed in all of the wells we sampled. 792 

The Lachine and Norwood Members of the Antrim Shale have the highest organic matter content 793 

(0.5-24 wt.% TOC) and are the main targets for commercial gas production (Martini et al., 794 

1998). Well perforations coinciding with the depth of these members are shown in black in the 795 

well bore. The upper Devonian and lower Mississippian formations above the Antrim include the 796 

Coldwater, Red Rock, Sunbury, Berea, and Bedford. The glacial drift is 202 m thick at the well 797 

site and the Traverse Limestone exceeds 66 m in thickness. The Ellsworth Shale has a much 798 

larger fracture spacing than the Antrim, Squaw Bay, and Traverse formations (Ryder, 1996). As 799 

a result, the Ellsworth has a lower intrinsic permeability, which likely limits groundwater flow 800 

from that formation as a result of pumping.  801 
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Table 1. Results of probe match analysis 

Total1 2002 sample2 2009 sample3 
Order sequences matches % matches % 
Methanobacteriales 189 29 15% 168 89% 
Methanomicrobiales 563 34 6% 520 92% 
Methanosarcinales 999 322 32% 813 81% 

1Analysis performed using the Ribosomal Database Project Probe Match tool 
(Cole et al., 2009) with the database restricted to sequences containing data in 
the E. coli region from 8 to 1000. 
2Archaeal DNA amplified using 25F (5'-CYG GTT GAT CCT GCC RG-3') 
AND 958R (5'-YCC GGC GTT GAM TCC AAT T-3') 
3Archaeal DNA amplified using 109F (5’-ACK GCT CAG TAA CAC GT-
3’) and 915R (5’-GTG CTC CCC CGC CAA TTC CT-3’) 
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