by

FRED HORMEL HOFFMAN
B. S., Kansas State College
of Agriculture and Applied Science, 1951

A THESIS
submitted in partial fulfiliment of the
requirements for the degree

MASTER OF SCIENCE

Department of Economics and Sociology

KんNSAS STATE COLLEGE
OF AGKICJLTURE AND APPLIED SCIEACE
2668
$T 4$
1956
$H 64$
c.2
Documents TABLE OF CONPENTS
THE PROBLEM 1
THE ASSUMPTIONS 2
tHE ANALYSIS 5
The Model 5
The Application 9
Finney County, 1921-1848. 9
Price of Milo, Actual; cost-difference, Actual; Yield-difference, Actual. 10
Price of Milo, Actual; Cost-difference, Actual; Yield-difforence, Average (5.60 bu.). 11
Price of Milo, Averase ($\$ 0.70$); Cost-differ- ence, Average ($\$ 1.44$); Yield-difference, Actual. 13
Summary 13
Thomas County, 1914-1950. 14
Price of Milo, Actual; Cost-difference, Actual; Yield-difference, Actual. 15
Price of Milo, Actual; Cost-difference, Actual; Yield-difference, Average (-2.45 bu.) 15
Price of Milo, Average ($\$ 0.78$) ; Cost-differ- ence, Average ($\$ 1.10$); Yield-difference,
Actual. 16
Summary 17
Ellis County, 1914-1954 17
Price of Milo, Actual; Cost-difference, Actual; Yield-difference, Actual 18
Price of milo, Actual; Cost-difference, Actual; Yield-difference, Averase (1.31 bu.). 19
Price of Milo, Average (0.86); Cost-differ- ence, Average (\$1.16); Yield-difference, Actual. 19
Sumnary 20
Varlability of Yields and Income. 20
Finney County 21
Thomas County 22
Ellis County. 23
Cumulative Returns. 24
Finney County, 1921-1948. 24
Thomas County, 1914-1950. 25
Ell1s County, 1914-1954 26
SUMMARY 27
ACKNOWLEDCUENTS 30
LITERATURE CITED. 31
APPENDIX. 32

In milo production, the alternatives of continuously cropping the land versus rotation with summer fallow present an oconomic problem. This problem is of particular significance to farmers producing milo in approximately tho western haif of Kansas. Summer fallowing is not generally recomnended in the Eastern half of the State. ${ }^{1}$ Farmers in Western Kansas must decide what portion of their milo acreage should be fallowed.

Fallowing increases the accumulation of soll moisture and helps control weeds. If weeds are not closely controlled through the time period that the land is being rallowed, the possibility of increasing soil moisture is largely lost. The additional soll moisture which is available as a result of proper fallowing will beneflt the crop grown on the land the following season. In Western Kansas, lack of available soll molsture at the time it is needed is well known to be the mafor 11 miting factor in all grain production. A good stand of sorghums will remove more moisture from the soll during the growing period than is supplied by a normal rainfall during that period. ${ }^{2}$ In this area, where inadequate precipitation presents a problem, Pallowing increases jields.

Both the level and variability of returns were studied.

[^0]The variables affecting the level of returns were believed to be costs, milo prices, and milo yields. The influence of each variable was examined.

This study is restricted to a consideration of a best method over tine. It covers only statics, in contrast to a study of flexible farming, where the practices misht be chanjed from jear to year in response to the present and anticipated soll moisture and price situations at seeding timo. That would bo a study in itsolf, but would have to be preceded by the information reported in a study similar to this.

The results of this study apply particularly to Finney, Thomas, and Ellis counties where yield data were available from controlled experiments. This study was centered around a consideration of the milo after fallow and continuous milo alternatives. This study represents the results obtained from a consideration of a practical problem of milo producers of the area. The yield data available from controlled experinents were used in the model described below, with the aid of the budget method. Thus, economic tools were applied to the problem to obtain a solution of the optimum systen for each area.

THE ASSUMPTIONS

Several assumptions are necessary. It was assumed that farmers in this area were making a choice between erowing milo after milo continuously or growing milo in alternate jears Interspaced with fallow. Wheat and forage sorghums are the only other crops of importance in the counties studied. A
rotation of wheat and milo or of wheat and milo interspaced with fallow presents special technical problems. Fallow interspaced between forage sorghuin and forage sor bhum would probably show about the same result as fallow interspaced between milo and milo. However, this study was narrowed to the rotation of fallow interspaced between milo and milo.

A second assumption was that milo was used for grain produotion only. Hilo forage is sonetimes utilized as pasture by cattle or sheep after the grain crop has been harvested, or in the event of a grain crop fallure. In seasons when wheat pasture is plentifully avallable, little use will be made of milo forage for pasture purposes. There was a lack of information on the carrying capacity of milo stover for the two cases, milo after milo in comparison with milo after fallow. Therefore, the value of milo pasture was not included in the comparisons. The problem of erosion, both by water and wind, was assumed to be equal for both milo after fallow and continuous milo. There is a possibility that the use of fallow may increase erosion, particularly by wind, because of the fact that the land has no growing crop on it for an extended lent th of tine. If additional wind erosion as a result of including fallow in the rotation is a problem, it will probably tend to be most severe during the winter and early spring following the fallow season. The problem of erosion was not investigated in this study. However, the problem of wind erosion should not normally becone particularly severe if recommended soll management practices are followed.

Land was considered a flxed cost and labor, seed, and machinery costs were considered variable costs. It was assumed that contimuous milo and milo after fallow have the same effect on soll fertility. Throckmorton and fyers tend to validate this assumption in the statement, "It has been contended by some that fallowing is more destructive of soll fertility than is continuous wheat, but experimental results do not substantiate this contention."1

The technology assumed was that which was determined to be most nearly typical, and consistent with recommended soll manajement practices, of the technologies enployed in each of the three counties in 1954. Costs were adjusted for the time period covered by the study through the use of indexes. The indexes were used to adfust 1947 costs to give costs for other years. This use of indexes implies that technology was constant throughout the period of study. There was a change during this period. However, a change in technology during the period would affoct the results of this study only if the changes in technology affected the costs and ylelds of the two rotations differontly. There is nothing to indicate that technological changes would affect the results of the two rotations in a different manner.
$I_{\text {h. I. Throcknorton and H. B. Myers, op. o1t., p. } 30 \text {. }}^{\text {. }}$

THE A ALYSIS

The model

To analyze the problem of which method of producing milo was superior, it wes necessary to set up a relationship that would roflect quantitatively the influence of each of the relevant variables, costs, milo prices, and ylelds. The relationship that was chosen was the equality, cost-alifference between the methods $=$ the value of the jield-difference. It was assumed that farmers attempt to maximize the returns to the ir fixed Investment.

This relationship was derived as follows: for a flrm, total costs are defined as being equal to total recelpts. Further, it could be argued that within the firm, total costs= total recelpts among the various methods of producing a given product; this relationship is necessary for a producer to be Indifferent among alternative methods. For continuous milo, the relation 1 s given by equation (1) and for milo after fallow the relation is given by equation (2).
(1) total variable costs for continuous milo + total fixed costs for continuous milo $=$ total recelpts from continuous milo
(2) total variable costs for milo after fallow + total fixed costs for milo after fallow $=$ total recelpts from milo after fallow
(3) total varisble costs for continuous milo (1) minus total variable costs for milo after fallow $(2)=$ total
recelpts from continuous milo (1) minus total recelpts from milo after fallow (2)

The fixed costs of production, which include a return to land, to managemert, and for "rlsk" bearing, are equal for the two methods of production. Therefore, subtracting (2) from (1) gives the total variable costs of producing continuous milo minus the total variable cost of producine milo after fallow $=$ the differeace in recelpts between the methods. When the difference in cost is equal to the difference in returns, a producer will be indifferent between the two methods; if the difference in cost is greater (less) than the difference in returns, the cinolce is fallow (continuous milo).

The acreage under a continuous milo system is double the acreage under a fallow system. Therefore, the cost of producing continuous milo is double the varlable cost of producing one crop plus the cost of using a eiven quantity of land and manacement two years. The cost of producing fallow is the sum of the variable cost of production plus the cost of using a given quantlty of land and manajoment two years. The land area is equal, the cost of using it is likewise equal, and these costs cancel, as stated above. It is assumed that a quantity of management sufficient to produce milo by either method is available. The difference in cost, then, is the difference in varlable costs of producing an acre of milo two times by continuous milo methods minus the cost of producing an acre of milo after fallow. This difference will be called the costdifference.

The jlelds from continuous milo are also doubled because two years of crops can be erown on a given land area by this method while one crop is being crown after fallow. The difference between the total jlelds from two crops of continuous milo and from milo after fallow gives what is callod the fielddifference. The product of the yield-difference and the price of milo gives the value of the jleld-difference.

This relationship may be stated symbollcally $2 \mathrm{C}_{\mathrm{C}}-\mathrm{C}_{\mathrm{f}}=\mathrm{p}_{\mathrm{m}}$ $\left(2 Y_{c}-Y_{f}\right)$. C_{c} represents the cost of producing an acre of milo under a continuous milo method of production. Cf represents the cost of producing an acre of milo after fallow, including the cost of fallow. The price of milo is represented by p_{n}. Y_{c} represents the yield of continuous milo and Y_{f} the yield of mllo after fallow. Cost-difforence refers to the cost of two years of continuous $\mathrm{m} 110\left(2 \mathrm{C}_{\mathrm{c}}\right) \mathrm{min}$ us the cost of one year of milo plus the cost of fallowing $\left(C_{f}\right)$. The cost-difference then is that portion of the equation given as $2 \mathrm{C}_{\mathrm{c}}-\mathrm{C}_{f}$. In producing $2 \mathrm{~K}_{\mathrm{c}}\left(\mathrm{M}_{\mathrm{c}}=\right.$ one crop of continuous milo) that sequence of operations used in production of milo after milo will be performed two times. In producing \mathbb{X}_{f} (milo after fallow) a different sequence of operations will be performed, and the operations will be directed both toward fallowing, which involves tillage operations to keep the land free of weeds, and directly toward the production of milo.

Yield-difference refers to the difference in total jleld per acre between two years of continuous mllo ($2 \mathrm{Y}_{\mathrm{c}}$) and one year of milo after fallow (Y_{ρ}). The yield-difference then is
that portion of the equation given as $2 Y_{c}-Y_{\rho}$.
Once any two of the variaules are known, the value for the third that would leave a producer indifferent to the alternatives can be determined. If the values of all three variables are known, it will be possible to tell whether fallow is superior to continuous milo, continuous milo is superior to fallow, or fallow and continuous milo return equal profite.

It is known that the sign of $p_{\text {m }}$ is always positive in the real world. It is shown subsequently that the cost-difference is nearly always positive. The only instances in which the cost-difference is not positive are in the cases in which the milo after fallow crop for a glven year in a given county was considered to have been harvested and the continuous mllo crop for the same year and same county was not consldered to have been harvested because of an extremely low or no yield. The result in this situation, so far as cost-differences are concerned, is a necative cost-difference. The number of instances in which this situation occurred is quite low; 1t was elght for the entire study of the three counties. The handiling of cases in which the crop was considered to have been abandoned will be discussed in detail later, and the cost figures are presented in Table 7 in the Appendix.

In the remainder of the cases where the cost-difference is positive, the yield-difference must also be positive, if there is to be a problem regarding selection of alternatives. Other things being equal, the higher the price or the greater the yield-difference, the more favorable continuous milo will be
relative to milo after fallow as a method of production. The greater the cost-difference, the more favorable milo after fallow will be relative to continuous milo.

The Application

The model which has been developed is applied to the problem in each of the three counties. With the three variables, price of milo, cost-difference, and yield-difference, all comblnations of actual and averace values for these three variables result in eight possible combinations. Three of these combinations were selected for further study in each county, and a discussion of each of the three is presented for each county. The model used is applicable to any combination of the three variables, price of milo, cost-difference, and yleld-difference Which is found to exist at any particular time or place. Finney County, 1921-1948. The problem in Finney County, as in the other two counties, was confined to a study between the continuous milo and milo after fallow alternatives. The average Jields, as determined from the experimental plots, were 25.10 bushels per acre from mllo grown after fallow and 15.35 bushels per acre from milo grown in continuous rotation. ${ }^{l}$ There is considerable variation in the yield figures which these averages represent. The yields at Garden C1ty for continuous milo varied from 0.0 , which occurred nine times, to 59.8 bushels per acre in the span of the twenty-eight years studied. The milo

A discussion of the plots is presented in the Appendix.
after fallow jlelds likewise varled from 0.0 occurring eight times, to 66.4 bushels per acre. These variations are discussed in further detall at a later polnt. The yield-differences, by Jears, are presented in Table 8 in the Appendix.

The substitution of the assumed inputs into the model gives: 2 (sum of the cost of one waying twice, field cultivating once, drilling, rotary hoelng, seed, combining and hauling continuous milo) minus (aum of the cost of one waying twice, fleld cultivating twice, rod weoding twice, chiseling twice, drililng, rotary hoeing, seod, combining and hauling milo after fallow) oquals $p_{m}\left(2 Y_{c}-Y_{f}\right)$. The costs for $2 C_{c}$ and C_{f} partially cancel, and the cost-difference depends upon the remaining costs given In the simplifled equation, (sum of the cost of one waying twice, drilling rotary hoeing, seed, combining and hauling two crops of continuous milo) minus the (sum of the cost of chiseling twice, rod weeding twice, combining and hauling one crop of milo after fallow) equals $p_{m}\left(2 Y_{c}-Y_{f}\right)$.

Price of Milo, Actual; Cost-difference, Actual; Yielddifference, Actual. Using the assumption of actual values of each year for each of the variables, the procedure was to insert the values of the variables into the model for each year. This makes it possible to determine which of the two systems was the most profitable in each year.

Under the conditions assumed, mllo after fallow would have been more profitable in 19 of the 28 years. The nine jears when continuous milo would have been more profitable occur in the early and late years of the period, with none in the middle
of the time span. Three years when continuous milo would have been more profitable are in the early part of the period, and six are in the late part. These years were: 1923, 1924, 1928, $1940,1941,1943,1944,1945$, and 1947.

However, the fact that milo after fallow would have been more profitable in 19 of the 28 years, under the conditions assumed, does not give a coinplete - or accurate - picture of what the returns to land and management were for the 28 years. In the nine jears in which continuous milo would have been more profitable, the returns to continuous mllo were far superior to the returns to milo after fallow. Also, 8 of the 19 years In which milo after fallow would have been a better alternative were years in which there was no jield from elther continuous milo or milo after fallow. In these elght years, milo after fallow was better only in that the production costs were lower, resulting in a smaller loss to milo after fallow cropping in each of these oight years. The result is that the total returns to land and management for the entire perlod were appreciably higher with the continuous milo system of cropping.

The average annual returns, per farm, for the entire period were $\$ 855.74$ for continuous milo and $\$ 612.95$ for milo after fallow. The average returns per acre per year were $\$ 8.66$ for continuous milo and $\$ 6.13$ for milo after fallow. Returns by year and method are presented in Table 10 in the Appendix. Data on prices of milo, yields, and costs are also presented in Tables 6, 8, and 7, respectively, in the Appendix.

Price of Milo, Actual; Cost-difference, Actual; Yield-
difference, Average (5.60 bu.). Under these assumptions the model becomes $2 C_{c}-C_{f}=5.50 \mathrm{p}_{\mathrm{m}}$. This model enables the determination of the price of milo which would be needed to equate returns to land and management when the cost-difference is known. Or, for any given price of milo, the cost-difference nocessary to equate returns can be determined. If both the cost-difference and price are known, the superior system of production can be determined. Using the assumption of average Jield-difference (5.60 bushels), continuous milo would be the better choice in any year when the value of the jleld-difference (5.60 x price of milo) is greater than the cost-difference of that year.

Under these assumptions, continuous milo would have been superior in every year except one, which was 1932. This was a year in which the price of milo was very low. The average yleld-difference, 5.60 bushels, was so great that the value of the yield-difference is greater than the cost-difference, except when the price of milo is extremely low.

The following is an explanation of the computation of cost-differences when average yield-differences are assumed. The average yields of both continuous milo and milo after fallow are sufficiently large that, assuring average jields, the crop would always be harvested. Since the averace yielddifference is derived from the continuous milo and milo after fallow jield averages, the cost-difference in any year must be based upon the cost-difference of the two systems, including the full cost of harvesting for each. Under these conditions,
the cost-difference is alwajs a positive ilgure. This applies to all three counties, Finney, Thomes, and Ellis, in any situation where the average yield-difference is used in the analysis. The total costs, including the full cost of harvesting, are shown in Table 7 in the Appendix for all cases in which the crop was assumed not to be harvested and an adjusted harvesting cost was used in determinine total costs for the year.

Price of Milo, Average ($\$ 0.70$); Cost-difference, Average (w1.44); Yield-difference, Actual. Under these assumptions, the model $2 C_{c}-C_{f}=p_{m}\left(2 Y_{c}-Y_{f}\right)$ simplifies to $2 Y_{c}-Y_{f}=2.16$. This means that under conditions in which the jield-difference is 2.16 bushels per acre, the returns from elther of the two alternatives would be equal, given these cost-difference and price relationships. In any year in which the yleld-difference is Ereater than 2.16 bushels, continuous m110 would be the better choice. There were 10 years of the 28 when the yielddifference was greater than 2.16 bushels. These years were: 1923, 1924, 1928, 1931, 1940, 1941, 1943, 1944, 1945, and 1947. These are the same years in which continuous milo was superior, assuming actual values for the variables, except for 1931. Summary. Under the assumptions tested above, milo after fallow was superior in a greater number of years in two of the three tests applied. In the other test applied, continuous milo was superior in every year throughout the period, except one. The returns, for the entire period, were considerably greater for continuous milo than for milo after fallow in Finney County. As continuous milo was superior in only 9 of the 28
years, assuning actual values for the variables, there is an indication that there is less variability in jields from milo after fallow. The average yleld-difference is 5.60 bushols per acre greater for continuous milo. The higher returns to land and management from continuous milo indicate that continuous milo would be the recommended production method in Finney County

Thomas County, 1914-1950. The problem is in selecting between continuous milo and milo after fallow as a superior method of production in Thomas county. The average yields obtalned from the experimental plots studled were 25.54 bushels per acre from milo after fallow and 11.54 bushels per acre from continuous milo. Here again, there is a wide variation in the jields obtained, both from milo after fallow and continuous mllo. The Colby yiolds for milo after fallow ranged from 0.0 , which occurred seven times, to 66.6 bushels per acre. The yields for continuous milo also ranced from 0.0 , which occurred eight times, to 45.0 bushels per acre.

The substitution of the assumed inputs into the model gives: $2($ sum of the cost of one waying once, fleld cultivating once, rod weeding once, drilling, rotary hoeing, seed, combining and hauling continuous milo) minus the (sum of the cost of one waying twice, fleld cultivating twice, rod weeding once, chiseling twice, spring toothing once, drililng, rotary hooing, seed, coabining and hauling milo after fallow) equals $p_{m}\left(2 Y_{c}-Y_{f}\right)$. These costs partially cancel, and the cost portion of the equation is simplified. The equation becomes (sum of the cost of
rod weeding once, drilling, rotary hoeing, seed, combining and hauling two crops of continuous 7110) minus the (sum of the cost of chiseling twice, spring toothing once, corabining and hauling one crop of milo after fallow) equals $p_{m}\left(2 Y_{c}-Y_{f}\right)$.

Price of Milo, Actual; Cost-difference, Actual; Yielddifference, Actual. The conditions for comparison, as set out here, assume the use of actual values of each year for each of the three variables. The procedure used was to insert the values of the variables into tho model for each year, 19141950. In this manner, it is possible to determine which system was the most propitable in each year.

Under these conditions, milo after fallow would have been more profitable in 23 of the 37 years. The nine jears when continuous milo would have been more profitable are scattered falrly evenly throughout the perlod. However, there is only one jear in the 1920 's when continuous milo would have been more profitable, and flve of the nine occur after 1937. The years when continuous milo would have been more profitable were: 1915, 1919, 1928, 1931, 1938, 1939, 1941, 1944, and 1945.

The average annual returns to land and management under each system are consistent with the smaller number of years when continuous m110 would have been superior. The average annual returns per acre were $\$ 4.96$ for continuous milo and \$6.64 for milo after fallow.

Price of Kilo, Actual; Cost-difference, Actual; Yielddifference, Average (-2.45 bu.$)$. Using these assumptions the model takes thls form: $2 C_{C}-C_{f}=-2.45 P_{\text {Tl }}$ when the values of the
variables are inserted. The cost-difforence is positive in every case, assuming that the milo was harvested in every caso and full costs of harvesting are thus incurred. The price of milo is nover negative. Therefore, the value of the average yield-difference is negative for each year in Thomas county. Continuous milo would be superior only if the value of the average yield-difference should be lareer than the cost-difference. As the cost-difference has a positive value in each jear, and the value of the jield-difference is negative each year, the value of the average jield-difference is never the larcer value. Therefore, under these assumptions, milo after fallow would be the superior alternative in every year in Thomas County.

Price of Milo, Average ($\$ 0.78$); Cost-difference, Average (\$1.10): Yield-difference, Actual. Using these assumptions, the equation becomes $2 Y_{C}-Y_{\Gamma}=1.41$ after the average values for the two variables have been inserted into the model. This means that the returns from the two alternatives would be equal when the jield-difference is 1.41 bushels per scre, with these cost-difference and price relationships. There were nine years in Thomas County in which the jield-difference was more than 1.41 bushels per acre, and continuous milo would be the better cholce in those years. In the remaining 28 years milo after fallow would have been superior. The nine years when continuous milo would have been more profitable are the same jears in which continuous milo was found to have been more profitable under the assumption of actual values for each of the three variables.

Sumary. Under all the assanptions tested, milo after fallow was the superior metial of producing milo in Thonas County. Using actual values for the three varlables, there were 9 of 37 years when continuous milo would have been more profitable. A "complementary" situation appears to exist here. Milo after fallow results in a higher average jield (and higher product value), and it is also a lower cost method of production. The results indicate that milo after fallow would be the recomended production method in Thomas County. Ells county, 1914-1954. The problem is the same in Ellis County as in the other two countles studied - the problem of determining whether continuous milo or milo after fallow would have made better returns for the yeare in which experimental data were avallable. The average ylelds from the experimontal plots were 16.73 bushels per acre from continuous milo and 31.75 bushels por acre from milo after fallow. In Ellis County, as in the other countles, there was a wide range in the yields obtalned undor both systems of production. The yields for continuous milo varled from 0.0 , which was the case ten years, to as high as 69.7 bushels per acre. The fields for mllo after fallow varied from 0.0 , occurring six times, to as high as 99.1 bushels per acre.

The substitution of the ass med inputs into the model gives: 2 (sum of the cost of one waying once, fleld cultivating once, spring toothing once, drilling, rotary hoeing, seed, combining and hauling continuous milo) minus the (sum of the cost of one waying twice, fleld cultivating three times, spring toothing
twice, chiseling once, drilling, rotary hoelng, seed, combining and hauling milo after fallow) equals $P_{m}\left(2 Y_{c}-Y_{f}\right)$. These costs larcely cancel, resulting in the simplified equation (sum of the cost of drilling, rotary hoeing, sead, combining and hauling two crops of continuous milo) minus the (sum of the cost of chiseling once, field cultivating once, combining and hauling the one crop of milo after fallow) equals $p_{m}\left(2 Y_{c}-Y_{f}\right)$.

Price of Milo, Actual; Cost-difference, Actual; Yielddifference, Actual. As in the other two counties, actual values were assumed for each of the three varlables. These values were inserted into the model for each year, thus making it possible to determine which of the two methods of production was the most profitable in each year.

Under these conditions, continuous milo would have been more profitable in 21 of the 41 years. Or, to state the proposition conversely, milo after fallow would have been more profitable in 20 of the 41 years. The jears when continuous milo would have been more profitable are scattered quite evenly throughout the time period, except that only two of them occurred in the 1930's. These years were: 1914, 1915, 1918, 1919, 1920, 1921, 1924, 1925, 1927, 1928, 1933, 1938, 1941, 1942, 1944, 1948, 1949, 1950, 1951, 1953, and 1954. Here acain, several of the years in which milo after fallow was better were years in which nelther system produced any yleld, and milo after fallow was better only in the sense that losses for each of these years were less.

The average annual returns to land and managenent were
about equal for the two systens, continuous milo showing very slightly better returns for the entire period. The average annual returns per acre were $\$ 9.73$ for continuous milo and $\$ 9.36$ from milo after fallow.

Price of M110, Actual; Cost-difference, Actual; Yielddifference, Averaso (1.81 Du.). Using these assumptions, the average jield difference is inserted into the model, resulting In this equation: $2 C_{c}-C_{f}=1.81 p_{\text {In }}$. The cost-difference is positive in every jear, assuming that the milo was harvested in every year under both of the two systems of production. Under this sot of assumptions, continuous milo was superior in those years when the average yield-difference times the price of milo (value of the average yield-difference) was greater than the cost-difference in the same year. There were 21 years of the 41 when the value of the average jield-difference was greater than the cost-difference, and three years when the two quantities were equal. The years when continuous milo was superior under these assumptions were: 1914, 1916, 1917, 1918, 1919, 1922, 1923, 1924, 1925, 1926, 1929, 1934, 1935, 1936, 1943, 1944, 1945, 1946, 1947, 1952, and 1954. The three years in which the two methods of production would have yielded equal returns were 1915 , 1930, and 1939.

Price of M110, Average ($\$ 0.86$); Cost-difference, Average (\$1.16); Yield-difference, Actual. Under this set of assumptions, the model is $2 Y_{c}-Y_{I}=1.35$ after inserting the average values of the two variables into the original model. The returns from the two alternative systeas of production would be equal in any
year in which the jield-difference is 1.35 bushels per scre. Continuous milo would be the superior choice in those jears when the jield-difference is greater than 1.35 bushels per acre. In Ellis County there were 21, of the 41 years studied, When continuous milo was the superior choice of alternatives. These jears are the same 21 years in which continuous milo was superior under the assumption of actual values for each of the three variables.

Summary. Under each of the sets of assumptions tested in Ellis County, continuous milo was the more profitable production method in 21 of the 41 years studied. These flgures would tend to indicate that the two production alternatives could be expected to be about equally profitable over a relatively long period of years under Ellis county conditions. The average yield-difference (1.31 bu.) would tend to make continuous milo more profitable, but the effect of an averase jield-difference favoring continuous mllo is largely counter-balanced by the fact that milo after fallow is a lower cost method of production. The results obtained do not indicate that one production method could be recomended over the other as a long-time practice. Under Eiven cost, price, and yield conditions, either milo after fallow or continuous milo could be more profitable in any particular yoar.

Variabllity of Ylelds and Income

The entire analysis so far has been concerned with the three variables, yields, prices received for milo, and costs
of production, and how they affect profits (returns to lana and management), using the two alternative systems of production. A farm operator who has the problem of making a choice between the two systems would probably be concerned to some degree about the variability of yields and income when making a decision between the two systems. Two slternatives presenting equal total income opportunities over a given time can not be considered to be equally desirable if the income opportunIties from one are of considerably oreater variability than the income opportunities of the other. The standard devia$t_{10}{ }^{1}$ is the measure of variability which was used. Finnoy County. The standard deviations obtained in Finney County were 35.109 bushels for yields and 1784.91 dollars for returns to land and management under the continuous milo system. The corresponding ilgures for the milo after fallow system were 21.168 bushels for jlelds and 1005.70 dollars for returns to land and management. This is an indication that much less variablilty exists from year to year in both yields and returns under the milo after fallow method of production. The years, or periods, of extremely $h 1$ gh (and $10 w$) jields and returns tend to be "levelled out" with the use of the milo after fallow method of production. This is an 1 tem of some importance

$$
I_{\text {The standard deviation }}=\sqrt{\frac{\text { sun of squares }-\frac{(\text { sum })^{2}}{N}}{N-1}}
$$

to any farmer who is faced with the problem of making a choice between the two production altornatives. The differences in varlabllity between the two systems would carry much weight with some farm operators, and with others this would be a matter of less importance in making their decisions. The standard deviations for the three counties are shown in Table ll In the Appendix.

The level of income was greater for continuous milo in Finney County. The varlabllity of both yields and income is less under the milo after fallow system. However, the level of income from continuous milo is sufficiently greater then from $m i l o$ after fallow that few, if any, farmers would be willing to forego the larger income possibilities of continuous milo in order to enjoy the borefit of having less yield and income varlability by growing milo after fallow. It is very likely that continuous milo would be selected by most farmers.

Thomas County. In Thomas County the standard deviation fleures for yields were 22.642 bushels for continuous milo and 18.651 bushels for milo after fallow. Similarly, the standard deviations obtained for returns to land and management were 253.05 dollars for continuous milo and 234.51 dollars for milo arter fallow.

These figures indicate that both jield and return (income) varlabilities were lower in Thanas County when milo was grown after fallow. These standard deviations can be interpreted as meaning that there was less variation of both jields and
returns over the period of time (37 years) studied if milo after fallow were the alternative chosen. It was polnted out above that the returns to land and management from milo after fallow were higher in thomas County than from contlnuous milo. A farmer very probably would select milo after fallow as a superior method.

Ellis County. The field standard deviations were 35.315 bushels for continuous milo and 24.966 bushels for milo after fallow. The standard deviations for returns to land and management were 292.43 dollars for continuous milo and 200.65 dollars for milo after fallow. These figures indicate, as was the case in the other two counties, that less variability of both jields and income is experienced in the case of milo after fallow as compared to continuous milo.

The returns to land and management (income) were found to be alnost equal under elther of the two systems of production in Ellis County, the returns from continuous milo being very slightly higher for the entire period. It is doubtful that the returns from continuous milo are sufficiently higher to offset, for most individuals, the greater variability of yields and returns experienced from raising continuous milo. Milo after fallow would be the more probable cholce for most farmers. However, some farmers, attaching little importance to the greator variability of continuous milo, could be expected to make the continuous milo cholce in the expectation of realizlng higher returns over a perlod of years.

Cunulative Returns

A study of cumulative returns was made because of the large variations in returns experienced through the years which were studied in each county. In addition, conditions of low or high returns show a tendency to exist over a period of several successive years. This is particularly true of very low positive and of nezative returns. The returns to land and management were cumulated from each method for each of the three countles studied. The cumulated returns from each method are shown for Finney, Thomas, and Ellis Counties in Table i2 in the Appendix.

Finney County, 1921-1948. The cumulated returns were greater for continuous milo than for milo after fallow throughout the period of time studied, 192l-1943, except for the inftial two years. The cumulated returns were greater for milo after fallow in 1921 and 1922, Table 12 (in ihe Appendix). However, there was a period of eleven successive years, 1929-1939, when the net addition (or subtraction) to cumulative returns was more favorable from milo after fallow each year than from continuous milo. The net addition to cumulative returns for the years 1329-1939 was $\$-1803.80$ from continuous milo and $\hat{\$}-293.45$ from milo after fallow. The continuous mllo rotation was superior during the entire period, but in this particular series of years it resulted in heavier losses than would have been incurred through the use of the milo after fallow rotation. A farm operator would have needed extensive savings at the beginning
of this critical period, or other sources of income during this time, in order to remein in business. However, the chances of survival were much more favorable under the milo after fallow system. In this case, a period of years has been selected in which a method - milo after fallow - would permit more farmers to remain solvent through the critical period than could remain In business using the continuous milo method, even though continuous milo is, on the averaje, more profitable in Finney County. The high returns from continuous milo in the years following this critical period were of little velue to those farmers forced into dissolution before the better years came. Thomas County, 1914-1950. The oumulative returns from continuous milo were greater than from milo after fallow in most of the early years of the period. The cumulative returns from milo after fallow were slightly greater by 1922, and from that time through the remainder of the perlod the cumulative returns from milo after fallow are greater in each year.

For the 17 year period, 1924-19s0, the net addition to returns was $\$-147.36$ from continuous milo and $\$ 691.50$ from milo after fallow. The fallure of the continuous milo systen to show a net addition to returns for thls period is serious. There were only five years during this adverse period when continuous milo resulted in any net addition to returns. It is unlikely that many farm operators, large or small, raising milo by the continuous milo method could remain in business through an adverse period of such great length. The milo after fallow system, on the other hand, would have resulted in a
modest net addition to cumulative returns for the 17 year period. These returns, smill as they were, would have brought the farm operator through thls adverse porlod with less rellance upon savings and outside income than if he were producing milo under the continuous milo system.

Ellis County, 1914-1954. The cumulatlve returns were alternately greater for continuous milo and milo after fallow at different times throughout the period. The cumulative returns to milo after fallow became slightly greater in 1930 and remained greater through 1943. The cumulative returns were Ereator for continuous milo in 1944 and 1945, and greater for milo after fallow in each of the three following years. By 1949 the cumulative returns becane slightly greater for continuous milo, and remained so through the last years of the period.

Although continuous milo was silghtly superior in returns over the entire period, milo after fallow was slightly superior In returns for the years 1914-1943, Table 12 in the Appendix. This gives little basis for recommending one system of production over the other froin the standpoint of returns in Ellis county.

Throuth an adverse period of years, milo after fallow results in more favorable returns in Ellis County, as was the case in Finney and Thomas Counties. For the period 1929-1940, the net addition to cumulative returns was -161.00 from continuous milo and $\$ 239.44$ fron milo after fallow. It would appear that there are instances when it would be profitable to
summer fallow a portion of the acreage devoted to milo production, even though it may not be a profitable practice under more favorable conditions.

SUMMAKY

This study represents the use of economic tools to indicate to milo producers at various locations the comparative results to be expected from producing continuous milo versus milo after fallow.

The influence of yields, milo prices, and production costs on income were studied. Variability of ylelds and of income from the two systems were compared.

Finney, Thamas, and Ellis Counties were studied in detail because yield data from controlled experimental plots were available. M1lo after fallow and continuous milo were compared for each county.

Continuous milo was found to be superior in Finney County, In terms of returns to land and managoment for the years studied. Milo after fallow was the superior system in Thomas County. In Ellis County the returns to land and management were only very slightly greater from continuous milo than from milo after fallow. The difference in roturns is so small that one system can not be recommended over the other as a longtime practice on this basis.

Comparisons of yield and income variability within each of the three counties showed that, in all cases, variabillty was greater for continuous milo than for milo after fallow.

It is believed that farmers would attach some value to the reduced variabillty experienced with production after fallow. The amount of value placed on the reduced varlabillty associated with cropping after fallow would vary widely among farmers. In general, it is belleved that the choice between the two systems of production is determined largely by the difference in returns to land and management, and that the difference in variabllity of the two systems has only a rather slight effect on the choice which is made. In Ellis County, the difference in returns to land and management in favor of continuous milo is so small that a farmer might be expected to choose the mllo after fallow system because of the lower yield and income variability associated with its use.

A study of cumulative returns was used to indicate a comparison of the two production systems, especially during a period of adverse production conditions. It was found that milo after fallow was superior during distress periods, both In locations where milo after fallow is superior under average conditions and in locations where continuous milo is superior under average conditions.

This study was 1 mited to statics. Superior systems over time were determined.

The fallow problem was found to be of practical importance in the counties studied. Producers of all farm crops under nonirrigated conditions in approximately the Western half of Kansas are faced with the decision of how much land to fallow and whether to plant at a given time on continuously cropped land.

In some counties and under certain conditions the difference in returns between the optimum production method and the alternative was quite large.

ACKIFOWLEDGMENTS

The author is very grateful to Professor Dale A. Knight for numerous suggestions and ideas, and for encouragement. Acknowledgment is also given to the Department of Agronomy for the use of jleld data from experimental plots, and to Professor James A. Hobbs for assistance in selecting the experimental plots to be used in this study.

LITERATURE CITED

Miller, Frank, Quentin W. Lindsey, and Arthur G. George. Cost of Operating Machinery on Nobraska Farms. Nebraska Experiment Station Bul. 391. December, 2yद्ड.

Scoville, O. J., and J. A. Hodges. Practices and Costs on Wheat Farms in Western Kansas, 1947 . Kansas Agricultural Experiment station Circular 268, Bureau of Agricultural Economics, U. S. Dept. of Agr. co-operating. December, 1950.

Throckmorton, R. I., and H. E. Myers. Summer Fallow in Kansas. Kansas Agricultural Experiment Station bul. 293. March, 1941.

APPENDIX

A Note on Calculation of Costs

The costs for individual years were determined by adjusting 1947 costs by appropriate indexes. Machinery and power costs were adjusted by the index of United States farm machinery costs, labor costs by the index of United States farm wage rates, and fuel costs by the Index of United States motor supplies.

The costs are for a crop harvested in a particular year. In the case of a continuous milo crop, the costs are all incurred in the calendar jear in which the crop is harvested. In the case of a milo after fallow crop, tho fallowing costs for a given crop are the costs of the previous year. The remainder of the land preparation costs, and all seeding and harvesting costs are the costs of the calendar year in which the crop is Grown and harvested.

The rates for machinery, power, labor, and fuel were for the time actually in the field; to provide for preparing the machine, traveling to and from the field, and breakdowns, the rates for the four types of costs were increased by 10,10 , 20 , and 10 per cent, respectively.

For those years in which the value of a crop was not sufficient to cover the costs of harvesting, costs were adjusted and income was calculated in which the assumption was made that such crops were not harvested. The harvesting costs, (machinery, power, labor, and fuel) were reduced by 60, 60, 30 , and 100 per cent, respectively.

Typical inputs were used for each analysis. These are
operations belleved typlcally performed by farmers in the areas under study, and consistent with recomended soil management practices. It is recognized that many farmers do not use exactIJ the combination of fleld operations chosen. However, the operations chosen present a general picture and are as accurate as any other combinations known. The research, of course, assumes these operations, or others that entail similar costs. Those farmers using operations with costs greatly different from these will need to modify the results to fit their conditions of operation.

A Discussion Concerning the Differences in Fiesults Obtained from the Yield Data of the Three Stations

The results of this research were not entirely consistent between the three counties studied. Two areas of study can be pointed out in which the results were fully consistent between the three counties. Each of the three counties shows a lower variabllity of both yields and returns from milo after fallow than from continuous milo. The results also indicate that milo after fallow was a superior mothod of production during a period of adverse conditions, in all three countles. However, on the basis of returns to land and managoment, the results of this research would indicate a different recomendation between the two alternatives for each of the three counties. In Finney County, continuous milo appears to be the superior system; in Thomas County, milo after fallow, and in Ellis County either of the two systems could be expected to jiold approximately
equal returns in the long run situation. The question then may arise, Why isn't the same system of production superior In each of the three counties?

A variety of reasons might be given as to why milo is more responsive to fallowing in one location than in another. The finding of a complete set of answers to this question would constitute a rather sizeable study in itself. Some of the factors which may have made fallowing appear to be more beneficial in Thomas County than in Ellis and Finney Counties will be discussed here. No attempt $w 111$ be made here to establish the relative importance of any of the factors which may have made fallowing appear to be more beneficial in Thomas County.

A large portion of the difference in response to fallowing between Thomas and Ellis Counties can probably be attributed to climatical differences which are associated with the difference in location. Thonas County is in the second tier of counties from the west side of the State. Ellis County is in the fifth tier of counties, whlch places it in an area of higher average amual rainfall. Less response to fallowing is to be expected under higher average rainfall conditions, other things being equal. The average annual rainfall is 17.31 inches in Thomas county and 22.69 inches in Ellis County. 1 The average annual evaporation rate is also higher at Hays than at Colby, which would tend to make the practice of fallowing less effective at Hays. The average seasonal evaporation of water from
$1_{\text {R. I. Throckmorton and H. E. Myers, op. cit., p. } 6 . ~}^{\text {. }}$
a. free water surface, April to September inclusive, is 49.0 inches at Hays and 43.2 Inches at Colby. ${ }^{2}$

The wide difference in response to fallowing which was experienced betwoen Thomas and Finney Counties is more difficult to explain. In Thomas County the average jield-difference was found to be 2.45 bushels per acre in favor of milo after fallow. The average Jield-difference in Pinney County was 5.60 bushels por acre in favor of continuous milo. Thus, a positive response to fallow is indicated in Thomas County, and a negative response to fallow, on the average, is indicated in Finney County.

Colby and Garden city are located epproximately due north and south of each other, and the average annual rainfall at each place is about the same. The average annual rainfall is 17.81 inches in Thoms County and 18.54 inches in Finney County. ${ }^{2}$ The difference in response to fallow can not be attributed to the difference in average annual rainfall.

Three factors remain which could account for the difference in response to fallowing which was experienced between the two locations. The soll texture may be coarser (more sandy) at Garden City than at Colby. A soll which la made up largely of fine particles has a bigher moisture retention capacity than has a lighter, sandier type of soll.

The loss of water in surface run-off may be higher at

$$
\begin{aligned}
& 1_{\text {Ib1d. }} \text { p. } 7 . \\
& 2_{\text {Ibid. }} \text { p. } 6 .
\end{aligned}
$$

Garden City than at Colby. If this is the case, the heavier rate of run-off could be due to either or both of two causes. The topography may be more sloplng at Gardon City than at Colby. A larger percentage of tho average annual rainfall received at Garden City may occur in the form of torrential rains, which would result in a hoavier rate of run-off.

It is known that the rate of evaporation is appreciably higher at Gardon Clty than at Colby. The average seasonal evaporation of water from a free water surface, April to September inclusive, is 56.4 Inches at Garden City and 43.2 inchos at Colby. ${ }^{1}$

A Note on the Experimental Plots from Which
Yield Data Wore Obtained

All jleld data used in the analysis were obtained from controlled experiments conducted at Branch Experiment Stations In the three counties in which the analysis was applied. For the continuous milo yield data at Garden City, the results obtained from Plot A of the MC milo rotation were used. This plot was plowed early in April, then kept free of woods until It was seeded in the early part of June. The milo after fallow Fiold data at Gardon City wore takon from Plots L and in of the $\mathbb{M F}$ milo rotation. Plot L was fallowed in even-numbered yoars, and Plot M was fallowed in oud-numbered years. These plots were plowed about May 1 of the fallow seas on and kept clean the romainder of the season, and through the following spring until

[^1]they were seeded early in June.
At Colby, the jield figures for continuous milo were taken from Plot A, and for milo after fallow from Plots C and D of the MC milo rotation. Plot A was spring plowod about May 15 to 20 , then kept free of weeds as the seedbed was belng developed to seed the crop. Plot C was fallowed in odd-numbered jears, and Plot D was fallowed in even-numbered years. The plot to be fallowed was plowed about May 15 to 20, then clean cultivated through the remainder of the fallow sesson and the following spring.

The jield data at Hays for continuous milo were obtained from Plot A, and for milo after fallow from Plots C and D of the CC milo rotation. The first field operation on Plot A, following harvest in the fall, was to plow in the spring. Sufficient additional tillage was applied to prepare the seedbed for planting and to control weeds. Plot C was fallowed in oddnumbered jears, and Plot D was fallowed in even-numbered jears. The plot to be fallowed in a given year was plowed about May 15 to June 1, then kept clean through the growing season. Weed growth was also closely controlled through the following season until planting time.

The Fields were obtained at each station from those plots using sequences of field operations which can be reconmended for general use in these areas. In selecting the plots from which to use yield data, some attention was also given to selecting those plots on which the field operations were most similar to the field operetions typically used in the areas.

Those plots were selected for comparison at each of the three stations on which the field operations for both continuous milo and milo after fallow were most nearly aimilar in their basic structure. All plots from whioh yield data were used in this research were spring plowed in the spring following harvest of a crop. This applios to both the continuous milo and milo after fallow plots. The fallow plots were not replowed In the spring following the season in which they were fallowed. Fall plowing is not recommerded in the three counties studied, as this practice leaves the soil very vulnerable to erosion, both by wind and water through the winter and early spring.
Table 1. Machinery, power, labor, and fuel costs, per acre, milo aftor fallow, and contin-
Table 1 (concl.).
Input : Machinery ${ }^{1}$: Power : Laborl: Fuel2: Seed :Total

			nuous			
Land preparation and drilling						
One way 10 ft .	-0.13	\$0.16	20.20	\$0.17		\$0.66
Fleld cultivator 15 ft .	0.08	0.12	0.14	0.10		0.44 0.66
One way 10 ft.	0.13	0.16	0.20	0.17		0.66
Drill 14 ¢t.	0.25	0.12	0.14	0.09		. 6.6
Rotary hoe 14 It.	0.17	0.07	0.11	0.06		0.41
AdJustment	0.08	0.06	0.16	0.06		0.36
Total	\$0.84	\$0.69	\$0.95	\$0.65		43.13
Seed 5 lbs .					+0.22	0.22
Harvesting						
Combine 14 ft. seli-						
propelled	\$1.29		\$0.18	\$0.26		\%1.73
Haul	0.41		0.18	0.03		0.62
Adjustment	0.17		0.077	0.03		0.27
Total	\$1.87		0.43	0.32		+2.32
Total, all 1nputs	\$2.71	\$0.69	\$1.38	\checkmark. 0.97	\$0.22	15.97

[^2]Table 2. Machinery, power, labor, and fuel costs, per acre, milo after fallow, and continuous milo, Thomas County, Kansas, 1947.
M110 after fallow

0
0
0
0 C
0
0
0

	150040

30.20
0.14
0.14
0.15
0.12
0.12
0.20
0.14
0.14
0.11
0.29
11.75
$\begin{array}{llll}0 & 0 & 0 & \text { N } \\ 4 & H & 0 & \text { N } \\ 0 & 0 & 0 & 0\end{array}$

$\$ 1.31$

$\$ 1.95$
0.61
0.26
2.82
4.20

Input
Land preparation and drilling
$\begin{array}{ll}\text { One way } & 10 \text { ft. } \\ \text { Fleld Cultivator } & 15 \text { ft. }\end{array}$
$\begin{array}{ll}\text { One way } & 10 \text { ft. } \\ \text { Fleld Cultivator } & 15 \text { ft. }\end{array}$
Field
Rod We
$\begin{array}{ll}\text { Rod Weeder } & 12 \text { ft. } \\ \text { Chisel } & 16 \text { ft. }\end{array}$
$\begin{array}{ll}\text { Chisel } & 16 \text { ft. } \\ \text { Chisel } & 16 \text { It. }\end{array}$
Fiela Cultivator
der
One way 10 ft.
Spring tooth 16 ft . Spring tooth
Drill

Rotary hoe Adjustment Seed Total

Total
Harvesting
14 ft. self-
propelled

- sqL G

Total, all inputs
Table 2 (concl.).

S
$\stackrel{\circ}{8}$

10
9
0
0
0 0
 $\$ 0.13$
0.08
0.08
0.04
0.16
0.13
0.08
0.04
0.25
0.17
0.12
21.28 $\$ 1.95$
0.61
0.26
+2.82
+4.10
Table 3. Machinery, power, labor, and fuel costs, per acre, milo after fallow, and continuous milo, Ellis County,

```
|
```

: Machinory ${ }^{1}$
Table 3 (concl.).

Taule 4. Costs upon which the cost-difference depends, alternative compar-
Romaining Inputs

M_{c} or M_{S} Finney County	H1gher cost alternative Two one-wayings + drilling + rotary hoelng + seed +2 (combining and hauling continuous m110).	Lower cost alternative Two chiselings + two rod weedings + combining and hauling milo after fallow.
M_{c} or M_{f} Thomas County	Rod weeding + drilling + rotary hoelng + seed +2 (combining and hauling continuous milo).	Spring toothing + two chiselings + combining and hauling milo after fallow.
M_{c} or M_{f} Ellis County	Drilling + rotary hooing + seed +2 (combining and hauling continuous milo).	Chiseling +field cultivating + combining and hauling mllo after fallow.

${ }^{2}$ Obtained by cancellation of inputs as Ilsted in Tables 2,2 , and 3.
Table 5. Indexes of costs of sumner fallow operations and costs of spring land preparation, seeding, weeding, combining, and hauling.

Table 5 (concl.).

Year	$:$	Sunmer Fallow Operations 1					:	$\text { Seeding, } \frac{\text { Spring Land Preparation }}{\text { Weeding, Coiblinlig, and Haulingl }}$				
	:						:					
	:	Machinery	:	Labor	:	Fuel	:	achineryandPower	!	LaOOR	:	Fuel
	:	and	:		:		:		:		:	
	:	Power	:		:		:		:		:	
	:		:		:		:		:		:	
	:	U.S. Parm	:	U.S. Farm	:	U.S. Motor	:	U.S. Farm	:	U.S. Farm	:	U.S. Motor
	:	machinery	:	wage	:	supplies	:	machinery	:	wago	:	supplies
	:	costs	:	rates	:		:	costs	:	rates	-	
1937		73		27		81		74		31		82
1938		74		31		82		76		31		81
1939		76		31		81		76		30		79
1940		76		30		79		74		31		77
1941		74		31		77		75		36		80
1942		75		36		80		79		47		85
1943		79		47		85		82		63		88
1944		82		63		88		84		76		90
1945		84		76		90		85		86		90
1946		85		86		90		88		92		91
1947		88		92		91		100		100		100
1948		100		100		100		116		105		111
1949		116		105		111		130		102		113
1950		130		102		113		133		101		115
1951		133		101		115		144		112		121
1952		144		112		121		149		120		122
1953		149		120		122		150		123		124
1954		150		123		124		152		122		126

[^3]Table 6. Cost of milo seed and prices recelved by farmers for milo, Finney,

(解
 W
 A

Table 6 (concl.).

[^4]Year: Finney county, 1921-1948: Thomas county, 1914-1950 : E111s County, 1914-1954

Table 7 (cont.).

$\begin{array}{r} \text { Year: } \\ : \\ : \end{array}$	F1nney County, 1921-1948				:	Thomas County, 1914-1950				:	Ellis County, 1914-1954			
	C_{c}	: $2 C_{c}$	$: C_{f}$	$: 2 C_{c}-C_{s}$			$2 C_{0}$: Cf_{f}	$: 2 C_{c}^{-C}$		C_{c}	$2 C_{c}$	C_{1}	$: 2 C_{c}^{-C_{f}}$
1941	\$3.89	\$7.78	\$6.32	\$1.46		3.71	-7.42	\$6.29	\$1.13		3.68	\$7.36	± 6.22	12.14
1942	4.25	8.50	6.30	1.70		4.06	8.12	6.73	1.34		4.021	8.04	6.72	1.32
1943	4.61	9.22	7.42	1.30		4.39	8.78	7.36	1.42		$3.09{ }^{1}$	6.18	7.30	-1.12
1944	4.99	9.98	8.00	1.98		4.78	9.56	7.96	1.60		4.73	9.46	7.90	1.56
1945	5.10	10.20	8.29	1.91		4.90	9.80	8.26	1.54		4.85	9.70	8.18	1.52
1946	5.36	10.72	8.68	2.04		5.13	10.26	8.63	1.63		3.697	7.38	8.55	-1.17
1947	5.97	11.94	9.52	2.42		5.71	11.42	9.47	1.95		5.67	11.34	9.40	1.94
1948	6.81	13.62	10.79	2.83		6.53	13.06	10.75	$2 \cdot 31$		6.48	12.96	10.66	2.30
1949						6.82	13.64	11.46	2.18		6.76	13.52	11.34	2.18
1950						6.87	13.74	11.70	2.04		6.82	13.64	11.58	2.06
1951											7.40	14.30	12.36	2.44
1952											7.74	15.48	13.00	2.48
1953											7.86	15.72	13.27	2.45
1954											7.84	15.68	13.35	2.33

Table 7 (concl.).

[^5]| | Finney County, 1921-1948 | | | | Tho | | Coun | \%, 19 | 14-1950 | | | | Count | | 1914 | -1954 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Y_{c} | : $2 \mathrm{Y}_{\mathrm{c}}$ | : Y_{P} | $: 2 Y_{c}-Y_{f}$ | : Y_{c} | | $2 \mathrm{~S}_{\mathrm{c}}$ | : Y_{1} | $: 2 Y_{c}-Y_{1}$ | : | Y_{c} | : | | | Y_{P} | $: Z Y_{C}-Y_{f}$ |
| 1914 | | | | | 0.0 | | 0.0 | 0.0 | 0.0 | | 21.7 | | 43.4 | | 32.2 | 11.2 |
| 1915 | | | | | 11.4 | | 22.8 | 12.4 | 10.4 | | 48.1 | | 96.2 | | 57.5 | 38.7 |
| 1916 | | | | | 0.0 | | 0.0 | 0.0 | 0.0 | | 3.0 | | 6.0 | | 20.4 | -14.4 |
| 1917 | | | | | 3.4 | | 6.8 | 6.9 | -0.1 | | 4.9 | | 9.3 | | 37.6 | -27.8 |
| 1918 | | | | | 7.1 | | 14.2 | 21.2 | -7.0 | | 9.3 | | 18.6 | | 11.0 | 7.6 |
| 1919 | | | | | 27.6 | | 55.2 | 31.6 | 23.6 | | 35.4 | | 70.8 | | 38.3 | 32.5 |
| 1920 | | | | | 18.3 | | 36.6 | 47.6 | -11.0 | | 46.2 | | 92.4 | | 73.0 | 14.4 |
| 1921 | 16.2 | 32.4 | 33.5 | -1.1 | 15.7 | | 31.4 | 34.0 | -2.6 | | 33.4 | | 66.8 | | 58.4 | 8.4 |
| 1922 | 11.4 | 22.8 | 22.6 | 0.2 | 17.0 | | 34.0 | 42.2 | -8.2 | | 12.9 | | 25.8 | | 42.0 | -16.2 |
| 1923 | 36.7 | 73.4 | 35.5 | 37.9 | 30.9 | | 61.3 | 66.6 | -4.8 | | 2.7 | | 5.4 | | 41.7 | -36.3 |
| 1924 | 41.9 | 83.8 | 49.3 | 34.5 | 4.7 | | 9.4 | 33.6 | -24.2 | | 20.1 | | 40.2 | | 33.6 | 6.6 |
| 1925 | 7.2 | 14.4 | 21.9 | -7.5 | 6.0 | | 12.0 | 15.2 | -3.2 | | 11.4 | | 22.8 | | 19.0 | 3.3 |
| 1926 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 |
| 1927 | 10.2 | 20.4 | 27.4 | -7.0 | 5.0 | | 10.0 | 16.9 | -6.9 | | 38.0 | | 78.0 | | 48.8 | 29.2 |
| 1928 | 51.2 | 102.4 | 66.4 | 36.0 | 11.2 | | 22.4 | 16.2 | 6.2 | | 49.5 | | 99.0 | | 74.1 | 24.9 |
| 1929 | 8.8 | 17.6 | 36.3 | -19.2 | 1.7 | | 3.4 | 17.2 | -13.8 | | 20.9 | | 41.8 | | 65.0 | -23.2 |
| 1930 | 0.0 | 0.0 | 0.0 | 0.0 | 14.3 | | 29.6 | 37.6 | -3.0 | | 8.4 | | 16.8 | | 35.0 | -18.2 |
| 1931 | 25.9 | 51.8 | 47.2 | 4.6 | 32.9 | | 65.8 | 43.1 | 22.7 | | 5.0 | | 10.0 | | 32.8 | -22.8 |
| 1932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 51.7 | -51.7 | | 0.0 | | 0.0 | | 62.4 | -62.4 |
| 1933 | 7.9 | 15.8 | 22.1 | -6.3 | 6.7 | | 13.4 | 16.9 | -3.5 | | 14.5 | | 29.0 | | 4.8 | 24.2 |
| 1934 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 |

Table 8 (concl.).

Table 10. Annual returns from milo, per farm, milo after fallow and continuous milo, Finney, Thomas, and Ellis Counties, Kansas.

Table 10 (concl.).

Table 11. The standard deviation for yields and returns, continuous milo and milo after fallow, Finney, Thomas, and Eilis Counties, Kansas.

Measure	$\begin{gathered} \text { Finney County } \\ 1921-1948 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Thomas County } \\ & 1914-1950 \\ & \hline \end{aligned}$		$\begin{gathered} \text { Ellis County } \\ 1914-1954 \\ \hline \end{gathered}$	
	: M_{c}	$: \quad \mathbf{H}_{\mathbf{f}}$	M_{c}	$: \quad M_{r}$	${ }^{4} \mathrm{c}$	$M_{\mathbf{L}}$
Yields, ${ }^{1}$ bu.	35.109	21.168	22.642	18.651	35.315	24.966
Returns, per farm, dollars	1784.913	1005.696	253.053	234.510	292.427	200.649

Table 12 (concl.).

ECONOMIC CONSIDERATIONS INVOLVAD IN THE USE OF SUMMER FALLOW IN MILO ROTATIONS IH WUSTERN KANSAS
by

FRED HORMEL HOFFMAN
B. S., Kansas State College of Agriculture and Applied Science, 1951

> AN ABSTRACT OF A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Economics and Sociology

KANSAS STATE COLLEGE
OF AGRICULTURE AND APPLIED SCIENCE

This study represents the use of economic tools to Indicato to milo producers at various locations the comparative results to be expected from producing continuous milo versus milo after fallow.

It was assumed that farmers in this area were making a choice between growing milo after milo continuously, or growing milo in alternate years interspaced with fallow. A second assumption was that milo was grown for grain only. The problem of erosion was assumed to be equal for both milo after fallow and continuous milo. Land was considered a ilxed cost and labor, seod, and machinery costs were considered variable costs. It was asamed that continuous milo and milo after fallow have the same effect on soll fertility. The technology assumed was that which was determined to be most nearly typical of the technologios employed in each of the three counties in 1954. Indexes were used to adjust 1947 costs to give costs for other years.

This study was limited to statics. Superior systems over time were determined.

The influence of ylelds, mllo prices, and production costs on income were studied. The relationship of these three variables may be stated symbolically,

$$
2 C_{c}-C_{f}=p_{m}\left(2 Y_{c}-Y_{f}\right)
$$

Cost-difference refers to the cost of two years of continuous milo ($2 \mathrm{C}_{\mathrm{c}}$) minus the cost of one year of milo plus the cost of fallowing $\left(C_{f}\right)$. The price of milo is represented by P_{m}. Yield
difference refers to the difference in total yield per acre between two years of continuous milo ($2 \mathrm{Y}_{\mathrm{c}}$) and one year of milo after fallow (Y_{f}).

Finney, Thomes, and Ellis Counties were studied in detall because yield data from controlled experimental plots were avallable. Milo after fallow and continuous milo were compared for each county.

Continuous milo was found to be superior in Finney County, In terms of returns to land and management for the years studied. Milo after fallow was the superior system in Thomas County. In Ellis County, the returns to land and management were only very slightly greater from continuous milo than from milo after fallow. The difference in returns is so small in Ellis county that one system cannot be recomended over the other as a longtime practice on this basis.

Varlabillty of yields and of income from the two systems were compared. Comparisons of yield and income variabillty within each of the three counties showed that, in all cases, variability was greater for continuous milo than for milo after fallow. In general, it is belleved that the cholce between the two syatems of production is determined largely by the difference in returns to land and management, and that the difference in variabllity of the two systens has only a rather slight effect on the cholce which is made. In Ellis County, the difference In returns to land and management in favor of continuous milo is so small that a farmer might choose the milo after fallow system because of the lower yield and income variability
assoclated with 1 ts use.
A study of cumulative returns was used to indicate a comparison of the two production systems, especially during a period of adverse production conditions. It was found that milo after fallow was superior during distress periods, both In locations where milo after fallow was superior under average conditions and in locations where continuous milo was superior under average conditions.

The fallow problem was found to be of practical importance In the counties studied. Producers of all farm crops under nonirrlgated conditions in approxinately the western half of Kansas are faced with the decision of how much land to fallow. In some counties and under certain conditions the difference in returns between the optimum production method and the alternative was quite large.

[^0]: $1_{\text {R. I. Throckmorton and H. E. Myers, Summer Fallow in Kan- }}^{\text {. }}$ sas, Kansas State College Agricultural Experiment Station Bul. $\overline{293}$ (Manhattan, 1941), p. 23.
 ${ }^{2}$ Ibid., p. 18.

[^1]: ${ }^{1}$ Io1d., p. 7 .

[^2]: lyiller, Frank, Quentin W. Lindsey, and Arthur G. George, Cost of Operating Machinery
 on Nebraska Farms, University of Nobraska, Agricultural Experiment Station Bil. 391 ,
 Incoln, Neoraska, pp. $27-32,1948$.

[^3]: $\cos t$ p. 2. 1_{U}. S. Department of Agriculture, Bureau o
 S1tuation, Maroh, 1953, p. 2, and March, 2955,

[^4]: College

[^5]: ${ }^{1}$ Represents cases where the cost of harvesting was greater than the value of the crop. The milo crop was considered to be abandoned, and an adjusted harvesting cost was used in discussed in the text.

 Represents total cost, including full cost of harvesting. These are cacas in which the milo crop was considered to be abandoned, and an adjusted harvesting cost was used in computing total costs actually incurred.

